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Chapter 1

Solutions to selected exercises

1.1 Solutions to the exercises of Chapter 1.

Solution to Exercise 1.2. When (1.4.7) holds with equality, then

1− FX(x) =
∞∑

k=x+1

fk =
∞∑

k=x+1

k−τ .

Therefore, by monotonicity of x 7→ x−τ ,

1− FX(x) ≤
∫ ∞
x

y−τdy =
x1−τ

τ − 1
,

while

1− FX(x) ≥
∫ ∞
x+1

y−τdy =
(x+ 1)1−τ

τ − 1
.

As a result, we obtain that

1− FX(x) =
x1−τ

τ − 1
(1 +O(

1

x
)).

For an example where (??) holds, but (1.4.7) fails, we can take f2k+1 = 0 for k ≥ 0
and, for k ≥ 1,

f2k =
1

kτ−1
− 1

(k + 1)τ−1
.

Then (1.4.7) fails, while

1− FX(x) =
∑
k>x

fk ∼
1

bx/2cτ−1
∼ 1

xτ−1
.

Solution to Exercise 1.3. Recall that a function x 7→ L(x) is slowly varying when,
for every c > 0,

lim
x→∞

L(cx)

L(x)
= 1.

For L(x) = log x, we can compute

lim
x→∞

L(cx)

L(x)
= lim

x→∞

log(cx)

log x
= lim

x→∞

log x+ log c

log x
= 1.
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For L(x) = e(log x)γ , we compute similarly

lim
x→∞

L(cx)

L(x)
= lim

x→∞
e(log (cx))γ−(log x)γ

= lim
x→∞

elog(x)γ
(

(1+ log c
log x

)γ−1
)

= lim
x→∞

elog(x)γ−1γ log c = 1.

When γ = 1, however, we have that L(x) = elog x = x, which is regularly varying with
exponent 1.

1.2 Solutions to the exercises of Chapter 2.

Solution to Exercise 2.1. Take

Xn =

{
Y1 for n even,

Y2 for n odd,

where Y1 and Y2 are two independent copies of a random variable which is such that
P(Yi = E[Yi]) < 1. Then, since Y1 and Y2 are identical in distribution, the sequence
{Xn}∞n=1 converges in distribution. In fact, {Xn}∞n=1 is constant in distribution.

Moreover, X2n ≡ Y1 and X2n+1 ≡ Y2. Since subsequences of converging sequences
are again converging, if {Xn}∞n=1 converges in probability, the limit of {Xn}∞n=1 should
be equal to Y1 and to Y2. Since P(Y1 6= Y2) > 0, we obtain a contradiction.

Solution to Exercise 2.2. Note that for any ε > 0, we have

P(|Xn| > ε) = P(Xn = n) =
1

n
→ 0. (1.2.1)

Therefore, Xn
P−→ 0, which in turn implies that Xn

d−→ 0.

Solution to Exercise 2.3. The random variable X with density

fX(x) =
1

π(1 + x2)
,

which is a Cauchy random variable, does the job.

Solution to Exercise 2.4. Note that, by a Taylor expansion of the moment gen-
erating function, if MX(t) <∞ for all t, then

MX(t) =
∞∑
r=0

E[Xr]
tr

r!
.
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As a result, when MX(t) <∞ for all t, we must have that

lim
r→∞

E[Xr]
tr

r!
= 0.

Thus, when t > 1, (2.1.8) follows. Thus, it is sufficient to show that the moment
generating function MX(t) of the Poisson distribution is finite for all t. For this, we
compute

MX(t) = E[etX ] =
∞∑
k=0

etke−λ
λk

k!
= e−λ

∞∑
k=0

(λet)k

k!
= exp{−λ(1− et)} <∞,

for all t.

Solution to Exercise 2.5. We write out

E[(X)r] = E[X(X − 1) · · · (X − r + 1)] =
∞∑
x=0

x(x− 1) · · · (x− r + 1)P(X = x)

=
∞∑
x=r

x(x− 1) · · · (x− r + 1)e−λ
λx

x!

= λr
∞∑
x=r

e−λ
λx−r

(x− r)!
= λr. (1.2.2)

Solution to Exercise 2.6. Compute that

E[Xm] = e−λ
∞∑
k=1

km
λk

k!
= λe−λ

∞∑
k=1

km−1 λk−1

(k − 1)!
= λe−λ

∞∑
l=0

(l+1)m−1λ
l

l!
= λE[(X+1)m−1].

Solution to Exercise 2.9. By the discussion around (2.1.16), we have that the

sum
∑n

r=k(−1)k+r E[(X)r]
(r−k)!k!

is alternatingly larger and smaller than P(X = k). Thus, it

suffices to prove that, when (2.1.18) holds, then also

lim
n→∞

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
=
∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
. (1.2.3)

This is equivalent to the statement that

lim
n→∞

∞∑
r=n

(−1)k+r E[(X)r]

(r − k)!k!
= 0. (1.2.4)

To prove (0.2.4), we bound∣∣∣ ∞∑
r=n

(−1)k+r E[(X)r]

(r − k)!k!

∣∣∣ ≤ ∞∑
r=n

E[(X)r]

(r − k)!k!
→ 0, (1.2.5)

by (2.1.18).
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Solution to Exercise 2.10. For r = 2, we note that

E[(X)r] = E[X2]− E[X], (1.2.6)

and, for X =
∑

i∈I Ii a sum of indicators,

E[X2] =
∑
i,j

E[IiIj] =
∑
i 6=j

P(Ii = Ij = 1) +
∑
i

P(Ii = 1). (1.2.7)

Using that E[X] =
∑

i P(Ii = 1), we thus arrive at

E[(X)r] =
∑
i 6=j

P(Ii = Ij = 1), (1.2.8)

which is (2.1.21) for r = 2.

Solution to Exercise 2.11. For the Poisson distribution factorial moments are
given by

E[(X)k] = λk

(recall Exercise 2.5.) We make use of Theorems 2.4 and 2.5. If Xn is binomial with
parameters n and pn = λ/n, then

E[(Xn)k] = E[Xn(Xn − 1) · · · (Xn − k + 1)] = n(n− 1) . . . (n− k + 1)pk → λk,

when p = λ/n and n→∞.

Solution to Exercise 2.12. We prove Theorem 2.7 by induction on d ≥ 1. The
induction hypothesis is that (2.1.21) holds for all measures P with corresponding
expectations E and all r1, . . . , rd.

Theorem 2.7 for d = 1 is Theorem 2.5, which initializes the induction hypothesis.
We next advance the induction hypothesis by proving (2.1.21) for d+ 1. For this, we
first note that we may assume that E[(Xd+1,n)rd+1

] > 0, since (Xd+1,n)rd+1
≥ 0 and

when E[(Xd+1,n)rd+1
] = 0, then (Xd+1,n)rd+1

≡ 0, so that (2.1.21) follows. Then, we
define the measure PX,d by

PX,d(E) =
E
[
(Xd+1,n)rd+1

1E

]
E[(Xd+1,n)rd+1

]
, (1.2.9)

for all possible measurable events E . Then,

E[(X1,n)r1 · · · (Xd,n)rd(Xd+1,n)rd+1
] = E[(Xd+1,n)rd+1

]EX,d

[
(X1,n)r1 · · · (Xd,n)rd

]
.

(1.2.10)
By the induction hypothesis applied to the measure PX,d, we have that

EX,d

[
(X1,n)r1 · · · (Xd,n)rd

]
=

∑∗

i
(1)
1 ,...,i

(1)
r1
∈I1

· · ·
∑∗

i
(d)
1 ,...,i

(d)
rd
∈Id

PX,d
(
I (l)

is
= 1∀l = 1, . . . , d&s = 1, . . . , rl

)
.

(1.2.11)
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Next, we define the measure P~id by

P~id(E) =
E
[∏d

l=1 I
(l)

is
1E

]
P
(
I (l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

) , (1.2.12)

so that

E[(Xd+1,n)rd+1
]PX,d

(
I (l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
= E~id [(Xd+1,n)rd+1

]P
(
I (l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
. (1.2.13)

Again by Theorem 2.5,

E~id [(Xd+1,n)rd+1
] =

∑∗

i
(d+1)
1 ,...,i

(d+1)
r1

∈Id+1

P~id(I
(d+1)

i1
= · · · = I (d+1)

ird+1
= 1). (1.2.14)

Then, the claim for d+ 1 follows by noting that

P
(
I (l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
P~id(I

(d+1)

i1
= · · · = I (d+1)

ird+1
= 1) (1.2.15)

= P
(
I (l)

is
= 1 ∀l = 1, . . . , d+ 1, s = 1, . . . , rl

)
.

Solution to Exercise 2.14. Observe that∑
x

|px − qx| =
∑
x

(px − qx)1{px>qx} +
∑
x

(qx − px)1{qx>px} (1.2.16)

0 = 1− 1 =
∑
x

(px − qx) =
∑
x

(px − qx)1{px>qx} +
∑
x

(px − qx)1{qx>px}. (1.2.17)

We add the two equalities to obtain∑
x

|px − qx| = 2
∑
x

(px − qx)1{px>qx}.

Complete the solution by observing that∑
x

(px −min(px, qx)) =
∑
x

(px − qx)1{px>qx}.

Solution to Exercise 2.13. The proof of (2.2.8) is the continuous equivalent of
the proof of (2.2.6). Therefore, we will only prove (2.2.6).

Let Ω be the set of possible outcomes of the probability mass functions {px} and
{qx}. The set Ω can be partitioned into two subsets

Ω1 = {x ∈ Ω : px ≥ qx} and Ω2 = {x ∈ Ω : px < qx}.
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Since {px} and {qx} are probability distribution functions, the sum
∑

x∈Ω(px − qx)
equals zero. Therefore,∑

x∈Ω

|px − qx| =
∑
x∈Ω1

(px − qx)−
∑
x∈Ω2

(px − qx)

0 =
∑
x∈Ω

(px − qx) =
∑
x∈Ω1

(px − qx) +
∑
x∈Ω2

(px − qx)

Adding and subtracting the above equations yields∑
x∈Ω

|px − qx| = 2
∑
x∈Ω1

(px − qx) = −2
∑
x∈Ω2

(px − qx).

Hence, there exists a set A ⊆ Ω such that |F (A) − G(A)| ≥ 1
2

∑
x∈Ω |px − qx|. It

remains to show that |F (A)−G(A)| ≤ 1
2

∑
x∈Ω |px − qx| for all A ⊆ Ω.

Let A be any subset of Ω. Just as the set Ω, the set A can be partitioned into two
subsets

A1 = A ∩ Ω1 and A2 = A ∩ Ω2,

so that

|F (A)−G(A)| = |
∑
x∈A1

(px − qx) +
∑
x∈A2

(px − qx) | = |αA + βA|.

Since αA is non-negative and βA non-positive, it holds that

|αA + βA| ≤ max
A

(
αA,−βA

)
.

The quantity αA satisfies

αA ≤
∑
x∈Ω1

(px − qx) =
1

2

∑
x∈Ω

|px − qx|,

while βA satisfies

βA ≥
∑
x∈Ω2

(px − qx) = −1

2

∑
x∈Ω

|px − qx|.

Therefore,

|F (A)−G(A)| ≤ 1

2

∑
x∈Ω

|px − qx| ∀A ⊆ Ω,

which completes the proof.

Solution to Exercise 2.15. By (2.2.15) and (2.2.20)

dTV(f, g) ≤ P(X̂ 6= Ŷ ). (1.2.18)

Therefore, the first claim follows directly from Theorem 2.10. The second claim
follows by (2.2.6).
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Solution to Exercise 2.18. Without any loss of generality we can take σ2 = 1.
Then for each t, and with Z a standard normal variate

P(X ≥ t) = P(Z ≥ t− µX) ≤ P(Z ≥ t− µY ) = P(Y ≥ t),

whence X � Y .

Solution to Exercise 2.19. The answer is negative. Take X standard normal and
Y ∼ N(0, 2), then X � Y implies

P(Y ≥ t) ≥ P(X ≥ t) = P(Y ≥ t
√

2),

for each t. However, this is false for t < 0.

Solution to Exercise 2.20. Let X be Poisson distributed with parameter λ, then

E[etX ] =
∞∑
n=0

etne−λ
λn

n!
= e−λ

∞∑
n=0

(λet)n

n!
= eλ(et−1).

Put

g(t) = at− logE[etX ] = at+ λ− λet

then g′(t) = a − λet = 0 ⇔ t = log(a/λ). Hence, I(a) in (2.4.12) is equal to
I(a) = Iλ(a) = a(log (a/λ)− 1) + λ and with a > λ we obtain from (2.4.9),

P(
n∑
i=1

Xi ≥ an) ≤ e−nIλ(a).

This proves (2.4.17). For a < λ, we get g′(t) = a− λet = 0 for t = log(a/λ) < 0 and
we get again

Iλ(a) = a(log a/λ− 1) + λ.

By (2.4.9), with a < λ, we obtain (2.4.18).
Iλ(λ) = 0 and d

da
Iλ(a) = log a − log λ, so that for a < λ the function a 7→ Iλ(a)

decreases, whereas for a > λ the function a 7→ Iλ(a) increases. Because Iλ(λ) = 0,
this shows that for all a 6= λ, we have Iλ(a) > 0.

Solution to Exercise 2.22. By taking expectations on both sides of (2.5.2),

E[Mn] = E[E[Mn+1|M1,M2, . . . ,Mn]] = E[Mn+1],

since according to the theorem of total probability:

E[E[X|Y1, . . . , Yn]] = E[X].
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Solution to Exercise 2.23. First we show that E[|Mn|] < ∞. Indeed, since
E[|Xi|] < ∞, ∀i, and since the fact that Xi is an independent sequence implies that
the sequence |Xi| is independent we get

E[|Mn|] =
n∏
i=0

E[|Xi|] <∞.

To verify the martingale condition, we write

E[Mn+1|X1, X2, . . . , Xn] = E
[ n+1∏
i=1

Xi

∣∣∣X1, X2, . . . , Xn

]
=

( n∏
i=1

Xi

)
· E[Xn+1|X1, X2, . . . , Xn] = MnE[Xn+1] = Mn a.s.

Solution to Exercise 2.24. First we show that E[|Mn|] < ∞. Indeed, since
E[|Xi|] <∞∀i,

E[|Mn|] = E
∣∣∣ n∑
i=1

Xi

∣∣∣ ≤ n∑
i=1

E|Xi| <∞.

To verify the martingale condition, we write

E[Mn+1|M1,M2, . . . ,Mn] = E[
n+1∑
i=1

Xi|X0, X1, . . . , Xn]

=
n∑
i=1

Xi + E[Xn+1|X0, X1, . . . , Xn] = Mn + E[Xn+1] = Mn a.s.

Solution to Exercise 2.25. Again we first that E[|Mn|] < ∞. Indeed, since
E[|Xi|] <∞∀i,

E[|Mn|] = E
∣∣∣E[Y |X0, . . . , Xn]

∣∣∣ ≤ E
[
E
[
|Y |
∣∣X0, . . . , Xn

]]
= E[|Y |] <∞.

To verify the martingale condition, we write

E[Mn+1|X0, . . . , Xn] = E
[
E[Y |X0, . . . , Xn+1]

∣∣∣X0, . . . , Xn

]
= E[Y |X0, . . . , Xn] = Mn + E[Xn+1] = Mn a.s.

Solution to Exercise 2.26. Since Mn is non-negative we have E[|Mn|] = E[Mn] =
µ ≤M , by Exercise 2.22. Hence, according to Theorem 2.22 we have convergence to
some limiting random variable M∞.
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Solution to Exercise 2.27. Since Xi ≥ 0, we have Mn =
∏n

i=0Xi ≥ 0, hence the
claim is immediate from Exercise 2.26.

Solution to Exercise 2.28. First,

E[|Mn|] ≤
m∑
i=1

E[|M (i)

n |] <∞. (1.2.19)

Secondly, since E[max{X, Y }] ≥ max{E[X],E[Y ]}, we obtain

E[Mn+1|X0, . . . , Xn] = E
[

m
max
i=0

M (i)

n+1|X0, . . . , Xn

]
≥ m

max
i=0

E[M (i)

n+1|X0, . . . , Xn]

(1.2.20)

=
m

max
i=0

M (i)

n = Mn, (1.2.21)

where we use that {M (i)
n }∞n=0 is a sequence of martingales with respect to {Xn}∞n=0.

Solution to Exercise 2.29. We can write

Mn =
n∑
i=1

Ii − p, (1.2.22)

where {Ii}∞i=1 are i.i.d. indicator variables with P(Ii = 1) = 1− P(Ii = 0) = p. Then,
M − n has the same distribution as X − np, while, by Exercise 2.24, the sequence
{Mn}∞n=0 is a martingale with

|Mn −Mn−1| = |In − p| ≤ max{p, 1− p} ≤ 1− p, (1.2.23)

since p ≤ 1/2. Thus, the claim follows from the Azuma-Hoeffding inequality (Theo-
rem 2.25).

Solution to Exercise 2.30. Since E[Xi] = 0, we have, by Exercise 2.24, that
Mn =

∑n
i=1Xi is a martingale, with by hypothesis,

−1 ≤Mn −Mn−1 = Xn ≤ 1,

so that the condition of Theorem 2.25 is satisfied with αi = βi = 1. Since E[Mn] = 0,
we have µ = 0 and

∑n
i=0(αi + βi)

2 = 4(n+ 1), hence from (2.5.20) we get (2.5.33).
We now compare the Azuma-Hoeffding bound (2.5.33) with the central limit ap-

proximation. With a = x
√
n+ 1, and σ2 = Var(Xi),

P(|Mn| ≥ a) = P(|Mn| ≥ x
√
n+ 1) = P(|Mn|/σ

√
n+ 1 ≥ x/σ)→ 2(1− Φ(x/σ)),

where Φ(t) = 1√
2π

∫ t
−∞ e

−u2/2 du. A well-known approximation tells us that

2(1− Φ(t)) ∼ 2φ(t)/t =

√
2

t
√
π
e−t

2/2,
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so that by the central limit theorem and this approximation

P(|Mn| ≥ a) ∼ σ
√

2

x
√
σπ

e−x
2/2σ2

=
σ
√

2(n+ 1)

a
√
π

e−a
2/2(n+1)σ2

Finally σ2 ≤ 1, so that the leading order term and with a = x
√
n+ 1, the inequality

of Azuma-Hoefding is quite sharp!

1.3 Solutions to the exercises of Chapter 3.

Solution to Exercise 3.1. When η = 0, then, since η is a solution of η = GX(η),
we must have that

p0 = GX(0) = 0. (1.3.1)

Solution to Exercise 3.2. We note that for p = {px}∞x=0 given in (3.1.15), and
writing q = 1− p, we have that E[X] = 2p, so that η = 1 when p ≤ 1/2, and

GX(s) = q + ps2. (1.3.2)

Since η satisfies η = G(η), we obtain that

η = q + pη2, (1.3.3)

of which the solutions are

η =
1±
√

1− 4pq

2p
. (1.3.4)

Noting further that 1− 4pq = 1− 4p(1− p) = 4p2− 4p+ 1 = (2p− 1)2, and p > 1/2,
we arrive at

η =
1± (2p− 1)

2p
. (1.3.5)

Since η ∈ [0, 1) for p > 1/2, we must have that

η =
1− (2p− 1)

2p
=

1− p
p

. (1.3.6)

Solution to Exercise 3.3. We compute that

GX(s) = 1− b/p+
∞∑
k=1

b(1− p)k−1sk = 1− b

p
+

bs

1− qs
, (1.3.7)

so that

µ = G′X(1) =
b

p2
. (1.3.8)
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As a result, η = 1 if µ = b/p2 ≤ 1 follows from Theorem 3.1. Now, when µ = b/p2 > 1,
then η < 1 is the solution of GX(η) = η, which becomes

1− b

p
+

bη

1− qη
= η, (1.3.9)

which has the solution given by (3.1.18).

Solution to Exercise 3.4. We note that s 7→ GX(s) in (0.3.7) has the property
that for any points s, u, v

GX(s)−GX(u)

GX(s)−GX(v)
=
s− u
s− v

1− qv
1− qu

. (1.3.10)

Taking u = η, v = 1 and using that GX(η) = η by Theorem 3.1, we obtain that, if
η < 1,

GX(s)− η
GX(s)− 1

=
s− η
s− 1

p

1− qη
. (1.3.11)

By (3.1.18), we further obtain that

p

1− qη
= µ−1 = p2/b, (1.3.12)

so that we arrive at
GX(s)− η
GX(s)− 1

=
1

µ

s− η
s− 1

. (1.3.13)

Since Gn(s) is the n-fold iteration of s 7→ GX(s), we thus arrive at

Gn(s)− η
Gn(s)− 1

=
1

µn
s− η
s− 1

, (1.3.14)

of which the solution is given by the first line of (3.1.19).
When µ = 1, then we have that b = p2, so that

GX(s) =
q − (q − p)s

1− qs
. (1.3.15)

We now prove by induction that Gn(s) is equal to the second line of (3.1.19). For
n = 1, we have that G1(s) = GX(s), so that the induction is initialized by (0.3.15).

To advance the induction, we assume it for n and advance it to n + 1. For this,
we note that, since Gn(s) is the n-fold iteration of s 7→ GX(s), we have

Gn+1(s) = Gn(GX(s)). (1.3.16)

By the induction hypothesis, we have that Gn(s) is equal to the second line of (3.1.19),
so that

Gn+1(s) =
nq − (nq − p)G(s)

p+ nq − nqGX(s)
=
nq(1− qs)− (nq − p)(q − (q − p)s)
(p+ nq)(1− qs)− nq(q − (q − p)s)

. (1.3.17)
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Note that, using p = 1− q,

nq(1− qs)− (nq − p)(q − (q − p)s) =
[
nq − (nq − p)q

]
+ s
[
(q − p)(nq − p)− nq2

]
(1.3.18)

= (n+ 1)qp− s[qp(n+ 1)− p2],

while

(p+ nq)(1− qs)− nq(q − (q − p)s) =
[
(p+ nq)− nq2

]
+ s
[
(q − p)nq − (p+ nq)q

]
(1.3.19)

= [p+ nqp]− s(n+ 1)pq = p[p+ (n+ 1)q]− s(n+ 1)pq,

and dividing (0.3.18) by (0.3.19) advances the induction hypothesis.

Solution to Exercise 3.5. We first note that

P(Zn > 0, ∃m > n such that Zm = 0) = P(∃m > n such that Zm = 0)−P(Zn = 0) = η−P(Zn = 0).
(1.3.20)

We next compute, using (3.1.19),

P(Zn = 0) = Gn(0) =

{
1− µn 1−η

µn−η when b 6= p2;
nq
p+nq

when b = p2.
(1.3.21)

Using that η = 1 when b ≤ p2 gives the first two lines of (3.1.20). When η < 1, so
that µ > 1, we thus obtain

P(Zn > 0, ∃m > n such that Zm = 0) = (1− η)
[ µn

µn − η
− 1
]

=
(1− η)η

µn − η
. (1.3.22)

This proves the third line of (3.1.20).

Solution to Exercise 3.6. By (0.3.2), we have that G(s) = q + ps2. Thus, by
(3.1.23), we obtain

GT (s) = s
(
q + pGT (s)2

)
, (1.3.23)

of which the solutions are given by

GT (s) =
1±

√
1− 4s2pq

2sp
. (1.3.24)

Since GT (0) = 0, we must that that

GT (s) =
1−

√
1− 4s2pq

2sp
. (1.3.25)
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Solution to Exercise 3.7. By (0.3.7), we have GX(s) = 1 − b
p

+ bs
1−qs . Thus, by

(3.1.23), we obtain

GT (s) = s
[
1− b

p
+

bGT (s)

1− qGT (s)

]
. (1.3.26)

Multiplying by p(1− qGT (s)), and using that p+ q = 1, leads to

pGT (s)(1− qGT (s)) = s
[
(p− b)(1− qGT (s)) + bpGT (s)

]
= s
[
(p− b) + (b− pq)GT (s)

]
.

(1.3.27)
We can simplify the above to

pqGT (s)2 + (p+ s(b− pq))GT (s) + s(p− b) = 0, (1.3.28)

of which the two solutions are given by

GT (s) =
−(p+ sbq)±

√
(p+ s(b− pq))2 − 4pqs(p− b)

2pq
. (1.3.29)

Since GT (s) ≥ 0 for all s ≥ 0, we thus arrive at

GT (s) =

√
(p+ s(b− pq))2 − 4pqs(p− b)− (p+ sbq)

2pq
. (1.3.30)

Solution to Exercise 3.8. Compute

E[Zn|Zn−1 = m] = E[
∑Zn−1

i=1 Xn,i|Zn−1 = m] = E[
∑m

i=1 Xn,i|Zn−1 = m]

=
∑m

i=1 E[Xn,i] = mµ,

so that, by taking double expectations,

E[Zn] = E[E[Zn|Zn−1]] = E[µZn−1] = µE[Zn−1].

Solution to Exercise 3.9. Using induction we conclude from the previous exercise
that

E[Zn] = µE[Zn−1] = µ2E[Zn−2] = . . . = µnE[Z0] = µn.

Hence,
E[µ−nZn] = µ−nE[Zn] = 1.

Therefore, we have that, for all n ≥ 0, E[|µ−nZn|] = E[µ−nZn] <∞
By the Markov property and the calculations in the previous exercise

E[Zn|Z1, . . . , Zn−1] = E[Zn|Zn−1] = µZn−1,

so that, with Mn = Zn/µ
n,

E[Mn|Z1, . . . , Zn−1] = E[Mn|Zn−1] =
1

µn
µZn−1 = Mn−1,

almost surely. Therefore, Mn = µ−nZn is a martingale with respect to {Zn}∞n=1.
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Solution to Exercise 3.10. For a critical BP we have µ = 1, and so Zn is a
martingale. Therefore, for all n,

E[Zn] = E[Z0] = 1.

On the other hand, if P(X = 1) < 1, then, η = 1 by Theorem 3.1, and by monotonic-
ity,

lim
n→∞

P(Zn = 0) = P( lim
n→∞

Zn = 0) = η = 1.

Solution to Exercise 3.11.

P(Zn > 0) = P(Zn ≥ 1) ≤ E[Zn] = µn,

by Theorem 3.3.

Solution to Exercise 3.12. Since T = 1 +
∑∞

n=1 Zn, we obtain by (3.2.1) that

E[T ] = 1 +
∞∑
n=1

E[Zn] = 1 +
∞∑
n=1

µn = 1/(1− µ). (1.3.31)

Solution to Exercise 3.13. For k = 1, we note that, in (3.3.2), {T = 1} = {X1 =
0}, so that

P(T = 1) = p0. (1.3.32)

On the other hand, in (3.1.21), T = 1 precisely when Z1 = X1,1 = 0, which occurs
with probability p0 as well.

For k = 2, since Xi ≥ 0, we have that {T = 2} = {X1 = 1, X2 = 0}, so that

P(T = 2) = p0p1. (1.3.33)

On the other hand, in (3.1.21), T = 2 precisely when Z1 = X1,1 = 1 and Z2 = X2,1 =
0, which occurs with probability p0p1 as well, as required.

For k = 3, since Xi ≥ 0, we have that {T = 3} = {X1 = 2, X2 = X3 = 0}∪{X1 =
X2 = 1, X3 = 0}, so that

P(T = 3) = p2
0p2 + p0p

2
1. (1.3.34)

On the other hand, in (3.1.21),

{T = 3} = {Z1 = Z2 = 1, Z3 = 0} ∪ {Z1 = 2, Z2 = 0}, (1.3.35)

so that {T = 3} = {X1,1 = X2,1 = 1, X3,1 = 0} ∪ {X1,1 = 2, X2,1 = X2,2 = 0}, which
occurs with probability p2

0p2 + p0p
2
1 as well, as required. This proves the equality of

P(T = k) for T in (3.3.2) and (3.1.21) and k = 1, 2 and 3.
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Solution to Exercise 3.14. We note that

P
(
S0 = Sk+1 = 0, Si > 0 ∀1 ≤ i ≤ k

)
= pP

(
S1 = 1, Si > 0 ∀1 ≤ i ≤ k, Sk+1 = 0

)
,

(1.3.36)
since the first step must be upwards. By (3.3.2),

P
(
S1 = 1, Si > 0 ∀1 ≤ i ≤ k, Sk+1 = 0

)
= P(T = k), (1.3.37)

which completes the proof.

Solution to Exercise 3.15. We note that p′x ≥ 0 for all x ∈ N. Furthermore,

∞∑
x=0

p′x =
∞∑
x=0

ηx−1px = η−1

∞∑
x=0

ηxpx = η−1G(η). (1.3.38)

Since η satisfies η = G(η), it follows also that p′ = {p′x}∞x=0 sums up to 1, so that p′

is a probability distribution.

Solution to Exercise 3.16. We compute

Gd(s) =
∞∑
x=0

sxp′x =
∞∑
x=0

sxηx−1px = η−1

∞∑
x=0

(ηs)xpx =
1

η
GX(ηs). (1.3.39)

Solution to Exercise 3.17. We note that

E[X ′] =
∞∑
x=0

xp′x =
∞∑
x=0

xηx−1px = G′X(η). (1.3.40)

Now, η is the smallest solution of η = GX(η), and, when η > 0, GX(0) = p0 > 0 by
Exercise 3.1. Therefore, since s 7→ G′X(s) is increasing, we must have that G′X(η) <
1.

Solution to Exercise 3.18. Since Mn = µ−nZn
a.s.−→ W∞ by Theorem 3.9, by

Lebesques dominated convergence theorem and the fact that, for y ≥ 0 and s ∈ [0, 1],
we have that sy ≤ 1, it follows that

E[sMn ]→ E[sW∞ ]. (1.3.41)

However,
E[sMn ] = E[sZn/µn ] = Gn(sµ

−n
). (1.3.42)

Since Gn(s) = GX(Gn−1(s)), we thus obtain

E[sMn ] = GX

(
Gn−1(sµ

−n
)
)

= GX

(
Gn−1

(
(sµ

−1

)µ
−n−1))→ GX

(
GW (s1/µ)

)
, (1.3.43)

again by (0.3.41).
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Solution to Exercise 3.19. If Mn = 0, then Mm = 0 for all m ≥ n, so that

{M∞ = 0} = lim
n→∞
{Mn = 0} = ∩∞n=0{Mn = 0}.

On the other hand, {extinction} = {∃n : Mn = 0} or {survival} = {∀n,Mn > 0}.
We hence conclude that {survival} ⊂ {M∞ > 0} = ∪∞n=0{Mn > 0}, and so

P(M∞ > 0|survival) =
P(M∞ > 0 ∩ {survival})

P(survival)
=

P(M∞ > 0)

1− η
= 1,

because it is given that P(W∞ > 0) = 1− η.

Solution to Exercise 3.20. By Theorem 3.9, we have that Mn = µ−nZn
a.s.−→ W∞.

By Fubini’s theorem, we thus obtain that

E[W∞] ≤ lim
n→∞

E[Mn] = 1, (1.3.44)

where the equality follows from Theorem 3.3.

Solution to Exercise 3.28. The total offspring equals T = 1 +
∑∞

n=1 Zn, see
(3.1.21). Since we search for T ≤ 3, we must have

∑∞
n=1 Zn ≤ 2 or

∑2
n=1 Zn ≤ 2,

because Zk > 0 for some k ≥ 3 implies Z3 ≥ 1, Z2 ≥ 1, Z1 ≥ 1, so that
∑∞

n=1 Zn ≥∑3
n=1 Zn ≥ 3. Then, we can write out

P(T = 1) = P(
2∑

n=1

Zn = 0) = P(Z1 = 0) = e−λ,

P(T = 2) = P(
2∑

n=1

Zn = 1) = P(Z1 = 1, Z2 = 0) = P(X1,1 = 1)P(X2,1 = 0) = λe−2λ

P(T = 3) = P(
2∑

n=1

Zn = 2) = P(Z1 = 1, Z2 = 1, Z3 = 0) + P(Z1 = 2, Z2 = 0)

= P(X1,1 = 1, X2,1 = 1, X3,1 = 0) + P(X1,1 = 2, X2,1 = 0, X2,2 = 0)

= (λe−λ)2 · e−λ + e−λ(λ2/2) · e−λ · e−λ = e−3λ3λ2

2
.

These answers do coincide with P(T = n) = e−nλ (nλ)n−1

n!
, for n ≤ 3.

1.4 Solutions to the exercises of Chapter 4.

Solution to Exercise 4.3. We start by computing P(T = m) for m = 1, 2, 3. For
m = 1, we get

P(T = 1) = P(S1 = 0) = P(X1 = 0) = P(Bin(n− 1, p) = 0) = (1− p)n−1.
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For m = 2, we get

P(T = 2) = P(S1 > 0, S2 = 0) = P(X1 > 0, X1 +X2 = 1) = P(X1 = 1, X2 = 0)

= P(X1 = 1)P(X2 = 0|X1 = 1) = P(Bin(n− 1, p) = 1)P(Bin(n− 2, p) = 0)

= (n− 1)p(1− p)n−2 · (1− p)n−2 = (n− 1)p(1− p)2n−4.

For m = 3, we get

P(T = 3) = P(S1 > 0, S2 > 0, S3 = 0) = P(X1 > 0, X1 +X2 > 1, X1 +X2 +X3 = 2)

= P(X1 = 1, X2 = 1, X3 = 0) + P(X1 = 2, X2 = 0, X3 = 0)

= P(X3 = 0|X2 = 1, X1 = 1)P(X2 = 1|X1 = 1)P(X1 = 1)

+P(X3 = 0|X2 = 0, X1 = 2)P(X2 = 0|X1 = 2)P(X1 = 2)

= P(X3 = 0|S2 = 1)P(X2 = 1|S1 = 1)P(X1 = 1)

+P(X3 = 0|S2 = 1)P(X2 = 0|S1 = 2)P(X1 = 2)

= P(Bin(n− 3, p) = 0)P(Bin(n− 2, p) = 1)P(Bin(n− 1, p) = 1)

+P(Bin(n− 3, p) = 0)P(Bin(n− 3, p) = 0)P(Bin(n− 1, p) = 2)

= (1− p)n−3(n− 2)p(1− p)n−3(n− 1)p(1− p)n−2

+(1− p)n−3(1− p)n−3(n− 1)(n− 2)p2(1− p)n−3/2

= (n− 1)(n− 2)p2(1− p)3n−8 + (n− 1)(n− 2)p2(1− p)3n−9/2

= (n− 1)(n− 2)p2(1− p)3n−9(
3

2
− p).

We now give the combinatoric proof. For m = 1,

P(|C (v)| = 1) = (1− p)n−1,

because all connections from vertex 1 have to be closed. For m = 2,

P(|C (v)| = 2) = (n− 1)p(1− p)2n−4

because you must connect one of n− 1 vertices to vertex v and then isolate these two
vertices which means that 2n− 4 connections should not be present.

For m = 3, the first possibility is to attach one vertex a to 1 and then a second
vertex b to a, with the edge vb being closed. This gives

(n− 1)p(1− p)n−2(n− 2)p(1− p)n−3(1− p)n−3 = (n− 1)(n− 2)p2(1− p)3n−8.

The second possibility is to attach one vertex a to v and then a second vertex b to a,
with the edge vb being occupied. This gives(

n− 1

2

)
p(1− p)n−3p(1− p)n−3(1− p)n−3p =

(
n− 1

2

)
p3(1− p)3n−9.

The final possibility is that you pick two vertices attached to vertex v, and then
leave both vertices without any further attachments to the other n − 3 and being
unconnected (the connected case is part of the second possibility)(

n− 1

2

)
p2(1− p)n−3 · (1− p)2n−5 =

(
n− 1

2

)
p2(1− p)3n−8.
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In total, this gives

(n− 1)(n− 2)p2(1− p)3n−8 +

(
n− 1

2

)
p3(1− p)3n−9 +

(
n− 1

2

)
p2(1− p)3n−9

(1.4.1)

= (n− 1)(n− 2)p2(1− p)3n−9(1− p+
p

2
+

(1− p)
2

)

= (n− 1)(n− 2)p2(1− p)3n−9(
3

2
− p).

Solution to Exercise 4.5. We first pick 3 different elements i, j, k from {1, 2, . . . , n}
without order. This can be done in (

n

3

)
different ways. Then all three edges ij, ik, jk have to be present, which has probability
p3. The number of triangles is the sum of indicators running over all unordered triples.
These indicators are dependent, but that is of no importance for the expectation,
because the expectation of a sum of dependent random variables equals the sum of
the expected values. Hence the expected number of occupied triangles equals:(

n

3

)
p3.

Solution to Exercise 4.6. We pick 4 elements i, j, k, l from {1, 2, . . . , n} This kan
be done in (

n

4

)
different ways. This quadruple may form an occupied square in 3 different orders,
that is (i, j, k, l), (i, k, j, l) and (i, j, l, k). Hence there are

3 ·
(
n

4

)
squares in which all four sides should be occupied. Hence the expected number of
occupied squares equals

3

(
n

4

)
p4.
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Solution to Exercise 4.7. We define the sequence of random variables {Xn}∞n=1

where Xn is the number of occupied triangles in an Erdős-Rényi random graph with
edge probability p = λ/n. Next we introduce the indicator function

Ia,n :=

{
0 triangle a not connected;

1 triangle i connected.

Now, according to (2.1.21) we have

lim
n→∞

E[(Xn)r] = lim
n→∞

∑∗

a1,a2,...,ar∈I

P(Ia1,n = 1, Ia2,n = 1, . . . , Iar,n = 1). (1.4.2)

Now, there are two types of collections of triangles, namely, sets of triangles in which
all edges are distinct, or the set of triangles for which at least one edge occurs in two
different triangles. In the first case, we see that the indicators Ia1,n, Ia2,n, . . . , Iar,n are
independent, in the second case, they are not. We first claim that the collection of
(a1, a2, . . . , ar) for which all triangles contain different edges has size

(1 + o(1))

(
n

3

)r
. (1.4.3)

To see this, we note that the upper bound is obvious (since
((

n
3

))r
is the number of

collections of r triangles without any restriction). For the lower bound, we note that
ai = (ki, li,mi) for ki, li,mi ∈ [n] such that ki < li < mi. We obtain a lower bound on
the number of triangles containing different edges when we assume that all vertices
ki, li,mi for i = 1, . . . , r are distinct. There are precisely

r−1∏
i=0

(
n− i

3

)
(1.4.4)

of such combinations. When r is fixed, we have that

r−1∏
i=0

(
n− i

3

)
= (1 + o(1))

(
n

3

)r
. (1.4.5)

Thus, the contribution to the right-hand side of (0.4.2) of collections (a1, a2, . . . , ar)
for which all triangles contain different edges is, by independence and (0.4.3), equal
to

(1 + o(1))

(
n

3

)r(λ3

n3

)r
= (1 + o(1))

(λ3

6

)r
. (1.4.6)

We next prove that the contribution to the right-hand side of (0.4.2) of collections
(a1, a2, . . . , ar) for which at least one edge occurs in two different triangles. We give
a crude upper bound for this. We note that each edge which occurs more that once
reduces the number of possible vertices involved. More precisely, when the collection
of triangles (a1, a2, . . . , ar) contains precisely 3r − l edges for some l ≥ 1, then the
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collection of triangles (a1, a2, . . . , ar) contains at most 3r − 2l vertices, as can easily
be seen by induction. As a result, the contribution to the right-hand side of (0.4.2)
of collections (a1, a2, . . . , ar) (a1, a2, . . . , ar) contains precisely 3r− l edges is bounded
by

n3r−2l(λ/n)3r−l = λ3r−ln−l = o(1). (1.4.7)

Since this is negligible, we obtain that

lim
n→∞

E[(Xn)r] =
(λ3

6

)r
. (1.4.8)

Hence, due to Theorem 2.4 we have that the number of occupied triangles in an
Erdős-Rényi random graph with edge probability p = λ/n has an asymptotic Poisson
distribution with parameter λ3/6.

Solution to Exercise 4.8. We have

E[∆G] = E

[ ∑
i,j,k∈G

1{ij,ik,jk occupied}

]
=
∑
i,j,k∈G

E
[
1{ij,ik,jk occupied}

]
(1.4.9)

= n(n− 1)(n− 2)

(
λ

n

)3

,

and

E[WG] = E

[ ∑
i,j,k∈G

I[ij, jk occupied]

]
=
∑
i,j,k∈G

E
[
1{ij,jk occupied}

]
(1.4.10)

= n(n− 1)(n− 2)

(
λ

n

)2

.

This yields for the clustering coefficient

CCG = λ/n.

Solution to Exercise 4.9. We have E [WG] = n(n− 1)(n− 2)p2(1− p). According
to the Chebychev inequality we obtain:

lim
n→∞

P[|WG − E[W]| > ε] ≤ lim
n→∞

σ2
WG

ε2
,

lim
n→∞

P[|WG − (n)(n− 1)(n− 2)(
λ

n
)2(
n− λ
n

)| > ε] ≤ lim
n→∞

σ2
WG

ε2
,

lim
n→∞

P[|WG − nλ2| > ε] ≤ 0.

Hence, WG/n
P−→ λ2 and, therefore, n/WG

P−→ 1/λ2. We have already shown in
previous exercise that the number of occupied triangles has an asymptotic Poisson
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distribution with parameter λ3

6
. ∆G is three times the number of triangles and thus

∆G

d−→ 3 · Poi(λ3
6

). Slutsky’s Theorem states that

Xn
P−→ c and Yn

d−→ Y ⇒ XnYn
d−→ cY

Hence n∆G

WG

d−→ 3
λ2
Y where Y ∼ Poi(λ3/6).

Solution to Exercise 4.10. We have to show that for each x, the event {|C (v)| ≥
x} remains true if the the number of edges increases.

Obviously by increasing the number of edges the number |C (v)| increases or stays
the same depending on whether or not some of the added edges connect new vertices
to the cluster. In both cases {|C (v)| ≥ x} remains true.

Solution to Exercise 4.11. This is not true. Take two disjoint clusters which differ
by one in size, and suppose that the larger component equals Cmax, before adding the
edges. Take any v ∈ Cmax. Now add edges between the second largest component
and isolated vertices. If you add two of such edges, then the new Cmax equals the
union of the second largest component and the two isolated vertices. Since originally
v did not belong to the second largest component and v was not isolated, because it
was a member of the previous largest component, we now have v /∈ Cmax.

Solution to Exercise 4.12. As a result of (4.2.1) we have

Eλ[|C (v)|] =
∞∑
k=1

P(|C (v)| ≥ k) ≤
∞∑
k=1

Pn,p(T ≥ k) = E[T ] =
1

1− µ
, (1.4.11)

where

µ = E[Offspring] = np = λ.

Hence,

Eλ[|C (v)|] ≤ 1/(1− λ).

Solution to Exercise 4.14. We recall that Z≥k =
∑n

i=1 1{|C (i)|≥k}.

|Cmax| < k ⇒ |C (i)| < k∀i, which implies that Z≥k = 0

|Cmax| ≥ k ⇒ |C (i)| ≥ k for at least k vertices ⇒ Z≥k ≥ k.
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Solution to Exercise 4.15. Intuitively the statement is logical, for we can see
M as doing n trails with succes probability p and for each trial we throw an other
coin with succes probability q. The eventual amount of successes are the successes
where both trails ended in succes and is thus equal to throwing n coins with succes
probability pq.
There are several ways to prove this, we give two of them.

Suppose we have two binomial trials N and Y both of length n and with succes
rates p, q respectively. We thus create two vectors filled with ones and zeros. For
each index i = 1, 2, . . . , n we compare the vectors and in case both entries are 1, we
will see this as a succes. The now counted amount of successes is of course Bin(n, pq)
distributed.
Now we produce the first vector similarly by denoting ones and zeros for the successes
and losses in trail N . For each ’one’, we produce an other outcome by a Be(q) exper-
iment. We count the total number of successes of these experiments and those are of
course Bin(N, q) distributed. But now, this is the same as the experiment described
above, since all Bernoulli outcomes are independent. Hence if N ∼ Bin(n, p) and
M ∼ Bin(N, q), then M ∼ Bin(n, pq).

We will also give an analytical proof, which is somewhat more enhanced. We wish to
show that P(M = m) =

(
n
m

)
(pq)m(1− pq)n−m. Off course we have

P(M = m) =
n∑

i=m

P(N = i) ·
(
i

m

)
· qm · (1− q)i −m,

=
n∑

i=m

(
n

i

)
· (p)i · (1− p)n−i ·

(
i

m

)
· qm · (1− q)i −m.

Rearranging terms yields

P(M = m) =
(1− p)nqm

(1− q)m
n∑

i=m

(
n

i

)(
i

m

)
pi

(1− p)i
(1− q)i.
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Further analysis yields

P(M = m) = (1− p)n
( q

1− q

)m n∑
i=m

n!

i!(n− i)!
i!

m!(i−m)!

(p(1− q)
1− p

)i
= (1− p)n

( q

1− q

)m n!

m!

n∑
i=m

1

(n− i)!(i−m)!

(p(1− q)
1− p

)i
= (1− p)n(

q

1− q
)m
n!m!∑ n−m

k=0

1

(n− k −m)!(m+ k −m)!

(p(1− q)
1− p

)k+m

= (1− p)n(
q

1− q
)m

n!

m!(n−m)!

n−m∑
k=0

(n−m)!

(n− k −m)!k!

(p(1− q)
1− p

)k+m

=

(
n

m

) n−m∑
k=0

(
n−m
k

)
pk+m(1− p)n−m−kqm(1− q)k+m−m

=

(
n

m

)
pmqm

n−m∑
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k

It is now sufficient to show that
∑n−m

k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k = (1− pq)n−m.

n−m∑
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k = (1− p)n−m

n−m∑
k=0

(
n−m
k

)(p− pq
1− p

)k
= (1− p)n−m

(
1 +

p− pq
1− p

)n−m
= (1− p)n−m

(1− p+ p− pq
1− p

)n
−m

= (1− pq)n−m.
Now we can use this result to proof that Nt ∼ Bin(n, (1 − p)t) by using induction.
The initial value N0 = n− 1 is given, hence

N0 = n− 1;

N1 = Bin(n− 1, 1− p);
N2 = Bin(N1, 1− p) = Bin(n− 1, (1− p)2);

...

Nt = Bin(n− 1, (1− p)t).

Solution to Exercise 4.17. The extinction probability η satisfies

ηλ = GX(ηλ) = E[ηXλ ] = e−λ+ληλ

Hence,
ζλ = 1− ηλ = 1− e−λ+λη = 1− e−λζλ .

This equation has only two solutions, one of which is ζλ = 0, the other must be the
survival probability.



xxvi Solutions to selected exercises

Solution to Exercise 4.18. We compute that

χ(λ) = Eλ[|C (1)|] = Eλ

[
n∑
j=1

1{j∈C (1)}

]
= 1 +

n∑
j=2

Eλ[1{j∈C (1)}]

= 1 +
n∑
j=2

Eλ[1{1↔j}] = 1 +
n∑
j=2

Pλ(1↔ j) = 1 + (n− 1)Pλ(1↔ 2). (1.4.12)

Solution to Exercise 4.19. In this exercise we denote by |C(1)| ≥ |C(2)| ≥ . . ., the
components ordered by their size. Relation (4.4.1) reads that for ν ∈ (1

2
, 1):

P
(∣∣|Cmax| − nζλ

∣∣ ≥ nν
)

= O(n−δ).

Observe that

Pλ(1↔ 2) = Pλ(∃C (k) : 1 ∈ C (k), 2 ∈ C (k))

=
∑
l≥1

Pλ(1, 2 ∈ C(l)) = Pλ(1, 2 ∈ C(1)) +
∑
l≥2

Pλ(1, 2 ∈ C(l))

=
(nζλ ± nν)2

n2
+O(n−δ) +

∑
l≥2

Pλ(1, 2 ∈ C(l)).

For l ≥ 2, we have |C(l)| ≤ K log n with high probability, hence

Pλ(1, 2 ∈ C(l)) ≤
K2 log2 n

n2
+O(n−2),

so that ∑
l≥2

Pλ(1, 2 ∈ C(l)) ≤
K2 log2 n

n
+O(n−1)→ 0.

Together, this shows that

Pλ(1↔ 2) = ζ2
λ +O(n−δ),

for some δ > 0.

Solution to Exercise 4.20. Combining Exercise 4.18 and Exercise 4.19, yields

χ(λ) = 1 + (n− 1)ζ2
λ(1 + o(1)) = nζ2

λ(1 + o(1)).
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Solution to Exercise 4.16. We have that the cluster of i has size l. Furthermore,
we have Pλ

(
i←→ j

∣∣|C (i)| = l
)

+ Pλ
(
i←→/ j

∣∣|C (i)| = l
)

= 1 Of course i, j ∈ [n] and
j 6= i. So, having i fixed, gives us n− 1 choices for j in ERn(p) and l − 1 choices for
j in C (i). Hence,

Pλ
(
i←→ j

∣∣|C (i)| = l
)

=
l − 1

n− 1
,

and thus

Pλ
(
i←→/ j

∣∣|C (i)| = l
)

= 1− l − 1

n− 1
.

Solution to Exercise 4.21. According to the duality principle we have that the
random graph obtained by removing the largest component of a supercritical Erdős-
Rényi random graph is again an Erdős-Rényi random graph of size m ∼ nηλ = µλn

λ

where µλ < 1 < λ are conjugates as in (3.6.6) and the remaining graph is thus in the
subcritical regime. Hence, studying the second largest component in a supercritical
graph is close to studying the largest component in the remaining graph.
Now, as a result of Theorems 4.4 and 4.5 we have that for some ε > 0

lim
n→∞

(
P
( |Cmax|

logm
> I−1

µλ
+ ε
)

+ P
( |Cmax|

logm
< I−1

µλ
− ε
))

= 0.

Hence, |Cmax|
logm

P−→ I−1
µλ

. But since we have that n − m = ζλn(1 + o(1)) and thus

m = n(1− ζλ), we have that logm
logn
→ 1 as n→∞. Hence |Cmax|

logn

P−→ I−1
µλ

.

Solution to Exercise 4.22. Denote

Zn =
Xn − anpn√
anpn(1− pn)

, (1.4.13)

so that we need to prove that Zn converges is distribution to a standard normal
random variable Z. For this, it suffices to prove that the moment generating function
MZn(t) = E[etZn ] of Zn converges to that of Z.

Since the variance of Xn goes to infinity, the same holds for an. Now we write
Xn as to be a sum of an Bernoulli variables Xn =

∑an
i=1 Yi, where {Yi}1≤i≤an are

independent random variables with Yi ∼ Be(pn). Thus, we note that the moment
generating function of Xn equals

MXn(t) = E[etXn ] = E[etY1 ]an . (1.4.14)

We further prove, using a simple Taylor expansion,

logE[etY1 ] = log
(
pne

t + (1− pn)
)

= pnt+
t2

2
pn(1− pn) +O(|t|3pn). (1.4.15)

Thus, with tn = t/
√
anpn(1− pn), we have that

MZn(t) = MXn(tt)e
anpntn = ean logE[etY1 ] = e

t2n
2
pn(1−pn)+O(|tn|3anpn) = et

2/2+o(1). (1.4.16)
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We conclude that limn→∞MZn(t) = et
2/2, which is the moment generating function of

a standard normal distribution. Theorem 2.3(b) implies that Zn
d−→ Z, as required.

Hence, the CLT follows and (4.5.15) implies (4.5.16).

Solution to Exercise 4.25. We have that nλ/2 edges are added in a total system
of n(n− 1)/2 edges. This intuitively yields for p in the classical notation for the ER

graphs to be p = nλ/2
n(n−1)/2

and λ′ = n ·p, so that one would expect subcritical behavior

|Cmax|/ log n
P−→ I−1

λ . We now provide the details of this argument.
We make use of the crucial relation (4.6.1), and further note that when we increase

M , then we make the event |Cmax| ≥ k more likely. This is a related version of
monotonicity as in Section 4.1.1. In particular, from (4.6.1), it follows that for any
increasing event E, and with p = λ/n,

Pλ(E) =

n(n−1)/2∑
m=1

Pm(E)P
(
Bin(n(n− 1)/2, p) = m) (1.4.17)

≥
∞∑

m=M

Pm(E)P
(
Bin(n(n− 1)/2, p) = m)

≥ PM(E)P
(
Bin(n(n− 1)/2, p) ≥M).

In particular, when p is chosen such that P
(
Bin(n(n− 1)/2, p) ≥M) = 1− o(1), then

PM(E) = o(1) follows when Pλ(E) = o(1).
Take a > I−1

λ and let kn = a log n. Then we shall first show that Pn,M(|Cmax| ≥
kn) = o(1). For this, we use the above monotonicity to note that, for every λ′,

Pn,M(|Cmax| ≥ kn) ≤ Pλ′(|Cmax| ≥ kn)/P
(
Bin(n(n− 1)/2, λ′/n) ≥M). (1.4.18)

For any λ′ > λ, we have P
(
Bin(n(n − 1)/2, λ′/n) ≥ M) = 1 + o(1). Now, since

λ 7→ I−1
λ is continuous, we can take λ′ > λ such that I−1

λ′ < a, we further obtain by
Theorem 4.4 that Pλ′(|Cmax| ≥ kn) = o(1), so that Pn,M(|Cmax| ≥ kn) = o(1) follows.

Next, take a < I−1
λ , take kn = a log n, and we next wish to prove that Pn,M(|Cmax| ≤

kn) = o(1). For this, we make use of a related bound as in (0.4.17), namely, for a
decreasing event F , we obtain

Pλ(F ) =

n(n−1)/2∑
m=1

Pm(F )P
(
Bin(n(n− 1)/2, p) = m) (1.4.19)

≥
M∑
m=1

Pm(F )P
(
Bin(n(n− 1)/2, p) = M)

≥ PM(F )P
(
Bin(n(n− 1)/2, p) ≤M).

Now, we take p = λ′/n where λ′ < λ, so that P
(
Bin(n(n − 1)/2, p) ≤ M) = 1 −

o(1). Then, we pick λ′ < λ such that I−1
λ′ > a and use Theorem 4.5. We conclude

that, with high probability, |Cmax|/ log n ≤ I−1
λ + ε) for any ε > 0, and, again with

high probability, |Cmax|/ log n ≥ I−1
λ − ε) for any ε > 0. This yields directly that

|Cmax|/ log n
P−→ I−1

λ .
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1.5 Solutions to the exercises of Chapter 5.

Solution to Exercise 5.1. Fix some r > 0, then

χ(1) ≥
rn2/3∑
k=1

P(|C (1)| ≥ k) =
rn2/3∑
k=1

P≥k(1). (1.5.1)

By Proposition 5.2, we have the bounds

P≥k(1) ≥ c1√
k
.

Substituting this bounds into (0.5.1) yields

χ(1) ≥
rn2/3∑
k=1

c1√
k
≥ c′1rn

1/3,

where c′1 > 0 and r > 0.

Solution to Exercise 5.2. By Theorem 3.16, we have that

1

λ
e−IλtP∗1(T ∗ = t) =

1

λ
e−(λ−1−log λ)t t

t−1

t!
e−t.

Rearranging the terms in this equation we get

1

λ
e−IλtP∗1(T ∗ = t) =

1

λ

(
elog λ

)t tt−1

t!
e−λt =

(λt)t−1

t!
e−λt.

Solution to Exercise ??. Take some l ∈ N such that l < n, then χn−l(λ
n−l
n

)
is the expected component size in the graph ER(n − l, p). We have to prove that
the expected component size in the graph ER(n − l, p) is smaller than the expected
component size in the graph ER(n − l + 1, p) for all 0 < p ≤ 1. Consider the graph
ER(n− l + 1, p). This graph can be created from ER(n− l, p) by adding the vertex
n−l+1 and independently connecting this vertex to each of the vertices 1, 2, . . . , n−l.

Let C ′(1) denote the component of ER(n − l, p) which contains vertex 1 and
C (1) represents the component of ER(n − l + 1, p) which contains vertex 1. By the
construction of ER(n− l + 1, p), it follows that

P(|C (1)| = k) =


(1− p)n−l+1 if k = 1,
P(|C ′(1)| = k)(1− p)k + P(|C ′(1)| = k − 1)(1− (1− p)k−1) if 2 ≤ k ≤ n,
P(|C ′(1)| = n)(1− (1− p)n) if k = n+ 1.
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Hence, the expected size of C (1) is

E[|C (1)|] =
n+1∑
k=1

P(|C (1)| = k)k

= (1− p)n−l+1 +
n∑
k=2

[
P(|C ′(1)| = k)(1− p)k + P(|C ′(1)| = k − 1)(1− (1− p)k−1)

]
k

+ P(|C ′(1)| = n)(1− (1− p)n)(n+ 1).

Rewriting this expression for the expected size of C (1) yields

E[|C (1)|] = (1− p)n−l+1 + P(|C ′(1)| = 1)2p+
n−1∑
k=2

P(|C ′(1)| = k)k

+
n−1∑
k=2

P(C ′(1) = k)(1− (1− p)k−1) + P(|C ′(1)| = n)(n+ (1− (1− p)n))

≥ (1 + p)P(|C ′(1)| = 1) +
n−1∑
k=2

kP(C ′(1) = k) ≥ E[|C (1)′|].

Solution to Exercise ??. By (??), we have that

∂

∂λ
χn(λ) = (n− 1)

∂

∂λ
τn(λ).

For the derivative of τn(λ) we use (??) to obtain

∂

∂λ
χn(λ) ≤

n∑
l=1

lPλ(|C (1)| = l)χn−l(λ
n− l
n

).

The function l 7→ χn−l(λ
n−l
n

) is decreasing (see Exercise ??), hence

∂

∂λ
χn(λ) ≤ χn(λ)

n∑
l=1

lPλ(|C (1)| = l) = χn(λ)2,

or
∂
∂λ
χn(λ)

χn(λ)2
≤ 1. (1.5.2)

The second part of the exercise relies on integration. Integrate both the left-hand
and the right-hand side of (0.5.2) between λ and 1.

1

χn(λ)
− 1

χn(1)
≤ 1− λ
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Bring a term to the other side to obtain

1

χn(λ)
≤ 1

χn(1)
+ 1− λ,

which is equivalent to

χn(λ) ≥ 1

χn(1)−1 + (1− λ)
.

Solution to Exercise 5.3. Using (5.3.8) and (5.3.10) we see that

Eλ[Y 2] = nPλ(|C (1)| = 1) + n(n− 1)

(
λ

n(1− λ
n
)

+ 1

)
Pλ(|C (1)| = 1)2

= n

(
1− λ

n

)n−1

+ n(n− 1)

(
1− λ

n

)2n−3

= n

(
1− λ

n

)n−1
(

1 + (n− 1)

(
1− λ

n

)n−2
)
.

Consider the first power, taking the logarithm yields

log n+ (n− 1) log(1− λ

n
) = log n+ (n− 1) log(1− log n+ t

n
).

Taylor expanding the logarithm gives

log n+ (n− 1) log(1− log n+ t

n
) = log n− (n− 1)

[ log n+ t

n
+O

(( log n+ t

n

)2
)]
.

The latter expression can be simplified to

log n− (n− 1)
[ log n+ t

n
+O

(( log n+ t

n

)2
)]

= log n− n− 1

n
log n− n− 1

n
t+O

((log n+ t)2

n

)
= −t+

log n

n
+
t

n
+O

((log n+ t)2

n

)
,

and, as n tends to infinity,

−t+
log n

n
+
t

n
+O

((log n+ t)2

n

)
→ −t.

Hence,

lim
n→∞

n

(
1− λ

n

)n−1

= e−t.

A similar argument gives that as n→∞

lim
n→∞

(
1− λ

n

)n−2

= e−t.

Therefore, we conclude
lim
n→∞

Eλ[Y 2] = e−t(1− e−t),

which is the second moment of a Poisson random variable with mean e−t.
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1.6 Solutions to the exercises of Chapter 6.

Solution to Exercise 6.1. By the definition of pij (6.1.1), the numerator of pij is
(nλ)2(n− λ)−2. The denominator of pij is

n∑
i=1

nλ

n− λ
+

(
nλ

n− λ

)2

=
n2λ

n− λ
+

(
nλ

n− λ

)2

=
n2λ(n− λ) + (nλ)2

(n− λ)2
=

n3λ

(n− λ)2
.

Dividing the numerator of pij by its denominator gives

pij =
(nλ)2

n3λ
=
λ

n
.

Solution to Exercise 6.2. Consider the distribution function Fn(x) = P(wU ≤ x)
of a uniformly chosen vertex U and let x ≥ 0. The law of total probability gives that

P(wU ≤ x) =
n∑
i=1

P(wU ≤ x|U = i)P(U = i)

=
1

n

n∑
i=1

1{wi≤x}, x ≥ 0, (1.6.1)

as desired.

Solution to Exercise 6.4. By (6.1.17), Fn(x) = 1
n
(bnF (x)c + 1) ∧ 1. To prove

pointwise convergence of this function to F (x), we shall first examine its behavior
when F (x) gets close to 1. Consider the case where 1

n
(bnF (x)c + 1) > 1, or equiv-

alently, bnF (x)c > n − 1, which is in turn equivalent to F (x) > n−1
n

. Now fixing x
gives us two possibilities: either F (x) = 1 or there is an n such that F (x) ≤ n−1

n
. In

the first case, we have that∣∣∣∣[ 1

n
(bnF (x)c+ 1) ∧ 1

]
− F (x)

∣∣∣∣ =

∣∣∣∣[ 1

n
(bnc+ 1) ∧ 1

]
− 1

∣∣∣∣
= |1− 1| = 0. (1.6.2)

In the second case, we have that for large enough n∣∣∣∣[ 1

n
(bnF (x)c+ 1) ∧ 1

]
− F (x)

∣∣∣∣ =

∣∣∣∣ 1n(bnF (x)c+ 1)− nF (x)

n

∣∣∣∣
=

∣∣∣∣bnF (x)c − nF (x) + 1

n

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣→ 0, (1.6.3)

which proves the pointwise convergence of Fn to F , as desired.
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Solution to Exercise 6.5. We note that x 7→ F (x) is non-decreasing, since it is
a distribution function. This implies that x 7→ 1 − F (x) is non-increasing, so that
u 7→ [1− F ]−1(u) is non-increasing.

To see (6.1.19), we let U be a uniform random variable, and note that

1

n

n∑
i=1

h(wi) = E
[
h
(

[1− F ]−1(dUne/n)
)]
. (1.6.4)

Now, dUne/n ≥ U a.s., and since u 7→ [1 − F ]−1(u) is non-increasing, we obtain
that [1 − F ]−1(dUne/n) ≤ [1 − F ]−1(U) a.s. Further, again since x 7→ h(x) is non-
decreasing,

h
(

[1− F ]−1(dUne/n)
)
≤ h

(
[1− F ]−1(U)

)
. (1.6.5)

Thus,
1

n

n∑
i=1

h(wi) ≤ E
[
h
(

[1− F ]−1(U)
)]

= E[h(W )], (1.6.6)

since [1−F ]−1(U) has distribution function F when U is uniform on (0, 1) (recall the
remark below (6.1.16)).

Solution to Exercise 6.6. Using the non-decreasing function h(x) = xα in Exercise
6.5, we have that for a uniform random variable U

1

n

n∑
i=1

wαi =

∫ 1

0

[1− F ]−1

(
dune
n

)
1

n
du

= E
[(

[1− F ]−1(dUne/n)
)α]

. (1.6.7)

We also know that dUne/n ≥ U a.s., and since u 7→ [1 − F ]−1(u) is non-increasing
by Exercise 6.5 and x 7→ xα is non-decreasing, we obtain that

1

n

(
[1− F ]−1(dUne/n)

)α ≤ 1

n

(
[1− F ]−1(U)

)α
. (1.6.8)

The right hand side function is integrable with value E[Wα], by assumption. There-
fore, by the dominated convergence theorem (Theorem A.17), we have that the inte-
gral of the left hand side converges to the integral of its pointwise limit. Since dUne/n
converges in distribution to U , we get that [1 − F ]−1(dUne/n) → [1 − F ]−1(U), as
desired.

Solution to Exercise 6.7. By (6.1.14),

wi = [1− F ]−1(i/n). (1.6.9)

Now apply the function [1− F ] to both sides to get

[1− F ](wi) = i/n, (1.6.10)
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which, by the assumption, can be bounded from above by

i/n = [1− F ](wi) ≤ cw
−(τ−1)
i . (1.6.11)

This inequality can be rewritten to

i−
1

τ−1 (cn)
1

τ−1 ≥ wi, (1.6.12)

where the left hand side is a descending function in i for τ > 1. This implies

wi ≤ w1 ≤ c
1

τ−1n
1

τ−1 , ∀i ∈ [n], (1.6.13)

giving the c′ = c
1

τ−1 as desired.

Solution to Exercise 6.9. A mixed Poisson variable X has the property that
P(X = 0) = E[e−W ] is strictly positive, unless W is infinite whp. Therefore, the
random variable Y with P(Y = 1) = 1

2
and P(Y = 2) = 1

2
cannot be represented by

a mixed Poisson variable.

Solution to Exercise 6.10. By definition, the characteristic function of X is

E[eitX ] =
∞∑
n=0

eitnP(X = n) =
∞∑
n=0

eitn
(∫ ∞

0

fW (w)
e−wwn

n!
dw

)
,

where fW (w) is the density function of W evaluated in w. Since all terms are non-
negative we can interchange summation and integration. Rearranging the terms gives

E[eitX ] =

∫ ∞
0

fW (w)e−w

(
∞∑
n=0

(eitw)
n

n!

)
dw =

∫ ∞
0

fW (w)e−w exp(eitw)dw

=

∫ ∞
0

fW (w) exp((eit − 1)w)dw.

The latter expression is the moment generating function of W evaluated in eit−1.

Solution to Exercise 6.11. By the tower rule, we have that E[E[X|W ]] = E[X].
Computing the expected value on the left hand side gives

E[E[X|W ]] =
∑
w

E[X|W = w]P(W = w)

=
∑
w

P(W = w)
∑
k

ke−w
wk

k!

=
∑
w

w · P(W = w) · e−w
∑
k

w(k−1)

(k − 1)!

=
∑
w

w · P(W = w) = E[W ], (1.6.14)
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so E[X] = E[W ]. For the second moment of X, we consider E[E[X(X − 1)|W ]] =
E[X(X − 1)]. Computing the expected value on the left hand side gives

E[E[X(X − 1)|W ]] =
∑
w

E[X(X − 1)|W = w]P(W = w)

=
∑
w

P(W = w)
∑
k

k(k − 1)e−w
wk

k!

=
∑
w

w2 · P(W = w) · e−w
∑
k

w(k−2)

(k − 2)!

=
∑
w

w2 · P(W = w) = E[W 2]. (1.6.15)

Now, we have that Var(X) = E[X2]− E[X]2 = E[W 2] + E[W ]− E[W ]2, which is the
sum of the variance and expected value of W .

Solution to Exercise 6.13. Suppose there exists a ε > 0 such that ε ≤ wi ≤ ε−1

for every i. Now take the coupling D′i as in (??). Now, by (??), we obtain that

P
(

(D1, . . . , Dm) 6= (D̂1, . . . , D̂m)
)
≤ 2

m∑
i,j=1

pij

= 2
m∑

i,j=1

wiwj
ln + wiwj

. (1.6.16)

Now ln =
∑n

i=1 wi ≥ nε and ε2 ≤ wiwj ≤ ε−2. Therefore,

2
m∑

i,j=1

wiwj
ln + wiwj

≤ 2m2 ε−2

nε+ ε2
= o(1), (1.6.17)

since m = o(
√
n).

Solution to Exercise 6.14. We have to prove

max
k
|E[P (n)

k ]− pk| ≤
ε

2
. (1.6.18)

We have
max
k
|E[P (n)

k ]− pk| ≤
ε

2
⇔ ∀k|E[p(n)

k ]− pk| ≤
ε

2
. (1.6.19)

Furthermore the following limit is given

lim
n→∞

E[P (n)

k ] = lim
n→∞

P(D1 = k) = pk. (1.6.20)

Hence we can write
∀ε>0∀k∃Mk

∀n>Mk
|E[P (n)

k ]− pk| ≤
ε

2
(1.6.21)
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Taking M := maxkMk we obtain

∀ε>0∃M∀k∀n>M |E[P (n)

k ]− pk| ≤ ε
2

⇔
∀ε>0∃M∀n>M maxk |E[P (n)

k ]− pk| ≤ ε
2
.

Solution to Exercise 6.15. Using the hint, we get

P(
n

max
i=1

Wi ≥ εn) ≤
n∑
i=1

P(Wi ≥ εn)

= nP(W1 ≥ εn). (1.6.22)

This probability can be rewritten, and applying the Markov inequality now gives

nP(W1 ≥ εn) = nP(1{W1≥εn}W1 ≥ εn) ≤ P(W1 ≥ εn)E[W1]→ 0. (1.6.23)

Therefore, maxni=1Wi is o(n) whp, and

1

n2

n∑
i=1

W 2
i ≤

1

n

n
max
i=1

W 2
i → 0, (1.6.24)

as desired.

Solution to Exercise 6.17. Using partial integration we obtain for the mean of
W1

E[W1] =

∫ ∞
0

xf(x)dx = [xF (x)− x]∞x=0 +

∫ ∞
0

[1− F (x)]dx

=
(

lim
R→∞

RF (R)−R
)
− 0 +

∫ ∞
0

[1− F (x)]dx

=

∫ ∞
0

1− F (x)dx

Hence,

E[W1] =∞⇔
∫ ∞

0

[1− F (x)]dx =∞. (1.6.25)

Solution to Exercise 6.20. It suffices to prove that
∏

1≤i<j≤n(uiuj)
xij =

∏n
i=1 u

di(x)
i ,

where di(x) =
∑n

j=1 xij.
The proof will be given by a simple counting argument. Consider the powers of uk
in the left hand side, for some k = 1, . . . , n. For k < j ≤ n, the left hand side
contains the terms u

xkj
k , whereas for 1 ≤ i < k, it contains the terms uxikk . When

combined, and using the fact that xij = xji for all i, j, we see that the powers of uk

in the left hand side can be written as
∑
j 6=k

xkj. But since, xii = 0 for all i, this equals∑n
j=1 xij = di(x), as required.
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Solution to Exercise 6.21. We pick tk = t and ti = 1 for all i 6= k. Then,

E[tDk ] =
∏

1≤i≤n:i 6=k

ln + wiwkt

ln + wiwk

= ewk(t−1)
∑

1≤i≤n:i 6=k
wi
ln

+Rn , (1.6.26)

where

Rn =
∑

1≤i≤n:i 6=k

log

(
1 +

wiwkt

ln

)
− log

(
1 +

wiwk
ln

)
− wk(t− 1)

∑
1≤i≤n:i 6=k

wi
ln

=
∑

1≤i≤n:i 6=k

log(ln + wiwkt)− log(ln + wiwk)− wk(t− 1)
∑

1≤i≤n:i 6=k

wi
ln
. (1.6.27)

A Taylor expansion of x 7→ log(a+ x) yields that

log(a+ x) = log(a) +
x

a
+O(

x2

a2
). (1.6.28)

Therefore, applying the above with a = ln and x = wiwk, yields that, for t bounded,

Rn = O(w2
k

n∑
i=1

w2
i

`2
n

) = o(1), (1.6.29)

by Exercise 6.3, so that

E[tDk ] = ewk(t−1)
∑

1≤i≤n:i 6=k
wi
`n (1 + o(1))

= ewk(t−1)(1 + o(1)), (1.6.30)

since wk is fixed. Since the generating function of the degree converges, the degree
of vertex k converges in distribution to a random variable with generating function
ewk(t−1) (recall Theorem 2.3(c)). The probability generating function of a Poisson
random variable with mean λ is given by eλ(t−1), which completes the proof of Theorem
6.7(a).

For Theorem 6.7(b), we use similar ideas, now taking ti = ti for i ≤ m and ti = 0
for i > m. Then,

E[
m∏
i=1

tDii ] =
∏

1≤i≤m,i<j≤n

ln + wiwjti
ln + wiwj

=
m∏
i=1

ewi(ti−1)(1 + o(1)), (1.6.31)

so that the claim follows.

Solution to Exercise 6.22. The degree of vertex k converges in distribution to a
random variable with generating function ewk(t−1). We take wi = λ

1−λ/n which yields

for the generating function e
λ(t−1)
1−λ/n . This gives us for the degree a Poi( λ

1−λ/n) random

variable, which for large n is close to a Poi(λ) random variable.
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Solution to Exercise 6.23. The Erdős-Rényi Random Graph is obtained by tak-
ing Wi ≡ λ

1−λ
n

. Since pij = λ/n → 0, Theorem 6.7(b) states that the degrees are

asymptotically independent.

Solution to Exercise 6.24. Let X be a mixed Poisson random variable with
mixing distribution γW τ−1. The generating function of X now becomes

GX(t) = E[tX ] =
∞∑
k=0

tkP(X = k)

=
∞∑
k=0

tkE[e−γW
τ−1 (γW τ−1)k

k!
]

= E

[
e−γW

τ−1
∞∑
k=0

(γW τ−1t)k

k!

]
= E[e(t−1)γW τ−1

] (1.6.32)

Solution to Exercise 6.25. By using partial integration we obtain

E[h(X)] =

∫ ∞
0

h(x)f(x)dx

= [h(x)(F (x))− 1]∞x=0 −
∫ ∞

0

h′(x)[F (x)− 1]dx

=
(

lim
R→∞

h(R)(1− F (R))
)
− h(0)(1− F (0)) +

∫ ∞
0

h′(x)[1− F (x)]dx

=

∫ ∞
0

h′(x)[1− F (x)]dx.

Solution to Exercise 6.27. By definition, p(n) and q(n) are asymptotically equiva-
lent if for every sequence (xn) of events

lim
n→∞

p(n)

xn − q
(n)

xn = 0. (1.6.33)

By taking the sequence of events xn ≡ x ∈ X for all n, this means that asymptotical
equivalence implies that also

lim
n→∞

max
x∈X
|p(n)

x − q(n)x | = lim
n→∞

dTV(p(n), q(n)) = 0. (1.6.34)

Conversely, if the total variation distance converges to zero, which means that the
maximum over all x ∈ X of the difference p(n)

x − q(n)x converges in absolute value
to zero. Since this maximum is taken over all x ∈ X , it will certainly hold for all
x ∈ (xn) ⊆ X as well. Therefore, it follows that for any sequence of events, p(n)

xn − q
(n)
xn

must converge to zero as well, which implies asymptotical equivalence. /ensol
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Solution to Exercise 6.28. We recall that

dTV(M,M ′) = sup
A⊂Z
|P(M ∈ A)− P(M ′ ∈ A)|. (1.6.35)

Now, for binomial random variables with the same m and with success probabilities
p and q respectively, we have that

P(M = k)

P(M ′ = k)
=
(p
q

)k(1− p
1− q

)m−k
=
(1− p

1− q
)m(p(1− q)

q(1− p)
)k
, (1.6.36)

which is monotonically increasing or decreasing for p 6= q. As a result, we have that
the supremum in (0.6.35) is attained for a set A = {0, . . . , j} for some j ∈ N, i.e.,

dTV(M,M ′) = sup
j∈N
|P(M ≤ j)− P(M ′ ≤ j)|. (1.6.37)

Now assume that limN→∞m(p − q)/√mp = α ∈ (−∞,∞). Then, by Exercise 4.22,

(M − mp)/√mp d−→ Z ∼ N (0, 1) and (M ′ − mp)/√mp d−→ Z ′simN (α, 1), where
N (µ, σ2) denotes a normal random variable with mean µ and variance σ2. Therefore,
we arrive at

dTV(M,M ′) = sup
j∈N
|P(M ≤ j)− P(M ′ ≤ j)| = sup

x∈R
|P(Z ≤ x)− P(Z ′ ≤ x)|+ o(1)

→ Φ(α/2)− Φ(−α/2), (1.6.38)

where x 7→ Φ(x) is the distribution function of a standard normal random variable.
Thus, dTV(M,M ′) = o(1) precisely when α = 0, which implies that m(p− q)/√mp =
o(1).

Solution to Exercise 6.29. We write

dTV(p, q) =
1

2

∑
x

|px − qx| =
1

2

∑
x

(
√
px +

√
qx)|
√
px −

√
qx|

=
1

2

∑
x

√
px|
√
px −

√
qx|+

1

2

∑
x

√
qx|
√
px −

√
qx|. (1.6.39)

By the Cauchy-Schwarz inequality, we obtain that∑
x

√
px|
√
px −

√
qx| ≤

√∑
x

px

√∑
x

(
√
px −

√
qx)2 ≤ 2−1/2dH(p, q). (1.6.40)

The same bound applies to the second sum on the right-hand side of (0.6.39), which
proves the upper bound in (6.6.11).

For the lower bound, we bound

dH(p, q)2 =
1

2

∑
x

(
√
px−
√
qx)

2 ≤ 1

2

∑
x

(
√
px+
√
qx)|
√
px−
√
qx| = dTV(p, q). (1.6.41)
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Solution to Exercise 6.30. By exercise 6.27, we have that p(n) = {p(n)
x }x∈X and

q(n) = {q(n)x }x∈X are asymptotically equivalent if and only if their total variation dis-
tance converges to zero. By exercise 6.29, we know that (6.6.11) holds, and therefore
also

2−1/2dTV(p(n), q(n)) ≤ dH(p(n), q(n)) ≤
√
dTV(p(n), q(n)). (1.6.42)

Both the left and right hand side of those inequalities converge to zero if dTV(p(n), q(n))→
0, which implies by the sandwich theorem that dH(p(n), q(n)) → 0. Conversely, if
dH(p(n), q(n))→ 0, by (6.6.11) we have that dTV(p(n), q(n))→ 0.

Solution to Exercise 6.31. We bound

ρ(p, q) =
(√

p−√q
)2

+
(√

1− p−
√

1− q
)2

(1.6.43)

= (p− q)2
(
(
√
p+
√
q)−2 + (

√
1− p+

√
1− q)−2

)
.

Solution to Exercise 6.32. We wish to show that P(Y = k) = e−λp (λp)k

k!
. We will

use that in the case of X fixed, Y is simply a Bin(X, p) random variable. We have

P(Y = k) = P
( X∑
i=0

Ii = k
)

=
∞∑
x=k

P(X = x) · P
( x∑
i=0

Ii = k
)

=
∞∑
x=k

e−λ
λx

x!
·
(
x

k

)
pk(1− p)x−k = e−λ

∞∑
x=k

λx

x!
· x!

(x− k)!k!
pk(1− p)x−k

= e−λ
(λp)k

k!

∞∑
x=k

λx−k(1− p)x−k

(x− k)!
= e−λ

(λp)k

k!

∞∑
x=0

(λ− λp)x

x!

= e−λeλ−λp
(λp)k

k!
= e−λp

(λp)k

k!

If we define Y to be the number of edges between i and j at time t and X the same
at time t− 1. Furthermore we define Ik to be the decision of keeping edge k or not.
It is given that X ∼ Poi(

WiWj

Lt−1
) and Ik ∼ Be(1 − Wt

Lt
). According to what is shown

above we now obtain for Y to be a Poisson random variable with parameter

WiWj

Lt−1

· (1− Wt

Lt
) = WiWj

1

Lt−1

Lt −Wt

Lt
= WiWj

1

Lt−1

Lt−1

LT
=
WiWj

Lt
(1.6.44)

Solution to Exercise 6.33. A graph is simple when it has no self loops or double
edges between vertices. Therefore, the Norros-Reittu random graph is simple at time
n if for all i Xii = 0, and for all i 6= j Xij = 0 or Xij = 1. By Exercise 6.32, we know
that the number of edges Xij between i and j at time n are Poisson with parameter
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wiwj
`n

. The probability then becomes

P(NRn(w) simple) = P(0 ≤ Xij ≤ 1,∀i 6= j)P(Xii = 0,∀i)

=
∏

1≤i<j≤n

(P(Xij = 0) + P(Xij = 1))
n∏
k=1

P(Xkk = 0)

=
∏

1≤i<j≤n

e−
wiwj
`n (1 +

wiwj
`n

)
n∏
k=1

e−
w2
k
`n

= e−
∑

1≤i≤j≤n
wiwj
`n

∏
1≤i<j≤n

(1 +
wiwj
`n

). (1.6.45)

Solution to Exercise 6.34. Let Xij ∼ Poi(
wiwj
`n

) be the number of edges be-

tween vertex i and j at time n. The degree of vertex k at time n becomes
n∑
j=1

Xkj,

and because Xkj is Poisson with mean
wkwj
Ln

, the sum will be Poisson with mean
n∑
j=1

wkwj
`n

= wk

∑n
j=1 wj

`n
= Wk. Therefore, since the wi are i.i.d, the degree at time n

has a mixed Poisson distribution with mixing distribution Fw

Solution to Exercise 6.35. Couple Xn = X(Gn) and X ′n = X(G′n) by coupling
the edge occupation statuses Xij of Gn and X ′ij of G′n such that (6.7.12) holds. Let

(X̂n, X̂
′
n) be this coupling and let En and E ′n be the sets of edges of the coupled

versions of Gn and G′n, respectively. Then, since X is increasing

P(X̂n ≤ X̂ ′n) ≥ P(En ⊆ E ′n) = P(Xij ≤ X ′ij∀i, j ∈ [n]) = 1, (1.6.46)

which proves the stochastic domination by Lemma 2.12.

1.7 Solutions to the exercises of Chapter 7.

Solution to Exercise 7.1. Consider for instance the graph of size n = 4 with de-
grees {d1, . . . , d4} = {3, 3, 1, 1} or the graph of size n = 5 with degrees {d1, . . . , d5} =
{4, 4, 3, 2, 1}.

Solution to Exercise 7.2. For 2m vertices we use m pairing steps, each time
pairing two vertices with each other. For step i + 1, we have already paired 2i
vertices. The next vertex can thus be paired with 2m− 2i− 1 other possible vertices.
This gives for all pairing steps the total amount of possibilities to be

(2m− 1)(2m− 3) · · · (2m− (2m− 2)− 1) = (2m− 1)!!. (1.7.1)
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Solution to Exercise 7.8. We can write

P
(
Ln is odd

)
= P

(
(−1)Ln = −1

)
=

1

2

(
1− E[(−1)Ln ]

)
. (1.7.2)

To compute E[(−1)Ln ], we use the characteristic function φD1
(t) = E[eitD1 ] as follows:

φD1
(π) = E[(−1)D1 ] (1.7.3)

Since (−1)Ln = (−1)
∑
Di where {Di}ni=1 are i.i.d. random variables, we have for the

characteristic function of Ln, φLn(π) = (φD1
(π))n. Furthermore, we have

φD1
(π) = −P(D1 is odd) + P(D1 is even). (1.7.4)

Now we assume P(D1 is odd) 6∈ {0, 1}. This gives us

− 1 < P(D1 is even)− P(D1 is odd) < 1, (1.7.5)

so that |φD1
(π)| < 1, which by (0.7.2) leads directly to the statement that P(Ln is odd)

is exponentially close to 1
2
.

Solution to Exercise 7.10. We compute

∞∑
k=1

kp(n)

k =
∞∑
k=1

k
( 1

n

n∑
i=1

1{d̃i=k}

)
=

1

n

n∑
i=1

∞∑
k=1

k1{d̃i=k} =
1

n

n∑
i=1

di =
`n
n

Solution to Exercise 7.11. The probability that there are at least three edges
between i and j is bounded above by

di(di − 1)(di − 2)dj(dj − 1)(dj − 2)

(`n − 1)(`n − 3)(`n − 5)
. (1.7.6)

Thus, by Boole’s inequality, the probability that there exist vertices i 6= j such that
there are at least three edges between i and j is bounded above by

n∑
i,j=1

di(di − 1)(di − 2)dj(dj − 1)(dj − 2)

(`n − 1)(`n − 3)(`n − 5)
= o(1), (1.7.7)

since di = o(
√
n) when Condition 7.7(a)-(c) holds (this follows by applying Exercise

6.3 to the weights w = d) as well as `n ≥ n. We conclude that the probability that
there are i, j ∈ [n] such that there are at least three edges between i and j is o(1)
as n → ∞. As a result, (Sn,Mn) converges in distribution to (S,M) precisely when

(Sn, M̃n) converges in distribution to (S,M).
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Solution to Exercise 7.12. We start by evaluating (7.4.18) from the right- to the
left-hand side.

µE[(X + 1)r−1] = µ

∞∑
k=1

(k + 1)r−1 e−µµk

k!
=
∞∑
k=1

(k + 1)r
e−µµk+1

(k + 1)!
;

=
∞∑
n=1

nr
e−µµn

n!
=
∞∑
x=0

xr
e−µµx

x!
= E[Xr].

Now we can use the independency of the two random variables and the result above
for the evaluation of (7.4.19).

E[XrY s] = E[Xr]E[Y s] = E[Xr]µYE[(Y + 1)s−1] = µYE[Xr(Y + 1)s−1].

Solution to Exercise 7.13. We use a two-dimensional extension of Theorem
2.3(e), stating that when the mixed moments E[Xr

nY
s
n ] converge to the moments

E[XrY s] for each r, s = 0, 1, 2, . . ., and the moments of X and Y satisfy (2.1.8), then
(Xn, Yn) converges in distribution to (X, Y ). See also Theorem 2.6 for the equivalent
statement for the factorial moments instead of the normal moments, from which the
above claim actually follows. Therefore, we are left to prove the asymptotics of the
mixed moments of (Sn,Mn).

To prove that E[SrnM
s
n] converge to the moments E[SrM s], we again make use of

induction, now in both r and s.
Proposition 7.12 follows when we prove that

lim
n→∞

E[Srn] = E[Sr] = µSE[(S + 1)r−1], (1.7.8)

and
lim
n→∞

E[SrnM
s
n] = E[SrM s] = µME[Sr(M + 1)s−1], (1.7.9)

where the second equalities in (0.7.8) and (0.7.9) follow from (7.4.18) and (7.4.19).
To prove (0.7.8), we use the shape of Sn in (7.3.20), which we restate here as

Sn =
n∑
i=1

∑
1≤a<b≤di

Iab,i. (1.7.10)

Then, we prove by induction on r that

lim
n→∞

E[Srn] = E[Sr]. (1.7.11)

The induction hypothesis is that (0.7.11) is true for all r′ ≤ r − 1, for CMn(d)
when n → ∞ and for all (di)i∈[n] satisfying Condition 7.7(a)-(c) We prove (0.7.11)
by induction on r. For r = 0, the statement is trivial, which initializes the induction
hypothesis.
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To advance the induction hypothesis, we write out

E[Srn] =
n∑
i=1

∑
1≤a<b≤di

E[Iab,iS
r−1
n ]

=
n∑
i=1

∑
1≤a<b≤di

P(Iab,i = 1)E[Sr−1
n |Iab,i = 1]. (1.7.12)

When Iab,i = 1, then the remaining stubs need to be paired in a uniform manner.
The number of self-loops in the total graph in this pairing has the same distribution
as

1 + S ′n, (1.7.13)

where S ′n is the number of self-loops in the configuration model where with degrees
(d′i)i∈[n], where d′i = di−2, and d′j = dj for all j 6= i. The added 1 in (0.7.13) originates
from Iab,i. By construction, the degrees (d′i)i∈[n] still satisfy Condition 7.7(a)-(c). By
the induction hypothesis, for all k ≤ r − 1

lim
n→∞

E[(S ′n)k] = E[Sk]. (1.7.14)

As a result,

lim
n→∞

E[(1 + S ′n)r−1] = E[(1 + S)r−1]. (1.7.15)

Since the limit does not depend on i, we obtain that

lim
n→∞

E[Srn] = E[(1 + S)r−1] lim
n→∞

n∑
i=1

∑
1≤a<b≤di

P(Iab,i = 1)

E[(1 + S)r−1] lim
n→∞

n∑
i=1

di(di − 1)

2

=
ν

2
E[(1 + S)r−1] = E[Sr]. (1.7.16)

This advances the induction hypothesis, and completes the proof of (0.7.8).
To prove (0.7.9), we perform a similar induction scheme. Now we prove that, for all

r ≥ 0, E[SrnM̃
s
n] converges to E[SrM s] by induction on s. The claim for s = 0 follows

from (0.7.8), which initializes the induction hypothesis, so we are left to advance the
induction hypothesis. We follow the argument for Sn above. It is not hard to see that
it suffices to prove that, for every ij,

lim
n→∞

E[SrnM̃
s−1
n |Is1t1,s2t2,ij = 1] = E[Sr(1 +M)s−1]. (1.7.17)

Note that when Is1t1,s2t2,ij = 1, then we know that two edges are paired together to
form a multiple edge. Removing these two edges leaves us with a graph which is
very close to the configuration model with degrees (d′i)i∈[n], where d′i = di − 2, and
d′j = dj − 2 and d′t = dt for all t 6= i, j. The only difference is that when a stub
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connected to i is attached to a stub connected to j, then this creates an additional
number of multiple edges. Ignoring this effect creates the lower bound

E[SrnM̃
s−1
n |Is1t1,s2t2,ij = 1] ≥ E[Srn(M̃n + 1)s−1], (1.7.18)

which, by the induction hypothesis, converges to E[Sr(1 +M)s−1, ] as required.
Let I ′s1t1,s2t2,ij denote the indicator that stub s1 is connected to t1, s2 to t2 and no

other stub of vertex i is connected to a stub of vertex j. Then,

1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

I ′s1t1,s2t2,ij ≤ M̃n ≤
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij.

(1.7.19)
Hence,

E[SrnM̃
s
n] ≤ 1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(Is1t1,s2t2,ij = 1)E
[
SrnM̃

s−1
n |Is1t1,s2t2,ij = 1

]
,

(1.7.20)
and

E[SrnM̃
s
n] ≤ 1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(I ′s1t1,s2t2,ij = 1)E
[
SrnM̃

s−1
n |I ′s1t1,s2t2,ij = 1

]
.

(1.7.21)

Now, by the above, E
[
SrnM̃

s−1
n |Is1t1,s2t2,ij = 1

]
and E

[
SrnM̃

s−1
n |I ′s1t1,s2t2,ij = 1

]
converge

to E
[
Sr(M + 1)s−1

]
, independently of s1t1, s2t2, ij. Further,

1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(I ′s1t1,s2t2,ij = 1)→ ν2/2, (1.7.22)

and also
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(Is1t1,s2t2,ij = 1)→ ν2/2. (1.7.23)

This implies that

E[SrnM̃
s−1
n |Is1t1,s2t2,ij = 1] = E[Srn−1M̃

s−1
n−1] + o(1). (1.7.24)

The remainder of the proof is identical to the one leading to (0.7.16).

Solution to Exercise 7.14. To obtain a triangle we need to three connected stubs
say (s1, t1), (s2, t2), (s3, t3) where s1 and t3 belong to some vertex i with degree di, s2

and t1 to vertex j with degree dj and s3, t2 to some vertex k with degree dk. Obviously
we have

1 ≤ s1 ≤ di,

1 ≤ t1 ≤ dj,

1 ≤ s2 ≤ dj,

1 ≤ t2 ≤ dk,

1 ≤ s3 ≤ dk,

1 ≤ t3 ≤ di.
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The probability of connecting s1 to t1 is 1/(`n − 1). Furthermore, connecting s2 to
t2 appears with probability 1/(`n − 3) and s3 to t3 with probability 1/(`n − 5). Of
course we can pick all stubs of i to be s1, and we have di− 1 vertices left from which
we may choose t3. Hence, for the amount of triangles,∑
i<j<k

didj
`n − 1

· (dj − 1)dk
`n − 3

· (dk − 1)(di − 1)

`n − 5
=
∑
i<j<k

di(di − 1)

`n − 1
· dj(dj − 1)

`n − 3
· dk(dk − 1)

`n − 5

(1.7.25)

∼ 1

6

( n∑
i=1

di(di − 1)

`n

)3

.

We will show that∑
i<j<k

di(di − 1)

`n − 1
· dj(dj − 1)

`n − 3
· dk(dk − 1)

`n − 5
∼ 1

6

( n∑
i=1

di(di − 1)

`n

)3

by expanding the righthand-side. We define

S :=
( n∑
i=1

di(di − 1)

`n

)3

. (1.7.26)

Then, we have

S =
n∑
i=1

(di(di − 1)

`n

)3

+ 3
∞∑
i=1

∞∑
j=1,j 6=i

(di(di − 1)

`n

)2(dj(dj − 1)

`n

)
(1.7.27)

+
∑
i 6=j 6=k

di(di − 1)

`n
· dj(dj − 1)

`n
· dk(dk − 1)

`n
, (1.7.28)

where the first part contains n terms, the second n(n−1) and the third n(n−1)(n−2).
So for large n we can say that

S ∼
∑
i 6=j 6=k

di(di − 1)

`n
· dj(dj − 1)

`n
· dk(dk − 1)

`n
. (1.7.29)

Now there are six possible orderings of i, j, k, hence

1

6
S ∼

∑
i<j<k

di(di − 1)

`n
·dj(dj − 1)

`n
·dk(dk − 1)

`n
∼
∑
i<j<k

di(di − 1)

`n − 1
·dj(dj − 1)

`n − 3
·dk(dk − 1)

`n − 5
.

(1.7.30)

Solution to Exercise 7.18. In this case we have di = r for all i ∈ [n]. This gives
us

E[D] = lim
n→∞

n∑
i=1

di(di − 1)

`n
= lim

n→∞

n∑
i=1

r(r − 1)

nr
= r − 1. (1.7.31)
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Furthermore,
n∏
i=1

di! =
n∏
i=1

r! = (r!)n. (1.7.32)

Finally we have for the total number of stubs `n = rn. Substituting these variables in
(7.5.1) gives us for the number of simple graphs with constant degree sequence di = r

e−
(r−1)

2
− (r−1)2

4
(rn− 1)!!

(r!)n
(1 + o(1)). (1.7.33)

1.8 Solutions to the exercises of Chapter 8.

Solution to Exercise 8.1. At time t, we add a vertex vt, and connect it with each
vertex vi, 1 ≤ i < t with probability p. In the previous chapters, we had the relation
p = λ

n
, but since n is increasing over time, using this expression for p will not result

in an Erdős-Rényi random graph. We could off course wish to obtain a graph of size
N , thus stopping the algorithm at time t = N , and using p = λ

N
.

Solution to Exercise 8.2. We will use an induction argument over t. For t = 1
we have a single vertex v1 with a self-loop, hence d1(1) = 2 ≥ 1.

Now suppose at time t we have di(t) ≥ 1 ∀i.
At time t+ 1 we add a vertex vt+1. We do not remove any edges, so we only have to
check whether the newly added vertex has a non-zero degree. Now the algorithm adds
the vertex having a single edge, to be connected to itself, in which case dt+1(t+1) = 2,
or to be connected to another already existing vertex, in which case it’s degree is 1.
In the latter case, one is added to the degree of the vertex to which vt+1 is connected,
thus that degree is still greater than zero. Hence we can say that di(t+ 1) ≥ 1 ∀i
We can now conclude that di(t) ≥ 1 for all i and t. The statement di(t) + δ ≥ 0 for
all δ ≥ −1 follows directly.

Solution to Exercise 8.3. The statement

1 + δ

t(2 + δ) + (1 + δ)
+

t∑
i=1

di(t) + δ

t(2 + δ) + (1 + δ)
= 1 (1.8.1)

will follow directly if the following equation holds:

(1 + δ) +
t∑
i=1

(di(t) + δ) = t(2 + δ) + (1 + δ). (1.8.2)
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Which is in its turn true if

t∑
i=1

(di(t) + δ) = t(2 + δ). (1.8.3)

But since
∑t

i=1 di(t) = 2t by construction, the latter equation holds. Hence, the
upper statement holds and the probabilities do sum up to one.

Solution to Exercise 8.6. We will again use an induction argument. At time
t = 1 we have a single vertex v1 with a self-loop, and the statement holds. At time
t = 2 we add a vertex v2 and connect it with v1 with the given probability

P
(
v2 → v1

∣∣PA1,δ(1)
)

=
2− 1

1
= 1. (1.8.4)

Now suppose at time t we have a graph with one vertex v1 containing a self-loop
and t − 1 other vertices having only one edge which connects it to v1. In that case
d1(t) = 2 + (t− 1) = t+ 1 and all other vertices have degree 1.
At time t + 1 we add a vertex vt+1 having one edge which will be connected to v1

with probability

P
(
vt+1 → v1

∣∣PA1,δ(t)
)

=
t+ 1− 1

t
= 1. (1.8.5)

Hence, the claim follows by induction.

Solution to Exercise 8.7. The proof is by induction on t ≥ 1. For t = 1, the
statement is correct, since, at time 2, both graphs consist of two vertices with two
edges between them. This initializes the induction hypothesis.

To advance the induction hypothesis, we assume that the law of {PA(b′)
1,α(t)}ts=1 is

equal to the one of {PA(b)

1,δ(s)}ts=1, and, from this, prove that the law of {PA(b′)
1,α(s)}ts=1

is equal to the one of {PA(b)

1,δ(s)}ts=1. The only difference between PA(b)

1,δ(t + 1) and

PA(b)

1,δ(t) and between PA(b′)
1,α(t + 1) and PA(b′)

1,α(t) is to what vertex the (t + 1)st edge

is attached. For {PA(b)

1,δ(t)}∞t=1 and conditionally on PA(b)

1,δ(t), this edge is attached to
vertex i with probability

Di(t) + δ

t(2 + δ)
, (1.8.6)

while, for {PA′1,α(t)}∞t=1 and conditionally on PA′1,α(t), this edge is attached to vertex
i with probability

α
1

t
+ (1− α)

Di(t)

2t
. (1.8.7)

Bringing the terms in (0.8.7) onto a single denominator yields

Di(t) + 2 α
1−α

2
1−αt

, (1.8.8)
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which agrees with (0.8.6) precisely when 2 α
1−α = δ, so that

α =
δ

2 + δ
. (1.8.9)

Solution to Exercise 8.9. We write

Γ(t+ 1) =

∫ ∞
0

xte−xdx. (1.8.10)

Using partial integration we obtain

Γ(t+ 1) = [−xte−x]∞x=0 +

∫ ∞
0

txt−1e−xdx = 0 + t ·
∫ ∞

0

xt−1e−xdx = tΓ(t).

In order to prove that Γ(n) = (n− 1)! for n = 1, 2, . . . we will again use an induction
argument. For n = 1 we have

Γ(1) =

∫ ∞
0

x0e−xdx =

∫ ∞
0

e−xdx = 1 = (0)!.

Now the upper result gives us for n = 2

Γ(2) = 1 · Γ(1) = 1 = (2− 1)!. (1.8.11)

Suppose now that for some n ∈ N we have Γ(n) = (n− 1)!. Again (8.3.2) gives us for
n+ 1

Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!. (1.8.12)

Induction yields Γ(n) = (n− 1)! for n = 1, 2, . . ..

Solution to Exercise 8.10. We rewrite (8.3.9) to be

e−ttt−
1
2

√
2π ≤ Γ(t+ 1) ≤ e−ttt

√
2π
(

1 +
1

12t

)
,

(
t

e
)t
√

2π

t
≤ Γ(t+ 1) ≤ (

t

e
)t
√

2π(1 +
1

12t
),

(
t

e
)t
√

2π

t
≤ tΓ(t) ≤ (

t

e
)t
√

2π(1 +
1

12t
),

(
t

e
)t
√

2π

t

1

t
≤ Γ(t) ≤ (

t

e
)t
√

2π

t

√
t(1 +

1

12t
).

Using this inequality in the left-hand side of (8.3.8) we obtain

( t
e
)t
√

2π
t

1
t

( t−a
e

)t−a
√

2π
t−a
√
t− a(1 + 1

12(t−a)
)
≤ Γ(t)

Γ(t−a)
≤

( t
e
)t
√

2π
t

√
t(1 + 1

12t
)

( t−a
e

)t−a
√

2π
t−a

1
t−a

tt

(t− a)t−a
e−a

t
√
t(1 + 12/(t− a))

≤ Γ(t)
Γ(t−a)

≤ tt

(t− a)t−a
e−a(1 + 1/12t)√

t− a
.

We complete the proof by noting that t − a = t(1 + O(1/t)) and 1 + 1/12t = 1 +
O(1/t).
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Solution to Exercise 8.11. This result is immediate from the collapsing of the
vertices in the definition of PAt(m, δ), which implies that the degree of vertex v(m)

i

in PAt(m, δ) is equal to the sum of the degrees of the vertices v(1)

m(i−1)+1, . . . , v
(1)

mi in

PAmt(1, δ/m).

Solution to Exercise 8.16. We wish to prove

P
(
|P≥k(t)− E[P≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (1.8.13)

First of all we have P≥k(t) = 0 for k > mt. We define, similarly to the proof of
Proposition 8.3 the martingale

Mn = E
[
P≥k(t)|PAm,δ(n)

]
. (1.8.14)

We have

E[Mn+1|PAm,δ(n)] = E
[
E
[
P≥k(t)|PAm,δ(n+ 1)

]∣∣∣PAm,δ(n)
]

= E
[
P≥k(t)|PAm,δ(n)

]
= Mn.

(1.8.15)

Hence Mn is a martingale. Furthermore, Mn satisfies the moment condition, since

E
[
Mn

]
= E

[
P≥k(t)

]
≤ t <∞. (1.8.16)

Clearly, PAm,δ(0) is the empty graph, hence for M0 we obtain

M0 = E
[
P≥k(t)|PAm,δ(0)

]
= E

[
P≥k(t)]. (1.8.17)

We obtain for Mt

Mt = E
[
P≥k(t)|PAm,δ(t)

]
=
[
P≥k(t), (1.8.18)

since P≥k(t) can be determined when PAm,δ(t) is known. Therefore, we have

P≥k(t)− E[P≥k(t)] = Mt −M0. (1.8.19)

To apply the Azuma-Hoeffding inequality, Theorem 2.25, we have to bound |Mn −
Mn−1|. In step n, m edges are added to the graph. Now P≥k only changes is an edge
is added to a vertex with degree k − 1. Now m edges have influence on the degree of
at most 2m vertices, hence, the maximum amount of vertices of which de degree is
increased to k is at most 2m. So we have |Mn−Mn−1| ≤ 2m. The Azuma-Hoeffding
inequality now gives us

P
(
|P≥k(t)− E[P≥k(t)]| ≥ a

)
≤ 2e−

a2

8m2t . (1.8.20)

Taking a = C
√
t log t, C2 ≥ 8m, we obtain

P
(
|P≥k(t)− E[P≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (1.8.21)
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Solution to Exercise 8.17. We have for κk(t) and γk(t) the following equation.

κk(t) =
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k − 1 + δ)pk−1 −

( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k + δ)pk,

γk(t) = −1{k = 1} 1 + δ

t(2 + δ) + (1 + δ)
+ 1{k = 2} 1 + δ

t(2 + δ) + (1 + δ)
.

We start with Cγ. We have

|γk(t)| ≤
1 + δ

t(2 + δ) + (1 + δ)
≤ 1

t(2+δ
1+δ

) + 1
≤ 1

t+ 1
. (1.8.22)

So indeed Cγ = 1 does the job. For κk(t) we have

κk(t) =
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)(
(k − 1 + δ)pk−1 − (k + δ)pk

)
. (1.8.23)

This gives us

|κk(t)| ≤
∣∣∣ 1

2 + δ
− t

t(2 + δ) + (1 + δ)

∣∣∣ · ∣∣∣(k − 1 + δ)pk−1 − (k + δ)pk

∣∣∣,
≤

∣∣∣ 1

2 + δ
− t

t(2 + δ) + (1 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣t(2 + δ) + (1 + δ)− (2 + δ)t

t(2 + δ)2 + (1 + δ)(2 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ 1 + δ

t(2 + δ)2 + (1 + δ)(2 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ 1

2 + δ
· 1

t(2+δ
1+δ

) + 1

∣∣∣ · sup
k≥1

(k + δ)pk,

≤
∣∣∣ 1

t(2+δ
1+δ

) + 1

∣∣∣ · sup
k≥1

(k + δ)pk,

≤ 1

t+ 1
· sup
k≥1

(k + δ)pk.

Hence, Cκ = supk≥1(k + δ)pk

Solution to Exercise 8.18. We note that∑
i:Di(t)≥l

Di(t) ≥ lN≥l(t), (1.8.24)

where we recall that N≥l(t) = #{i ≤ t : Di(t) ≥ l} is the number of vertices with
degree at least l.

By the proof of Proposition 8.3 (see also Exercise 8.16), there exists C1 such that
uniformly for all l,

P
(
|N≥l(t)− E[N≥l(t)]| ≥ C1

√
t log t

)
= o(t−1). (1.8.25)
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By Proposition 8.6, there exists a constant C2 such that

sup
l≥1
|E[Pl(t)]− tpl| ≤ C2. (1.8.26)

Therefore, we obtain that, with probability exceeding 1− o(t−1),

N≥l(t) ≥ E[N≥l(t)]− C1

√
t log t ≥ E[N≥l(t)]− E[N≥2l(t)]− C1

√
t log t

≥
2l−1∑
l=l

[tpl − C2]− C1

√
t log t ≥ C3tl

1−τ − C2l − C1

√
t log t ≥ Btl2−τ ,

(1.8.27)

whenever l is such that

tl1−τ � l, and tl1−τt �
√
t log t. (1.8.28)

The first condition is equivalent to l� t
1
τ , and the second to l� t

1
2(τ−1) (log t)−

1
2(τ−1) .

Note that 1
τ
≥ 1

2(τ−1)
for all τ > 2, so the second condition is the strongest, and

follows when tl2−τ ≥ K
√
t log t for some K sufficiently large.

Then, for l satisfying tl2−τ ≥ K
√
t log t, we have with probability exceeding 1 −

o(t−1), ∑
i:Di(t)≥l

Di(t) ≥ Btl2−τ . (1.8.29)

Also, with probability exceeding 1− o(t−1), for all such l, N≥l(t)�
√
t.

Solution to Exercise 8.19. We prove (8.7.3) by induction on j ≥ 1. Clearly, for
every t ≥ i,

P(Di(t) = 1) =
t∏

s=i+1

(
1− 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)
=

t∏
s=i+1

( s− 1

s− 1 + 1+δ
2+δ

)
=

Γ(t)Γ(i+ 1+δ
2+δ

)

Γ(t+ 1+δ
2+δ

)Γ(i)
,

(1.8.30)
which initializes the induction hypothesis, since C1 = 1.

To advance the induction, we let s ≤ t be the last time at which a vertex is added
to i. Then we have that

P(Di(t) = j) =
t∑

s=i+j−1

P
(
Di(s−1) = j−1

) j − 1 + δ

(2 + δ)(s− 1) + 1 + δ
P
(
Di(t) = j|Di(s) = j

)
.

(1.8.31)
By the induction hypothesis, we have that

P
(
Di(s− 1) = j − 1

)
≤ Cj−1

Γ(s− 1)Γ(i+ 1+δ
2+δ

)

Γ(s− 1 + 1+δ
2+δ

)Γ(i)
. (1.8.32)
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Moreover, analogously to (0.8.30), we have that

P(Di(t) = j|Di(s) = j) =
t∏

q=s+1

(
1− j + δ

(2 + δ)(q − 1) + (1 + δ)

)
(1.8.33)

=
t∏

q=s+1

(q − 1− j−1
2+δ

q − 1 + 1+δ
2+δ

)
=

Γ(t− j−1
2+δ

)Γ(s+ 1+δ
2+δ

)

Γ(t+ 1+δ
2+δ

)Γ(s− j−1
2+δ

)
.

Combining (0.8.32) and (0.8.33), we arrive at

P(Di(t) = j) ≤
t∑

s=i+j−1

(
Cj−1

Γ(s− 1)Γ(i+ 1+δ
2+δ

)

Γ(s− 1 + 1+δ
2+δ

)Γ(i)

)( j − 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)
×
(Γ(t− j−1

2+δ
)Γ(s+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(s− j−1
2+δ

)

)
. (1.8.34)

We next use that

Γ(s− 1 +
1 + δ

2 + δ
)((2 + δ)(s− 1) + (1 + δ)) = (2 + δ)Γ(s+

1 + δ

2 + δ
), (1.8.35)

to arrive at

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t− j−1
2+δ

)

Γ(t+ 1+δ
2+δ

)

t∑
s=i+j−1

Γ(s− 1)

Γ(s− j−1
2+δ

)
. (1.8.36)

We note that, whenever l + b, l + 1 + a > 0 and a− b+ 1 > 0,

t∑
s=l

Γ(s+ a)

Γ(s+ b)
=

1

a− b+ 1

[Γ(t+ 1 + a)

Γ(t+ b)
− Γ(l + 1 + a)

Γ(l + b)

]
≤ 1

a− b+ 1

Γ(t+ 1 + a)

Γ(t+ b)
.

(1.8.37)
Application of (0.8.37) for a = −1, b = − j−1

2+δ
, l = i+ j−1, so that a− b+1 = j−1

2+δ
> 0

when j > 1, leads to

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t− j−1
2+δ

)

Γ(t+ 1+δ
2+δ

)

1
j−1
2+δ

Γ(t)

Γ(t− j−1
2+δ

)
(1.8.38)

= Cj−1
j − 1 + δ

j − 1

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t)

Γ(t+ 1+δ
2+δ

)
.

Equation (0.8.38) advances the induction by (8.7.4).

Solution to Exercise 8.24. Suppose αδin +γ = 0, then, since all non-negative, we
have γ = 0 and either α = 0 or δin = 0.
Since γ = 0, no new vertices are added with non zero in-degree.
In case of α = 0 we have β = 1, and thus we only create edges in G0. Hence, no ver-
tices exist outside G0 and thus there cannot exist vertices outside G0 with in-degree
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non zero.
In case of δin = 0 (and γ = 0 still), vertices can be created outside G0, but in in it’s
creation phase we will only give it an outgöıng edge. And this edge will be connected
to a vertex inside G0, since δin = 0 and the possibility to is thus zero to create an
ingoing edge to a vertex with di(t) = 0. Similarly, in case edges are created within
the existing graphs, all ingoing edges will be in G0 for the same reason. So, during
all stages all vertices outside G0 will have in-degree zero.

Now suppose γ = 1. Then the only edges being created during the process are
those from inside the existing graph to the newly created vertex. So once a vertex
is created and connected to the graph, it will only be able to gain out-going edges.
Hence, the in-degree remains one for all vertices outside G0 at all times.
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