LECTURE 4

Large Deviations and Nonprobabilistic
Algorithms

Large deviation. Let us start with a beautiful proof of a result used in Lec-
ture 1.

THEOREM. Let S, = X, + -+ -+ X, where
Pr[X,=+1]=Pr[X,=-1]=}
and the X, are mutually independent. Then for any A >0
AR
Proof. For any a >0
E[e**]=1[e"+e *]=cosh (a)=< e "
(The inequality can be shown by comparing the Taylor Series.) As the X, are

mutually independent,

E[e™"]= E[ ["[ e“x':l = ]ﬂ] E[e**]< ﬁ e 2= g2,

il
Thus
Pr[S,>A]="Pr[e®>e™]< E[e"] e < /2,
We now choose a = A/n, optimizing the inequality
Pr[S,>A]<e /2", O
More generally, let Y,, -+ Y, be independent with
Pr(Y,=1]=p, Pr(Y,=0]=1-p,

and normalize by setting X,=Y,—p. Set p=(p,+---+p,)/n and X =
X,+---+ X, We give the following without proof:

Pr [X > 0] < e—.‘!n:h.,
Pr[X <-a]<e @/
Pr[X > a] <e o/2m+a’/2pmp
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30 LECTURE 4

The last two bounds are useful when p« 1. The a*/2(pn)® term is usually small
in applications. When all p,=p, X = B(n, p)—np is roughly normal with zero
mean and variance np(1— p) ~ np, explaining somewhat the latter two inequalities.

Discrepancy. Let &/ < 2" be an arbitrary family of finite sets. Let y : Q- {+1, =1}
be a two-coloring of the underlying points. Define
x(A)= T x(a),

ae A

disc (x) = max [x(A)],
disc (/) = min disc (x).
X

Note that disc (x)= K means that there is a two-coloring of  so that every
Ae o has |[x(A)|=K
Tueorem. If |sf|=|Q|= n, then

disc (#)=+v2nlIn(2n).

Proof. With y random and |A|=r, y(A) has distribution S,. As all A< () have
|Al=|2|=n

Prl|x(A)|>A]<2e 272",
Thus

Pr(disc (x)>A]< ¥ Pr[lx(A)|>A]<2ne*/"=1
Acd

by taking A =v2n In (2n). Thus Pr[disc (x) = A]> 0 and so there exists a y with
disc (y) = A.

We can also express this result in vector form.

THEOREM. Let u;€ R", ]uJ]I =1, 1=j=n. Then there exist ;€ {—1, +1} so that,
setting u= g u,++ -+ e,u,, |ul.=+v2nln(2n). (Note: With u=(L,,---,L,),
|u| =max |L,, the L norm.)

Here is the translation between the formulations. Given & < 2, number the
elements 1,--- n and the sets A,, -+, A, and define the incidence matrix
A=[a;] by a;=1if je A;; 0 otherwise. Let u; be the column vectors. A two-
coloring x: Q2> {+1, —1} corresponds to ¢, = x(j), disc (A,) to the ith coordinate
L, of u and disc (x) to |u|... Now, however, we allow a; € [—1, +1] to be arbitrary.
The proof of our first theorem can be easily modified to show that with ¢ random
Pr[|L|>A]<2e */?" and the rest of the proof follows as before.

I 2 = i
S| L]I:X(SI)
SH L|H=X(Sﬂ}
uy Uy u=xu - -xu,=(Ly, -, L,)



LECTURE 1 O

Six Standard Deviations Suffice

I suppose every mathematician has a result he is most pleased with. This is mine.
THEOREM. Let Sy, -+ -, S,<=[n). Then there exists x:[n]—>{-1, +1} such that

lx{s"].{6nh’2
forall i1=i<n.

The elementary methods of Lecture 1 already give x with all X(S)|<
en'?(In n)"/?. From our vantage point n'’? is one standard deviation. With x
random |y(S)| > 6n'? occurs with a small but positive probability & < e ¥ 12z 18
There are n sets, so the expected number of i with [x(S,)|>6n"" is en, which
goes to infinity with n. A random yx will not work; the key is to meld probabilistic
ideas with the Pigeonhole Principle.

The constant 6 is simply the result of calculation, the essential point is that it
is an absolute constant. In the original paper it is 5.32, in our proof here 6" =11.

Proof. Let C be the set of x:[n]-{—1,+1}. Call x € C realistic if

(1) |x(S,)|>10n"? for at most 42¢%n i's,
(2) |x(S)|>30n"? for at most 8(2¢™*°)n i's,
(3) |x(S)|>50n"? for at most 16(2e”'**")n i’s,

and, in general,
(s) lx(S)|>10(2s—1)n""? for at most 2°*'(2¢™**** )n i’s.

CLAIM. At least half the y € C are realistic.

Pick ye C at random. Let Y, be the indicator random variable for Ix(S)|>
10n"?. Set Y=Y"_, Y.. Then

E[Y,]=Pr[|x(S)|>10n"?]<2e
by the bound of Lecture 4. By linearity of expectation

E[Y]= Y E[Y.]=(2e )

(We do not know much about the distribution of Y since the dependence of the
Y, may be complex, reflecting the intersection pattern of the S, Fortunately,

7
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76 LECTURE 10

linearity of expectation ignores dependency.) As Y =0
Pr[Y>4E[Y]]<}
That is,
Pr[y fails (1)] <1

Apply the same argument to (2), letting Y, be one if |[x(S,)|>30n"? The
10°/2 = 50 becomes 30°/2 = 450. Everything is identical except that 4 was changed
to 8 so that

Pr [y fails (2)] <.
In general,
Pr[y fails (s)]<27*".

The probability of a disjunction is at most the sum of the probabilities.

bodo=

Pr[x not realistic]= ¥ 2 * '=

s=1

A random y has probability at least 3 of being realistic. Each y was given equal

weight 27" in the probability space so at least 2" y are realistic, completing
the claim.

Now we define a map
T(Xlz(blt et ybn]
where b, is the nearest integer to x(S,)/20n"?. That is,

-2 =] 0 +1 +2 b

i i 4 1 } I
1 + +

—30vn -10vn 0 10vn 30 50vn x(S,)

b, =0 means [x(S;)|=10n""?,

b, =0, £1 means |x(S;)|<30n'?, etc.

Let B be the set of possible T(y) with y realistic. That is, B is all (b,, "+
such that

(1) b; #0 for at most 4(2¢°°)n i’s,

(2) b, #0, £1 for at most'8(2e ***)n i’s,

b,)

and, in general,
(s) |b;|=s for at most 2°"'(2e *** ") i’s.

(Let us pause for a geometric view. We are actually showing that if A=[a,]
is an n X n matrix with all ]a,-_,-ii 1, then there exists xe C ={—1,+1}" so that
|Ax|c= Kn'/>. We consider A: R" > R" given by x> Ax. We split the range into



SIX STANDARD DEVIATIONS SUFFICE 17
cubes of size 20n"/?, centered about the origin. We want to prove that some xe C
is mapped into the central cube. We cannot do this directly, but we plan to find
x, y € C mapped into the same cube and examine (x —y)/2. We want to employ
the Pigeonhole Principle, with the 2" x€ C mapped into the cubes. To do this
we restrict attention to the 2" ' realistic x as they are mapped (shown by the
next claim) into a much smaller number of cubes.)

Cram. |B|<(1.0000000000000001)".
We use the inequality, valid for all n, all a< [0, 1],

Z (") <2n}l{u}
i<na i
E

where H(a)=-alga—-(1-a)lg(1—a) is the entropy function. We can choose
{i: b, # 0} in at most 2”7 ways. Then we can choose the signs of the nonzero
b, in at most 2% """ ways. For each s there are at most 2**[nH (2**'e 5" 1]
ways to choose {i: |b|> s}. These choices determine (b,,- - -, b,). Thus |B|<2""
where

B =8¢+ H(8¢ %)+ H(16e *°)+ H(32¢ '¥*) +- - -.

This series clearly converges and the claim follows from a calculation.

Now apply the Pigeonhole Principle to the map T from the (at least) 2" '
realistic y to the (at most) (1+107'°)" pigeonholes B. There is a set C' of at least
2"/ (14+107'%)" realistic y mapping into the same (b, -+, b,).

Let us think of C as the Hamming Cube {—1, +1}" with the metric

p(xy, x2) = Kiz xa (i) # xa(0)}].

D. Kleitman has proved that if C'c C and C'=} _, (7) with r=n then C’ has
diameter at least 2r. That is, the set of a given size with minimal diameter is the
ball. In our case |C'|>2"""/(1+107'%)" so we may take r=3n(1-10"°) with
room to spare and C' has diameter at least n(1—10"°). Let x,, x»€ C' be at
maximal distance. (Kleitman’s Theorem is not really necessary. The elementary
argument at the end of Lecture 9 gives that C' has diameter at least .4999n. We
could use this value and finish the proof with a much worse, but still absolute
constant, value of **6"".) Now set

X=x—x2/2;

then x is a partial coloring of [n]. As T(x,) = T(x,) both x,(S;) and x.(S;) lie
in a common interval [(20b, —10)n"/?, (20b;+10)n'/?]. Then

(*) IX(S)|=(x:(S) — x2(5:))/2| = 10n"/2.
Also
(*x) [{i: x(i) # 0} <10 °n.

Now iterate. We now have n sets on 10™°n points. If we had only 10 °n sets
we could partially color all but a millionth of the points, giving all sets discrepancy
of at most 10(10™°n)"/*=.01n"/2. Things are not quite so simple as we still have
n sets. We actually need the following result: Given n sets on r points, r=n,
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there is a partial coloring of all but at most a millionth of the points so that all
Ix(S)|<10r'?[In (2n/r)]"2

The argument is basically that given when r=n but the formulae are a bit more

fierce. Let us assume the result (read the original paper!) and now iterate. On
the second iteration

lx(S)]<10(n10°%)"[In (2x 10%)]"/* < .4n.

The future terms decrease even faster. The logarithmic term, while annoying,
does not affect the convergence. At the end, with all points colored,

lx(S)=<10n"2+10(n10"%)"*[In (2% 10%)]"/
+10(n107"%)*[In (2x10')]"?
i
=11a"?

completing the proof for 6" =11.

From the reductions of Lecture 5 we derive the following.

CoroLLARY. disc (&)= K||'?. That is, given any n finite sets there is a
two-coloring of the underlying points so that each set has discrepancy at most Kn'’”.

This result is best possible up to the constant. Here are two proofs. First, take
an nXn Hadamard Matrix H = (h;) with the first row all ones. Set A= (a;)=
(H+J)/2 so that a;=1 when h;=1 and a;,=0 when h,=-1. Let 1=
vy, Us,***, U, be the columns of H and 1= Wy, Wo,*+ ., w, be the columns of
A, so that w, = (v,+1)/2. For any choice of signs

u=tw twyt---tw,=5v+sl

where v=+v,%:--%p,. As the v are orthogonal and |v|,=n"" |v
[n(n=1)]"2. Also v+ 1=0 so |ul,=3|v|,=[n(n—1)]""?/2 and thus

|ule=(n—1)"3/2.

5=

The second proof involves turning the probabilistic method on its head. Let
T\, -+, T, be randomly chosen subsets of [n]. That is, for all i, j Pr[je T,]=}
and these events are mutually independent. Let y:[n]—-{—1, +1} be arbitrary but
fixed. Let P={j: x(j)=+1}, N={j: x(j)=-1}, a=|P| so n—a=|N|. Then
|T; N P| has binomial distribution B(a, }) while |7, N| has B(n—a,}) and thus
x(T,) has distribution B(a,3) — B(n—a,}). When a = n/2 y(T;) is roughly normal
with zero mean and standard deviation in'/?. Then

+c 1
_e M2

One can show that this probability is maximized essentially when a = n/2. Pick

¢~ .67 so that the above integral is .5. Decrease c slightly so that the inequality
is strict:

lim Pr [ |x( T,)ls%c{ﬁ]:j e 12 s

Pr[|x(T,)| <.33v/n] < .499.
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Now since the T, are chosen independently the events [x(T})|>.33n"? are
mutually independent so that

Pr|x(T)|<.33n"%, 1< i<n]<.499".

Let Y, be one if |x(T})|<.33n"2 for all i and let

Y=Y Y,
the sum over all 2" colorings y. Then

E[Y]=Y E[Y,]<2"(.499)" « 1.

Thus the event Y =0 has positive probability, actually probability nearly one.
There is a point in the probability space (i.e. actual sets T 7, Ta) 80 that
Y =0 which, when we unravel the definitions, means that the family «f =
{T\,- -, T,} has disc («)> 33n"2,

Let us restate our basic theorem of this Lecture in vector form.

THEOREM. Let uy € R", 1=<j<n, |u|..<1. Then for some choice of signs

|£u £+ -t u,|o=< Kn"2

To prove this we set u=(L,,--- L,)= fu,£--++u, Then each L, has
distribution L, = +q;,+- - + a,, with all ]aul = 1. From the arguments of Lecture
4, Pr(|L,|>10n"?]< ¢ etc. and the proof goes through as before.

The methods of Lecture 5 also allow us to re-express our result in terms of
simultaneous approximation. Given data aj, l=i=m, 1=j=n with all a,=1.
Given initial values X;, 1 =j=n. A simultaneous round-off is a set of integers y,,
each y, either the “round-up” or “round-down" of X;. Let E; be the error

n

E = EI a!j(xj '}T;)
ju
and E the maximal error, E = max |E,|.

CoroLLARY. There exists a simultaneous round-off with E < Km"/>.

Is there a polynomial time algorithm that gives the simultaneous round-off
guaranteed by this corollary? Given u,, - - - , 4, € R" with all |u,-|,aE 1, is there a
polynomial time algorithm to find signs such that |+u, +- - - + Uyl < Kn'/?? The
difficulties in converting these theorems to algorithms go back to the basic theorem
of this Lecture and lie, I feel, in the use of the Pigeonhole Principle. In Lecture
4 we saw that there is a rapid algorithm giving |+u, < - - “*uylo<en'?(In n)'/2
We also saw that no 'nonanticipative algorithm could do better. That is, a better
algorithm could not determine the sign of u; simply on the basis of u,, - - -, u;_,, Y
but would have to look ahead. Also we can show, standing the probabilistic
method on its head, that there are Uy, ", U, so that the number of choices of
signs with [+u, -+« +u, | < Kn"?is less than (2—¢)" of the 2" possible choices.
Hence a randomly selected choice of signs will not work. Let us rephrase back
into the language of sets and conclude the Lectures with the following problem.



80 LECTURE 10

Open Problem. 1s there a polynomial time algorithm which, given input
S, - +,S8,<=[n], outputs a two-coloring y:[n]-{—1, +1} such that

|x(S)|= Kn'"?

foralliy1=i=n?
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