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INTERACTIONS BETWEEN
COMPRESSED SENSING

RANDOM MATRICES AND
HIGH DIMENSIONAL GEOMETRY

Djalil Chafäı, Olivier Guédon, Guillaume Lecué, Alain Pajor

Abstract. — These notes are an expanded version of short courses given at the oc-
casion of a school held in Université Paris-Est Marne-la-Vallée, 16–20 November 2009,
by Djalil Chafäı, Olivier Guédon, Guillaume Lecué, Alain Pajor, and Shahar Mendel-
son. The central motivation is compressed sensing, involving interactions between
empirical processes, high dimensional geometry, and random matrices.
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INTRODUCTION

Compressed sensing also referred to in the literature as compressive sensing or
compressive sampling is framework that enables to get approximate and exact recon-
struction of sparse signals from incomplete measurements. The existence of efficient
algorithms for the reconstruction, such as the `1-minimization, and the potential of
applications in signal processing and imaging, has led to a fast and wide development
of the theory. The ideas and principles underlying the discoveries of these phenom-
ena in high dimensions are related to problems and progresses from Approximation
Theory. One significant example of such an interaction is the study of Gelfand and
Kolmogorov widths of classical Banach spaces. There is already a large literature on
compressed sensing, on both theoretical and numerical aspects. Our aim is not to
survey the state of the art of this recent field developing with great speed, but to high-
light and to study some interactions with other fields of mathematics, in particular
with asymptotic geometric analysis, random matrices and empirical processes.

To introduce the subject, let T ⊂ RN and let A be an n×N real matrix with rows
Y1, . . . , Yn ∈ RN . Consider the general problem of reconstructing any vector x ∈ T
from the data Ax ∈ Rn, that is from the known measurements

〈Y1, x〉, . . . , 〈Yn, x〉.

Classical linear algebra suggests that the number n of measurements should be at least
as large as its dimension N in order to ensure reconstruction. Compressed sensing
provides a way of reconstructing the original signal x from its compression Ax that
takes only a small amount of linear measurements, that is with n� N . Clearly one
needs some a priori hypothesis on the subset T of signals that we want to reconstruct
from few measurements and of course, the matrix A should be suitably chosen.

The first point concerns T and is a question of complexity. Many tools relevant
to this matter were developed in Approximation Theory and in Geometry of Banach
Spaces. This is one of our objective to introduce these tools.

The second point is concerned with the design of the measurement matrix A. At
present the only good matrices so far are random sampling matrices. They are ob-
tained in many examples by sampling Y1, . . . , Yn ∈ RN in a suitable way. This is where
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probability enters. These random sampling matrices will be Gaussian or Bernoulli
(±1) type or random sub-matrices of the discrete Fourier N × N matrix (partial
Fourier matrices). There is a huge technical difference in the study of unstructured
compressive matrices (with i.i.d entries) and other case such as partial Fourier matri-
ces. This is one of our objective to study the main tools from probability theory that
fall within this framework. These are tools from probabilistic inequalities, concentra-
tion of measure and empirical processes as well as from random matrix theory.

This is precisely the purpose of Chapter 1 to present the basic tools that will be
used within this book. Elementary properties of Orlicz spaces are introduced in re-
lation with tail inequalities of random variables. An important connection between
high dimensional geometry and the study of empirical processes comes from the be-
havior of the sum of independent centered random variables with sub-exponential
tails. Discretization is an important step in the study of empirical processes. One
approach is given by a net argument. The size of the discrete space may be estimated
by the covering numbers. The basic tools to estimate covering numbers from above
are presented in the last part of Chapter 1.

Chapter 2 is devoted to compressed sensing. The purpose is to provide some of the
key mathematical insights underlying this new sampling method. We present first
the exact reconstruction problem as introduced above. The a priori hypothesis on the
subset of signals T that we investigate is sparsity. A vector is said to be m-sparse
if it has at most m non-zero coordinates. An important feature of this subset is its
peculiar structure: its intersection with the Euclidean unit sphere is the unions of
unit spheres supported on m-dimensional coordinate subspaces. This set is highly
compact when the degree of compacity is measured in terms of covering numbers. It
makes it a small subset of the sphere as far as m � N , which will be the case. In
other words, the set T may be discretized to be reduced to a finite set of reasonably
small cardinality.

A fundamental feature of compressive sensing is that practical reconstruction can
be performed by using efficient algorithms such as the `1-minimization method which
consists, for a given data y = Ax, to perform the “linear programming”:

min
t∈RN

N∑
i=1

|ti| subject to At = y.

At this step, the problem comes to find matrices for which this algorithm reconstructs
any m-sparse vectors with m relatively large. A study of the cone of constraints
to ensure that every m-sparse vector can be reconstructed by the `1-minimization
method leads to a necessary and sufficient condition known as the null space property
of order m:

∀h ∈ kerA, h 6= 0, ∀I ⊂ [N ], |I| ≤ m,
∑
i∈I
|hi| <

∑
i∈Ic
|hi|.

This property has a nice geometric interpretation on the structure of faces of random
polytopes called neighborliness. Indeed, if P is the polytope obtained by taking the
centrally symmetric convex hull of the columns of A, the null space property of order
m for A is equivalent to a neighborliness property of order m for P . This means that
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the matrix A which maps the vertices of the cross-polytope

BN1 =
{
t ∈ RN :

N∑
i=1

|ti| ≤ 1
}
.

onto the vertices of P preserves the structure of faces up to the dimension m. A
remarkable connection between compressed sensing and high dimensional geometry.

Unfortunately, the null space property is not easy to verify. An ingenious sufficient
condition is the so-called Restricted Isometry Property (RIP) of order m that requires
that all column sub-matrices of size m of the matrix are well-conditioned. More
precisely, we say that A satisfies the RIP of order p with parameter δ if

1− δ < |Ax|22 < 1 + δ

holds for all p-sparse unit vectors x ∈ RN . An important feature of this concept is
that if A satisfies the RIP of order 2m with parameter δ small enough then every
m-sparse vector can be reconstructed by the `1-minimization method. Even if this
RIP condition is difficult to check on a given matrix, it actually holds true with high
probability for certain models of random matrices.

Here is the point where probabilistic methods come into play. Among good unstruc-
tured sampling matrices we shall study the case of Gaussian and Bernoulli random
matrices. The case of partial Fourier matrices, which is more delicate will be studied
in Chapter 5. Checking RIP for the first two models may be treated along a simple
scheme presented in Chapter 2. More precisely, the method is based on a reduction
to a finite number of sparse vectors called a net. For each individual vector x in this
net, the Euclidean norm of Ax is concentrated around its mean. This concentration
should be strong enough to balance the cardinality of the net in the union bound.
The passage from this uniform control over the net to the whole set of sparse vectors
leads to the precise choice of the parameters in RIP.

Chapter 3 provides a criterion implying RIP for unstructured models of random
matrices, which includes the Bernoulli and Gaussian models. This new degree of
generality is allowed by the development of an adequate notion of complexity. The
approach, known as the generic chaining, allows to bound the supremum of empirical
processes, and is actually quite general.

On the other hand, the RIP can be translated as a control on the largest and
smallest singular values of all sub-matrices of a certain size. Chapter 4 aims to
provide an accessible introduction to the notion of singular values of matrices, and
their behavior when the entries are random, including quite recent striking results
from Random Matrix Theory and High Dimensional Geometric Analysis.

Another angle to tackle the problem of reconstruction by the `1-minimization is
to study of the Euclidean diameter of the section of the cross-polytope BN1 with the
kernel of A. This study leads to the notion of Gelfand widths. In this direction,
important works were done in the seventies. This viewpoint which comes from Ap-
proximation Theory and Asymptotic Geometric Analysis enlighten a new aspect of
the problem: if the Euclidean diameter of the section of the cross-polytope BN1 with
the kernel of A is < D, then m-sparse vectors can be reconstructed by `1-minimization
with m =

⌊
1/D2

⌋
. Then clearly the objective is to estimate this diameter from above.
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This approach is pursued in Chapter 5 on the model of partial discrete Fourier ma-
trices. The reconstruction problem is connected to the problem of selecting a large
part of a bounded orthonormal system such that on the vectorial span of this family,
the L2 and the L1 norms are as close as possible. This subject of Harmonic Analysis,
goes back to the construction of Λ(p) sets which are not Λ(q) for q > p where powerful
methods of selectors were developed. Again, tools of empirical processes are at the
heart of the technics of proof.



CHAPTER 1

EMPIRICAL METHODS AND HIGH DIMENSIONAL
GEOMETRY

This chapter is devoted to the presentation of classical tools that will be used within
this book. We present some elementary properties of Orlicz spaces and develop the
particular case of ψα random variables. Several characterization are given in terms of
tail estimate, Laplace transform and behavior of its Lp norms. One of the important
connection between high dimensional geometry and the study of empirical processes
comes from the behavior of the sum of (centered) ψα random variables. An important
part of these preliminaries concentrate on this subject. We illustrate these connections
with the presentation of the Johnson-Lindenstrauss lemma. The last part of this
chapter is devoted to the study of covering numbers. We focus our attention on some
elementary properties and on the presentation of methods to estimate upper bound
of these covering numbers.

1.1. Presentation of the Orlicz spaces

The Orlicz space is a function space which extends naturally the classical Lp spaces
when 1 ≤ p ≤ +∞. A function ψ : [0,∞) → [0,∞) is an Orlicz function if it is a
convex increasing function such that ψ(0) = 0 and ψ(x)→∞ when x→∞.

Definition 1.1.1. — Let ψ be an Orlicz function, for any real random variable X
on a measurable space (Ω, σ, µ), we define its Lψ norm by

‖X‖ψ = inf
{
c > 0 : Eψ

(
|X|/c

)
6 ψ(1)

}
.

The space Lψ(Ω, σ, µ) = {X : ‖X‖ψ <∞} is called an Orlicz space.

It is well known that Lψ is a Banach space. Classical examples of Orlicz functions
are for p > 1 and α > 1

φp(x) = xp/p and ψα(x) = exp(xα)− 1.

The Orlicz space associated to φp is the classical Lp space. It is also clear by the
theorem of monotone convergence that the infimum in the definition of the Lψ norm
of a random variable X, if finite, is attained at ‖X‖ψ.
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Let ψ be a convex function. We define its convex conjugate ψ∗ (also called the
Legendre transform) by: for every y > 0

ψ∗(y) := sup
x>0
{xy − ψ(x)}.

The convex conjugate of an Orlicz function is also an Orlicz function.

Proposition 1.1.2. — Let ψ be an Orlicz function and ψ∗ be its convex conjugate.
For every real random variables X ∈ Lψ and Y ∈ Lψ∗ ,

E|XY | 6 (ψ(1) + ψ∗(1)) ‖X‖ψ ‖Y ‖ψ∗ .

Proof. — By homogeneity, we can assume ‖X‖ψ = ‖Y ‖ψ∗ = 1. By definition of the
convex conjugate, we have

|XY | 6 ψ (|X|) + ψ∗ (|Y |) .

Taking the expectation, since Eψ(|X|) ≤ ψ(1) and Eψ∗(|Y |) 6 ψ∗(1), we get that
E|XY | ≤ ψ(1) + ψ∗(1).

It is not difficult to observe that if φp(t) = tp/p then φ∗p = φq where p−1 + q−1 = 1
(it is also known as Young’s inequality). In this case, Proposition 1.1.2 corresponds
to Hölder inequality.

Any information about the ψα norm of a random variable is very useful to describe
a tail behavior. This will be explained in Theorem 1.1.5. For instance, we say that
X is a sub-Gaussian random variable when ‖X‖ψ2

< ∞, we say that X is a sub-

exponential random variable when ‖X‖ψ1
< ∞. In general, we say that X is ψα

when ‖X‖ψα < ∞. It is important to notice (see Corollary 1.1.6 and Proposition

1.1.7) that for any 1 ≤ p < +∞, for any α2 > α1 ≥ 1

L∞ ⊂ Lψα2
⊂ Lψα1

⊂ Lp.

One of the main goal of these preliminaries will be to understand the behavior of
the maximum of Lψ-random variables and of the sum and the product of ψα random
variables. We start with a general maximal inequality.

Proposition 1.1.3. — Let ψ be an Orlicz function. Then, for any positive natural
integer n and any real valued random variables X1, . . . , Xn,

E max
1≤i≤n

|Xi| ≤ ψ−1(nψ(1)) max
1≤i≤n

‖Xi‖ψ,

where ψ−1 is the inverse function of ψ. Moreover if ψ is such that

∃ c > 0, ∀x, y ≥ 1/2, ψ(x)ψ(y) 6 ψ(c x y) (1.1)

then ∥∥∥∥ max
16i6n

|Xi|
∥∥∥∥
ψ

6 c max
{

1/2, ψ−1(2n)
}

max
16i6n

‖Xi‖ψ .

where c is the same as in (1.1).
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Remark 1.1.4. — • Since for any x, y ≥ 1/2, (ex − 1)(ey − 1) ≤ ex+y ≤ e4xy ≤
(e8xy−1), we get that for any α ≥ 1, ψα satisfies the assumption (1.1) with c = 81/α.
• Moreover, the function ψα is such that ψ−1

α (nψα(1)) ≤ (1 + log(n))1/α and
ψ−1
α (2n) = (log(1 + 2n))1/α.
• The assumption (1.1) may be weakened by lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) <∞.
• By monotony of ψ, for n ≥ ψ(1/2)/2, max

{
1/2, ψ−1(2n)

}
= ψ−1(2n).

Proof. — By homogeneity of the statements, we can assume that for any i = 1, . . . , n,
‖Xi‖ψ ≤ 1.

The first inequality is a simple consequence of Jensen inequality. Indeed,

ψ(E max
1≤i≤n

|Xi|) ≤ Eψ( max
1≤i≤n

|Xi|) ≤
n∑
i=1

Eψ(|Xi|) ≤ nψ(1).

To prove the second assertion, we define y = max{1/2, ψ−1(2n)}. For any i =
1, . . . , n, let xi = |Xi|/cy. We observe that if xi ≥ 1/2 then we get by (1.1)

ψ (|Xi|/cy) ≤ ψ(|Xi|)
ψ(y)

.

Moreover,

max
1≤i≤n

xi ≤ max
1≤i≤n

xi1I{
max

1≤i≤n
xi ≤ 1/2

} +

n∑
i=1

xi1I{xi ≥ 1/2}

therefore, we have by monotony of ψ,

Eψ
(

max
16i6n

|Xi|/cy
)

6 ψ(1/2) +

n∑
i=1

Eψ (|Xi|)/cy) 1I{(|Xi|)/cy) ≥ 1/2}

≤ ψ(1/2) +
1

ψ(y)

n∑
i=1

Eψ(|Xi|) ≤ ψ(1/2) +
nψ(1)

ψ(y)
.

By convexity of ψ and the fact that ψ(0) = 0, we have ψ(1/2) ≤ ψ(1)/2. The proof
is finished since by definition of y, ψ(y) ≥ 2n.

For every α ≥ 1, there are very precise connections between the ψα norm of a
random variable, the behavior of its Lp norms, the tail estimates and the Laplace
transform. We sum up these connections in the following Theorem.

Theorem 1.1.5. — Let X be a real valued random variable and α > 1. The following
assertions are equivalent:
(1) There exists K1 > 0 such that ‖X‖ψα 6 K1.

(2) There exists K2 > 0 such that for every p ≥ α,

(E|X|p)1/p 6 K2 p
1/α.

(3) There exist K3,K
′
3 > 0 such that for every t ≥ K ′3,

P (|X| > t) 6 exp
(
− tα/Kα

3

)
.
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Moreover, we have

K2 ≤ 2eK1,K3 ≤ eK2,K
′
3 ≤ e2K2 and K1 ≤ 2 max(K3,K

′
3).

In the case α > 1, let β be such that 1/α + 1/β = 1. The preceding assertions are
also equivalent to the following:
(4) There exist K4,K

′
4 > 0 such that for every λ ≥ 1/K ′4,

E exp
(
λ|X|

)
6 exp (λK4)

β
.

Moreover, K4 ≤ 2K1/, K ′4 ≤ K1, K3 ≤ 2K4 and K ′3 ≤ 2Kβ
4 /(K

′
4)α−1.

Proof. — We start by proving that (1) implies (2). By definition of the Lψα norm,
we get that

E exp

(
|X|
K1

)α
≤ e.

Moreover, for every positive natural integer q and every x ≥ 0, expx ≥ xq/q! hence

E|X|αq ≤ e q!Kαq
1 ≤ eqqKαq

1 .

For any p ≥ α, let q be the positive integer such that qα ≤ p < (q + 1)α then

(E|X|p)1/p ≤
(
E|X|(q+1)α

)1/(q+1)α

≤ e1/(q+1)αK1(q + 1)1/α

≤ e1/pK1

(
2p

α

)1/α

≤ 2eK1p
1/α

which means that (2) holds true with K2 = 2eK1.
We now prove that (2) implies (3). We apply Markov inequality and the estimate

of (2) to deduce that for every t > 0,

P(|X| ≥ t) ≤ inf
p>0

E|X|p

tp
≤ inf
p≥α

(
K2

t

)p
pp/α = inf

p≥α
exp

(
p log

(
K2p

1/α

t

))
.

We get that for t ≥ eK2α
1/α, we can choose p = (t/eK2)α ≥ α and conclude that

P(|X| ≥ t) ≤ exp (−tα/(K2e)
α) .

Since α ≥ 1, α1/α ≤ e and we conclude that (3) holds true with K ′3 = e2K2 and
K3 = eK2.

We conclude by proving that (3) implies (1). Assume that (3) holds true and let
c = 2 max(K3,K

′
3). Then by integration by parts,

E exp

(
|X|
c

)α
− 1 =

∫ +∞

0

αuα−1eu
α

P(|X| ≥ uc)du

≤
∫ K′3/c

0

αuα−1eu
α

du +

∫ +∞

K′3/c

αuα−1 exp

(
uα
(

1− cα

Kα
3

))
du

= exp

(
K ′3
c

)α
− 1 +

1
cα

Kα
3
− 1

exp

(
−
(
cα

Kα
3

− 1

)(
K ′3
c

)α)
≤ 2 cosh(K ′3/c)

α − 1 ≤ 2 cosh(1/2)− 1 ≤ e− 1
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by the definition of c and the fact that α ≥ 1. This proves that (1) holds true with
K1 = 2 max(K3,K

′
3).

We now assume that α > 1 and prove that (4) implies (3). We apply Markov
inequality and the estimate of (4) to get that for every t > 0,

P(|X| > t) 6 inf
λ>0

exp(−λt)E exp
(
λ|X|

)
6 inf
λ≥1/K′4

exp
(
(λK4)β − λt

)
.

Therefore if t ≥ 2Kβ
4 /(K

′
4)α−1, we can choose λt = 2(λK4)β with λ ≥ 1/K ′4 and

conclude that
P(|X| > t) ≤ exp (−tα/(2K4)α) .

This proves that (3) holds true with K3 = 2K4 and K ′3 = 2Kβ
4 /(K

′
4)α−1.

It remains to prove that (1) implies (4). We have already observed that the convex
conjugate of the function φα(t) = tα/α is φβ which implies that for any x, y > 0,

xy ≤ xα

α
+
yβ

β
≤ xα + yβ .

Hence for every λ > 0,

exp(λ|X|) ≤ exp

(
|X|
K1

)α
exp (λK1)

β

and taking the expectation, we get by definition of the Lψα norm that

E exp(λ|X|) ≤ e exp (λK1)
β
.

We conclude that if λ ≥ 1/K1 then

E exp(λ|X|) ≤ exp (2λK1)
β

which proves that (4) holds true with K4 = 2K1 and K ′4 = K1.

A simple corollary of Theorem 1.1.5 is the following connection between the Lp norms
of a random variable and its ψα norm.

Corollary 1.1.6. — For every α ≥ 1, for every real random variable X,

1

2e2
‖X‖ψα 6 sup

p>α

(E|X|p)1/p

p1/α
6 2e ‖X‖ψα .

Proof. — This follows from the implications (1)⇒ (2)⇒ (3)⇒ (1) in Theorem 1.1.5
and from the computations of the constants K2, K3, K ′3 and K1.

We conclude this part with a kind of Hölder inequality for ψα random variables.

Proposition 1.1.7. — Given p, q ∈ [1,+∞] be such that 1/p + 1/q = 1 and two
random variables X ∈ Lψp , Y ∈ Lψq , we have

‖XY ‖ψ1
≤ ‖X‖ψp ‖Y ‖ψq . (1.2)

Moreover, if 1 ≤ α ≤ β then for every random variable X

‖X‖ψ1
≤ ‖X‖ψα ≤ ‖X‖ψβ .
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Proof. — By homogeneity, we assume that ‖X‖ψp = ‖Y ‖ψq = 1. Since p and q are

conjugate, we know by Young inequality that for every x, y ∈ R, |xy| ≤ |x|p
p + |x|q

q .

By convexity of the exponential, we deduce that

E exp(|XY |) ≤ 1

p
E exp |X|p +

1

q
E exp |X|q ≤ e

which proves that ‖XY ‖ψ1
≤ 1.

The moreover part is a consequence of this result. Indeed, by definition of the
ψq-norm, the random variable Y = 1 satisifes ‖Y ‖ψq = 1. Hence applying (1.2) with

p = α and q being the conjugate of p, we get that for every α ≥ 1, ‖X‖ψ1
≤ ‖X‖ψα .

We also observe that for any β ≥ α, if δ ≥ 1 is such that β = αδ then we have

‖X‖αψα = ‖|X|α‖ψ1
≤ ‖|X|α‖ψδ = ‖X‖αψαδ

which proves that ‖X‖ψα ≤ ‖X‖ψβ .

1.2. Linear combination of centered Psi-alpha random variables

In this part we will focus on the case of centered ψα random variables when α ≥ 1.
We will present several results concerning the linear combination of such random
variable. The cases α = 2 and α 6= 2 are different. We will start by looking at the
case α = 2. Even if we may prove a sharp estimate for their linear combination,
we will also consider the simple and well known example of linear combination of
Rademacher. This example will show the limitation of the study of the ψα norm of
certain random variable. However in the case α 6= 2, different regime will appear in
the tail estimates of such sum. This will be of importance in several chapters of this
book.

1.2.1. The sub-Gaussian case.— We start by taking a look to sums of ψ2 random
variables. The following proposition can be seen as a generalization of the classical
Hoeffding inequality [Hoe63] since L∞ ⊂ Lψ2

.

Theorem 1.2.1. — Let X1, . . . , Xn be independent real valued random variable such
that for any i = 1, . . . , n, EXi = 0. Then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
ψ2

6 c

(
n∑
i=1

‖Xi‖2ψ2

)1/2

where c ≤ 28.

Before proving the theorem, we start with the following lemma concerning the
Laplace transform of a ψ2 random variable which is centered. The fact that EX = 0
is crucial to improve the assertion (4) of Theorem 1.1.5.

Lemma 1.2.2. — Let X be a ψ2 centered random variable. Then, for any λ > 0,
the Laplace transform of X satisfies

E exp(λX) 6 exp
(
6λ2 ‖X‖2ψ2

)
.
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Proof. — By homogeneity of the statement, we can assume that ‖X‖ψ2
= 1. By the

definition of the Lψ2 norm of X, we know that

E exp (X)
2 ≤ e

hence, by Markov inequality, we get that for every t > 0,

P
(
|X| > t

)
6 e exp(−t2).

Thus, for any integer k > 2,

E|X|k =

∫ +∞

0

k tk−1P (|X| > t) dt

≤ e
∫ +∞

0

k tk−1 exp(−t2)dt

= eΓ
(
k/2 + 1

)
,

where Γ is defined for any u > 1 by Γ(u) =
∫∞

0
tu−1 exp(−t)dt. Since EX = 0 and

for any positive integer k, Γ(k + 1) = kΓ(k) = k! we deduce that for every λ > 0,

E exp(λX) = 1 +
∑
k>2

λkEXk

k!
6 1 + e

∑
k>2

Γ(k/2 + 1)

Γ(k + 1)
λk.

By Cauchy-Schwartz, Γ(k/2 + 1) 6 Γ(k + 1)1/2 and we obtain

E exp(λX) 6 1 + e
∑
k>2

λk

Γ(k/2 + 1)
= 1 + e

∑
k>1

λ2k

Γ(k + 1)
+

λ2k+1

Γ(k + 3/2)
.

Since Γ is non-decreasing, we get

E exp(λX) 6 1 + e
∑
k>1

λ2k (1 + λ)

Γ(k + 1)
= 1 + e(1 + λ)(eλ

2

− 1).

Using the Taylor expansion, it is easy to see that 1+λ ≤ 1+eλ
2

and that e(e2λ2−1) ≤
3(e2λ2 − 1) ≤ e6λ2 − 1 and the lemma is proven.

Remark 1.2.3. — We could have used assertion (2) of Theorem 1.1.5 to get directly
an estimate of the k-th moment of the random variable X. This would have led to a
slightly worse constant than 6 in the estimate.

Proof of Theorem 1.2.1. — It is enough to get an upper bound of the Laplace trans-
form of the random variable

∣∣∑n
i=1Xi

∣∣. Let Z =
∑n
i=1Xi then by independence of

the Xi’s, we get from Lemma 1.2.2 that for every λ > 0,

E exp(λZ) =

n∏
i=1

E exp(λXi) 6 exp
(
6λ2

n∑
i=1

‖Xi‖2ψ2

)
.

For the same reason, E exp(−λZ) 6 exp
(
6λ2

∑n
i=1 ‖Xi‖2ψ2

)
. Thus,

E exp(λ|Z|) 6 2 exp
(
6λ2

n∑
i=1

‖Xi‖2ψ2

)
.
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We conclude that for any t ≥ 1/
(∑n

i=1 ‖Xi‖2ψ2

)1/2

,

E exp(λ|Z|) 6 exp
(
7λ2

n∑
i=1

‖Xi‖2ψ2

)
and using the implication ((4)⇒ (1)) in Theorem 1.1.3 with α = β = 2 (and following

the definition of the constants), we get that ‖Z‖ψ2
≤ c

∑n
i=1 ‖Xi‖2ψ2

with c ≤ 28.

Now, we take a particular look to Rademacher processes. Indeed, Rademacher
variables are the simplest example of bounded (hence ψ2) random variables. We
denote by ε1, . . . , εn independent random variables taking values ±1 with probability
1/2. Since L∞ ⊂ Lψ2 , for any (a1, . . . , an) ∈ Rn, the random variable aiεi is centered
and has ψ2 norm equal to |ai|. We apply Theorem 1.2.1 to deduce that∥∥∥∥∥

n∑
i=1

aiεi

∥∥∥∥∥
ψ2

≤ c|a|2 = c

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

.

Therefore we get from Theorem 1.1.3 that for any p ≥ 2,E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

≤

(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤ 2c
√
p

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

. (1.3)

This is the Khinchine’s inequality. It is not difficult to extend it to the case 0 < q ≤ 2
by using Hölder inequality: for any random variable Z, if 0 < q ≤ 2 and λ = q/(4−q)
then (

E|Z|2
)1/2 ≤ (E|Z|q)λ/q

(
E|Z|4

)(1−λ)/4
.

Let Z =
∑n
i=1 aiεi, we apply (1.3) to the case p = 4 to deduce that for any 0 < q ≤ 2,(

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
q)1/q

≤

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

≤ (4c)2(2−q)/q

(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
q)1/q

.

Since for any x ≥ 0, ex
2 − 1 ≥ x2, we also observe that

(e− 1)

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
ψ2

≥

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

.

However the precise knowledge of the ψ2 norm of the random variable
∑n
i=1 aiεi is

not enough to understand correctly the behavior of its Lp norm and consequently of
its tail estimate. Indeed, a more precise statement holds true.

Theorem 1.2.4. — Let p > 2, let a1, . . . , an be real numbers and let ε1, . . . , εn be
independent Rademacher variables. We have(

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤
∑
i6p

a∗i + 2c
√
p

∑
i>p

a∗2i

1/2

,
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where (a∗1, . . . , a
∗
n) is the non-increasing rearrangement of (|a1|, . . . , |an|). Moreover,

the estimate is sharp, up to a multiplicative factor.

Remark 1.2.5. — Even if it is the difficult part of the Theorem, we will not present
the proof of the lower bound. It is beyond the scope of this chapter.

Proof. — Since Rademacher random variables are bounded by 1, we also have the
trivial upper bound: (

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤
n∑
i=1

|ai|. (1.4)

By independence and by symmetry of the Rademacher we have(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

=

(
E

∣∣∣∣∣
n∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

.

Splitting the sum into two parts, we get that(
E

∣∣∣∣∣
n∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

≤

(
E

∣∣∣∣∣
p∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

+

E

∣∣∣∣∣∣
∑
i>p

a∗i εi

∣∣∣∣∣∣
p1/p

.

We conclude by applying (1.4) to the first term and (1.3) to the second one.

This provides a good example of one of the main drawback of this strategy. Indeed,
being a ψα random variable allows only one type of tail estimate. In the sense that,
if Z ∈ Lψα then the tail decay of Z behaves like exp(−Ktα) for t large enough, but
this result is sometimes too weak for a precise study of the Lp norm of Z.

1.2.2. Bernstein’s type inequalities, the case α = 1. — We start this section
with the well known Bernstein’s inequalities which hold for an empirical mean of
bounded random variables.

Theorem 1.2.6. — Let X1, . . . , Xn be n independent random variables and M be a
positive number such that for any i = 1, . . . , n, EXi = 0 and |Xi| 6M almost surely.
Set σ2 = n−1

∑n
i=1 EX2

i . For any t > 0, we have

P

(
1

n

n∑
i=1

Xi > t

)
6 exp

(
−nσ

2

M2
h

(
Mt

σ2

))
,

where h(u) = (1 + u) log(1 + u)− u for all u > 0.

Proof. — Let t > 0, by Markov inequality and by independence we have

P

(
1

n

n∑
i=1

Xi > t

)
6 inf
λ>0

exp(−λt)E exp

(
λ

n

n∑
i=1

Xi

)

= inf
λ>0

exp(−λt)
n∏
i=1

E exp

(
λXi

n

)
. (1.5)
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Since for any i = 1, . . . , n, EXi = 0 and |Xi| ≤M ,

E exp

(
λXi

n

)
= 1 +

∑
k>2

λkEXk
i

nkk!
≤ 1 + EX2

i

∑
k>2

λkMk−2

nkk!

= 1 +
EX2

i

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

)
.

Using the fact that 1 + u 6 exp(u) for all u ∈ R, we get that

n∏
i=1

E exp

(
λXi

n

)
≤ exp

(∑n
i=1 EX2

i

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

))
.

By definition of σ and by (1.5), we conclude that for any t > 0,

P

(
1

n

n∑
i=1

Xi > t

)
≤ inf
λ>0

exp

(
nσ2

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

)
− λt

)
.

The claim follows by choosing λ such that (1 + tM/σ2) = exp(λM/n).

Using Taylor expansion, it is not difficult to see that for every u > 0 we have h(u) >
u2/(2 + 2u/3). This proves that if u ≥ 1, h(u) ≥ 3u/8 and if u ≤ 1, h(u) ≥ 3u2/8.
Therefore the classical Bernstein’s inequality for bounded random variables is an
immediate corollary of this result.

Theorem 1.2.7. — Let X1, . . . , Xn be n independent random variables such that for
all i = 1, . . . , n, EXi = 0 and |Xi| 6M almost surely. Then, for every t > 0,

P

(
1

n

n∑
i=1

Xi > t

)
6 exp

(
−3n

8
min

(
t2

σ2
,
t

M

))
,

where σ2 =
1

n

n∑
i=1

EX2
i .

From Bernstein’s inequality, we can deduce that the tail behavior of a sum of centered,
bounded random variables has two regimes. There is a sub-exponential regime with
respect to M for large values of t (t > σ2/M) and a sub-Gaussian behavior with
respect to σ2 for small values of t (t 6 σ2/M). Moreover, this inequality is always
stronger than the tail estimate that we could deduce from Theorem 1.2.1 (which is
only sub-Gaussian with respect to M2).

Now, we turn to the important case of sum of sub-exponential centered random
variables.

Theorem 1.2.8. — Let X1, . . . , Xn be n independent centered ψ1 random variables.
Then, for every t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp

(
−c nmin

(
t2

σ2
1

,
t

M1

))
,
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where M1 = max
16i6n

‖Xi‖ψ1
, σ2

1 =
1

n

n∑
i=1

‖Xi‖2ψ1
and c is a number that can be taken

equal to (e− 1)/2e(2e− 1).

Proof. — Since for every x ≥ 0 and any positive natural integer k, ex ≥ xk/k!, we
get by definition of the ψ1 norm that for any integer k ≥ 1 and any i = 1, . . . , n,

E|Xi|k 6 ek! ‖Xi‖kψ1
.

Moreover EXi = 0 for any i = 1, . . . , n and using Taylor expansion of the exponential,
we deduce that for every λ > 0 such that λ ‖Xi‖ψ1

≤ λM1 < n,

E exp(
λ

n
Xi) 6 1 +

∑
k>2

λkE|Xi|k

nkk!
6 1 +

eλ2 ‖Xi‖2ψ1

n2
(

1− λ
n ‖Xi‖ψ1

) ≤ 1 +
eλ2 ‖Xi‖2ψ1

n2
(
1− λM1

n

) .
Let Z = n−1

∑n
i=1Xi. Since for any real number x, 1+x ≤ ex, we get by independence

of the Xi’s that for every λ > 0 such that λM1 < n

E exp(λZ) ≤ exp

(
eλ2

n2
(
1− λM1

n

) n∑
i=1

‖Xi‖2ψ1

)
= exp

(
eλ2σ2

1

n− λM1

)
.

We conclude by Markov inequality that for every t > 0,

P(Z ≥ t) ≤ inf
0<λ<n/M1

exp

(
−λ t+

eλ2σ2
1

n− λM1

)
.

We consider two cases. If t ≤ σ2
1/M1, we choose λ = nt/2eσ2

1 ≤ n/2eM1. A simple
computation gives that

P(Z ≥ t) ≤ exp

(
− e− 1

2e(2e− 1)

n t2

σ2
1

)
.

If t > σ2
1/M1, we choose λ = n/2eM1. This time, we get

P(Z ≥ t) ≤ exp

(
− e− 1

2e(2e− 1)

n t

M1

)
.

We can do the same argument for −Z and this concludes the proof of the announced
result.

1.2.3. The ψα case: α > 1. — In this part we will focus on the case α 6= 2 and
α > 1. Our goal is to explain the behavior of the tail estimate of a sum of independent
ψα centered random variables. As in Bernstein inequalities, we will see that they share
two different regimes depending on the level of deviation t.

Theorem 1.2.9. — Let α > 1 and β be such that α−1 +β−1 = 1. Given X1, . . . , Xn

be independent mean zero ψα real-valued random variables, set

A1 =

(
n∑
i=1

‖Xi‖2ψ1

)1/2

and Bα =

(
n∑
i=1

‖Xi‖βψα

)1/β

.
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Then, for every t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤


2 exp

(
−cα min

(
t2

A2
1

,
tα

Bαα

))
if α < 2,

2 exp

(
−cα max

(
t2

A2
1

,
tα

Bαα

))
if α > 2

where cα is a number depending only on α.

Remark 1.2.10. — We can stated the result with the same normalization as in
Bernstein inequalities. Let σ2

1 = 1
n

∑n
i=1 ‖Xi‖1ψ1

and Mβ
α = 1

n

∑n
i=1 ‖Xi‖βψα , then

we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤


2 exp

(
−cαnmin

(
t2

σ2
1

,
tα

Mα
α

))
if α < 2,

2 exp

(
−cαnmax

(
t2

σ2
1

,
tα

Mα
α

))
if α > 2.

Before proving the Theorem, we start by exhibiting a sub-Gaussian behavior of
the Laplace transform of any ψ1 centered random variable.

Lemma 1.2.11. — Given X a ψ1 mean-zero random variable, for every λ such that

0 ≤ λ 6
(

2 ‖X‖ψ1

)−1

we have

E exp (λX) 6 exp
(

4(e− 1)λ2 ‖X‖2ψ1

)
.

Proof. — Let X ′ be an independent copie of X and denote Y = X −X ′. Since X is
centered, by Jensen inequality,

E expλX = E exp(λ(X − EX ′)) 6 E expλ(X −X ′) = E expλY.

The random variable Y is symmetric thus, for every λ, E expλY = E coshλY and
using the Taylor expansion,

E expλY = 1 +
∑
k≥1

λ2k

(2k)!
EY 2k = 1 + λ2

∑
k≥1

λ2(k−1)

(2k)!
EY 2k.

By definition of Y , for every k ≥ 1, EY 2k ≤ 22kEX2k. Hence, for every 0 ≤ λ 6(
2 ‖X‖ψ1

)−1

, we get that

E expλY ≤ 1 + 4λ2‖X‖2ψ1

∑
k≥1

EX2k

(2k)!‖X‖2kψ1

≤ 1 + 4λ2‖X‖2ψ1

(
E exp

(
|X|
‖X‖ψ1

)
− 1

)
.

By definition of the ψ1 norm, we conclude that for every 0 ≤ λ 6
(

2 ‖X‖ψ1

)−1

E expλX ≤ 1 + 4(e− 1)λ2‖X‖2ψ1
≤ exp

(
4(e− 1)λ2 ‖X‖2ψ1

)
.
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Proof of Theorem 1.2.9. — We start with the case 1 < α < 2.
For every 1 = 1, . . . , n, Xi is a ψα random variable with α > 1. Then it is a ψ1

random variable (see Corollary 1.1.6) and from Lemma 1.2.11, we get that

∀ 0 ≤ λ ≤ 1/2 ‖Xi‖ψ1
, E expλXi ≤ exp

(
4(e− 1)λ2 ‖Xi‖2ψ1

)
.

Moreover, from Theorem 1.1.5, we get also that

∀λ ≥ 1/‖Xi‖ψα , E expλXi ≤ exp
(

2λ ‖Xi‖ψα
)β

.

Since 1 < α < 2 then β > 2 and it is easy to conclude that there is a number cβ ≥ 1
such that

∀λ > 0, E expλXi ≤ exp
(
cβ

(
λ2‖Xi‖2ψ1

+ λβ‖Xi‖βψα
))

. (1.6)

Indeed when ‖Xi‖ψα > 2‖Xi‖ψ1
, we just have to glue the two estimates. Otherwise,

we have ‖Xi‖ψα ≤ 2‖Xi‖ψ1
and for every λ ∈

(
1/2 ‖Xi‖ψ1

, 1/‖Xi‖ψα
)

, we get by

Hölder inequality,

E expλXi ≤
(
E exp

(
X

‖X‖ψα

))λ‖Xi‖ψα
≤ exp

(
2βλ‖X‖ψα

)
≤ exp

(
2βλ24‖Xi‖2ψ1

)
.

Let Z =
∑n
i=1Xi, we deduce from (1.6) that for every λ > 0,

E expλZ ≤ exp
(
cβ
(
A2

1λ
2 +Bβαλ

β
))

where cβ ≥ 1. From Markov inequality, we have

P(Z ≥ t) ≤ inf
λ>0

e−λtE expλZ ≤ inf
λ>0

(
cβ
(
A2

1λ
2 +Bβαλ

β
)
− λt

)
. (1.7)

If (t/A1)2 ≥ (t/Bα)α then we have t2−α ≥ A2
1/B

α
α and we choose λ = tα−1

4cβBαα
.

Therefore,

λt =
tα

4cβBαα
, Bβαλ

β =
tα

(4cβ)βBαα
≤ tα

(4cβ)2Bαα
, and

A2
1λ

2 =
tα

(4cβ)2Bαα

tα−2A2
1

Bαα
≤ tα

(4cβ)2Bαα
.

We conclude from (1.7) that

P(Z ≥ t) ≤ exp

(
− 1

4cβ

tα

Bαα

)
.

If (t/A1)2 ≤ (t/Bα)α then we have t2−α ≤ A2
1/B

α
α and since (2− α)β/α = (β − 2)

we also have tβ−2 ≤ Bβα/A
2(β−1)
1 . We choose λ = t

4cβA2
1

therefore,

λt =
t2

4cβA2
1

, A2
1λ

2 =
t2

(4cβ)2A2
1

and Bβαλ
β =

t2

(4cβ)βA2
1

tβ−2Bβα

A
2(β−1)
1

≤ t2

(4cβ)2A2
1

.

We conclude from (1.7) that

P(Z ≥ t) ≤ exp

(
− 1

4cβ

t2

A2
1

)
.



24 CHAPTER 1. EMPIRICAL METHODS AND HIGH DIMENSIONAL GEOMETRY

The proof is complete with cα = 1/4cβ .
In the case α > 2, we have 1 < β < 2 and the estimate (1.6) for the Laplace

transform of each random variable Xi has to be replaced by

∀λ > 0, E expλXi ≤ exp
(
cβλ

2‖Xi‖2ψ1

)
and E expλXi ≤ exp

(
cβλ

β‖Xi‖βψα
)
.

Indeed, when λ ‖X‖ψ1
≤ 1/2 then (λ ‖X‖ψ1

)2 ≤ (λ ‖X‖ψ1
)β and when λ ‖X‖ψα ≥ 1

then (λ ‖X‖ψα)β ≤ (λ ‖X‖ψα)2. Therefore both inequalities hold true.

We conclude that for Z =
∑n
i=1Xi, for every λ > 0,

E expλZ ≤ exp
(
cβ min

(
A2

1λ
2, Bβαλ

β
))
.

The rest is identical to the preceding proof.

1.3. A geometric application: the Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss lemma [JL84] is a result concerning low-distortion
embeddings of points from high-dimensional into low-dimensional Euclidean space.
The lemma states that a small set of points in a high-dimensional space can be
embedded into a space of much lower dimension in such a way that distances between
the points are nearly preserved. The map used for the embedding is a linear map and
can even be taken to be an orthogonal projection. We present here an approach using
random Gaussian matrices.

Let G1, . . . , Gk be k independent Gaussian vectors in Rn distributed according to
the normal law N (0, Id). Let A : Rn → Rk be the random operator defined for every
x ∈ Rn by

Ax =

 〈G1, x〉
...

〈Gk, x〉

 ∈ Rk. (1.8)

We will prove that with high probability, this Gaussian random matrix satisfies the
desired property in the Johnson-Lindenstrauss lemma.

Lemma 1.3.1. — There exists a numerical constant C such that, given 0 < ε < 1,
a set T of N distinct points in Rn and an integer k > k0 = C log(N)/ε2 then there
exists a linear operator A : Rn → Rk such that for every x, y ∈ T ,

√
1− ε |x− y|2 ≤ |A(x− y)|2 ≤

√
1 + ε |x− y|2.

Proof. — Let Γ be defined by (1.8). For any vector z ∈ Rn and every i = 1, . . . , k,
we have E〈Gi, z〉2 = |z|22. Therefore, for every x, y ∈ T ,∣∣∣∣Γ(x− y)√

k

∣∣∣∣2
2

− |x− y|22 =
1

k

k∑
i=1

〈Gi, x− y〉2 − E〈Gi, x− y〉2.

For every i = 1, . . . , k, we define the random variable Xi by Xi = 〈Gi, x − y〉2 −
E〈Gi, x − y〉2. It is a centered random variable. Since eu ≥ 1 + u, we know that
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E〈Gi, x− y〉2 ≤ (e− 1)
∥∥〈Gi, x− y〉2∥∥ψ1

. Hence by definition of the ψ2 norm,

‖Xi‖ψ1 ≤ 2(e− 1)
∥∥〈Gi, x− y〉2∥∥ψ1

= 2(e− 1) ‖〈Gi, x− y〉‖2ψ2
.

By definition of the Gaussian law, 〈Gi, x − y〉 is distributed like |x − y|2 g where
g is a standard real Gaussian variable. It is not difficult to check that with our
definition of the ψ2 norm, ‖g‖2ψ2

= 2(e−1)2/e(e−2). We will call c20 this number and

c21 = 2(e − 1)c20. We conclude that ‖〈Gi, x− y〉‖2ψ2
= c20 |x − y|22 and that ‖Xi‖ψ1

≤
c21 |x − y|22. We apply Theorem 1.2.8. In this case, M1 = σ1 = c21 |x− y|22 and we get
that for t = ε|x− y|22 with 0 < ε < 1,

P

(∣∣∣∣∣1k
k∑
i=1

〈Gi, x− y〉2 − E〈Gi, x− y〉2
∣∣∣∣∣ > ε|x− y|22

)
≤ 2 exp(−c′ k ε2)

since t ≤ |x−y|22 ≤ c21 |x−y|22 ≤ σ2
1/M1. The constant c′ is defined by c′ = c/c41 where

c comes from Theorem 1.2.8. Since the cardinality of the set {(x, y) : x ∈ T, y ∈ T}
is less than N2, we get by the union bound that

P

(
∃x, y ∈ T :

∣∣∣∣∣
∣∣∣∣Γ(x− y)√

k

∣∣∣∣2
2

− |x− y|22

∣∣∣∣∣ > ε|x− y|22

)
≤ N2 exp(−c′ k ε2)

and if k > k0 = log(N2)/c′ε2 then the probability of this event is strictly less than

one. This means that there exists a realization of the matrix Γ/
√
k that defines A

and that satisfies the contrary i.e.

∀x, y ∈ T,
√

1− ε |x− y|2 ≤ |A(x− y)|2 ≤
√

1 + ε |x− y|2.

Remark 1.3.2. — • The value of C is less than 1600.
• In fact, the proof uses only the ψ2 behavior of 〈Gi, x〉. We could replace the Gaussian
vectors by any sub-Gaussian (isotropic) vectors, like e.g. by random vectors with
independent Rademacher coordinates. In this case, the value of C is less than 170.

1.4. Complexity and covering numbers

The study of covering and packing numbers is a wide subject. We will only present
some basic estimates needed for the purpose of this book. In approximation theory,
in compressed sensing, in statistics, it is of importance to measure the complexity of
a set. An important notion is the entropy number which measures the compactness
of a set. Given U and V two sets of Rn, we define the covering number N(U, V ) to
be the minimum of translates of V needed to cover U . The formal definition is

N(U, V ) = inf

{
N : ∃x1, . . . , xN ∈ Rn, U ⊂

N⋃
i=1

(xi + V )

}
.

If moreover V is a symmetric convex set, the packing number M(U, V ) is the maximal
number of points in U that are 1-separated for the norm induced by the convex set
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V . Formally,

M(U, V ) = sup

{
N : ∃x1, . . . , xN ∈ U,∀i 6= j, xi − xj /∈ V

}
.

Since V is a symmetric convex set, we can define the norm associated to V : for every
x ∈ Rn

‖x‖V = inf{t > 0, x ∈ tV }.
Hence xi− xj /∈ V is equivalent to say that ‖xi− xj‖V > 1. For any positive number
ε, we will also use the notation

N(U, ε, ‖ · ‖V )

for N(U, εV ). Moreover, the family x1, . . . , xN is said to be an ε-net if it is such that

U ⊂
⋃N
i=1 (xi + εV ). Also if we define the polar of V by

V o = {y ∈ Rn : ∀x ∈ V, 〈x, y〉 ≤ 1}
then the dual of the vectorial normed space (Rn, ‖ · ‖V ) is isometric to (Rn, ‖ · ‖V o).

In the case V being a symmetric convex set, the notions of packing and covering
numbers are closely related.

Proposition 1.4.1. — If U and V are convex bodies then N(U, V ) ≤M(U, V ).
If U is a convex set and V is a symmetric convex set then M(U, V ) ≤ N(U, V/2).

Proof. — Let N = M(U, V ) be the maximal number of points x1, . . . , xN in U such
that for every i 6= j, xi−xj /∈ V . Let u ∈ U then {x1, . . . , xN , u} is not 1-separated in
V and this means that there exists i ∈ {1, . . . , N} such that u−xi ∈ V . Consequently

U ⊂
⋃N
i=1 (xi + V ) and N(U, V ) ≤M(U, V ).

Let x1, . . . , xM be a family of vectors of U that are 1-separated. Let z1, . . . , zN
be a family of vectors such that U ⊂

⋃N
i=1 (zi + V/2). Since for every i = 1, . . . ,M ,

xi ∈ U , we can define an application j : {1, . . . ,M} → {1, . . . , N} where j(i) is such
that xi ∈ zj(i) + V/2. If j(i1) = j(i2) then xi1 − xi2 ∈ V/2− V/2. By convexity and
symmetry of V , V/2 − V/2 = V hence xi1 − xi2 ∈ V . But the family x1, . . . , xM is
1-separated in V hence necessarily i1 = i2. This proves that the map j is injective
and this implies that M(U, V ) ≤ N(U, V/2).

Moreover, it is not difficult to check that for any U , V , W convex bodies N(U,W ) ≤
N(U, V )N(V,W ). We have the following simple and important volumetric estimate.

Lemma 1.4.2. — Given V a symmetric convex set in Rn, for every ε > 0,

N(V, εV ) ≤
(

1 +
2

ε

)n
.

Proof. — By Proposition 1.4.1, N(V, εV ) ≤ M(V, εV ). Let M = M(V, εV ) be the
maximal number of points x1, . . . , xM in V such that for every i 6= j, xi − xj /∈ εV .
Since V is a symmetric convex set, the sets xi + εV/2 are disjoint and

M⋃
i=1

(xi + εV/2) ⊂ V + εV/2 =
(

1 +
ε

2

)
V.
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By taking the volume, we get that

M
(ε

2

)n
≤
(

1 +
ε

2

)n
which proves the desired estimate.

Another important parameter that we will use to measure the size of a subset T
of Rn is `∗(T ), defined by

`∗(T ) = E sup
t∈T
〈G, t〉

where G is a Gaussian vector in Rn distributed according to the normal law N (0, Id).
By definition, `∗(T ) = `∗(conv T ) where conv T denotes the convex hull of T .

We will present some classical tools to estimate the covering numbers of the unit
ball of `n1 by parallelepipeds and some classical estimates relating covering numbers
of T by a multiple of the Euclidean ball and `∗(T ) or `∗(T

o).

1.4.1. The empirical method. — We will introduce this method through a con-
crete example. Let d be a positive integer and Φ be an d× d matrix. We assume that
the entries of Φ are such that for all i, j ∈ {1, . . . , d},

|Φij | 6
K√
d

(1.9)

where K > 0 is an absolute constant.
We denote by Φ1, . . . ,Φd the row vectors of Φ and we define for all p ∈ {1, . . . , d}

the semi-norm ‖·‖∞,p for all x ∈ Rd by

‖x‖∞,p = max
16j6p

| 〈Φj , x〉 |.

Its unit ball is denoted by B∞,p. If E = span{Φ1, . . . ,Φp} and PE is the orthogonal
projection on E then we have B∞,p = PEB∞,p + E⊥. Moreover, PEB∞,p is a paral-
lelepiped in E. In the next theorem, we obtain an upper bound of the logarithm of
the covering numbers of the unit ball of `d1, denoted by Bd1 , by a multiple of B∞,p.
Observe that from the hypothesis (1.9) on the entries of the matrix Φ, we get that

for any x ∈ Bd1 and any j = 1, . . . , p, |〈Φj , x〉| ≤ |Φj |∞|x|1 ≤ K/
√
d. Therefore

Bd1 ⊂
K√
d
B∞,p (1.10)

and for any ε ≥ K/
√
d, N(Bd1 , εB∞,p) = 1.

Theorem 1.4.3. — With the preceding notations, we have for any 0 < t < 1,

logN

(
Bd1 ,

tK√
d
B∞,p

)
6 min

{
c0

log(p) log(2d+ 1)

t2
, p log

(
1 +

2

t

)}
where c0 is an absolute constant.

The first estimate is proven using an empirical method, while the second one is based
on the volumetric estimate.
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Proof. — Let x be in Bd1 and define the random variable Z by

P
(
Z = Sign(xi)ei

)
= |xi| for all i = 1, . . . , d and P(Z = 0) = 1− |x|1

where (e1, . . . , ed) is the canonical basis of Rd. Observe that we have EZ = x.
We use a well known symmetrization argument (see Chapter 5 section 5.2.1 for

more details). Take m to be chosen later and Z1, . . . , Zm, Z
′
1, . . . , Z

′
m be i.i.d. copies

of Z. We have by Jensen inequality

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

=

∥∥∥∥∥ 1

m

m∑
i=1

E′Z ′i − Zi

∥∥∥∥∥
∞,p

≤ EE′
∥∥∥∥∥ 1

m

m∑
i=1

Z ′i − Zi

∥∥∥∥∥
∞,p

.

The random variable Z ′i−Zi is symmetric hence it has the same law than εi(Z
′
i−Zi)

where ε1, . . . , εm are i.i.d. Rademacher random variables. Therefore, by the triangle
inequality

EE′
∥∥∥∥∥ 1

m

m∑
i=1

Z ′i − Zi

∥∥∥∥∥
∞,p

=
1

m
EE′Eε

∥∥∥∥∥
m∑
i=1

εi(Z
′
i − Zi)

∥∥∥∥∥
∞,p

≤ 2

m
EEε

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
∞,p

.

We conclude that

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

≤ 2

m
EEε

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
∞,p

=
2

m
EEε max

1≤j≤p

∣∣∣∣∣
m∑
i=1

εi〈Zi,Φj〉

∣∣∣∣∣ . (1.11)

By definition of Z and by (1.9), we know that |〈Zi,Φj〉| ≤ K/
√
d. Let aij be a

sequence of real number such that |aij | ≤ K/
√
d. For any j, let Xj be the random

variable Xj =
∑m
i=1 aijεi. From Theorem 1.2.1, we deduce that

∀j = 1, . . . , p, ‖Xj‖ψ2
≤ c

(
m∑
i=1

a2
ij

)1/2

≤ cK
√
m√
d
.

Therefore, by Proposition 1.1.3 (and the remark after it), we get

E max
1≤j≤p

|Xj | ≤ c
√

(1 + log p)
K
√
m√
d
.

From (1.11) and the preceding argument, we conclude that

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

≤
2 cK

√
(1 + log p)√
md

Let m be the integer such that

4c2(1 + log p)

t2
≤ m ≤ 4c2(1 + log p)

t2
+ 1
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For this choice of m we have

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

6
tK√
d
.

In particular, there exists ω ∈ Ω such that∥∥∥∥∥x− 1

m

m∑
i=1

Zi(ω)

∥∥∥∥∥
∞,p

6
tK√
d

and so the set { 1

m

m∑
i=1

zi : z1, . . . , zm ∈ {±e1, . . . ,±ed} ∪ {0}
}

is a tK/
√
d-net of Bd1 with respect to ‖·‖∞,p. Since its cardinality is less than (2d+1)m,

we get the first estimate:

logN

(
Bd1 ,

tK√
d
B∞,p

)
6
c0(1 + log p) log(2d+ 1)

t2

where c0 is an absolute constant.
To prove the second estimate, we recall by (1.10) that Bd1 ⊂ K/

√
dB∞,p. Hence

N

(
Bd1 ,

tK√
d
B∞,p

)
≤ N

(
K√
d
B∞,p,

tK√
d
B∞,p

)
= N (B∞,p, tB∞,p) .

Moreover, we have already observed that B∞,p = PEB∞,p + E⊥ which means that

N (B∞,p, tB∞,p) = N(V, tV )

where V is the symmetric convex set PEB∞,p. Since dimE ≤ p, we apply Lemma
1.4.2 to conclude that

N

(
Bd1 ,

tK√
d
B∞,p

)
≤
(

1 +
2

t

)p
.

1.4.2. Sudakov’s inequality and dual Sudakov’s inequality. — Classical tools
for the computation of the covering numbers of a set by Euclidean balls or in a
dual situation covering numbers of Euclidean ball by a symmetric convex set are
Sudakov and dual Sudakov inequalities. They relate these covering numbers with the
complexity `∗ of the sets.

Theorem 1.4.4. — Let T be a subset of RN and V be a symmetric convex set in
RN . Then, the following inequalities hold:

sup
ε>0

ε
√

logN(T, εBN2 ) 6 c `∗(T ) (1.12)

and

sup
ε>0

ε
√

logN(BN2 , εV ) 6 c `∗(V
o) (1.13)
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where for a normal Gaussian vector G ∈ RN , `∗(T ) = E supt∈T 〈G, t〉 and `∗(V
o) =

E supt∈V o〈G, t〉 = E‖G‖V .

The proof of the Sudakov inequality (1.12) is based on comparison properties be-
tween Gaussian processes. We recall the Slepian comparison lemma without proving
it.

Lemma 1.4.5. — Let X1, . . . , XM and Y1, . . . , YM be Gaussian random variables
such that for all i, j = 1, . . . ,M

E|Yi − Yj |2 ≤ E|Xi −Xj |2

then

E max
1≤k≤M

Yk ≤ 2E max
1≤k≤M

Xk.

Proof of Theorem 1.4.4. — We start by proving (1.12). Let x1, . . . , xM be M points
of T that are ε-separated with respect to the Euclidean norm | · |2 and define for every
i = 1, . . . ,M , the Gaussian variables Xi = 〈xi, G〉 where G is a standard Gaussian
vector in RN . We have

E|Xi −Xj |2 = |xi − xj |22 ≥ ε2 for all i 6= j.

Let g1, . . . , gM be M standard independent Gaussian random variables and for every
i = 1, . . . ,M let Yi be defined by Yi = ε√

2
gi. We have for all i 6= j

E|Yi − Yj |2 = ε2

and we conclude from Lemma 1.4.5 that
ε√
2
E max

1≤k≤M
gk ≤ 2E max

1≤k≤M
〈xk, G〉 ≤ 2`(T ).

Moreover there exists a constant c > 0 such that for every positive integer M

E max
1≤k≤M

gk ≥
√

logM
/
c (1.14)

and this proves that ε
√

logM ≤ 2c
√

2`(T ). By Proposition 1.4.1, the proof of inequal-
ity (1.12) is complete. The lower bound (1.14) is a classical exercise about Gaussian
random variables. First, we observe that Emax(g1, g2) is computable, it is equal to
1/
√
π. Hence we can assume that M is large enough (say greater than 104). In this

case, we observe that

2E max
1≤k≤M

gk ≥ E max
1≤k≤M

|gk| − E|g1|.

Indeed,

E max
1≤k≤M

gk = E max
1≤k≤M

(gk − g1) = E max
1≤k≤M

max((gk − g1), 0)

and by symmetry of the gi’s,

E max
1≤k≤M

|gk − g1| ≤ E max
1≤k≤M

max((gk − g1), 0) + E max
1≤k≤M

max((g1 − gk), 0)

= 2E max
1≤k≤M

(gk − g1) = 2E max
1≤k≤M

gk.
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But, by independence of the gi’s

E max
1≤k≤M

|gk| =
∫ +∞

0

P
(

max
1≤k≤M

|gk| > t

)
dt =

∫ +∞

0

(
1− P

(
max

1≤k≤M
|gk| ≤ t

))
dt

=

∫ +∞

0

1−

(
1−

√
2

π

∫ +∞

t

e−u
2/2du

)M dt

and it is easy to see that for every t > 0,∫ +∞

t

e−u
2/2du ≥ e−(t+1)2/2.

Let t0 + 1 =
√

2 logM then

E max
1≤k≤M

|gk| ≥
∫ t0

0

1−

(
1−

√
2

π

∫ +∞

t

e−u
2/2du

)M dt

≥ t0

1−

(
1−

√
2

M
√
π

)M ≥ t0(1− e−
√

2/π)

which concludes the proof of (1.14).
We will now prove the dual Sudakov inequality (1.13). The argument is very

similar to the volumetric argument introduced in Lemma 1.4.2, replacing the Lebesgue
measure by the Gaussian measure. Let r > 0 to be chosen later. Observe that
N(BN2 , εV ) = N(rBN2 , rεV ) and let x1, . . . , xM be M points in rBN2 that are rε
separated for the norm induced by the symmetric convex set V . By Proposition
1.4.1, it is enough to prove that

ε
√

logM ≤ c `∗(V o).

The balls centered at the points xi and of radius rε/2 are disjoints and by taking the
Gaussian measure of the union of these sets, we get that

γN

(
M⋃
i=1

(xi + rε/2V )

)
=

M∑
i=1

∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
≤ 1.

However, by the change of variable z − xi = ui, we have∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
= e−|xi|

2
2/2

∫
‖ui‖V ≤rε/2

e−|ui|
2
2/2e−〈ui,xi〉

dui
(2π)N/2

and from Jensen inequality and the fact that V has barycenter at the origin,∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
≥ e−|xi|

2
2/2 γN

(rε
2
V
)
.

Since xi ∈ rBN2 , we have proved that

M e−r
2/2 γN

(rε
2
V
)
≤ 1.
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To conclude, we choose r such that rε/2 = 2`∗(V
o). Hence by Markov inequality,

γN
(
rε
2 V

)
≥ 1/2 and we have proved that M ≤ 2er

2/2 which means that for a constant
c,

ε
√

logM ≤ c `∗(V o).

1.4.3. The metric entropy of the Schatten balls. — To finish this chapter,
we show how to apply Sudakov and dual Sudakov inequalities to compute the metric
entropy of Schatten balls with respect to Schatten norms. We denote by Bm,np the
unit ball of the Banach spaces of matrices inMm,n endowed with the Schatten norm
‖·‖Sp defined for any A ∈Mm,n by

‖A‖Sp =
(

tr(A∗A)p/2
)1/p

.

It is also the `p-norm of the singular values of A and we refer to Chapter 4 for more
informations about the singular values of a matrix.

Proposition 1.4.6. — For every m ≥ n > 1, p, q ∈ [1,+∞] and ε > 0,

ε
√

logN(Bm,np , εBm,n2 ) 6 c1
√
m n(1−1/p) (1.15)

and

ε
√

logN(Bm,n2 , εBm,nq ) 6 c2
√
m n1/q (1.16)

where c1 and c2 are numerical constants. Moreover, for n ≥ m ≥ 1 the same result
holds by exchanging m and n.

Proof. — We start by proving a rough upper bound of the operator norm of a Gaus-
sian random matrix Γ ∈ Mm,n i.e. a matrix with independent standard Gaussian
entries:

E ‖Γ‖S∞ ≤ 2
√

2(
√
n+
√
m). (1.17)

Let Xu,v be the Gaussian process defined for any u ∈ Bm2 , v ∈ Bn2 by

Xu,v = 〈Γv, u〉.
It is defined such that

E ‖Γ‖S∞ = E sup
u∈Bm2 ,v∈Bn2

Xu,v.

We have for any u, u′ ∈ Bm2 , v, v′ ∈ Bn2
E|Xu,v −Xu′,v′ |2 = E|〈Γv, u− u′〉+ 〈Γ(v − v′), u′〉|2

≤ 2(E|〈Γv, u− u′〉|2 + E〈Γ(v − v′), u′〉|2) ≤ 2(|u− u′|2 + |v − v′|2).

Let Yu,v be the Gaussian process defined for any u ∈ Bm2 , v ∈ Bn2 by

Yu,v =
√

2 (〈G1, u〉+ 〈G2, v〉)
where G1 is a random standard Gaussian vector in Rm and G2 is a random standard
Gaussian vector in Rn independent with G1. Then for any u, u′ ∈ Bm2 , v, v′ ∈ Bn2

E|Yu,v − Yu′,v′ |2 = 2(|u− u′|2 + |v − v′|2) ≥ E|Xu,v −Xu′,v′ |2
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and by Lemma 1.4.5, we deduce that

E sup
u∈Bm2 ,v∈Bn2

Xu,v ≤ 2E sup
u∈Bm2 ,v∈Bn2

Yu,v.

Since
E sup
u∈Bm2 ,v∈Bn2

Yu,v =
√

2(E|G1|2 + E|G2|) ≤
√

2(
√
m+

√
n)

we conclude that (1.17) holds true.
We first prove (1.15) in the case m ≥ n ≥ 1. Using Sudakov inequality (1.12), we

have for all ε > 0,

ε
√

logN(Bm,np , εBm,n2 ) 6 c`∗(B
m,n
p ).

However
`∗(B

m,n
p ) = E sup

A∈Bm,np

〈Γ, A〉

where 〈Γ, A〉 = Tr(ΓA∗). If p′ is such that 1/p+ 1/p′ = 1 then we have by the trace
duality

〈Γ, A〉 ≤ ‖Γ‖Sp′ ‖A‖Sp 6 n1/p′ ‖Γ‖S∞ ‖A‖Sp .
By taking the supremum over A ∈ Bm,np , the expectation and using (1.17), we deduce
that

`∗(B
m,n
p ) ≤ n1/p′E ‖Γ‖S∞ ≤ c

√
m n1/p′

which ends the proof of (1.15)
We prove (1.16) in the case m ≥ n ≥ 1. Using the dual Sudakov inequality (1.13)

and (1.17) we get that for any q ∈ [1,+∞]:

ε
√

logN(Bm,n2 , εBm,nq ) 6 cE ‖Γ‖Sq 6 c n1/qE ‖Γ‖S∞ 6 c′n1/q
√
m.

The proof of the case n ≥ m is completely similar.

1.5. Notes and comments

We focused in this chapter on the study of some very particular concentration
inequalities. Of course, there exist different and powerful other type of concentration
inequalities. Several books and surveys are devoted to this subject and we refer for
example to [LT91, vdVW96, Led01, BBL04, Mas07] for the interested reader.
The classical references for the study of Orlicz spaces are [KR61, LT77, LT79,
RR91, RR02].

Tail and moment estimates for Rademacher averages are well understood. Theorem
1.2.4 is due to Montgomery-Smith [MS90] and several extensions to the vector valued
case are known [DMS93, MS95]. The case of sum of independent random variables
with logarithmically concave tails has been studied by Gluskin and Kwapien [GK95].
For the proof of Theorem 1.2.9, we could have followed a classical probabilistic trick
which reduces the proof of the result to the case of Weibull random variables. These
variables are defined such that the tails are equals to e−t

α

. Hence, the tails are
logarithmically concave and the result is a corollary of the results of Gluskin and
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Kwapien [GK95]. We have presented here an approach which follows the line of
[Tal94]. Even if the results of Talagrand [Tal94] are only written for random variables
with densities cαe

−tα , the proofs work in the general context of ψα random variables.
Originally, Lemma 1.3.1 is proved in [JL84] and the operator is chosen at random

in the set of orthogonal projections onto a random k-dimensional subspace of `2,
uniformly according to the Haar measure on the Grassman manifold Gn,k.

The classical references for the study of entropy numbers are [Pie72, Pie80,
Pis89, CS90]. The method of proof of Theorem 1.4.3 has been introduced by Mau-
rey, in particular for studying entropy numbers of operators from `d1 into a Banach
space of type p. This was published in [Pis81]. The method was extended and devel-
oped by Carl in [Car85]. Sudakov inequality 1.12 is due to Sudakov [Sud71] while
the dual Sudakov inequality 1.13 is due to Pajor and Tomczak-Jaegermann [PTJ86].
The proof that we presented follows the lines of Ledoux-Talagrand [LT91]. We have
made the choice to speak only about Slepian inequality, Lemma 1.4.5. The result of
Slepian [Sle62] is more general, it tells about distribution inequality. In the context
of Lemma 1.4.5, Fernique [Fer74] proved that the constant 2 can be replaced by 1.
Gordon [Gor85, Gor87] extended these results and he proved results not only for
the max but also for the min-max of some Gaussian processes. We would like to note
that inequality (1.17) is due to Chevet [Che78]. It is known that the constant 2

√
2

can be replaced by 1 and this is a result of Gordon [Gor85]. About the covering
numbers of the Schatten balls, Proposition 1.4.6 is due to Pajor [Paj99] and more
general estimates are proved in that paper.



CHAPTER 2

COMPRESSED SENSING AND GELFAND WIDTHS

2.1. Short introduction to compressed sensing

Compressed Sensing is a quite new framework that enables to get approximate and
exact reconstruction of sparse signals from incomplete measurements. The ideas and
principles are strongly related to other problems coming from different fields such as
approximation theory, in particular to the study of Gelfand and Kolmogorov width of
classical Banach spaces (diameter of sections). Since the seventies an important work
was done in that direction, in Approximation Theory and in Asymptotic Geometric
Analysis (called Geometry of Banach spaces at that time).

It is not in our aim to give here an introduction to compressed sensing, there
are many good references for that, but mainly to emphasize some interactions with
other fields of mathematics, in particular with asymptotic geometric analysis, random
matrices and empirical processes. The possibility of reconstructing any vector from
a given subset is highly related to the complexity of this subset and in the field of
Geometry of Banach spaces, many tools were developed to analyze various concepts
of complexity.

In this introduction to compressive sensing, for simplicity, we will consider the real
case, real vectors and real matrices. Let 1 ≤ n ≤ N be integers. We are given a
rectangular n × N real matrix A. One should think of N � n; we have in mind to
compress some vectors from RN for large N into vectors in Rn. Let X1, . . . , XN ∈ Rn
be the columns of A and let Y1, .., Yn ∈ RN its rows. One has

A =
(
X1 · · · · · · · · ·XN

)
=


Y1

Y2

...
Yn

 .

We are also given a subset T ⊂ RN of vectors. Now let x ∈ T be an unknown
vector. The data one is given are n linear measurements of x (again, think of N � n)

〈Y1, x〉, . . . , 〈Yn, x〉
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or equivalently

y = Ax.

We wish to recover x or more precisely to reconstruct x, exactly or approximately,
within a given accuracy and in an efficient way (fast algorithm).

2.2. The exact reconstruction problem

Let us first discuss the exact reconstruction question. Let x ∈ T be unknown and
recall that the given data is y = Ax. When N � n, the problem is ill-posed because
the system At = y, t ∈ RN is highly under-determined. Thus if we want to recover
x we need some more information on its nature. Moreover if we want to recover any
x from T , one should have some a priori information on the set T , on its complexity
whatever it means at this stage. We shall see various parameters of complexity in
these notes. The a priori hypothesis that we investigate now is sparsity.

2.2.1. Sparsity. — We first introduce some notation. We equip Rn and RN with
the canonical scalar product 〈 ·, ·〉 and Euclidean norm | · |2. We use the notation | · |
to denote the cardinality of a set. By BN2 we denote the unit Euclidean ball and by
Sn−1 its unit sphere.

Definition 2.2.1. — Let 0 ≤ m ≤ N be integers. For any x = (x1, . . . , xN ) ∈ RN ,
denote by suppx = {k : 1 ≤ k ≤ N, xk 6= 0} the subset of non-zero coordinate of x.
The vector x is said m-sparse if |suppx| ≤ m. The subset of m-sparse vectors of RN
is denoted by Σm = Σm(RN ) and its unit sphere by

S2(Σm) = {x ∈ RN : |x|2 = 1 and |suppx| ≤ m}.

Similarly let

B2(Σm) = {x ∈ RN : |x|2 ≤ 1 and |suppx| ≤ m}.

Note that Σm is not a linear subspace and that B2(Σm) is not convex.

Problem 2.2.2. — The exact reconstruction problem. We wish to reconstruct
exactly any m-sparse vector x ∈ Σm from the given data y = Ax. Thus we are looking
for a decoder ∆ such that

∀x ∈ Σm, ∆(A,Ax) = x.

Claim 2.2.3. — Linear algebra tells us that such a decoder ∆ exists iff

kerA ∩ Σ2m = {0}.

Example 2.2.4. — Let m ≥ 1, N ≥ 2m and 0 < a1 < · · · < aN = 1. Let n = 2m
and build the Vandermonde matrix A = (ai−1

j ), 1 ≤ i ≤ n, 1 ≤ j ≤ N . Clearly all the
2m × 2m minors of A are non singular Vandermonde matrices. Unfortunately it is
known that such matrices are ill-conditioned. Therefore reconstructing x ∈ Σm from
y = Ax is numerically unstable.
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2.2.2. Metric entropy. — As already said, there are many different approaches
to seize and measure complexity of a metric space. The most simple is probably to
estimate a degree of compactness via the so-called covering and packing numbers.

Since all the metric spaces we will consider here are subsets of normed spaces, we
restrict to this setting.

Definition 2.2.5. — Let B and C be subsets of a vector space and let ε > 0. An
ε-net of B by translates of εC is a subset Λ of B such that for every x ∈ B, there
exit y ∈ Λ and z ∈ C such that x = y + εz. In other words, one has

B ⊂ Λ + εC =
⋃
x∈Λ

(x+ εC) ,

where Λ + εC := {a+ εc : a ∈ Λ, c ∈ C} is the Minkowski sum of the sets Λ and εC.
The covering number of B by εC is the smallest cardinality of such an ε-net and is
denoted by N(B, εC). The function ε→ logN(B, εC) is called the metric entropy of
B by C.

Remark 2.2.6. — If (B, d) is a metric space, an ε-net of (B, d) is a covering of B
by balls of radius ε for the metric d. The covering number is the smallest cardinality
of an ε-net and is denoted by N(B, d, ε). In our setting, the metric d will be defined
by a norm with unit ball say C. Then x+ εC is a ball of radius ε centered at x.

Let us start by an easy but important fact. Let C ⊂ RN be a symmetric convex
body, that is a symmetric convex compact subset of RN , with non-empty interior
(that is, the unit ball of a norm on RN ). Consider a subset Λ ⊂ C of maximal
cardinality such that the points of Λ are εC-apart in the sense that:

∀x 6= y, x, y ∈ Λ, one has x− y 6∈ εC

(recall that C = −C). It is clear that Λ is an ε-net of C by εC. Moreover the balls

(x+ (ε/2)C)x∈Λ

of radius (ε/2) centered at the points of Λ are pairwise disjoint and their union is a
subset of (1 + (ε/2))C (this is where convexity is involved). Taking volume of this

union, we get that N(C, εC) ≤ (1 + (2/ε))
N
. Let us conclude:

Proposition 2.2.7. — Let C ⊂ RN be a symmetric convex body (the unit ball of a
norm). There exists an ε-net Λ of C by translates of εC such that |Λ| ≤ (1 + 2/ε)N .
Moreover Λ ⊂ C ⊂ (1− ε)−1 conv (Λ).

Let us prove the moreover part of the Proposition by successive approximation.

Proof. — Since Λ is an ε-net of C by translates of εC, every z ∈ C can be written
as z = x0 + εz1, where x0 ∈ Λ and z1 ∈ C. Iterating, it follows that z = x0 + εx1 +
ε2x2 + . . ., with xi ∈ Λ, which implies by convexity that C ⊂ (1− ε)−1conv (Λ).

This gives the first claim:
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Claim 2.2.8. — Covering the unit Euclidean sphere by Euclidean balls of radius ε.
One has

∀ε ∈ (0, 1), N(SN−1, εBN2 ) ≤
(

3

ε

)N
.

Now, since S2(Σm) is the union of spheres of dimension m,

N(S2(Σm), εBN2 ) ≤
(
N

m

)
N(Sm−1, εBm2 ).

Using
(
N
m

)
≤ (eN/m)m, we get:

Claim 2.2.9. — Covering the set of sparse unit vectors by Euclidean balls of radius
ε: let 1 ≤ m ≤ N and ε ∈ (0, 1), then

N(S2(Σm), εBN2 ) ≤
(

3eN

mε

)m
.

2.2.3. The `1-minimization method. — Coming back to the exact reconstruc-
tion problem, if we want to solve the system

At = y

where y = Ax is given and x is m-sparse, it is tempting to test all possible support
of the unknown vector x. This is the so-called `0-method. But there are

(
N
m

)
possible

supports, too many to answer the request of a fast algorithm.
A very clever approach was proposed by D. Donoho in [Don06] and E. Candes, J.

Romberg and T. Tao in [CRT06]. This is the convex relaxation of the `0-method.
Let x be the unknown vector. The given data is y = Ax. For t = (ti) ∈ RN denote
by

|t|1 =

N∑
i=1

|ti|

its `1 norm. The `1-minimization method (also called basis-pursuit) is the following
program:

(P ) min
t∈RN

|t|1 subject to At = y.

This program may be recast as a linear programming by

min

N∑
i=1

si, subject to s ≥ 0,−s ≤ t ≤ s,At = y.

Definition 2.2.10. — The exact reconstruction problem by `1-minimization.
We say that the matrix A has the exact reconstruction property of order m by `1-
minimization if for every x ∈ Σm the problem

(P ) min
t∈RN

|t|1 subject to At = Ax has a unique solution equal to x. (2.1)
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Note that the above property is not specific to the matrix A but rather a property
of its null space. In order to emphasize this point, let us introduce some notation.

For any subset I ⊂ [N ] where [N ] = {1, . . . , N}, let Ic be its complement and for
any x ∈ RN , let us write xI for the vector in RN with the same coordinates as x for
indices in I and 0 for indices in Ic. We are ready for a criterium on the null space.

Proposition 2.2.11. — The null space property. The following are equivalent

i) For any x ∈ Σm, the problem

(P ) min
t∈RN

|t|1 subject to At = Ax

has a unique solution equal to x (that is A has the exact reconstruction property
of order m by `1-minimization)

ii)

∀h ∈ kerA, h 6= 0,∀I ⊂ [N ], |I| ≤ m, |hI |1 < |hIc |1. (2.2)

Proof. — On one side, let h ∈ kerA, h 6= 0 and I ⊂ [N ], |I| ≤ m. Put x = −hI . Then
x ∈ Σm and (2.1) implies that |x+ h|1 > |x|1, that is |hIc |1 > |hI |1.

For the reverse implication, suppose that

∀h ∈ kerA, h 6= 0,∀I ⊂ [N ], |I| ≤ m, |hI |1 < |hIc |1.

Let x ∈ Σm and let I = supp(x). Then |I| ≤ m and

|x+ h|1 = |xI + hI |1 + |hIc |1 > |xI + hI |1 + |hI |1 ≥ |x|1.

Definition 2.2.12. — We say that A satisfies the null space property of order m if
(2.2) is satisfied.

This property has a nice geometric interpretation. To introduce it, we need some
more notation. Let (ei)1≤i≤N be the canonical basis of RN . Let `N1 be the N -
dimensional space RN equipped with the `1-norm and BN1 be its unit ball. Denote
also

S1(Σm) = {x ∈ Σm : |x|1 = 1} and B1(Σm) = {x ∈ Σm : |x|1 ≤ 1}.

Let 1 ≤ m ≤ N . Any (m − 1)-dimensional face of BN1 is of the form conv({εiei :
i ∈ I}) with I ⊂ [N ], |I| = m and (εi) ∈ {−1, 1}I , where we denoted by conv( · )
the convex hull. From the geometric point of view, S1(Σm) is the union of all the
(m− 1)-dimensional faces of BN1 .

Let A be an n × N matrix and X1, . . . , XN ∈ Rn be its columns. A polytope
P ⊂ Rn is said centrally symmetric if P = −P . Observe that

A(BN1 ) = conv(±X1, . . . ,±XN ).

Proposition 2.2.11 can be reformulated in the following geometric language:
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Proposition 2.2.13. — The geometry of faces of A(BN1 ). Let 1 ≤ m ≤ n ≤ N .
Let A be an n×N matrix with columns X1, . . . , XN ∈ Rn. Then A satisfies the null
space property (2.2) iff one has

∀I ⊂ [N ], 1 ≤ |I| ≤ m,∀(εi) ∈ {−1, 1}I ,
conv({εiXi : i ∈ I}) ∩ conv({±Xj : j /∈ I}) = ∅ (2.3)

Taking advantage of the symmetries, property (2.3) is equivalent to the following:

∀I ⊂ [N ], 1 ≤ |I| ≤ m,∀(εi) ∈ {−1, 1}I ,
Aff({εiXi : i ∈ I}) ∩ conv({±Xj : j /∈ I}) = ∅ (2.4)

where Aff({εiXi : i ∈ I}) denotes the affine subspace generated by {εiXi : i ∈ I}.
The proof of this equivalence is left as exercise.

Definition 2.2.14. — Let 1 ≤ m ≤ n. A centrally symmetric polytope P ⊂ Rn
is said to be symmetric m-neighborly if every set of m of its vertices, containing no
antipodal pair, is the set of all vertices of some face of P .

Note that any centrally symmetric polytope is symmetric 1-neighborly. This
property becomes non-trivial when m ≥ 2. In that case, observe that A(BN1 ) =
conv(±X1, . . . ,±XN ) has {±X1, . . . ,±XN} as vertices AND is symmetric m-
neighborly iff A maps every (m − 1)-dimensional face of BN1 onto a (m − 1)
dimensional face of conv(±X1, . . . ,±XN ). From (2.3) and (2.4), we deduce the
following criterium.

Proposition 2.2.15. — [Don05] Let 1 ≤ m ≤ N . The matrix A has the null space
property of order m iff its columns ±X1, . . . ,±XN are the 2N vertices of A(BN1 ) and
A(BN1 ) is m-neighborly.

Consider the quotient map

Q : `N1 −→ `N1 / kerA

If A has maximum rank n, then `N1 / kerA is n-dimensional. Denote by ‖ . ‖ the
quotient norm on `N1 / kerA defined by

‖Qx‖ = min
h∈kerA

|x+ h|1.

Property (2.1) implies that Q is norm preserving on Σm. Since Σbm/2c−Σbm/2c ⊂ Σm,
Q is an isometry on Σbm/2c equipped with the `1 metric. In other words,

∀x, y ∈ Σbm/2c ‖Qx−Qy‖ = |x− y|1.
As it is classical in approximation theory, we can take benefit of such an isometric
embedding to bound the complexity by comparing the metric entropy of the source
space (Σbm/2c, `

N
1 ) with the target space, which lives in a much lower dimension.

The following lemma is a well known fact on packing.

Lemma 2.2.16. — There exists a family Λ of subset of [N ] with cardinality m such

that for every I, J ∈ Λ, I 6= J, |I ∩ J | ≤ bm/2c and |Λ| ≥
⌊

N
32em

⌋bm/2c
.
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Proof. — We use successive enumeration of the subsets of cardinality m and exclusion
of wrong items. Without loss of generality, assume that m/2 is an integer. Pick any
subset I1 of {1, ..., N} of cardinality m and throw away all subsets J of {1, ..., N}
of size m such that the Hamming distance |I1 M J | ≤ m/2, where ∆ stands for the
symmetrical difference. There are at most

m∑
k=m/2

(
m

k

)(
N −m
m− k

)
such subsets and since m ≤ N/2 we have

m∑
k=m/2

(
m

k

)(
N −m
m− k

)
≤ 2m max

m/2≤k≤m

(
N −m
m− k

)
≤ 2m

(
N

m/2

)
.

Now, select a new subset I2 of size m from the remaining subsets. Repeating this
argument, we obtain a family Λ = {I1, I2, . . . , Ip}, p = |Λ|, of subsets of cardinality
m which are (m/2)-separated in the Hamming metric and such that

|Λ| ≥
⌊(

N

m

)/
2m
(
N

m/2

)⌋
.

Since for m ≤ N/2 we have
(
N
2m

)m ≤ (Nm) ≤ ( eNm )m, we get that

|Λ| ≥
⌊

(N/2m)m

2m(Ne/(m/2))(m/2)

⌋
≥

⌊(
N

32em

)m/2⌋
≥
⌊

N

32em

⌋bm/2c
which concludes the proof.

Let Λ be the family constructed in the previous Lemma. For every I ∈ Λ, define
x(I) = 1

m

∑
i∈I ei. Then x(I) ∈ S1(Σm) and for every I, J ∈ Λ, I 6= J

|x(I)− x(J)|1 = 2

(
1− |I ∩ J |

m

)
> 2

(
1− [m/2]

m

)
≥ 1.

If the matrix A has the exact reconstruction property of order m, then

∀I, J ∈ Λ I 6= J, ‖Q(x(I))−Q(x(J))‖ = ‖Q(x(I)− x(J))‖ = |x(I)− x(J)|1 ≥ 1.

On one side |Λ| ≥
⌊
C N

[m/2]

⌋[m/2]

, but on the other side, the cardinality of the set

(Q(x(I)))I∈Λ cannot be too big. Indeed, it is a subset of the unit ball Q(BN1 ) of the
quotient space and we already saw that the maximum cardinality of a set of points
of a unit ball which are 1-apart is less than 3n. It follows that

bN/32emcbm/2c ≤ 3n.

Proposition 2.2.17. — If the matrix A has the exact reconstruction property of
order m by `1-minimization, then

m log(cN/m) ≤ Cn.

where C, c > 0 are universal constants.
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Whatever is the matrix A, this proposition gives an upper bound on the size m
of sparsity of vectors such that any vectors from Σm can be exactly reconstructed
by `1-minimization method (see [FPRU10] for more details and [LN06] where the
analogous problem for neighborliness is studied).

2.3. The restricted isometry property

So far, we do not know of any “simple” condition in order to check whether a
matrix A satisfies the exact reconstruction property (2.1).

Let us start with the following definition which was introduced in [CT05] and
plays an important role in compressed sensing.

Definition 2.3.1. — Let A be a n ×N matrix. For any 0 ≤ p ≤ N , the restricted
isometry constant of order p of A is the smallest number δp = δp(A) such that

(1− δp)|x|22 ≤ |Ax|22 ≤ (1 + δp)|x|22
for all p-sparse vectors x ∈ RN . Let δ ∈ (0, 1). We say that the matrix A satisfies
the Restricted Isometry Property of order p with parameter δ, shortly RIPp(δ), if
0 6 δp(A) < δ.

The relevance of the Restricted Isometry parameter for the reconstruction property
was for instance revealed in [CT06], [CT05], where it was shown that if

δm(A) + δ2m(A) + δ3m(A) < 1

then the encoding matrix A has the exact reconstruction property of order m. This
result was improved in [Can08] as follows:

Theorem 2.3.2. — Let 1 6 m 6 N/2. Let A be an n×N matrix. If

δ2m (A) <
√

2− 1.

then A satisfies the exact reconstruction property of order m by `1-minimization.

Remark 2.3.3. — The constant
√

2− 1 was recently improved in [FL09].

For simplicity, we shall discuss an other parameter involving a more general concept
which was introduced in [FL09]. The aim is to relax the constraint δ2m (A) <

√
2−1,

in Theorem 2.3.2 and still get an exact reconstruction property of a certain order by
`1-minimization.

Definition 2.3.4. — Let 0 ≤ p ≤ n be integers and let A be an n×N matrix. Define
αp = αp(A) and βp = βp(A) as the best constants such that

∀x ∈ Σp, αp|x|2 ≤ |Ax|2 ≤ βp|x|2.
Thus βp = max{|Ax|2 : x ∈ Σp |x|2 = 1} and αp = min{|Ax|2 : x ∈ Σp |x|2 = 1}.
Now we define the parameter γp = γp(A) by

γp(A) :=
βp(A)

αp(A)
·
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In other words, let I ⊂ [N ] with |I| = p. Denote by AI the n × p matrix with
columns (Xi)i∈I obtained by extracting from A the columns Xi with index i ∈ I.
Then αp is the smallest singular value among all the block matrices AI with |I| = p,
and βp is the largest. In other words, denoting by B> the transposed matrix of a
matrix B and λmin((AI)>AI), respectively λmax((AI)>AI), the smallest and largest
eigenvalues of (AI)>AI , then

α2
p = α2

p(A) = min
I⊂[N ],|I|=p

λmin((AI)>AI)

whereas

β2
p = β2

p(A) = max
I⊂[N ],|I|=p

λmax((AI)>AI).

Of course, if A satisfies RIPp(δ), then γp(A)2 ≤ 1+δ
1−δ . The concept of RIP is

not homogenous, in the sense that A may satisfy RIPp(δ) but not a multiple of A.
One can “rescale” the matrix to satisfy a Restricted Isometry Property. This does
not ensure that the new matrix, say A′ will satisfy δ2m (A′) <

√
2 − 1 and will not

allow us to conclude to an exact reconstruction from Theorem 2.3.2 (compare with
Corollary 2.4.4 in the next section). Also note that the Restricted Isometry Property
for A can be written

∀x ∈ S2(Σp)
∣∣|Ax|22 − 1

∣∣ ≤ δ
expressing a form of concentration property of |Ax|2. Such a property may not be
satisfied despite the fact that A does satisfy the exact reconstruction property of order
p by `1-minimization (see Example 2.5.7).

2.4. The geometry of the null space

Let 1 6 m 6 p 6 N . Let h ∈ RN and let ϕ = ϕh : [N ] → [N ] be a one-to-
one mapping associated to a non-increasing rearrangement of (|hi|); in others words
|hϕ(1)| ≥ |hϕ(2)| ≥ · · · ≥ |hϕ(N)|. Denote by I1 = ϕh({1, . . . ,m}) (a subset of indices
of the largest m coordinates of (|hi|)) then by I2 = ϕh({m+ 1, . . . ,m+ p}) (a subset
of indices of the next p largest coordinates of (|hi|)) and iterate Ik+1 = ϕh({m+ (k−
1)p + 1, . . . ,m + kp}), for k ≥ 2, as far as m + kp ≤ N , in order to partition [N ] in
subsets of cardinality p, except the first one, I1 which has cardinality m and the last
one, which may have cardinality less than p.

Claim 2.4.1. — Let h ∈ RN . Suppose that 1 6 m 6 p 6 N and N ≥ m+ p. With
the previous notation, we have

∀k ≥ 2, |hIk+1
|2 ≤

1
√
p
|hIk |1

and ∑
k≥3

|hIk |2 ≤
1
√
p
|hIc1 |1.
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Proof. — Let k ≥ 1. We have

|hIk+1
|2 ≤

√
|Ik+1| max{|hi| : i ∈ Ik+1}

and
max{|hi| : i ∈ Ik+1} ≤ min{|hi| : i ∈ Ik} ≤ |hIk |1/|Ik|.

We deduce that

∀k ≥ 1 |hIk+1
|2 ≤

√
|Ik+1|
|Ik|

|hIk |1.

Adding up these inequalities for all k ≥ 2, for which
√
|Ik+1|/|Ik| = 1/

√
p, this prove

the claim.

We are ready for the main Theorem of this section

Theorem 2.4.2. — Let 1 6 m 6 p 6 N and N ≥ m+p. Let A be an n×N matrix.
Then

∀h ∈ kerA, h 6= 0, ∀I ⊂ [N ], |I| ≤ m, |hI |1 <
√
m

p
γ2p(A) |hIc |1 (2.5)

and ∀h ∈ kerA, h 6= 0, ∀I ⊂ [N ], |I| ≤ m,

|h|2 ≤

√
1 + γ2

2p(A)

p
|hIc1 |1 ≤

√
1 + γ2

2p(A)

p
|h|1. (2.6)

In particular,

diam (kerA ∩BN1 ) ≤

√
1 + γ2

2p(A)

p

where diam (B) = supx∈B |x|2.

Proof. — Let h ∈ kerA, h 6= 0 and organize the coordinates of h as above. By
definition of α2p (see 2.3.4), one has

|hI1 + hI2 |2 ≤
1

α2p
|A(hI1 + hI2)|2.

Using that h ∈ kerA we obtain

|hI1 + hI2 |2 ≤
1

α2p
|A(hI1 + hI2 − h)|2 ≤

1

α2p
|A(−

∑
k≥3

hIk)|2.

Then from the definition of βp and γp (2.3.4), using Claim 2.4.1, we get

|hI1 |2 < |hI1 + hI2 |2 ≤
βp
α2p

∑
k≥3

|hIk |2 ≤
γ2p(A)
√
p
|hIc1 |1. (2.7)

This inequality is strict because hI2 = 0 would imply hIc1 = 0 and subsequently
hI1 = 0. To conclude the proof of (2.5), note that for any subset I ⊂ [N ], |I| ≤ m,
|hIc1 |1 ≤ |hIc |1 and |hI |1 ≤ |hI1 |1 ≤

√
m|hI1 |2.

To prove (2.6), we start from

|h|22 = |h− hI1 − hI2 |22 + |hI1 + hI2 |22
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Using Claim (2.4.1), the first term satisfies

|h− hI1 − hI2 |2 ≤
∑
k≥3

|hIk |2 ≤
1
√
p
|hIc1 |1.

From(2.7), |hI1 + hI2 |2 ≤
γ2p(A)√

p |hIc1 |1 and putting things together, we derive that

|h|2 ≤

√
1 + γ2

2p(A)

p
|hIc1 |1 ≤

√
1 + γ2

2p(A)

p
|h|1.

Remark 2.4.3. — Relation (2.5) was proved in [FL09] with a better numerical con-
stant.

From relation (2.5) and the null space property (Proposition 2.2.11) we derive the
following corollary.

Corollary 2.4.4. — Let 1 6 p 6 N/2. Let A be a n ×N matrix. If γ2p(A) ≤ √p,
then A satisfies the exact reconstruction property of order m by `1-minimization with

m =
⌊
p
/
γ2

2p(A)
⌋
.

The objective now is to find p such that γ2p is bounded by some numerical constant.
This means that we need a uniform control of the smallest and largest singular values
of all block matrices of A with 2p columns. By Corollary 2.4.4 this is a sufficient
condition for the exact reconstruction of m-sparse vectors by `1-minimization with
m ∼ p. When |Ax|2 satisfies good concentration properties, the restricted isometry
property is more adapted. In this situation, γ2p ∼ 1. When the isometry constant
δ2p is sufficiently small, A satisfies the exact reconstruction of m-sparse vectors with
m = p (see Theorem 2.3.2).

Conversely, an estimate of diam (kerA∩BN1 ) gives an estimate of the size of sparsity
of vectors which can be reconstructed by `1-minimization.

Proposition 2.4.5. — Let A be an n×N matrix and let 0 < D ≤ 1. If

diam (kerA ∩BN1 ) < D

then the matrix A satisfies the exact reconstruction property of order m by `1-
minimization with

m =

⌊
1

D2

⌋
.

Proof. — Let h ∈ kerA and I ⊂ [N ], |I| ≤ m. By our assumption, we have that

∀h ∈ kerA, h 6= 0 |h|2 < D |h|1.

Now |hI |1 ≤
√
m |hI |2 ≤

√
m |h|2 < D

√
m |h|1. Thus if m 6 1

D2 and h 6= 0, then
|hI |1 < |hIc |1. We conclude using the null space property (Proposition 2.2.11).

This study leads to the notion of Gelfand widths.
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Definition 2.4.6. — Let T be a bounded subset of a normed space E. Let k ≥ 0 be
an integer. Its k-th Gelfand width is defined as

dk(T,E) := inf
G

sup
x∈G∩T

‖x‖E ,

where ‖ . ‖E denotes the norm of E and where the infimum is taken over all linear
subspaces G of codimension ≤ k.

Remark 2.4.7. — A different notation is used in Banach space and Operator The-
ory. Let u : X −→ Y be an operator between two normed spaces X and Y . The k-th
Gelfand number is defined by

ck(u) = inf
G

sup
x∈G∩BX

‖u(x)‖Y ,

where BX denotes the unit ball of X and the infimum is taken over all subspaces G
of X with codimension < k. Thus

ck+1(u) = dk(u(BX), Y ).

If F is a linear space (RN for instance) equipped with two norms defining two normed
spaces X and Y and if IX→Y is the identity mapping of F considered from X to Y ,
then

dk(BX , Y ) = ck+1(IX→Y ).

Let 0 < D ≤ 1, Proposition 2.4.5 shows that if

dn(BN1 , `
N
2 ) < D

then there exists a matrix A satisfying the exact reconstruction property of order
m = b1/D2c. Thus if A is any n×N matrix so that the n-Gelfand width of I`N1 →`N2
is reached at G = kerA, then A satisfies the exact reconstruction property of order
m by `1-minimization with m = b1/dn(BN1 , `

N
2 )2c. A famous result from [Kaš77]

improved in [Glu83] reads as follows:

Theorem 2.4.8. — [GG84] Let 1 6 n 6 N . Then

dn(BN1 , `
N
2 ) ≤ c1√

n

√
log c2

N

n
(2.8)

where c1, c2 > 0 are universal constants.

We deduce from Theorem 2.4.8 that there exists a matrix A satisfying the exact
reconstruction property of order

bc1n/ log(c2N/n)c

where c1, c2 are universal constants. This result was proved in [CRT06], [CT06]
and [Don06] using compressive sensing methods. From Proposition 2.2.17 it is the
optimal order.
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Remark 2.4.9. — The result of [Kaš77] was proved using Kolmogorov widths (dual
to the Gelfand widths) and with a non-optimal power of the logarithm (power 3/2
instead of 1/2 later improved in [GG84]). The upper bound of Kolmogorov widths
was obtained via random matrices with i.i.d. Bernoulli entries, whereas [Glu83] and
[GG84] use some properties of random Gaussian matrices. It was also shown in
[GG84] that the estimates of Gelfand numbers given in Theorem 2.4.8 are optimal.

Remark 2.4.10. — The method of proofs of results of this section follow [CT05],
[CDD09],[FL09],[FPRU10] and [KT07].

2.5. Gaussian random matrices satisfy a RIP

So far, we did not give yet any example of matrices satisfying the exact recon-
struction property of order m with large m. It is known that with high probability
Gaussian matrices do satisfy this property.

2.5.1. The subgaussian Ensemble. — We consider a probability P on the space
of real n×N matrices M(n,N) satisfying the following concentration inequality: there
exists an absolute constant c0 such that for every x ∈ RN we have

P
(
{A :

∣∣|Ax|22 − |x|2∣∣ ≥ t|x|22}) ≤ 2e−c0t
2n for all 0 < t ≤ 1. (2.9)

Definition 2.5.1. — For a real random variable Z we define the ψ2-norm by

‖Z‖ψ2 = inf
{
s > 0 : E exp (|Z|/s)2 6 e

}
.

We say that a random vector Y ∈ RN is isotropic if

∀y ∈ RN , E|〈Y, y〉|2 = |y|22.

A random vector Y ∈ RN satisfies a ψ2 estimate with constant α (shortly Y is ψ2

with constant α) if

∀y ∈ RN , ‖〈Y, y〉‖ψ2
6 α|y|2.

It is well-known that a real random variable Z is ψ2 (with some constant) if and
only if it satisfies a subgaussian tail estimate. In particular if Z is a real random
variable with ‖Z‖ψ2 ≤ α, then for every t ≥ 0,

P(|Z| ≥ t) ≤ e−(t/α)2+1

This ψ2 property can also be characterized by the growth of moments. Well known
examples are Gaussian random variables and bounded centered random variables (see
Chapter 1 for details).

Let us consider Y1, . . . , Yn ∈ RN be i.i.d. isotropic random vectors which are ψ2

with the same constant α. Let A be the matrix with Y1, . . . , Yn ∈ RN as rows. We
consider the probability P on the space of matrices M(n,N) induced by the mapping
(Y1, . . . , Yn)→ A.
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Let us recall Bernstein’s inequality (see Chapter 1). For y ∈ SN−1 consider the
average of n independent copies of the random variable 〈Y1, y〉2. Then for every t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

〈Yi, y〉2 − 1

∣∣∣∣∣ > t

)
6 2 exp

(
−cnmin

{
t2

α4
,
t

α2

})
,

where c is an absolute constant. Note that since E〈Y1, y〉2 = 1, one has α > 1 and

that
∣∣∣Ax√n ∣∣∣22 = 1

n

∑n
i=1〈Yi, y〉2. This shows the next claim:

Claim 2.5.2. — Let Y1, . . . , Yn ∈ RN be i.i.d. isotropic random vectors that are ψ2

with constant α. Let P be the probability induced on M(n,N). Then for every x ∈ RN
we have

P
(∣∣∣∣∣∣ A√

n
x
∣∣∣2
2
− |x|2

∣∣∣ ≥ t|x|22) ≤ 2e−
c
α4 t

2n for all 0 < t ≤ 1

where c > 0 is an absolute constant.

The most important examples for us of model of random matrices satisfying (2.9)
are matrices with independent subgaussian rows, normalized in the right way.

Example 2.5.3. — Some classical examples:

– Y1, . . . , Yn ∈ RN are independent copies of the Gaussian vector Y = (g1, . . . , gN )
where the gi’s are independent N (0, 1) Gaussian variables

– Y1, . . . , Yn ∈ RN are independent copies of the random sign vector Y =
(ε1, . . . , εN ) where the εi’s are independent, symmetric ±1 (Bernoulli) random
variables

– Y1, . . . , Yn ∈ RN are independent copies of a random vector uniformly distributed
on the Euclidean sphere of radius

√
N .

In all these cases the (Yi) are isotropic with a ψ2 constant α, for a suitable α > 1.
For the last case see e.g. [LT91]. For more details on Orlicz norm and probabilistic
inequalities used here see Chapter 1.

2.5.2. Sub-Gaussian matrices are almost norm preserving on Σm. — An
important feature of Σm and its subsets S2(Σm) and B2(Σm) is their peculiar struc-
ture: the two last are the unions of the unit spheres, and unit balls, respectively,
supported on m-dimensional coordinate subspaces of RN .

We begin with the following well known lemma (see Chapter 1) which allows to
step up from an ε-net to the whole unit sphere.

Lemma 2.5.4. — Let m ≥ 1 be an integer, ‖ . ‖ be a semi-norm in Rm and ε ∈
(0, 1/3). Let Λ ⊂ Sm−1 be an ε-net of Sm−1 by εBm2 . If

∀y ∈ Λ 1− ε ≤ ‖y‖ ≤ 1 + ε,

then

∀y ∈ Sm−1 1− 3ε

1− ε
≤ ‖y‖ ≤ 1 + ε

1− ε
.



2.5. GAUSSIAN RANDOM MATRICES SATISFY A RIP 49

Proof. — Proposition 2.2.7 implies that Sm−1 ⊂ (1− ε)−1conv Λ. Therefore we have

sup
y∈Sm−1

‖y‖ ≤ (1 + ε)(1− ε)−1.

To get a lower estimate, write any y ∈ Sm−1 as y = y1 + εy2, with y1 ∈ Λ and
y2 ∈ Bm2 . Then ‖y‖ ≥ ‖y1‖ − ε‖y2‖ ≥ (1− ε)− ε(1 + ε)(1− ε)−1 = (1− 3ε)/(1− ε)
which proves the claim.

We can give now a simple proof that subgaussian matrices satisfy the exact recon-
struction property of order m by `1-minimization with large m (see [BDDW08] and
[MPTJ08]).

Theorem 2.5.5. — Let P be a probability on M(n,N) satisfying (2.9). Then there
exist positive constants c1, c2 and c3 depending only on c0 from (2.9), for which the
following holds: with probability at least 1− 2 exp(−c3n), A satisfies the exact recon-
struction property of order m by `1-minimization with

m =

⌊
c1n

log (c2N/n)

⌋
.

Moreover, A satisfies RIPm(δ) for any δ ∈ (0, 1) with m ∼ cδ2n/ log(CN/δ3n) where
c and C depend only on c0.

Proof. — Let ε ∈ (0, 1/3) to be fixed later. Let 1 ≤ p ≤ N/2. Let yi, i = 1, 2, . . . , n,
be the rows of A. For every subset I of [N ] of cardinality 2p let ΛI be an ε-net of

the unit sphere of RI by εBI2 satisfying Claim 2.2.8, that is with |ΛI | ≤
(

3
ε

)2p
. Apply

Lemma 2.5.4 to the semi-norm

||y|| :=

(
1

n

n∑
i=1

〈yi, y〉2
)1/2

on the unit sphere of RI . Let Λ ⊂ RN be the union of all these ΛI for |I| = 2p.
Suppose that

sup
y∈Λ

∣∣∣ 1
n

n∑
i=1

(〈yi, y〉2 − 1)
∣∣∣ ≤ ε,

then

∀y ∈ S2(Σ2p)
1− 3ε

1− ε
≤
( n∑
i=1

〈yi, y〉2
)1/2 ≤ 1 + ε

1− ε
.

Note that there is nothing random in that relation. This is why we change the notation
of the rows from (Yi) to (yi). Thus checking how well the matrix A defined by the
rows (yi) is acting on Σ2p is reduced to checking that on the finite set Λ. Now recall

that |Λ| ≤
(
N
2p

) (
3
ε

)2p ≤ exp
(

2p log
(

3eN
2pε

))
.

Given a probability P on M(n,N) satisfying (2.9), and using a union bound esti-
mate, we get that the inequalities

∀x ∈ S2(Σ2p)
1− 3ε

1− ε
≤ |Ax|2 ≤

1 + ε

1− ε
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hold with probability at least

1− |Λ|e−c0ε
2n ≥ 1− exp

(
2p log

(
3eN

2pε

))
e−c0ε

2n ≥ 1− e−c0ε
2n/2

whenever

2p log

(
3eN

2pε

)
≤ c0ε2n/2.

Assuming these inequalities, we get

γ2p(A) ≤ (1 + ε)/(1− 3ε)

with probability larger than 1−exp(−c0ε2n/2). From Corollary 2.4.4, we deduce that
A satisfies the exact reconstruction property of order m by `1-minimization with

m = bp/γ2p(A)2c.

This gives the announced result by fixing ε (say ε = 1/4) and solving 2p log
(

3eN
2pε

)
≤

c0ε
2n/2.

Remark 2.5.6. — Concerning RIPm(δ) a better estimate m ∼ cδ2n/ log(CN/δ2n)
will be shown later in Theorem 2.7.4.

The strategy that we used in the proof of Theorem 2.5.5 is the following:

– discretization: discretization of the set Σ2p, it is a net argument
– concentration: |Ax|2 concentrates around its mean for each individual x of the

net
– union bound: concentration should be good enough to balance the cardinality of

the net and to conclude to a uniform concentration on the net of |Ax|2 around
its mean

– from the net to the whole set, that is checking RIP, is obtained by Lemma 2.5.4.

Such a strategy is very classical in Approximation Theory, see [Kaš77] and in Ba-
nach space theory where it has played an important role in quantitative version of
Dvoretsky’s theorem on almost spherical sections, see [FLM77].

We conclude this section by an example of an n × N matrix A which is a good
compressed sensing matrix but none of the n×N matrices with the same kernel as A
satisfy a restricted isometry property of any order ≥ 1 with good parameter. As we
already noticed, if A has parameter γp, one can find t0 > 0 and rescale the matrix so
that δp(t0A) = γ2

p − 1/γ2
p + 1 ∈ [0, 1). In this example, γp is large, δp(t0A) ∼ 1 and

one cannot deduce any result about exact reconstruction from Theorem 2.3.2.

Example 2.5.7. — Let 1 ≤ n ≤ N . Let δ ∈ (0, 1). There exists an n×N matrix A
such that for any p ≤ cn/ log(CN/n), one has γ2p(A)2 ≤ c′(1− δ)−1. Thus, for any
m ≤ c”(1− δ)n/ log(CN/n), the matrix A satisfies the exact reconstruction property
of m-sparse vectors by `1-minimization. Nevertheless, for any n × n matrix U , the
restricted isometry constant of order 1 of UA satisfies, δ1(UA) ≥ δ (think of δ ≥ 1/2).
Here, C, c, c′, c” > 0 are universal constants.

The proof is left as exercise.
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2.6. RIP for other “simple” subsets: almost sparse vectors

As already mentioned, various “random projection” operators may act as “almost
norm preserving” on “thin” subsets of the sphere. We analyze a simple structure of
the metric entropy of a set T ⊂ RN in order that, with high probability, (a multiple
of) Gaussian or subgaussian matrices act almost like an isometry on T . This will
apply to a more general case than sparse vectors. We follow the lines of [MPTJ08].

Theorem 2.6.1. — Consider a probability on the space of n×N matrices satisfying

∀x ∈ RN P
(∣∣|Ax|22 − |x|22∣∣ ≥ t|x|22) ≤ 2e−c0t

2n for all 0 < t ≤ 1.

Let T ⊂ SN−1 and 0 < ε < 1/15. Assume the following:

(i) There exists an ε-net Λ ⊂ SN−1 of T satisfying |Λ| ≤ exp(c0ε
2n/2)

(ii) There exists a subset Λ′ of εBN2 such that (T − T ) ∩ εBN2 ⊂ 2 conv Λ′ and
|Λ′| ≤ exp(c0n/2).

Then with probability at least 1− 2 exp(−c0ε2n/2), one has that for all x ∈ T ,

1− 15ε ≤ |Ax|22 ≤ 1 + 15ε. (2.10)

Proof. — The idea is to show that A acts on Λ in an almost norm preserving way.
This is the case because the degree of concentration of each variable |Ax|22 around its
mean defeats the cardinality of Λ. Then one shows that A(conv Λ′) is contained in a
small ball - thanks to a similar argument.

Consider the set Ω of matrices A such that

||Ax0|2 − 1| ≤
∣∣|Ax0|22 − 1

∣∣ ≤ ε for all x0 ∈ Λ, (2.11)

and

|Az|2 ≤ 2ε for all z ∈ Λ′. (2.12)

From our assumption (2.9), i) and ii)

P(Ω) ≥ 1− exp(−c0ε2n/2)− exp(−c0n/2) ≥ 1− 2 exp(−c0ε2n/2).

Let x ∈ T and consider x0 ∈ Λ such that |x− x0|2 ≤ ε. Then for every A ∈ Ω

|Ax0|2 − |A(x− x0)|2 ≤ |Ax|2 ≤ |Ax0|2 + |A(x− x0)|2 .

Since x− x0 ∈ (T − T ) ∩ εBN2 , property ii) and (2.12) give that

|A(x− x0)|2 ≤ 2 sup
z∈conv Λ′

|Az|2 = 2 sup
z∈Λ′
|Az|2 ≤ 4ε. (2.13)

Combining this with (2.11) implies that 1 − 5ε ≤ |Ax|2 ≤ 1 + 5ε. The proof is
completed by squaring.
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2.6.1. Approximate reconstruction of almost sparse vectors. — After an-
alyzing the restricted isometry property for thin sets like Σm, we consider the `1-
minimization method in order to get approximate reconstruction of vectors which are
not far from sparse vectors.

Let A be a n×N matrix and x ∈ RN . Let us recall the `1-minimization method:

(P ) min
t∈RN

|t|1 subject to At = y

where y = Ax. Let x] be a minimizer of (P ) and let h = x] − x ∈ kerA. For any
subset I ⊂ [N ], observe that

|x|1 ≥ |x+ h|1 = |xI + hI |1 + |xIc + hIc |1 ≥ |xI |1 − |hI |1 + |hIc |1 − |xIc |1
and thus

|hIc |1 ≤ |hI |1 + 2|xIc |1.
Let 1 ≤ m ≤ p ≤ n and assume that |I| ≤ m. Using (2.5) we get(

1−
√
m

p
γ2p(A)

)
|h|1 ≤ 2

(
1 +

√
m

p
γ2p(A)

)
|xIc |1.

Imposing
√

m
p γ2p(A) ≤ 1/2, we get

|h|1 ≤ 6 |xIc |1,
and using (2.6) we obtain

|h|2 ≤

√
1 + γ2

2p(A)

p
|h|1 ≤ 6

√
1 + γ2

2p(A)

p
|xIc |1.

This yields

|h|2 ≤ 6

√
1

p
+

1

4m
|xIc |1 ≤ 3

√
5

√
1

m
|xIc |1.

The minimum of |xIc |1 over all subsets I, |I| ≤ m, is obtained when I is the
support of the m-largest coordinates of x. The vector xI is henceforth the best m-
sparse approximation of x.

From this analysis, we derive the following proposition that we formulate here in
terms of γp rather than in terms of constants of isometry (see [Can08] and [CDD09]
for more details).

Proposition 2.6.2. — Let A be a n×N matrix and let 1 ≤ m ≤ p ≤ n. Let x ∈ RN
and let x] be a minimizer of

(P ) min
t∈RN

|t|1 subject to At = Ax.

Assume that m ≤ p/4γ2p(A)2, then

|x− x]|1 ≤ 6 |x− xI |1
and

|x− x]|2 ≤ 3
√

5
1√
m
|xIc |1

where I ⊂ [N ], |I| = m and xI is the best m-sparse approximation of x.
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Let us give an immediate application of this proposition. Let 0 < p < 1 and
consider

T = BNp,∞ =
{
x = (x1, . . . , xN ) ∈ RN : |{i : |xi| ≥ s}| ≤ s−p for all s > 0

}
the unit ball of `Np,∞, the so-called weak `Np space. Observe that for any x ∈ BNp,∞,

one has x∗i ≤ 1/i1/p, for every i ≥ 1, where (x∗i )
N
i=1 is a non-increasing rearrangement

of (|xi|)Ni=1. Let I ⊂ [N ], |I| = m and let xI be the best m-sparse approximation of x.
Note that

∑
i>m i

−1/p ≤ (1/p − 1)−1m1−1/p. Under the assumption of Proposition

2.6.2 and with the same notation, we get that if m ≤ p/4γ2p(A)2 and if x] is a
minimizer of (P ), then

|x− x]|2 ≤ 3
√

5 ((1/p)− 1)−1m1/2−1/p.

2.6.2. Reducing the computation of Gelfand widths by truncation. — We
begin with a simple principle which reduces the computation of Gelfand widths to
the width of a truncated set. This method goes back to [Glu83].

Definition 2.6.3. — We say that a subset T ⊂ RN is star-shaped in 0 or shortly,
star-shaped, if λT ⊂ T for every 0 ≤ λ ≤ 1. Let ρ > 0 and let T ⊂ RN be star-shaped,
we denote by Tρ the subset

Tρ = T ∩ ρSN−1.

Recall that diam(S) = supx∈S |x|2.

Lemma 2.6.4. — Let ρ > 0 and let T ⊂ RN be star-shaped. Then for any linear
subspace E ⊂ RN such that E ∩ Tρ = ∅ we have diam (E ∩ T ) < ρ.

Proof. — If diam (E ∩ T ) > ρ, there would be x ∈ E ∩ T of norm greater or equal to
ρ. Since T is star-shaped, so is E ∩ T and thus x/|x|2 ∈ E ∩ Tρ; a contradiction.

This easy lemma will be a useful tool in the next sections and in Chapter 5. The
subspace E will be the kernel of our matrix A, ρ a parameter that we try to estimate
as small as possible such that kerA ∩ Tρ = ∅, that is such that Ax 6= 0 for all x ∈ T
with |x| = ρ. This will be in particular the case if A or a multiple of A acts on Tρ in
an almost norm preserving way.

With Theorem 2.6.1 in mind, we apply this plan to subsets T like Σm.

Corollary 2.6.5. — Let P be a probability on M(n,N) satisfying (2.9). Consider
a star-shaped set T ⊂ RN and let ρ > 0. Assume that 1

ρ Tρ ⊂ SN−1 satisfies the

hypothesis of Theorem 2.6.1 for some 0 < ε < 1/15. Then diam (kerA ∩ T ) < ρ, with
probability at least 1− 2 exp(−cn) where c > 0 is an absolute constant.
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2.6.3. Application to subsets related to `p unit balls. — To illustrate this
method, we consider some examples of set T , for 0 < p < 2:

– the unit ball of `N1 , denoted by BN1
– the unit ball BNp = {x ∈ RN :

∑N
1 |xi|p ≤ 1} of `Np , 0 < p < 1

– the unit ball BNp,∞ =
{
x ∈ RN : |{i : |xi| ≥ s}| ≤ s−p for all s > 0

}
of `Np,∞

(weak `Np ), for 0 < p < 1.

Note that for 0 < p < 1, the “unit ball” BNp is not convex and that BNp ⊂ BNp,∞,

so that for estimating Gelfand widths, we can restrict to the balls BNp,∞.

We need two lemmas. The first lemma comes from [MPTJ08] and uses the fol-
lowing classical fact:

Claim 2.6.6. — Let (ai), (bi) two sequences of positive numbers such that (ai) is
non-increasing. Then the sum

∑
aibπ(i) is maximized over all permutations π of the

index set, if bπ(1) ≥ bπ(2) ≥ . . ..

Lemma 2.6.7. — Let 0 < p < 1, 1 6 m 6 N and set r = (1/p− 1)m1/p−1/2. Then,
for every x ∈ RN ,

sup
z∈rBNp,∞∩BN2

〈x, z〉 6 2

(
m∑
i=1

x∗i
2

)1/2

,

where (x∗i )
N
i=1 is a non-increasing rearrangement of (|xi|)Ni=1. Equivalently,

rBNp,∞ ∩BN2 ⊂ 2 conv (S2(Σm)). (2.14)

Moreover one has √
mBN1 ∩BN2 ⊂ 2 conv (S2(Σm)). (2.15)

Proof. — We treat only the case of BNp,∞, 0 < p < 1. The case of BN1 is similar. Note

first that if z ∈ BNp,∞, then for any i ≥ 1, z∗i ≤ 1/i1/p, where (z∗i )Ni=1 is a non-increasing

rearrangement of (|zi|)Ni=1. Using Claim 2.6.6 we get that for any r > 0,m ≥ 1 and
z ∈ rBNp,∞ ∩BN2 ,

〈x, z〉 6

(
m∑
i=1

x∗i
2

)1/2

+
∑
i>m

rx∗i
i1/p

6

(
m∑
i=1

x∗i
2

)1/2(
1 +

r√
m

∑
i>m

1

i1/p

)

6

(
m∑
i=1

x∗i
2

)1/2(
1 +

(
1

p
− 1

)−1
r

m1/p−1/2

)
.

By the definition of r, this completes the proof.

The second lemma shows that m1/p−1/2BNp,∞ ∩ SN−1 is well approximated by
vectors on the sphere with short support.
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Lemma 2.6.8. — Let 0 < p < 2 and δ > 0, and set ε = 2(2/p−1)−1/2δ1/p−1/2. Let
1 ≤ m ≤ N . Then S2(Σdm/δe) is an ε-net of m1/p−1/2BNp,∞ ∩ SN−1 with respect to
the Euclidean metric.

Proof. — Let x ∈ m1/p−1/2BNp,∞ ∩ SN−1 and assume without loss of generality that
x1 ≥ x2 ≥ . . . ≥ xn ≥ 0. Define z′ by z′i = xi for 1 ≤ i ≤ dm/δe and z′i = 0 otherwise.
Then

|x− z′|22 =
∑
i>m/δ

|xi|2 ≤ m2/p−1
∑
i>m/δ

1/i2/p < (2/p− 1)−1 δ2/p−1.

Thus 1 ≥ |z′|2 ≥ 1 − (2/p − 1)−1/2 δ1/p−1/2. Put z = z′/|z′|2. Then z ∈ S2(Σdm/δe)
and

|z − z′|2 = 1− |z′|2 ≤ (2/p− 1)−1/2 δ1/p−1/2.

By the triangle inequality |x− z|2 < ε, completing the proof.

The preceding lemmas are used to show that the hypothesis of Theorem 2.6.1 are
satisfied for an appropriate choice of T and ρ. Before that, property ii) of Theo-
rem 2.6.1, brings us to the following definition.

Definition 2.6.9. — We say that a subset T of RN is quasi-convex with constant
a ≥ 1, if T is star-shaped and T + T ⊂ 2aT .

Let us note the following easy fact.

Claim 2.6.10. — Let 0 < p < 1, then BNp,∞ and BNp are quasi-convex with constant

2(1/p)−1.

We come up now with the main claim:

Claim 2.6.11. — Let 0 < p < 1 and T = BNp,∞. Then (1/ρ)Tρ satisfies properties
i) and ii) of Theorem 2.6.1 with

ρ = Cp

(
n

log(cN/n)

)1/p−1/2

where Cp depends only on p and c > 0 is an absolute constant. Moreover if T = BN1 ,
then (1/ρ)Tρ satisfies properties i) and ii) of Theorem 2.6.1 with

ρ =

(
c1n

log(c2N/n)

)1/2

where c1, c2 are positive absolute constants.

Proof. — We consider only the case of T = BNp,∞, 0 < p < 1. The case of BN1 is
similar. Since the mechanism has already been developed in details, we will only
indicate the different steps. Fix ε0 = 1/20. To get i) we use Lemma 2.6.8 with
ε = ε0/2 and δ obtained from the equation ε0/2 = 2(2/p − 1)−1/2δ1/p−1/2. Let
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1 ≤ m ≤ N . We get that S2(Σdm/δe) is an (ε0/2)-net of m1/p−1/2BNp,∞ ∩ SN−1 with
respect to the Euclidean metric. Set m′ = dm/δe. By Claim 2.2.9, we have

N(S2(Σm′),
ε0

2
BN2 ) ≤

(
3eN

m′(ε0/2)

)m′
=

(
6eN

m′ε0

)m′
.

Thus, by the triangle inequality, we have

N(m1/p−1/2BNp,∞ ∩ SN−1, ε0B
N
2 ) ≤

(
6eN

m′ε0

)m′
so that

N(m1/p−1/2BNp,∞ ∩ SN−1, ε0B
N
2 ) ≤ exp(c0n/2)

whenever (
6eN

m′ε0

)m′
≤ exp(c0n/2).

This shows that under this condition on m′ (that is on m), the set m1/p−1/2BNp,∞ ∩
SN−1 satisfies i).

In order to tackle ii), recall that Bp,∞ is quasi-convex with constant 21/p−1 (Claim
2.6.10. By symmetry, we have

BNp,∞ −BNp,∞ ⊂ 21/pBNp,∞.

Let r = (1/p− 1)m1/p−1/2. From Lemma 2.6.7, one has

rBNp,∞ ∩BN2 ⊂ 2 convS2(Σm).

As we saw previously,

N(S2(Σm),
1

2
BN2 ) ≤

(
3eN

m(1/2)

)m
=

(
6eN

m

)m
and by Claim 2.2.9 there exists a subset Λ′ ⊂ SN−1 with |Λ′| ≤ N(S2(Σm), 1

2 B
N
2 )

such that S2(Σm) ⊂ 2 conv Λ′. We arrive at

ε02−1/p
(
rBNp,∞ − rBNp,∞

)
∩ ε0B

N
2 ⊂ ε0

(
rBNp,∞ ∩BN2

)
⊂

⊂ 4ε0 conv Λ′ ⊂ 2 conv (Λ′ ∪ −Λ′).

Therefore ε02−1/prBNp,∞ ∩ SN−1 satisfies ii) whenever 2 (6eN/m)
m ≤ exp(c0n/2).

Finally ε02−1/prBNp,∞ ∩ SN−1 satisfies i) and ii) whenever the two conditions on
m are verified, that is when cm log(CN/m) ≤ c0n/2 where c, C > 0 are absolute
constants. We compute m and r and set ρ = ε02−1/pr to conclude.

Now we can apply Corollary 2.6.5, to conclude

Theorem 2.6.12. — Let P be a probability satisfying (2.9) on the space of n × N
matrices and let 0 < p < 1. There exist cp depending only on p, c′ depending on c0
and an absolute constant c such that the set Ω of n×N matrices A satisfying

diam
(
kerA ∩BNp

)
6 diam

(
kerA ∩BNp,∞

)
6 cp

(
log(cN/n)

n

)1/p−1/2

.
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has probability at least 1− exp(−c′n).
In particular, if A ∈ Ω and if x′, x ∈ Bnp,∞ are such that Ax′ = Ax then

|x′ − x|2 6 c′p

(
log(c1N/n)

n

)1/p−1/2

.

An analogous result holds for the ball BN1 .

2.7. An other complexity measure

We introduce a new parameter, `∗(T ) which is a complexity measure of a set T ⊂
RN . Let

`∗(T ) = E sup
t∈T

∣∣∣∣∣
N∑
i=1

giti

∣∣∣∣∣ , (2.16)

where t = (ti)
N
i=1 ∈ RN and g1, ..., gN are independent N(0, 1) Gaussian random

variables. This kind of parameter plays an important role in empirical processes (see
Chapter 1) and in Geometry of Banach spaces (see [Pis98]).

The following result was proved in [MPTJ08] (Corollary 2.7).

Theorem 2.7.1. — Let 1 ≤ n ≤ N and 0 < δ < 1. Let Y be an isotropic ψ2 random
vector on RN with constant α, set Y1, . . . , Yn to be independent copies of Y , put A
the matrix with rows Y1, . . . , Yn and let T ⊂ SN−1. If n satisfies

n ≥ (c′ α4/δ2) `∗(T )2,

then with probability at least 1− exp(−c̄ δ2n/α4), one has for all t ∈ T ,

1− δ ≤ |At|
2
2

n
≤ 1 + δ, (2.17)

where c′, c̄ > 0 are absolute constants.

Let us explain the meaning of Theorem 2.7.1, and for simplicity, assume that α is
an absolute constant as in the situation of Gaussian or Bernoulli random vectors. The
parameter `∗(T ) in this context, measures how probabilistic bounds on the concen-
tration of each individual random variable of the form |At|22 around its mean can be
combined to form a bound that holds uniformly for every t ∈ T . Theorem 2.7.1 says
that as long as n > c `2∗(T )/δ2, the random operator A/

√
n maps with overwhelming

probability all the points of T in an almost norm preserving way.
We will not give here the proof of this result (see Theorem 3.2.1 in Chapter 3).

Instead we will show how it applies to some sets T .

Theorem 2.7.2. — There exist c1, c̄ such that the following holds: Let N , δ, Y
and A be as in Theorem 2.7.1. Fix 1 6 n 6 N , let T ⊂ SN−1 and assume that
T ⊂ 2 conv Λ for some Λ ⊂ BN2 with |Λ| ≤ exp(c1δ

2n/α4). Then with probability at
least 1− exp(−c̄ δ2n/α4), for all t ∈ T ,

1− δ ≤ |At|
2
2

n
≤ 1 + δ. (2.18)
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Remark 2.7.3. — Constant 2 in the inclusion T ⊂ 2 conv Λ is not significant.

Proof. — The main point in the proof is that if T ⊂ 2 conv Λ, Λ ⊂ Bn2 and we have a
reasonable control of |Λ|, then `∗(T ) can be bounded from above. The rest is a direct
application of Theorem 2.7.1. Note that the hypothesis is simpler than in theorem
2.6.1.

Let c′, c̄ > 0 be constants from Theorem 2.7.1. It is well known (see Chapter 3)
that there exists an absolute constant c′′ > 0 such that for every Λ ⊂ Bn2 ,

`∗(conv Λ) = `∗(Λ) 6 c′′
√

log(|Λ|),
and since T ⊂ 2 conv Λ,

`∗(T ) ≤ 2`∗(conv Λ) 6 2c′′
(
c(δ2/α4)n

)1/2
.

Choosing c1 = 1/4c′c′′2 we get (2.18) by applying Theorem 2.7.1.

Using Theorem 2.7.2 we give another proof of the fact that subgaussian matrices
are good sensing matrices.

Theorem 2.7.4. — Let 1 ≤ n ≤ N and 0 < δ < 1. Let Y be an isotropic ψ2 random
vector on RN with constant α, let Y1, . . . , Yn to be independent copies of Y , put A the
matrix with rows Y1, . . . , Yn. Then with probability at least 1− exp(−c3n)

(1− δ)|t|2 ≤ |At|
2
2

n
≤ (1 + δ)|t|2 (2.19)

holds for all t ∈ Σm provided

m ≤ c1n/ log(N/c2n)

where c1, c2, c3 > 0 are of the form cδ2/α4 for some absolute constant c. In partic-
ular, the random matrix A satisfies RIPm(δ) for m = bc1n/ log(N/c2n)c with high
probability.

Remark 2.7.5. — Observe that the dependence in δ is of the form cδ2/α4 and is
better than what was obtained in Theorem 2.5.5.



CHAPTER 3

CHAINING

The restricted isometry property has been introduced in Chapter 2 in order to pro-
vide a simple way of showing that a n×N matrix A satisfies the exact reconstruction
property. Indeed, if A is a n×N matrix such that for every 2m-sparse vector x ∈ RN ,

(1− δ2m)|x|22 6 |Ax|22 6 (1 + δ2m)|x|22
where δ2m <

√
2 − 1 then A satisfies the exact reconstruction property of order m

by `1-minimization (cf. Chapter 2). In particular, if A is a random matrix with rows
vectors Y1, . . . , Yn, this property can be translated in terms of an empirical processes
property since

δ2m = sup
x∈S2(Σ2m)

∣∣∣ 1
n

n∑
i=1

〈Yi, x〉2 − 1
∣∣∣. (3.1)

If we show an upper bound on the supremum (3.1) smaller than
√

2 − 1, this will
prove that the matrix A has the exact reconstruction property of order m by `1-
minimization. In Chapter 2, matrices in the subgaussian Ensemble was showed to
satisfy the restricted isometry property (with high probability) thanks to a technique
called the epsilon-net argument. In this chapter, we present a technique called the
chaining method used to obtain upper bounds on the supremum of stochastic pro-
cesses.

3.1. The chaining method

The chaining mechanism is a technique used to obtain upper bounds on the supre-
mum supt∈T Xt of a stochastic process (Xt)t∈T indexed by a set T . These upper
bounds are usually expressed in terms of some metric complexity measure of T .

One key idea behind the chaining method is the trade-off between the deviation or
concentration estimates of the increments of the process (Xt)t∈T and the complexity
of T endowed with a metric structure connected with the stochastic process (Xt)t∈T .

As an introduction, we show an upper bound on the supremum supt∈T Xt in terms
of an entropy integral known as the Dudley entropy integral. This entropy integral is
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based on some metric quantities of T that were introduced in Chapter 1 and that we
recall now.

Definition 3.1.1. — Let (T, d) be a semi-metric space (that is for every x, y and z
in T , d(x, y) = d(y, x) and d(x, y) 6 d(x, z)+d(z, y)). For every ε > 0, the ε-covering
number N(T, d, ε) of (T, d) is the minimal number of balls for the semi-metric d of
radius ε needed to cover T . The entropy is the logarithm of the ε-covering number as
a function of ε.

We develop the chaining argument under a subgaussian assumption on the incre-
ments of the process (Xt)t∈T saying that for every s, t ∈ T and u > 0,

P
[
|Xs −Xt| > ud(s, t)

]
6 2 exp(−cu2), (3.2)

where d is a semi-metric on T and c is an absolute positive constant. To avoid
some technical complications that are less important from our point of view,
we will only consider processes indexed by finite sets T . To handle more gen-
eral sets one may study the random variables sup

T ′⊂T :T ′ is finite supt∈T ′ |Xt| or

supT ′⊂T :T ′ is finite supt,s∈T ′ |Xt −Xs| which suffices for our goals.

Theorem 3.1.2. — There exist absolute constants c0, c1, c2 and c3 for which the
following holds. Let (T, d) be a semi-metric space and assume that (Xt)t∈T is a
stochastic process with increments satisfying the subgaussian condition (3.2). Then,
for every v > c0, with probability greater than 1− c1 exp(−c2v2)

sup
s,t∈T

|Xt −Xs| 6 c3v

∫ ∞
0

√
logN(T, d, ε)dε.

In particular,

E sup
s,t∈T

|Xt −Xs| 6 c3

∫ ∞
0

√
logN(T, d, ε)dε.

Proof. — Put η−1 = diam(T, d) and for every integer i > 0 set

ηi = inf
{
η > 0 : N(T, d, η) 6 22i

}
.

Let (Ti)i>0 be a sequence of subsets of T where T0 is a subset of T containing only
one element and for every i > 0, by definition of ηi, we take Ti+1 as a subset of T of

cardinality smaller than 22i+1

such that

T ⊂
⋃

x∈Ti+1

(
x+ ηiBd

)
,

where Bd is the unit ball associated with the semi-metric d. For every t ∈ T and
integer i, put πi(t) a nearest point to t in Ti. In particular, d(t, πi(t)) 6 ηi−1.

Since T is finite, then for every t ∈ T ,

Xt −Xπ0(t) =

∞∑
i=0

Xπi+1(t) −Xπi(t). (3.3)
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Let i ∈ N and t ∈ T . By the subgaussian assumption (3.2), for every u > 0, with
probability greater than 1− 2 exp(−cu2),

|Xπi+1(t) −Xπi(t)| 6 ud(πi+1(t), πi(t)) 6 u(ηi−1 + ηi) 6 2uηi−1. (3.4)

To get this result uniformly over every links (πi+1(t), πi(t)) for t ∈ T at level i, we

use an union bound (note that there are at most |Ti+1||Ti| 6 23.2i such links): with
probability greater than 1 − 2|Ti+1||Ti| exp(−cu2) > 1 − 2 exp

(
3.2i log 2 − cu2)

)
, for

every t ∈ T
|Xπi+1(t) −Xπi(t)| 6 2uηi−1.

To balance the “complexity” of the set of “links” with our deviation estimate, we take
u = v2i/2, where v is larger than

√
(6 log 2)/c. Thus, for the level i, we obtain with

probability greater than 1− 2 exp
(
− (c/2)v22i

)
, for all t ∈ T ,

|Xπi+1(t) −Xπi(t)| 6 2v2i/2ηi−1,

for every v larger than an absolute constant.
By (3.3) and summing over all levels i ∈ N, we have with probability greater than

1− 2
∑∞
i=0 exp

(
− (c/2)v22i

)
> 1− c1 exp(−c2v2), for every t ∈ T ,

|Xt −Xπ0(t)| 6 2v

∞∑
i=0

2i/2ηi−1 = 23/2v

∞∑
i=−1

2i/2ηi. (3.5)

Observe that if i ∈ N and η < ηi then N(T, d, η) > 22i . Hence N(T, d, η) > 22i + 1
and thus √

log(1 + 22i)(ηi − ηi+1) 6
∫ ηi

ηi+1

√
logN(T, d, η)dη,

and since log(1 + 22i) > 2i log 2 then summing over all i > −1,√
log 2

∞∑
i=−1

2i/2(ηi − ηi+1) 6
∫ η−1

0

√
logN(T, d, η)dη

and
∞∑

i=−1

2i/2(ηi − ηi+1) =

∞∑
i=−1

2i/2ηi −
∞∑
i=0

2(i−1)/2ηi >
(

1− 1√
2

) ∞∑
i=−1

2i/2ηi.

This proves that
∞∑

i=−1

2i/2ηi 6 c3

∫ ∞
0

√
logN(T, d, η)dη. (3.6)

We conclude that, for every v larger than
√

(6 log 2)/c, with probability greater
than 1− c1 exp(−c2v2), we have

sup
t∈T
|Xt −Xπ0(t)| 6 c4v

∫ ∞
0

√
logN(T, d, η)dη.
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Integrating the tail estimate,

E sup
t∈T
|Xt −Xπ0(t)| =

∫ ∞
0

P
[

sup
t∈T
|Xt −Xπ0(t)| > u

]
du

6 c5

∫ ∞
0

√
logN(T, d, ε)dε.

Finally, since |T0| = 1, it follows that, for every t, s ∈ T ,

|Xt −Xs| 6 |Xt −Xπ0(t)|+ |Xs −Xπ0(s)|

and the theorem is showed.

In the case of a stochastic process with subgaussian increments (cf. condition (3.2)),
the entropy integral ∫ ∞

0

√
logN(T, d, ε)dε

is called the Dudley entropy integral.
A careful look at the previous proof reveals one potential source of looseness. At

each level of the chaining mechanism, we used a uniform bound (depending only on
the level) to control each link. Instead, one can use “individual” bounds for every link
rather than the worst at every level. This idea is the basis of what is now called the
generic chaining. The natural metric complexity measure coming out of this method
is the γ2-functional which is now introduced.

Definition 3.1.3. — Let (T, d) be a semi-metric space. A sequence (Ts)s>0 of sub-

sets of T is admissible if |T0| 6 1 and |Ts| 6 22s for every s > 1. The γ2-functional
of (T, d) is

γ2(T, d) = inf
(Ts)

sup
t∈T

( ∞∑
s=0

2s/2d(t, Ts)
)

where the infimum is taken over all admissible sequences (Ts)s∈N and d(t, Ts) =
miny∈Ts d(t, y) for every t ∈ T and s ∈ N.

We note that the γ2-functional is upper bounded by the Dudley entropy integral:

γ2(T, d) 6 c0

∫ ∞
0

√
logN(T, d, ε)dε, (3.7)

where c0 is an absolute positive constant. Indeed, we construct an admissible sequence
(Ts)s∈N in the following way: let T0 be a subset of T containing one element and for

every s ∈ N, let Ts+1 be a subset of T of cardinality smaller than 22s+1

such that for
every t ∈ T there exists x ∈ Ti+1 satisfying d(t, x) 6 ηs, where ηs is defined by

ηs = inf
(
η > 0 : N(T, d, η) 6 22s

)
.

Inequality (3.7) follows from (3.6) and

sup
t∈T

( ∞∑
s=0

2s/2d(t, Ts)
)
6
∞∑
s=0

2s/2 sup
t∈T

d(t, Ts) 6
∞∑
s=0

2s/2ηs−1.
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Now, we apply the generic chaining mechanism to show an upper bound on the
supremum of processes whose increments satisfy the subgaussian assumption (3.2).

Theorem 3.1.4. — There exist absolute constants c0, c1, c2 and c3 such that the
following holds. Let (T, d) be a semi-metric space. Let (Xt)t∈T be a stochastic process
satisfying the subgaussian condition (3.2). For every v > c0, with probability greater
than 1− c1 exp(−c2v2)

sup
s,t∈T

|Xt −Xs| 6 c3vγ2(T, d)

and

E sup
s,t∈T

|Xt −Xs| 6 c3γ2(T, d).

Proof. — Let (Ts)s∈N be an admissible sequence. For every t ∈ T and s ∈ N denote
by πs(t) one point in Ts such that d(t, Ts) = d(t, πs(t)). Since T is finite, we can write
for every t ∈ T ,

|Xt −Xπ0(t)| 6
∞∑
s=0

|Xπs+1(t) −Xπs(t)|. (3.8)

Let s ∈ N. For every t ∈ T and v > 0, with probability greater than 1 −
2 exp(−c02sv2),

|Xπs+1(t) −Xπs(t)| 6 v2s/2d(πs+1(t), πs(t)).

We extend the last inequality to every link of the chains at level s by using an union
bound: for every v > c1, with probability greater than 1− 2 exp(−c22sv2), for every
t ∈ T ,

|Xπs+1(t) −Xπs(t)| 6 v2s/2d(πs+1(t), πs(t)).

An union bound on every level s ∈ N yields: for every v > c1, with probability
greater than 1− 2

∑∞
s=0 exp(−c22sv2), for every t ∈ T ,

|Xt −Xπ0(t)| 6 c2v
∞∑
s=0

2s/2d(πs(t), πs+1(t)) 6 c3v
∞∑
s=0

2s/2d(t, Ts).

The claim follows since the sum in the last probability estimate is comparable to its
first term.

Note that for Gaussian processes, the upper bound in expectation obtained in
Theorem 3.1.4 is sharp up to some absolute constants. This deep result, called the
Majorizing measure theorem, makes an equivalence between two different quantities
measuring the complexity of a set T ⊂ RN :

1. a metric complexity measure given by the γ2 functional

γ2(T, `N2 ) = inf
(Ts)

sup
t∈T

∞∑
s=0

2s/2d`N2 (t, Ts),

where the infimum is taken over all admissible sequences (Ts)s∈N of T ;
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2. a probabilistic complexity measure given by the expectation of the supremum
of the canonical Gaussian process indexed by T :

`∗(T ) = E sup
t∈T

∣∣∣ N∑
i=1

giti

∣∣∣,
where g1, . . . , gn are n i.i.d. standard Gaussian variables.

Theorem 3.1.5 (Majorizing measure Theorem). — There exist two absolute
positive constants c0 and c1 such that for every subset T of RN ,

c0`∗(T ) 6 γ2(T, `N2 ) 6 c1`∗(T ).

3.2. An example of a more sophisticated chaining argument

In this section, we show upper bounds on the supremum

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ , (3.9)

where X1, . . . , Xn are n i.i.d. random variables with values in a measurable space X
and F is a class of real-valued functions defined on X .

In Chapter 2, this bound is used to show the restricted isometry property in The-
orem 2.7.1. In this example, the class F is a class of linear functions indexed by a
set of sparse vectors. In particular, for this example, the class F is not uniformly
bounded.

In general, when ‖F‖∞ = supf∈F ‖f‖L∞(µ) < ∞, a bound on (3.9) follows from

a symmetrization argument combined with the contraction principle. In the present
study, we do not assume that F is uniformly bounded but we only assume that F has

a finite diameter in Lψ2(µ) where µ is the probability distribution of X
d
= X1. This

means that the norm

‖f‖ψ2(µ) = inf
(
c > 0 : E exp

(
|f(X)|2/c2

)
6 e
)

is uniformly bounded over every f in F . We denote this bound by α and thus we
assume that

α = diam(F,ψ2(µ)) = sup
f∈F
‖f‖ψ2(µ) <∞. (3.10)

In terms of random variables, Assumption (3.10) means that for all f ∈ F , f(X) has
a subgaussian behaviour and its ψ2 norm is uniformly bounded over F .

Under (3.10), we can apply the classical generic chaining mechanism and obtain
a bound on (3.9). Indeed, denote by (Xf )f∈F the empirical process where Xf =
n−1

∑n
i=1 f

2(Xi) − Ef2(X) for every f ∈ F . Assume that for every f and g in F ,
Ef2(X) = Eg2(X). In this case, the increments of the process (Xf )f∈F are

Xf −Xg =
1

n

n∑
i=1

f2(Xi)− g2(Xi)
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and we have (cf. Chapter 1)∥∥f2 − g2
∥∥
ψ1(µ)

6 ‖f + g‖ψ2(µ) ‖f − g‖ψ2(µ) 6 2α ‖f − g‖ψ2(µ) . (3.11)

In particular, the increment Xf − Xg is a sum of i.i.d. mean-zero ψ1 random vari-
ables. Hence, the concentration properties of the increments of (Xf )f∈F follow from
Theorem 1.2.8. Provided that for some f0 ∈ F , we have Xf0 = 0 or (Xf )f∈F is a
symmetric process then running the classical generic chaining mechanism with this
increment condition yields the following: for every u > c0, with probability greater
than 1− c1 exp(−c2u),

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3uα

(
γ2(F,ψ2(µ))√

n
+
γ1(F,ψ2(µ))

n

)
(3.12)

for some absolute positive constants c0, c1, c2 and c3 and for

γ1(F,ψ2(µ)) = inf
(Fs)

sup
f∈F

( ∞∑
s=0

2sdψ2(µ)(f, Fs)
)

where the infimum is taken over all admissible sequences (Fs)s∈N and dψ2(µ)(f, Fs) =
ming∈Fs ‖f − g‖ψ2(µ) for every f ∈ F and s ∈ N. Result (3.12) can be derived from

theorem 1.2.7 of [Tal05].
In some cases, computing γ1(F, d) for some metric d can be involved and only weak

estimates can be showed. Obtaining upper bounds on (3.9) which does not require
the computation of γ1(F,ψ2(µ)) can be of importance. In particular, upper bounds
depending only on γ2(F,ψ2(µ)) can be useful when the metrics Lψ2

(µ) and L2(µ) are
equivalent on F because of the Majorizing measure theorem (cf. Theorem 3.1.5). In
the next result, we show an upper bound on the supremum (3.9) depending only on
the ψ2(µ) diameter of F and of the complexity measure γ2(F,ψ2(µ)).

Theorem 3.2.1. — There exists absolute constants c0, c1, c2 and c3 such that the
following holds. Let F be a finite class of real-valued functions in S(L2(µ)), the unit
sphere of L2(µ) and denote by α the diameter diam(F,ψ2). Then, with probability at

least 1− c1 exp
(
− (c2/α

2) min
(
nα2, γ2(F,ψ2)2

))
,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3 max

(
α
γ2(F,ψ2)√

n
,
γ2(F,ψ2)2

n

)
.

Moreover, if F is a symmetric subset of S(L2(µ)) then,

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3 max

(
α
γ2(F,ψ2)√

n
,
γ2(F,ψ2)2

n

)
.

To show Theorem 3.2.1, we introduce the following notation. For every f ∈ L2(µ),
we set

Z(f) =
1

n

n∑
i=1

f2(Xi)− Ef2(X) and W (f) =
( 1

n

n∑
i=1

f2(Xi)
)1/2

. (3.13)
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Moreover, for the sake of shortness, in what follows, we omit to write the probability
measure µ of the L2(µ) norm, ψ1(µ) norm and ψ2(µ) norm.

To obtain upper bounds on the supremum (3.9) we study the deviation behaviour
of the increments of the underlying process. Namely, we need deviation results for
Z(f) − Z(g) for every f, g ∈ F . Moreover, since the “end of the chains” will be
analysed by different means, the deviation behaviour of the increments W (f − g) will
be of importance as well.

Lemma 3.2.2. — There exists an absolute constant C1 such that the following holds.
Let F ⊂ S(L2(µ)). Denote by α the diameter diam(F,ψ2). For every f, g ∈ F , we
have:

1. for every u > 2,

P
[
W (f − g) > u ‖f − g‖ψ2

]
6 2 exp

(
− C1nu

2
)
;

2. for every u > 0,

P
[
|Z(f)− Z(g)| > uα ‖f − g‖ψ2

]
6 2 exp

(
− C1nmin(u, u2)

)
;

and for every u > 0,

P
[
|Z(f)| > uα2

]
6 2 exp

(
− C1nmin(u, u2)

)
.

Proof. — Let f, g ∈ F . Since f, g ∈ Lψ2
, we have

∥∥(f − g)2
∥∥
ψ1

= ‖f − g‖2ψ2
and by

Theorem 1.2.8, for every t > 1,

P
[ 1

n

n∑
i=1

(f − g)2(Xi)− ‖f − g‖2L2
> t ‖f − g‖2ψ2

]
6 2 exp(−c1nt) (3.14)

Using ‖f − g‖ψ2
>
√
e− 1 ‖f − g‖L2

together with Equation (3.14), it is easy to get
for every u > 2,

P
[
W (f − g) > u ‖f − g‖ψ2

]
6 P

[ 1

n

n∑
i=1

(f − g)2(Xi)− ‖f − g‖2L2
> (u2 − (e− 1)) ‖f − g‖2ψ2

]
6 2 exp

(
− c2nu2

)
.

For the second statement, since Ef2 = Eg2, the increments are

Z(f)− Z(g) =
1

n

n∑
i=1

f2(Xi)− g2(Xi).

Thanks to (3.11), Z(f)−Z(g) is a sum of mean-zero ψ1 random variables and the result
follows from Theorem 1.2.8. The last statement is also a consequence of Theorem 1.2.8
and (3.11).
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Once obtained the deviation properties of the increments of the underlying pro-
cess(es) (that is (Z(f))f∈F and (W (f))f∈F ), we use the generic chaining mechanism
to obtain a uniform bound on (3.9). Since we work in a special framework (sum
of squares of ψ2 random variables), we will perform a particular chaining argument
which will allow us to avoid the γ1(F,ψ2) term coming out of the classical generic
chaining (cf. (3.12)).

If γ2(F,ψ2) = ∞ then the upper bound of Theorem 3.2.1 is trivial, otherwise
consider an almost optimal admissible sequence (Fs)s∈N of F with respect to ψ2(µ).
That is an admissible sequence (Fs)s∈N such that

γ2(F,ψ2) >
1

2
sup
f∈F

( ∞∑
s=0

2s/2dψ2
(f, Fs)

)
.

For every f ∈ F and integer s, put πs(f) a nearest point to f in Fs.
The idea of the proof is for every f ∈ F to analyze the links πs+1(f) − πs(f) for

s ∈ N of the chain (πs(f))s∈N in three different regions - values of the level s in [0, s1],
[s1 + 1, s0 − 1] or [s0,∞) for some well chosen s1 ans s0 - depending on the deviation
properties of the increments of the underlying process(es) at the s stage:

1. The end of the chain: we study the link f − πs0(f). In this part of the
chain, we work with the process (W (f − πs0(f)))f∈F which is subgaussian (cf.
Lemma 3.2.2). Thanks to this remark, we can avoid the sub-exponential be-
haviour of the process (Z(f))f∈F and thus the term γ1(F,ψ2) appearing in
(3.12);

2. The middle of the chain: we work at these stages with the process (Z(πs0−1(f))−
Z(πs1(f)))f∈F which has subgaussian increments in this range;

3. The beginning of the chain: we study the process (Z(πs1(f))f∈F . For this part
of the chain, the complexity of Fs1 is so small that a trivial comparison of the
process with the ψ2-diameter of F will be enough.

Proposition 3.2.3 (End of the chain). — There exist absolute constant c0, c1, c2
and c3 for which the following holds. Let F ⊂ S(L2(µ)) and α = diam(F,ψ2). For
every v > c0, with probability greater than 1− c1 exp(−c2nv),

sup
f∈F

W (f − πs0(f)) 6 c3
√
v
γ2(F,ψ2)√

n
,

where s0 = min
(
s > 0 : 2s > n

)
.

Proof. — Let f be in F . Since F is finite, we can write

f − πs0(f) =

∞∑
s=s0

πs+1(f)− πs(f),

and, since W is the empirical L2(Pn) norm (where Pn is the empirical distribution
n−1

∑n
i=1 δXi), it is sub-additive and so

W (f − πs0(f)) 6
∞∑
s=s0

W (πs+1(f)− πs(f)).
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Now, fix a level s > s0. Using a union bound on the set of links {(πs+1(f), πs(f)) :
f ∈ F} (note that there are at most |Fs+1||Fs| such links) and the subgaussian
property of W (i.e. Lemma 3.2.2), we get, for every u > 2, with probability greater
than 1− 2|Fs+1||Fs| exp(−C1nu

2), for every f ∈ F ,

W (πs+1(f)− πs(f)) 6 u ‖πs+1(f)− πs(f)‖ψ2
.

Then, note that for every s ∈ N, |Fs+1||Fs| 6 22s22s+1

= 23.2s so that a union bound
over all the levels s > s0 yields for every u such that u22s0 is larger than some absolute
constant, with probability greater than 1− 2

∑∞
s=s0
|Fs+1||Fs| exp(−C1n2su2) > 1−

c1 exp(−c0nu22s0), for every f ∈ F ,

W (f − πs0(f)) 6
∞∑
s=s0

W (πs+1(f)− πs(f)) 6
∞∑
s=s0

u2s/2 ‖πs+1(f)− πs(f)‖ψ2

6 2u
∞∑
s=s0

2s/2dψ2
(f, Fs).

We conclude with v = u22s0 for v large enough, s0 such that 2s0 ∼ n and with the
quasi-optimality of the admissible sequence (Fs)s>0.

Proposition 3.2.4 (Middle of the chain). — There exist absolute constants
c0, c1, c2 and c3 for which the following holds. Let s1 ∈ N be such that s1 6 s0 (where
s0 has been defined in Proposition 3.2.3). Let F ⊂ S(L2(µ)) and α = diam(F,ψ2).
For every u > c0, with probability greater than 1− c1 exp(−c22s1u),

sup
f∈F

∣∣Z(πs0(f))− Z(πs1(f))
∣∣ 6 c3uα

γ2(F,ψ2)√
n

.

Proof. — For every f ∈ F , we write

Z(πs0−1(f))− Z(πs1(f)) =

s0−1∑
s=s1+1

Z(πs(f))− Z(πs−1(f)).

Let s1 6 s 6 s2 and u > 0. Thanks to the second deviation result of Lemma 3.2.2,
with probability greater than 1− 2 exp

(
− C1nmin

(
(u2s/2/

√
n), (u22s/n)

))
,

|Z(πs(f))− Z(πs−1(f))| 6 u2s/2√
n
α ‖πs(f)− πs−1(f)‖ψ2

. (3.15)

Moreover, s 6 s0, thus 2s/n 6 2 and so min
(
u2s/2/

√
n, u22s/n

)
> min(u, u2)(2s/(2n)).

In particular, (3.15) holds with probability greater than 1−2 exp
(
−C12s min(u, u2)

))
.

Now, a union bound on the set of links for every levels s = s1, . . . , s0 − 1
yields, for any u > 0, with probability greater than 1 − 2

∑s0−1
s=s1+1 |Fs+1||Fs| exp

(
−

C12s min(u, u2)
)
, for every f ∈ F ,

∣∣Z(πs0(f))− Z(πs1(f))
∣∣ 6 s0−1∑

s=s1+1

u2s/2√
n
α ‖πs(f)− πs−1(f)‖ψ2

.
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The result follows since |Fs||Fs+1| 6 23.2s for every integer s and for u large enough.

Proposition 3.2.5 (Beginning of the chain). — There exist absolute posi-
tive constants c0 and c1 such that the following holds. Let w > 0 and s1

be such that 2s1 < (C1/2)nmin(w,w2) (where C1 is the constant appearing in
Lemma 3.2.2). Let F ⊂ S(L2(µ)) and α = diam(F,ψ2). With probability greater
than 1− c0 exp(−c1nmin(w,w2)),

sup
f∈F

∣∣Z(πs1(f))
∣∣ 6 wα2.

Proof. — It follows from the third deviation result of Lemma 3.2.2 and a union bound
over Fs1 , that with probability greater than 1 − 2|Fs1 | exp

(
− C1nmin(w,w2)

)
, for

every f ∈ F ,

|Z(πs1(f)| 6 wα2.

Since |Fs1 | 6 22s1 < exp
(
(C1/2)nmin(w,w2)

)
, the result follows.

Proof of Theorem 3.2.1. — Denote by (Fs)s∈N an almost optimal admissible se-
quence of F with respect to the ψ2-norm and, for every s ∈ N and f ∈ F , denote by
πs(f) one of the closest point of f in Fs with respect to ψ2. Let s0 ∈ N be such that
s0 = min

(
s > 0 : 2s > n

)
. We have, for every f ∈ F ,

|Z(f)| =
∣∣∣ 1
n

n∑
i=1

f2(Xi)− Ef2(X)
∣∣∣ =

∣∣∣ 1
n

n∑
i=1

(f − πs0(f) + πs0(f))2(Xi)− Ef2(X)
∣∣∣

=
∣∣∣Pn(f − πs0(f))2 + 2Pn(f − πs0(f))πs0(f) + Pnπs0(f)2 − Eπs0(f)2

∣∣∣
6W (f − πs0(f))2 + 2W (f − πs0(f))W (πs0(f)) + |Z(πs0(f))|

6W (f − πs0(f))2 + 2W (f − πs0(f))
(
Z(πs0(f)) + 1)1/2 + |Z(πs0(f))|

6 3W (f − πs0(f))2 + 2W (f − πs0(f)) + 3|Z(πs0(f))| (3.16)

where we used ‖πs0(f)‖L2
= 1 = ‖f‖L2

and the notation Pn stands for the empirical

probability distribution n−1
∑n
i=1 δXi .

Thanks to Proposition 3.2.3 for v = 1, with probability greater than 1 −
c0 exp(−c1n), for every f ∈ F ,

W (f − πs0(f))2 6 c2
γ2(F,ψ2)2

n
. (3.17)

Let w > 0 to be chosen later and take s1 ∈ N such that

s1 = max
(
s > 0 : 2s 6 min

(
2s0 , (C1/2)nmin(w,w2)

))
(3.18)

where C1 is the constant defined in Lemma 3.2.2. We apply Proposition 3.2.4 with
u = 1 and Proposition 3.2.5 to get, with probability greater than 1− c3 exp(−c42s1),
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for every f ∈ F ,

|Z(πs0(f))| 6 |Z(πs0(f))− Z(πs1(f))|+ |Z(πs1(f))|

6 c5α
γ2(F,ψ2)√

n
+ α2w. (3.19)

We combine Equation (3.16), (3.17) and (3.19) to get, with probability greater than
1− c6 exp(−c72s1), for every f ∈ F ,

|Z(f)| 6 c8
γ2(F,ψ2)2

n
+ c9

γ2(F,ψ2)√
n

+ c10α
γ2(F,ψ2)√

n
+ 3α2w.

First statement of Theorem 3.2.1 follows for

w = max
(γ2(F,ψ2)

α
√
n

,
γ2(F,ψ2)2

α2n

)
. (3.20)

For the last statement, we use Proposition 3.2.3 to get

E sup
f∈F

W (f − πs0(f))2 =

∫ ∞
0

P
[

sup
f∈F

W (f − πs0(f))2 > t
]
dt 6 c11

γ2(F,ψ2)2

n
(3.21)

and

E sup
f∈F

W (f − πs0(f)) 6 c12
γ2(F,ψ2)√

n
. (3.22)

It follows from proposition 3.2.4 and 3.2.5 for s1 and w defined in (3.18) and (3.20)
that

E sup
f∈F
|Z(πs0(f))| 6 E sup

f∈F
|Z(πs0(f))− Z(πs1(f))|+ E sup

f∈F
|Z(πs1(f))|

6
∫ ∞

0

P
[

sup
f∈F
|Z(πs0(f))− Z(πs1(f))| > t

]
dt+

∫ ∞
0

P
[

sup
f∈F
|Z(πs0(f))| > t

]
dt

6 cα
γ2(F,ψ2)√

n
. (3.23)

The claim follows by combining equations (3.21), (3.22) and (3.23) in Equation (3.16).

3.3. Bibliographical references

Dudley entropy bound (cf. Theorem 3.1.2) can be found in [Dud67]. Other Dudley
entropy bounds for processes (Xt)t∈T with Orlicz norm of the increments satisfying,
for every s, t ∈ T ,

‖Xt −Xs‖ψ 6 d(s, t) (3.24)

are obtained in [Pis80] and [Kôn80]. Under the increment condition (3.24), the
Dudley entropy integral ∫ ∞

0

ψ−1
(
N(T, d, ε)

)
dε,

where ψ−1 is the inverse function of the Orlicz function ψ, is an upper bound on
E supt∈T coming out of the chaining argument.



3.3. BIBLIOGRAPHICAL REFERENCES 71

For the partition scheme method used in the generic chaining mechanism of Theo-
rem 3.1.4, we refer to [Tal05] and [Tal01]. The generic chaining mechanism was first
introduced using majorizing measures. This tool was introduced in [Fer74, Fer75]
and is implicit in earlier work by Preston based on an important result of Garcia,
Rodemich and Rumsey. In [Tal87], the author proves that majorizing measures are
the key quantities to analyze the supremum of Gaussian processes. In particular, the
majorizing measure theorem (cf. Theorem 3.1.5) is shown in [Tal87]. More about ma-
jorizing measures and majorizing measure theorems for other processes than Gaussian
processes can be found in [Tal96a] and [Tal95]. Connections between the majorizing
measures and partition schemes have been showed in [Tal05] and [Tal01].

The upper bounds on the process

sup
f∈F

∣∣∣ 1
n

n∑
i=1

f2(Xi)− Ef2(X)
∣∣∣ (3.25)

developed in Section 3.2 follow the line of [MPTJ07]. Other bounds on (3.25) can
be found in the next chapter (cf. Theorem 5.2.14).





CHAPTER 4

SINGULAR VALUES OF RANDOM MATRICES

The extremal singular values of a matrix are very natural geometrical quantities
concentrating an essential information on the invertibility and stability of the matrix.
This chapter aims to provide an accessible introduction to the notion of singular values
of matrices and their behavior when the entries are random, including quite recent
striking results from random matrix theory and high dimensional geometric analysis.

For every square matrix A ∈Mn,n(C), we denote by λ1(A), . . . , λn(A) the eigenval-
ues of A which are the roots in C of the characteristic polynomial det(A−ZI) ∈ C[Z].
We label the eigenvalues of A so that |λ1(A)| > · · · > |λn(A)|. In all this chapter, K
stands for R or C, and we say that U ∈Mn,n(K) is K-unitary when UU∗ = I.

4.1. Singular values of deterministic matrices

This section gathers a selection of classical results from linear algebra. We begin
with the Singular Value Decomposition (SVD), a fundamental tool in matrix analysis,
which expresses a diagonalization up to unitary transformations of the space.

Theorem 4.1.1 (Singular Value Decomposition). — For every A ∈Mm,n(K),
there exists a couple of K–unitary matrices U (m×m) and V (n×n) and a sequence
of real numbers s1 > · · · > sm∧n > 0 such that

U∗AV = diag(s1, . . . , sm∧n) ∈Mm,n(K).

This sequence of real numbers does not depend on the particular choice of U, V .

Proof. — Let v ∈ Kn be such that |Av|2 = max|x|2=1 |Ax|2 = ‖A‖2→2 = s. If |v|2 = 0
then A = 0 and the desired result is trivial. If s > 0 then let us define u = Av/s.
One can find a K-unitary matrix U of size m×m with first column equal to u, and
a K-unitary matrix V of size n× n with first column equal to v. It follows that

U∗AV =

(
s w∗

0 B

)
= A1
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for some w ∈ Mn−1,1(K) and B ∈ Mm−1,n−1(K). If t is the first row of A1 then

|A1t
∗|22 > (s2 + |w|22)2 and therefore ‖A1‖22→2 > s2 + |w|22 > ‖A‖22→2. On the other

hand, since A and A1 are unitary equivalent, we have ‖A1‖2→2 = ‖A‖2→2. Therefore
w = 0, and the desired decomposition follows by a simple induction.

The numbers sk(A) := sk for k ∈ {1, . . . ,m∧n} are called the singular values of A.
The columns of U and V are the eigenvectors of AA∗ (m×m) and A∗A (n×n). These
two positive semidefinite Hermitian matrices share the same sequence of eigenvalues,
up to the multiplicity of the eigenvalue 0, and for every k ∈ {1, . . . ,m ∧ n},

sk(A) = λk(
√
AA∗) =

√
λk(AA∗) =

√
λk(A∗A) = λk(

√
A∗A) = sk(A∗).

Actually, if one sees the diagonal matrix D := diag(s1(A)2, . . . , sm∧n(A)2) as an
element of Mm,m(K) or Mn,n(K) by appending as much zeros as needed, we have

U∗AA∗U = D and V ∗A∗AV = D.

When A is normal (i.e. AA∗ = A∗A) then m = n and sk(A) = |λk(A)| for every
k ∈ {1, . . . , n}. For any A ∈ Mm,n(K), the eigenvalues of the (m + n) × (m + n)
Hermitian matrix

H =

(
0 A∗

A 0

)
(4.1)

are given by

+s1(A),−s1(A), . . . ,+sm∧n(A),−sm∧n(A), 0, . . . , 0

where the notation 0, . . . , 0 stands for a sequence of 0’s of length

m+ n− 2(m ∧ n) = (m ∨ n)− (m ∧ n).

One may deduce the singular values of A from the eigenvalues of H. Note that when
m = n and Ai,j ∈ {0, 1} for all i, j, then A is the adjacency matrix of an oriented
graph, and H is the adjacency matrix of a compagnon nonoriented bipartite graph.

For any A ∈ Mm,n(K), the matrices A, Ā, A>, A∗, WA, AW ′ share the same
sequences of singular values, for any K–unitary matrices W,W ′. If u1 ⊥ · · · ⊥ um ∈
Km and v1 ⊥ · · · ⊥ vn ∈ Kn are the columns of U, V then for every k ∈ {1, . . . ,m∧n},

Avk = sk(A)uk and A∗uk = sk(A)vk (4.2)

while Avk = 0 and A∗uk = 0 for k > m ∧ n. The SVD gives an intuitive geometrical
interpretation of A and A∗ as a dual correspondence/dilation between two orthonor-
mal bases known as the left and right eigenvectors of A and A∗. Additionally, A has
exactly r = rank(A) nonzero singular values s1(A), . . . , sr(A) and

A =

r∑
k=1

sk(A)ukv
∗
k and

{
kernel(A) = span{vr+1, . . . , vn},
range(A) = span{u1, . . . , ur}.

We have also sk(A) = |Avk|2 = |A∗uk|2 for every k ∈ {1, . . . ,m ∧ n}. It is well
known that the eigenvalues of a Hermitian matrix can be expressed in terms of the
entries of the matrix via minimax variational formulas. The following theorem is the
counterpart for the singular values, and can be deduced from its Hermitian cousin.
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Theorem 4.1.2 (Courant–Fischer variational formulas for singular values)
For every A ∈Mm,n(K) and every k ∈ {1, . . . ,m ∧ n},

sk(A) = max
V ∈Vk

min
x∈V
|x|2=1

|Ax|2 = min
V ∈Vn−k+1

max
x∈V
|x|2=1

|Ax|2

where Vk is the set of subspaces of Kn of dimension k. In particular, we have

s1(A) = max
x∈Kn

|x|2=1

|Ax|2 and sm∧n(A) = min
x∈Kn

|x|2=1

|Ax|2.

We have also the following alternative formulas, for every k ∈ {1, . . . ,m ∧ n},

sk(A) = max
V ∈Vk
W∈Vk

min
(x,y)∈V×W
|x|2=|y|2=1

〈Ax, y〉.

As an exercise, one can check that if A ∈ Mm,n(R) then the variational formulas
for K = C, if one sees A as an element of Mm,n(C), coincide actually with the
formulas for K = R. Geometrically, the matrix A maps the Euclidean unit ball to an
ellipsoid, and the singular values of A are exactly the half lengths of the m∧n largest
principal axes of this ellipsoid, see figure 1. The remaining axes have a zero length.
In particular, for A ∈ Mn,n(K), the variational formulas for the extremal singular
values s1(A) and sn(A) correspond to the half length of the longest and shortest axes.

A

Figure 1. Largest and smallest singular values of A ∈M2,2(R).

From the Courant–Fischer variational formulas, the largest singular value is the
operator norm of A for the Euclidean norm |·|2, namely

s1(A) = ‖A‖2→2 .

The map A 7→ s1(A) is Lipschitz and convex. In the same spirit, if U, V are the couple
of K–unitary matrices from an SVD of A, then for any k ∈ {1, . . . , rank(A)},

sk(A) = min
B∈Mm,n(K)
rank(B)=k−1

‖A−B‖2→2 = ‖A−Ak‖2→2 where Ak =

k−1∑
i=1

si(A)uiv
∗
i

with ui, vi as in (4.2). Let A ∈ Mn,n(K) be a square matrix. If A is invertible then
the singular values of A−1 are the inverses of the singular values of A, in other words

∀k ∈ {1, . . . , n}, sk(A−1) = sn−k+1(A)−1.
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Moreover, a square matrix A ∈Mn,n(K) is invertible iff sn(A) > 0, and in this case

sn(A) = s1(A−1)−1 =
∥∥A−1

∥∥−1

2→2
.

Contrary to the map A 7→ s1(A), the map A 7→ sn(A) is Lipschitz but is not convex.
Regarding the Lipschitz nature of the singular values, the Courant–Fischer variational
formulas provide the following more general result, which has a Hermitian couterpart.

Theorem 4.1.3 (Weyl additive perturbations). — If A,B ∈ Mm,n(K) then
for every i, j ∈ {1, . . . ,m ∧ n} with i+ j 6 1 + (m ∧ n),

si+j−1(A) 6 si(B) + sj(A−B).

In particular, the singular values are uniformly Lipschitz functions since

max
16k6m∧n

|sk(A)− sk(B)| 6 ‖A−B‖2→2 .

From the Courant–Fischer variational formulas we obtain also the following result.

Theorem 4.1.4 (Cauchy interlacing by rows deletion)
Let A ∈Mm,n(K) and k ∈ {1, 2, . . .} with 1 6 k 6 m 6 n and let B ∈Mm−k,n(K)

be a matrix obtained from A by deleting k rows. Then for every i ∈ {1, . . . ,m− k},

si(A) > si(B) > si+k(A).

In particular we have [sm−k(B), s1(B)] ⊂ [sm(A), s1(A)]. Row deletions produce
a sort of compression of the singular values interval. Another way to express this
phenomenon consists in saying that if we add a row to B then the largest singular
value increases while the smallest singular value is diminished. From this point of view,
the worst case corresponds to square matrices. Closely related, the following result
on finite rank additive perturbations can be proved by using interlacing inequalities
for the eigenvalues of Hermitian matrices and their principal submatrices.

Theorem 4.1.5 (Interlacing for finite rank additive perturbations [Tho76])
For any A,B ∈Mn,n(K) with rank(A−B) 6 k, we have, for any i ∈ {1, . . . , n},

si−k(A) > si(B) > si+k(A)

where sr = +∞ if r 6 0 and sr = 0 if r > n + 1. Conversely, any sequences of non
negative real numbers which satisfy to these interlacing inequalities are the singular
values of matrices A and B with rank(A−B) 6 k.

In particular, we have [sn−k(B) , sk+1(B)] ⊂ [sn(A) , s1(A)]. It is worthwhile to
observe that the interlacing inequalities of theorem 4.1.5 give neither an upper bound
for the largest singular values s1(B), . . . , sk(B) nor a lower bound for the smallest
singular values sn−k+1(B), . . . , sn(B), even when k = 1.

Remark 4.1.6 (Hilbert-Schmidt norm). — For every A ∈Mm,n(K) we set

‖A‖HS
2

:= Tr(AA∗) = Tr(A∗A) =

n∑
i,j=1

|Ai,j |2 = s1(A)2 + · · ·+ sm∧n(A)2.
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This defines the so called Hilbert–Schmidt or Frobenius norm ‖·‖HS. We have always

‖A‖2→2 6 ‖A‖HS 6
√

rank(A) ‖A‖2→2

where equalities are achieved when rank(A) = 1 and A = I ∈ Mm,n(K) respectively.
The advantage of ‖·‖HS over ‖·‖2→2 lies in its convenient expression in terms of the
matrix entries. Actually, the Frobenius norm is Hilbertian for the Hermitian product

〈A,B〉 = Tr(AB∗).

Let us mention a result on the Frobenius Lipschitz norm of the singular values, due
to Wielandt and Hoffman [HW53], which says that if A,B ∈Mm,n(K) then

m∧n∑
k=1

(sk(A)− sk(B))2 6 ‖A−B‖HS
2
.

We end up by a result related to the Frobenius norm, due to Eckart and Young [EY39].
We have seen that a matrix A ∈Mm,n(K) has exactly r = rank(A) non zero singular
values. More generally, if k ∈ {0, 1, . . . , r} and if Ak ∈ Mm,n(K) is obtained from
the SVD of A by forcing si = 0 for all i > k then

min
B∈Mm,n(K)
rank(B)=k

‖A−B‖HS
2

= ‖A−Ak‖HS
2

= sk+1(A)2 + · · ·+ sr(A)2.

Remark 4.1.7 (Norms and unitary invariance). — For every k ∈ {1, . . . ,m ∧
n} and any real number p > 1, the map A ∈Mm,n(K) 7→ (s1(A)p + · · ·+ sk(A)p)1/p

is a unitary invariant norm on Mm,n(K). We recover the operator norm ‖A‖2→2

for k = 1 and the Frobenius norm ‖A‖HS for (k, p) = (m ∧ n, 2). The special case
(k, p) = (m ∧ n, 1) is known as the Ky Fan norm of order k, while the special case
k = m∧n is known as the Schatten p-norm. For more material, see [Bha97, Zha02].

4.1.1. Condition number. — The condition number of A ∈Mn,n(K) is given by

κ(A) = ‖A‖2→2

∥∥A−1
∥∥

2→2
=
s1(A)

sn(A)
.

The condition number quantifies the numerical sensitivity of linear systems involving
A. For instance, if x ∈ Kn is the solution of the linear equation Ax = b then x = A−1b.
If b is known up to precision δ ∈ Kn then x is known up to precision A−1δ. Therefore,
the ratio of relative errors for the determination of x is given by

R(b, δ) =

∣∣A−1δ
∣∣
2
/
∣∣A−1b

∣∣
2

|δ|2/|b|2
=

∣∣A−1δ
∣∣
2

|δ|2
|b|2
|A−1b|2

.

Consequently, we obtain

max
b 6=0,δ 6=0

R(b, δ) =
∥∥A−1

∥∥
2→2
‖A‖2→2 = κ(A).

Geometrically, κ(A) measures the “spherical defect” of the ellipsoid in figure (1).
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4.1.2. Basic relationships between eigenvalues and singular values. — We
know that if A ∈ Mn,n(K) is normal (i.e. AA∗ = A∗A) then sk(A) = |λk(A)| for
every k ∈ {1, . . . , n}. Beyond normal matrices, for every A ∈ Mn,n(K) with rows
R1, . . . , Rn, we have, by viewing |det(A)| as the volume of a hyperparallelogram,

|det(A)| =
n∏
k=1

|λk(A)| =
n∏
k=1

sk(A) =

n∏
k=1

dist(Rk, span{R1, . . . , Rk−1}) (4.3)

The following result, due to Weyl, is less global and more subtle.

Theorem 4.1.8 (Weyl inequalities [Wey49]). — If A ∈Mn,n(K), then

∀k ∈ {1, . . . , n},
k∏
i=1

|λi(A)| 6
k∏
i=1

si(A) and

n∏
i=k

si(A) 6
n∏
i=k

|λi(A)| (4.4)

Moreover, for every increasing function ϕ from (0,∞) to (0,∞) such that t 7→ ϕ(et)
is convex on (0,∞) and ϕ(0) := limt→0+ ϕ(t) = 0, we have

∀k ∈ {1, . . . , n},
k∑
i=1

ϕ(|λi(A)|2) 6
k∑
i=1

ϕ(si(A)2). (4.5)

Observe that from (4.5) with ϕ(t) = t for every t > 0 and k = n, we obtain

n∑
k=1

|λk(A)|2 6
n∑
k=1

sk(A)2 = Tr(AA∗) =

n∑
i,j=1

|Ai,j |2 = Tr(AA∗) = ‖A‖HS
2
. (4.6)

The following result, due to Horn, constitutes a converse to Weyl inequalities 4.3. It
explains why so many generic relationships between eigenvalues and singular values
are consequences of (4.3), for instance via majorization inequalities and techniques.

Theorem 4.1.9 (Sherman inverse problem [Hor54]). — Let (λ, s) ∈ Cn × Rn
be such that |λ1| > · · · > |λn| and s1 > · · · > sn > 0. If these numbers satisfy
additionally to all the Weyl relationships (4.3) then there exists A ∈ Mn,n(C) such
that λi(A) = λi and si(A) = si for every i ∈ {1, . . . , n}.

From (4.3) we get sn(A) 6 |λn(A)| 6 |λ1(A)| 6 s1(A) for any A ∈ Mn,n(K).
In particular, we have the following comparison between the spectral radius and the
operator norm:

ρ(A) = |λ1(A)| 6 s1(A) = ‖A‖2→2 .

In this spirit, the following result, due to Gelfand, allows to estimate the spectral
radius ρ(A) with the singular values of the powers of A.

Theorem 4.1.10 (Gelfand spectral radius formula [Gel41])
Let ‖·‖ be a submultiplicative matrix norm on Mn,n(K) such as the operator norm

‖·‖2→2 or the Frobenius norm ‖·‖HS. Then for every matrix A ∈Mn,n(K) we have

ρ(A) := |λ1(A)| = lim
k→∞

k

√
‖Ak‖.
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The eigenvalues of non normal matrices are far more sensitive to perturbations
than the singular values, and this is captured by the notion of pseudo spectrum,
which bridges eigenvalues and singular values, see for instance the book [TE05].

4.1.3. Relation with rows distances. — The following couple of lemmas relate
the singular values of matrices to distances between rows (or columns). For square
random matrices, they provide a convenient control on the operator norm and Frobe-
nius norm of the inverse respectively. The first lemma can be found in the work of
Rudelson and Vershynin while the second appears in the work of Tao and Vu.

Lemma 4.1.11 (Rudelson-Vershynin [RV09]). — If A ∈ Mm,n(K) has rows
R1, . . . , Rm, then, denoting R−i = span{Rj : j 6= i}, we have

m−1/2 min
16i6m

dist2(Ri, R−i) 6 sm∧n(A) 6 min
16i6m

dist2(Ri, R−i).

Proof. — Since A and A> have same singular values, we can prove the statement for
the columns of A. For every vector x ∈ Kn and every i ∈ {1, . . . , n}, the triangle
inequality and the identity Ax = x1C1 + · · ·+ xnCn give

|Ax|2 > dist2(Ax,C−i) = min
y∈C−i

|Ax− y|2 = min
y∈C−i

|xiCi − y|2 = |xi|dist2(Ci, C−i).

If |x|2 = 1 then necessarily |xi| > n−1/2 for some i ∈ {1, . . . , n}, and therefore

sm∧n(A) = min
|x|2=1

|Ax|2 > n−1/2 min
16i6n

dist2(Ci, C−i).

Conversely, for any i ∈ {1, . . . , n}, there exists a vector y ∈ Kn with yi = 1 such that

dist2(Ci, C−i) = |y1C1 + · · ·+ ynCn|2 = |Ay|2 > |y|2 min
|x|2=1

|Ax|2 > sm∧n(A)

where we used the fact that |y|22 = |y1|2 + · · ·+ |yn|2 > |yi|2 = 1.

Lemma 4.1.12 (Tao-Vu [TV10]). — Let 1 6 m 6 n and A ∈ Mm,n(K) with
rows R1, . . . , Rm. If rank(A) = m then, denoting R−i = span{Rj : j 6= i}, we have

m∑
i=1

s−2
i (A) =

m∑
i=1

dist2(Ri, R−i)
−2.

Proof. — The orthogonal projection of Ri on R−i is B∗(BB∗)−1BR∗i where B is the
(m− 1)× n matrix obtained from A by removing the row Ri. In particular, we have

|Ri|22 − dist2(Ri, R−i)
2 =

∣∣B∗(BB∗)−1BR∗i
∣∣2
2

= (BR∗i )
∗(BB∗)−1BR∗i

by the Pythagoras theorem. On the other hand, the Schur bloc inversion formula
states that if M is an m×m matrix then for every partition {1, . . . ,m} = I ∪ Ic,

(M−1)I,I = (MI,I −MI,Ic(MIc,Ic)
−1MIc,I)

−1.

Now we take M = AA∗ and I = {i}, and we note that (AA∗)i,j = Ri ·Rj , which gives

((AA∗)−1)i,i = (Ri ·Ri − (BR∗i )
∗(BB∗)−1BR∗i )

−1 = dist2(Ri, R−i)
−2.

The desired formula follows by taking the sum over i ∈ {1, . . . ,m}.
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4.1.4. Algorithm for the computation of the SVD. — To compute the SVD
of A ∈ Mm,n(K) one can diagonalize both AA∗ and A∗A or diagonalize the matrix
H defined in (4.1). Unfortunately, this approach can lead to a loss of information
numerically. In practice, and up to machine precision, the SVD is better computed
with a two step algorithm such as (the real world algorithm is a bit more involved):

1. Unitary bidiagonalization. Compute a couple of K–unitary matrices W,W ′ such
that B = WAW ′ is bidiagonal. Both W,W ′ are product of Householder reflec-
tions, see [GVL96]. One can also use Gram–Schmidt orthonormalization of the
rows. It is worthwhile to mention that a very similar method allows also the
tridiagonalization of Hermitian matrices (in this case we have W = W ′).

2. Iterative algorithm for bidiagonal matrices. Compute the SVD of B up to machine
precision with a variant of the QR algorithm due to Golub and Kahan. Note that
the standard QR iterative algorithm allows the iterative numerical computation
of the eigenvalues of arbitrary square matrices.

The svd command of Matlab, GNU Octave, GNU R, and Scilab allows the numerical
computation of the SVD. At the time of writing, the GNU Octave and GNU R version
is based on LAPACK. The GNU Scientific Library (GSL) offers an algorithm based
on Jacobi orthogonalization. There exists many other algorithms/variants for the
numerical computation of the SVD, see [GVL96, sections 5.4.5 and 8.6].� �
octave> A = rand ( 5 , 3 ) % Generate a random 5x3 matrix

A = 0.3479368 0.7948432 0.0011214
0.4912752 0.6836159 0.8509682
0.0315889 0.9831456 0.3328946
0.3665785 0.9985220 0.6228932
0.2481886 0.5890069 0.2542045

octave> [U,D,V] = svd (A) % Compute SVD up to machine prec.

U = −0.351343 −0.557528 0.667944 −0.165446 −0.303643
−0.509631 0.708933 0.144001 −0.438839 −0.156123
−0.448938 −0.414874 −0.704250 −0.353062 −0.075585
−0.563423 0.084485 −0.082364 0.808135 −0.124705
−0.312799 −0.085546 0.174251 −0.048095 0.928527

D = Diagonal Matrix
2 .18534 0 0

0 0.61541 0
0 0 0.31967
0 0 0
0 0 0

V = −0.30703 0.24525 0.91956
−0.83093 −0.54016 −0.13337
−0.46400 0.80503 −0.36963

octave> norm(U∗D∗V’−A, ” f r o ”) % Quality check (Frobenius)

ans = 6.0189 e−16
octave> norm(U∗U’−eye ( 5 , 5 ) , ” f r o ”) % Quality check (Frobenius)

ans = 8.2460 e−16
octave> norm(V∗V’−eye ( 3 , 3 ) , ” f r o ”) % Quality check (Frobenius)

ans = 3.3309 e−16
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� �
4.1.5. Some concrete applications of the SVD. — The SVD is typically used
for dimension reduction and for regularization. For instance, the SVD allows to
construct the so called Moore–Penrose pseudoinverse [Moo20, Pen56] of a matrix
by replacing the non null singular values by their inverse while leaving in place the
null singular values. Generalized inverses of integral operators were introduced earlier
by Fredholm in [Fre03]. Such generalized inverse of matrices provide for instance
least squares solutions to degenerate systems of linear equations. A diagonal shift in
the SVD is used in the so called Tikhonov regularization [Tik43, Tar05] or ridge
regression for solving over determined systems of linear equations. The SVD is at
the heart of the so called principal component analysis (PCA) technique in applied
statistics for multivariate data analysis, see for instance the book [Jol02]. The partial
least squares (PLS) regression technique is also connected to PCA/SVD. In the last
decade, the PCA was used together with the so called kernel methods in learning
theory. Certain generalizations of the SVD are used for the regularization of ill posed
inverse problems such as X ray tomography, emission tomography, inverse diffraction
and inverse source problems, and the linearized inverse scattering problem, see for
instance the book [BB98]. The application of the SVD to compressed sensing is
under development and some few devoted books will appear in the near future.

4.2. Singular values of Gaussian random matrices

In the sequel, the standard Gaussian on K is N (0, 1) if K = R and N (0, 1
2I2) if

K = C ≡ R2. If Z is a standard Gaussian random variable on K then

Var(Z) := E(|Z − EZ|2) = E(|Z|2) = 1.

4.2.1. Matrix model. — Let (Gi,j)i,j>1 be an infinite matrix of i.i.d. standard
Gaussian random variables on K. For every m,n ∈ {1, 2, . . .}, the random m × n
matrix

G := (Gi,j)16i6m, 16j6n

has Lebesgue density, in Mm,n(K) ≡ Knm, proportional to

G 7→ exp

−β
2

m∑
i=1

n∑
j=1

|Gi,j |2
 = exp

(
−β

2
Tr(GG∗)

)
= exp

(
−β

2
‖G‖HS

2

)
where

β :=

{
1 if K = R,

2 if K = C.

The law of G is K–unitary invariant since UGV
d
= G for every deterministic K–

unitary matrices U (m×m) and V (n× n). For K = C we have

G =
1√
2

(G1 +
√
−1G2)
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where G1 and G2 are i.i.d. copies of the case K = R. The law of G is also known as
the K Ginibre ensemble, see [Gin65, Meh04]. The symplectic case where K is the
quaternions (β = 4) is not considered in these notes. The columns C1, . . . , Cn of the
random matrix G are i.i.d. standard Gaussian random column vectors of Km with
i.i.d. standard Gaussian coordinates. Their empirical covariance matrix is

1

n

n∑
k=1

CkC
∗
k =

1

n
GG∗.

The strong law of large numbers gives limn→∞ n−1GG∗ = Im a.s. We are interested
in the sequel in asymptotics when both n and m tend to infinity. The random matrix
GG∗ is m × m Hermitian positive semidefinite. If m > n then the random matrix
GG∗ is singular with probability one, as a linear combination of n < m rank one
m×m matrices C1C

∗
1 , . . . , CnC

∗
n. If m 6 n then the random matrix GG∗ is invertible

with probability one (comes from the diffuse nature of Gaussian measures), and

∀k ∈ {1, . . . ,m}, sk(G)2 = λk(GG∗) = nλk

(
1

n
GG∗

)
.

4.2.2. Unitary bidiagonalization. — Let us consider the K–unitary bidiagonal-
ization of section 4.1.4, for the Gaussian matrix G. Assume for convenience that
m 6 n. One can find random K–unitary matrices W (m×m) and W ′ (n× n) such
that B := WGW ′ is bidiagonal with

B =
1√
β



Sn 0 0 0 · · · 0
Tm−1 Sn−1 0 0 · · · 0

0 Tm−2 Sn−2 0 · · · 0

0 0
...

... · · · 0
...

... · · · 0
0 0 0 0 · · · 0 T1 Sn−(m−1) 0 · · · 0


.

(4.7)
Following Silverstein [Sil85] the random variables Sn, . . . , Sn−(m−1), Tm−1, . . . , T1 are

independent with laws given by S2
k ∼ χ2(βk) for every k ∈ {n− (m− 1), . . . , n} and

T 2
k ∼ χ2(βk) for every k ∈ {1, . . . ,m− 1}. The random matrices B and G share the

same sequence of singular values. Such an explicit bidiagonalization has an amazing
consequence for the simulation of the singular values of G. It allows to reduce the
dimension from nm to 2(n ∧m)− 1.

4.2.3. Densities. — The random Hermitian positive semidefinite m × m matrix

GG∗ can be seen as a random vector of Rm ×K(m2−m)/2. If m 6 n, the law of GG∗

is a Wishart distribution with Lebesgue density in Rm ×K(m2−m)/2 proportional to

W 7→ det(W β(n−m+1)/2−1) exp

(
−β

2
Tr(W )

)
(4.8)

on the cone of Hermitian positive semidefinite matrices. This Wishart law is also
known as the β–Laguerre ensemble or Laguerre Orthogonal Ensemble (LOE) for β = 1
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and Laguerre Unitary Ensemble (LUE) for β = 2. The correlation between the
entries is captured by the determinental term, which surprisingly vanishes when n =
m + 2β−1 − 1. In the SVD of G, one can take U, V distributed according to the
normalized Haar measure on the K–unitary group, and independent of the singular
values. As a consequence, the same holds true for the K–unitary diagonalization of
the positive semidefinite Hermitian matrix GG∗. When m 6 n, this diagonalization,
seen as a change of variable, followed by the partial integration over the K–unitary
group of (4.8) with respect to the eigenvectors, gives the expression of the density of
λ1(GG∗), . . . , λm(GG∗), which turns out to be proportional to

λ 7→ exp

(
−β

2

m∑
i=1

λi

)
m∏
i=1

λ
β(n−m+1)/2−1
i

∏
16i<j6m

|λi − λj |β (4.9)

on {λ ∈ [0,∞)m : λ1 > · · · > λn}. The normalizing constant is a Selberg integral,
and can be explicitly computed [Meh04]. The (repulsive) correlation is captured
by the Vandermonde determinant, which comes from the Jacobian of the change of
variable (unitary diagonalization). If m = n = 1 then (4.8,4.9) are identical (χ2

law). The formulas (4.8,4.9) were considered by e.g. Wishart [Wis28] and James
[Jam60]. For a modern presentation, see e.g. Edelman and Rao [ER05] or Haagerup
and Thorbjørnsen [HT03].

4.2.4. Orthogonal polynomials. — Set K = C. If m 6 n then the density (4.9)
of the eigenvalues of the m×m random matrix GG∗ turns out to be proportional to

λ 7→ det [(S(λi, λj))16i,j6m] with S(x, y) :=
√
g(x)g(y)

m−1∑
k=0

Pk(x)Pk(y) (4.10)

where (Pk)k>0 are the Laguerre orthonormal polynomials [Sze75] relative to the
Gamma law on [0,∞) with density g proportional to x 7→ xn−m exp (−x). Both g and
(Pk)k>0 depend on m,n. These determinental/polynomial formulas appear in various
works, see e.g. Deift [Dei99], Forrester [For10], and Mehta [Meh04], Haagerup and
Thorbjørnsen [HT03] and Ledoux [Led04]. When m 6 n, and at the formal level,
it follows from this determinental/polynomial expression of the density that for any
Borel symmetric function F : [0,∞)m → R, the expectation

E[F (λ1(GG∗), . . . , λm(GG∗))]

can be expressed in terms of the determinant (4.10). The behavior of such averaged
symmetric functions when n and m tend to infinity is related to the asymptotics of the
Laguerre polynomials (Pk)k>0. Useful symmetric functions of the eigenvalues include

1. F (λ1, . . . , λm) = f(λ1) + · · ·+ f(λm) for some fixed f : [0,∞)→ R;
2. F (λ1, . . . , λm) = min(λ1, . . . , λm);
3. F (λ1, . . . , λm) = max(λ1, . . . , λm).

The real case K = R is similar but trickier due to β = 1 in (4.9), see [For10].
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4.2.5. Behavior of the singular values. — We begin our tour of horizon with
the behavior of the counting probability measure of the eigenvalues of n−1GG∗. It is
customary in random matrix theory to speak about the “bulk behavior”, in contrast
with the “edge behavior” which concerns the extremal eigenvalues. When m 6 n,
this corresponds to the counting probability measure of the squared singular values of
n−1/2G. The first version of the following theorem is due to Marchenko and Pastur
[MP67].

Theorem 4.2.1 (Bulk behavior). — If m = mn → ∞ with limn→∞mn/n = y ∈
(0,∞) then a.s. the spectral counting probability measure

µn−1GG∗ :=
1

m

m∑
k=1

δλk(n−1GG∗)

converges narrowly to the Marchenko–Pastur law

LMP =

(
1− 1

y

)+

δ0 +
1

2πy

√
(b− x)(x− a)

x
1[a,b](x) dx

where

a = (1−√y)2 and b = (1 +
√
y)2.

 0
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y=0.1

Figure 2. Density of the limiting law of the empirical singular values
distribution 1

m

∑m
k=1 δsk(n−1/2G) when m = mn with limn→∞mn/n = y,

for different values of y (theorem 4.2.1). This is nothing else but the
density of the absolutely continuous part of the image law of LMP by the
map x 7→

√
x. The case y = 1 corresponds to the so called quartercircular

law. This graphics was obtained by using the wxMaxima software.
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Idea of the proof. — When K = C, the result can be obtained by using the determi-
nental/polynomial approach. Namely, following Haagerup and Thorbjørnsen [HT03]
or Ledoux [Led04], for every Borel function f : [0,∞)→ R, we have,∫

f(x) dµn−1GG∗(x) =
(

1− n

m

)+

f(0) +

∫ ∞
0

f(x)
1

m
S(x, x) dx

where S is as in (4.10). Note that the left hand side is a symmetric function of the
eigenvalues. The Dirac mass at point 0 in the first term of the right hand side above
comes from the fact that if m > n then m − n eigenvalues of GG∗ are necessarily
zero (the remaining eigenvalues are the square of the singular values of G). The
convergence to LMP is a consequence of the behavior of m−1S(x, x) related to classical
equilibrium measures of orthogonal polynomials, see [Led04, pages 191–192]. In this
approach, LMP is recovered as a mixture of uniform and arcsine laws.

Another approach is the so called trace/moments method, based on the identity∫
xr dµn−1GG∗(x) =

1

nmr
Tr((GG∗)r)

valid for every r ∈ {0, 1, 2, . . .}. The expansion of the right hand side in terms of the
entries of G allows to show that the moments of µn−1GG∗ converge to the moments of
LMP. The Gaussian nature of the entries allows to use the Wick formula in order to
simplify the computations. There is also an approach based on the Cauchy–Stieltjes
transform, or equivalently the trace–resolvent, see [HP00] or [Bai99]. This gives
a recursive equation obtained by bloc matrix inversion, which leads to a fixed point
problem. Here again, the Gaussian integration by parts may help. The trace/moment
and the Cauchy–Stieltjes trace/resolvent methods are “universal” in the sense that
they are still available when G is replaced by a random matrix with non Gaussian
i.i.d. entries. The determinental/polynomial approach is rigid, and relies on the de-
terminental nature of the law of G, which comes from the unitary invariance of G. It
remains available beyond the Gaussian case, provided that G has a unitary invariant
density proportional to G 7→ exp(−Tr(V (GG∗))) for a potential V : R→ R.

There is finally a more original approach based on large deviations via a Varadhan
like lemma, which exploits the explicit expression of the law of the eigenvalues. We
recover LMP as a minimum of the logarithmic energy with Laguerre external field.

The limiting distribution is a mixture of a Dirac mass at zero (when y > 1) with
an absolutely continuous compactly supported distribution known as the Marchenko–
Pastur law. The presence of this Dirac mass is due to the fact that if y > 1 then
a.s. the random matrix n−1GG∗ is not of full rank for large enough n. The a.s. weak
convergence in theorem 4.2.1 says that for any interval I ⊂ [0,∞),∣∣{k ∈ {1, . . . ,m} such that λk(n−1GG∗) ∈ I

}∣∣
m

a.s.−→
n→∞

LMP(I).

This convergence implies immediately the following corollary.

Corollary 4.2.2 (Edge behavior implied by bulk behavior)
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If m = mn →∞ with limn→∞mn/n = y ∈ (0,∞) then a.s.

lim inf
n→∞

λ1(n−1GG∗) > (1 +
√
y)2.

Moreover, if y 6 1 then a.s.

lim sup
n→∞

λmn(n−1GG∗) 6 (1−√y)2.

In particular, if mn = n then y = 1 and a.s.

1√
n
sn(G) =

√
λn(n−1GG∗)

a.s.−→
n→∞

0.

It is then natural to ask about the convergence of the extremal eigenvalues of
n−1GG∗ to the edge of the limiting support. In a sense, the left edge a is “soft” if
y < 1 and “hard” if y = 1. The term “soft” means that the fluctuation may hold in
both sides while “hard” means that the fluctuation is confined in a single side. The
right edge b is “soft” regardless of y. We will see that the nature of the fluctuations
of the extremal singular values depends on the hard/soft nature of the edge.

Theorem 4.2.3 (Convergence of smallest singular value)
If m = mn →∞ with mn 6 n and limn→∞mn/n = y ∈ (0, 1] then(

1√
n
smn(G)

)2

= λmn(n−1GG∗)
a.s.−→
n→∞

(1−√y)2.

Idea of the proof. — Corollary 4.2.2 reduces immediately the problem to show that
a.s.

lim inf
n→∞

λm(n−1GG∗) > (1−√y)2.

Following Silverstein [Sil85], we have λm(GG∗) = λm(BB∗) where B is as in (4.7).
Observe that BB∗ is tridiagonal. One can then control λm(BB∗) by using the law of
B and the Geršgorin disks theorem which states that if A ∈Mn,n(K) then

{λ1(A), . . . , λn(A)} ⊂
n⋃
i=1

{z ∈ C; |z −Ai,i| 6 ri} where ri :=
∑
j 6=i

|Ai,j |.

When K = C, an alternative approach is based on the determinental/polynomial
formula for the density of the eigenvalues of GG∗, and can be found in [Led04].

Theorem 4.2.4 (Fluctuation of smallest singular value for hard edge)
Assume that m = n.

– If K = C then for every n ∈ {1, 2, . . .}, the random variable (
√
n sn(G))2 follows

an exponential law of unit mean with Lebesgue density x 7→ exp(−x). In other
words, for every n ∈ {1, 2, . . .} and any real number t > 0,

P
(√
n sn(G) > t

)
= exp

(
−t2

)
.
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– If K = R then the random variable (
√
n sn(G))2 converges in distribution as

n→∞ to the law with Lebesgue density density

x 7→ 1 +
√
x

2
√
x

exp

(
−1

2
x−
√
x

)
.

In other words, for every real number t > 0,

lim
n→∞

P
(√
n sn(G) > t

)
= exp

(
−1

2
t2 − t

)
.

Idea of the proof. — When K = C, it suffices to integrate (4.9) over all but the
smallest eigenvalue. This gives that the random variable nλn(GG∗) = nsn(G)2 follows
an exponential law with unit mean. This is immediate when n = 1 from (4.9). When
K = R, one can proceed as for the complex case, but with this time β = 1. This

makes the computations non explicit for a fixed n due to the factors λ
−1/2
i which were

not present for K = C. However, following Edelman [Ede88], for every n,

λn(GG∗) = sn(G)2 has density proportional to x 7→ 1√
x
Un

(x
2

)
exp

(
−1

2
nx

)
where Un is the Tricomi function, unique solution of the Kummer differential equation

2xU ′′n (x)− (1 + 2x)U ′n(x)− (n− 1)Un(x) = 0

with boundary conditions 2Un(0)Γ(1 + n/2) =
√
π and Un(∞) = 0. The Tricomi

function admits an integral representation, and is also known as the Gordon function
or the confluent hypergeometric function of the second kind, see [AS64, Chapter
13.6]. The behavior of the Tricomi function gives the limiting law of

√
n sn(G).

Theorem 4.2.5 (Convergence of largest singular value)
If m = mn →∞ with limn→∞mn/n = y ∈ (0,∞) then(

1√
n
s1(G)

)2

=
1

n
λ1(GG∗)

a.s.−→
n→∞

(1 +
√
y)2.

Idea of the proof. — Corollary 4.2.2 reduces the problem to show that

lim sup
n→∞

λ1(n−1GG∗) 6 (1 +
√
y)2.

This was proved in turn by Geman [Gem80], following an idea of Grenander. The
method, which can be seen as an instance of the so called power method, consists in
the control of the expected operator norm of a power of n−1GG∗ with the expected
Frobenius norm, and then in the usage of expansions in terms of the matrix entries
via the trace formula for the Frobenius norm. This method does not rely on explicit
Gaussian computations. When K = C, one can use the determinental/polynomial
formula for the density of the eigenvalues of GG∗ as in the work of Ledoux [Led04].

Gaussian exponential bounds for the tail of the singular values of G are also avail-
able, and can be found for instance in the work of Szarek [Sza91], Davidson and
Szarek [DS01], Haagerup and Thorbjørnsen [HT03], and Ledoux [Led04].
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The fluctuation of the smallest singular value in the hard edge case given by theo-
rem 4.2.4 can be also expressed in terms of a Bessel kernel, see for instance the work
of Forrester [For10]. Let us consider now the fluctuation of the largest singular value
around its limit. The famous Tracy–Widom laws TW1 and TW2 are known to de-
scribe the fluctuation of the largest eigenvalue in the ensembles of square Hermitian
Gaussian random matrices (GOE for K = R and GUE for K = C), see [TW02]. One
can ask if these laws still describe the fluctuations of the largest singular values of the
Gaussian matrix G. By definition, TW1 and TW2 are the probability distributions
on R with cumulative distribution functions F1 and F2 given for every s ∈ R by

F2(s) = exp

(
−
∫ ∞
s

(x− s)q(x)2 dx

)
and F1(s)2 = F2(s) exp

(
−
∫ ∞
s

q(x) dx

)
where q is the solution of the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x)

with boundary condition q(x) ∼ Ai(x) as x→∞, where Ai is the Airy function

Ai(x) :=
1

π

∫ ∞
0

cos

(
1

3
t3 + xt

)
dt.

The Airy function Ai is also uniquely defined by the properties

Ai′′(x) = xAi(x) and Ai(x) ∼x→∞
1

2
√
πx1/4

exp

(
−2

3
x3/2

)
.

The function F2 can be expressed as a Fredholm determinant: F2(s) = det(I − As)
where As is the Airy operator on square integrable functions on (s,∞), with kernel

As(x, y) :=
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
.

See for instance [Dei99, Dei07] and [For10] for more information, and [ER05] and
[Joh01] for the numerical evaluation of F1 and F2.

Theorem 4.2.6 (Fluctuation of largest singular value)
If m = mn →∞ with mn 6 n and limn→∞mn/n = y ∈ (0, 1] then, by denoting

µβ,n :=
(√

n+ β − 2 +
√
m
)2

and σβ,n :=
√
µβ,n

(
1√

n+ β − 2
+

1√
m

)1/3

,

the random variable
s1(G)2 − µβ,n

σβ,n
converges narrowly as n → ∞ to the Tracy–Widom law TWβ. Moreover, if y > 1
then the result remains true up to the swap of the roles of m and n in the formulas
(recall that G and G∗ have same singular values).

For K = C and m = n, we have β = 2 and µ2,n = 4n while σ2,n = (16n)1/3. The
Tracy–Widom fluctuation based on the Airy kernel describes also the fluctuation of
the smallest singular value in the soft edge regime (y < 1), see for instance the book
by Forrester [For10] and the approach of Ledoux [Led04].
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Figure 3. Density of TWβ for β = 1 (blue) and β = 2 (red), obtained by
using the GNU-R package RMTstat.

Idea of the proof. — The proofs of Johnstone [Joh01] and Johansson [Joh00] are
based on the determinental/polynomial approach. Let us give the first steps when
K = C. If S is as in (4.10), then for every Borel function f : [0,∞)→ R,

E

[
m∏
k=1

(1 + f(λk(GG∗)))

]
= cn,m det(I + Sf)

where cn,m is a normalizing constant. Here one must see S as an integral operator.
For the particular choice f = −1[t,∞) for some fixed t > 0, this gives

P
(

max
16k6m

λk(GG∗) > t

)
= cn,m det(I − S1[t,∞)).

Now the Tracy and Widom [TW02] heuristics says that the determinant in the right
hand side satisfies to a differential equation, which is Painlevé II as n→∞. See also
the work of Borodin and Forrester [BF03, For10], and the work of Ledoux [Led04]
inspired from the work of Haagerup and Thorbjørnsen [HT03].

An alternative approach, based on the bidiagonalization trick (4.7), was provided
by Ramı́rez, Rider, and Virág [RRV09]. This can be viewed as the β–Laguerre
(LUE and LOE) analogue of the work of Edelman and Sutton [ES05] for β–Hermite
ensembles (GUE and GOE). In particular, it provides the convergence of the rescaled
extremal singular values to a Schrödinger operator.

The largest eigenvalue of such matrices can be seen as the maximum of a ran-
dom vector with correlated coordinates (Vandermonde repulsion). Here the asymp-
totic fluctuation is not captured by classical extreme values theory for i.i.d. samples
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(Gnedenko–Fréchet–Fisher–Tippett–Gumbel theorem, see [Res08]). The laws TW1

and TW2 are unimodal, asymmetric, with exponentially light tails. For instance, TW1

has a left tail ≈ exp
(
− 1

24 |x|
3
)

and a right tail ≈ exp
(
− 2

3 |x|
3/2
)
, see [Joh01].

The study of the extremal singular values s1(G), sn(G) and the condition number
κ(G) = s1(G)/sn(G) of the random Gaussian matrix G was motivated at the origin
by the behavior of numerical algorithms with random inputs. This goes back at least
to von Neumann and his collaborators [vN63, vNG47], Smale [Sma85], Demmel
[Dem88], and Kostlan [Kos88]. Note that if m = n then

κ(G) =
s1(G)

sn(G)
=

√
λ1(GG∗)

λn(GG∗)
=
√
κ(GG∗) =

√
nκ

(
1

n
GG∗

)
.

An elementary result on κ(G) is captured by the following corollary. For sharp esti-
mates on the tails of κ(G), see for instance the work of Edelman and Sutton [ES05],
Szarek [Sza91], Azäıs and Wschebor [AW05], and also Chen and Dongarra [CD05].
These sharp bounds involve the control of the joint law of the extremal singular values.
This joint law can be expressed with zonal polynomials and hypergeometric functions
[Mui82, RVA05]. This expression is difficult to exploit. The approach of Azäıs and
Wschebor [AW05] is based on Rice formulas for Gaussian processes extrema, see
[AW09]. For the case β 6∈ {1, 2}, see for instance [DK08] and references therein.

Corollary 4.2.7 (Condition number, m = n). — If m = n then n−1 κ(G) con-
verges in distribution as n→∞ to a law with Lebesgue density

x 7→


2(x+ 1)

x3
exp

(
− 1

2x2
− 1

x

)
if K = R,

4

x3
exp

(
− 1

x2

)
if K = C.

Proof. — Theorem 4.2.5 gives that a.s. s1(G) = (2+o(1))
√
n as n→∞. We conclude

by using the Slutsky lemma and the limiting law of
√
n sn(G) (theorem 4.2.4).

4.3. Universality of the Gaussian case

Gaussian random matrices with i.i.d. entries such as G have the advantage to allow
explicit computations. But one can ask if such Gaussian matrices are good enough
for the modelling of random inputs of algorithms. For instance, the support of such
random matrices is essentially concentrated on a centered Frobenius ball, which can
be seen as a drawback. More generally, let us consider a sample of n i.i.d. random
column vectors of Km. One can ask about the behavior of the eigenvalues of their
empirical covariance matrix in the situation where the common law of the vectors. . .

– is not centered
– is not a tensor product
– has only few finite moments (heavy tails)
– does not have a density (for instance Bernoulli or Rademacher entries).
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It is rather difficult to give a comprehensive account on the available literature in
few pages. Regarding independent column vectors, a whole line of research is based
on tools and concepts from high dimensional geometric analysis, such as the work of
Mendelson and Pajor [MP06] and the work of Adamczak, Guédon, Litvak, Pajor,
and Tomczak-Jaegermann [AGL+08]. In the sequel, we restrict our attention on
some few results regarding the singular values of random matrices with i.i.d. entries.

Many results for random matrices with i.i.d. Gaussian entries remain valid for non
Gaussian entries when the moments match the Gaussian moments up to some order.
This is referred as “universality”. Let (Xi,j)i,j>1 be an infinite matrix with i.i.d.
entries in K. We consider in the sequel the m× n random matrix

X := (Xi,j)16i6m, 16j6n.

When X1,1 is a standard Gaussian random variable then X
d
= G where G is the

Gaussian random matrix of the preceding section. Note that if the law of X1,1 has
atoms, then XX∗ is singular with positive probability, even if m 6 n. Moreover, if
X1,1 is not standard Gaussian, the law of X is no longer K–unitary invariant, and
the law of the eigenvalues of XX∗ is not explicit in general. One of the first universal
version of theorem 4.2.1 is due to Wachter [Wac78]. See also the review article of
Bai [Bai99]. For the version given below, see the book of Bai and Silverstein [BS10],
and the article by Bai and Yin [BY93] on the behavior at the edge.

Theorem 4.3.1 (Universality for bulk and edges convergence)
If X1,1 has mean E[X1,1] ∈ K and variance E[|X1,1 − E[X1,1]|2] = 1, and if m =

mn → ∞ with mn/n → y ∈ (0,∞), then the conclusion of theorem 4.2.1 remain
valid if we replace G by X. Moreover, if E[X1,1] = 0 and E[|X1,1|4] < ∞ then the
conclusion of theorem 4.2.3 (when y ∈ (0, 1)) and theorem 4.2.5 remain valid if we
replace G by X. If however E[|X1,1|4] =∞ or E[X1,1] 6= 0 then a.s.

lim sup
n→∞

λ1(n−1XX∗) =∞.

The bulk behavior is not sensitive to the mean E[X], and this can be understood
from the decomposition X = X − E[X] + E[X] where E[X] = E[X1,1](1 ⊗ 1) has
rank at most 1, by using the Thompson theorem 4.1.5. Regarding empirical covari-
ance matrices, many other situations are considered in the literature, for instance
in the work of Bai and Silverstein [BS98], Dozier and Silverstein [DS07a, DS07b],
Hachem, Loubaton, and Najim [HLN06], with various concrete motivations ranging
from asymptotic statistics to information theory and signal processing.

The universality of the fluctuation of the smallest and largest eigenvalues of em-
pirical covariances matrices was studied for instance by Soshnikov [Sos02], Baik, Ben
Arous, and Péché [BBAP05], Ben Arous and Péché [BAP05], El Karoui [EK07],
Féral and Péché [FP09], Péché [Péc09], Tao and Vu [TV09b], and by Feldheim and
Sodin [FS10]. The following theorem on the soft edge case, due to Feldheim and
Sodin [FS10], includes partly the results of Soshnikov [Sos02] and Péché [Péc09].

Theorem 4.3.2 (Universality for soft edges). — If the law of X1,1 is symmetric
about 0, with sub-Gaussian tails, and first two moments identical to the ones of G1,1,
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and if m = mn →∞ with mn 6 n and limn→∞mn/n = y ∈ (0,∞), then s1(X)2 has
the Tracy–Widom rates and fluctuations of s1(G)2 as in the Gaussian theorem 4.2.6.
If moreover y < 1 then the same holds true for the smallest singular value smn(X)2.

The following theorem concerns the universality of the fluctuations of the smallest
singular value in the hard edge regime, recently obtained by Tao and Vu [TV09b].

Theorem 4.3.3 (Universality for hard edge). — If m = n and if X1,1 has first
two moments identical to the ones of G1,1, and if E[|X1,1|10000] <∞, then the random
variable (

√
n sn(X))2 converges as n → ∞ to the limiting law of the Gaussian case

which appears in theorem 4.2.4.

Actually, a stronger version of theorems 4.3.2 and 4.3.3 is available, expressing the
fact that for every fixed k, the top and bottom k singular values are identical in law
asymptotically to the corresponding quantities for the Gaussian model.

Following [TV09b], theorem 4.3.3 implies in particular that if X1,1 follows the
symmetric Rademacher law 1

2δ−1 + 1
2δ1 then, for m = n, for all t > 0,

P(
√
n sn(X) 6 t) =

∫ t2

0

1 +
√
x

2
√
x
e−

1
2x−
√
x dx+ o(1) = 1− e− 1

2 t
2−t + o(1).

In [TV09b], the o(1) error term is shown to be of the form O(n−c) uniformly over t.
This is close to the statement of a conjecture by Spielman and Teng on the invertibility
of random sign matrices stating the existence of a constant c ∈ (0, 1) such that

P(
√
n sn(X) 6 t) 6 t+ cn (4.11)

for every t > 0. The cn is due to the fact that X has a positive probability of
being singular (e.g. equality of two rows). In 2008, Spielman and Teng were awarded
the Gödel Prize for their work on smoothed analysis of algorithms [ST03, ST02].
Actually, it has been conjectured years ago that

P(sn(X) = 0) =

(
1

2
+ o(1)

)n
.

This intuition comes from the probability of equality of two rows, which implies
that P(sn(X) = 0) > (1/2)n. Many authors contributed to this difficult nonlinear
discrete problem, such as Komlós [Kom67], Kahn, Komlós, and Szemerédi [KKS95],
Rudelson [Rud08], Bruneau and Germinet [BG09], Tao and Vu [TV06, TV07,
TV09a], and Bourgain, Vu, and Wood [BVW10] who proved that

P(sn(X) = 0) 6

(
1√
2

+ o(1)

)n
for large enough n.

Back to theorem 4.3.1, the bulk behavior when X1,1 has an infinite variance was
recently investigated by Belinschi, Dembo, and Guionnet [BDG09], using (4.1). They
considered heavy tailed laws similar to α–stable laws (0 < α 6 2), with polynomial
tails. For simulations, if U and ε are independent random variables with U uniform on
[0, 1] and ε Rademacher 1

2δ−1 + 1
2δ1, then the random variable T = ε(U−1/α−1) has a

symmetric bounded density and P(|T | > t) = (1+t)−α for any t > 0. In this situation,
the normalization n−1 in n−1XX∗ must be replaced by n−2/α. The limiting spectral
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distribution is no longer a Marchenko–Pastur distribution, and has heavy tails. In
the case where X1,1 is Cauchy distributed, it is known that the largest eigenvalues are
distributed according to a Poisson statistics, see the work of Soshnikov and Fyodorov
[SF05] and the review article by Soshnikov [Sos06]. On can ask about the invertibility
of such random matrices with heavy tailed i.i.d. entries. The following lemma gives
a rather crude lower bound on the smallest singular value of random matrices with
i.i.d. entries with bounded density. However, it shows that the invertibility of these
random matrices can be controlled without moments assumptions. Arbitrary heavy
tails are therefore allowed, but Dirac masses are not allowed.

Lemma 4.3.4 (Polynomial lower bound on sn for bounded densities)
Assume that X1,1 is absolutely continuous with bounded density f . If m = n then

there exists an absolute constant c > 0 such that for every n ∈ {1, 2, . . .} and u > 0,

P(
√
n sn(X) 6 u) 6 cn

3
2 ‖f‖∞ uβ .

From the first Borel–Cantelli lemma, it follows that there exists b > 0 such that
a.s. for large enough n, we have sn(X) > n−b.

Proof. — Let R1, . . . , Rn be the rows of X. From lemma 4.1.11 we have

min
16i6n

dist2(Ri, R−i) 6
√
n sn(X).

Consequently, by the union bound and the exchangeability, for any u > 0,

P(
√
n sn(X) 6 u) 6 nP(dist2(R1, R−1) 6 u).

Let Y be a unit normal vector to R−1. Such a vector is not unique, but we just
pick one which is measurable with respect to R2, . . . , Rn. This defines a random
variable on the unit sphere S2(Kn) = {x ∈ Kn : |x|2 = 1}, independent of R1. By
the Cauchy–Schwarz inequality, we have |R1 · Y | 6 |p(R1)|2|Y |2 = dist2(R1, R−1)
where p(·) is the orthogonal projection on the orthogonal space of R−1. Actually,
since the law of X1,1 is diffuse, the matrix X is a.s. invertible, the subspace R−1 is a
hyperplane, and |R1 · Y | = dist2(R1, R−1), but this is useless in the sequel. Let ν be
the distribution of Y on S2(Kn). Since Y and R1 are independent, for any u > 0,

P(dist2(R1, R−1) 6 u) 6 P(|R1 · Y | 6 u) =

∫
S2(Kn)

P(|R1 · y| 6 u) dν(y).

Consider some y ∈ S2(Kn). Since |y|2 = 1, there exists some i ∈ {1, . . . , n} such

that |yi| > 0 and |yi|−1 6
√
n. The random variable Xi,i yi is absolutely continuous

with density |yi|−1f(yi
−1 · ). Now, the random variable R1 ·y is a sum of independent

random variables X1,1 y1, . . . , X1,n yn, and one of them is absolutely continuous with
a density bounded above by

√
n ‖f‖∞. Consequently, by a basic property of con-

volutions of probability distributions, the random variable R1 · y is itself absolutely
continuous with a density ϕ bounded above by

√
n ‖f‖∞. Therefore, we have,

P(|R1 · y| 6 u) =

∫
{z∈K;|z|6u}

ϕ(s) ds 6

{
2u
√
n ‖f‖∞ if K = R,

πu2
√
n ‖f‖∞ if K = C.
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The proof of lemma 4.3.4 above is quite instructive. Let us focus on the control
of P(|R1 · y| 6 u) when u is small. In the case where L is Gaussian, the rotational
invariance of the distribution of R1 implies that the quantity P(|R1 · y| 6 u) does not
depend on y and is of order u (take for y an element of the canonical basis and use the
fact that L has a bounded density). However, when L is not Gaussian, the quantity
P(|R1 · y| 6 u) depends heavily on L. Recall that the simple lemma above does not
allow atoms in L. In particular, it does not cover the case where L is Rademacher
1
2δ−1 + 1

2δ+1. Such discrete matrices have a positive probability of being singular. In
this discrete case, the quantity P(|R1 · y| 6 u) depends heavily on the arithmetic and
sparsity structure of the coordinates of y. For instance, if y = n−1/2(e1 + · · · + en),
then by the central limit theorem, the quantity P(|R1 ·y| 6 u) is of order u as n→∞,
whereas if y = 2−1/2(e1 + e2) then we get a completely different behavior:

P(|R1 · y| 6 u) > P(X1,1 = 0) = 1/2.

Also, one should restart from sn(X) = min|x|2=1 |Xx|2 and partition the unit sphere
into “compressible” and “incompressible” vectors. This leads to the use of ε–nets
techniques and to the consideration of Littlewood–Offord type problems for the con-
trol of small balls probabilities. In this direction, an important step was first made by
Rudelson [Rud06]. Later, Rudelson and Vershynin [RV08b, RV08a] have shown
that if X1,1 has zero mean, unit variance, and finite fourth moment, then for any fixed
t > 0 (recall that m = n),

P(
√
n sn(X) 6 t) 6 f(t) + o(1) and P(

√
n sn(X) > t) 6 g(t) + o(1)

where f, g do not depend on n and f(t), g(t)→ 0 as t→ 0, and where o(1) is relative
to n → ∞. Moreover, if the entries are additionally sub-Gaussian then there exist
constants C > 0, c ∈ (0, 1) depending only on the moments such that for any t > 0,

P(
√
n sn(X) 6 t) 6 C t+ cn. (4.12)

Since the Rademacher law is sub-Gaussian, the remarkable bound (4.12) proves, up
to the multiplicative constant C, the conjecture of Spielman and Teng (4.11). The
proof of Rudelson and Vershynin has many ingredients, including an upper bound on
the right tail of the largest singular value and a lower bound on the smallest singular
value of rectangular matrices obtained in [LPRTJ05] (see also the more recent work
[RV09]). Regarding moments, Tao and Vu have shown [TV08, TV09a] that under
the sole assumption that X1,1 has non zero finite variance then for any constants
a, c > 0 there exists b > 1/2 depending on a, c and the law of X1,1 such that for any
n× n deterministic matrix Y with ‖Y ‖2→2 6 nc,

P(
√
n sn(X + Y ) 6 n−b) 6 n−a. (4.13)

Actually, one can find in [TV09c] many bounds of this flavor. For instance, under
the sole assumptions that X1,1 has zero mean and unit variance, for any fixed a > 0,

P(
√
n sn(X) 6 n−

1
2−

5
2a−a

2

) 6 n−a+o(1). (4.14)

The bounds (4.13–4.14) are less precise than the bound (4.12) but do not rely on
moments assumptions beyond the finite variance. With lemma 4.3.4 in mind, one can
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ask if the finite moment assumption in (4.13) can be weakened in order to allow for
instance heavy tailed non centered discrete laws such as the Zipf type law

ζ(s)−1
∞∑
n=0

n−sδn

where s > 0, and where ζ is the Riemann zeta function.

4.4. Comments

The singular values of deterministic matrices are studied in many books such as
[HJ90, HJ94], [Bha97], and [Zha02]. For the algorithmic aspects, we recommend
[GVL96] and [CG05]. The singular values of random matrices are studied in the
books [Meh04], [Dei99], [For10], [AGZ09].





CHAPTER 5

EMPIRICAL METHODS AND SELECTION OF
CHARACTERS

The purpose of this chapter is to present the connections between two different
topics. The first one is a recent subject about reconstruction of signals with small
supports from a small amount of linear measurements, called also compressed sensing.
A big amount of work was recently made to develop some strategy to construct an
encoder (to compress a signal) and an associate decoder (to reconstruct exactly or
approximately the original signal). Several deterministic methods are known but
recently, some random methods allow the reconstruction of signal with much larger
size of support. A lot of ideas are common with a subject of harmonic analysis, going
back to the construction of Λ(p) sets which are not Λ(q) for q > p. The most powerful
method was to select a random choice of characters via the method of selectors. In
a different direction, we will discuss about the problem of selecting a large part of a
bounded orthonormal system such that on the vectorial span of this family, the L2

and the L1 norms are as close as possible. The study of some empirical processes is
at the heart of these proofs and it is the main connection between these subjects.

5.1. Reconstruction of signals with small support by random methods.

5.1.1. Presentation of the problem. — Let U ∈ RN (or CN ) be an unknown
signal. We receive ΦU where Φ is an n × N matrix with rows Y1, . . . , Yn ∈ RN (or
CN ) which means that

Φ =

 Y1

...
Yn

 and ΦU = (〈Yi, U〉)1≤i≤n

and we assume that n ≤ N − 1. In this case the linear system to reconstruct U is ill-
posed. However, the main information is that U has a small support in the canonical
basis chosen at the beginning, that is |suppU | ≤ m. We also say that U is m-sparse
and we denote by Σm the set of m-sparse vectors. Our aim is to find conditions on
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Φ, m, n and N such that the solution of the problem

min
t∈RN

{|t|1 : ΦU = Φt} (5.1)

is unique and equal to U . This minimization problem is called the basis pursuit
algorithm and we refer to Chapter 2 for more details about the description of this
problem. Let us recall (see Proposition 2.2.11) that the property “for every signal
U ∈ Σm, the solution of (5.1) is unique and equal to U” is equivalent to the following

∀h ∈ ker Φ, h 6= 0,∀I ⊂ [N ], |I| ≤ m,
∑
i∈I
|hi| <

∑
i/∈I

|hi|.

This property is also called the null space property. Let Cm be the cone

Cm = {h ∈ RN ,∃I ⊂ [N ] with |I| ≤ m, |hIc |1 ≤ |hI |1}.

The null space property is therefore equivalent to ker Φ ∩ Cm = {0}. Introducing an
intersection with the Euclidean sphere SN−1 the following picture makes the situation
clear:

Cm

ker Φ

Figure 1. The null space property.

In conclusion, we can say that

“for every signal U ∈ Σm, the solution of (5.1) is unique and equal to U”
if and only if

ker Φ ∩ Cm ∩ SN−1 = ∅.

We observe the following simple fact: if t ∈ Cm ∩ SN−1 then

|t|1 =

N∑
i=1

|ti| =
∑
i∈I
|ti|+

∑
i/∈I

|ti| ≤ 2
∑
i∈I
|ti| ≤ 2

√
m

since |I| ≤ m and |t|2 = 1. This implies that

Cm ∩ SN−1 ⊂ 2
√
mBN1 ∩ SN−1

from which we conclude that if

ker Φ ∩ 2
√
mBN1 ∩ SN−1 = ∅

then “for every U ∈ Σm, the solution of (5.1) is unique and equal to U”. We can now
state the conclusion of this introduction.
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Proposition 5.1.1. — Denote by diamT the half-diameter of a set T with respect
to the Euclidean distance:

diamT = sup
t∈T
|t|2.

If

diam (ker Φ ∩BN1 ) <
1

2
√
m

(5.2)

then “for every U ∈ Σm, the solution of the basis pursuit algorithm (5.1) is unique
and equal to U”.

In this chapter, instead of considering the RIP property (as discussed in Chapter
2), we will focus on the condition about the half-diameter of the section of the unit
ball of `N1 with the kernel of the matrix Φ. The main reasons are that it is a very
simple condition that was deeply studied in the so called Local Theory of Banach
Spaces during the seventies and the eighties, that it will give sharp results and that
this condition is very stable and allows also approximate reconstructions. Moreover
we will meet exactly the same question when studying another problem of harmonic
analysis.

5.1.2. Notations. — We briefly indicate some notations that will be used in this
section. For any p > 0 and t ∈ RN , we define its `p-norm by

|t|p =

(
N∑
i=1

|ti|p
)1/p

and its Lp-norm by

‖t‖p =

(
1

N

N∑
i=1

|ti|p
)1/p

.

For p = ∞, |t|∞ = ‖t‖∞ = max{|ti| : i = 1, . . . , n}. We denote by BNp the unit ball

of the `p-norm in RN . The half-diameter of a set T ⊂ RN is

diamT = sup
t∈T
|t|2.

More generally, if µ is a probability measure on a measurable space Ω, for any
p > 0 and any measurable function f , we denote its Lp-norm and its L∞-norm by

‖f‖p =

(∫
|f |pdµ

)1/p

and ‖f‖∞ = sup |f |.

The unit ball of Lp(µ) is denoted by Bp and the unit sphere by Sp. If T ⊂ L2(µ)
then its half-diameter with respect to L2(µ) is defined by

DiamT = sup
t∈T
‖t‖2.

Observe that it µ is the probability counting measure on RN , Bp = N1/pBNp and for

a subset T ⊂ L2(µ),
√
N DiamT = diamT.
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The letters c, C are used for numerical constants which do not depend on any
parameter (dimension, size of sparsity, ...). Since the dependence of these parame-
ters is important in this study, it will be always indicated (as precisely as we can).
Sometimes, the value of these numerical constants can change from line to line.

5.1.3. Approximate reconstruction via the study of the half-diameter of
sections.— We explain in the following theorem why the same type of condition
than (5.2) about the size of the half-diameter of the section allows also approximate
reconstruction of the original unknown signal.

Theorem 5.1.2. — Let U ∈ RN be an unknown signal, Φ be an n × N matrix
(encoder) and x be a solution of the minimization problem (5.1)

min
t∈RN

{|t|1 : ΦU = Φt} .

Let m be an integer such that 1 ≤ m ≤ N . If

diam (ker Φ ∩BN1 ) ≤ ρ < 1

2
√
m

then for any set I ⊂ {1, . . . , N} of cardinality less than m

|x− U |2 ≤ ρ |x− U |1 ≤
2ρ

1− 2ρ
√
m
|UIc |1.

In particular: if diam (ker Φ∩BN1 ) ≤ 1/4
√
m then for any subset I of cardinality less

than m,

|x− U |2 ≤
|x− U |1

4
√
m
≤ |UI

c |1√
m

.

Moreover if U ∈ BNp,∞ i.e. if for all s > 0, |{i, |Ui| ≥ s}| ≤ s−p then

|x− U |2 ≤
|x− U |1

4
√
m
≤ 1

(1− p)m
1
p−

1
2

.

Proof. — Since diam (ker Φ ∩ BN1 ) ≤ ρ we get that for any h ∈ ker Φ, |h|2 ≤ ρ|h|1.
Since x−U ∈ ker Φ then |x−U |2 ≤ ρ |x−U |1. The set I has cardinality less than m
hence by Hölder inequality, for any h ∈ ker Φ,

|hI |1 ≤
√
m|hI |2 ≤

√
m|h|2 ≤ ρ

√
m|h|1.

By definition of the `1-norm, |h|1 = |hI |1 + |hIc |1 and we conclude that for any
h ∈ ker Φ, if 1− ρ

√
m > 0,

|hI |1 ≤
ρ
√
m

1− ρ
√
m
|hIc |1. (5.3)

Moreover, x is a solution of the minimization problem (5.1) hence x−U ∈ ker Φ and
|x|1 ≤ |U |1. Since |x|1 = |xI |1 + |xIc |1 and |U |1 = |UI |1 + |UIc |1, we deduce that
|xIc |1 ≤ |UI |1 − |xI |1 + |UIc |1 ≤ |xI − UI |1 + |UIc |1. Therefore,

|xIc − UIc |1 ≤ |xIc |1 + |UIc |1 ≤ |xI − UI |1 + 2|UIc |1.
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Since x− U ∈ ker Φ, we can combine this inequality with (5.3) to conclude that

|xI − UI |1 ≤
ρ
√
m

1− ρ
√
m
|xIc − UIc |1 ≤

ρ
√
m

1− ρ
√
m
|xI − UI |1 +

2ρ
√
m

1− ρ
√
m
|UIc |1.

The general conclusion of the Theorem follows. The particular case is obtained by
taking ρ = 1/4

√
m. Moreover, if U ∈ BNp,∞, we denote by (U?i )Ni=1 the non-increasing

rearrangement of (|Ui|)Ni=1 and we get by definition that for all i = 1, . . . , N , U?i ≤
i−1/p. Let I be a set of indices of the m-th largest coordinates of U therefore

|UIc |1 =

N∑
m+1

U?i ≤
N∑
m+1

i−1/p ≤
∫ +∞

m

s−1/pds =
1

(1− p)m
1
p−1

.

Remark 5.1.3. — This Theorem gives an alternative proof of the exact reconstruc-
tion property discussed in Proposition 5.1.1. Indeed, we apply the general conclusion
taking the set I as the support of the unknown signal which means that |UIc |1 = 0.

5.1.4. Approximation numbers and local theory of Banach spaces. — Let
u : X → Y be an operator between Banach spaces. Let k ≥ 1 be a natural integer.
Recall the definition of the approximation numbers of u

ak(u) = inf{‖u− v‖ : v : X → Y, rank (v) < k}.
The Gelfand numbers of u are defined as

ck(u) = inf{‖ u|S ‖ : S ⊂ X, codimS < k}
= inf

S⊂X,codimS<k
sup

x∈S,‖x‖X≤1

‖u(x)‖Y .

For any closed subspace S ⊂ X, we denote by QS the quotient mapping from X onto
X/S. We define the Kolmogorov numbers of u as

dk(u) = inf{‖QSu‖ : S ⊂ X,dimS < k}.
The sequences (ak(u))k≥1, (ck(u))k≥1, (dk(u))k≥1 are all non-increasing and satisfy
a1(u) = c1(u) = d1(u) = ‖u‖, ck(u) ≤ ak(u), dk(u) ≤ ak(u). Moreover, we have
ck(u) = dk(u∗) and if u is compact, we have dk(u) = ck(u∗) and ak(u) = ak(u∗). In
the finite dimensional setting, we are interested in the optimal dependance in k and
the dimension. For example, considering the identity map from `N1 to `N2 , the Gelfand
numbers are

ck(id : `N1 → `N2 ) = inf
codimS<k

diam (S ∩BN1 )

and any upper bound on these numbers gives a solution to (5.2) for a matrix Φ such
that S = ker Φ. The study of these numbers attracted a lot of attention during the
seventies and the eighties. An important result is the following

Theorem 5.1.4. — There exist numbers c, C > 0 such that for any integer N ≥ 1
and k ∈ {1, . . . , N},

cmin

{
1,

√
log(N/k)

k

}
≤ ck(id : `N1 → `N2 ) ≤ C min

{
1,

√
log(N/k)

k

}
.
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The upper bound follows from the fact that if gi,j are independent Gaussian standard
random variables and Φ = (gi,j)1≤i≤k,1≤j≤N : RN → Rk, then

P

(
diam (ker Φ ∩BN1 ) ≤ C min

{
1,

√
log(N/k)

k

})
≥ 1− exp(−ck).

Using Proposition 5.1.1, the following result is an immediate corollary about the
basis pursuit algorithm and the exact reconstruction property of random Gaussian
matrices.

Corollary 5.1.5. — For every natural integers N and n ≤ N , if gi,j are independent
Gaussian standard random variables and Φ = (gi,j)1≤i≤n,1≤j≤N : RN → Rn, if

m ≤ C n

log(N/n)

then with probability greater than 1− exp(−cn), for every U ∈ Σm, the solution of the
basis pursuit algorithm (5.1) is unique and equal to U .

The estimate of a lower bound of the Gelfand numbers is based on a volumetric
and entropic argument. We will not prove it and will focus on the study of the upper
bound. The first important and simple idea to study the diameter of a section of a
star shape body by a vectorial subspace is the following.

Proposition 5.1.6. — Let T be a star shape body with respect to the origin that is
a compact subset T of RN such that for any x ∈ T , the segment [0, x] is contained in
T . Let Φ be an n×N matrix with rows denoted by Y1, . . . , Yn.

If inf
y∈T∩ρSN−1

n∑
i=1

〈Yi, y〉2 > 0 then diam (ker Φ ∩ T ) < ρ.

Remark 5.1.7. — By a simple compacity argument, the reciprocal of this statement
holds true. We can also replace the Euclidean norm |Φz|2 by any other norm ‖Φz‖.

Proof. — The argument is geometric. Indeed, if z ∈ T ∩ ρSN−1 then |Φz|22 > 0 so
z /∈ ker Φ. Since T is star shaped, if y ∈ T and |y|2 ≥ ρ then z = ρy/|y|2 ∈ T ∩ρSN−1

so z and y do not belong to ker Φ.

The vectors Y1, . . . , Yn will now be chosen at random and we will find the good
conditions such that, in average, the key inequality of this proposition holds true.
In the case of Theorem 5.1.4, the rows of the matrix Φ are independent copies of a
standard random Gaussian vector in RN .

5.1.5. A way to construct a good random decoder. — The setting of the
study is the following. We start with a square N × N orthogonal matrix and we
would like to select n rows of this matrix such that the n × N matrix Φ is a good
decoder for every m-sparse vectors. In view of Proposition 5.1.1, we want to find the
conditions on n, N and m such that

diam (ker Φ ∩BN1 ) ≤ 1

2
√
m
.
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The main examples are the discrete Fourier matrix with

φk` =
1√
N

ωk` 1 ≤ k, ` ≤ N where ω = exp (−2iπ/N) ,

and the Walsh matrix defined by induction: W1 = 1 and for any p ≥ 2,

Wp =
1√
2

(
Wp−1 Wp−1

−Wp−1 Wp−1

)
.

The matrix Wp is an orthogonal matrix of size N = 2p with entries ±1√
N

. In each

case, the column vectors form an orthonormal basis of `N2 , with `∞-norm bounded by

1/
√
N . We will consider more generally a system of vectors φ1, . . . , φN such that

(H)

{
it is an orthogonal system of `N2 ,

∀i ≤ N, |φi|∞ ≤ 1/
√
N and |φi|2 = K where K is a fixed number.

5.1.5.1. The empirical method. — The first definition of randomness is an empirical
one. Let Y be the random vector defined by Y = φi with probability 1/N and let
Y1, . . . , Yn be independent copies of Y . We define the random matrix Φ by

Φ =

 Y1

...
Yn

 .

We have the following properties:

E〈Y, y〉2 =
1

N

N∑
i=1

〈φi, y〉2 =
K2

N
|y|22 and E|Φy|22 =

K2 n

N
|y|22. (5.4)

In view of Proposition 5.1.6, we would like to find ρ such that

E inf
y∈T∩ρSN−1

n∑
i=1

〈Yi, y〉2 > 0.

However it is difficult to study the infimum of an empirical process. We shall prefer
to study

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣
that is the supremum of the deviation of the empirical process to its mean (because
of (5.4)). We will focus our attention on the following problem.

Problem 5.1.8. — What are the conditions on ρ such that we have

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣ ≤ 2

3

K2 nρ2

N
?

Indeed if this inequality is satisfied then there exists a choice of vectors (Yi)1≤i≤n
such that

∀y ∈ T ∩ ρSN−1,

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣ ≤ 2

3

K2 nρ2

N
,
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from which we deduce that

∀y ∈ T ∩ ρSN−1,

n∑
i=1

〈Yi, y〉2 ≥
1

3

K2 nρ2

N
> 0.

Therefore, by Proposition 5.1.6, we conclude that diam (ker Φ ∩ T ) < ρ. Doing this
with T = BN1 , we will conclude by Proposition 5.1.1 that if

m ≤ 1

4ρ2

then the matrix Φ is a good decoder, that is for every U ∈ Σm, the solution of the
basis pursuit algorithm (5.1) is unique and equal to U .

Remark 5.1.9. — The number 2/3 can be replaced by any number strictly less than
1.

5.1.5.2. The method of selectors. — The second definition of randomness uses the
notion of selectors. Let δ ∈ (0, 1) and let δi be i.i.d. random variables taking the
value 1 with probability δ and 0 with probability 1− δ. We start from the orthogonal
matrix with rows φ1, . . . , φN and we select randomly some rows to construct a matrix
Φ with rows δ1φ1, . . . , δNφN . This matrix will contain some rows equal to zero that
we will “erase” and we will keep the rows that we have selected from the starting
orthogonal matrix. The number of non-zero lines will be highly concentrated around
δN . The problem 5.1.8 can be stated in the following way:

Problem 5.1.10. — What are the conditions on ρ such that we have

E sup
y∈T∩ρSN−1

∣∣∣∣∣
N∑
i=1

δi〈φi, y〉2 − δK2ρ2

∣∣∣∣∣ ≤ 2

3
δK2ρ2 ?

The same argument as before shows that if this inequality is satisfied for T = BN1 ,
then there exists a choice of selectors such that diam (ker Φ ∩ BN1 ) < ρ and we will
conclude as before that the matrix Φ is a good decoder.

Before we state and explain the main results, we will need some tools from the
theory of empirical processes to solve Problems 5.1.8 and 5.1.10 and also to get de-
viation inequality in order to deduce some probabilistic estimate (instead of just the
existence of a matrix Φ).

5.2. Empirical processes

5.2.1. Classical tools. — A lot is known about the supremum of empirical pro-
cesses and the connection with Rademacher averages. We refer to the chapter 4 of
[LT91] for a detailed description. We recall the important comparison theorem for
Rademacher average.
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Theorem 5.2.1. — Let F : R+ → R+ be an increasing convex function, let hi : R→
R be contractions such that hi(0) = 0. Then for any separable bounded set T ⊂ Rn,

EF

(
1

2
sup
t∈T

∣∣∣∣∣
n∑
i=1

εihi(ti)

∣∣∣∣∣
)
≤ EF

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣
)
.

The proof of this theorem is however beyond the scope of this chapter. We will
concentrate on the study of the average of the supremum of some empirical processes.
Consider n independent random vectors Y1, . . . , Yn taking values in a measurable
space Ω and F be a class of measurable functions, and define

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ .
The situation will be different from Chapter 1 because the control on the ψα norm of
f(Yi) will not be relevant in our situation. In this case, a classical strategy consists
to “symmetrize” the variable and to introduce Rademacher averages.

Theorem 5.2.2. — Consider n independent random vectors Y1, . . . , Yn taking val-
ues in a measurable space Ω, F be a class of measurable functions and ε1, . . . , εn
be independent Bernoulli random variables, independent of the Yi’s. Denote by Eε
the expectation with respect to these Bernoulli random variables. Then the following
inequalities hold true.

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ 2EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ . (5.5)

E sup
f∈F

n∑
i=1

|f(Yi)| ≤ sup
f∈F

n∑
i=1

E|f(Yi)|+ 4EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ . (5.6)

If for every f ∈ F , Ef(Yi) = 0 then

EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)

∣∣∣∣∣ . (5.7)

Proof. — Let Y ′1 , . . . , Y
′
n be independent copies of Y1, . . . , Yn. We replace Ef(Yi)

by E′f(Y ′i ) where E′ denotes the expectation with respect to the random vectors
Y ′1 , . . . , Y

′
n then by Jensen inequality,

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ EE′ sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− f(Y ′i ))

∣∣∣∣∣ .
The variables (f(Yi) − f(Y ′i ))1≤i≤n are independent symmetric hence (f(Yi) −
f(Y ′i ))1≤i≤n has the same law as (εi(f(Yi) − f(Y ′i )))1≤i≤n where ε1, . . . , εn are
independent Bernoulli random variables. We deduce that

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ EE′Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εi(f(Yi)− f(Y ′i ))

∣∣∣∣∣ .
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We conclude the proof of (5.5) by using the triangle inequality.
Inequality (5.6) is a consequence of (5.5) when applying it to |f | instead of f , using
the triangle inequality and Theorem 5.2.1 (in the case F (x) = x and hi(x) = |x|) to
deduce that

Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εi|f(Yi)|

∣∣∣∣∣ ≤ 2Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ .
For the proof of (5.7), we compute the expectation conditionally with respect to the
Bernoulli random variables. Let I = I(ε) = {i, εi = 1} then

EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ ≤ EεE sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi)−
∑
i/∈I

f(Yi)

∣∣∣∣∣
≤ EεE sup

f∈F

∣∣∣∣∣∑
i∈I

f(Yi)

∣∣∣∣∣+ EεE sup
f∈F

∣∣∣∣∣∑
i/∈I

f(Yi)

∣∣∣∣∣ .
However, since for every i ≤ n, Ef(Yi) = 0 we deduce from Jensen inequality that for
any I ⊂ {1, . . . , n}

E sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi)

∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi) +
∑
i/∈I

Ef(Yi)

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)

∣∣∣∣∣
which ends the proof of (5.7).

Another simple fact about Rademacher averages is the following comparison be-
tween the supremum of Rademacher processes and the supremum of the same Gaus-
sian processes.

Proposition 5.2.3. — Let ε1, . . . , εn be independent Bernoulli random variables and
g1, . . . , gn be independent Gaussian N (0, 1) random variables, then for any set T ⊂ Rn

E sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ ≤
√

2

π
E sup
t∈T

∣∣∣∣∣
n∑
i=1

giti

∣∣∣∣∣ .
Proof. — Indeed, (g1, . . . , gn) has the same law as (ε1|g1|, . . . , εn|gn|) and by Jensen
inequality,

EεEg sup
t∈T

∣∣∣∣∣
n∑
i=1

εi|gi|ti

∣∣∣∣∣ ≥ Eε sup
t∈T

∣∣∣∣∣Eg
n∑
i=1

εi|gi|ti

∣∣∣∣∣ =

√
π

2
E sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ .

To conclude this part, we state an important result about the concentration of the
supremum of empirical processes around its mean. This motivates the fact that we
will focus on the estimation of the expectation of the supremum of such empirical
process.
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Theorem 5.2.4. — Consider n independent vectors Y1, . . . , Yn taking values in a
measurable space Ω, and G a class of measurable functions. Let

Z = sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)

∣∣∣∣∣ , M = sup
g∈G
‖g‖∞, V = E sup

g∈G

n∑
i=1

g(Yi)
2.

Then for any t > 0, we have

P (|Z − EZ| > t) ≤ C exp

(
−c t

M
log

(
1 +

tM

V

))
.

Sometimes, we need a more simple quantity than V in this concentration inequality.
Let F be a class of measurable functions, and define the function g by g(Y ) = f(Y )−
Ef(Y ) for any f ∈ F . In this situation, we have a very useful estimate for V .

Proposition 5.2.5. — Consider n independent vectors Y1, . . . , Yn taking values in
a measurable space Ω, and F a class of measurable functions. Let

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣ , u = sup
f∈F
‖f‖∞, and

v = sup
f∈F

n∑
i=1

Varf(Yi) + 32uE sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣ .
Then for any t > 0, we have

P (|Z − EZ| > t) ≤ C exp

(
−c t

u
log

(
1 +

tu

v

))
.

Proof. — It is a typical use of the symmetrization principle. Let G be the set of
functions defined by g(Y ) = f(Y ) − Ef(Y ) where f ∈ F . Using Theorem 5.2.4, the
conclusion will follow when estimating

M = sup
g∈G
‖g‖∞ and V = E sup

g∈G

n∑
i=1

g(Yi)
2.

It is clear that M ≤ 2u and by the triangle inequality we get

E sup
g∈G

n∑
i=1

g(Yi)
2 ≤ E sup

g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)
2 − Eg(Yi)

2

∣∣∣∣∣+ sup
g∈G

n∑
i=1

Eg(Yi)
2.

Using inequality (5.5), we deduce that

E sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)
2 − Eg(Yi)

2

∣∣∣∣∣ ≤ 2EEε sup
g∈G

∣∣∣∣∣
n∑
i=1

εig(Yi)
2

∣∣∣∣∣ = 2EEε sup
t∈T

∣∣∣∣∣
n∑
i=1

εit
2
i

∣∣∣∣∣
where T is the random set {t = (t1, . . . , tn) = (g(Y1), . . . , g(Yn)) : g ∈ G}. Since
T ⊂ [−2u, 2u]n, we deduce that the function h(x) = x2 is 4u-Lipschitz on T . By the
comparison Theorem 5.2.1, we get that

Eε sup
t∈T

∣∣∣∣∣
n∑
i=1

εit
2
i

∣∣∣∣∣ ≤ 8uEε sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ .
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Since for every i ≤ n, Eg(Yi) = 0, we deduce from (5.7) that

EEε sup
g∈G

∣∣∣∣∣
n∑
i=1

εig(Yi)
2

∣∣∣∣∣ ≤ 16uE sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)

∣∣∣∣∣ .
This allows to conclude that

V ≤ 32uE sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣+ sup
f∈F

n∑
i=1

Varf(Yi).

This ends the proof of the proposition.

5.2.2. The study of the expectation of the supremum of some empirical
processes. — We go back to the study of Problem 5.1.8 with a definition of ran-
domness given by the empirical method. The situation is similar if we worked with
the method of selectors. For any star-shape body T ⊂ RN , we define the class of
functions F in the following way:

F =

{
fy : RN → R

Y 7→ 〈Y, y〉 : y ∈ T ∩ ρSN−1

}
.

Therefore

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f2(Yi)− Ef2(Yi))

∣∣∣∣∣ = sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ .
Applying the symmetrization procedure to Z (cf (5.5)) and comparing Rademacher
and Gaussian processes, we conclude that

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ ≤ 2EEε sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣

≤
√

2πEEg sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

gi〈Yi, y〉2
∣∣∣∣∣ .

We will first get a bound for the Rademacher average (or the Gaussian one) and
then we will take the expectation with respect to the Yi’s. Before to work with these
difficult processes, we present a result of Rudelson where the supremum is taken on
the unit sphere SN−1.

Theorem 5.2.6. — For any fixed vectors Y1, . . . , Yn in RN ,

Eε sup
y∈SN−1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣ ≤ C

√
log n max

1≤i≤n
|Yi|2 sup

y∈SN−1

(
n∑
i=1

〈Yi, y〉2
)1/2

.

Proof. — We define the self-adjoint rank 1 operators

Ti = Yi ⊗ Yi :

{
RN → RN
y 7→ 〈Yi, y〉Yi
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in such a way that

sup
y∈SN−1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣ = sup

y∈SN−1

∣∣∣∣∣〈
n∑
i=1

εiTiy, y〉

∣∣∣∣∣ =

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
2→2

.

Let (λi)1≤i≤N be the eigenvalues of a self-adjoint operator S. By definition of the SNq
norms for any q > 0,

‖S‖2→2 = ‖S‖SN∞ = max
1≤i≤n

|λi| and ‖S‖SNq =

(
N∑
i=1

|λi|q
)1/q

.

Assume that the operator has rank less than n then for i ≥ n + 1, λi = 0 and we
deduce by Hölder inequality that

‖S‖SN∞ ≤ ‖S‖SNq ≤ n
1/q‖S‖SN∞ ≤ e‖S‖SN∞ for q ≥ log n.

The non-commutative Khinchine inequality of Lust-Piquard and Pisier states that for
any operator T1, . . . , Tn,

Eε

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
SNq

≤ C
√
q max


∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNq

,

∥∥∥∥∥∥
(

n∑
i=1

TiT
∗
i

)1/2
∥∥∥∥∥∥
SNq

 .

In our situation, T ∗i Ti = TiT
∗
i = |Yi|22Ti and S = (

∑n
i=1 T

∗
i Ti)

1/2
has rank less than

n, hence for q = log n,∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNq

≤ e

∥∥∥∥∥∥
(

n∑
i=1

|Yi|22Ti

)1/2
∥∥∥∥∥∥
SN∞

≤ e max
1≤i≤n

|Yi|2

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
1/2

SN∞

.

Combining all these inequalities, we conclude that for q = log n

Eε

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
SN∞

≤ C
√

log n

∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNlogn

≤ C e
√

log n max
1≤i≤n

|Yi|2 sup
y∈SN−1

(
n∑
i=1

〈Yi, y〉2
)1/2

.

Remark 5.2.7. — Since the non-commutative Khinchine inequality holds true for
independent Gaussian standard random variables, this result is also valid for Gaussian
instead of Bernoulli.

The proof that we presented here is based on an expression related to some operator
norms and our original question can not be expressed with these tools. The original
proof of Rudelson used the majorizing measure theory. Several improvements are
known and the statements of these results need some definition from the theory of
Banach spaces.
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Definition 5.2.8. — A Banach space X is of type 2 if there exists a constant c > 0
such that for every n and every x1, . . . , xn ∈ X,Eε

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
1/2

≤ c

(
n∑
i=1

‖xi‖2
)1/2

.

The smallest constant c > 0 satisfying this statement is called the type 2 constant of
X and is denoted by T2(X).

Classical examples are Hilbert spaces and Lq space for 2 ≤ q < +∞. From Theorem
1.2.1 in Chapter 1, we know also that Lψ2

has type 2.

Definition 5.2.9. — A Banach space X has modulus of convexity of power type 2
with constant λ if

∀x, y ∈ X,
∥∥∥∥x+ y

2

∥∥∥∥2

+ λ−2

∥∥∥∥x− y2

∥∥∥∥2

≤ 1

2

(
‖x‖2 + ‖y‖2

)
.

The modulus of convexity of a Banach space X is defined for every ε ∈ (0, 2) by

δX(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≤ ε
}
.

It is obvious that if X has modulus of convexity of power type 2 with constant λ
then δX(ε) ≥ ε2/2λ2 and it is well known that the reverse holds true (with a different
constant than 2).

Definition 5.2.10. — A Banach space Y has modulus of smoothness of power type
2 with constant µ if

∀x, y ∈ Y,
∥∥∥∥x+ y

2

∥∥∥∥2

+ µ2

∥∥∥∥x− y2

∥∥∥∥2

≥ 1

2

(
‖x‖2 + ‖y‖2

)
.

The modulus of smoothness of a Banach space Y is defined for every τ > 0 by

ρY (τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.

It is clear that if Y has modulus of smoothness of power type with constant µ then
for every τ ∈ (0, 1), ρY (τ) ≤ 2τ2µ2 and it is well known that the reverse holds true
(with a different constant than 2).
More generally, a Banach space X is uniformly convex if for every ε > 0, δX(ε) > 0
and a Banach space Y is uniformly smooth if limτ→0 ρY (τ)/τ = 0. We have the
following simple relationship between these notions.

Proposition 5.2.11. — For every Banach space X, X? being its dual, we have
(i) For every τ > 0, ρX?(τ) = sup{τε/2− δX(ε), 0 < ε ≤ 2}.
(ii) X is uniformly convex if and only if X? is uniformly smooth.
(iii) For any Banach space X, if X has modulus of convexity of power type 2 with
constant λ then X? has modulus of smoothness of power type 2 with constant cλ and
T2(X?) ≤ cλ.
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Proof. — The proof of (i) is straightforward, using the definition of duality. We have
for τ > 0,

2ρX?(τ) = sup{‖x? + τy?‖+ ‖x? − τy?‖ − 2 : ‖x?‖ = 1, ‖y?‖ = 1}
= sup{x?(x) + τy?(x) + x?(y)− τy?(y)− 2 : ‖x?‖ = 1, ‖y?‖ = 1, ‖x‖ = 1, ‖y‖ = 1}
= sup{x?(x+ y) + τy?(x− y)− 2 : ‖x?‖ = 1, ‖y?‖ = 1, ‖x‖ = 1, ‖y‖ = 1}
= sup{‖x+ y‖+ τ‖x− y‖ − 2 : ‖x‖ = 1, ‖y‖ = 1}
= sup{‖x+ y‖+ τε− 2 : ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ ≤ ε, ε ∈ (0, 2]}
= sup{τε− 2δX(ε) : ε ∈ (0, 2]}.

The proof of (ii) follows directly from (i). We will just prove (iii). If X has modulus
of convexity of power type 2 with constant λ then δX(ε) ≥ ε2/2λ2. By (i) we deduce
that ρX?(τ) ≥ τ2λ2/4. It implies that for any x?, y? ∈ X?,∥∥∥∥x? + y?

2

∥∥∥∥2

?

+ (cλ)2

∥∥∥∥x? − y?2

∥∥∥∥2

?

≥ 1

2

(
‖x?‖2? + ‖y?‖2?

)
where c is a positive number. We deduce that for any u?, v? ∈ X?,

Eε‖εu? + v?‖2? =
1

2

(
‖u? + v?‖2? + ‖ − u? + v?‖2?

)
≤ ‖v?‖2? + (cλ)2‖u?‖2?.

We conclude by induction that for any integer n and any vectors x?1, . . . , x
?
n ∈ X?,

Eε

∥∥∥∥∥
n∑
i=1

εix
?
i

∥∥∥∥∥
2

?

≤ (cλ)2

(
n∑
i=1

‖x?i ‖2?

)
which proves that T2(X?) ≤ cλ.

It is now possible to state the results about the estimate of the average of the
supremum of empirical processes.

Theorem 5.2.12. — If X is a Banach space with modulus of convexity of power
type 2 with constant λ then for any integer n and ξ1, . . . ξn ∈ X?,

Eg sup
‖x‖≤1

∣∣∣∣∣
n∑
i=1

gi〈ξi, x〉2
∣∣∣∣∣ ≤ C λ5

√
log n max

1≤i≤n
‖ξi‖? sup

‖x‖≤1

(
n∑
i=1

〈ξi, x〉2
)1/2

where g1, . . . , gn are independent N (0, 1) Gaussian random variables and C is a nu-
merical constant.

Corollary 5.2.13. — Let X be a Banach space with modulus of convexity of power
type 2 with constant λ. Let Y1, . . . , Yn ∈ X? be independent random vectors and
denote

K(n, Y ) = 2

√
2

π
Cλ5

√
log n

(
E max

1≤i≤n
‖Yi‖2?

)1/2

and σ2 = sup
‖y‖≤1

n∑
i=1

E〈Yi, y〉2
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where C is the numerical constant of Theorem 5.2.12. Then we have

E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ ≤ K(n, Y )2 + K(n, Y )σ.

Proof. — Denote by V2 the expectation of the supremum of the empirical process,
that is

V2 = E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

(
〈Yi, y〉2 − E〈Yi, y〉2

)∣∣∣∣∣ .
We start with a symmetrization argument. By (5.5) and Proposition 5.2.3 we have

V2 ≤ 2 EEε sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣ ≤ 2

√
2

π
EEg sup

‖y‖≤1

∣∣∣∣∣
n∑
i=1

gi〈Yi, y〉2
∣∣∣∣∣ .

In view of Theorem 5.2.12, we observe that the crucial quantity in the estimate is

sup‖x‖≤1

(∑n
i=1〈Yi, x〉2

)1/2
. Indeed, by the triangle inequality,

E sup
‖x‖≤1

n∑
i=1

〈Yi, x〉2 ≤ E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

(
〈Yi, y〉2 − E〈Yi, y〉2

)∣∣∣∣∣+ sup
‖y‖≤1

n∑
i=1

E〈Yi, y〉2 = V2+σ2.

Therefore, applying Theorem 5.2.12 and the Cauchy Schwarz inequality, we get

V2 ≤ 2

√
2

π
Cλ5

√
log nE

 max
1≤i≤n

‖Yi‖? sup
‖x‖≤1

(
n∑
i=1

〈Yi, x〉2
)1/2


≤ 2

√
2

π
Cλ5

√
log n

(
E max

1≤i≤n
‖Yi‖2?

)1/2
(
E sup
‖x‖≤1

n∑
i=1

〈Yi, x〉2
)1/2

≤ K(n, Y )
(
V2 + σ2

)1/2
.

We get that
V 2

2 −K(n, Y )2V2 −K(n, Y )2σ2 ≤ 0

from which it is easy to conclude that

V2 ≤ K(n, Y ) (K(n, Y ) + σ) .

The proof of Theorem 5.2.12 is slightly complicate and uses the tools of majorizing
measure theory and deep results about the duality of covering numbers (it is where
the notion of type is used). We will not present it. However, using simpler ideas, we
can also prove a general result where the assumption that X has a good modulus of
convexity is not needed.

Theorem 5.2.14. — Let X be a Banach space and Y1, . . . , Yn be independent ran-
dom vectors in X?. Let F be a set of functionals on X?. Denote by d∞,n the random

quasi-metric on F defined for every f, f in F by

d∞,n(f, f) = max
1≤i≤n

∣∣f(Yi)− f(Yi)
∣∣ .
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We have

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Yi)

2 − Ef(Yi)
2
)∣∣∣∣∣ ≤ max(σFUn, U

2
n)

where for a numerical constant C,

Un = C
(
Eγ2

2(F , d∞,n)
)1/2

and σF =

(
sup
f∈F

n∑
i=1

Ef(Yi)
2

)1/2

.

We refer to Definition 3.1.3 in Chapter 3 for the precise definition of γ2(F , d∞,n).

Proof. — As in the proof of Corollary 5.2.13, we need first to get a bound of

Eg sup
f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ .
Let (Xf )f∈F be the Gaussian process defined conditionally with respect to the Yi’s,
Xf =

∑n
i=1 gif(Yi)

2 and indexed by f ∈ F . The quasi-metric d associated to this

process is given for any f, f ∈ F by

d(f, f)2 = Eg|Xf −Xf |
2 =

n∑
i=1

(
f(Yi)

2 − f(Yi)
2
)2

=

n∑
i=1

(
f(Yi)− f(Yi)

)2 (
f(Yi) + f(Yi)

)2
≤ 2

n∑
i=1

(
f(Yi)− f(Yi)

)2 (
f(Yi)

2 + f(Yi)
2
)

≤ 4 sup
f∈F

(
n∑
i=1

f(Yi)
2

)
max

1≤i≤n
(f(Yi)− f(Yi))

2.

In conclusion, we have proved that for any f, f ∈ F ,

d(f, f) ≤ 2 sup
f∈F

(
n∑
i=1

f(Yi)
2

)1/2

d∞,n(f, f).

By definition of the γ2 functionals, see Chapter 3, we conclude that for every vectors
Y1, . . . , Yn ∈ X?,

Eg sup
f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ ≤ C sup
f∈F

(
n∑
i=1

f(Yi)
2

)1/2

γ2(F , d∞,n)

where C is a universal constant. We repeat the proof of Corollary 5.2.13. Let

V2 = E sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Yi)

2 − Ef(Yi)
2
)∣∣∣∣∣ .
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By a symmetrization argument and the Cauchy-Schwarz inequality,

V2 ≤ 2

√
2

π
EEg sup

f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ ≤ C (Eγ2(F , d∞,n)2
)1/2(E sup

f∈F

n∑
i=1

f(Yi)
2

)1/2

≤ C
(
Eγ2(F , d∞,n)2

)1/2 (
V2 + σ2

F
)1/2

.

where the last inequality follows from the triangle inequality: E supf∈F
∑n
i=1 f(Yi)

2 ≤
(V2 +σ2

F )2. This shows that V2 satisfies an inequality of degree 2 from which it is easy
to conclude that

V2 ≤ max(σFUn, U
2
n), where Un = C

(
Eγ2(F , d∞,n)2

)1/2
.

5.3. Selection of characters

5.3.1. Reconstruction property. — We are now able to state one main theorem
concerning the reconstruction property of a random matrix defined by taking empirical
copies of the rows of a fixed bounded orthogonal matrix (or by selecting randomly its
rows).

Theorem 5.3.1. — Let φ1, . . . , φN be an orthogonal system in `N2 such that for a
real number K

∀i ≤ N, |φi|2 = K and |φi|∞ ≤
1√
N
.

Let Y be the random vector defined by Y = φi with probability 1/N and Y1, . . . , Yn be
independent copies of Y . . If

m ≤ C1K
2 n

logN(log n)3

then with probability greater than

1− C2 exp(−C3K
2n/m)

the matrix Φ =

 Y1

...
Yn

 is a good reconstruction matrix for sparse signals of size

m, that is for every U ∈ Σm, the basis pursuit algorithm (5.1), min
t∈RN

{|t|1 : ΦU = Φt},
has a unique solution equal to U .

Remark 5.3.2. — • By definition of m, the probability of this event is always greater
than 1− C2 exp

(
−C3 logN(log n)3

)
.

• The same result is valid when using the method of selectors.
• As we already mentioned, this theorem covers the case of a lot of classical systems
like the Fourier system or the Walsh system.
• The result is also valid if the orthogonal system φ1, . . . , φN satisfies the weaker
condition that for all i ≤ N , K1 ≤ |φi|2 ≤ K2 and in the statement, K has to be
replaced by K2

2/K1.
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Proof. — Observe that E〈Y, y〉2 = K2 |y|22/N . We define the class of functions F in
the following way:

F =

{
fy : RN → R

Y 7→ 〈Y, y〉 , y ∈ BN1 ∩ ρSN−1

}
.

Therefore

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)
2 − Ef(Yi)

2)

∣∣∣∣∣ = sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ .
With the notation of Theorem 5.2.14, we have

σ2
F = sup

y∈BN1 ∩ρSN−1

n∑
i=1

E〈Yi, y〉2 =
K2nρ2

N
. (5.8)

Moreover, since BN1 ∩ ρSN−1 ⊂ BN1 ,

γ2(BN1 ∩ ρSN−1, d∞,n) ≤ γ2(BN1 , d∞,n).

It is well known that the γ2 functional is bounded by the Dudley integral (see (3.7)
in Chapter 3):

γ2(BN1 , d∞,n) ≤ C
∫ +∞

0

√
logN(BN1 , ε, d∞,n) dε.

However, for every i ≤ n, |Yi|∞ ≤ 1/
√
N and

sup
y,y∈BN1

d∞,n(y, y) = sup
y,y∈BN1

max
1≤i≤n

|〈Yi, y − y〉| ≤ 2 max
1≤i≤n

|Yi|∞ ≤
2√
N
.

The integral is only computed from 0 to 2/
√
N and by the change of variable t = ε

√
N ,

we deduce that∫ +∞

0

√
logN(BN1 , ε, d∞,n)dε =

1√
N

∫ 2

0

√
logN

(
BN1 ,

t√
N
, d∞,n

)
dt.

¿From Theorem 1.4.3, since for every i ≤ n, |Yi|∞ ≤ 1/
√
N , we have√

logN

(
BN1 ,

t√
N
, d∞,n

)
≤


C

t

√
log n

√
logN ,

C

√
n log

(
1 +

3

t

) .

We split the integral into two parts, the one when t ≤ 1/
√
n and the one when

1/
√
n ≤ t ≤ 2.∫ 1/

√
n

0

√
n log

(
1 +

3

t

)
dt =

∫ 1

0

√
log

(
1 +

3
√
n

u

)
du

≤
∫ 1

0

√
log n+ log

(
3

u

)
du ≤ C

√
log n
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and since ∫ 2

1/
√
n

1

t
dt ≤ C log n,

we conclude that

γ2(BN1 ∩ ρSN−1, d∞,n) ≤ γ2(BN1 , d∞,n) ≤ C
√

(log n)3 logN

N
.

Combining this estimate and (5.8) with Theorem 5.2.14, we get that for a real number
C ≥ 1,

EZ ≤ C max

(
(log n)3 logN

N
, ρK

√
n

N

√
(log n)3 logN

N

)
.

We choose ρ such that

(log n)3 logN ≤ ρK
√
n (log n)3 logN ≤ 1

3C
K2 ρ2 n

which means that ρ satisfies

K ρ ≥ 3C

√
(log n)3 logN

n
. (5.9)

For this choice of ρ, we conclude that

EZ = E sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ ≤ 1

3

K2nρ2

N
.

We use Proposition 5.2.5 to get a deviation inequality for the random variable Z.
With the notations of Proposition 5.2.5, we have

u = sup
y∈BN1 ∩ρSN−1

max
1≤i≤N

〈φi, y〉2 ≤ max
1≤i≤N

|φi|2∞ ≤
1

N

and

v = sup
y∈BN1 ∩ρSN−1

n∑
i=1

E
(
〈Yi, y〉2 − E〈Yi, y〉2

)2
+ 32uEZ

≤ sup
y∈BN1 ∩ρSN−1

n∑
i=1

E〈Yi, y〉4 +
CK2nρ2

N2
≤ CK2nρ2

N2

since for every y ∈ BN1 , E〈Y, y〉4 ≤ E〈Y, y〉2/N . Using Proposition 5.2.5 with t =
1
3
K2nρ2

N , we conclude that

P
(
Z ≥ 2

3

K2nρ2

N

)
≤ C exp(−cK2 nρ2).

With probability greater than 1− C exp(−cK2 nρ2), we get that

sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ ≤ 2

3

K2nρ2

N
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from which it is easy to deduce by Proposition 5.1.6 that

diam
(
ker Φ ∩BN1

)
< ρ.

We choose m = 1/4ρ2 and conclude by Proposition 5.1.1 that with probability greater
than 1− C exp(−cK2n/m), the matrix Φ is a good reconstruction matrix for sparse
signals of size m, that is for every U ∈ Σm, the basis pursuit algorithm (5.1) has
a unique solution equal to U . The condition on m in Theorem 5.3.1 comes from
(5.9).

Remark 5.3.3. — In view of Theorem 5.1.2, it is clear that the matrix Φ shares
also the property of approximate reconstruction. It is enough to change the choice of
m by m = 1/16ρ2. Therefore, if U is any unknown signal and x a solution of

min
t∈RN
{|t|1,ΦU = Φt}

then for any subset I of cardinality less than m,

|x− U |2 ≤
|x− U |1

4
√
m
≤ |UI

c |1√
m

.

5.3.2. Random selection of a coordinate subspace. — In this part, we consider
a problem coming from Harmonic Analysis. Let µ be a probability measure and let
(ψ1, . . . , ψN ) be an orthonormal system of L2(µ) bounded in L∞ i.e. such that for
every i ≤ N , ‖ψi‖∞ ≤ 1. Typically, we consider a system of characters in L2(µ). For
a measurable function f and for p > 0, we denote its Lp norm and its L∞ norm by

‖f‖p =

(∫
|f |pdµ

)1/p

and ‖f‖∞ = sup |f |.

In RN or CN , µ is just the counting probability measure so that the Lp-norm of a
vector x = (x1, . . . , xN ) is defined by

‖x‖p =

(
1

N

N∑
i=1

|xi|p
)1/p

.

The spaces `N∞ and LN∞ coincide and we observe that if (ψ1, . . . , ψN ) is a bounded

orthonormal system in LN2 then (ψ1/
√
N, . . . , ψN/

√
N) is an orthonormal system of

`N2 such that for every i ≤ N , |ψi/
√
N |∞ ≤ 1/

√
N . Therefore the setting is exactly

the same as in the previous part except a normalization factor of
√
N .

Of course the notation of the half-diameter of a set T will now be adapted to the
L2(µ) Euclidean structure. This means that for a set T , its half-diameter is

DiamT = sup
t∈T
‖t‖2.

For any q > 0, we denote by Bq the unit ball of Lq(µ) that is

Bq = { f measurable with respect to µ, such that ‖f‖q ≤ 1}
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and by Sq the unit sphere of Lq(µ). It is clear that for any subset I ⊂ [N ]

∀ (ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤
√
|I|

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

The Dvoretky’s theorem proved by Milman asserts that for any ε ∈ (0, 1), there exists
a subspace E ⊂ span{ψ1, . . . , ψN} of dimension dimE = n = c

(
ε2/ log(1 + 2/ε)

)
N

such that

∀ (ai)
N
i=1 , if x =

N∑
i=1

aiψi ∈ E, then (1− ε) r ‖x‖1 ≤ ‖x‖2 ≤ (1 + ε) r ‖x‖1

where r is a number depending on the dimension N which can be bounded from
above and below by some numerical constants (independent of the dimension N).
Observe that the constant c which appears in the dependance of dimE is very small
therefore this Dvoretzy’s theorem does not provide a subspace of say half dimension
such that the L1 norm and the L2 norm are comparable up to constant factors. This
question was solved by Kashin. He proved in fact a very strong result which is called
now a Kashin decomposition: there exists a subspace E of dimension [N/2] such that

∀ (ai)
N
i=1,

if x =

N∑
i=1

aiψi ∈ E then ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1 ,

and if y =

N∑
i=1

aiψi ∈ E⊥ then ‖y‖1 ≤ ‖y‖2 ≤ C ‖y‖1

where C is a numerical constant. In the setting of Harmonic Analysis, the questions
are more related with coordinate subspaces because the questions are related in finding
a subset of {ψ1, . . . , ψN} which satisfies good comparison properties between the Lr
norms. Talagrand, improving a result of Bourgain, showed that there exists a small
constant δ0 such that for any bounded orthonormal system {ψ1, . . . , ψN}, there exists
a subset I of cardinality greater than δ0N such that

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤
√

logN (log logN)

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

. (5.10)

The proof involves the construction of specific majorizing measures. Moreover, it was
known from Bourgain that the

√
logN is necessary in the estimate. We will now

explain why the strategy that we developed in the previous part is adapted to this
type of question. For example, we will be able to extend the result (5.10) to a Kashin
type setting.

We start with the following simple Proposition concerning some properties of the
matrix Ψ (that we will later define randomly as in Theorem 5.3.1).

Proposition 5.3.4. — Let µ be a probability measure and let (ψ1, . . . , ψN ) be an
orthonormal system of L2(µ). Let Y1, . . . , Yn be a family of vectors taking values from
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the set of vectors {ψ1, . . . , ψN}. Let Ψ be the matrix Ψ =

 Y1

...
Yn

 . Then

(i) ker Ψ = span {{ψ1, . . . , ψN} \ {Yi}ni=1} = span {ψi}i∈I where I is a subset of
cardinality greater than N − n.
(ii) (ker Ψ)⊥ = span {ψi}i/∈I
(iii) If for a star shape body T

sup
y∈T∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ ≤ 1

3

nρ2

N
(5.11)

then Diam (ker Ψ ∩ T ) < ρ.
(iv) If n < 3N/4 and if (5.11) is satisfied then we also have Diam ((ker Ψ)⊥ ∩T ) < ρ.

Proof. — Since {ψ1, . . . , ψN} is an orthonormal system, the parts (i) and (ii) are
obvious. For the proof of (iii), we first remark that if (5.11) holds true then we get
from the lower bound that for all y ∈ T ∩ ρS2,

n∑
i=1

〈Yi, y〉2 ≥
2

3

nρ2

N

and we deduce as in Proposition 5.1.6 that Diam (ker Ψ ∩ T ) < ρ.
For the proof of (iv), we deduce from the upper bound of (5.11) that for all y ∈ T∩ρS2,

∑
i∈I
〈ψi, y〉2 =

N∑
i=1

〈ψi, y〉2 −
n∑
i=1

〈Yi, y〉2 = ‖y‖22 −
n∑
i=1

〈Yi, y〉2

≥ ρ2 − 4

3

nρ2

N
= ρ2

(
1− 4n

3N

)
> 0 since n < 3N/4.

This inequality means that for the matrix Ψ̃ defined by Ψ̃ =

 ·
ψi
·


i∈I

, for every

y ∈ T ∩ ρS2, we have

inf
y∈T∩ρS2

‖Ψ̃y‖22 > 0

and we conclude as in Proposition 5.1.6 that Diam (ker Ψ̃ ∩ T ) < ρ. Moreover, it is

obvious that ker Ψ̃ = (ker Ψ)⊥.

5.3.2.1. The case of LN2 . — We will now present a result concerning the problem
of selection of characters in LN2 . It is not the most general result but we would like
to emphasize the deep similarity between the proofs of this result and the proof of
Theorem 5.3.1.

Theorem 5.3.5. — Let (ψ1, . . . , ψN ) be an orthonormal system of LN2 bounded in
LN∞ i.e. such that for every i ≤ N , ‖ψi‖∞ ≤ 1.
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For any 2 ≤ n ≤ N−1, there exists a subset I ⊂ [N ] of cardinality greater than N−n
such that for all (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

√
N

n

√
logN(log n)3/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

Proof. — Let Y be the random vector defined by Y = ψi with probability 1/N and
let Y1, . . . , Yn be independent copies of Y . Observe that E〈Y, y〉2 = ‖y‖22/N and define

Z = sup
y∈B1∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ .
Following the proof of Theorem 5.3.1 (the normalization is different from a factor√
N), we obtain that if ρ is such that

ρ ≥ C
√
N (log n)3 logN

n

then

P
(
Z ≥ 1

3

nρ2

N

)
≤ C exp(−c n ρ

2

N
).

Therefore there exists a choice of Y1, . . . , Yn (in fact it is with probability greater than

1− C exp(−c n ρ
2

N )) such that

sup
y∈B1∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ ≤ 1

3

nρ2

N

and if I is defined by {ψi}i∈I = {ψ1, . . . , ψN}\{Y1, . . . , Yn} then by Proposition 5.3.4
(iii) and (i), we conclude that Diam (span {ψi}i∈I ∩ B1) ≤ ρ and |I| ≥ N − n. This
means that for every (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ ρ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

Remark 5.3.6. — Theorem 5.3.5 implies Theorem 5.3.1. Indeed, if we write the
inequality with the classical `1 and `2 norms, we get that∣∣∣∣∣∑

i∈I
aiψi

∣∣∣∣∣
2

≤ C
√

logN

n
(log n)3/2

∣∣∣∣∣∑
i∈I

aiψi

∣∣∣∣∣
1

which means that diam (ker Ψ ∩ BN1 ) ≤ C
√

logN
n (log n)3/2. We conclude about the

reconstruction property by using Proposition 5.1.1.
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5.3.2.2. The general case of L2(µ). — We can now state a general result about the
problem of selection of characters. It is an extension of (5.10) to the existence of a
subset of arbitrary size, with a slightly worse dependence in log logN .

Theorem 5.3.7. — Let µ be a probability measure and let (ψ1, . . . , ψN ) be an or-
thonormal system of L2(µ) bounded in L∞ i.e. such that for every i ≤ N , ‖ψi‖∞ ≤ 1.
For any n ≤ N − 1, there exists a subset I ⊂ [N ] of cardinality greater than N − n
such that for all (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C γ (log γ)5/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

where γ =
√

N
n

√
log n.

Remark 5.3.8. — • If n is chosen to be proportional to N then γ (log γ)5/2 is of
the order of

√
logN (log logN)5/2. However, if n is chosen to be a power of N then

γ (log γ)5/2 is of the order
√

N
n

√
log n(logN)5/2 which is a worse dependence than in

Theorem 5.3.5
• Exactly as in Theorem 5.3.1 we could assume that (ψ1, . . . , ψN ) is an orthogonal
system of L2 such that for every i ≤ N , ‖ψi‖2 = K and ‖ψi‖∞ ≤ 1 for a fixed real
number K.

The second main result is an extension of (5.10) to a Kashin type setting.

Theorem 5.3.9. — With the same assumptions as in Theorem 5.3.7, if N is an
even natural integer, there exists a subset I ⊂ [N ] with N

2 − c
√
N ≤ |I| ≤ N

2 + c
√
N

such that for all (ai)
N
i=1∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C
√

logN (log logN)5/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

and ∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
2

≤ C
√

logN (log logN)5/2

∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
1

.

In order to be able to use Theorem 5.2.12 and its Corollary 5.2.13, we would like
to replace the unit ball B1 by a ball which has a good modulus of convexity that is
for example Bp for 1 < p ≤ 2. We start recalling a classical trick that is used very
often when we compare the Lr norms of a measurable functions (for example in the
theory of thin sets in Harmonic Analysis).

Lemma 5.3.10. — Let f be a measurable function with respect to the probability
measure µ. For 1 < p < 2,

if ‖f‖2 ≤ A‖f‖p then ‖f‖2 ≤ A
p

2−p ‖f‖1.
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Proof. — This is just an application of Hölder inequality. Let θ ∈ (0, 1) such that
1/p = (1− θ) + θ/2 that is θ = 2(1− 1/p). By Hölder,

‖f‖p ≤ ‖f‖1−θ1 ‖f‖θ2.

Therefore if ‖f‖2 ≤ A‖f‖p we deduce that ‖f‖2 ≤ A
1

1−θ ‖f‖1.

Proposition 5.3.11. — With the same assumptions as in Theorem 5.3.7, the fol-
lowing holds.

1) For any p ∈ (1, 2) and any 2 ≤ n ≤ N − 1 there exists a subset I ⊂ {1, . . . , N}
with |I| ≥ N − n such that for every a = (ai) ∈ CN ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

.

2) Moreover, if N is an even natural integer, there exists a subset I ⊂ {1, . . . , N}
with N/2− c

√
N ≤ |I| ≤ N/2 + c

√
N such that for every a = (ai) ∈ CN ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

and ∥∥∥∥∥∑
i/∈I

aiϕi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
p

.

Combining the first part of Proposition 5.3.11 with Lemma 5.3.10, it is easy to make
the proof of Theorem 5.3.7. Indeed, let γ =

√
N/n

√
log n and choose p = 1+1/ log γ.

Using Proposition 5.3.11, there is a subset I of cardinality greater than N − n for
which

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ Cp γ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

where Cp = C/(p− 1)5/2. By the choice of p and Lemma 5.3.10,∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ γ Cp/(2−p)p γ2(p−1)/(2−p)

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

≤ C γ h(γ)

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

where h(γ) = (log γ)5/2.
The same argument works for the Theorem 5.3.9 using the second part of Propo-

sition 5.3.11.
It remains to make the proof of Proposition 5.3.11.

Proof. — Let Y be the random vector defined by Y = ψi with probability 1/N and
let Y1, . . . , Yn be independent copies of Y . Observe that E〈Y, y〉2 = ‖y‖22/N , let
E = span {ψ1, . . . , ψN} and for ρ > 0 let Ep be the vectorial space E endowed with
the norm defined by

‖y‖ =

(
‖y‖2p + ρ−2‖y‖22

2

)1/2

.
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We restrict our study to the vectorial space E and it is clear that

(Bp ∩ ρB2) ⊂ BEp ⊂
√

2(Bp ∩ ρB2) (5.12)

where BEp is the unit ball of Ep. Moreover, the Clarkson inequality tells that for any
f, g ∈ Lp, ∥∥∥∥f + g

2

∥∥∥∥2

p

+
p(p− 1)

8

∥∥∥∥f − g2

∥∥∥∥2

p

≤ 1

2
(‖f‖2p + ‖g‖2p).

It is therefore easy to deduce that Ep is a Banach space with modulus of convexity
of power type 2 with constant λ such that λ−2 = p(p− 1)/8.

We define the random variable

Z = sup
y∈Bp∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣
and we deduce from (5.12) that

EZ ≤ E sup
y∈BEp

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ .

We use Corollary 5.2.13. We deduce from (5.12) that σ2 = supy∈BEp n‖y‖
2
2/N ≤

2nρ2/N and that for every i ≤ N , ‖ψi‖E?p ≤
√

2‖ψi‖∞ ≤
√

2. By Corollary 5.2.13,
we get

E sup
y∈BEp

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ ≤ C max

(
λ10 log n, ρλ5

√
n log n

N

)
.

We conclude that

if ρ ≥ Cλ5

√
N log n

n
then EZ ≤ 1

3

nρ2

N

and using Proposition 5.1.6 we get that

Diam (ker Ψ ∩Bp) < ρ

where Ψ =

 Y1

...
Yn

. We choose ρ = Cλ5
√

N logn
n and deduce from Proposition 5.3.4

(iii) and (i) that for I defined by {ψi}i∈I = {ψ1, . . . , ψN} \ {Y1, . . . , Yn} we have

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ ρ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

which ends the proof of the first part of Proposition 5.3.11.
For the proof of the second part, we add the following observation. By a combina-

torial argument, it is not difficult to prove that if n = [δN ] with δ = log 2 < 3/4 then
with probability greater than 3/4,

N/2− c
√
N ≤ |I| = N − |{Y1, . . . , Yn}| ≤ N/2 + c

√
N,
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for some absolute constant c > 0. Hence n < 3N/4 and we can also use part (iv) of
Proposition 5.3.4 which proves that

Diam (ker Ψ ∩Bp) ≤ ρ and Diam ((ker Ψ)⊥ ∩Bp) ≤ ρ.

Since ker Ψ = span {ψi}i∈I and (ker Ψ)⊥ = span {ψi}i/∈I , this ends the proof of the
Proposition.

5.4. Comments

Concerning the Gelfand numbers of the operator id : `N1 → `N2 , a major break-
through was made by Kashin in [Kaš77]. The statement of Theorem 5.1.4 is a result
due to Garnaev and Gluskin [GG84] and to Gluskin [Glu83]. The study of the
Gelfand and Kolmogorov numbers was deeply developed during the eighties and we
refer also to [PTJ86, CP88, PTJ89, PTJ90]. The Proposition 5.1.6 comes from
[PTJ86] (Proposition 2) and was at the heart of several improvements about these
approximation numbers.

For the study of the supremum of an empirical process and the connection with
Rademacher averages, we already referred to chapter 4 of [LT91]. Theorem 5.2.1 is
due to Talagrand and can be found in theorem 4.12 in [LT91]. Theorem 5.2.2 is
often called a “symmetrization principle”. This strategy is already used by Kahane
in [Kah68] for studying random series on Banach spaces. It was pushed forward by
Giné and Zinn in [GZ84] for studying limit theorem for empirical processes. The
concentration inequality, Theorem 5.2.4, is due to Talagrand [Tal96b]. Several im-
provements and simplifications are known, in particular in the case of independent
identically distributed random variables. We refer to [Rio02, Bou03, Kle02, KR05]
for more precise results. The Proposition 5.2.5 is taken from [Mas00].

Theorem 5.2.6 is due to Rudelson [Rud99]. The proof that we presented was
suggested by Pisier to Rudelson. It used a refined version of non-commutative Khin-
chine inequality that can be found in [LP86, LPP91, Pis98]. However, it is based
on an expression related to some operator norms and we have seen that we need
some estimates of the supremum of some empirical processes that can not be ex-
pressed in terms of operator norms. The original proof of Rudelson can be found in
[Rud96] and used the majorizing measure theory. Some improvements of this result
are proved in [GR07] and in [GMPTJ08]. The proof of Theorem 5.2.12 can be
found in [GMPTJ08] and it is based on the same type of construction of majorizing
measures than in [GR07] and on deep results about the duality of covering numbers
[BPSTJ89]. The notions of type and cotype of a Banach space are important in this
study and we refer the interested reader to [Mau03].

Theorem 5.2.14 comes from [GMPTJ07]. It was used to prove some results about
the problem of selection of characters like Theorem 5.3.5. As we have seen, the proof
is very similar to the proof of Theorem 5.3.1 and this result is due to Rudelson and
Vershynin [RV08c]. They improved a result due to Candès and Tao [CT05] and
the strategy of their proofs was to study the RIP condition instead of the size of the
half-diameter of the section by BN1 . Moreover, the probabilistic estimate is slightly
better than in [RV08c] and it was shown to us by Holger Rauhut [Rau10]. We
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refer to [Rau10, FR10] for a deeper presentation of the problem of compressed
sensing and for several different points of view. We refer also to [CDD09, KT07] for
the study of approximate reconstruction. Theorem 5.1.2 comes from [KT07] where
connections between the Compressed Sensing problem and the problem of estimating
the Kolmogorov widhts are discussed.

For the classical study of the local theory of Banach spaces, we refer to [MS86]
and to [Pis89]. The study of the Euclidean sections or projections of a convex body is
studied in detail in [FLM77] and the Kashin decomposition can be found in [Kaš77].
About the question of selection of characters, we refer the interested reader to the
paper of Bourgain [Bou89] where he proved for p > 2 the existence of Λ(p) sets which
are not Λ(r) for r > p. This problem was related to the theory of majorizing measure
in [Tal95]. The existence of a subset of a bounded orthonormal system satisfying the
inequality (5.10) is proved by Talagrand in [Tal98]. Theorems 5.3.7 and 5.3.9 are
proved in [GMPTJ08]. We refer also to that paper for a proof of the fact that the
factor

√
logN is necessary in the estimate.





NOTATIONS

– The sets of numbers are Q, R, C
– For all x ∈ RN and p > 0,

|x|p = (|x1|p + · · ·+ |xN |p)1/p and |x|∞ = max
16i6N

|xi|

– BNp = {x ∈ RN : |x|p ≤ 1}
– Scalar product x · y or 〈x, y〉 and x ⊥ y means x · y = 0
– A∗ = Ā> is the conjugate transpose of the matrix A
– s1(A) > · · · > sn(A) are the singular values of the n×N matrix A where n 6 N
– ‖A‖2→2 is the operator norm of A (`2 → `2)
– ‖A‖HS is the Hilbert-Schmidt norm of A
– e1, . . . , en is the canonical basis of Rn

–
d
= stands for the equality in distribution

–
d→ stands for the convergence in distribution

–
w→ stands for weak convergence of measures

– Mm,n(K) are the m× n matrices with entries in K, and Mn(K) =Mn,n(K)
– I is the identity matrix
– x ∧ y = min(x, y) and x ∨ y = max(x, y)
– |S| cardinal of the set S
– dist2(x,E) = infy∈E |x− y|2
– suppx is the subset of non-zero coordinate of x
– The vector x is said to be m-sparse if |suppx| ≤ m.
– Σm = Σm(RN ) m-sparse vectors
– Sp(Σm) = {x ∈ RN : |x|p = 1, |suppx| ≤ m}
– Bp(Σm) = {x ∈ RN : |x|p ≤ 1, |suppx| ≤ m}
– conv(E) is the convex hull of E
– diam(F, ‖·‖) = sup{‖x‖ : x ∈ F}
– For a random variable Z and any α > 1, ‖Z‖ψα = inf {s > 0 ; E exp (|Z|/s)α 6 e}
– `∗(T ) = E supt∈T |

∑N
i=1 giti|2
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vol. 56, Birkhäuser, Basel, 2003, p. 213–247.

[BPSTJ89] J. Bourgain, A. Pajor, S. J. Szarek & N. Tomczak-Jaegermann
– “On the duality problem for entropy numbers of operators”, in Geometric aspects
of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin,
1989, p. 50–63.

[BS98] Z. D. Bai & J. W. Silverstein – “No eigenvalues outside the support of
the limiting spectral distribution of large-dimensional sample covariance matrices”,
Ann. Probab. 26 (1998), no. 1, p. 316–345.

[BS10] Z. Bai & J. W. Silverstein – Spectral analysis of large dimensional random
matrices, second ed., Springer Series in Statistics, Springer, New York, 2010.

[BVW10] J. Bourgain, V. H. Vu & P. M. Wood – “On the singularity probability
of discrete random matrices”, J. Funct. Anal. 258 (2010), no. 2, p. 559–603.

[BY93] Z. D. Bai & Y. Q. Yin – “Limit of the smallest eigenvalue of a large-
dimensional sample covariance matrix”, Ann. Probab. 21 (1993), no. 3, p. 1275–1294.

[Can08] E. J. Candès – “The restricted isometry property and its implications for
compressed sensing”, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9-10, p. 589–592.



BIBLIOGRAPHY 131

[Car85] B. Carl – “Inequalities of Bernstein-Jackson-type and the degree of com-
pactness of operators in Banach spaces”, Ann. Inst. Fourier (Grenoble) 35 (1985),
no. 3, p. 79–118.

[CD05] Z. Chen & J. J. Dongarra – “Condition numbers of Gaussian random
matrices”, SIAM J. Matrix Anal. Appl. 27 (2005), no. 3, p. 603–620 (electronic).

[CDD09] A. Cohen, W. Dahmen & R. DeVore – “Compressed sensing and best
k-term approximation”, J. Amer. Math. Soc. 22 (2009), no. 1, p. 211–231.

[CG05] M. T. Chu & G. H. Golub – Inverse eigenvalue problems: theory, algo-
rithms, and applications, Numerical Mathematics and Scientific Computation, Ox-
ford University Press, New York, 2005.
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[Kôn80] N. Kôno – “Sample path properties of stochastic processes”, J. Math. Kyoto
Univ. 20 (1980), no. 2, p. 295–313.

[Kos88] E. Kostlan – “Complexity theory of numerical linear algebra”, J. Comput.
Appl. Math. 22 (1988), no. 2-3, p. 219–230, Special issue on emerging paradigms in
applied mathematical modelling.
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