Solutions to Exercises

Random Graphs and
Complex Networks. Vol. 1

REMCO VAN DER HOFSTAD

Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands

rhofstad@win.tue.nl

October 14, 2014






CHAPTER 1
SOLUTIONS TO SELECTED EXERCISES

1.1 SOLUTIONS TO THE EXERCISES OF CHAPTER 1.

Solution to Exercise 1.2. When (1.4.7) holds with equality, then

L= Fx(z)= Y fr= > k.

k=x+1 k=x+1

Therefore, by monotonicity of x — 77,

o x
1— Fe(z) < “Tdy =
x(x) _/z ydy=—,
while .
oo 1)1-7
z+1 T—1
As a result, we obtain that
T 1
1-F = 1 -)).
w(#) = 2 (1+0(2))

For an example where (?77) holds, but (1.4.7) fails, we can take for1 = 0 for & > 0

and, for k£ > 1,
1 1

f2k = k-1 - (k + 1)7—1'

Then (1.4.7) fails, while

1 1
]. - _l b'e xr) = ~ ~ .
(z) Zkﬂ T lx/2|7—1 a1

]

Solution to Exercise 1.3. Recall that a function z — L(x) is slowly varying when,
for every ¢ > 0,

L
lim (cz)

=1.
T—00 L(gj)

For L(z) = logx, we can compute
log(cx) i logz +logc

L
lim (cz) = lim ———~ = lim

1.

il
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For L(z) = ()" we compute similarly

hm L<Cm) = hm G(IOg (Cm))'y—(logiﬂ)’Y
T—>00 L(:p) Z—>00
= lim 8@’ ((1+11007§;)L1)
T—>r00
—  lim elos@) tyloge _ 1
T—00

When v = 1, however, we have that L(x) = €'°6% = x, which is regularly varying with
exponent 1. O

1.2 SOLUTIONS TO THE EXERCISES OF CHAPTER 2.

Solution to Exercise 2.1. Take

n

Y1 for n even,
Y, for n odd,
where Y] and Y5 are two independent copies of a random variable which is such that
P(Y; = E[Y;]) < 1. Then, since Y; and Y; are identical in distribution, the sequence
{X,,}52, converges in distribution. In fact, {X,,}°, is constant in distribution.
Moreover, X5, =Y; and Xy,1 = Y5. Since subsequences of converging sequences

are again converging, if {X,,}>° | converges in probability, the limit of {X,,}>° ; should
be equal to Y; and to Ys. Since P(Y; # Y2) > 0, we obtain a contradiction. O

Solution to Exercise 2.2. Note that for any ¢ > 0, we have
1
P(| X, >¢)=P(X,=n)=——0. (1.2.1)
n
Therefore, X,, —» 0, which in turn implies that X, 25 0. O]

Solution to Exercise 2.3. The random variable X with density

1
Feo) = Ty
which is a Cauchy random variable, does the job. O]

Solution to Exercise 2.4. Note that, by a Taylor expansion of the moment gen-
erating function, if M (t) < oo for all ¢, then
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As a result, when M (t) < oo for all ¢, we must have that

lim E[Xr]t = 0.

r—o0 r!
Thus, when t > 1, (2.1.8) follows. Thus, it is sufficient to show that the moment
generating function My (t) of the Poisson distribution is finite for all ¢. For this, we
compute

0 t

My (t) i etke—)\ )‘ o) Z

k=0
for all ¢. L

= exp{—\(1—¢€")} < o0,

Solution to Exercise 2.5. We write out

E(X),] =EXX -1 (X=r+1)]=) az—1)-(z—r+ P(X = z)
=0

oo )\x

Z x(x—1)---(x—r+1e ’\—'

— x!
— Ariﬂ AT N (1.2.2)

—~ (z-r)
O
Solution to Exercise 2.6. Compute that
m _ —)\ka _)\—Azkml >‘7 o —AZZ+1 —/\]E[(X—f—l)m 1]

O

Solution to Exercise 2.9. By the discussion around (2.1.16), we have that the
sum Y o_, (—=1)F*r éE [()lf))!;j! is alternatingly larger and smaller than P(X = k). Thus, it
suffices to prove that, when (2.1.18) holds, then also

k+r X r - ktr E X r
JE{}OZ ﬁ Z;(—l) % (1.2.3)

This is equivalent to the statement that

X) ]
k+r o
nh_>r1010 E 0. (1.2.4)
To prove (0.2.4), we bound
E[(X
‘ § ’W—W’ < M 0, (1.2.5)

by (2.1.18). 0
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Solution to Exercise 2.10. For r = 2, we note that

E[(X),] = E[X?] - E[X], (1.26)

and, for X = )., I; a sum of indicators,
EX? =) E[LL]=Y P(i=1=1)+> P(l;=1). (1.2.7)

i.j i#j i
Using that E[X] = ). P(/; = 1), we thus arrive at

B[(X),] = S P(L = 1 = 1), (1.2.8)

i#]
which is (2.1.21) for r = 2. O

Solution to Exercise 2.11. For the Poisson distribution factorial moments are
given by
E[(X)e] = A"

(recall Exercise 2.5.) We make use of Theorems 2.4 and 2.5. If X,, is binomial with
parameters n and p, = A/n, then

E[(X)i] = E[Xn(Xp — 1) (Xp—k+1D]=nn—1)...(n — k+ 1)p* = Ak,

when p = A/n and n — 0. O

Solution to Exercise 2.12. We prove Theorem 2.7 by induction on d > 1. The
induction hypothesis is that (2.1.21) holds for all measures P with corresponding
expectations E and all rq,...,rq.

Theorem 2.7 for d = 1 is Theorem 2.5, which initializes the induction hypothesis.
We next advance the induction hypothesis by proving (2.1.21) for d 4+ 1. For this, we
first note that we may assume that E[(Xgi1,n)r,,] > 0, since (Xay1,0)r,,, = 0 and
when E[(Xg110)r,] = 0, then (Xg110)r,,, = 0, so that (2.1.21) follows. Then, we
define the measure Py 4 by

E |:(Xd+1,n)7"d+1 :H-é':|
E[(Xd+1,n>7‘d+1] 7

for all possible measurable events £. Then,

Pya(€) = (1.2.9)

E[(X1)n -+ (Xan)raKerradrsi] = ELXar1)eg JBxa| (X -+ (Xan)ry
(1.2.10)
By the induction hypothesis applied to the measure Py 4, we have that

E.q [(Xl,n)rl---(Xd,n)rd} = 37 Y P =i=1, . dks =1,

iV iver Y LilWery

(1.2.11)
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vii

Next, we define the measure P; by

E [ H;i:1 Ii(i) 15]

P (£) =
(€) P(I'=1Vl=1,....d, s=1,...,1)’

2d

so that

E[(Xat1,0)ras | Pxa(l) =1VI=1,...,d, s=1,...,1)
= E{d[(Xd+1,n)rd+1]P(Iisl> =1Vvi=1,...,d, s=1,... ,rl).

Again by Theorem 2.5,

Erl(Xasiadan] = D P == [0 = 1),

7'T‘d+1
.(d+1 (d+1
zg ) Z<T1 )

-----

€Lgt1
Then, the claim for d + 1 follows by noting that
P(I'=1Vl=1,....d, s=1,...,m)P; ([ = ... = [ =1)

td rapa

=PIV =1Vl=1,....,d+1, s=1,...,1).

Solution to Exercise 2.14. Observe that

Z ‘px - Qx| = Z(p:c - qgc)]l{pz>qz} + Z(qgc - px)ﬂ{qz>pz}

0=1-1= Z(px — ) = Z(px — @) Lp,>q,) + Z(pz = 42) L{go>pa)-

x T

We add the two equalities to obtain
Z pe — qu| =2 Z(pz - QI)]l{pz>qz}'

Complete the solution by observing that

Z(p:c - min<pzu Q:c)) = Z(pw - Q:v)ﬂ{pz>qx}-

T xT

(1.2.12)

(1.2.13)

(1.2.14)

(1.2.15)

(1.2.16)

(1.2.17)

]

Solution to Exercise 2.13. The proof of (2.2.8) is the continuous equivalent of

the proof of (2.2.6). Therefore, we will only prove (2.2.6).

Let © be the set of possible outcomes of the probability mass functions {p,} and

{¢:}. The set © can be partitioned into two subsets

D ={reQ:p,>q} and D ={reQ:p, < q}
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Since {p,} and {q,} are probability distribution functions, the sum (P, — ¢)
equals zero. Therefore,

Z’px_qg:’ = Z(px_%c)_ Z(px_qgc)

zeN €N €N
e LIS €€

Adding and subtracting the above equations yields

Z‘px_(h|ZZZ(pm_Qx):_QZ(pm_Qx)-

z€Q e €N

Hence, there exists a set A C Q such that [F(A) — G(A)| > 23 o [ps — ¢| Tt
remains to show that [F(A) — G(A)| < 13 o [p: — ¢.| for all A C Q.

Let A be any subset of €). Just as the set €2, the set A can be partitioned into two
subsets

AleﬂQI and AQZAHQQ,
so that

[F(A) = GA) =Y (e —a2) + Y (e = @) | = laa + Bal-

€A1 TEA2

Since a4 is non-negative and (34 non-positive, it holds that
loa + Bal < max (aa,—fa).

The quantity a4 satisfies
1
ay < Z(px—%) = 52’]7:0_%6‘7
reQ z€Q)

while 54 satisfies

BA Z Z(pz _Qm) = _%Z|px _Qm|'

€N €N

Therefore,

1
- <= - C
|F(A) — G(A)| < 5 2 |De — G VA CQ,

which completes the proof. O]

Solution to Exercise 2.15. By (2.2.15) and (2.2.20)
doy(f,9) <P(X #Y). (1.2.18)

Therefore, the first claim follows directly from Theorem 2.10. The second claim
follows by (2.2.6).
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Solution to Exercise 2.18. Without any loss of generality we can take o = 1.
Then for each ¢, and with Z a standard normal variate

PIX>8)=P(Z>t—pux) <P(Z>t—py)=PY >1),

whence X <XY. O

Solution to Exercise 2.19. The answer is negative. Take X standard normal and
Y ~ N(0,2), then X <Y implies

P(Y >t) >P(X >t)=P(Y > tV2),

for each t. However, this is false for ¢ < 0. n

Solution to Exercise 2.20. Let X be Poisson distributed with parameter A, then

0 A e Aet)™
E[e!X] = Zetneﬂ\m _ 67,\2 (Ae') — A1)
n=0 ) n=0

n!
Put
g(t) = at —log E[e"™] = at + A — \é'

then ¢'(t) = a — X! = 0 & t = log(a/\). Hence, I(a) in (2.4.12) is equal to
I(a) = I\(a) = a(log (a/\) — 1) + A and with @ > X we obtain from (2.4.9),

IP’(Z X; > an) < e "M@,
i=1

This proves (2.4.17). For a < A\, we get ¢'(t) = a — Ae' = 0 for t = log(a/\) < 0 and
we get again
I\(a) = a(loga/A —1) + A.

By (2.4.9), with a < A, we obtain (2.4.18).

I\(A) = 0 and -£1,(a) = loga — log A, so that for a < A the function a — I,(a)
decreases, whereas for a > A the function a — I,(a) increases. Because I\(\) = 0,
this shows that for all a # X, we have I,(a) > 0. O

Solution to Exercise 2.22. By taking expectations on both sides of (2.5.2),
E[M,] = E[E[M,41|My, My, ..., M,]|]| = E[M,41],
since according to the theorem of total probability:

E[E[X|Y1, ..., Y] = E[X].
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Solution to Exercise 2.23. First we show that E[|M,|] < oco. Indeed, since
E[| X;]] < oo, Vi, and since the fact that X; is an independent sequence implies that
the sequence |X;| is independent we get

B[ M. = [TE1X]] < oo,

i=0
To verify the martingale condition, we write

n+1
E[M,1| X1, Xo, ..., Xn] = E[HXi

i=1

XlaXQa"'7Xn:|

- (HX) E[Xp1 | X1, Xo, .o, Xo] = MuE[Xpsa] = M,
=1
O

Solution to Exercise 2.24. First we show that E[|M,|] < oco. Indeed, since

B —B| 3" x| < 3B < .
=1 =1

To verify the martingale condition, we write

n+1
E[M,| My, My,..., M, = E[> Xi|Xo, X1,...,X,]

i=1

= Y Xi+E[Xon|Xo, X1, ., Xp] = My + E[X ] = M,

i=1

]

Solution to Exercise 2.25. Again we first that E[|M,|] < oo. Indeed, since

E[|M,|] = E[E[Y|Xo, ..., X,]

< E[EUYHXO, . ,Xn]] —E[|Y]] < oo.
To verify the martingale condition, we write
E[Mn1|Xo, ..., X,] = ]E[IE[Y\XO,...,XnH]’XO,...,Xn}
= EY|Xo,...,X,| =M, +EX, 1| =M, as.
[l
Solution to Exercise 2.26. Since M, is non-negative we have E[|M,|] = E[M,] =

u < M, by Exercise 2.22. Hence, according to Theorem 2.22 we have convergence to
some limiting random variable M. O]

a.s.
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Solution to Exercise 2.27. Since X; > 0, we have M, = H?ZO X; > 0, hence the
claim is immediate from Exercise 2.26. ]

Solution to Exercise 2.28. First,

!M\SZ

Secondly, since E[max{X,Y}| > max{E[X], E[Y]}, we obtain

(1.2.19)

E[M,i1|Xo, ..., Xn] = E[m%xM;Hm,...,X} > max B[M{, | Xo, .., X
(1.2.20)

= mf%xM,g“ = M,, (1.2.21)

where we use that {M "}, is a sequence of martingales with respect to {X,,}2°.

Solution to Exercise 2.29. We can write
M,=> I —p, (1.2.22)
i=1

where {I;}$°, are i.i.d. indicator variables with P(I; = 1) =1 —P(I; = 0) = p. Then,
M — n has the same distribution as X — np, while, by Exercise 2.24, the sequence
{M,}2, is a martingale with

| M, — M,,—1| = |I, — p| < max{p,1 —p} <1—p, (1.2.23)
since p < 1/2. Thus, the claim follows from the Azuma-Hoeffding inequality (Theo-
rem 2.25).

Solution to Exercise 2.30. Since E[X;] = 0, we have, by Exercise 2.24, that
M, =>"" | X, is a martingale, with by hypothesis,
-1<M,— M, =X, < 17

so that the condition of Theorem 2.25 is satisfied with «o;; = 8; = 1. Since E[M,] = 0,
we have =0 and Y 7 (a; + 5;)* = 4(n + 1), hence from (2.5.20) we get (2.5.33).

We now compare the Azuma-Hoeffding bound (2.5.33) with the central limit ap-
proximation. With @ = zv/n + 1, and ¢? = Var(X;),

P(|M,| > a) =P(|M,| > zvn+1) =P(|M,|/ovn+1>z/0) = 2(1 — &(x/0)),

e /2 du. A well-known approximation tells us that

_ ~ \/_ —t2/2
2(1 = @(t)) ~ 20(1)/t = —= v

where ®(t) = %f
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so that by the central limit theorem and this approximation

P(’Mn‘ > a) ~ U—ﬂe*IQ/QUQ _ gy 2<n + ]') —a?/2(n+1)0?

x\/om B ay/T ‘
Finally 02 < 1, so that the leading order term and with a = x+v/n + 1, the inequality
of Azuma-Hoefding is quite sharp! n

1.3 SOLUTIONS TO THE EXERCISES OF CHAPTER 3.

Solution to Exercise 3.1. When 1 = 0, then, since 7 is a solution of n = Gx(n),
we must have that
po = Gx(0) =0. (1.3.1)

O

Solution to Exercise 3.2. We note that for p = {p,}>2, given in (3.1.15), and
writing ¢ = 1 — p, we have that E[X] = 2p, so that n = 1 when p < 1/2, and

G« (s) = q+ ps’. (1.3.2)

Since 7 satisfies n = G(7n), we obtain that

n=q+pr, (1.3.3)
of which the solutions are
14+ 1 —4pq
n=—MM . (1.3.4)
2p
Noting further that 1 —4pg =1—4p(1—p) =4p* —4p+1= (2p—1)?, and p > 1/2,
we arrive at 142 N
p J—
= 1.3.5
n 2 (1.3.5)

Since n € [0,1) for p > 1/2, we must have that

1-(2p-1) 1-p

n = _ 1.3.6
5 5 (1.3.6)
]
Solution to Exercise 3.3. We compute that
G (s)—l—b/p+ib(1—p)k13’“—1—9—1- bs (1.3.7)
X = = s ..
k=1 p 1—ugs
so that ;
pw=_G" (1) =—. (1.3.8)

p2
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Asaresult,n = 1if u = b/p? < 1 follows from Theorem 3.1. Now, when = b/p? > 1,
then n < 1 is the solution of Gx(n) = n, which becomes

b bn
1— - =, 1.3.9
p 1= (1:39)
which has the solution given by (3.1.18). O

Solution to Exercise 3.4. We note that s — Gx(s) in (0.3.7) has the property
that for any points s, u, v
Gx(s) —Gx(u)  s—ul—qu
Gy(s) —Gx(v) s—vl—qu

(1.3.10)

Taking u = n,v = 1 and using that Gx(n) = n by Theorem 3.1, we obtain that, if
n<1,
Gx(s)—m _s—mn p

= . 1.3.11
Gx(s)—1 s—11—gqn ( )
By (3.1.18), we further obtain that
) (1.3.12)
L=qn
so that we arrive at () .
x\8)—1 s—n
—_— = — . 1.3.13
Gx(s)—1 ps—1 ( )
Since G, (s) is the n-fold iteration of s — Gx(s), we thus arrive at
Gn(s)—nm 1 s—n
—_—Y = — 1.3.14
Gu(s)—1 prs—1 ( )
of which the solution is given by the first line of (3.1.19).
When g = 1, then we have that b = p?, so that
Gr(s) = L=la=P)s. (1.3.15)

1—gs

We now prove by induction that G, (s) is equal to the second line of (3.1.19). For
n = 1, we have that G;(s) = Gx(s), so that the induction is initialized by (0.3.15).

To advance the induction, we assume it for n and advance it to n 4+ 1. For this,
we note that, since G, (s) is the n-fold iteration of s — Gx(s), we have

Grii(s) = Go(Gi(3)). (1.3.16)

By the induction hypothesis, we have that G,,(s) is equal to the second line of (3.1.19),
so that

_ng— (nqg — p)G(s) _ nq(1 —gs) — (ng —p)(q — (q —P)S).

G ) = g — G (5) — o+ na)(1 = 5) — nala — (4= p)s)

(1.3.17)
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Note that, using p =1 — ¢,

ng(1 —qs) — (ng — p)(q — (g — p)s) = [ng — (ng — p)q| + s[(q — p)(ng — p) — ng’]
(1.3.18)

= (n+1)qp — slgp(n + 1) — p?],

while

(p+nq)(1 — gs) —nglqg — (¢ —p)s) = [(p+ nq) — ng’] + s[(q — p)ng — (p + nq)q|
(1.3.19)

= [p+ngp] — s(n+ 1)pg = p[p + (n + 1)q] — s(n + 1)pg,

and dividing (0.3.18) by (0.3.19) advances the induction hypothesis. O

Solution to Exercise 3.5. We first note that

P(Z, > 0, 3m > n such that Z,, = 0) = P(Im > n such that Z,, = 0)—-P(Z, = 0) = n—P(Z, =0).
(1.3.20)
We next compute, using (3.1.19),

1— ”—77—1[ hen b 2.
P(Zn:()):Gn(O):{ nq/'[/ ne—n winen 7ép

ptng

(1.3.21)

when b = p?.

Using that 7 = 1 when b < p? gives the first two lines of (3.1.20). When 1 < 1, so
that © > 1, we thus obtain

- 1} _ 0= 599

pr =

P(Z, > 0, 3m > n such that Z,, =0) = (1 — 77)[
This proves the third line of (3.1.20). O

Solution to Exercise 3.6. By (0.3.2), we have that G(s) = q + ps®>. Thus, by
(3.1.23), we obtain

Gr(s) = s(q+pGr(s)?), (1.3.23)
of which the solutions are given by
14+ 4/1—4s?
Go(s) = T P (1.3.24)
Since G1(0) = 0, we must that that
1— /1 —4s?
Go(s) = > P (1.3.25)
sp
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Solution to Exercise 3.7. By (0.3.7), we have Gy(s) = 1 — 2 + % Thus, by

p 1—gs
(3.1.23), we obtain
b bG
b A]
p o 1—qGx(s)
Multiplying by p(1 — ¢G+(s)), and using that p 4+ ¢ = 1, leads to

pGr(s)(1—qGr(s)) = s[(p—b)(1 — qGx(s)) + bpGr(s)] = s[(p—b) + (b— pg)G+(s)].

Gr(s) =s [1 —

We can simplify the above to
pqG(5)* + (p+ s(b— pq))Gr(s) + s(p—b) =0, (1.3.28)
of which the two solutions are given by

2pq
Since G'r(s) > 0 for all s > 0, we thus arrive at

Gy (s) = Y2+ 50— pa)* ~ 4pgs(p —b) — (p + sb) (1.3.30)

2pq

Solution to Exercise 3.8. Compute
BlZp|Znr =m] =E[ I XoilZoy =m] = E[X7, Xpi|Z0y = m
= 27211 E[X,,:] = mu,
so that, by taking double expectations,
E[Z,] = E[E[Zy|Zu-1]] = ElpZu-1] = HE[Z, 1.
O

Solution to Exercise 3.9. Using induction we conclude from the previous exercise
that
E[Z,] = pE[Z,_1] = p*E[Z, o] = ... = p"E[Zy] = u™.

Hence,
Elp™Z,) = p"E[Z,] = 1.

Therefore, we have that, for all n > 0, E[|p™"Z,|] = E[p™"Z,] < o0
By the Markov property and the calculations in the previous exercise

]E[Zn‘Zl, ceey anl] = ]E[Zn‘anl] = ,LLanla
so that, with M, = Z,/u",

1
E[Mn|Zla R Zn—l] = E[Mn|Zn—1] = EﬂZn—l = Mn—la

almost surely. Therefore, M,, = p~"Z, is a martingale with respect to {Z,}>°,. O
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Solution to Exercise 3.10. For a critical BP we have u = 1, and so Z, is a
martingale. Therefore, for all n,

E[Z,] = E[Z] = 1.
On the other hand, if P(X = 1) < 1, then, n = 1 by Theorem 3.1, and by monotonic-

ity,
lim P(Z, =0)=P(lim Z,=0)=n=1.

n—oo n—oo
[
Solution to Exercise 3.11.
P(Z, > 0) = P(Z, > 1) < E[Z,] = 1",
by Theorem 3.3. O
Solution to Exercise 3.12. Since T'=1+ ), Z,, we obtain by (3.2.1) that
ET]=1+Y E[Z]=1+Y p"=1/(1-p). (1.3.31)
n=1 n=1
[
Solution to Exercise 3.13. For k = 1, we note that, in (3.3.2), {T =1} = {X; =
0}, so that
P(T = 1) = po. (1.3.32)

On the other hand, in (3.1.21), T" = 1 precisely when Z; = X;; = 0, which occurs
with probability py as well.
For k = 2, since X; > 0, we have that {T'= 2} = {X; = 1, X, = 0}, so that

P(T = 2) = pops. (1.3.33)

On the other hand, in (3.1.21), T' = 2 precisely when Z; = X;; =1 and Z, = Xy, =
0, which occurs with probability pop; as well, as required.
For k = 3, since X; > 0, we have that {T' =3} ={X; =2, Xy, = X5 =0} U{X; =
Xy =1, X3 =0}, so that
P(T = 3) = pops + popi- (1.3.34)

On the other hand, in (3.1.21),
{T - 3} == {Zl = ZQ - 1, Zg - 0} U {Zl - 2, Z2 - O}, (1335)
so that {T = 3} = {Xl,l = X271 = 1,X3’1 = 0} U {Xl,l = 2,X271 = X272 = 0}, which

occurs with probability paps + pop? as well, as required. This proves the equality of
P(T = k) for T in (3.3.2) and (3.1.21) and k = 1,2 and 3. O



1.3 Solutions to the exercises of Chapter 3. xvii

Solution to Exercise 3.14. We note that

P(So=Sks1=0,8>0V1 <i<k)=pP(S =1,5>0V1 <i<k, S =0),

(1.3.36)

since the first step must be upwards. By (3.3.2),
P(S1=1,5>0V1<i<k Spy1=0)=P(T =k), (1.3.37)
which completes the proof. O]

Solution to Exercise 3.15. We note that p/, > 0 for all € N. Furthermore,

SoOe=> 0" =Y npe ="' G). (1.3.38)
=0 =0 =0

Since 7 satisfies n = G(n), it follows also that p’ = {p,}32, sums up to 1, so that p’
is a probability distribution. O

Solution to Exercise 3.16. We compute

o0

Culs) =3 s, = st iy, =S (95)7p. = %Gx(ns). (1.3.39)
=0 2=0
]
Solution to Exercise 3.17. We note that
= i apl, = i o™ pe = Gy (). (1.3.40)
2=0 @=0

Now, 7 is the smallest solution of n = Gx(n), and, when n > 0, G(0) = py > 0 by
Exercise 3.1. Therefore, since s — G, (s) is increasing, we must have that G';(n) <
1. [

Solution to Exercise 3.18. Since M, = pu"Z, = W. by Theorem 3.9, by
Lebesques dominated convergence theorem and the fact that, for y > 0 and s € [0, 1],
we have that s¥ < 1, it follows that

E[s""] — E[s"~]. (1.3.41)

However,
E[s""] = E[s”/"] = G, (s" ). (1.3.42)
Since G,,(s) = Gx(Gr-1(s)), we thus obtain

n 1

E[s"] = G (Gnoa(s" 7)) = Gy (Gn_l((sﬂ‘ )#‘"‘1)) — Gy (Guw(sYm), (1.3.43)

again by (0.3.41).
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Solution to Exercise 3.19. If M,, =0, then M,, = 0 for all m > n, so that
{M,, =0} = lim {M, =0} =N {M, =0}.
n—oo
On the other hand, {extinction} = {3In : M,, = 0} or {survival} = {Vn, M,, > 0}.
We hence conclude that {survival} C {M_ > 0} = U2 {M,, > 0}, and so

_ P(M, > 0N {survival}) P(M, > 0)
P(M,, > O|survival) = B (survival) == ; =1,

because it is given that P(W, > 0) =1 —n. O

Solution to Exercise 3.20. By Theorem 3.9, we have that M,, = u™"Z, L5 W,
By Fubini’s theorem, we thus obtain that

E[W,.] < lim E[M,] =1, (1.3.44)
n—oo
where the equality follows from Theorem 3.3. m

Solution to Exercise 3.28. The total offspring equals T = 1+ > 7 Z,, see
(3.1.21). Since we search for T' < 3, we must have Y°° 7, < 2 or Y., Z, < 2,
because Z;, > 0 for some k > 3 implies Z3 > 1,75 > 1,7; > 1, so that 2211 Ly >
S Z, > 3. Then, we can write out

2
P(T=1) = P(Zzn =0)=P(Z, =0)=¢",
n=1
2
P(T=2) = P Z,=1)=P(Z =1,Z,=0) =P(X1; = )P(Xp; = 0) = Ae >
n=1
2
P(T=3) = PO Z,=2)=P(Z1=1,Zy=1,Z5=0)+P(Z1 =2,2, = 0)
n=1

= PX11=1,X01=1,X31=0)+P(X11:=2,X0;=0,X00,=0)

A2 A A2 S
= Ae M) et +eM(A/2) et et =e -
These answers do coincide with P(T' = n) = e‘”’\%, for n < 3.

1.4 SOLUTIONS TO THE EXERCISES OF CHAPTER 4.

Solution to Exercise 4.3. We start by computing P(T' = m) for m = 1,2, 3. For
m =1, we get

s
~
I

N
I

=

A
I

=
I

=

s
I

0) = P(Bin(n — 1,p) =0) = (1 —p)"*.
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For m = 2, we get

P(T=2) = P(S1>0,5=0=P(X;>0,X;+Xo=1)=P(X; =1,X,=0)
= P(X; =1)P(Xy,=0/X; =1)=P(Bin(n — 1,p) = 1)P(Bin(n — 2,p) = 0)
= (n—=1pl—p)"* (1=p)"?=(n—1p(1-p* "

For m = 3, we get

P(T=3) = P(S;>0,5>0,8=0)=PX,>0,X,+Xs>1,X; + Xp + X5 = 2)
= P(Xi=1,Xs=1,X5=0) +P(X; =2, X, = 0, X3 = 0)
= P(X5=0X=1,X; =1)P(Xy =1|X; =1)P(X; =1)
LP(Xs = 0]X, = 0, X, = 2)P(X, = 0|X; = 2)P(X; = 2)
= P(X3=0[S=1)P(X, =15 =1)P(X; =1)
+P(X5 = 0[S, = 1)P(X, = 0[S, = 2)P(X; = 2)
= P(Bin(n —3,p) = 0)P(Bin(n — 2,p) = 1)P(Bin(n — 1,p) = 1)
+P(Bin(n — 3,p) = 0)P(Bin(n — 3,p) = 0)P(Bin(n — 1,p) = 2)
= (1=p)"?(n—=2)p(1 -p)">(n—1)p(1 —p)"?
+H1=p)" (L =p)" P (n - D(n—-2)p*(1 - p)" /2
= (n=Dmn—=2)p°(1 = p)>" "+ (n =) (n - 2)p*(1 — p)*™°/2

= (0= 1= 220 - 9" — )

We now give the combinatoric proof. For m =1,
P(|€(v)| =1) = (1 -p)"",
because all connections from vertex 1 have to be closed. For m = 2,
P(|€(v)] =2) = (n - 1)p(1 —p)*"~*

because you must connect one of n — 1 vertices to vertex v and then isolate these two
vertices which means that 2n — 4 connections should not be present.

For m = 3, the first possibility is to attach one vertex a to 1 and then a second
vertex b to a, with the edge vb being closed. This gives

(n—1)p(L—p)" *(n—2)p(1—p)" (1 —p)"* = (n—1)(n—2)p*(1 — p)*" .

The second possibility is to attach one vertex a to v and then a second vertex b to a,
with the edge vb being occupied. This gives

<” ; 1>p(1 —p)" (1 —p)" (1 —p)" Pp = (n ; 1)193(1 —p)** .

The final possibility is that you pick two vertices attached to vertex v, and then
leave both vertices without any further attachments to the other n — 3 and being
unconnected (the connected case is part of the second possibility)

(n ) 1)102(1 —p)" (1=p) 7 = (n 5 1)272(1 -
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In total, this gives

(n—1)(n—2)p*(1 —p)™ " + (n N 1)193(1 —p) 0+ (n R 1)]?2(1 — p)*n?

2 2
(1.4.1)
= (= 1) =221~ g1 —pt L4 2D
= (0= 1)(n = 21— p)" (5 ).
[l

Solution to Exercise 4.5. We first pick 3 different elements i, j, k from {1,2,...,n}
without order. This can be done in

n

3

different ways. Then all three edges 77, ik, 7k have to be present, which has probability
p?®. The number of triangles is the sum of indicators running over all unordered triples.
These indicators are dependent, but that is of no importance for the expectation,
because the expectation of a sum of dependent random variables equals the sum of
the expected values. Hence the expected number of occupied triangles equals:

(5

]

Solution to Exercise 4.6. We pick 4 elements i, j, k, [ from {1,2,... ,n} This kan

be done in
n
4

different ways. This quadruple may form an occupied square in 3 different orders,
that is (¢, 7, k, 1), (i, k,7,1) and (4, 4,1, k). Hence there are

n
3.
(2
squares in which all four sides should be occupied. Hence the expected number of
occupied squares equals
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Solution to Exercise 4.7. We define the sequence of random variables {X,,}>,
where X, is the number of occupied triangles in an Erdds-Rényi random graph with
edge probability p = A/n. Next we introduce the indicator function

0 trianglea not connected;
Ian =

1 trianglei connected.

Now, according to (2.1.21) we have

lim E[(X,),] = lim > Pllun=1llupa=1....00n=1).  (142)
n—oo n—oo
a1,a2,...,ar€T
Now, there are two types of collections of triangles, namely, sets of triangles in which
all edges are distinct, or the set of triangles for which at least one edge occurs in two

different triangles. In the first case, we see that the indicators Iy, y, Ioyn, - - - 5 Lo, n are
independent, in the second case, they are not. We first claim that the collection of
(ay,as,...,a,) for which all triangles contain different edges has size

(1+o(1)) (Z) (1.4.3)

.
To see this, we note that the upper bound is obvious (since <(’;)> is the number of
collections of r triangles without any restriction). For the lower bound, we note that
a; = (ki l;,m;) for k;, l;, m; € [n] such that k; < I; < m;. We obtain a lower bound on
the number of triangles containing different edges when we assume that all vertices
ki, l;,m; for i = 1,...,r are distinct. There are precisely

ﬁ (” N Z) (1.4.4)

=0

of such combinations. When r is fixed, we have that

r_: (”;Z) _ (1—|—0(1))<§)T. (1.4.5)

=

Thus, the contribution to the right-hand side of (0.4.2) of collections (ay, as, ..., a,)
for which all triangles contain different edges is, by independence and (0.4.3), equal

to
n\" A3\ A3\
(1+ o(1)) (3) (ng) = (1+ 0(1))( - ) . (1.4.6)
We next prove that the contribution to the right-hand side of (0.4.2) of collections
(ay,as,...,a,) for which at least one edge occurs in two different triangles. We give
a crude upper bound for this. We note that each edge which occurs more that once
reduces the number of possible vertices involved. More precisely, when the collection
of triangles (ay,as, ..., a,) contains precisely 3r — [ edges for some [ > 1, then the
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collection of triangles (aq,as,...,a,) contains at most 3r — 2[ vertices, as can easily
be seen by induction. As a result, the contribution to the right-hand side of (0.4.2)
of collections (ay, as, ..., a,) (ai,as,...,a,) contains precisely 3r — [ edges is bounded
by
n3 2\ /)3 = NIt = o(1). (1.4.7)
Since this is negligible, we obtain that
A3\
Tim E[(X,)] = (%) (1.48)

Hence, due to Theorem 2.4 we have that the number of occupied triangles in an
Erdés-Rényi random graph with edge probability p = A/n has an asymptotic Poisson
distribution with parameter \*/6. O]

Solution to Exercise 4.8. We have

E[AG] =K Z IL{ij,ik,jkoccupied}] = Z E [ﬂ{ij,ik,jkoccupied}} (149)
i,jk€G i,j,k€G
A\ 3
= —Dn-=2)(Z2
aln= 102 (2)
and
EW =E| > I[ij, jkoccupied]] = Y E [T jkoccupiedy] (1.4.10)
i,jk€G i,jk€G
A\ 2
= —1 -2)1 = .
n=1)00-2) (2)
This yields for the clustering coefficient

]

Solution to Exercise 4.9. We have E [W;] =n(n—1)(n —2)p*(1 —p). According
to the Chebychev inequality we obtain:

o2
lim P[[Ws —E[W]| >¢ < lim —¢
n—oo

T nooo €2 ’

. Apm— A T
lim P[|Ws — (n)(n — 1)(n — 2)(—=)*( )| >¢€ < lim R
n—o00 n n n—oo €

lim P[|[Ws —nA%| > ¢ < 0.
n—oo

Hence, Ws/n — X2 and, therefore, n/W, — 1/X2. We have already shown in
previous exercise that the number of occupied triangles has an asymptotic Poisson
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distribution with parameter ’\—3. A is three times the number of triangles and thus
Ay -5 3. Poi( % ’). Slutsky’s Theorem states that

X, %5 candY, 5V = XY, -5 oy

Hence %—GG N %Y where Y ~ Poi(X3/6). O

Solution to Exercise 4.10. We have to show that for each z, the event {|%(v)| >
x} remains true if the the number of edges increases.

Obviously by increasing the number of edges the number |4 (v)| increases or stays
the same depending on whether or not some of the added edges connect new vertices
to the cluster. In both cases {|€(v)| > x} remains true.

0

Solution to Exercise 4.11. This is not true. Take two disjoint clusters which differ
by one in size, and suppose that the larger component equals % ,.x, before adding the
edges. Take any v € ... Now add edges between the second largest component
and isolated vertices. If you add two of such edges, then the new %,.. equals the
union of the second largest component and the two isolated vertices. Since originally
v did not belong to the second largest component and v was not isolated, because it
was a member of the previous largest component, we now have v & G ax.

O
Solution to Exercise 4.12. As a result of (4.2.1) we have
- 1
EA[|€ (v) ZIP’ €)= k) <D Puy(T > k) =E[T] = — (1.4.11)
k=1 k=1
where
= E[Offspring] = np = \.
Hence,
Ex[|€ ()] < 1/(1 = A).
O

Solution to Exercise 4.14. We recall that Z>, = > """ | Lijg()>k}-

|Gmax| < k= |%€(i)] < kVi, which implies that Z>; =0
|Cmax| > k = |€(i)| > k for at least k vertices = Zsj > k.
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Solution to Exercise 4.15. Intuitively the statement is logical, for we can see
M as doing n trails with succes probability p and for each trial we throw an other
coin with succes probability q. The eventual amount of successes are the successes
where both trails ended in succes and is thus equal to throwing n coins with succes
probability pq.

There are several ways to prove this, we give two of them.

Suppose we have two binomial trials N and Y both of length n and with succes
rates p,q respectively. We thus create two vectors filled with ones and zeros. For
each index 1 = 1,2,...,n we compare the vectors and in case both entries are 1, we
will see this as a succes. The now counted amount of successes is of course Bin(n, pq)
distributed.

Now we produce the first vector similarly by denoting ones and zeros for the successes
and losses in trail N. For each ’one’, we produce an other outcome by a Be(q) exper-
iment. We count the total number of successes of these experiments and those are of
course Bin(N, ¢) distributed. But now, this is the same as the experiment described
above, since all Bernoulli outcomes are independent. Hence if N ~ Bin(n,p) and
M ~ Bin(N, q), then M ~ Bin(n, pq).

We will also give an analytical proof, which is somewhat more enhanced. We wish to
show that P(M =m) = (") (pq)™(1 — pg)"~™. Off course we have

Rearranging terms yields



1.4 Solutions to the exercises of Chapter 4. XXV

Further analysis yields

P(M=m) = (1 —p)”(%q)mi_flmmn”i ) m!(iiim)! (p(l - Q))i

L—p
- () S i ()
SO m>1<m+k =)
= O ) .nfg D
= () (s g
(e

It is now sufficient to show that > ;—" (".™)p*(1 — p)" ™ *(1 — q)* = (1 — pg)" ™.

g(n;m)pk(l—p)”_m_k(l—q)k = (l—p)”_mﬁ(n;m)@_pq)k

k=0 k=0 ]'_p
_ p—pg\"™
- o )
(1-p) A
(1 =D+ p—pg\"
(1-p) -
= (I—pg)"™

Now we can use this result to proof that N; ~ Bin(n, (1 — p)") by using induction.
The initial value Ng = n — 1 is given, hence

Ng = n—1;

Ni = Bin(n—1,1—p);

Ny = Bin(Ny,1—p) =Bin(n—1,(1 —p)?);

N; = Bin(n—1,(1-p)".

Solution to Exercise 4.17. The extinction probability n satisfies
m = Gx(m) = Efg] = e

Hence,

G=l—-m=1—e M =1_¢"
This equation has only two solutions, one of which is ¢, = 0, the other must be the
survival probability. O]
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Solution to Exercise 4.18. We compute that

Z Lijee(i)y
j=1

=1+ iEA[]l{mj}] =1+ anlmﬂ S ) =1+m—1P\(12). (1.4.12)

Jj=2 Jj=2

=14 Ei[ljewqy]

Jj=2

X(A) = Ex[lE(1)]] = Ex

]

Solution to Exercise 4.19. In this exercise we denote by |€,)| > |€5)| > ..., the
components ordered by their size. Relation (4.4.1) reads that for v € (3,1):

IP’(||<€max| —nGy| > n> = O(n™).
Observe that

Py(162) = P\3€(K):1€Fk),2e%(k)
= ZPA(L 2€%,) =P\(1,2€ %) + ZPA(LQ € Cu)
I>1 1>2

— M + O(n*‘s) + Z]P’,\(l,2 € Cga))'

n2
1>2

For | > 2, we have |%,| < K logn with high probability, hence

K?log®
PA(L,2 € 6) S —— +O(n?),
so that
K?log®
Y R(l2€%,) < —2l 4 O - 0.
n

1>2

Together, this shows that
PA(1¢2) = +0(n™),

for some § > 0. [

Solution to Exercise 4.20. Combining Exercise 4.18 and Exercise 4.19, yields

X(A\) =1+ (n— 1)1 +o0(1)) = n¢i(1 +o(1)).



1.4 Solutions to the exercises of Chapter 4. XxXVvii

Solution to Exercise 4.16. We have that the cluster of ¢ has size [. Furthermore,
we have Py (i «— j||€(i)| = 1) + PA(i < j||€(i)| =) =1 Of course 7, j € [n] and
J # 1. So, having i fixed, gives us n — 1 choices for j in ER,(p) and [ — 1 choices for
J in €(i). Hence,

-1

n—1

Pr(i < j||€ ()] =1) =
and thus
-1
n—1

Ba(i > |16 00) = 1) = 1 -

O

Solution to Exercise 4.21. According to the duality principle we have that the
random graph obtained by removing the largest component of a supercritical Erdos-
Rényi random graph is again an Erdés-Rényi random graph of size m ~ nny = 5=
where py < 1 < A are conjugates as in (3.6.6) and the remaining graph is thus in the
subcritical regime. Hence, studying the second largest component in a supercritical
graph is close to studying the largest component in the remaining graph.

Now, as a result of Theorems 4.4 and 4.5 we have that for some ¢ > 0

lim (P(ll maxl ey oy ([l g ~¢)) =0,

n—o0 ogm logm
Hence, ﬁ“—jﬁ' — I.!. But since we have that n —m = (n(1 + o(1)) and thus
m = n(l — (), we have that logm — 1 as n — oo. Hence ‘?m‘““ = I O
Solution to Exercise 4.22. Denote
Xn - Ynpn
Z, = dnbn__ (1.4.13)
anpn(l - pn)

so that we need to prove that Z, converges is distribution to a standard normal
random variable Z. For this, it suffices to prove that the moment generating function
M, (t) = E[et?"] of Z,, converges to that of Z.

Since the variance of X, goes to infinity, the same holds for a,. Now we write
X, as to be a sum of a, Bernoulli variables X,, = > /", V;, where {Y;}1<i<,, are
independent random variables with Y; ~ Be(p,). Thus, we note that the moment
generating function of X,, equals

My, (t) = E[etX"] = E[e®1]n, (1.4.14)

We further prove, using a simple Taylor expansion,

2

t
log B[] = log (pne’ + (1= pn)) = pat + 5pu(1 = pa) + O(|tP'pn). (1415

Thus, with ¢, = t/v/anpn(1 — p,), we have that

MZ (t) = MX (tt)eanpnt" = e9n log E[e™1] — eépn(l_pn)'i‘o(ltn|3anpn) — 6t2/2+0(1)' (1416)
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We conclude that lim,, ., M, (t) = /2 which is the moment generating function of

a standard normal distribution. Theorem 2.3(b) implies that Z, Ny , as required.
Hence, the CLT follows and (4.5.15) implies (4.5.16). O

Solution to Exercise 4.25. We have that n\/2 edges are added in a total system

of n(n —1)/2 edges. This intuitively yields for p in the classical notation for the ER

graphs to be p = (")‘/ ? 72 and A = n-p, so that one would expect subcritical behavior

|G|/ Logn — I +'. We now provide the details of this argument.

We make use of the crucial relation (4.6.1), and further note that when we increase
M, then we make the event |€n.x| > k more likely. This is a related version of
monotonicity as in Section 4.1.1. In particular, from (4.6.1), it follows that for any
increasing event F, and with p = A/n,

n(n—1)/2

Py\(E) = Z P,.(E)P(Bin(n(n — 1)/2,p) = m) (1.4.17)

> ZP P(Bin(n(n —1)/2,p) = m)

> ]P’M(E)IP’(Bm( (n—1)/2,p) > M).

In particular, when p is chosen such that P(Bin(n(n—1)/2,p) > M) = 1—o0(1), then
P, (E) = o(1) follows when Py(E) = o(1).

Take a > I Uand let k, = alogn. Then we shall first show that Py (|Crmax| >
k,) = o(1). For this, we use the above monotonicity to note that, for every X,

Pyt (|Gimax] = kn) < Pu(|Gmax| > kn)/P(Bin(n(n —1)/2,X /n) > M).  (1.4.18)

For any X' > X, we have P(Bin(n(n — 1)/2,X/n) > M) = 1+ o(1). Now, since
A= Iy 'is continuous, we can take N > X such that I ;1 < a, we further obtain by
Theorem 4.4 that Py (|€max| > kn) = 0(1), so that P, ar(|Gmax| > kn) = o(1) follows.

Next, take a < I;l, take k, = alogn, and we next wish to prove that P, ps(|Gmax| <
kn,) = o(1). For this, we make use of a related bound as in (0.4.17), namely, for a
decreasing event F', we obtain

(n—1)/2

Py\(F) = Z P,.(F)P(Bin(n(n —1)/2,p) = m) (1.4.19)

=1

Z P,.(F)P(Bin(n(n —1)/2,p) = M)
(

F)P(Bin(n(n —1)/2,p) < M).

Now, we take p = X /n where X' < A, so that P(Bin(n(n —1)/2,p) < M) =1 —
o(1). Then, we pick A < X such that I;;' > a and use Theorem 4.5. We conclude
that, with high probability, |€nax|/logn < I;' + ¢) for any € > 0, and, again with
high probability, |€max|/logn > I,' —¢) for any ¢ > 0. This yields directly that
|Gnax|/ logn — I;1. O

v
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1.5 SOLUTIONS TO THE EXERCISES OF CHAPTER 5.

Solution to Exercise 5.1. Fix some r > 0, then

2/3 2/3

™ ™

X(1) = Y PUE(1) 2 k) = Y Por(D). (1.5.1)

k=1 k=1

By Proposition 5.2, we have the bounds

C1
Psi(1) > T
Substituting this bounds into (0.5.1) yields
rn2/3
x(1) > 2 % > dyrnt/3,
where ¢} > 0 and r > 0. O

Solution to Exercise 5.2. By Theorem 3.16, we have that

ttfl

1

e—()\—l—log)\)t —t

1 — * *
X (& IAtIPH(T = t) =

> =

Rearranging the terms in this equation we get

| 1og,\“5t71 . Qo
Xe )‘PI(T —t)—x(e )TG = t' e .

]

Solution to Exercise ??. Take some [ € N such that [ < n, then y,_;(A%?)
is the expected component size in the graph ER(n — [,p). We have to prove that
the expected component size in the graph ER(n — [, p) is smaller than the expected
component size in the graph ER(n — [+ 1,p) for all 0 < p < 1. Consider the graph
ER(n — 1+ 1,p). This graph can be created from ER(n — [, p) by adding the vertex
n—I[+1 and independently connecting this vertex to each of the vertices 1,2,...,n—I.

Let €'(1) denote the component of ER(n — [,p) which contains vertex 1 and
% (1) represents the component of ER(n — [ + 1,p) which contains vertex 1. By the

construction of ER(n — [ + 1, p), it follows that

(1—p)* if b =1,
P(e(1)|=k) =4 P& =k)(1-p)*+P(|¢' )| =k-1)1—-(1-p)*") if2<k<n,
P(|E" (1) =n)(1 - (1—p)") if b =n+1.
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Hence, the expected size of € (1) is

n+1

= 3R] =

- “H+Z (' (D] = K1 = p)* + B(F ()] = k= 1)(1 = (1= p) )] b
B 2 )1 — (1~ )0+ 1),

Rewriting this expression for the expected size of € (1) yields

E[[EW)]] = (1—-p)" " +P(E"(1)] = 1)2p + ZP € ()] = k)k
+ i: P(%'(1) = k)1 — (1= p)" ) + P (1) =n)(n+ (1 - (1 —p)")

> (L p)B( (L] = 1)+ Y KB@ (1) = k) > B[€(1)]).

[
Solution to Exercise ??7. By (??7), we have that
0 0
5}(“()\) = (n— 1)57}1(}\).
For the derivative of 7,(\) we use (??7) to obtain
Do) € )] = Dy 0"
a/\Xn = - A =) Xn-1 n
The function I — x,—(A%1) is decreasing (see Exercise ??), hence
< OS] =1 = xa
a/\Xn = A -
or )
a_)\Xn<>‘) <
e S 1.5.2
Xn(A)? ( )

The second part of the exercise relies on integration. Integrate both the left-hand
and the right-hand side of (0.5.2) between A and 1.

1 1
W) om St
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Bring a term to the other side to obtain

1
< + 1=
Xn(/\) Xn(l)

which is equivalent to
1

n(A) > :
R A R (Y
O
Solution to Exercise 5.3. Using (5.3.8) and (5.3.10) we see that
A
A\ "L A\ 208
:n<1——) +n(n—1)<1——>
n n
A\ n—1 A n—2
:n<1__) <1+<n_1> <1__) )
n n
Consider the first power, taking the logarithm yields
1
logn + (n — 1) log(1 — é) =logn+ (n—1)log(l — M)
n
Taylor expanding the logarithm gives
logn +t logn 4+t logn + 1,2
1 —1log(l — —) =1 — —1[—0— ]
ogn + (n = 1log(1 = %) —logn — (n - [ 2 4 O((ZE22)?)
The latter expression can be simplified to
1 1 —1 —1 1 2
1%n_m_nlﬁ&ﬂ+oaﬁﬁi33}ﬂ%n_” l%n_i_%+0@gﬂiﬁ)
n n n n

= —t+

1 t 1 t)?
ogn  t +O<M>7
n n n

and, as n tends to infinity,

—t+ — —t.

A n—l
lim n (1 — —> =t
n—oo n

A similar argument gives that as n — oo
A n—2
lim (1 — —) =et
n—oo n

lim Ey\[Y?] =e (1 —e),

n—o0

logn N t +O((logn+7,‘)2>

Hence,

Therefore, we conclude

which is the second moment of a Poisson random variable with mean e*.
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1.6 SOLUTIONS TO THE EXERCISES OF CHAPTER 6.

Solution to Exercise 6.1. By the definition of p;; (6.1.1), the numerator of p;; is
(nA)?(n — A)~2. The denominator of p;; is

2”: nA N A\ n?A N nA 7 A=)+ (rA)? niA
n—A n—X\) n—\ n—\| (n—\)? C(n—= A%

=1

Dividing the numerator of p;; by its denominator gives
_(nA)?2 A
Pu =" T

]

Solution to Exercise 6.2. Consider the distribution function F,(z) = P(wy < )
of a uniformly chosen vertex U and let > 0. The law of total probability gives that

Plwy < z) = Z]P’(wU <z|U =4)PU =1)

=1

1 n
= — E ﬂ{wi<x}, x>0, (1.6.1)
n 4 =
i=1
as desired. [

Solution to Exercise 6.4. By (6.1.17), F,(z) = i(|nF(z)] + 1) A 1. To prove
pointwise convergence of this function to F(x), we shall first examine its behavior
when F(z) gets close to 1. Consider the case where +(|nF(x)] 4+ 1) > 1, or equiv-
alently, [nF(z)] > n — 1, which is in turn equivalent to F(z) > 2=, Now fixing =
gives us two possibilities: either F(z) =1 or there is an n such that F(z) < %=1 In
the first case, we have that

[%(LnF(:v)J +1) A 1} - F(x)

- ‘ E(m —1—1)/\1] _ 1‘
—1-1]=0. (1.6.2)

In the second case, we have that for large enough n

H%(W(ggn +1)/\1] _F(z)| = %(LnF(x)J 1y %@”)
_ | InF(z)] —nF(x) +1 < 1 0 (16.3)

which proves the pointwise convergence of F}, to I, as desired. O
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Solution to Exercise 6.5. We note that z — F(z) is non-decreasing, since it is
a distribution function. This implies that x — 1 — F(z) is non-increasing, so that
w > [1 — F]7!(u) is non-increasing.

To see (6.1.19), we let U be a uniform random variable, and note that

% i pw;) = E[n([L = F] 7 ([Un]/n) ] (1.6.4)

Now, [Un]/n > U a.s., and since u +— [l — F]~!(u) is non-increasing, we obtain
that [1 — F]"'([Un]/n) < [1 — F]7YU) a.s. Further, again since x — h(z) is non-
decreasing,

n(i = P (Ua)/m) < b(l1 - FIO). (165)
Thus,

since [1 — F]7'(U) has distribution function F' when U is uniform on (0, 1) (recall the
remark below (6.1.16)). O

Solution to Exercise 6.6. Using the non-decreasing function h(z) = x® in Exercise
6.5, we have that for a uniform random variable U

S [ ()
- E[(u - F]—l([mﬂ/n))a]. (1.6.7)

We also know that [Un]/n > U a.s., and since u — [1 — F|7!(u) is non-increasing
by Exercise 6.5 and x — x® is non-decreasing, we obtain that

(- FPA U ) < ([ ) (1.6.8)

The right hand side function is integrable with value E[IW?], by assumption. There-
fore, by the dominated convergence theorem (Theorem A.17), we have that the inte-
gral of the left hand side converges to the integral of its pointwise limit. Since [Un]/n
converges in distribution to U, we get that [1 — F]7}([Un]/n) — [1 — F]7Y(U), as
desired. O

Solution to Exercise 6.7. By (6.1.14),
w; = [1 — F]7(i/n). (1.6.9)
Now apply the function [1 — F] to both sides to get

[1 = Fl(w;) =i/n, (1.6.10)
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which, by the assumption, can be bounded from above by
i/n=1—F)(w) < cw; V. (1.6.11)
This inequality can be rewritten to
fﬁ(cn)ﬁ > wj, (1.6.12)
where the left hand side is a descending function in ¢ for 7 > 1. This implies
1 1
w; <wy < cmInT1, Vi€ [n), (1.6.13)

giving the ¢ = c71 as desired. ]
Solution to Exercise 6.9. A mixed Poisson variable X has the property that
P(X = 0) = E[e™"] is strictly positive, unless W is infinite whp. Therefore, the

random variable Y with P(Y = 1) = 1 and P(Y = 2) = 1 cannot be represented by
a mixed Poisson variable. O

Solution to Exercise 6.10. By definition, the characteristic function of X is

E[eitX] _ ZeimP(X _ n) _ Zeitn (/OOO fW<UJ) e;):uUndw> 7

where fy,(w) is the density function of W evaluated in w. Since all terms are non-
negative we can interchange summation and integration. Rearranging the terms gives

E[eitX] = /OOO Fur (w)e™ (Z (elnlzf) ) dw = /OOO fuw(w)e™™ exp(ew)dw

= / fuw (W) exp((e — 1)w)dw.
0
The latter expression is the moment generating function of W evaluated in e —1. [

Solution to Exercise 6.11. By the tower rule, we have that E[E[X|W]] = E[X].
Computing the expected value on the left hand side gives

EE[X|W]] = E[X|W = wP(W = w)

w k
—w w(k_l)
:zw:w-IP’(W:w) e k =1

=> w-P(W =w) =E[W], (1.6.14)
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so E[X] = E[W]. For the second moment of X, we consider E[E[X (X — 1)|W]] =
E[X (X — 1)]. Computing the expected value on the left hand side gives

E[E[X (X — 1)|W]] ZE X — D)W = wP(W = w)

=3 PW=w)> k(k—1)e

=> w*-P(W =w) = E[W?]. (1.6.15)

Now, we have that Var(X) = E[X?] — E[X]? = E[W?] + E[W] — E[W]?, which is the
sum of the variance and expected value of W. n

Solution to Exercise 6.13. Suppose there exists a ¢ > 0 such that ¢ < w; < e~}

for every i. Now take the coupling D as in (??). Now, by (??), we obtain that

P((Dy,.... D) # (D1, D) ggipij

ij=1
m

D Y (1.6.16)
— 1, + ww
2,7=1
Now 1,, = Z?:l w; > ne and €2 < ww; < £72. Therefore,
m —2
w;w; €
2 — ) < om? =o(1 1.6.17
Zzlln—irwiwj_ M one 1 2 o(1), ( )
since m = o(y/n). O
Solution to Exercise 6.14. We have to prove
max [E[P{"] — p g% (1.6.18)
We have -
max [B[FL] — il < 5 & [l — pil < = (1.6.19)
Furthermore the following limit is given
lim E[P"] = lim P(D; = k) = py. (1.6.20)
n—o0 n—oo
Hence we can write -
Ves 0V 30, Voo, [E[PY] — pi| < = (1.6.21)

2
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Taking M := maxy, M, we obtain

Ves0InVieVasm |E[PLY] — pi| < £
=
Ves03m Vs maxy |E[Plin>} - pk| <

N

O
Solution to Exercise 6.15. Using the hint, we get
ax Wi > en) < ;>
P(r?jfim >en) < ZIIP’(T/Vz > en)
=nP(W; > en). (1.6.22)
This probability can be rewritten, and applying the Markov inequality now gives
Therefore, max?_, W; is o(n) whp, and
Lo 1 on 2
— 2 < = :
= Zl WP < —max W7 — 0, (1.6.24)
as desired. O]

Solution to Exercise 6.17. Using partial integration we obtain for the mean of
Wi

E[W,] = /000 zf(x)dr = [zF(x) — 2], + /000[1 — F(x)]dz

- ( lim RF(R) — R) —0+ /00[1 — F(z)]dx

R—o00
= /OO 1— F(z)dz
Hence, 0
E[Wi] = o0 < /00[1 _ F(2)ldr = oo (1.6.25)
' O
n d;(z)

Solution to Exercise 6.20. It suffices to prove that [, ;. (wiu;)™ = T[;_, u;™,
where d;(z) = Y7, ;.

The proof will be given by a simple counting argument. Consider the powers of wy
in the left hand side, for some £k = 1,...,n. For k < j < n, the left hand side
contains the terms ui“, whereas for 1 < ¢ < k, it contains the terms u;"*. When

combined, and using the fact that x;; = x;; for all ¢, j, we see that the powers of w

in the left hand side can be written as Z xy;. But since, x;; = 0 for all ¢, this equals
ik
Y xiy = di(z), as required. O

j=1



1.6 Solutions to the exercises of Chapter 6. XxXXVii

Solution to Exercise 6.21. We pick t;, =t and t; = 1 for all 4 # k. Then,

l, + w;wyt
E[tDk]: H l + w;w
1<i<nitk ™ Wk

R, = Z log(1+wzlwk)—log(l—i—w;wk)—wk(t—l) Z %

1<i<nuitk 1<i<nuitk
= > log(ly + wiwyt) —log(l, + wwy) — we(t —1) Y Ql”— (1.6.27)
1<i<n:i#k 1<i<niitk
A Taylor expansion of x +— log(a + x) yields that
T x?
log(a + x) = log(a) + - + O(?). (1.6.28)

Therefore, applying the above with a = [,, and x = w;wy, yields that, for ¢ bounded,

n 2

w;
=O(wp >y - =o(1), (1.6.29)
i=1 "
by Exercise 6.3, so that

]E[tDk] — ewk(t—l) P i<i<niitk % (1 + 0(1))
= (D (1 4 o(1)), (1.6.30)

since wy, is fixed. Since the generating function of the degree converges, the degree
of vertex k converges in distribution to a random variable with generating function
et~ (recall Theorem 2.3(c)). The probability generating function of a Poisson
random variable with mean A is given by e**~1) | which completes the proof of Theorem
6.7(a).

For Theorem 6.7(b), we use similar ideas, now taking ¢; = t; for i <m and t; =0
for ¢« > m. Then,

ULE. I, +w;w;t b
E[l ] = o (1 1 1.6.31
M= T1 G =Ileeasom, o
i=1 1<i<m,i<j<n =1
so that the claim follows. O]

Solution to Exercise 6.22. The degree of Vertex k converges in distribution to a

random variable with generatlng function e¥ . We take w; = ﬁ which yields

Alt=1)
for the generating function el- A/". This gives us for the degree a Poi(—5—) random

= )\/
variable, which for large n is close to a Poi(\) random variable.
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Solution to Exercise 6.23. The Erddés-Rényi Random Graph is obtained by tak-

ing W; = 1_% Since p;; = A/n — 0, Theorem 6.7(b) states that the degrees are

asymptoticallgf independent.
O

Solution to Exercise 6.24. Let X be a mixed Poisson random variable with
mixing distribution Y71, The generating function of X now becomes

Gx(t) = E[t*] = f:t’fIP’(X = k)
> o 1 WT 1
B o W‘rflt k
— E[et-DW (1.6.32)
]
Solution to Exercise 6.25. By using partial integration we obtain
Eh(X)] = / " h(a) f(x)da
= [h(@)(F(x)) - 1% / W (@)[F(x) - 1)dz
= (Jim h(R)(1 = F(R))) = h(0)(1 — F(0)) + / (@)1 - F(a))dx
= /000 B (z)[1 — F(x)]dz.
]

Solution to Exercise 6.27. By definition, p™ and ¢™ are asymptotically equiva-
lent if for every sequence (z,,) of events

hm p“‘) ¢ = 0. (1.6.33)

Tn

By taking the sequence of events z,, = x € X for all n, this means that asymptotical
equivalence implies that also
lim max [p” — ¢ = lim dr(p™, ¢™) = 0. (1.6.34)
n—oo

n—oo reX

Conversely, if the total variation distance converges to zero, which means that the
maximum over all x € X of the difference p{” — ¢ converges in absolute value
to zero. Since this maximum is taken over all x € X, it will certainly hold for all
r € (z,) € X as well. Therefore, it follows that for any sequence of events, p — ¢
must converge to zero as well, which implies asymptotical equivalence. /ensol
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Solution to Exercise 6.28. We recall that

doy (M, M') = sup |[P(M € A) —P(M' € A)|. (1.6.35)

ACZ

Now, for binomial random variables with the same m and with success probabilities
p and ¢ respectively, we have that

PM=k) _ pye L =pymi _ (L= pym (1 = q)
P(M' = k) _<C]) (1_q) (1_q) <Q(1—p)) ) (1.6.36)

which is monotonically increasing or decreasing for p # ¢. As a result, we have that
the supremum in (0.6.35) is attained for a set A = {0,...,j} for some j € N, i.e.,

dry (M, M) = sup [P(M < j) = P(M" < j)|. (1.6.37)
JEN

Now assume that limy_,.o m(p — q)//mp = a € (—00,00). Then, by Exercise 4.22,

(M — mp)//mp — Z ~ N(0,1) and (M’ — mp)//mp — Z'simN(a, 1), where
N (11, 0?) denotes a normal random variable with mean y and variance 0. Therefore,
we arrive at

dey(M, M') = sup |[P(M < j) —P(M'" < j)| = sup|P(Z < x) = P(Z' < x)| +0(1)
jEN z€R

— B(a/2) — B(—a/2), (1.6.38)

where z +— ®(z) is the distribution function of a standard normal random variable.
Thus, dpy (M, M') = o(1) precisely when o = 0, which implies that m(p —q)//mp =
o(1).

Solution to Exercise 6.29. We write

dn(r0) = 5 3 I =l = 5 S (WE + VBV — VS
S VRN VR S VEVE - VEL (1639)

By the Cauchy-Schwarz inequality, we obtain that

SV - v < \/pr \/Zw: VB <2 (). (1640

The same bound applies to the second sum on the right-hand side of (0.6.39), which
proves the upper bound in (6.6.11).
For the lower bound, we bound

N —

du(p, q)* = %Z(\/]Tx_@>2 < 5D (VP V@) |Vbe = Vel = dov(p.q). (1.6.41)

x T
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Solution to Exercise 6.30. By exercise 6.27, we have that p™ = {p"},cx and
q™ = {q\"}.ex are asymptotically equivalent if and only if their total variation dis-
tance converges to zero. By exercise 6.29, we know that (6.6.11) holds, and therefore

also
2720y (b, q) < du(p™ q™) < Ve (9, ). (1.6.42)

Both the left and right hand side of those inequalities converge to zero if dr (p™, ¢™) —
0, which implies by the sandwich theorem that dy(p™,¢™) — 0. Conversely, if
dy(p™,q"™) — 0, by (6.6.11) we have that d(p™,¢"™) — 0. ]

Solution to Exercise 6.31. We bound

pp.0) = (Vo —va) + (Vl—p—vﬂ—QV (1.6.43)
=0 -’ (VP + V) >+ (V1-p+/1-9)7?).

Solution to Exercise 6.32. We wish to show that P(Y = k) = e *P2EL ’\p . We will
use that in the case of X fixed, Y is simply a Bin(X, p) random varlable We have

~
I
o

Ap)F Ap)F
e—)\e)\—)\p( 5) _ e—Ap( ]5)

If we define Y to be the number of edges between ¢ and j at time ¢t and X the same
at time ¢t — 1. Furthermore we define I;, to be the decision of keeping edge k or not.
It is given that X ~ P0|( : IJ) and I, ~ Be(1 — W:) According to what is shown
above we now obtain for Y to be a Poisson random variable with parameter

WW; W, 1 L —W, 1 L,  WW,
1— =1y = W,W,— — W, = 1.6.44
Ly ! Ly ) TLiy Ly "Lioy Ly Ly ( )

]

Solution to Exercise 6.33. A graph is simple when it has no self loops or double
edges between vertices. Therefore, the Norros-Reittu random graph is simple at time
n if for all 7 X;; = 0, and for all 7 # j X;; = 0 or X;; = 1. By Exercise 6.32, we know
that the number of edges X;; between ¢ and j at time n are Poisson with parameter
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wle

. The probability then becomes
P(NR;(w) simple) = P(0 < X;; < 1,Vi # j)P(X;; =

0, Vi)
= J] ®x;=0)+ = ﬁ P(X} = 0)

1<i<j<n
a9 w?
1<i<j<n k=1
s | ) (1.6.45)

]

Solution to Exercise 6.34. Let X;; ~ Poi(wé—T) be the number of edges be-

tween vertex ¢ and j at time n. The degree of vertex k£ at time n becomes Z Xk,
j=1

and because Xj; is Poisson with mean wj’.jwj , the sum will be Poisson with mean
n
n n
wiw; D1 W . ) .
E—J = wkjg— = Wy. Therefore, since the w; are i.i.d, the degree at time n
n n

j=1
has a mixed Poisson distribution with mixing distribution F,,

Solution to Exercise 6.35. Couple X,, = X(G,,) and X] = X(G.,) by coupling
the edge occupation statuses X;; of G, and Xj; of G}, such that (6.7.12) holds. Let

(Xn,XT'L) be this coupling and let E, and E! be the sets of edges of the coupled
versions of G,, and G, respectively. Then, since X is increasing

P(X, < X)) > P(E, C E,) = P(X;; < X[,Vi,j € [n]) = 1, (1.6.46)

which proves the stochastic domination by Lemma 2.12.

1.7 SOLUTIONS TO THE EXERCISES OF CHAPTER 7.

Solution to Exercise 7.1. Consider for instance the graph of size n = 4 with de-
grees {dy,...,ds} = {3,3,1,1} or the graph of size n = 5 with degrees {d,...,ds} =
{4,4,3,2,1}. ]

Solution to Exercise 7.2. For 2m vertices we use m pairing steps, each time
pairing two vertices with each other. For step ¢ + 1, we have already paired 2¢
vertices. The next vertex can thus be paired with 2m — 22 — 1 other possible vertices.
This gives for all pairing steps the total amount of possibilities to be

2m—-1)2m—-3)---2m—(2m —2) — 1) = (2m — 1)!L. (1.7.1)
[l
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Solution to Exercise 7.8. We can write

P(Loisodd) = P((-1)k = 1) = %(1 “E[-)™). (172)

To compute E[(—1)%], we use the characteristic function ¢, () = E[eP1] as follows:

¢p, (1) = E[(=1)""] (1.7.3)

Since (—1)f» = (—1)2P7 where {D;}?_, are i.i.d. random variables, we have for the
characteristic function of Ly, ¢., (7) = (¢p, (7))". Furthermore, we have

¢p, (1) = =P(Dy is odd) + P(D; is even). (1.7.4)
Now we assume P(D; is odd) ¢ {0,1}. This gives us
— 1 < P(D; is even) — P(D; is odd) < 1, (1.7.5)

so that |¢p, ()| < 1, which by (0.7.2) leads directly to the statement that P(L,, is odd)
is exponentially close to %

O
Solution to Exercise 7.10. We compute
o0 (n) o0 1 n 1 n o0 1 n gn
ST WICH ENNHEE ) 9) SEPENEE ST
k=1 k=1 i=1 i=1 k=1 i=1
O

Solution to Exercise 7.11. The probability that there are at least three edges
between ¢ and 7 is bounded above by

(€, —1)(, —3)(€, — 5)

Thus, by Boole’s inequality, the probability that there exist vertices ¢ # j such that
there are at least three edges between ¢ and j is bounded above by

“~ d;(d; — 1)(d; — 2)d;(d; — 1)(d; — 2)
Z (l, —1)(4, —3)(£, —5)

(1.7.6)

=o(1), (1.7.7)

ij=1

since d; = o(y/n) when Condition 7.7(a)-(c) holds (this follows by applying Exercise
6.3 to the weights w = d) as well as ¢,, > n. We conclude that the probability that
there are i,j € [n] such that there are at least three edges between ¢ and j is o(1)
as n — 00. As a result, (S,, M,) converges in distribution to (S, M) precisely when

(Sp, M,) converges in distribution to (.S, M).
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Solution to Exercise 7.12. We start by evaluating (7.4.18) from the right- to the
left-hand side.

B = ettt & I
E[(X + 1) Y = E4+1)rt1—— = k+1)" :
HE[( )" u;( ) o ];( ) Gt 1)1

R AR S T .
= Zn - :Zx - =E[X"].

n=1 =0

Now we can use the independency of the two random variables and the result above
for the evaluation of (7.4.19).

E[X"Y?] = E[XTE[Y"] = E[X [ E[(Y + 1)) = s E[X"(Y +1)*7].

O

Solution to Exercise 7.13. We use a two-dimensional extension of Theorem
2.3(e), stating that when the mixed moments E[X]Y] converge to the moments
E[X"Y*] for each ;s = 0,1,2,..., and the moments of X and Y satisfy (2.1.8), then
(X, Y,,) converges in distribution to (X,Y"). See also Theorem 2.6 for the equivalent
statement for the factorial moments instead of the normal moments, from which the
above claim actually follows. Therefore, we are left to prove the asymptotics of the
mixed moments of (S,, M,).

To prove that E[S! M?] converge to the moments E[S"M?|, we again make use of
induction, now in both r and s.

Proposition 7.12 follows when we prove that

lim E[S}] = E[S"] = psE[(S + 1)1, (1.7.8)
and
lim E[S”M?] = E[S"M*] = u,E[S"(M + 1)*1], (1.7.9)

n—oo

where the second equalities in (0.7.8) and (0.7.9) follow from (7.4.18) and (7.4.19).
To prove (0.7.8), we use the shape of S, in (7.3.20), which we restate here as

Snzzn: > o (1.7.10)

i=1 1<a<b<d;
Then, we prove by induction on r that

lim E[S]] = E[S"]. (1.7.11)
n—oo
The induction hypothesis is that (0.7.11) is true for all ' < r — 1, for CM,,(d)
when n — oo and for all (d;);cpn satisfying Condition 7.7(a)-(c) We prove (0.7.11)
by induction on r. For » = 0, the statement is trivial, which initializes the induction
hypothesis.
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To advance the induction hypothesis, we write out

Z Z [abzsr 1

=1 1<a<b<d;

=2n3 Y Pl = DE[S; L = 1]. (1.7.12)

i=1 1<a<b<d;

When I,,; = 1, then the remaining stubs need to be paired in a uniform manner.
The number of self-loops in the total graph in this pairing has the same distribution
as

1457, (1.7.13)

where S/, is the number of self-loops in the configuration model where with degrees
(d;)icn), where d; = d; —2, and d; = d; for all j # i. The added 1 in (0.7.13) originates
from I,;. By construction, the degrees (d})icn still satisfy Condition 7.7(a)-(c). By
the induction hypothesis, for all £ <r —1

lim E[(S!)*] = E[S"]. (1.7.14)
As a result,
lim E[(1+S)" ' =E[(1+9)" . (1.7.15)

n—oo

Since the limit does not depend on i, we obtain that

JLIEO]E[S;] = [(1 + S " 1 nh—>Ho102 Z abz - ]-

i=1 1<a<b<d;

E[(14 5)"] ,}g{.lozd—_l)

= 51@{(1 +5)1 = E[9"]. (1.7.16)

This advances the induction hypothesis, and completes the proof of (0.7.8).

To prove (0.7.9), we perform a similar induction scheme. Now we prove that, for all
r >0, E[SZ]/\\/[/,SL] converges to E[S"M?] by induction on s. The claim for s = 0 follows
from (0.7.8), which initializes the induction hypothesis, so we are left to advance the
induction hypothesis. We follow the argument for .S,, above. It is not hard to see that
it suffices to prove that, for every 77,

lim B[S M Lty soteis = 1] = E[S7(1 + M)*Y]. (1.7.17)
n—oo
Note that when g4, 5,1, = 1, then we know that two edges are paired together to
form a multiple edge. Removing these two edges leaves us with a graph which is

very close to the configuration model with degrees (d;);cp,), where dj = d; — 2, and
d; = dj —2 and dy = d; for all t # 4,j. The only difference is that when a stub
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connected to ¢ is attached to a stub connected to 7, then this creates an additional
number of multiple edges. Ignoring this effect creates the lower bound

]E[S;MZ_luslthsztz,ij = 1] 2 E[S:;(Mn + 1)8_1]a (1718)

which, by the induction hypothesis, converges to E[S™(1 + M)*~!,] as required.
Let I ;) ¢t,.4; denote the indicator that stub s is connected to ¢y, sp to o and no
other stub of vertex ¢ is connected to a stub of vertex j. Then,

Z Z Z I§1t1,82t2,2J = M < 9 Z Z Z L1ty ata,ij-

1<i#j<n 1<51<s2<d; 1<t1#t2<d; 1<Z¢J<n 1<s1<82<d; 1<t1#t2<d;
(1.7.19)

Hence,

[STMS Z Z Z ]P)(]Sltl’”t?’ij - 1)E[S;Ms_l|]51t1,82t2,ij - 1]:

1<7,;£]<n 1<s1<s2<d; 1<t1 #t2<d,
(1.7.20)
and

[STMS Z Z Z P(I;1t1,82t27l] - ) [STMS 1‘ s1t1,82t2,05 1]

1<Z75]<n 1<s1<s2<d; 1<t175t2<dj

(1.7.21)
Now, by the above, E[S’"MS Yoty sotaij = 1] andIFf,[kS”"]WS " = 1] converge

to E[S’“(M +1)° 1], independently of sit1, soto,ij. Further,

Z Z Z P<Ié1t1,82t2,m - 1) — V2/27 (1722)

1<i#j<n 1<s1<s2<d; 1<t1#t2<d;

s1t1,82t2,17

and also
>y > PUan st = 1) = v7/2. (1.7.23)
1<ij<n 1<s1<s2<d; 1<t14t2<d;
This implies that
E[SI M Loty spt005 = 1] = E[SI_ M= + o(1). (1.7.24)
The remainder of the proof is identical to the one leading to (0.7.16). O

Solution to Exercise 7.14. To obtain a triangle we need to three connected stubs
say (s1,11), (S2,12), (s3,t3) where s; and t3 belong to some vertex ¢ with degree d;, so
and ?; to vertex j with degree d; and s3, t2 to some vertex k with degree d;,. Obviously
we have

1< 5 < d,
1< 1< dj,
1< s < dj,
1< 6 < dy,
1< s3< dy,
1< t3< d;



xlvi Solutions to selected exercises

The probability of connecting s; to t; is 1/(£, — 1). Furthermore, connecting s, to
to appears with probability 1/(¢, — 3) and s3 to t3 with probability 1/(¢, — 5). Of
course we can pick all stubs of ¢ to be s;, and we have d; — 1 vertices left from which
we may choose t3. Hence, for the amount of triangles,

did; (d; — Dy (di—1)(di—1) _ > dildi—1) d;(d;—1) du(dy—1)

L ¥, -1 {,—3 l, -5 pa (, —1 (, — 3 (,—5
1<j<k i<j<k
(1.7.25)
1 /= d;(d; —1)\3
NE(ZZI ‘. )

We will show that

di(d;—1) di(d;—1) dip(dp—1) 1 d;(d; — 1)\ 3
)3 (-1 0,—-3  4,—5 NE(Z A )

i<j<k " i=1

by expanding the righthand-side. We define

S = (id(dg—n_l))?’ (1.7.26)

i=1

Then, we have

S = Z( (d: _1) +3Z Z ( (d _1) (dj(dzn_1)> (1.7.27)

=1 j=1,j#i
di(d; — 1) di(dj — 1) di(dy, — 1)
D A (1.7.28)
i#i 7k

where the first part contains n terms, the second n(n—1) and the third n(n—1)(n—2).
So for large n we can say that

di(d; — 1) dj(d; —1) di(dy — 1)
~ : : . 1.7.2
S~ = A 7 (L.7:20)

i#j#k
Now there are six possible orderings of 4, j, k, hence
1 di(d; — 1) di(dj — 1) di(dp — 1) di(d; — 1) dij(dj — 1) di(dp — 1)
28 ~ : AN . ~ AN R ASa . )
6 Z l, Ly, ly Z l, —1 l, —3 l,—5

1<j<k i<j<k
(1.7.30)
]

Solution to Exercise 7.18. In this case we have d; = r for all i € [n]. This gives

us
" r(r—1) B
T}L)I{oloz THOOZ = r—1. (1.7.31)

1=1
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Furthermore,
n n

[[a' == (1.7.32)

=1 i=1

Finally we have for the total number of stubs ¢,, = rn. Substituting these variables in
(7.5.1) gives us for the number of simple graphs with constant degree sequence d; = r

o (7’727;):)”(1 +o(1)). (1.7.33)

]

1.8 SOLUTIONS TO THE EXERCISES OF CHAPTER 8.

Solution to Exercise 8.1. At time ¢, we add a vertex v;, and connect it with each
vertex v;, 1 < ¢ <t with probability p. In the previous chapters, we had the relation
p = %, but since n is increasing over time, using this expression for p will not result
in an Erdos-Rényi random graph. We could off course wish to obtain a graph of size
N, thus stopping the algorithm at time ¢ = N, and using p = %

]

Solution to Exercise 8.2. We will use an induction argument over ¢. For ¢t = 1
we have a single vertex v; with a self-loop, hence d;(1) =2 > 1.

Now suppose at time ¢ we have d;(t) > 1V,.

At time t + 1 we add a vertex v;11. We do not remove any edges, so we only have to
check whether the newly added vertex has a non-zero degree. Now the algorithm adds
the vertex having a single edge, to be connected to itself, in which case d;;1(t+1) = 2,
or to be connected to another already existing vertex, in which case it’s degree is 1.
In the latter case, one is added to the degree of the vertex to which v, is connected,
thus that degree is still greater than zero. Hence we can say that d;(t +1) > 1V,
We can now conclude that d;(t) > 1 for all i and t. The statement d;(t) + § > 0 for
all 0 > —1 follows directly. m

Solution to Exercise 8.3. The statement

t

149 di(t) + 6 B
t(2+5)+(1+5)+Zt(2+5)+(1+5)—1 (1.8.1)

=1

will follow directly if the following equation holds:

(1+08) + > (di(t) +6) = (24 0) + (1 +9). (1.8.2)
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Which is in its turn true if

t

> (di(t) +6) = t(2 +9). (1.8.3)

i=1

But since Y'_, di(t) = 2t by construction, the latter equation holds. Hence, the
upper statement holds and the probabilities do sum up to one.
[

Solution to Exercise 8.6. We will again use an induction argument. At time
t = 1 we have a single vertex v; with a self-loop, and the statement holds. At time
t = 2 we add a vertex vo and connect it with v; with the given probability
2—-1

P(vs — v1|PA15(1)) = — =L (1.8.4)
Now suppose at time ¢ we have a graph with one vertex v; containing a self-loop
and ¢ — 1 other vertices having only one edge which connects it to v;. In that case
di(t) =2+ (t — 1) =t + 1 and all other vertices have degree 1.
At time ¢t + 1 we add a vertex v;; having one edge which will be connected to v,
with probability
t+1-1
— =

Hence, the claim follows by induction. O

P(vee1 — v1|PA1 (1)) = 1. (1.8.5)

Solution to Exercise 8.7. The proof is by induction on ¢ > 1. For ¢t = 1, the
statement is correct, since, at time 2, both graphs consist of two vertices with two
edges between them. This initializes the induction hypothesis.

To advance the induction hypothesis, we assume that the law of {PAﬁbg(t) -

equal to the one of {PA{’}(s)}._,, and, from this, prove that the law of {PAY)(s)}!

s=1 s=1
is equal to the one of {PA{"j(s)}._;. The only difference between PA{;(t + 1) and
PA{";(t) and between PA) (¢ + 1) and PAY)(¢) is to what vertex the (£ + 1)* edge
is attached. For {PAifé(t)}i’il and conditionally on PA%(t), this edge is attached to
vertex ¢ with probability

is

D;(t)+ ¢

t(249)’
while, for {PA] ,(t)}{2, and conditionally on PA/ ,(t), this edge is attached to vertex
1 with probability

(1.8.6)

1 Di(t)
- 1—a)—/—=. 1.8.
as +(1—a) 5 (1.8.7)
Bringing the terms in (0.8.7) onto a single denominator yields
D;(t) + 22
M (1.8.8)

9 )
l—at
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which agrees with (0.8.6) precisely when 2%~ = 4, so that

J
=505 (1.8.9)
[l
Solution to Exercise 8.9. We write

Lt+1)= /oo zte " dw. (1.8.10)

Using partial integration we obtain :

Ct+1) = [—2'e ™2, + /OO tr'te " dr =0+t - /OO o' le " dr = tT'(t).
0 0

In order to prove that I'(n) = (n — 1)! for n = 1,2,... we will again use an induction

argument. For n = 1 we have

a1 = / e dx :/ e “der=1=(0).
0 0
Now the upper result gives us for n = 2
rey=1-r1)y=1=2-1. (1.8.11)

Suppose now that for some n € N we have I'(n) = (n —1)!. Again (8.3.2) gives us for
n+1
['(n+1) =nl'(n) =n(n—1)! =nl (1.8.12)

Induction yields I'(n) = (n — 1)! for n = 1,2, .. .. O

Solution to Exercise 8.10. We rewrite (8.3.9) to be

1
eV <T(t+1) < e 'ty 27T(1 + —),

12t

A e Nt N )

e
t., /2w t, 1
- — <tl'(t) < - 27(1 + —
O <imm < Gvara o),
t, [2m1 t., /2w 1
- —— <I'(t) < - —Vt(l+ —).
(6) t 1 =T = (6) t \/—( + 12t)
Using this inequality in the left-hand side of (8.3.8) we obtain
oy L RV
—a\t—qa ™ = D(t-a) = —a\t—qa T
() i_avt_a’“‘—i— 12(t17a)) () i_aﬁ

tt e ® < NG < tt 6_0’(1 + 1/12t)
(t _ a)tfa t\/g(l + 12/<t o a)) — I'(t—a) — (t _ a)tfa 't — a
We complete the proof by noting that ¢t —a = ¢(1 + O(1/t)) and 1 + 1/12t = 1 +
O(1/t). O
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Solution to Exercise 8.11. This result is immediate from the collapsing of the
vertices in the definition of PA;(m,§), which implies that the degree of vertex v ™
in PA;(m,d) is equal to the sum of the degrees of the vertices v'" o

v, In
PA,..(1,6/m). ]

m(i—1)+1 " Umi

Solution to Exercise 8.16. We wish to prove

P(\sz(t) — E[P..(t)]| > C\/tlog t) = o(t7Y). (1.8.13)

First of all we have P.,(t) = 0 for £ > mt. We define, similarly to the proof of
Proposition 8.3 the martingale

M, = E[P.,(t)|PA,,s(n)]. (1.8.14)
We have

EM 11 [PA ()] = E[E[Pou(E)IPAw (0 + 1)] [PAry ()| = B[Pt PA5(n)] = M.
(1.8.15)

Hence M, is a martingale. Furthermore, M,, satisfies the moment condition, since
E[M,] =E[P.,(t)] <t < oo. (1.8.16)
Clearly, PA,, 5(0) is the empty graph, hence for M, we obtain
My = ]E[sz(t)|PAm’5(O)} = ]E[sz(t)]. (1.8.17)

We obtain for M,
M; = E[PZk(t)’PAm,é(tﬂ = [sz(t)> (1-8'18)

since P.,(t) can be determined when PA,, 5(¢) is known. Therefore, we have
P..(t) — E[P.,(t)] = My — M. (1.8.19)

To apply the Azuma-Hoeffding inequality, Theorem 2.25, we have to bound |M,, —
M,,_1]. In step n, m edges are added to the graph. Now P., only changes is an edge
is added to a vertex with degree k — 1. Now m edges have influence on the degree of
at most 2m vertices, hence, the maximum amount of vertices of which de degree is
increased to k is at most 2m. So we have |M,, — M, _;| < 2m. The Azuma-Hoeffding
inequality now gives us

2

P(IP.c(t) ~ E[P..(D]] > a) < 26757, (1.8.20)
Taking a = Cy/tlogt, C* > 8m, we obtain

P<|sz(t) —E[P.,(t)]| > C/tlog t) = o(t™). (1.8.21)
O
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Solution to Exercise 8.17. We have for s (t) and 7x(t) the following equation.

1 / 1 i
mlt) = (2+5_t(2+6)+(1+5>>(k_1+5)pk_1_<2+5_t<2+5)+(1+5)

1496 1496
wll) = A=y T T e ra e

We start with C,. We have

)(k + 0)pr,

1+9 < 1 < 1

240)+ (14+0) T3 4+1 7 t+1

RAGIES i (1.8.22)

So indeed C,, = 1 does the job. For kj(t) we have

m(t)—( 1 _ t
PUT\24s t2+0)+
This gives us

(1+ 5)) (=14 0prs = (k+0)mi).  (1.8.23)

1 t
2+5_t(2+5)+(1+5)‘"(k_1+5>pk—l—(k+5)pk
1 t
2+5_t(2+5)+(1+5)‘
H2+6)+ (1+6) — (2+ )t

~ 202+ 1+ 0)(2+0) "i‘glf(’“”)%

Y

)] <

-sup(k + 9)px,
k>1

= L+o ‘-Su (k+96)
etz ar0)2+o)l et P

1 1 ‘
= . -sup(k + 0)pg,
249 t(%)—i—l kzli)( P
: ’
5
t(33) +1

IN

-sup(k + 9)px,

k>1

~sup(k + 6)pp.
< 5 iglf("’)pk

Hence, C,; = supy>(k + 0)px

Solution to Exercise 8.18. We note that
> Dit) = INL(1), (1.8.24)
ZDZ(t)Zl

where we recall that N.,(t) = #{i <t : D;(t) > I} is the number of vertices with
degree at least .

By the proof of Proposition 8.3 (see also Exercise 8.16), there exists C} such that
uniformly for all [,

IP’<|N2l(t) —E[N.,(t)]| > C1+/tlog t) = o(t™). (1.8.25)
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By Proposition 8.6, there exists a constant Cy such that

sup [E[F(1)] — tpi] < Cs. (1.8.26)

>1

Therefore, we obtain that, with probability exceeding 1 — o(t™1),

Ni(t) = EB[N>,(t)] = Cry/tlogt > E[N>,(t)] — E[N.(t)] — Cr/tlogt

> mzjl[tpl — Cy] — Cyy/tlogt > Ctl' ™™ — Cyl — Cyy/tlogt > Bt ™,
- (1.8.27)
whenever [ is such that
T > 1, and t=" > \/tlogt. (1.8.28)

The first condition is equivalent to [ < t%, and the second to [ < tﬁ(log t)_ﬁ.
Note that % > 2(71_1) for all 7 > 2, so the second condition is the strongest, and
follows when t/>~™ > K+/tlogt for some K sufficiently large.

Then, for [ satisfying t1>~7 > K+/tlogt, we have with probability exceeding 1 —

o(t™),

> Di(t) > BT (1.8.29)
:D;(t)>1
Also, with probability exceeding 1 — o(t™'), for all such I, N, (t) > /1. O

Solution to Exercise 8.19. We prove (8.7.3) by induction on j > 1. Clearly, for
every t > i,

o L4 ot s—1 TG+ 1)
MDMO_U_Q£L<LY2+®®—1%+G+5Q_}£L<5_1+5§>_F“+§%W@y
(1.8.30)

which initializes the induction hypothesis, since C; = 1.
To advance the induction, we let s < ¢ be the last time at which a vertex is added
to 7. Then we have that

j—146

P(D;(t) = j) = Z P(Di(S_l) - j_l) 2+6)(s—1)+1+46

s=i+j—1

P(D;i(t) = j|Ds(s) = j)-

By the induction hypothesis, we have that

(s = DIt + %@_ (1.8.32)

[(s— 14 52)0()

P(Di(s—1)=j—1) < Cj
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Moreover, analogously to (0.8.30), we have that

. . : 45
P00 =105 =) = TT e T ) IR (EED
)

3

+
(=%}

t )—1 j—1
_ H <q—1—;m)_l“(t—;ﬁ)l“(s+1+
q—1+ —

% L(t+ é—ig)F(s -

|

|M. [\~

f=2)

q=s+1 2+

Combining (0.8.32) and (0.8.33), we arrive at

t I'(s — DI(i + 12) j—140
P(D;(t) = j) < C 20
(Di() = J) s:;j_l T (s 1+;—12)F(z)><(2+5)(3—1)+(1+5)>
D(t— &3)0(s + ££52) 834
X<r(t+1—+5)r(s ﬂ)> (1.8.34)
2446 24
We next use that
140 149
D(s = 14 5) (24 8)(s = 1)+ (140)) = 2+ O)T(s + 5= ), (1.8.35)
to arrive at
. G146l + T -415) K T(s—1)
P(D;(t) = j) < C;_ : — 1.8.36
(Di(t) ) DN I'(4) F(t+§—f§)8§;_lr(s—;7§) ( )
We note that, whenever [ +0,l4+14+a>0anda—0+1> 0,
ir(s+a)_ 1 F(t+1+a)_F(l+1+a)}< 1 T(t+1+a)
[(s+b) a—b+1L T(t+b) Ll+b) |~ a-b+1 T(t+0)

s=l

| (1.8.37)

Application of (0.8.37) fora = —1,b= —%,l =i+j—1,s0that a—b+1= % >0
when 5 > 1, leads to

j—1+5F(i+%)F(t—%)i I(t
2+0 TG TE+32) 500 - 45)

P(Di(t) = j) < Cj — ) (1.8.38)
215/ 249 +o
j—14+6T6E+52)  T@)

= j—1 . - .
-1 TE T+ 5

Equation (0.8.38) advances the induction by (8.7.4). O

Solution to Exercise 8.24. Suppose ad;, +7v = 0, then, since all non-negative, we
have v = 0 and either a = 0 or ¢;, = 0.

Since v = 0, no new vertices are added with non zero in-degree.

In case of & = 0 we have 8 = 1, and thus we only create edges in GGy. Hence, no ver-
tices exist outside GGy and thus there cannot exist vertices outside Gy with in-degree
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non zero.
In case of 4, = 0 (and v = 0 still), vertices can be created outside Gy, but in in it’s
creation phase we will only give it an outgoing edge. And this edge will be connected
to a vertex inside Gy, since &;, = 0 and the possibility to is thus zero to create an
ingoing edge to a vertex with d;(t) = 0. Similarly, in case edges are created within
the existing graphs, all ingoing edges will be in Gq for the same reason. So, during
all stages all vertices outside GGy will have in-degree zero.

Now suppose v = 1. Then the only edges being created during the process are
those from inside the existing graph to the newly created vertex. So once a vertex
is created and connected to the graph, it will only be able to gain out-going edges.
Hence, the in-degree remains one for all vertices outside G at all times.
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