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Preface

Who is this book for? This is a textbook in probability in high dimen-
sions with a view toward applications in data sciences. It will be useful for
doctoral and advanced masters students in mathematics, statistics, electri-
cal engineering and other related areas, who are looking to expand their
knowledge of powerful theoretical methods used in modern data sciences.

To accommodate readers from various disciplines, a good previous mas-
ters level course in probability and an excellent command of linear algebra
should be enough preparation. Familiarity with measure theory would be
helpful but is not essential.
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Chapter 1

Preliminaries on random
variables

1.1 Basic quantities associated with random vari-
ables

In a basic course in probability theory, we learned about the two most im-
portant quantities associated with a random variable X, namely the expec-
tation1 (also called mean), and variance. They will be denoted in this book
by

EX and Var(X) = E(X − EX)2.

Let us recall some other classical quantities and functions that describe
probability distributions. The moment generating function of X is defined
as

MX(t) = E etX , t ∈ R.

For p > 0, the p-th moment of X is defined to be EXp, and the absolute
p-th moment is E |X|p.

It is useful to take p-th root of the moments, which leads to the quantity
called the Lp norm:

‖X‖p = (E |X|p)1/p, p ∈ (0,∞).

1If you studied measure theory, you will recall that the expectation EX of a random
variable X on a probability space (Ω,Σ,P) is, by definition, the Lebesgue integral of the
function X : Ω → R. This makes all theorems on Lebesgue integration applicable in
probability theory, for expectations of random variables.

1



2 CHAPTER 1. PRELIMINARIES ON RANDOM VARIABLES

This definition can be extended to p =∞ by the essential supremum of |X|:

‖X‖∞ = ess sup |X|.

For fixed p and a given probability space (Ω,Σ,P), the classical space
Lp = Lp(Ω,Σ,P) consists of all random variables X on Ω with finite Lp

norm, that is

Lp =
{
X : ‖X‖p <∞

}
.

For p ∈ [1,∞] the quantity ‖X‖p is a norm and Lp is a Banach space. This
fact follows from Minkowski’s inequality, which we will recall in (1.2). For
p < 1, the triangle inequality fails and ‖X‖p is not a norm.

The exponent p = 2 is special: L2 is a Hilbert space. The inner product
on L2 is given by

E 〈X,Y 〉 = EXY.

Then the standard deviation of X can be expressed as

‖X − EX‖2 =
√

Var(X) = σ(X).

Similarly, we can express the covariance of random variables of X and Y
can be expressed as

cov(X,Y ) = E(X − EX)(Y − EY ) = 〈X − EX,Y − EY 〉 .

When we consider random variables as vectors in the Hilbert space L2, we
may interpret covariance in a geometric way. The more the vectors X−EX
and Y −EY are aligned with each other, the bigger their inner product and
covariance are.

1.2 Some classical inequalities

Let us review some basic inequalities on random variables. Most of them
are usually covered in advanced calculus or basic probability courses.

Jensen’s inequality states that for any random variable X and a convex2

function ϕ : R→ R, we have

ϕ(EX) ≤ Eϕ(X).

2By definition, a function ϕ is convex if ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y) for all
t ∈ [0, 1] and all x, y in the domain of ϕ.
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As a simple consequence of Jensen’s inequality, we may note that ‖X‖p
is an increasing function in p, that is

‖X‖p ≤ ‖X‖q for any 0 ≤ p ≤ q =∞. (1.1)

This inequality follows since φ(x) = xq/p is a convex function if q/p ≥ 1.
Minkowski’s inequality states that for any p ∈ [1,∞] and any random

variables X,Y ∈ Lp, we have

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p. (1.2)

This can be viewed as the triangle inequality, which implies that ‖ · ‖p is a
norm when p ∈ [1,∞].

Cauchy-Schwarz inequality states that for any random variables X,Y ∈
L2, we have

EXY ≤ ‖X‖2 ‖Y ‖2.
The more general Hölder’s inequality states that if p, p′ ∈ (1,∞) are conju-
gate exponents, that is 1/p + 1/q = 1, then random variables X ∈ Lp and
Y ∈ Lq satisfy

EXY ≤ ‖X‖p ‖Y ‖q.
This inequality also holds for the pair p = 1, q =∞.

As we recall from a basic probability course, the distribution of a random
variable X is, intuitively, the information about what values X takes with
what probabilities. More rigorously, the distribution of X is determined by
the cumulative distribution function (CDF) of X, defined as

FX(t) = P {X ≤ t} for t ∈ R.

It is often more convenient to work with tails of random variables, namely

P {X > t} = 1− FX(t).

There is an important connection between the tails and the expectation
(and more generally, the moments) of a random variable. The following
identity is typically used to bound the expectation by tails.

Lemma 1.2.1 (Integral Identity). For any random variable X, we have

EX =

∫ ∞
0

P {X > t} dt−
∫ 0

−∞
P {X < t} dt.

In particular, for a non-negative random variable X, we have

EX =

∫ ∞
0

P {X > t} dt.
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Exercise 1.2.2. Prove the Expectation Integral Identity.

Another classical fact, Markov’s inequality, bounds the tails in terms of
expectation.

Proposition 1.2.3 (Markov’s Inequality). For any non-negative random
variable X and t > 0, we have

P {X ≥ t} ≤ EX
t
.

A well-known consequence of Markov’s inequality is the following Cheby-
shev’s inequality. It offers a better, quadratic dependence on t, and instead
of the plain tails, it quantifies the concentration of X about its mean.

Corollary 1.2.4 (Chebyshev’s inequality). Let X be a random variable with
mean µ and variance σ2. Then, for any t > 0, we have

P {|X − µ| ≥ t} ≤ σ2

t2
.

Exercise 1.2.5. Deduce Chebyshev’s inequality by squaring both sides of the
bound |X − µ| ≥ t and applying Markov’s inequality.

In Proposition 2.5.2 we will relate together the three basic quantities
recalled here – the moment generating functions, the Lp norms, and the
tails.

1.3 The Law of Large Numbers and the Central
Limit Theorem

Let us recall the two arguably most important results in classical probability
theory, the Law of Large Numbers and the Central Limit Theorem.

Theorem 1.3.1 (Strong Law of Large Numbers). Let X1, X2, . . . be a se-
quence of independent, identically distributed (i.i.d.) random variables with
mean µ. Consider the sum

SN = X1 + · · ·XN .

Then, as N →∞,
SN
N
→ µ almost surely.
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The next result, Central Limit Theorem, states that the limiting distri-
bution of the properly scaled sum of Xi is the normal distribution, some-
times also called Gaussian distribution. Recall that the standard normal
distribution, denoted N(0, 1), has density

f(x) =
1√
2π
e−x

2/2, x ∈ R. (1.3)

Theorem 1.3.2 (Lindeberg-Lévy Central Limit Theorem). Let X1, X2, . . .
be a sequence of independent, identically distributed (i.i.d.) random variables
with mean µ and variance σ2. Consider the sum

SN = X1 + · · ·XN

and normalize it to obtain a random variable with zero mean and unit vari-
ance as follows:

ZN :=
SN − ESN√

Var(SN )
=

1

σ
√
N

N∑
i=1

(Xi − µ).

Then, as N →∞,

ZN → N(0, 1) in distribution.

The convergence in distribution means that the CDF of the normalized
sum converges pointwise to the CDF of the standard normal distribution.
We can expressed this in terms of tails as follows. Then for every t ∈ R, we
have

P {ZN ≥ t} → P {g ≥ t} =
1√
2π

∫ ∞
t

e−x
2/2 dx

as N →∞, where g ∼ N(0, 1) is a standard normal random variable.
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Chapter 2

Concentration of sums of
independent random
variables

2.1 Why concentration inequalities?

Concentration inequalities quantify how a random variableX deviates around
its mean µ. They usually take the form of two-sided bounds for the tails of
X − µ, such as

P {|X − µ| ≥ t} ≤ something small.

The simplest concentration inequality is Chebyshev’s inequality, Corollary 1.2.4.
Unfortunately, it is usually too weak to capture the true order of deviation.
Let us illustrate it with the example of the binomial distribution.

Question 2.1.1. Toss a fair coin N times. What is the probability that we
get at least 3

4N heads?

The number of heads SN is a binomial random variable. We can rep-
resent as SN =

∑N
i=1Xi where Xi are the indicators of heads. Thus

Xi are independent Bernoulli random variables with parameter 1/2, i.e.
P {Xi = 0} = P {Xi = 1} = 1/2. Thus

ESN =
N

2
, Var(SN ) =

N

4
.

Applying Chebyshev’s inequality, we can bound the probability of at

7
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least 3
4N heads as follows:

P
{
SN ≥

3

4
N

}
≤ P

{∣∣∣SN − N

2

∣∣∣ ≥ N

4

}
≤ 4

N
.

So the probability converges to zero at least linearly in N .
Is this the right rate of decay, or we should expect something faster? Let

us approach the same question using the Central Limit Theorem. It states
that the distribution of the normalized number of heads

ZN =
SN −N/2√

N/4

converges to N(0, 1). Thus we should anticipate that for large N ,

P
{
SN ≥

3

4
N

}
≤ P

{
ZN ≥

√
N/4

}
≈ P

{
g ≥

√
N/4

}
(2.1)

where g ∼ N(0, 1). To understand how this quantity decays in N , we need
a good bound on the tails of the normal distribution.

Proposition 2.1.2 (Tails of the normal distribution). Let g ∼ N(0, 1).
Then for all t ≥ 1(1

t
− 1

t3

)
· 1√

2π
e−t

2/2 ≤ P {g ≥ t} ≤ 1

t
· 1√

2π
e−t

2/2

In particular, for t ≥ 1 the tail is bounded by the density:

P {g ≥ t} ≤ 1√
2π
e−t

2/2. (2.2)

Proof. To obtain an upper bound on the tail

P {g ≥ t} =
1√
2π

∫ ∞
t

e−x
2/2 dx,

let us change variables x = t+ y. This gives

P {g ≥ t} =
1√
2π

∫ ∞
0

e−t
2/2 e−ty e−y

2/2 dy ≤ 1√
2π
e−t

2/2

∫ ∞
0

e−tydy,

where we used that e−y
2/2 ≤ 1. Since the last integral equals 1/t, the desired

upper bound on the tail follows.
The lower bound follows from the identity∫ ∞

t
(1− 3x−4)e−x

2/2 dx =
(1

t
− 1

t3

)
e−t

2/2.

This completes the proof.
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Returning to (2.1), we see that we should expect the probability of having
at least 3

4N heads to be smaller than

1√
2π
e−N/8, (2.3)

a quantity that decays to zero exponentially fast in N .
Unfortunately, this can not be deduced rigorously from the Central Limit

Theorem. Although the approximation by the normal density in (2.1) is
valid, the error of approximation can not be ignored. And, unfortunately,
the error decays to zero too slow, even slower than linear in N . We can see
this from the following quantitative version of the Central Limit Theorem.

Theorem 2.1.3 (Berry-Esseen Central Limit Theorem). In the setting of
Theorem 1.3.2, for every N and every t ∈ R we have∣∣P {ZN ≥ t} − P {g ≥ t}

∣∣ ≤ ρ√
N
.

Here ρ = E |X1 − µ|3/σ3 and g ∼ N(0, 1).

So, once we take into account in (2.1) the approximation error, which is
order 1/

√
N , it ruins the desired exponential decay (2.3).

Can we improve the approximation error in Central Limit Theorem? In
general, no. If N is even, then the number of getting exactly N/2 heads is

P
{
SN =

N

2

}
= 2−N

(
N

N/2

)
∼ 1√

N
;

the last estimate can be obtained using Stirling’s approximation. (Do it!)
On the other hand, since the normal distribution is continuous, we have
P
{
g = N

2

}
= 0. Thus the approximation error here has to be of order

1/
√
N .

Let us summarize our situation. The Central Limit theorem offers an
approximation of a sum of independent random variables SN = X1 + . . . XN

by normal distribution. The normal distribution is especially nice since it
has very light, exponentially decaying tails. At the same time, the error of
approximation in Central Limit Theorem decays too slow, even slower than
linear. This big error ruins desired concentration properties for SN , which
should guarantee light, exponentially decaying tails for SN .

In order to resolve this issue, we need different ways to obtain con-
centration inequalities for SN . We will now develop a direct approach to
concentration, which completely bypasses the Central Limit Theorem.



10 CHAPTER 2. SUMS OF INDEPENDENT RANDOM VARIABLES

2.2 Hoeffding’s inequality

It will be more convenient to work here with symmetric Bernoulli random
variables, which are already properly normalized:

Definition 2.2.1 (Symmetric Bernoulli distribution). A random variable X
has symmetric Bernoulli distribution (also called Rademacher distribution)
if it takes values −1 and 1 with probabilities 1/2 each, i.e.

P {X = −1} = P {X = 1} =
1

2
.

Clearly, a random variable X has (usual) Bernoulli distribution with pa-
rameter 1/2 if and only if Z = 2X−1 has symmetric Bernoulli distribution.

Theorem 2.2.2 (Hoeffding’s inequality). Let X1, . . . , XN be independent
symmetric Bernoulli random variables, and a = (a1, . . . , aN ) ∈ RN . Then,
for any t > 0, we have

P

{
N∑
i=1

aiXi ≥ t

}
≤ exp

(
− t2

2‖a‖22

)
.

Proof. By homogeneity, we can assume without loss of generality that ‖a‖2 =
1.

Let us recall how we deduced Chebyshev’s inequality (Corollary 1.2.4):
we squared both sides and applied Markov’s inequality. Let us do something
similar here. But instead of squaring both sides, let us multiply by a fixed
parameter λ > 0 (to be chosen later) and exponentiate. This gives

P

{
N∑
i=1

aiXi ≥ t

}
= P

{
exp

(
λ

N∑
i=1

aiXi

)
≥ exp(λt)

}

≤ e−λt E exp
(
λ

N∑
i=1

aiXi

)
. (2.4)

In the last step we applied Markov’s inequality (Proposition 1.2.3).
We thus reduced the problem to bounding the moment generating func-

tion (MGF) of the sum
∑N

i=1 aiXi. As we recall from the basic probability
course, the MGF of the sum is the product of the MGF’s of the terms; this
follows immediately from independence. In other words,

E exp
(
λ

N∑
i=1

aiXi

)
=

N∏
i=1

E exp(λaiXi). (2.5)
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Let us fix i. Since Xi takes values −1 and 1 with probabilities 1/2 each,
we have

E exp(λaiXi) =
exp(λai) + exp(−λai)

2
= cosh(λai).

Exercise 2.2.3 (Bounding the hyperbolic cosine). Show that

cosh(x) ≤ exp(x2/2) for x ∈ R.

(Compare the Taylor’s expansions of both sides.)

This bound shows that

E exp(λaiXi) ≤ exp(λ2a2
i /2).

Substituting this into (2.5) and then into (2.4), we obtain

P

{
N∑
i=1

aiXi ≥ t

}
≤ e−λt

N∏
i=1

exp(λ2a2
i /2) = exp

(
− λt+

λ2

2

N∑
i=1

a2
i

)
= exp

(
− λt+

λ2

2

)
.

In the last identity, we used the assumption that ‖a‖2 = 1.
This bound holds for arbitrary λ > 0. It remains to optimize in λ; the

minimum is clearly attained for λ = t. With this choice, we obtain

P

{
N∑
i=1

aiXi ≥ t

}
≤ exp(−t2/2).

This completes the proof of Hoeffding’s inequality.

We can view Hoeffding’s inequality as a concentration version of Cen-
tral Limit Theorem. Indeed, the most we may expect from a concentration
inequality is that the tail of

∑
aiXi match the tail for the normal distribu-

tion. And for all practical purposes, Hoeffding’s tail bound does that. With
the normalization ‖a‖2 = 1, Hoeffding’s inequality provides the tail e−t

2/2,
which is exactly the same as the bound for the standard normal tail in (2.2).
This is good news. We have been able to obtain the same exponentially light
tails for sums as for normal distribution, even though the difference of these
two distributions is not exponentially small.

Armed with Hoeffding’s inequality, we can now return to Question 2.1.1
of bounding the probability of at least 3

4N heads in N tosses of a fair coin.
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After rescaling from Bernoulli to symmetric Bernoulli, we obtain that this
probability is exponentially small in N , namely

P
{

at least
3

4
N heads

}
≤ exp(−N/4).

(Check this.)
It should be stressed that unlike the classical limit theorems of Proba-

bility Theory, Hoeffding’s inequality is non-asymptotic in that it holds for
all fixed N as opposed to N → ∞. The larger N , the stronger inequality
becomes. As we will see later, the non-asymptotic nature of concentration
inequalities like Hoeffding makes them attractive in applications in data
sciences, where N corresponds to sample size.

We can easily derive a version of Hoeffding’s inequality for two-sided tails
P {|S| ≥ t} where S =

∑N
i=1 aiXi. Indeed, applying Hoeffding’s inequality

for −Xi instead of Xi, we obtain a bound on P {−S ≥ t}. Combining the
two bounds, we obtain a bound on

P {|S| ≥ t} = P {S ≥ t}+ P {−S ≥ t} .

Thus the bound doubles, and we obtain:

Theorem 2.2.4 (Hoeffding’s inequality, two-sided). Let X1, . . . , XN be in-
dependent symmetric Bernoulli random variables, and a = (a1, . . . , aN ) ∈ R.
Then, for any t > 0, we have

P

{∣∣∣ N∑
i=1

aiXi

∣∣∣ ≥ t} ≤ 2 exp

(
− t2

2‖a‖22

)
.

Our proof of Hoeffdin’s inequality, which is based on bounding the mo-
ment generating function, is quite flexible. It applies far beyond the canoni-
cal example of symmetric Bernoulli distribution. For example, the following
extension of Hoeffding’s inequality is valid for general bounded random vari-
ables.

Theorem 2.2.5 (Hoeffding’s inequality for general bounded random vari-
ables). Let X1, . . . , XN be independent random variables. Assume that Xi ∈
[mi,Mi] almost surely for every i. Then, for any t > 0, we have

P

{
N∑
i=1

ai(Xi − EXi) ≥ t

}
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
.
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Theorem 2.2.2 is a partial case of this result with mi = −|ai| and Mi =
|ai|.

Exercise 2.2.6. [Difficulty=5] Prove Theorem 2.2.5, possibly with some
absolute constant instead of 2 in the tail.

Write it
Exercise 2.2.7 (Small ball probabilities).

2.3 Chernoff’s inequality and Poisson tails

We saw in the previous section that Hoeffding’s inequality is sharp for sym-
metric Bernoulli random variables. What about the general form of Hoeffd-
ing’s inequality, Theorem 2.2.5 – is it sharp for all distributions we may care
about? Unfortunately, no. This bound is in terms of the worst possible,
extreme values mi and Mi the random variables Xi can take. These could
be too large compared to more realistic average magnitudes, which could be
quantified by the variances of Xi.

An important example where these two bound could be very different
is where Xi are Bernoulli random variables with very small parameters pi.
If, for example, pi = µ/n for constant µ, then the sum SN =

∑N
i=1Xi has

constant mean µ, and its distribution converges to Poisson distribution as
N →∞. (We will make this precise shortly). At the same time, Hoeffding’s
inequality is completely insensitive to the magnitude of pi, and does not
provide a useful tail bound for a Poisson-looking sum SN .

The following classical inequality provides a quite sharp result, which is
sensitive to the true magnitudes of Xi.

Theorem 2.3.1 (Chernoff’s inequality). Let Xi be independent Bernoulli
random variables with parameters pi. Consider their sum SN =

∑N
i=1Xi

and denote its mean by µ = ESN . Then, for any t > µ, we have

P {SN ≥ t} ≤ e−µ
(eµ
t

)t
.

In particular, for any t ≥ e2µ we have

P {SN ≥ t} ≤ e−t. (2.6)

Proof. We will use the same method – based on moment generating function
– as we did in the proof of Hoeffding’s inequality, Theorem 2.2.2. We repeat
the first steps of that argument, leading to 2.4 and (2.5) – multiply both
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sides of the inequality SN ≥ t by a parameter λ, exponentiate, and then use
Markov’s inequality and independence. This yields

P {SN ≥ t} ≤ e−λt
N∏
i=1

E exp(λXi). (2.7)

It remains to bound the MGF of each Bernoulli random variable Xi

separately. Since Xi takes value 1 with probability pi and 1 with probability
0, we have

E exp(λXi) = eλpi + (1− pi) = 1 + (eλ − 1)pi ≤ exp
[
(eλ − 1)pi

]
.

In the last step, we used the numeric inequality 1 + x ≤ ex. Consequently,

N∏
i=1

E exp(λXi) ≤ exp

[
(eλ − 1)

N∑
i=1

pi

]
= exp

[
(eλ − 1)µ

]
.

Substituting this into (2.7), we obtain

P {SN ≥ t} ≤ e−λt exp
[
(eλ − 1)µ

]
.

This bound holds for any λ > 0. Substituting the value λ = ln(t/µ) which
is positive by the assmuption t > µ and simplifying the expression, we
complete the proof.

Exercise 2.3.2 (Chernoff’s inequality: lower tails). [Difficulty=5] Modify
the proof of Theorem 2.3.1 to obtain the following bound on the lower tail.
For any t < µ, we have

P {SN ≤ t} ≤ e−µ
(eµ
t

)t
.

2.3.1 Poisson tails

We will see now that Chernoff’s inequality is related to the classical Poisson
distribution – in the same spirit as Hoeffding’s inequality is related to the
normal distribution. The connection is provided by the classical Poisson
Limit Theorem. It is an analog of the Central Limit Theorem for sums of
Bernoulli random variables Xi ∼ Ber(pi) with extremely small parameters
pi, as opposed to constant parameters pi in Central Limit Theorem.

Recall that a random variable X has Poisson distribution with parameter
λ, denoted X ∼ Pois(λ), if it takes values in {0, 1, 2, . . .} with probabilities

P {X = k} = e−λ
λk

k!
, k = 0, 1, 2, . . . (2.8)
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Theorem 2.3.3 (Poisson Limit Theorem). Consider a sequence of indepen-
dent random variables Xi ∼ Ber(pi) and let SN =

∑N
i=1Xi. Assume that,

as N →∞,
max
i≤N

pi → 0 and ESN → λ.

Then, as N →∞,

SN → Pois(λ) in distribution.

Poisson Limit Theorem allows us to immediately transfer Chernoff’s in-
equality from Bernoulli to Poisson distribution as follows. (Why?)

Corollary 2.3.4 (Possion tails). Let X ∼ Pois(λ). Then, for any t > λ we
have

P {X ≥ t} ≤ e−λ
(eλ
t

)t
.

In particular, for any t ≥ e2λ we have

P {X ≥ t} ≤ e−t.

How good are these bounds on Poisson tails? Let us compare them with
(2.8). Using Stirling’s approximation k! ∼

√
2πk(k/e)k, we can approximate

the Poisson probability mass function as

P {X = k} ∼ 1√
2πk
· e−λ

(eλ
k

)k
. (2.9)

So our bound (2.9) on the entire tail of Pois(λ) has essentially the same
form as the probability of hitting one value k (the smallest one) in that tail.
The difference between these two quantities is the multiple

√
2πk, which is

negligible since both these quantities are exponentially small in k.

Exercise 2.3.5. [Difficulty=5] How different are the magnitudes of the tail
P {X ≥ k} and the probability mass function P {X = k} for the Poisson dis-
tribution? Is our bound O(

√
k) on their ratio optimal?

2.3.2 Small deviations

It is sometimes useful to distinguish two regimes for concentration inequal-
ities like P {|X − µ| ≥ t}. In the large deviation regime, t is large, usually
larger than the mean µ. In the small deviation regime, t is small. The ex-
ponential bound (2.6) is an example of a large deviation inequality. In the
small deviation regime, Chernoff’s inequality is also very useful.
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Exercise 2.3.6. [Difficulty=7] Deduce from Chernoff’s inequalities (Theo-
rem 2.3.1 and Exercise 2.3.2) that, for δ ∈ (0, 1] we have

P {|X − µ| ≥ δµ} ≤ 2e−cµδ
2
.

(Apply those results with t = (1 + δ)µ and t = (1 − δ)µ, respectively, and
analyze the bounds for small δ.)

c absolute const
Changing variables to t = δµ, we can restate this result so we can see

the emergence of normal distribution there.

Corollary 2.3.7 (Chernoff’s inequality: small deviations). In the setting of
Theorem 2.3.1, for any t ∈ (0, µ] we have

P {|SN − µ| ≥ t} ≤ exp

(
−ct

2

µ

)
.

In particular, by the Poisson Limit Theorem 2.3.3, a similar bound holds
for X ∼ Pois(λ). For any t ∈ (0, λ], we have

P {|X − λ| ≥ t} ≤ exp

(
−ct

2

λ

)
.

The reader probably recognized here the same tails bound as we could
derive from (2.2) for the normal distribution N(λ,

√
λ). This is should come

as no surprise once we recall that Poisson distribution admits a normal
approximation:

Theorem 2.3.8 (Normal approximation to Poisson). Let X ∼ Pois(λ).
Then, as λ→∞, we have

X − λ√
λ
→ N(0, 1) in probability.

This well known fact can be easily derived from Central Limit Theorem,
using the fact that the sum of independent Poisson distributions is a Poisson
distribution.

Exercise 2.3.9. Give a formal proof of Theorem 2.3.8.

Thus we can view Chernoff inequality for small deviations, Theorem 2.3.7,
as a concentration version of the limit Theorem 2.3.8 – just like Hoeffding’s
inequality provides a concentration version of the Central Limit Theorem.
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2.3.3 Summary

Our findings about the tails of sums of Bernoulli random variables SN =∑
Xi with ESN = λ, and also for Poisson distribution Pois(λ), can be

summarized as follows. In the small deviation regime, in the interval of
length O(µ) around the mean µ, this distribution is similar to Gaussian
N(λ,

√
λ). In the large deviation regime, the tail decay is (λ/t)t, which is

a bit lighter than exponential but heavier than Gaussian tail. Figure 2.1
illustrates these two tails.

Figure 2.1: This is a sketch of the probability mass function of Poisson distribution
Pois(λ). In the small deviation regime, within O(λ) from the mean λ, the tails
of Pois(λ) are like for the normal distribution N(λ,

√
λ). In the large deviation

regime, the tails are heavier and decay like (λ/t)t.

2.4 Application: degrees of random graphs

We will give one application of Chernoff’s inequality to the classical object
in probability: random graphs.

The most thoroughly studied model of random graphs is the classical
Erdös-Rényi model G(n, p). A random graph G ∼ G(n, p) is constructed on
n vertices by connecting every pair of vertices by an edge independently and
with probability p. Figure 2.2 shows a random graph generated according
to Erdös-Rényi model. In applications, G(n, p) with large n often appears
as the simplest stochastic model for large real world networks. Change the figure

The degree of a vertex in the graph is the number of edges incident to
it. The expected degree of every vertex in G(n, p) is clearly

d := (n− 1)p.
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Figure 2.2: A random graph from Erdös-Rényi model G(n, p) with n = 1000,
p = 0.00095.

Let us show that for relatively dense graphs where d & log n, all degrees
tend to concentrate near d.

Proposition 2.4.1 (Degrees of dense graphs concentrate). Consider a ran-
dom graph G ∼ G(n, p) with expected degree satisfying d ≥ C log n. Then,
with high probability (for example, 0.9), the following occurs: all vertices of
G have degrees between 0.9d and 1.1d.

Proof. The argument is a combination of Chernoff’s inequality with a union
bound. Let us fix a vertex i of the graph. The degree of i, which we denote
di, is a sum of n independent random Ber(p) random variables. So we can
control this degree using Chernoff’s inequality for small deviations, which
we obtained in Exercise 2.3.6. It follows that

P {|di − d| ≥ 0.1d} ≤ 2e−cd.

This bound holds for each fixed vertex i. Next, we can “unfix” it by taking
the union bound over all n vertices. We obtain

P {∃i ≤ n : |di − d| ≥ 0.1d} ≤
n∑
i=1

P {|di − d| ≥ 0.1d} ≤ n · 2e−cd.

If d ≥ C log n for a sufficiently large absolute constant C, the probability is
bounded by 0.1. This means that with probability 0.9, the complementary
event occurs:

P {∀i ≤ n : |di − d| < 0.1d} ≥ 0.9.

This completes the proof.
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For sparse graphs, those with bounded expected degrees d = O(1), the
degrees do not concentrate about the mean. As we will see by solving the
next exercise, such graphs are likely to have vertices with very small and very
large degrees. This makes sparse random graphs more difficult to study, but
also more interesting than dense graphs. Studying sparse random graphs
is important in view of applications, since real world networks also tend to
show big variation of degrees.

Exercise 2.4.2 (Degrees of sparse random graphs do not concentrate).
[Difficulty=7] Consider a random graph G ∼ G(n, p) with expected degree
satisfying d = O(1).

1. Show that with high probability (say, 0.9), G has at least one isolated
vertex – a vertex with zero degree.

2. Show that with high probability, (say, 0.9), G has a vertex with degree
larger than 10d. (Here 10 can be replaced by any other constant).

Concerning the second part of Exercise 2.4.2, a more precise analysis re-
veals that the maximal degree of a sparse random graph G behaves asymp-
totically as (1 + o(1)) log(n)/ log log(n). The next exercise establishes an Cite something
upper bound of this type.

Exercise 2.4.3 (Degrees of sparse random graphs do not concentrate).
[Difficulty=7] Consider a random graph G ∼ G(n, p) with expected degree
satisfying d = O(1). Show that with high probability (say, 0.9), the maximal
degree of G is

O
( log n

log logn

)
.

(Hint: proceed similarly to the proof of Theorem 2.4.1. Use Chernoff’s
inequality for large deviations, Theorem 2.3.1.)

2.5 Sub-gaussian distributions

So far, we studied concentration inequalities that apply for a single class
of distributions of Xi, namely the Bernoulli distribution. This significantly
limits the range of applications. It is natural to expect that Hoeffding’s
inequality, which provides a quantitative view of the Central Limit Theorem,
would apply at least to the normal distribution. So, what kind of random
variables Xi can we expect to obey Hoeffding’s inequality in Theorem 2.2.4,
namely

P

{∣∣∣ N∑
i=1

aiXi

∣∣∣ ≥ t} ≤ 2 exp

(
− t2

2‖a‖22

)
?
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Setting a single coefficient ai to 1 and the other coefficients to zero, we find
that Xi must have sub-gaussian tails:

P {|Xi| > t} ≤ 2e−ct
2
.

The class of such distributions, which we call sub-gaussian, deserves spe-
cial attention. On the one hand, this class is sufficiently wide as it contains
Gaussian, Bernoulli and all bounded distributions. On the other hand, as
we will see, concentration results like Hoeffding’s inequality can be proved
for all sub-gaussian distributions. This makes the class of sub-gaussian dis-
tributions a natural, and in many cases the canonical, class where one can
develop various results in high dimensional probability theory and its appli-
cations.

We will now explore several equivalent approaches to sub-gaussian dis-
tributions, exploring the behavior of their tails, moments, and moment gen-
erating functions. To pave our way, let us recall how these quantities behave
for the standard normal distribution.

Recalling (2.2) and using symmetry, we obtain the following bound on
the tails of X ∼ N(0, 1):

P {|X| ≥ t} ≤ 2e−t
2/2 for all t ≥ 0. (2.10)

In the next exercise, we obtain a bound on the absolute moments and Lp

norms of the normal distribution.

Exercise 2.5.1 (Moments of the normal distribution). Show that for each
p ≥ 1, the random variable X ∼ N(0, 1) satisfies

‖X‖p = (E |X|p)1/p =
√

2
[Γ((1 + p)/2)

Γ(1/2)

]1/p
.

Deduce that

‖X‖p = O(
√
p) as p→∞. (2.11)

Finally, the classical formula for the moment generating function of X ∼
N(0, 1) is

E exp(λX) = eλ
2/2 for all λ ∈ R. (2.12)

2.5.1 Sub-gaussian properties

Now let X be a general random variable. The following proposition states
that that the properties we just considered are equivalent – a sub-gaussian
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tail decay as in (2.10), the growth of moments as in (2.5.1), and the growth
of the moment generating function as in (2.12). The proof of this result
is quite useful; it shows how to transform one type of information about
random variables into another.

Proposition 2.5.2 (Sub-gaussian properties). Let X be a random variable.
Then the following properties are equivalent; the parameters Ki > 0 appear-
ing in these properties differ from each other by at most an absolute constant
factor.1

1. The tails of X satisfy

P{|X| ≥ t} ≤ 2 exp(−t2/K2
1 ) for all t ≥ 0.

2. The moments of X satisfy

‖X‖p = (E |X|p)1/p ≤ K2
√
p for all p ≥ 1.

3. The MGF of X2 is finite at some point, namely

E exp(X2/K2
3 ) ≤ 2.

Moreover, if EX = 0 then properties 1–3 are also equivalent to the following
one.

4. The MGF of X satisfies

E exp(λX) ≤ exp(λ2K2
4 ) for all λ ∈ R.

Proof. 1 ⇒ 2. Assume property 1 holds. By homogeneity, rescaling X
to X/K1 we can assume that K1 = 1. Applying the Integral Identity
(Lemma 1.2.1) for |X|p, we obtain

E |X|p =

∫ ∞
0

P{|X|p ≥ u} du

=

∫ ∞
0

P{|X| ≥ t} ptp−1 dt (by change of variables u = tp)

≤
∫ ∞

0
2e−t

2
ptp−1 dt (by property 1)

= pΓ(p/2) (set t2 = s and use definition of Gamma function)

≤ p(p/2)p/2 (since Γ(x) ≤ xx holds by Stirling’s approximation).

1The precise meaning of this equivalence is the following. There exists an absolute
constant C such that property i implies property j with parameter Kj ≤ CKi for any two
properties i, j = 1, 2, 3, 4.



22 CHAPTER 2. SUMS OF INDEPENDENT RANDOM VARIABLES

Taking the p-th root yields property 2 with K2 ≤ 2.

2 ⇒ 3. Assume property 2 holds. As before, by homogeneity we may
assume that K2 = 1. We will prove a bit more general bound than in
property 3, namely

E exp(λ2X2) ≤ exp(K2
3λ

2) for all λ satisfying |λ| ≤ 1

K3
. (2.13)

Expanding the exponential function in Taylor series, we obtain

E exp(λ2X2) = E

1 +
∞∑
p=1

(λ2X2)p

p!

 = 1 +
∞∑
p=1

λ2p E[X2p]

p!
.

Property 2 guarantees that E[X2p] ≤ (2p)p, while Stirling’s approximation
yields p! ≥ (p/e)p. Substituting these two bounds, we obtain

E exp(λ2X2) ≤ 1 +
∞∑
p=1

(2λ2p)p

(p/e)p
=
∞∑
p=0

(2eλ2)p =
1

1− 2eλ2

provided 2eλ2 < 1, in which case the geometric series above converges. To
bound this quantity further, we can use the numeric inequality 1

1−x ≤ e2x,
which is valid for x ∈ [0, 1/2]. It follows that

E exp(λ2X2) ≤ exp(4eλ2) for all λ satisfying |λ| ≤ 1

2
√
e
.

This implies (2.13), a stronger version of property 3, with K3 = 1/2
√
e.

3 ⇒ 1. Assume property 3 holds. As before, we may assume that
K3 = 1. Then

P{|X| > t} = P{eX2 ≥ et2}

≤ e−t2 E eX2
(by Markov’s inequality, Proposition 1.2.3)

≤ 2e−t
2

(by property 3).

This proves property 1 with K1 = 1.
To prove the second part of the proposition, we will show that 4 ⇒ 1

and 3 ⇒ 4.

3 ⇒ 4. Assume that property 3 holds; as before we can assume that
K3 = 1. Let us use the numeric inequality ex ≤ x + ex

2
, which is valid for

all x. Then
E eλX ≤ E

[
λX + eλ

2X2]
= E eλ

2X2
,
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where we used the assumption that EX = 0. Next, we apply the general
form of property 3 obtained in (2.13), which states that

E eλ
2X2 ≤ eλ2 if |λ| ≤ 1.

Thus we have proved property 4 in the range |λ| ≤ 1.
Now let |λ| ≥ 1. Here we can use the numeric inequality λX ≤ λ2 +X2,

which is valid for all λ and X. It follows that

E eλX ≤ eλ2 E eX2 ≤ 2eλ
2

(by property 3)

≤ e2λ2 (since |λ| ≥ 1).

This proves property 4 with K4 =
√

2.

4. ⇒ 1. Assume property 4 holds; we can assume that K4 = 1. We
will use some ideas from the proof of Hoeffding’s inequality (Theorem 2.2.2).
Let λ > 0 be a parameter to be chosen later. Then

P{X ≥ t} = P{eλX ≥ eλt}
≤ e−λt E eλX (by Markov’s inequality)

≤ e−λteλ2 (by property 4)

= e−λt+λt
2
.

Optimizing in λ and thus choosing λ = t/2, we conclude that

P{X ≥ t} ≤ e−t2/4.

Repeating this argument for −X, we also obtain P{X ≤ −t} ≤ e−t
2/4.

Combining these two bounds we conclude that

P{|X| ≥ t} ≤ 2e−t
2/4.

Thus property 1 holds with K1 = 2. The proposition is proved.

The constant 2 in properties 1 and 3 does not have any special meaning;
they can be replaced by other absolute constants. (Why?)

Exercise 2.5.3. [Difficulty=3] Show that the condition EX = 0 is necessary
for property 4 to hold.

Exercise 2.5.4. [Difficulty=3] Property 3 and especially its stronger form
(2.13) state that the MGF of X2 is bounded in some constant neighborhood
of zero. Show that for X ∼ N(0, 1), the MGF of X2 is infinite outside a
constant neighborhood of zero.
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2.5.2 Definition and examples of sub-gaussian distributions

Definition 2.5.5 (Sub-gaussian random variables). A random variable X
that satisfies one of the equivalent properties 1 – 3 in Proposition 2.5.2
is called a sub-gaussian random variable. The sub-gaussian norm of X,
denoted ‖X‖ψ2, is defined to be the smallest K3 in property 3. In other
words,

‖X‖ψ2 = inf
{
t > 0 : E exp(X2/t2) ≤ 2

}
. (2.14)

Proposition 2.5.2 states that every sub-gaussian random variable X sat-
isfies:

P{|X| ≥ t} ≤ 2 exp(−ct2/‖X‖2ψ2
) for all t ≥ 0; (2.15)

‖X‖p ≤ C‖X‖ψ2

√
p for all p ≥ 1; (2.16)

E exp(X2/‖X‖2ψ2
) ≤ 2;

if EX = 0 then E exp(λX) ≤ exp(Cλ2‖X‖2ψ2
) for all λ ∈ R. (2.17)

Here C, c > 0 are absolute constants. Moreover, up to absolute constant
factors, ‖X‖ψ2 is the smallest possible number in each of these inequalities.

Example 2.5.6. Classical examples of sub-gaussian random variables are
Gaussian, Bernoulli and all bounded random variables.

1. (Gaussian): As we already noted, X ∼ N(0, 1) is a sub-gaussian ran-
dom variable with ‖X‖ψ2 ≤ C, where C is an absolute constant. More
generally, if X is a centered normal random variable with variance σ2,
then X is sub-gaussian with ‖X‖ψ2 ≤ Cσ. (Why?)

2. (Bernoulli): Consider a random variable X with symmetric Bernoulli
distribution (see Definition 2.2.1). Since |X| = 1, it follows that X is
a sub-gaussian random variable with ‖X‖ψ2 = 1/ ln 2.

3. (Bounded): More generally, any bounded random variable X is sub-
gaussian with

‖X‖ψ2 ≤ C‖X‖∞, (2.18)

where C = 1/ ln 2.

Exercise 2.5.7. Show that Poisson, exponential, Pareto and Cauchy dis-
tributions are not sub-gaussian.
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Exercise 2.5.8 (Maximum of sub-gaussians). [Difficulty=6] Let X1, X2, . . . ,
be a sequence of sub-gaussian random variables, not necessarily independent.
Show that

Emax
i

|Xi|√
log(i+ 1)

≤ CK,

where K = maxi ‖Xi‖ψ2. In particular, for every N ≥ 2 we have

Emax
i≤N
|Xi| ≤ CK

√
logN.

Exercise 2.5.9 (Maximum of gaussians). Let X1, X2, . . . , XN be indepen-
dent N(0, 1) random variables. Show that

Emax
i≤N

gi ≥ c
√

logN.

2.5.3 A more general view via Orlicz spaces

Sub-gaussian random variables can be included in the more general frame-
work of Orlicz spaces. A function ψ : [0,∞) → [0,∞) is called an Orlicz
function if ψ is a convex, increasing, and satisfies

ψ(0) = 0, ψ(x)→∞ as x→∞.

For a given Orlicz function ψ, the Orlicz norm of a random variable X is
defined as

‖X‖ψ := inf {t > 0 : Eψ(|X|/t) ≤ 1} .

The Orlicz space Lψ = Lψ(Ω,Σ,P) consists of all random variables X on
the probability space (Ω,Σ,P) with finite Orlicz norm:

Lψ := {X : ‖X‖ψ <∞} .

Exercise 2.5.10. Show that ‖X‖ψ is indeed a norm on the space Lψ.

Thus Lψ is a normed space; it can also be shown that it is a Banach
space.

To give a few concrete examples, consider the function ψ(x) = xp, which
is convex if p ≥ 1. The resulting Orlicz space Lψ is the classical space Lp.

Another example is for the Orlicz function

ψ2(x) := ex
2 − 1.
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The resulting Orlicz norm is exactly the sub-gaussian norm ‖ · ‖ψ2 that we
defined in (2.14), and Orlicz space Lψ2 consists of all sub-gaussian random
variables..

Property 2 of Proposition 2.5.2 and (2.18) determine the place of the
space Lψ2 of sub-gaussian random variables in the hierarchy of Lp spaces:

L∞ ⊂ Lψ2 ⊂ Lp for every p ≥ 1.

Thus the space of sub-gaussian random variables Lψ2 is smaller than all Lp
spaces, but it is still larger than their limit, the space of bounded random
variables L∞.

2.6 General Hoeffding’s and Khinchine’s inequal-
ities

After all the work we did characterizing sub-gaussian distributions in the
previous section, we can now easily extend Hoeffding’s inequality (Theo-
rem 2.2.2) to general sub-gaussian distributions. But before we do this, let
us deduce an important and enlightening property of the sums of indepen-
dent sub-gaussians, from which a general form of Hoeffding’s inequality will
immediately follow.

In the first probability course, we learned that a sum of independent
normal random variables Xi is normal. Indeed, if Xi ∼ N(0, σ2

i ) are inde-
pendent then

N∑
i=1

Xi ∼ N
(

0,

N∑
i=1

σ2
i

)
. (2.19)

This fact follows from the rotation invariance of the normal distribution,
see Section 3.3.2 below. Let us show that this property extends to general
sub-gaussian distributions, albeit up to an absolute constant.

Proposition 2.6.1 (Sums of independent sub-gaussians). Let X1, . . . , XN

be independent, mean zero, sub-gaussian random variables. Then
∑N

i=1Xi

is also a sub-gaussian random variable, and

∥∥∥ N∑
i=1

Xi

∥∥∥2

ψ2

≤ C
N∑
i=1

‖Xi‖2ψ2

where C is an absolute constant.
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Proof. Let us analyze the moment generating function of the sum. For any
λ ∈ R, we have

E exp
(
λ

N∑
i=1

Xi

)
=

N∏
i=1

E exp(λXi) (by independence)

≤
N∏
i=1

exp(Cλ2‖Xi‖2ψ2
) (by sub-gaussian property (2.17))

= exp(λ2K2) where K2 := C

N∑
i=1

‖Xi‖2ψ2
.

It remains to recall that this property of MGF characterizes sub-gaussian
distributions. Indeed, the equivalence of properties 2 and 4 in Proposi-
tion 2.5.2 and Definition 2.5.5 imply that the sum

∑N
i=1Xi is sub-gaussian,

and ∥∥∥ N∑
i=1

Xi

∥∥∥
ψ2

≤ C1K

where C1 is an absolute constant. The proof is complete.

We can restate this result as a concentration inequality.

Theorem 2.6.2 (General Hoeffding’s inequality). Let X1, . . . , XN be inde-
pendent, mean zero, sub-gaussian random variables. Then, for every t ≥ 0,
we have

P
{∣∣∣ N∑

i=1

Xi

∣∣∣ ≥ t} ≤ 2 exp
(
− ct2∑N

i=1 ‖Xi‖2ψ2

)
.

To compare this general result with a specific case for Bernoulli distri-
butions (Theorem 2.2.2, let us apply Theorem 2.6.3 for aiXi instead of Xi.

Theorem 2.6.3 (General Hoeffding’s inequality). Let X1, . . . , XN be inde-
pendent, mean zero, sub-gaussian random variables, and a = (a1, . . . , aN ) ∈
RN . Then, for every t ≥ 0, we have

P
{∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t} ≤ 2 exp
(
− ct2

K2‖a‖22

)
where K = maxi ‖Xi‖ψ2.



28 CHAPTER 2. SUMS OF INDEPENDENT RANDOM VARIABLES

2.6.1 Khinchine’s inequality
Consider making this
section an exerciseAs an application of sub-gaussian Hoeffding’s inequality, we can derive the

so-called Khinchine’s inequality for the Lp-norms of sums of independent
random variables. It is usually stated for symmetric Bernoulli random vari-
ables, but we can prove it for general sub-gaussian distributions with no
extra work.

Corollary 2.6.4 (Khintchine’s inequality). Let X1, . . . , XN be independent
sub-gaussian random variables with zero means and unit variances, and let
a = (a1, . . . , aN ) ∈ RN . Then, for every p ≥ 2 we have

( N∑
i=1

a2
i

)1/2
≤
∥∥∥ N∑
i=1

aiXi

∥∥∥
p
≤ CK√p

( N∑
i=1

a2
i

)1/2

where K = maxi ‖Xi‖ψ2 and C is an absolute constant.

Proof. Hoeffding’s inequality in (??) yields that the sum is sub-gaussian.
Then (2.16) bounds the growth of the moments of the sum. This proves the
upper bound on the Lp norm.

To obtain the lower bound, we bound

∥∥∥ N∑
i=1

aiXi

∥∥∥
p
≥
∥∥∥ N∑
i=1

aiXi

∥∥∥
2

(since p ≥ 2)

=
[

Var
( N∑
i=1

aiXi

)]1/2
(since EXi = 0)

=
[ N∑
i=1

Var(aiXi)
]1/2

(by independence)

=
( N∑
i=1

a2
i

)1/2
(since Var(Xi) = 1).

This completes the proof.

Exercise 2.6.5. Show that a version of Khinchine’s inequality holds also
for all p ∈ (0, 2). In this case, an absolute constant factor will appear in the
left hand side and not in the right hand side.Provide a hint.
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2.6.2 Centering

In results like Hoeffding’s inequality, and in many results in the future, we
typically assume that the random variables Xi have zero means. If this is
not the case, we can always center Xi by subtracting the mean. Centering
does not harm the sub-gaussian property. Let us check this carefully.

One can quickly check the centering inequality for the L2 norm, namely

‖X − EX‖2 ≤ ‖X‖2.

(Do this!) The next lemma provides a similar centering inequality for the
sub-gaussian norm.

Lemma 2.6.6 (Centering). If X is a sub-gaussian random variable then
X − EX is sub-gaussian, too, and

‖X − EX‖ψ2 ≤ C‖X‖ψ2 .

Proof. Recall that ‖ · ‖ψ2 is a norm, so triangle inequality yields

‖X − EX‖ψ2 ≤ ‖X‖ψ2 + ‖EX‖ψ2 . (2.20)

Let us bound the second term. By (2.14), for any constant random variable
a we trivially have ‖a‖ψ2 = C1|a| where C1 = 1/ ln 2. Thus

‖EX‖ψ2 = C1|EX|
≤ C1 E |X| (by Jensen’s inequality)

= C1‖X‖1
≤ C2‖X‖ψ2 (by sub-gaussian moment property (2.16)).

Substituting this into (2.20), we complete the proof.

Exercise 2.6.7 (Difficulty=8). What is the optimal constant C in Lemma 2.6.6?
Does it hold with C = 1?

Exercise 2.6.8. Using Theorem 2.6.3 and centering, deduce general Ho-
effding’s inequality for general bounded random variables, Theorem 2.2.5,
possibly with some absolute constant instead of 2 in the exponent.
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2.7 Sub-exponential distributions

The class of sub-gaussian distributions is natural and quite wide. Never-
theless, it leaves out some important distributions whose tails are heavier
than gaussian. Here is an example. Consider a standard normal random
vector g = (g1, . . . , gN ) in RN , whose coordinates gi are independent N(0, 1)
random variables. It is useful in many applications to have a concentration
inequality for the Euclidean norm of g,

‖g‖2 =
( N∑
i=1

g2
i

)1/2
.

Here we find ourselves in a strange situation. On the one hand, ‖g‖22 is a
sum of independent random variables g2

i , so we should expect some con-
centration to hold. On the other hand, although gi are sub-gaussian ran-
dom variables, g2

i are not. Indeed, recalling the behavior of Gaussian tails
(Proposition 2.1.2) we have2

P
{
g2
i > t

}
= P

{
|g| >

√
t
}
∼ exp

(
−(
√
t)2/2

)
= exp(−t/2).

The tails of g2
i are like for the exponential distribution, and are strictly

heavier than sub-gaussian.
In this section we will focus on the class of distributions that have at

least an exponential tail decay; we will call sub-exponential distributions.
Our analysis here will be quite similar to what we did for sub-gaussian
distributions in Section 2.5, and we will leave some details to the reader.
In particular, it is not difficult to prove a version of Proposition 2.5.2 for
sub-exponential (and more general) distributions.

Proposition 2.7.1 (Sub-exponential properties). Let X be a random vari-
able. Then the following properties are equivalent; the parameters Ki > 0
appearing in these properties differ from each other by at most an absolute
constant factor.3

1. The tails of X satisfy

P{|X| ≥ t} ≤ 2 exp(−t/K1) for all t ≥ 0.

2Here we ignored the pre-factor 1/t, which does not make much effect on the exponent.
3The precise meaning of this equivalence is the following. There exists an absolute

constant C such that property i implies property j with parameter Kj ≤ CKi for any two
properties i, j = 1, 2, 3, 4.
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2. The moments of X satisfy

‖X‖p = (E |X|p)1/p ≤ K2p for all p ≥ 1.

3. The MGF of |X| is finite at some point, namely

E exp(|X|/K3) ≤ 2.

Exercise 2.7.2 (Diffuculty=5). 1. Prove Proposition 2.7.1 by modifying
the proof of Proposition 2.5.2.

2. More generally, consider the class of distributions whose tail decay
is of the type exp(−ctα) or faster. Here α = 2 corresponds to sub-gaussian
distributions, and α = 1, to sub-exponential. State and prove a version of
Proposition 2.7.1 for such distributions.

Definition 2.7.3 (Sub-exponential random variables). A random variable
X that satisfies one of the equivalent properties 1 – 3 in Proposition 2.7.1
is called a sub-exponential random variable. The sub-exponential norm of
X, denoted ‖X‖ψ1, is defined to be the smallest K3 in property 3. In other
words,

‖X‖ψ1 = inf {t > 0 : E exp(|X|/t) ≤ 2} . (2.21)

Sub-gaussian and sub-exponential distributions are closely related. First,
any sub-gaussian distribution is clearly sub-exponential. (Why?) Second,
the square of a sub-gaussian random variable is sub-exponential:

Lemma 2.7.4 (Sub-exponential is sub-gaussian squared). A random vari-
able X is sub-gaussian if and only if X2 is sub-exponential. Moreover,

‖X2‖ψ1 = ‖X‖2ψ2
.

Proof. This follows easily from the definition. Indeed, ‖X2‖ψ1 is the infimum
of the numbers K > 0 satisfying E exp(X2/K) ≤ 2, while ‖X‖ψ2 is the
infimum of the numbers L > 0 satisfying E exp(X2/L2) ≤ 2. So these two
become the same definition with K = L2.

More generally, the product of two sub-gaussian random variables is
sub-exponential:

Lemma 2.7.5 (Product of sub-gaussians is sub-exponential). Let X and Y
be sub-gaussian random variables. Then XY is sub-exponential. Moreover,

‖XY ‖ψ1 ≤ ‖X‖ψ2 ‖Y ‖ψ2 .
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Proof. Denote ‖X‖ψ2 = K and ‖Y ‖ψ2 = L. The lemma claims that
E exp(|XY |/KL) ≤ 2. To prove this, let us use Young’s inequality

ab ≤ a2

2
+
b2

2
for a, b ∈ R.

It yields

E exp
( |XY |
KL

)
≤ E exp

( X2

2K2
+
Y 2

2L2

)
= E

[
exp

( X2

2K2
) exp

( Y 2

2L2

)]
≤ 1

2
E
[
exp

(X2

K2
) + exp

(Y 2

L2

)]
(by Young’s inequality)

=
1

2
(2 + 2) = 2 (by definition of K and L).

The proof is complete.

Example 2.7.6. Let us mention some natural examples of sub-exponential
random variables. As we just learned, all sub-gaussian random variables and
their squares are sub-exponential, for example g2 for g ∼ N(µ, σ). Apart
from that, sub-exponential distributions include the exponential and Poisson
distributions. Recall that X has exponential distribution with rate λ > 0,
denoted X ∼ Exp(λ), if X is a non-negative random variable with tails

P {X ≥ t} = e−λt for t ≥ 0.

The mean, standard deviation, and the sub-exponential norm of X are all
of order 1/λ:

EX =
1

λ
, Var(X) =

1

λ2
, ‖X‖ψ1 =

C

λ
.

(Check this!)

2.8 Bernstein’s inequality

Our next goal is to prove a concentration inequality for sums of sub-exponential
random variables. Just like in the proof of the previous concentration in-
equalities – Hoeffding’s and Chernoff’s – our argument will be based on the
moment generating function. We will have to be a little more careful now,
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since the tails of sub-exponential distributions may not be light enough to
make the MGF finite everywhere.

Indeed, consider the exponential random variable X ∼ Exp(1). A simple
calculation shows that the MGF of the centered random variable Z = X −
EX equals

E exp(λZ) =
e−λ

1− λ
for λ < 1

and the MGF is infinite for λ ≥ 1. (Check this!) More generally, the
MGF of a sub-exponential distribution is always finite in some constant
neighborhood of zero, and is similar there to the sub-gaussian MGF which
we analyzed in (2.17). Let us first show this fact, and afterwards deduce
from it a concentration inequality.

Lemma 2.8.1 (MGF of sub-exponential distributions). Let X be a mean
zero, sub-exponential random variable. Then, for λ such that |λ| ≤ c/‖X‖ψ1,
one has

E exp(λX) ≤ exp(Cλ2‖X‖2ψ1
).

Proof. Without loss of generality we may assume that ‖X‖ψ1 = 1. (Why?)
by replacing X with X/‖X‖ψ1 and t with t‖X‖ψ1 . Expanding the exponen-
tial function in Taylor series, we obtain

E exp(λX) = E

1 + λX +
∞∑
p=1

(λX)p

p!

 = 1 +

∞∑
p=1

λp E[Xp]

p!
,

where we used the assumption that EX = 0. Property 2 in Proposition 2.7.1
guarantees that E[Xp] ≤ (Cp)p. (This is because K2 ≤ CK3 = ‖X‖ψ1 = 1.)
Moreover, Stirling’s approximation yields p! ≥ (p/e)p. Substituting these
two bounds, we obtain

E exp(λX) ≤ 1 +

∞∑
p=2

(Cλp)p

(p/e)p
= 1 +

∞∑
p=2

(C1λ)p.

If |C1λ| < 1/2, the geometric series converges and is dominated by the first
term, so

E exp(λX) ≤ 1 + 2(C1λ)2 ≤ exp(2(C1λ)2).

This completes the proof.

Now we are ready to state and prove a concentration inequality for sums
of independent sub-gaussian random variables.
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Theorem 2.8.2 (Bernstein’s inequality). Let X1, . . . , XN be independent,
mean zero, sub-exponential random variables. Then, for every t ≥ 0, we
have

P
{∣∣∣ N∑

i=1

Xi

∣∣∣ ≥ t} ≤ 2 exp
[
− cmin

( t2∑N
i=1 ‖Xi‖2ψ1

,
t

maxi ‖Xi‖ψ1

)]
.

Proof. Without loss of generality, we assume that K = 1. (Why?) As in
our proofs of some previous concentration inequalities for SN =

∑N
i=1Xi,

(e.g. Theorems 2.2.2 and 2.3.1), we multiply both sides of the inequality
SN ≥ t by a parameter λ, exponentiate, and then use Markov’s inequality
and independence. This leads to the bound (2.7), which is

P {SN ≥ t} ≤ e−λt
N∏
i=1

E exp(λXi). (2.22)

Lemma 2.8.1 can bound the MGF of each term Xi. If we choose λ small
enough so that

|λ| ≤ c

maxi ‖Xi‖ψ1

, (2.23)

Then Lemma 2.8.1 yields E exp(λXi) ≤ exp
(
Cλ2‖Xi‖2ψ1

)
. Substituting this

into (2.22), we obtain

P{S ≥ t} ≤ exp
(
−λt+ Cλ2σ2

)
, where σ2 =

N∑
i=1

‖Xi‖2ψ1
.

Now we minimize this expression in λ subject to the constraint (2.23).
The optimal choice is λ = min(t/2Cσ2, c/maxi ‖Xi‖ψ1), for which we obtain

P{S ≥ t} ≤ exp
[
−min

( t2

4Cσ2
,

ct

2 maxi ‖Xi‖ψ1

)]
.

Repeating this argument for −Xi instead of Xi, we obtain the same bound
for P{−S ≥ t}. A combination of these two bounds completes the proof.

To put Theorem 2.8.2 in a more convenient form, let us apply it for aiXi

instead of Xi.

Theorem 2.8.3 (Bernstein’s inequality). Let X1, . . . , XN be independent,
mean zero, sub-exponential random variables, and a = (a1, . . . , aN ) ∈ RN .
Then, for every t ≥ 0, we have

P
{∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t} ≤ 2 exp
[
− cmin

( t2

K2‖a‖22
,

t

K‖a‖∞

)]
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where K = maxi ‖Xi‖ψ1.

Let us state Bernstein’s inequality as a quantitative form of the Law of
Large Numbers .

Corollary 2.8.4 (Bernstein’s inequality: LLN). Let X1, . . . , XN be indepen-
dent, mean zero, sub-exponential random variables. Then, for every t ≥ 0,
we have

P
{∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣ ≥ t} ≤ 2 exp
[
− cmin

( t2
K2

,
t

K

)
N
]

where K = maxi ‖Xi‖ψ1.

2.8.1 Summary

Let us compare Bernstein’s inequality (Theorem 2.8.2) with Hoeffding’s in-
equality (Theorem 2.6.2). The obvious difference is that Bernstein’s bound
has two tails, as if the sum SN =

∑
Xi were a mixture of sub-gaussian and

sub-exponential distributions. The sub-gaussian tail is of course expected
from the Central Limit Theorem. But the sub-exponential tails of the terms
Xi are too heavy to be able to produce a sub-gaussian tail everywhere, so the
sub-exponential tail should be expected, too. In fact, the sub-exponential
tail in Theorem 2.8.2 is produced by a single term Xi in the sum, the one
with the maximal sub-exponential norm. Indeed, this term alone has the
tail of magnitude exp(−ct/‖Xi‖ψ1).

We already saw a similar mixture of two tails, one for small deviations
and the other for large deviations, in our analysis of Chernoff’s inequality
(2.3.3). To put Bernstein’s inequality in the same perspective, let us nor-
malize the sum as in the Central Limit Theorem and apply Theorem 2.8.3.
We obtain

P
{∣∣∣ 1√

N

N∑
i=1

Xi

∣∣∣ ≥ t} ≤


2 exp
(
− ct2

K2

)
, t ≤ K

√
N

2 exp
(
− t
√
N

K

)
, t ≥ K

√
N

(2.24)

where K = maxi ‖Xi‖ψ1 as before. Thus, in the small deviation regime
where t ≤ K

√
N , we have a sub-gaussian tail bound as if the sum had

normal distribution N(0,K). Note that this domain widens as N increases
and the Central Limit Theorem becomes more powerful. For large deviations
where t ≥ K

√
N , the sum has a heavier, sub-exponential tail bound, which

can be explained by contribution of a single term Xi. We illustrate this in
Figure 2.3.
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Figure 2.3: Bernstein’s inequality for a sum of sub-exponential random variables
N−1/2

∑N
i=1Xi is a mixture of two tails, sub-gaussian for small deviations and

sub-exponential for large deviations. The sub-gaussian tail emerges in the O(
√
N)

neighborhood of zero, and it can be explained by Central Limit Theorem. The
heavier, sub-exponential tail, is produced by a single term in the sum.

Exercise 2.8.5 (Centering). Prove an analog of Centering Lemma 2.6.6
for sub-exponential random variables X:

‖X − EX‖ψ1 ≤ C‖X‖ψ1 .

Bernstein inequality can be made a bit stronger if we assume that the
random variables Xi are bounded, as opposed to sub-exponential.

Theorem 2.8.6 (Bernstein’s inequality for bounded distributions). Let X1, . . . , XN

be independent, mean zero random variables, such that |Xi| ≤ K almost
surely for all i. Then, for every t ≥ 0, we have

P
{∣∣∣ N∑

i=1

Xi

∣∣∣ ≥ t} ≤ 2 exp
(
− −t2/2
σ2 + CKt

)
.

Here σ2 =
∑N

i=1 EX2
i is the variance of the sum.

Think behow to present
this better. We are re-
proving the same result
in the section of matrix
Bernstein’s inequality.

Exercise 2.8.7. Prove Theorem 2.8.2. Deduce it by first proving the fol-
lowing version of Lemma 2.8.1. If ‖X‖∞ ≤ K then

E exp(λX) ≤ exp(g(λ)σ2) where g(λ) =
λ2/2

1− CKλ
.



Chapter 3

Random vectors in high
dimensions

Why random vectors? Example: practitioners working with genetic data
study the expressions of n ≈ 60, 000 genes in the human body. To study
patterns in such genetic data in a given population, we can form a random
vector X = (X1, . . . , Xn) by choosing a random person from the population
and recording the expressions of his or her n genes.

Questions: are certain genes related to each other? How many people
should be sampled from the population to see such relationships?

Talk about lots of room (volume) in higher dimensions. This leads to
“the curse of high dimensions”. But probability can turn it into a blessing. Write

3.1 Concentration of the norm

Where in the space a random vector is likely to be located? Consider a
random vector X = (X1, . . . , Xn) whose coordinates Xi are independent
random variables with zero means and unit variances. What length do we
expect X to have? Let us compute the expectation

E ‖X‖22 = E
N∑
i=1

X2
i =

N∑
i=1

EX2
i = n.

So we should expect that the length of X is

‖X‖2 ≈
√
n.

We will see now that X is indeed very close to
√
n with high probability.

37
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Theorem 3.1.1 (Concentration of the norm). Let X = (X1, . . . , Xn) ∈
Rn be a random vector with independent, sub-gaussian coordinates Xi that
satisfy EX2

i = 1. Then ∥∥∥‖X‖2 −√n∥∥∥
ψ2

≤ CK2,

where K = maxi ‖Xi‖ψ2.

Proof. For simplicity, we will assume that K ≥ 1. (Argue that you can
make this assumption.) We shall apply Bernstein’s deviation inequality for
the normalized sum of independent random variables

1

n
‖X‖22 − 1 =

1

n

n∑
i=1

(X2
i − 1).

The terms X2
i − 1 are mean zero random variables with zero means. Since

Xi are sub-gaussian, X2
i − 1 are sub-exponential; more precisely

‖X2
i − 1‖ψ1 ≤ C‖X2

i ‖ψ1 (by Centering Lemma 2.6.6)

= C‖Xi‖2ψ2
(by Lemma 2.7.4)

≤ CK2.

Applying Bernstein’s inequality (Corollary 2.8.4), we obtain for any u ≥ 0
that

P
{∣∣∣∣ 1n‖X‖22 − 1

∣∣∣∣ ≥ u} ≤ 2 exp
(
− cn
K4

min(u2, u)
)
. (3.1)

(Here we used that K4 ≥ K2 since K is bounded below by an absolute
constant – why?)

To deduce from this a concentration inequality for 1√
n
‖X‖2 − 1, we will

use the following elementary observation

|z − 1| ≥ δ implies |z2 − 1| ≥ max(δ, δ2) for z ≥ 0.

Using this for z = 1√
n
‖X‖2 together with (3.1) where u = max(δ, δ2), we

obtain for any δ ≥ 0 that

P
{∣∣∣∣ 1√

n
‖X‖2 − 1

∣∣∣∣ ≥ δ} ≤ P
{∣∣∣∣ 1n‖X‖22 − 1

∣∣∣∣ ≥ max(δ, δ2)

}
≤ 2 exp

(
− cn
K4
· δ2
)
.
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Changing variables to t = δ
√
n, we obtain the desired sub-gaussian tail

P
{∣∣‖X‖2 −√n∣∣ > t

}
≤ 2 exp(−ct2/K4) for all t ≥ 0.

The proof is complete.

Is is convenient to restate Theorem 3.1.1 as the following concentration
inequality, which is valid for all t ≥ 0:

P
{∣∣‖X‖2 −√n∣∣ ≥ t} ≤ 2 exp

(
− ct2

K4

)
. (3.2)

This inequality says that with high probability X is located very close to
the sphere of radius

√
n. Most of the time, X even stays within constant

distance from that big sphere.
Such small, constant, deviation could be surprising at the first sight. Let

us explain this intuitively. The square of the norm, SN := ‖X‖22, is a sum
of n independent, mean zero random variables. Not surprisingly, SN has
mean n and standard deviation of order

√
n, thus behaving exactly as we

would expect of a sum. (Check this!) Now, the norm ‖X‖2 is the square
root of Sn. So, as Sn deviates by O(

√
n) from its mean n, the square root

‖X‖2 =
√
Sn ought to have constant deviation around

√
n. This is because√

n±O(
√
n) =

√
n±O(1),

see Figure 3.1 for illustration.

Figure 3.1: Concentration of the norm of a random vector X in Rn. When ‖X‖22
deviates by O(

√
n) around n, the square root of this quantity, ‖X‖2, deviates by

O(1) around
√
n.

Question 3.1.2. Is the quadratic dependence on K in Theorem 3.1.1 opti-
mal? Can it be improved to the linear dependence?
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Theorem 3.1.1 and Centering Lemma 2.6.6 imply the following concen-
tration inequality of a random vector about its mean. LetX = (X1, . . . , Xn) ∈
Rn be a random vector with independent, sub-gaussian coordinates Xi that
satisfy Var(X2

i ) = 1. Then∥∥∥‖X − EX‖2 −
√
n
∥∥∥
ψ2

≤ CK2

where K = maxi ‖Xi‖ψ2 . To see this, apply Theorem 3.1.1 for X − EX
instead of X, and use that ‖Xi − EXi‖ψ2 ≤ CK by centering.

Exercise 3.1.3 (Expected norm). Let X be a random vector as in Theo-
rem 3.1.1. Show that

√
n− C ≤ E ‖X‖2 ≤

√
n+ C.

Exercise 3.1.4. [Difficulty=5] Let X be a random vector as in Theorem 3.1.1.
Show that

Var(‖X‖2) = O(1).

Exercise 3.1.5 (Sub-gaussian concentration squared). [Difficulty=7] Let
X be a random variable with sub-gaussian concentration around its mean µ,
say

‖X − µ‖ψ2 ≤ 1.

What kind of concentration does X2 have around µ2? Give a tail bound.

3.2 Covariance matrices and isotropic distributions

In the last section we considered a special class of random variables, those
with independent coordinates. Before we study more general situations,
let us recall a few basic notions about high dimensional distributions the
reader may have already seen in basic courses. We will thus be working
with random vectors X in Rn, or equivalently with probability distributions
in Rn.

The concept of the mean of random variables generalizes in a straight-
forward way for random vectors. The notion of variance is replaced in high
dimensions by the covariance matrix of a random vector X, defined as fol-
lows:

cov(X) = E(X − µ)(X − µ)T = EXXT − µµT
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where µ = EX. Thus cov(X) is an n × n matrix. Note that the formula
for covariance is a direct high-dimensional generalization of the definition of
variance for random variables Z, which is

Var(Z) = E(Z − µ)2 = EZ2 − µ2, where µ = EZ.

The entries of Σ are the covariances of the coordinates of X = (X1, . . . , Xn):

cov(X)ij = E(Xi − EXi)(Yj − EYj).

It is sometimes useful to consider the second moment matrix of a random
vector X, defined as

Σ = Σ(X) = EXXT.

It is of course a high dimensional generalization of the second moment EZ2.
By translation (replacing X with X − µ), in many problems we can assume
that X has zero mean, so

µ = 0 and thus cov(X) = Σ(X).

So we will mostly focus on Σ = Σ(X) rather than cov(X) in the future.

The n × n matrix Σ is symmetric and positive-semidefinite. (Check
this!) The spectral theorem for such matrices says that all eigenvalues si
of Σ are real and non-negative. Moreover, Σ can be expressed via spectral
decomposition as

Σ =
n∑
i=1

siuiu
T
i ,

where ui ∈ Rn are the eigenvectors of Σ. We usually arrange this represen-
tation so that the eigenvalues si are decreasing.

3.2.1 The Principal Component Analysis

The the spectral decomposition of Σ is of utmost importance in applications
where the distribution of a random vector X in Rn represents data, such
as genetic data we mentioned on p. 37. The eigenvector u1 corresponding
to the largest eigenvalue s1 indicates the direction in space in which the
distribution is most extended. This principal direction best explains the
variations in the data. The next eigenvector u2 (corresponding to the next
largest eigenvalue s2) gives the next principal direction; it best explains
the remaining variations in the data, and so on. This is illustrated in the
Figure 3.2.
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Figure 3.2: Illustration of the PCA. A few dozen samples are shown from a distri-
bution in R2. The covariance matrix Σ has eigenvalues si and eigenvectors ui. The
vectors s1u1 and s2u2 are shown in red.

It often happens with real data that only a few eigenvalues si are large
and considered as informative; the remaining eigenvalues are small and con-
sidered as noise. In such situations, a few principal directions can explain the
data. So, even though the data is presented in a high dimensional space Rn,
the data is essentially low dimensional. It clusters near the low-dimensional
subspace E spanned by the few principal components. This explains the
most basic data analysis algorithm, called the Principal Component Anal-
ysis (PCA). This algorithm projects the data in Rn onto the subspace E,
which reduced the dimension of the data considerably. For example, if E is
two- or three-dimensional, the PCA allows to visualize the data.

3.2.2 Isotropy

We might remember from the basic probability course that is often con-
venient to assume that random variables in question have zero means and
unit variances. The notion of isotropy is a high dimensional version of unit
variance (more precisely, the unit second moment).

Definition 3.2.1 (Isotropic random vectors). A random vector X in Rn is
called isotropic if

Σ(X) = EXXT = In,

where In denotes the identity matrix in Rn.

Recall that any random variable X with positive variance can be reduced
to a random variable Z with zero mean and unit variance by translation and
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dilation, namely

Z =
X − µ√
Var(X)

.

The following exercise is a high dimensional version of this observation.

Exercise 3.2.2 (Reduction to isotropy). [Difficulty=3] 1. Let Z be a mean
zero, isotropic random vector in Rn. Let µ ∈ Rn be a fixed vector and Σ be an
n×n positive-semidefinite matrix. Then the random vector X := µ+ Σ1/2Z
has mean µ and covariance matrix cov(X) = Σ.

2. Let X be a random vector with invertible covariance matrix Σ =
cov(X). Then Z := Σ−1/2(X−µ) is an isotropic, mean zero random vector.

Thus in the future we can often assume that, without loss of generality,
the distributions in question are isotropic and have zero means.

3.2.3 Properties of isotropic distributions

Lemma 3.2.3 (Characterization of isotropy). A random vector X is isotropic
if and only if

E 〈X,x〉2 = ‖x‖22 for all x ∈ Rn.

Proof. Recall that two n × n matrices A and B are equal if and only if
xTAx = xTBx for all x ∈ Rn. (Check this!) Thus X is isotropic if and only
if

xT
(
EXXT

)
x = xTInx for all x ∈ Rn.

The left side of this identity equals E 〈X,x〉2 and the right side, ‖x‖22. This
completes the proof.

If x is a unit vector in Lemma 3.2.3, we can view 〈X,x〉 as a one-
dimensional marginal of the distribution of X, obtained by projecting X
onto the direction of x. Then X is isotropic if and only if all one-dimensional
marginals of X have unit variance. In plain words, an isotropic distribution
is extended as evenly in all directions as possible.

Lemma 3.2.4. Let X be an isotropic random vector in Rn. Then

E ‖X‖22 = n.

Moreover, if X and Y are two independent isotropic random vectors in Rn,
then

E 〈X,Y 〉2 = n.
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Proof. To prove the first part, we have

E ‖X‖22 = EXTX = E tr(XTX) (viewing XTX as a 1× 1 matrix)

= E tr(XXT) (by invariance of trace under cyclic permutations)

= tr(EXXT) (by linearity)

= tr(In) (by isotropy)

= n.

To prove the second part, we use a conditioning argument. Fix a the realiza-
tion of Y and take the conditional expectation (with respect to X), which
we denote EX . The law of total expectation says that

E 〈X,Y 〉2 = EY EX [〈X,Y 〉 |Y ] ,

where by EY we of course denoted the expectation with respect to Y . To
compute the inner expectation, we apply Lemma 3.2.3 with x = Y . It yields
that the inner expectation equals ‖Y ‖22. Thus

E 〈X,Y 〉2 = EY ‖Y ‖22
= n (by the first part of lemma).

The proof is complete.

3.2.4 Almost orthogonality of independent random vectors

Let us normalize the random vectors X and Y in Lemma 3.2.4, setting

X :=
X

‖X‖2
and Y :=

Y

‖Y ‖2
.

Then we should expect from Lemma 3.2.4 that∣∣〈X,Y 〉∣∣ ∼ 1√
n

with high probability. This shows that in high dimensional spaces, indepen-
dent and isotropic random vectors are almost orthogonal, see Figure 3.3.

This could be surprising, since in low dimensions random vectors do not
tend to be almost orthogonal. For example, the angle between two random
independent directions on the plane has mean π/4. (Check!) But in higher
dimensions, there is much more room, as we saw in the beginning of this
chapter. This may be an intuitive reason why random directions in high
dimensional spaces tend to be very far from each other – almost orthogonal.
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Figure 3.3: Independent isotropic random vectors tend to be almost orthogonal in
high dimensions n but not in low dimensions.

3.3 Examples of high dimensional distributions

In this section we discuss several basic examples of isotropic high-dimensional
distributions. It will be useful to keep them in mind when we will develop
general theorems for such distributions.

3.3.1 Spherical and Bernoulli distributions

The coordinates of an isotropic random vector are uncorrelated (why?) but
not necessarily independent. An example is the spherical distribution where
a random vector is uniformly distributed on the unit Euclidean sphere in
Rn with center at the origin and radius

√
n:

X ∼ Unif
(√
nSn−1

)
.

Exercise 3.3.1. Show that the spherically distributed random vector X is
isotropic. Argue that the coordinates of X are not independent.

A good example of a discrete isotropic distribution in Rn is the symmetric
Bernoulli distribution. We say that a random vector X = (X1, . . . , Xn)
is symmetric Bernoulli if the coordinates Xi are independent, symmetric
Bernoulli random variables. Equivalently, X is uniformly distributed on the
unit discrete cube in Rn:

X ∼ Unif ({−1, 1}n) .

The symmetric Bernoulli distribution is isotropic. (Check!)
More generally, we may consider a random vector X = (X1, . . . , Xn)

whose coordinates Xi are independent random variables with zero mean
and unit variance. Then X is an isotropic vector in Rn. (Why?)

3.3.2 Multivariate normal

The most important high dimensional distribution is arguably the Gaussian,
or multivariate normal. From the basic probability course we recall that a
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random vector Z = (Z1, . . . , Zn) has standard normal distribution in Rn,
denoted

Z ∼ N(0, In),

if the coordinates Zi are independent standard normal random variables.
The density of Z is then the product of the n standard normal densities
(1.3), which is

fZ(x) =

n∏
i=1

1√
2π
e−x

2
i /2 =

1

(2π)n/2
e−‖x‖

2
2/2, x ∈ Rn. (3.3)

The standard normal distribution is isotropic. (Why?)
Note that the standard normal density is rotation invariant. In particu-

lar, for any fixed unitary matrix U ,

Z ∼ N(0, In) implies UZ ∼ N(0, In).

Exercise 3.3.2 (Sum of independent gaussians). [Difficulty=5] Let Xi ∼
N(0, σ2

i ) be independent random variables. Deduce from rotation invariance
that the following property we mentioned in (2.19):

n∑
i=1

Xi ∼ N(0, σ2) where σ2 =
n∑
i=1

σ2
i .

Hint: consider the random vector Z ∼ N(0, In) with coefficients Zi = Xi/σi. Assume that

u = (σ1, . . . , σn) is a unit vector without loss of generality. Then
∑
Xi =

∑
σiZi = 〈u, Z〉.

If U is a unitary matrix whose first row is uT then 〈u, Z〉 is the first entry of the vector

UZ ∼ N(0, In).

Let us also recall the notion of general normal distribution N(µ,Σ).
Consider a vector µ ∈ Rn and an invertible n × n positive-semidefinite
matrix Σ. According to Exercise 3.2.2, the random vector X := µ+ Σ1/2Z
has mean µ and covariance matrix Σ(X) = Σ. Such X is said to have general
normal distribution in Rn, denoted

X ∼ N(µ,Σ).

Summarizing, we have

X ∼ N(µ,Σ) iff Z := Σ−1/2(X − µ) ∼ N(0, In).

The density ofX ∼ N(µ,Σ) can be computed by change of variables formula,
and it is

fX(x) =
1

(2π)n/2 det(Σ)1/2
e−(x−µ)TΣ−1(x−µ)/2, x ∈ Rn. (3.4)
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Figure 3.4 shows examples of the densities of multivariate normal distribu-
tions.

(a) The isotropic distribution
N(0, I2)

(b) A non-isotropic dis-
tribution N(0,Σ)

Figure 3.4: The densities of the multivariate distributions with different covariance
matrices Σ. The density of the standard normal distribution N(0, I2) is rotation
invariant, and its contour lines are circles. The contour lines of the non-isotropic
distribution N(0,Σ) are ellipses.

3.3.3 Similarity of normal and spherical distributions

Contradicting our low dimensional intuition, the standard normal distribu-
tion N(0, In) in high dimensions is not concentrated close the origin where
the density is maximal. Instead, it is concentrated in a thin spherical shell
around the sphere of radius

√
n, a shell of width O(1). Indeed, the concen-

tration inequality (3.2) for the norm of X ∼ N(0, In) states that

P
{∣∣‖X‖2 −√n∣∣ ≥ t} ≤ 2 exp(−ct2) for all t ≥ 0. (3.5)

This suggests that the normal distribution should be quite similar to the
uniform distribution on the sphere. Let us clarify the relation.

Exercise 3.3.3 (Normal and spherical distributions). Let us represent g ∼
N(0, In) in polar form as

g = rθ

where r = ‖g‖2 is the length and θ = g/‖g‖2 is the direction of X. Prove
the following.

1. The length r and direction θ are independent random variables.

2. The direction θ is uniformly distributed on the unit sphere Sn−1.

Concentration inequality (3.5) for the length says that r ≈
√
n with high

probability, so

g ≈
√
nθ ∼ Unif

(√
nSn−1

)
.
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This means that the spherical distribution considered in Section 3.3.1 and
the standard normal distribution are approximately the same. We can write
this heuristically as

N(0, In) ≈ Unif
(√
nSn−1

)
. (3.6)

Figure 3.5 illustrates a shift of intuition about gaussian point clouds in high
dimensions.

Figure 3.5: A Gaussian point cloud in two dimensions (left) and in high dimensions
(right). In high dimensions, gaussian distribution is very close to the uniform
distribution on the sphere of radius

√
n.

3.3.4 Frames

For an example of an extremely discrete distribution, consider a coordinate
random vector X uniformly distributed in the set {

√
n ei}ni=1 where {ei}ni=1

is the canonical basis of Rn:

X ∼ Unif
{√

n ei : i = 1, . . . , n
}
.

Then X is an isotropic random vector in Rn. (Check!)

Of all high dimensional distributions, Gaussian is often the most conve-
nient to prove results for, so we may think of it as “the best” distribution.
The coordinate distribution, the most discrete of all distributions, is “the
worst”.

A general class of discrete, isotropic distributions arises in signal pro-
cessing under the name of frames.

Definition 3.3.4. A frame is a set of vectors {ui}Ni=1 in Rn which obeys
an approximate Parseval’s identity, i.e. there exist numbers A,B > 0 called
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frame bounds such that

A‖x‖22 ≤
N∑
i=1

〈ui, x〉2 ≤ B‖x‖22 for all x ∈ Rn.

If A = B the set is called a tight frame.

Exercise 3.3.5. Show that {ui}Ni=1 is a tight frame in Rn with bound A if

N∑
i=1

uiu
T
i = AIn. (3.7)

Hint: Proceed similarly to the proof of Lemma 3.2.3.

Multiplying both sides of (3.7) by a vector x, we see that

N∑
i=1

〈ui, x〉ui = Ax for any x ∈ Rn. (3.8)

This is a frame expansion of a vector x, and it should look familiar. Indeed,
if {ui} is an orthonormal basis, then (3.8) is just a classical basis expansion
of x, and it holds with A = 1.

We can think of tight frames as generalizations of orthogonal bases with-
out the linear independence requirement. Any orthonormal basis in Rn is
clearly a tight frame. But so is the “Mercedez-Benz frame”, a set of three
equidistant points on a circle in R2 shown on Figure 3.6.

In signal processing, tight frames are used as robust proxies of bases. Expand this.

Figure 3.6: the Mercedes-Benz frame. A set of equidistant points on the circle form
a tight frame in R2.

Now we are ready to connect the concept of frames to probability. We
will show that tight frames correspond to isotropic distributions, and vice
versa.



50 CHAPTER 3. RANDOM VECTORS IN HIGH DIMENSIONS

Lemma 3.3.6 (Tight frames and isotropic distributions). 1. Consider a
tight frame {ui}Ni=1 in Rn scaled so that the bounds satisfy A = B = N .
Let X be a random vector that is uniformly distributed in the set of frame
elements, i.e.

X ∼ Unif {ui : i = 1, . . . , N} ,

Then X is an isotropic random vector in Rn.
2. Consider an isotropic random vector X in Rn that takes a finite set

of values xi with probabilities pi each, i = 1, . . . , N . Then the vectors

ui :=
√
pi xi, i = 1, . . . , N,

form a tight frame in RN with bounds A = B = 1.

Proof. 1. The assumptions and (3.7) imply that

N∑
i=1

uiu
T
i = NIn.

Dividing both sides by N and interpreting 1
n

∑n
i=1 as expectation, we con-

clude that X is isotropic.
2. Isotropy of X means that

EXXT =

N∑
i=1

pixix
T
i = In.

Denoting ui :=
√
pi xi, we obtain (3.7) with A = In.

3.3.5 Isotropic convex sets

Our last example of a high dimensional distribution comes from convex
geometry. Consider a bounded convex set K in Rn with non-empty interior;
such sets are called convex bodies. Let X be a random vector uniformly
distributed in K, according to the probability measure given by normalized
volume in K:

X ∼ Unif(K).

Denote the covariance matrix ofX by Σ. Then by Exercise 3.2.2, the random
vector Z := Σ−1/2X is isotropic. Note that Z is uniformly distributed in
the linearly transformed copy of K:

Z ∼ Unif(Σ−1/2K).
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(Why?) Summarizing, we found a linear transformation T := Σ−1/2 which
makes the uniform distribution on TK isotropic. The body TK is sometimes
called isotropic itself.

In algorithmic convex geometry, one thinks of the isotropic convex body
TK as a well conditioned version of K, with T playing the role of a pre-
conditioner, see Figure 3.7. Algorithms related to convex bodies K (such
as computing the volume of K) work better for well-conditioned K. So in
practice, it is useful to be able to compute or estimate the covariance matrix
Σ of K, since this allows one to transform K into as well-conditioned convex
body as possible.

Figure 3.7: A convex body K on the left is transformed into an isotropic convex
body TK on the right. The pre-conditioner T is computed from the covariance
matrix Σ of K as T = Σ−1/2.

3.4 Sub-gaussian distributions in higher dimen-
sions

The concept of sub-gaussian distributions we introduced in Section 2.5 can
be extended to higher dimensions. To see how, recall that the multivariate
normal distributionN(µ,Σ) can be characterized through its one-dimensional
marginals, or projections onto lines. A random vector X has normal distri- Can anyone suggest a

reference for this charac-
terization?

bution in Rn if and only the one-dimensional marginals 〈X,x〉 are normal
for all x ∈ Rn. Guided by this characterization, we can define multivariate
sub-gaussian distributions as follows.

Definition 3.4.1 (Sub-gaussian random vectors). A random vector X in
Rn is called sub-gaussian if the one-dimensional marginals 〈X,x〉 are sub-
gaussian random variables for all x ∈ Rn. The sub-gaussian norm of X is
defined as

‖X‖ψ2 = sup
x∈Sn−1

‖ 〈X,x〉 ‖ψ2 .

A good example of a sub-gaussian random vector is a random vector
with independent, sub-gaussian coordinates:
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Lemma 3.4.2 (Sub-gaussian distributions with independent coordinates).
Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent, mean
zero, sub-gaussian coordinates Xi. Then X is a sub-gaussian random vector,
and

‖X‖ψ2 ≤ C max
i≤n
‖Xi‖ψ2 .

Proof. This is an easy consequence of the fact that the sum of independent
sub-gaussian random variables is sub-gaussian, which we proved in Propo-
sition 2.6.1. Indeed, for a fixed unit vector x = (x1, . . . , xn) ∈ Sn−1 we
have

‖ 〈X,x〉 ‖2ψ2
=
∥∥∥ n∑
i=1

xiXi

∥∥∥2

ψ2

≤ C
n∑
i=1

x2
i ‖Xi‖2ψ2

(by Proposition 2.6.1)

≤ C max
i≤n
‖Xi‖2ψ2

(using that
n∑
i=1

x2
i = 1).

This completes the proof.

Exercise 3.4.3. [Difficulty=5] This exercise clarifies the role of indepen-
dence of coordinates in Lemma 3.4.2.

1. Let X = (X1, . . . , Xn) ∈ Rn be a random vector with sub-gaussian
coordinates Xi. Show that X is a sub-gaussian random vector.

2. Nevertheless, find an example of a random vector X with

‖X‖ψ2 � max
i≤n
‖Xi‖ψ2 .

Many important high-dimensional distributions are sub-gaussian, but
some are not. We will now explore some basic distributions.

3.4.1 Gaussian and Bernoulli distributions

As we already noted, multivariate normal distributionN(µ,Σ) is sub-gaussian.
Moreover, the standard normal random vectorX ∼ N(0, In) has sub-gaussian
norm of order O(1):

‖X‖ψ2 ≤ C.
(Indeed, all one-dimensional marginals of X are N(0, 1).)

Next, consider the multivariate symmetric Bernoulli distribution we in-
troduced in Section 3.3.1. A random vector X with this distribution has
independent, symmetric Bernoulli coordinates. Then Lemma 3.4.2 yields
that

‖X‖ψ2 ≤ C.
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3.4.2 Discrete distributions

Let us now pass to discrete distributions. The extreme example we con-
sidered in Section 3.3.4 is the coordinate distribution. Recall that random
vector X with coordinate distribution is uniformly distributed in the set
{
√
nei : i = 1, . . . , n}, where ei denotes the the n-element set of the canon-

ical basis vectors in Rn.
Is X sub-gaussian? Formally, yes. In fact, every distribution sup-

ported in a finite set is sub-gaussian. (Why?) But, unlike Gaussian and
Bernoulli distributions, the coordinate distribution has a very large sub-
gaussian norm:

‖X‖ψ2 �
√
n.

(To see this, note that | 〈X, e1〉 | =
√
n with probability one.) Such large

norm makes it useless to think of X as a sub-gaussian random vector.
More generally, discrete distributions do not make nice sub-gaussian dis-

tributions, unless they are supported on exponentially large sets:

Exercise 3.4.4. [Difficulty=10?] Let X be an isotropic random vector sup-
ported in a finite set T ⊂ Rn. Show that in order for X to be sub-gaussian
with ‖X‖ψ2 = O(1), the cardinality of the set must be exponentially large in
n:

|T | ≥ ecn.
In particular, this observation rules out frames (see Section 3.3.4) as

good sub-gaussian distributions unless they have exponentially many terms
(in which case they are mostly useless in practice).

3.4.3 Uniform distribution on the sphere

In all previous examples, good sub-gaussian random vectors had independent
coordinates. This is not necessary. A good example is the uniform distri-
bution on the sphere of radius

√
n, which we discussed in Section 3.4.3. We

will show that it is sub-gaussian by reducing it to the Gaussian distribution
N(0, In).

Theorem 3.4.5 (Uniform distribution on sphere is sub-gaussian). Let X be
a random vector uniformly distributed on the Euclidean sphere in Rn with
center at the origin and radius

√
n:

X ∼ Unif
(√
nSn−1

)
.

Then X is sub-gaussian, and

‖X‖ψ2 ≤ C.
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Proof. Consider a standard normal random vector g ∼ N(0, In). As we
noted in Section 3.3.3, the direction g/‖g‖2 is uniformly distributed on the
unit sphere Sn−1. By rescaling, we can represent a random vector X ∼
Unif

(√
nSn−1

)
as

X =
√
n

g

‖g‖2
.

We need to show that all one-dimensional marginals 〈X,x〉 are sub-
gaussian. By rotation invariance, we may assume that x = e1. So it is
enough to analyze 〈X,x〉 = X1 the first coordinate of X. Thus we want to
bound the tail probability

p(t) := P {|X1| ≥ t} = P
{
|g1|
‖g‖2

≥ t√
n

}
.

Heuristically, the concentration of norm (Theorem 3.1.1) implies that

‖g‖2 ≈
√
n with high probability.

This reduces the problem to bounding the tail P {|g1| ≥ t}, but as we know
from (2.2), this tail is sub-gaussian.

Let us do this argument more carefully. The concentration of norm,
Theorem 3.1.1, implies that∥∥‖g‖2 −√n∥∥ψ2

≤ C.

Thus the event

E :=

{
‖g‖2 ≥

√
n

2

}
is likely: by (2.15) its complement Ec has probability

P(Ec) ≤ 2 exp(−cn).

Then the tail probability can be bounded as follows:

p(t) ≤ P
{
|g1|
‖g‖2

≥ t√
n

and E
}

+ P(Ec)

≤ P
{
|g1| ≥

t

2

}
+ 2 exp(−cn)

≤ 2 exp(−t2/8) + 2 exp(−cn) (using (2.2)).

Consider two cases. If t ≤
√
n then 2 exp(−cn) ≤ 2 exp(−ct2/8), and we

conclude that
p(t) ≤ 4 exp(−c′t2)
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as desired. In the opposite case where t >
√
n, the tail probability p(t) =

P {|X1| ≥ t} trivially equals zero, since we always have |X1| ≤ ‖X‖2 =
√
n.

This completes the proof.

Exercise 3.4.6 (Uniform distribution on the Euclidean ball). [Difficulty=5]
Extend Theorem 3.4.5 for the uniform distribution on the Euclidean ball
B(0,

√
n) in Rn centered at the origin and with radius

√
n. Namely, show

that a random vector

X ∼ Unif
(
B(0,

√
n)
)

is sub-gaussian, and

‖X‖ψ2 ≤ C.

Exercise 3.4.7. [Difficulty=8] Prove Theorem 3.4.5 by reducing the spher-
ical distribution to Gaussian. Use the similarity of these two distributions
we explored in Section 3.3.3.

Projective Limit Theorem

Theorem 3.4.5 should be compared to the well known “Projective Central
Limit Theorem”. It states that the marginals of the uniform distribution
on the sphere become asymptotically normal as n increases, see Figure 3.8.
Precisely, if X ∼ Unif

(√
nSn−1

)
then for any fixed unit vector x we have

〈X,x〉 → N(0, 1) in distribution as n→∞.

So we can view Theorem 3.4.5 as a concentration version of the Projec-

Figure 3.8: The Projective Central Limit Theorem. The projection of the uni-
form distribution on the sphere of radius

√
n onto a line converges to the normal

distribution N(0, 1) as n→∞.

tive Limit Theorem, in the same sense as we found Hoeffding’s inequality
in Section 2.2 to be a concentration version of the classical Central Limit
Theorem.
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3.4.4 Uniform distribution on convex sets

To conclude this section, let us return to the class of uniform distributions
on convex sets which we discussed in Section 3.3.5. Let K is a convex body
and

X ∼ Unif(K)

be an isotropic random vector. Is X always sub-gaussian?
For some bodies K this is the case. Examples include the Euclidean ball

of radius
√
n (by Exercise 3.4.6) and the unit cube [−1, 1]n (according to

Lemma 3.4.2). For some other bodies, this is not true:

Exercise 3.4.8. [Difficulty=7] Consider a ball of the `1 norm in Rn:

K := {x ∈ Rn : ‖x‖1 ≤ r} .

1. Show that the uniform distribution on K is isotropic for r ∼ n.
2. Show that this distribution is not sub-gaussian.

Nevertheless, a weaker result is possible to prove for a general isotropic
convex body K. The random vector X ∼ Unif(K) has all sub-exponential
marginals, and

‖ 〈X,x〉 ‖ψ1 ≤ C

for all unit vectors x. This result follows from C. Borell’s lemma, which itself
is a consequence of Brunn-Minkowski inequality; see [?, Section 2.2.b3].Borrow reference from

my tutorial on non-
asymptotic RMT Exercise 3.4.9. [Difficulty=6] Show the concentration inequality in Theo-

rem 3.1.1 may not hold for a general isotropic sub-gaussian random vector
X. Thus, independence of the coordinates of X is an essential requirement
in that result.



Chapter 4

Sub-gaussian random
matrices

4.1 Preliminaries on matrices

4.1.1 Singular value decomposition

The main object of our study will be an m×n matrices A with real entries.
Recall from a course in linear algebra that A admits them singular value
decomposition (SVD), which we can write in the following form:

A =
r∑
i=1

siuiv
T
i , where r = rank(A).

Here the non-negative numbers si = si(A) are called singular values of A,
the vectors ui ∈ Rm are called the left singular vectors of A, and the vectors
vi ∈ Rn are called the right singular vectors of A.

Since for random matrices r = rank(A) is random, it is convenient to
extend the sequence of singular values by setting si = 0 for r < i ≤ n. Also,
for convenience we arrange them so that

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0.

The vectors ui are a set of orthonormal eigenvectors of AA∗ and the
vectors vi are a set of orthonormal eigenvectors of A∗A. The singular vectors
si are the square roots of the eigenvalues λi of both AA∗ and A∗A:

si(A) =
√
λi(AA∗) =

√
λi(A∗A).

57
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In particular, if A is a symmetric matrix, the singular values of A are the
absolute values of the eigenvalues λi of A:

si(A) = |λi(A)|,

and both left and right singular vectors of A are the eigenvectors of A.

4.1.2 Operator norm and the extreme singular values

The space ofm×nmatrices can be equipped with several classical norms. We
will mention two of them – operator and Frobenius norms – and emphasize
their connection with the spectrum of A.

When we think of the space Rm along with the Euclidean norm ‖ · ‖2 on
it, we denote this Hilbert space `m2 . The matrix A acts as a linear operator
from `n2 → `m2 . Its operator norm of A, also called the spectral norm, is then
defined as

‖A‖ := ‖A : `n2 → `m2 ‖ = max
x∈Rn\{0}

‖Ax‖2
‖x‖2

= max
x∈Sn−1

‖Ax‖2.

Equivalently, the operator norm of A can be computed by maximizing the
quadratic form xTAy = 〈Ax, y〉 over all unit vectors x, y:

‖A‖ = max
x∈Sn−1, y∈Sm−1

〈Ax, y〉 .

In terms of spectrum, the operator norm of A is the same as the largest
singular value of A:

s1(A) = ‖A‖.

(Check!)

The smallest singular value sn(A) also has a special meaning. By defini-
tion, it can only be non-zero for tall matrices where m ≥ n. In this case, A
has full rank n if and only if sn(A) > 0. Moreover, sn(A) is a quantitative
measure of non-degeneracy of A. Indeed,

sn(A) =
1

‖A†‖

where A† is the pseudo-inverse of A. Its norm ‖A†‖ is the norm of the
operator A−1 restricted to the image of A.
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4.1.3 Frobenius norm

The Frobenius norm, also called Hilbert-Schmidt norm of a matrix A with
entries Aij is defined as

‖A‖F =
( m∑
i=1

n∑
j=1

|Aij |2
)1/2

.

Thus Frobenius norm is the Euclidean norm on the space of matrices Rm×n.
In terms of spectrum, the Frobenius norm can be computed as

‖A‖F =
( r∑
i=1

si(A)2
)1/2

.

The canonical inner product on Rm×n can be represented in terms of ma-
trices as

〈A,B〉 = tr(ATB) =

m∑
i=1

n∑
j=1

AijBij .

Obviously, the canonical inner product generates the canonical Euclidean
norm, i.e.

‖A‖2F = 〈A,A〉 .

Let us now compare the operator and Frobenius norm. If we look at the
vector s = (s1, . . . , sr) of singular values of A, these norms become the `∞
and `2 norms, respectively:

‖A‖ = ‖s‖∞, ‖A‖F = ‖s‖2.

Using the inequality ‖s‖∞ ≤ ‖s‖2 ≤
√
r ‖s‖∞ for s ∈ Rn (check it!) we

obtain the best possible relation between the operator and Frobenius norms:

‖A‖ ≤ ‖A‖F ≤
√
r ‖A‖. (4.1)

4.1.4 Approximate isometries

The extreme singular values s1(A) and sr(A) have an important geometric
meaning. They are respectively the smallest number M and the largest
number m that make the following inequality true:

m‖x‖2 ≤ ‖Ax‖2 ≤M‖x‖2 for all x ∈ Rn. (4.2)
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(Check!) Applying this inequality for x − y instead of x and with the best
bounds, we can rewrite is as

sr(A)‖x− y‖2 ≤ ‖Ax−Ay‖2 ≤ s1(A)‖x− y‖2 for all x ∈ Rn.

This means that the matrix A, acting as an operator from Rm to Rn, change
the distances between points by factors that lie between sr(A) and s1(A).
Thus the extreme singular values control the distortion of the geometry of
Rn under the action of A.

The best possible matrices in this sense, which preserve distances exactly,
are called isometries. Let us recall their characterization, which can be
proved using elementary linear algebra. (Do it!)

Lemma 4.1.1 (Isometries). Let A be an m × n matrix with m ≥ n. Then
the following are equivalent.

1. A is an isometry, or isometric embedding of Rn into Rm. This means
that

‖Ax‖2 = ‖x‖2 for all x ∈ Rn.

2. ATA = In.

3. All singular values of A equal 1; equivalently

sn(A) = s1(A) = 1.

Quite often the conditions of Lemma 4.1.1 hold only approximately, in
which case we think of A as an approximate isometry.

Lemma 4.1.2 (Approximate isometries). Let A be an m × n matrix and
δ > 0. Suppose that

‖ATA− In‖ ≤ max(δ, δ2).

Then

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 for all x ∈ Rn. (4.3)

Equivalently, all singular values of A are between 1− δ and 1 + δ:

1− δ ≤ sn(A) ≤ s1(A) ≤ 1 + δ. (4.4)

Proof. Without loss of generality, we may assume that ‖x‖2 = 1. (Why?)
By assumption, we have∣∣∣〈(ATA− In)x, x

〉∣∣∣ =
∣∣‖Ax‖22 − 1

∣∣ ≤ max(δ, δ2).
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Applying the elementary inequality

max(|z − 1|, |z − 1|2) ≤ |z2 − 1|, z ≥ 0 (4.5)

for z = ‖Ax‖2, we conclude that

|‖Ax‖2 − 1| ≤ δ.

This proves (4.3), which in turn implies (4.4) as we saw before.

Exercise 4.1.3 (Approximate isometries). [Difficulty=3] Prove the follow-
ing converse to Lemma 4.1.2. If A is an approximate isometry, i.e. (4.4)
holds, then

‖ATA− In‖ ≤ 2 max(δ, δ2).

Suppose A is a fat m× n matrix, that is m ≤ n, and

s1(A) ≈ sm(A) ≈ 1.

Then A can be viewed as an approximate projection from Rm into Rn. Thus
A is an approximate isometry if and only if AT is an approximate projection.

Canonical example of isometries and projections can be constructed from
a fixed unitary matrix U . Any sub-matrix of U obtained by selecting a subset
of columns is an (exact) isometry, and any sub-matrix obtained by selecting
a subset of rows is an (exact) projection in this sense.

4.2 Nets, covering numbers and packing numbers

In a course in analysis, you may have studied the notion of an ε-net. Let us
recall it here.

Definition 4.2.1 (ε-net). Consider a subset K of Rn and let ε > 0. A
subset N ⊆ K is called an ε-net of K if every point in K is within distance
ε of some point of N , i.e.

∀x ∈ K ∃x0 ∈ N : ‖x− x0‖2 ≤ ε.

Equivalently, N ⊆ K is an ε-net of K if and only if K can be covered
by balls with centers in N and radii ε, see Figure 4.1a.

An important result in analysis about compactness of sets is that K ⊂ Rn
is pre-compact (which in Rn simply means that K is bounded) if and only
if K has a finite ε-net for every ε > 0. More quantitatively, the smallest
cardinality of an ε-net can be taken as a measure of compactness of K.
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Definition 4.2.2 (Covering numbers). The smallest cardinality of an ε-net
of K is called the covering number of K and is denoted N (K, ε). Equiva-
lently, the N (K, ε) is the smallest number of closed balls with centers in K
and radii ε whose union covers K.

(a) This covering of a pentagon K by
seven ε-balls shows that N (K, ε) ≤ 7.

(b) This packing of a pentagon K by
ten ε-balls shows that P(K, ε) ≥ 10.

Figure 4.1: Packing and covering

Closely related to covering is the notion of packing.

Definition 4.2.3 (Packing numbers). The packing number P(K, ε) is the
smallest number of open disjoint balls with centers in K and radii ε > 0.

Figure 4.1b illustrates a packing of K by balls centered at some points
xi ∈ K.

Exercise 4.2.4. [Difficulty=3] A collection of points xi ∈ K are centers of
balls that form a packing in K if and only if

‖xi − xj‖2 > 2ε for all i 6= j.

The covering and packing numbers are equivalent up to a slight scaling
of the radius:

Lemma 4.2.5 (Equivalence of covering and packing numbers). For any
bounded set K ⊂ Rn and any ε > 0, we have

P(K, ε) ≤ N (K, ε) ≤ P(K, ε/2).
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Proof. Lower bound. Let P = {xi} and N = {yi} be the centers of ε-balls
that form a packing and a covering of K, respectively. By Exercise 4.2.4,
the centers of packing are 2ε-separated:

‖xi − xj‖2 > 2ε for all i 6= j.

Since any ε-ball can not have a pair of 2ε-separated points, each covering
ball B(yi, ε) may contain at most one point xi. It follows that

|P| ≤ |N |.

This proves the lower bound.

Upper bound. Let P = {xi} be a maximal packing of K by ε/2-balls.
Here by “maximal” we mean that an addition of any ε/2-ball to P will always
destroy the packing property; Figure 4.1b shows an example of a maximal
packing. Equivalently, by Exercise 4.2.4, P is a maximal ε-separated set of
points xi ∈ K:

‖xi − xj‖2 > ε for all i 6= j.

By maximality, {xi} is an ε-net of K. (Indeed, an addition of any point
x ∈ K to the family {xi} destroys its ε-separation property, which means
that ‖x − xi‖2 ≤ ε for some i.) Thus we constructed an ε-net of K of
cardinality at most |P|. The upper bound in the lemma is proved.

Exercise 4.2.6 (Allowing the centers to be outside K). [Difficulty=5] In
our definition of covering numbers of K, we required that the centers xi
of the balls B(xi, ε) that form covering lie in K. Relaxing this condition,
define external covering number N ext(K, ε) similarly but without requiring
that xi ∈ K. Prove that

N ext(K, ε) ≤ N (K, ε) ≤ N ext(K, ε/2).

Exercise 4.2.7 (Monotonicity of covering numbers). [Difficulty=6] Give a
counterexample to the monotonicity property

L ⊂ K implies N (L, ε) ≤ N (K, ε).

Prove an approximate version of monotonicity:

L ⊂ K implies N (L, ε) ≤ N (K, ε/2).
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4.2.1 Metric entropy and coding

Covering and packing numbers measure the size, or rather complexity, of a
set K, which makes them a useful tool in coding theory. The logarithm of
the covering numbers logN (K, ε) is often called the metric entropy of K.
As we will see now, the metric entropy is equivalent to the number of digits
needed to encode points in K as bit strings.

Proposition 4.2.8 (Metric entropy and coding). Let C(K, ε) denote the
smallest number of bits sufficient to specify every point x ∈ K with accuracy
ε in the Euclidean norm. Then

log2N (K, ε) ≤ C(K, ε) ≤ log2N (K, ε/2).

Proof. (Lower bound) Assume C(K, ε) ≤ N , so there is a way to repre-
sent every point x ∈ K with accuracy ε using a bit string of length N . This
induces a partition of K into at most 2N subsets, which are obtained by
grouping points represented the same bit string; see Figure 4.2 for illustra-
tion. Each subset must have diameter at most ε, and thus it can be covered
by a Euclidean ball centered inK and with radius ε. (Why?) SoK is covered
by at most 2N balls with radii ε. This implies that N (K, ε) ≤ 2N . Taking
logarithm of both sides, we obtain the lower bound in the proposition.

(Upper bound) Assume log2N (K, ε/2) ≤ N , so there exists an (ε/2)-
net N of K with cardinality |N | ≤ 2N . To every point x ∈ K, let us assign
a point x0 ∈ N closest to x. Since there are at most 2N such points, N
bits are sufficient to specify the point x0. The encoding x 7→ x0 represents
points in K with accuracy ε. (Indeed, if both x and y are encoded by the
same x0 then ‖x − y‖2 ≤ ‖x − x0‖2 + ‖y − x0‖2 ≤ ε.) This shows that
C(K, ε) ≤ N .

4.2.2 Covering numbers and volume

If the covering numbers measure the size of K, how are they related to the
most classical measure of size, the volume of K in Rn? There could not be
a full equivalence between these two quantities, since “flat” sets have zero
volume but non-zero covering numbers.

Still, there is a useful partial equivalence holds, which is often quite
sharp. It is based on the notion of Minkowski sum of sets in Rn.

Definition 4.2.9 (Minkowski sum). Let A and B be subsets of Rn. The
Minkowski sum A+B is defined as

A+B := {a+ b : a ∈ A, b ∈ B} .
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Figure 4.2: Encoding points in K as bit strings of length N induces a partition of
K into at most 2N subsets.

Figure 4.3 shows an example of Minkowski sum of two sets on the plane.

Figure 4.3: Minkowski sum of a square and a circle is a square with rounded corners.

Proposition 4.2.10 (Covering numbers and volume). Let K be a subset of
Rn and ε > 0. Then

Vol(K)

Vol(εBn
2 )
≤ N (K, ε) ≤ Vol (K + (ε/2)Bn

2 )

Vol((ε/2)Bn
2 )

.

Here as usual Bn
2 denotes the unit Euclidean ball in Rn, so εBn

2 is the Eu-
clidean ball with radius ε.

Proof. (Lower bound) Let N := N (K, ε). Then K can be covered by N
balls with radii ε. Comparing volume, we obtain

Vol(K) ≤ N ·Vol(εBn
2 ),

which proves the lower bound in the proposition.
(Upper bound) By Lemma 4.2.5, it is enough to prove the same upper

bound but for the packing number P(K, ε/2) =: P . Consider P open disjoint
balls B(xi, ε/2) with centers xi ∈ K and radii ε/2. While these balls do not
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need to fit entirely in K (see Figure 4.1b), they fit in a slightly inflated set,
namely K + (ε/2)Bn

2 . (Why?) Comparing the volumes, we obtain

P ·Vol((ε/2)Bn
2 ) ≤ Vol (K + (ε/2)Bn

2 ) ,

which leads to the upper bound in the proposition.

Let us give some examples for the volumetric bound.

Corollary 4.2.11 (Covering numbers of the Euclidean ball). The covering
numbers of the unit Euclidean ball Bn

2 satisfy the following for any ε > 0:(1

ε

)n
≤ N (Bn

2 , ε) ≤
(2

ε
+ 1
)n
.

The same upper bound is true for the unit Euclidean sphere Sn−1.

Proof. The lower bound follows immediately from Proposition 4.2.10, since
the volume scales as Vol(εBn

2 ) = εn · Vol(Bn
2 ). The upper bound follows

from Proposition 4.2.10, too:

N (K, ε) ≤ Vol ((1 + ε/2)Bn
2 )

Vol((ε/2)Bn
2 )

=
(1 + ε/2)n

(ε/2)n
=
(2

ε
+ 1
)n
.

The upper bound for the sphere can be proved in the same way.

To simplify the bound a bit, note the interesting range is ε ∈ (0, 1], where
we have (1

ε

)n
≤ N (Bn

2 , ε) ≤
(3

ε

)n
. (4.6)

In the trivial range where ε > 1, the unit ball can be covered by just one
ε-ball, so N(Bn

2 , ε) = 1.
The important message of (4.6) is that the covering numbers are expo-

nential in the dimension n. This should not be surprising if we recall the
coding theory perspective we discussed in Section 4.2.1. Indeed, to encode
a vector in dimension n, one should be prepared to spend at least one bit
per coefficient, so n bits total. This makes the metric entropy linear in n,
and the covering numbers exponential in n.

Let us finish the discussion of covering and packing numbers with a more
general outlook. First, these numbers can be defined in an arbitrary metric
space, with a general metric replacing the Euclidean distance. Equivalently,We need to define cov-

ering numbers for gen-
eral metric spaces some-
where. Either here or in
Section 7.5 where we use
it for the first time.

one can replace covering by Euclidean balls in Rn with covering by a trans-
late of a general set D.

Write this exercise more
clearly

Exercise 4.2.12 (Covering and packing by general sets). Generalize the
results of Sections 4.2 and 4.2.2 for covering and packing by translates of a
general set D in place of the Euclidean balls.
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4.3 Upper bounds on sub-gaussian matrices

4.3.1 Computing the norm on a net

The notion of ε-nets can help us to simplify various problems involving
dimensional sets. One such problem is the computation of the operator
norm of an m×n matrix A. The operator norm was defined in Section 4.1.2
as

‖A‖ = sup
x∈Sn−1

‖Ax‖2.

Thus, to evaluate ‖A‖ one needs to control ‖Ax‖ uniformly over the sphere
Sn−1. We will show that instead of the entire sphere, it is enough to have a
control just over an ε-net of the sphere.

Lemma 4.3.1 (Computing the operator norm on a net). Let A be an m×n
matrix and ε ∈ [0, 1). Then, for any ε-net N of the sphere Sn−1, we have

sup
x∈N
‖Ax‖2 ≤ ‖A‖ ≤

1

1− ε
· sup
x∈N
‖Ax‖2

Proof. The lower bound in the conclusion is trivial since N ⊂ Sn−1. To
prove the upper bound, fix a vector x ∈ Sn−1 for which

‖A‖ = ‖Ax‖2

and choose x0 ∈ N that approximates x so that

‖x− x0‖2 ≤ ε.

By the triangle inequality, this implies

‖Ax−Ax0‖2 = ‖A(x− x0)‖2 ≤ ‖A‖‖x− x0‖2 ≤ ε‖A‖.

Using the triangle inequality again, we find that

‖Ax0‖2 ≥ ‖Ax‖2 − ‖Ax−Ax0‖2 ≥ ‖A‖ − ε‖A‖ = (1− ε)‖A‖.

Dividing both sides of this inequality by 1− ε, we complete the proof.

Exercise 4.3.2. Let x ∈ Rn and N be an ε-net of the sphere Sn−1. Show
that

sup
y∈N
〈x, y〉 ≤ ‖x‖2 ≤

1

1− ε
sup
y∈N
〈x, y〉 .
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We may recall from Section 4.1.2 that the operator norm can be com-
puted by maximizing a quadratic form:

‖A‖ = max
x∈Sn−1, y∈Sm−1

〈Ax, y〉 .

Moreover, for symmetric matrices one can take x = y. The following exercise
shows that again, instead of controlling the quadratic form on the spheres,
it suffices to have control just over the ε-nets.

Exercise 4.3.3. [Difficulty=4] 1. Let A be an m×n matrix and ε ∈ [0, 1/2).
Show that for any ε-net N of the sphere Sn−1 and any ε-netM of the sphere
Sm−1, we have

sup
x∈N , y∈M

〈Ax, y〉 ≤ ‖A‖ ≤ 1

1− 2ε
· sup
x∈N , y∈M

〈Ax, y〉 .

2. Moreover, if n = m and A is symmetric, show that

sup
x∈N
| 〈Ax, x〉 | ≤ ‖A‖ ≤ 1

1− 2ε
· sup
x∈N
| 〈Ax, x〉 |.

Hint: Proceed similarly to the proof of Lemma 4.3.1 and use the identity 〈Ax, y〉 −
〈Ax0, y0〉 = 〈Ax, y − y0〉+ 〈A(x− x0), y0〉.

Exercise 4.3.4 (Bounding the norm deviation on a net). [Difficulty=7] 1.
Let A be an m× n matrix, µ ∈ R and ε ∈ [0, 1/2). Show that for any ε-net
N of the sphere Sn−1, we have

sup
x∈Sn−1

|‖Ax‖2 − µ| ≤
C

1− 2ε
· sup
x∈N
|‖Ax‖2 − µ| .

Hint: Assume that µ = 1 without loss of generality. Represent ‖Ax‖22−1 as a quadratic

form 〈Rx, x〉 where R = ATA − In. Use Exercise 4.3.3 to compute the maximum of this

quadratic form on a net.

4.3.2 The norms of sub-gaussian random matrices

We are ready for the first result on random matrices. It states that an m×n
random matrix A with independent sub-gaussian entries satisfies

‖A‖ .
√
m+

√
n

with high probability.
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Theorem 4.3.5 (Norm of matrices with sub-gaussian entries). Let A be
an m × n random matrix whose entries Aij are independent, mean zero,
sub-gaussian random variables. Then, for any t > 0 we have

‖A‖ ≤ CK
(√
m+

√
n+ t

)
with probability at least 1− 2 exp(−t2). Here K = maxi,j ‖Aij‖ψ2.

Proof. This proof is a good example of an ε-net argument. We need to
control 〈Ax, y〉 for all vectors x and y on the unit sphere. To this end, we
will discretize the sphere using a net (approximation step), establish a tight
control of 〈Ax, y〉 for fixed vectors x and y from the net (concentration step),
and finish by taking a union bound over all x and y in the net.

Step 1: Approximation. Choose ε = 1/4. Using Corollary 4.2.11, we
can find an ε-net N of the sphere Sn−1 and ε-net M of the sphere Sm−1

with cardinalities

|N | ≤ 9n and |M| ≤ 9m. (4.7)

By Exercise 4.3.3, the operator norm of A can be bounded using these nets
as follows:

‖A‖ ≤ 2 max
x∈N , y∈M

〈Ax, y〉 . (4.8)

Step 2: Concentration. Fix x ∈ N and y ∈ M. Then the quadratic
form

〈Ax, y〉 =
n∑
i=1

m∑
j=1

Aijxiyj

is a sum of independent, sub-gaussian random variables. Proposition 2.6.1
states that the sum is sub-gaussian, and

‖〈Ax, y〉‖2ψ2
≤ C

n∑
i=1

m∑
j=1

‖Aijxiyj‖2ψ2
≤ CK2

n∑
i=1

m∑
j=1

x2
i y

2
i

= CK2
( n∑
i=1

x2
i

)( m∑
j=1

y2
i

)
= CK2.

Recalling (2.15), we can restate this as the tail bound

P {〈Ax, y〉 ≥ u} ≤ 2 exp(−cu2/K2), u ≥ 0. (4.9)

Step 3: Union bound. Next, we will unfix x and y using a union
bound. Suppose the event maxx∈N , y∈M 〈Ax, y〉 ≥ u occurs. Then there
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exist x ∈ N and y ∈M such that 〈Ax, y〉 ≥ u. Thus the union bound yields

P
{

max
x∈N , y∈M

〈Ax, y〉 ≥ u
}
≤

∑
x∈N , y∈M

P {〈Ax, y〉 ≥ u} .

Using the tail bound (4.9) and the estimate (4.7) on the sizes of N andM,
we bound the probability above by

9n+m · 2 exp(−cu2/K2). (4.10)

Choose

u = CK(
√
n+
√
m+ t). (4.11)

Then u2 ≥ C2K2(n+m+ t), and if constant C is chosen sufficiently large,
the exponent in (4.10) is large enough, say cu2/K2 ≥ 3(n+m) + t2. Thus

P
{

max
x∈N , y∈M

〈Ax, y〉 ≥ u
}
≤ 9n+m · 2 exp

(
−3(n+m)− t2

)
≤ 2 exp(−t2).

Finally, combining this with (4.8), we conclude that

P {‖A‖ ≥ 2u} ≤ 2 exp(−t2).

Recalling our choice of u in (4.11), we complete the proof.

Optimality

Theorem 4.3.5 states that

‖A‖ .
√
m+

√
n (4.12)

with high probability. Is this bound optimal?

The operator norm of a matrix is always is bounded below by the norms
of any column and row, and in particular the first column and row. (Check!)
Suppose the entries of A have unit variances. Then, by Theorem 3.1.1, the
Euclidean norm of the first column of A is concentrated around

√
m, and the

Euclidean norm of the first row of A is concentrated around
√
n. Therefore

‖A‖ & max(
√
m,
√
n) ≥ 1

2
(
√
m+

√
n),

so the upper bound (4.12) has the optimal form.
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Symmetric matrices

Theorem 4.3.5 can be easily extended for symmetric matrices, and the bound
for them is

‖A‖ .
√
n

with high probability.

Corollary 4.3.6 (Norm of symmetric matrices with sub-gaussian entries).
Let A be an n×n symmetric random matrix whose entries Aij on and above
diagonal are independent, mean zero, sub-gaussian random variables. Then,
for any t > 0 we have

‖A‖ ≤ CK
(√
n+ t

)
with probability at least 1− 4 exp(−t2). Here K = maxi,j ‖Aij‖ψ2.

Proof. Decompose A into the upper-triangular part A+ and lower-triangular
part A−. It does not matter where the diagonal goes; let us include it into
A+ to be specific. Then

A = A+ +A−.

Theorem 4.3.5 applies for each part A+ and A− separately. By union bound,
we have simultaneously

‖A+‖ ≤ CK
(√
n+ t

)
and ‖A+‖ ≤ CK

(√
n+ t

)
with probability at least 1− 4 exp(−t2). Since by triangle inequality ‖A‖ ≤
‖A+‖+ ‖A−‖, the proof is complete.

4.4 Application: community detection in networks

We are going to illustrate Corollary 4.3.6 with an application to the analysis
of networks.

Real-world networks tend to have communities, or clusters, of tightly
connected vertices. Finding the communities accurately and efficiently is
one of the main problems in network analysis.

4.4.1 Stochastic Block Model

We will address this problem for a basic probabilistic model of a network
with two communities. It is a simple extension of the Erdös-Rényi model of
random graphs, which we described in Section 2.4.
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Definition 4.4.1 (Stochastic block model). Divide n vertices into two sets
(“communities”) of sizes n/2 each. Construct a random graph G by con-
necting every pair of vertices independently with probability p if they belong
to the same community and q if they belong to different communities. This
distribution on graphs is called the stochastic block model1 and is denoted
G(n, p, q).

In the partial case where p = q we obtain the Erdös-Rényi model G(n, p).
But we will assume that p > q here. In this case, edges are more likely to
occur within than across communities. This gives the network a community
structure; see Figure 4.4.

Figure 4.4: A random graph generated according to the stochastic block model
G(n, p, q).

4.4.2 Expected adjacency matrix

Consider a random graph G ∼ G(n, p, q). The adjacency matrix A of G is
defined as the n×n matrix with zero-one entries, thus Aij = 1 if the vertices
i and j are connected by an edge and Aij = 0 otherwise. The adjacency
matrix A of a random graph G is thus a random matrix, and we will examine
A using the tools we developed in this chapter.

It is enlightening to split A into deterministic and random parts,

A = D +R,

1The term stochastic block model can also refer a more general model of random graphs
with multiple communities of variable sizes.
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where D is the expectation of A. It is useful to think about D as an infor-
mative part (the “signal”) and R as a “noise”.

To see why D is informative, let us compute its eigenstructure. The
entries Aij are Ber(p) or Ber(q) depending on community membership of
vertices i and j. Thus the entries of D are either p or q, depending on the
membership. For illustration, if we group the vertices that belong to the
same community together, then for n = 4 the matrix D will look like this:

D = EA =


p p q q
p p q q

q q p p
q q p p


Exercise 4.4.2. The matrix D has rank 2. Check that the non-zero eigen-
values λi and the corresponding eigenvectors ui of D are

λ1 =
(p+ q

2

)
n, u1 =


1
1

1
1

 ; λ2 =
(p− q

2

)
n, u2 =


1
1

−1
−1

 . (4.13)

The important object here is the second eigenvector u2. It contains all
information about community structure. If we knew u2, we would identify
the communities precisely based on the sizes of coefficients of u2.

But we do not know D = EA and so we do not have access to u2.
Instead, we know A = D + R, a noisy version of D. The level of the signal
D is

‖D‖ = λ1 ∼ n
while the level of the noise R can be estimated using Corollary 4.3.6:

‖R‖ ≤ C
√
n with probability at least 1− 4e−n. (4.14)

So for large n, the signal to noise ratio is quite large, which should allow us
to use A+D instead of D to extract the community information. This can
be justified using the classical perturbation theory for matrices.

4.4.3 Perturbation theory

Perturbation theory describes how the eigenvalues and eigenvectors change
under matrix perturbations. For eigenvalues, a simple argument shows that
symmetric matrices S and T satisfy

max
i
|λi(S)− λi(T )| ≤ ‖S − T‖.
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Thus, operator norm of the perturbation controls the stability of spectrum.
A similar results holds for eigenvectors. We need to be careful to track

the same eigenvector before and after perturbation. If the eigenvalues λi(S)
and λi+1(S) are too close to each other, the perturbation can swap their
order and force us to compare wrong eigenvectors. To prevent this from
happening, we need to assume that eigenvalues of S are well separated.

Check!
Theorem 4.4.3 (Davis-Kahan). Let S and T be symmetric matrices with
the same dimensions. Fix i and assume that the i-th largest eigenvalue of S
is well separated from the rest of the spectrum:

min (|λi(S)− λj(S)| : j 6= i) = δ > 0.

Then the angle between the eigenvectors of S and T corresponding to the
i-th largest eigenvalues (as a number between 0 and π/2) satisfies

sin∠ (vi(S), vi(T )) ≤ C‖S − T‖
δ

.

In particular, the conclusion of Davis-Kahan Theorem implies that if
the eigenvectors vi(S) and vi(T ) have unit norm, then they are close to each
other (up to a sign):

∃θ ∈ {−1, 1} : ‖vi(S)− θvi(T )‖2 ≤
C‖S − T‖

δ
. (4.15)

4.4.4 Spectral Clustering

Let us apply Davis-Kahan Theorem for S = D and T = A = D+R, and for
the second largest eigenvalue. We need to check that λ2 is well separated
from the rest of the spectrum of D, that is from 0 and λ1. The distance is

δ = min(λ2, λ1 − λ2) = min

(
p− q

2
, q

)
n =: µn.

Recalling the bound (4.14) on R = T −S and applying (4.15), we can bound
the distance between the normalized eigenvectors of D and A. There exists
a sign θ ∈ {−1, 1} such that

‖v2(D)− v2(A)‖2 ≤
C
√
n

µn
=

C

µ
√
n

with probability at least 1 − 4e−n. We computed the eigenvectors of D in
(4.13), but there they had norm

√
n. So, multiplying both sides by

√
n, we
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obtain in this normalization that

‖u2(D)− θu2(A)‖2 ≤
C

µ
.

It follows from this that that the signs of most coefficients of θv2(A) and
v2(D) must agree. Indeed, we know that

n∑
j=1

|u2(D)j − θu2(A)j |2 ≤
C

µ2
. (4.16)

and we also know from (4.13) that the coefficients u2(D)j are all ±1. So,
every coefficient j on which the signs of θv2(A)j and v2(D)j disagree con-
tributes at least 1 to the sum in (4.16). Thus the number of disagreeing
signs must be bounded by

C

µ2
.

Summarizing, we can use the vector v2(A) that can be computed from
the network to accurately estimate the vector v2 = v2(D) in (4.13), whose
signs identify the two communities. This method for community detection
is usually called em spectral clustering. Let us explicitly state this method
and the guarantees that we just obtained.

Spectral Clustering Algorithm

Input: graph G
Output: a partition of the vertices of G into two communities

1: Compute the adjacency matrix A of the graph.
2: Compute the eigenvector v2(A) corresponding to the second largest

eigenvalue of A.
3: Partition the vertices into two communities based on the signs of the

coefficients of v2(A). (To be specific, if v2(A)j > 0 put vertex j into first
community, otherwise in the second.)

Theorem 4.4.4 (Spectral clustering of the stochastic block model). Let
G ∼ G(n, p, q) with p > q, and min(q, p− q) = µ > 0. Then, with probability
at least 1− 4e−n, the Spectral Clustering Algorithm identifies the communi-
ties of G correctly up to C/µ2 misclassified vertices.

Summarizing, the Spectral Clustering correctly classifies all but a con-
stant number of vertices, provided the random graph is dense enough (q ≥
const) and the probabilities of within- and across-community edges are well
separated (p− q ≥ const).
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4.5 Two-sided bounds on sub-gaussian matrices

Let us return to Theorem 4.3.5, which gives an upper bound on the spectrum
of an n×m matrix A with independent sub-gaussian entries:

s1(A) ≤ C(
√
m+

√
n)

with high probability. We will now improve this result in two important
ways.

First, we are going to prove sharper, two-sided bounds on the entire
spectrum of A: √

m− C
√
n ≤ si(A) ≤

√
m+ C

√
n.

Thus a tall random matrix (with m� n) is an approximate isometry in the
sense of Section 4.1.4.

Second, the independence of entries is going to be relaxed to just inde-
pendence of rows. We will still require sub-gaussian tails, so this time we
assume that the rows are sub-gaussian random vectors. (Ee studied such
vectors in Section 3.4). This relaxation of independence is important in some
applications to data sciences, in particular where the rows of A are samples
from a high-dimensional distribution. The samples are usually independent,
and so are the rows of A. But there is no reason to assume independence of
columns of A, since the coordinates of the distribution (the “parameters”)
are not usually independent.

Theorem 4.5.1 (Two-sided bound on sub-gaussian matrices). Let A be
an m × n matrix whose rows Ai are independent, mean zero, sub-gaussian
isotropic random vectors in Rn. Then for any t ≥ 0 we have

√
m− CK2(

√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t) (4.17)

with probability at least 1− 2 exp(−t2). Here K = maxi ‖Ai‖ψ2.

Before we prove this theorem, let us note that by Lemma 4.1.2, we can
equivalently restate the conclusion (4.17) in the following form:∥∥∥ 1

m
ATA− In

∥∥∥ ≤ max(δ, δ2) where δ = CK2
(√ n

m
+

t√
m

)
. (4.18)

Proof. We will prove (4.18) using an ε-net argument. This will be similar to
the proof of Theorem 4.3.5, but we will now use Bernstein’s concentration
inequality instead of Hoeffding’s.
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Step 1: Approximation. Using Corollary 4.2.11, we can find an 1
4 -net

N of the unit sphere Sn−1 with cardinality

|N | ≤ 9n.

Using Lemma 4.3.1, we can evaluate the operator norm in (4.18) on the N :∥∥∥ 1

m
A∗A− Im

∥∥∥ ≤ 2 max
x∈N

∣∣∣ 〈( 1

m
A∗A− I

)
x, x

〉 ∣∣∣ = 2 max
x∈N

∣∣∣ 1

m
‖Ax‖22 − 1

∣∣∣.
To complete the proof of (4.18) it suffices to show that, with the required
probability,

max
x∈N

∣∣∣ 1

m
‖Ax‖22 − 1

∣∣∣ ≤ ε

2
where ε := max(δ, δ2).

Step 2: Concentration. Fix x ∈ Sn−1 and express ‖Ax‖22 as a sum of
independent random variables:

‖Ax‖22 =

m∑
i=1

〈Ai, x〉2 =:

m∑
i=1

X2
i (4.19)

whereAi denote the rows ofA. By assumption, Ai are independent, isotropic,
and sub-gaussian random vectors with ‖Ai‖ψ2 ≤ K. Thus Xi = 〈Ai, x〉 are
independent sub-gaussian random variables with EX2

i = 1 and ‖Xi‖ψ2 ≤ K.
Therefore X2

i − 1 are independent, mean zero, and sub-exponential random
variables with

‖X2
i − 1‖ψ1 ≤ CK2.

(Check this; we did a similar computation in the proof of Theorem 3.1.1.)
Thus we can use Bernstein’s inequality (Corollary 2.8.4) and obtain

P
{∣∣∣ 1

m
‖Ax‖22 − 1

∣∣∣ ≥ ε

2

}
= P

{∣∣∣ 1

m

m∑
i=1

X2
i − 1

∣∣∣ ≥ ε

2

}
≤ 2 exp

[
− c1

K4
min(ε2, ε)m

]
= 2 exp

[
− c1

K4
δ2m

]
(since ε = max(δ, δ2))

≤ 2 exp
[
− c1C

2(n+ t2)
]
.

The last bound follows from the definition of δ in (4.18) and using the
inequality (a+ b)2 ≥ a2 + b2 for a, b ≥ 0.
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Step 3: Union bound. Now we can unfix x ∈ N using a union bound.
Recalling that N has cardinality bounded by 9n, we obtain

P
{

max
x∈N

∣∣ 1

N
‖Ax‖22 − 1

∣∣ ≥ ε

2

}
≤ 9n · 2 exp

[
− c1C

2(n+ t2)
]
≤ 2 exp(−t2)

if we chose absolute constant C in (4.18) large enough. As we noted in
Step 1, this completes the proof of the theorem.

Exercise 4.5.2. [Difficulty=6] Give a simpler proof of Theorem 4.5.1, using
Theorem 3.1.1 to obtain a concentration bound for ‖Ax‖2 and Exercise 4.3.4
to reduce to a union bound over a net.

Let us emphasize the alternative form (4.18) of Theorem 4.5.1, which is
important on its own. Replacing there t with t

√
n and assuming that t ≥ 1,

we can restate it as follows:∥∥∥ 1

m
ATA− In

∥∥∥ ≤ max(δ, δ2) where δ = CK2t

√
n

m
(4.20)

with probability at least 1− 2 exp(−t2n).

Exercise 4.5.3 (Non-isotropic distributions). [Difficulty=7] Prove the fol-
lowing version of (4.20) for non-isotropic distributions. Let A be an m× n
matrix whose rows Ai are independent, mean zero, sub-gaussian random
vectors in Rn with the same covariance matrix

Σ = EAiAT
i .

Then for any t ≥ 0 we have∥∥∥ 1

m
ATA− Σ

∥∥∥ ≤ max(δ, δ2) where δ = CLt

√
n

m

with probability at least 1 − 2 exp(−t2n). Here L = max(K,K2) and K =
maxi ‖Ai‖ψ2.Check!

4.6 Application: covariance estimation and clus-
tering

Suppose we are analyzing high dimensional data, which is represented as
points X1, . . . , Xm sampled from an unknown distribution in Rn. The most
basic method is Principal Component Analysis (PCA), which we discussed
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briefly in Section 3.2.1. The goal of PCA is to identify the principal compo-
nents the eigenvectors of the covariance matrix of the distribution.

Since we do not have access to the full distribution but only to the finite
sample {X1, . . . , Xm}, we can only expect to compute the covariance matrix
and its eigenvectors approximately. How can we do this? Let X denote
the random vector drawn from the (unknown) distribution. Assume for
simplicity that X have zero mean, and let us denote the covariance matrix

Σ = EXXT.

To estimate Σ, we can use the sample covariance matrix Σm that is computed
from the sample X1, . . . , Xm as follows:

Σm =
1

m

m∑
i=1

XiX
T
i .

(Basically, we replace the expectation over the entire distribution by expec-
tation over the sample.)

Since Xi and X are identically distributed, our estimate is unbiased,
that is

EΣm = Σ.

Moreover, by the Law of Large Numbers (Theorem 1.3.1),

Σm → Σ almost surely

as the sample size m increases to infinity. (Justify that we can apply the
Law of Larde Numbers to matrices.)

This leads to the quantitative question: how many sample points m are
needed to guarantee that

Σm ≈ Σ

with high probability? For dimension reasons, we need at least m & n
sample points. (Why?) And we will now show that m ∼ n sample points
suffice.

Theorem 4.6.1 (Covariance estimation). Consider a sub-gaussian random
vector X in Rn with zero mean and covariance matrix Σ, and let ε ∈ (0, 1)
and t ≥ 1. Suppose the sample size satisfies

m ≥ CK4(t/ε)2n.

Then the sample covariance matrix Σm satisfies

‖Σm − Σ‖ ≤ ε

with probability at least 1− 2 exp(−t2n). Here K = ‖X‖ψ2.
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Proof. Consider the m× n matrix A whose rows are the sample points XT
i .

Then the sample covariance matrix Σ can be represented as

Σm =
m∑
i=1

XiX
T
i =

1

m
ATA.

So we can apply the non-isotropic form of Theorem 4.5.1 stated in Exer-
cise 4.5.3 to bound the error ‖Σm −Σ‖. Setting the error bound max(δ, δ2)
to ε and solving for m, we complete the proof.

Let us emphasize the meaning of this result. The covariance matrix can
be estimated accurately by the sample covariance matrix, if the size of the
sample m is proportional to the dimension n.

4.6.1 Application: clustering of point sets

We are going to illustrate Theorem 4.6.1 with an application to clustering.
The problem here will be similar to the community detection problem we
studied in Section 4.4. Like before, we will try to partition data into clusters,
but the nature of data will be different. Instead of networks, we will now be
working with point sets in Rn. The general goal is to partition the points
into few subsets (“clusters”). What exactly constitutes cluster is not well
defined in data sciences. But the common sense suggests that the points in
the same cluster should tend to be closer to each other than points taken
from different clusters.

Just like we did for networks, we will design a basic probabilistic model
of point sets in Rn with two communities, and we will study the clustering
problem for that model.

Definition 4.6.2 (Gaussian mixture model). Generate m random points in
Rn as follows. Flip a fair coin. If we get heads, draw a point from N(µ, In),
and if we get tails, from N(−µ, In). We call this a Gaussian mixture model
with means µ and −µ.

Equivalently, we may consider a random vector

X = θµ+ g

where θ is a symmetric Bernoulli random variable, g ∈ N(0, In), and θ and g
are independent. Draw a sample X1, . . . , Xm of independent random vectors
identically distributed with X. Then the sample is distributed according to
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Figure 4.5: A simulation of points generated according to the Gaussian mixture
model, which has two clusters with different means.

the Gaussian mixture model. Figure 4.5 illustrates a simulation of Gaussian
mixture model.

A basic clustering method, called spectral clustering, is based on the
Principal Component Analysis (PCA) of the data, which we outlined in
Section 3.2.1. The distribution of X is not isotropic; it is stretched in the
direction of µ. The first principal component of the data should also be close
to µ, and thus one should be able classify the data points by projecting them
onto that first principal component. This is formalized in the following basic
clustering algorithm.

Spectral Clustering Algorithm

Input: points X1, . . . , Xm in Rn
Output: a partition of the points into two clusters

1: Compute the sample covariance matrix Σm = 1
m

∑m
i=1XiX

T
i .

2: Compute the eigenvector v = v1(Σm) corresponding to the largest eigen-
value of Σm.

3: Partition the vertices into two communities based on the signs of the
inner product of v with the data points. (To be specific, if 〈v,Xi〉 > 0
put point Xi into first community, otherwise in the second.)

Theorem 4.6.3 (Spectral clustering of the Gaussian mixture model). Let
X1, . . . , Xm be points in Rn drawn from the Gaussian mixture model as
above, i.e. there are two communities with means µ and −µ, and let ε, t > 0.
Suppose the sample size satisfies

m ≥ poly
(
n,

1

ε
,

1

‖µ‖2

)
.

Then, with probability at least 1 − 4e−n, the Spectral Clustering Algorithm
identifies the communities correctly up to εm misclassified vertices. Correct the statement: ε

should depend on µ.
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Exercise 4.6.4. [Difficulty=8] Prove Theorem 4.6.3 along the following
lines.

1. Compute the covariance matrix Σ of X and note that the eigenvector
corresponding to the largest eigenvalue is parallel to µ.

2. Use results about covariance estimation (such as Exercise 4.5.3) to
show that the sample covariance matrix Σm is close to Σ.

3. Use Davis-Kahan Theorem 4.4.3 to deduce that the eigenvector v =
v1(Σm) is close to µ.

4. Conclude that the signs of 〈µ,Xi〉 predict well which community Xi

belongs to.
5. Since v ≈ µ, conclude the same for v.



Chapter 5

Concentration without
independence

Our approach to concentration was crucially based on independence of ran-
dom variables. This was clearly the case for sums of independent random
variables we studied in Chapter 2; our later results were based on con-
centration for these sums. We will now develop alternative approaches to
concentration that are not based on independence.

5.1 Concentration of Lipschitz functions on the
sphere

Consider a Gaussian random vector X ∼ N(0, In) and a function f : Rn →
R. When does the random vector f(X) concentrate about its mean, i.e.

f(X) ≈ E f(X) with high probability?

This question is easy for linear functions f . Indeed, in this case f(X) has
normal distribution, and it concentrates around its mean well.

In this section, we will study concentration of non-linear functions f(X)
of random vectors X ∼ Unif(Sn−1) and X ∼ N(0, In). While we can
not expect concentration for completely arbitrary f (why?), the Lipschitz
requirement for f will be enough.

5.1.1 Lipschitz functions

Definition 5.1.1 (Lipschitz functions). Let (X, dX) and (Y, dY ) be metric
spaces. A function f : X → Y is called Lipschitz if there exists L ∈ R such

83
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that

dX(f(u), f(v)) ≤ dY (u, v) for every u, v ∈ X.

The infimum of all L in this definition is called the Lipschitz norm of f and
is denoted ‖f‖Lip.

Lipschitz functions with ‖f‖Lip ≤ 1 are usually called contractions.

Exercise 5.1.2. 1. f(x) = |x| is a Lipschitz a function on R, while f(x) =√
x and f(x) = x2 are not.

2. f(x) = ‖x‖2 is a Lipschitz function on Rn, and ‖f‖Lip = 1.

3. Every differentiable function f : Rn → R is Lipschitz, and

‖f‖Lip ≤ ‖∇f‖∞.

4. For a fixed θ ∈ Rn, the linear functional f(x) = 〈x, θ〉 is a Lipschitz
function on Rn, and ‖f‖Lip = ‖θ‖2.

5. More generally, an m×n matrix A acting as a linear operator between
A : (Rn, ‖ · ‖2)→ (Rm, ‖ · ‖2) is Lipschitz, and

‖A‖Lip = ‖A‖.

6. Any norm f(x) = ‖x‖ on Rn is a Lipschitz function. The Lipschitz
norm of f is the smallest L such that

‖x‖ ≤ L‖x‖2 for all x ∈ Rn.

5.1.2 Concentration via isoperimetric inequalities

The main result of this section is that any Lipschitz function on the sphere
concentrates well.

Theorem 5.1.3 (Concentration of Lipschitz functions on the sphere). Con-
sider a random vector X ∼ Unif(

√
nSn−1) and a Lipschitz function1 f :√

nSn−1 → R. Then

‖f(X)− E f(X)‖ψ2
≤ C‖f‖Lip.

1This theorem is valid for both the geodesic metric on the sphere (where d(x, y) is the
length of the shortest arc connecting x and y) and the Euclidean metric d(x, y) = ‖x−y‖2.
We will prove the theorem for the Euclidean metric; Exercise ?? extends it to geodesic
metric.
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Equivalently, Theorem 5.1.3 states that for every t ≥ 0, we have

P {|f(X)− E f(X)| ≥ t} ≤ 2 exp
(
− ct2

‖f‖2Lip

)
We already know that Theorem 5.1.3 holds for linear functions. Indeed,

Theorem 3.4.5 states that X ∼ Unif(
√
nSn−1) is a sub-gaussian random

vector. By definition, this means that any linear function of X is a sub-
gaussian random variable.

To prove Theorem 5.1.3 in full generality, we will argue that non-linear
functions must concentrate at least as good as linear functions. To compare
non-linear to linear functions, it is enough to compare their sub-level sets:
arbitrary sets on the sphere and the spherical caps. Such comparison will
be based on a geometric principle called isoperimetric inequality.

The classical isoperimetric inequality in R3 (and also in Rn) states that
among all sets with given volume, the area is minimal for the Euclidean balls.
A similar isoperimetric inequality holds on the sphere, and the minimizers
are the spherical caps. To state it carefully, we will denote the normalized
area (n−1-dimensional Lebesgue measure) on the sphere Sn−1 by σn−1. An
ε-neighborhood of a set A ⊂ Sn−1 is defined as

Aε :=
{
x ∈ Sn−1 : ∃y ∈ A, ‖x− y‖2 ≤ ε

}
= (A+ εBn

2 ) ∩ Sn−1. (5.1)

Here we used the notation for Minkowski sum introduced in Definintion 4.2.9.
Figure 5.1 illustrates the ε-neighborhood of A. The perimeter of A is the

Figure 5.1: The points that are within Euclidean distance ε from a given set A on
the sphere Sn−1 form the ε-neighborhood Aε.

(n− 2)-dimensional area of boundary ∂A, and it can be defined as

Area(∂A) := lim
ε→0

σn−1(Aε)− σn−1(A)

ε
.
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Theorem 5.1.4 (Isoperimetric inequality on the sphere). 1. Let ε > 0.
Then, among all sets A ⊂ Sn−1 with fixed area σn−1(A), the spherical caps
minimize the area of the neighborhood σn−1(Aε).

2. Among all sets A ⊂ Sn−1 with fixed area σn−1(A), the spherical caps
minimize the perimeter Area(∂A).

We will not prove this theorem but just note that Part 2 follows from
part 1 by letting ε→ 0. (Check!)Refer

5.1.3 Blow-up of sets on the sphere

Now we will deduce form isoperimetric a statement that may sound counter-
intuitive. If A makes up at least half of the sphere (in terms of volume) then
Aε will make up most of the sphere. This fact nevertheless is simple to
check for a hemisphere, and then extend to general sets using isoperimetric
inequality. In view of Theorem 5.1.3, it will be convenient to work with the
sphere that is scaled by the factor

√
n.

Lemma 5.1.5 (Blow-up of neighborhoods on the sphere). Let A be a subset
of the sphere

√
nSn−1, and let σ denote the normalized area on that sphere.

If σ(A) ≥ 1/2 then, for every t ≥ 0,

σ(At) ≥ 1− 2 exp(−ct2).

Proof. Consider the hemisphere

H :=
{
x ∈
√
nSn−1 : x1 ≤ 0

}
.

Then σ(A) ≥ σ(H) = 1/2, and the isoperimetric inequality (Theorem 5.1.4)
implies that

σ(At) ≥ σ(Ht). (5.2)

The set Ht is a spherical cap, and it should be easy to compute its area.
It is even easier to use Theorem 3.4.5 instead, which states a random vector

X ∼ Unif(
√
nSn−1)

is sub-gaussian, and ‖X‖ψ2 ≤ C. Since σ is the uniform probability measure
on the sphere, it follows that

σ(Ht) = P {X ∈ Ht} .

Now, the definition of the neighborhood (5.1) implies that

Ht ⊃
{
x ∈
√
nSn−1 : x1 ≤

√
2t
}
.
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(Check this!) Thus

σ(Ht) ≥ P
{
X1 ≤

√
2t
}
≥ 1− 2 exp(−ct2).

The last inequality holds because ‖X1‖ψ2 ≤ ‖X‖ψ2 ≤ C. In view of (5.2),
the lemma is proved.

5.1.4 Proof of Theorem 5.1.3

Without loss of generality, we can assume that ‖f‖Lip = 1. (Why?) Let M
denote a median of f(X), which by definition is a number satisfying2

P {f(X) ≤M} ≥ 1

2
and P {f(X) ≥M} ≥ 1

2
.

Consider the sub-level set

A :=
{
x ∈
√
nSn−1 : f(x) ≤M

}
.

Since P {X ∈ A} ≥ 1/2, Lemma 5.1.5 implies that

P {X ∈ At} ≥ 1− 2 exp(−ct2). (5.3)

On the other hand, we claim that

P {X ∈ At} ≤ P {f(X) ≤M + t} . (5.4)

Indeed, if X ∈ At then ‖X − y‖2 ≤ t for some point y ∈ A. By definition,
f(y) ≤M . Since f Lipschitz with ‖f‖Lip = 1, it follows that

f(X) ≤ f(y) + ‖X − y‖2 ≤M + t.

This proves our claim (5.4).
Combining (5.3) and (5.4), we conclude that

P {f(X) ≤M + t} ≥ 1− 2 exp(−ct2).

Repeating the argument for −f , we obtain a similar bound for the proba-
bility that f(X) ≥ M − t. Combining the two, we obtain a similar bound
for the probability that |f(X)−M | ≤ t, showing that

‖f(X)−M‖ψ2 ≤ C.

It remains to replace the median M by the expectation E f . This can be
done automatically by applying the Centering Lemma 2.6.6. (Do this!) The
proof of Theorem 5.1.3 is now complete.

2The median may not be unique. However, for continuous and one-to-one functions f ,
the median is unique. (Check!)
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Exercise 5.1.6 (Geodesic metric). [Difficulty=4] We proved Theorem 5.1.3
for functions f that are Lipschitz with respect to the Euclidean metric ‖x−
y‖2 on the sphere. Argue that the same result holds for the geodesic metric,
which is the length of the shortest arc connecting x and y.

Exercise 5.1.7 (Concentration on the unit sphere). [Difficulty=7] We stated
Theorem 5.1.3 for the scaled sphere

√
nSn−1. Deduce that a Lipschitz func-

tion f on the unit sphere Sn−1 satisfies

‖f(X)− E f(X)‖ψ2
≤
C‖f‖Lip√

n
. (5.5)

where X ∼ Unif(Sn−1). Equivalently, for every t ≥ 0, we have

P {|f(X)− E f(X)| ≥ t} ≤ 2 exp
(
− cnt2

‖f‖2Lip

)
(5.6)

Exercise 5.1.8 (Exponential set of mutually almost orthogonal points).
Fix ε ∈ (0, 1). Show that there exists a set {x1, . . . , xN} of unit vectors in
Rn which are mutually almost orthogonal:

| 〈xi, xj〉 | ≤ ε for all i 6= j,

and the set is exponentially large in n:

N ≥ exp (c(ε)n) .

Hint: Construct the points xi ∈ Sn−1 one at a time. Note that the set of points on the

sphere that are almost orthogonal with a given point x0 form a spherical cap. Show that

the normalized area of that cap is exponentially small.

5.2 Concentration on other metric measure spaces

In this section, we will extend the concentration for the sphere to other
spaces. To do this, note that our proof of Theorem 5.1.3. was based on two
main ingredients:

(a) an isoperimetric inequality;
(b) a blow-up of the minimizers for the isoperimetric inequality.
The sphere is not the only space where these two ingredients are in

place. In this section, we will briefly survey several other metric measure
spaces where (a) and (b) can be shown, and thus concentration of Lipschitz
functions almost automatically follows.
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5.2.1 Gauss space

Theorem 5.1.3 can be proved for the normal random vector X ∼ N(0, In).

Theorem 5.2.1 (Concentration on the Gauss space). Consider a random
vector X ∼ N(0, In) and a Lipschitz function f : Rn → R (with respect to
the Euclidean metric). Then

‖f(X)− E f(X)‖ψ2
≤ C‖f‖Lip. (5.7)

The proof is similar to Theorem 5.1.3, and it is based on the following
isoperimetric inequality in the Gauss space3 (Rn, ‖ · ‖2, γn).

Theorem 5.2.2 (Isoperimetric inequality on the Gauss space). Let ε > 0.
Then, among all sets A ⊂ Rn with fixed Gaussian measure γn(A), the half
spaces minimize the area of the neighborhood γn(Aε).

Exercise 5.2.3. [Difficulty=4] Deduce Theorem 5.2.1. Hint: The ε-neighborhood

of a half-space is still a half-space, and its Gaussian measure should be easy to compute.

Remark 5.2.4. We came across two partial cases of Theorem 5.2.1 before.
1. For linear functions f , concentration follows from the fact the normal

distribution N(0, In) is sub-gaussian.
2. For the Euclidean norm f(x) = ‖x‖2, concentration follows from

Theorem 3.1.1.

Exercise 5.2.5 (Replacing expectation by Lp norm). [Difficulty=5] Prove
that in the concentration results for sphere and Gauss space (Theorems 5.1.3

and 5.2.1), the expectation E f(X) can be replaced by the Lp norm (E fp)1/p

for any p > 0 and for any non-negative function f . The constants may
depend on p.

5.2.2 Discrete cube

A similar method based on isoperimetry yields concentration on many other
metric measure spaces. One of them is the discrete cube

({0, 1}n, d,P) .

Here d(x, y) is the Hamming distance , which is defined for binary strings
x, y ∈ {0, 1}n as the fraction of the digits where x and y disagree:

d(x, y) =
1

n
|{i : xi 6= yi}| .

3Here the measure γn has the standard normal density (3.3).
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The measure P is the uniform probability measure on the discrete cube. So,
the coordinates of the random vector

X ∼ Unif ({0, 1}n)

are independent Ber(1/2) random variables.
The concentration inequality for the discrete cube states that

‖f(X)− E f(X)‖ψ2 ≤
C‖f‖Lip√

n
(5.8)

for any function f : {0, 1}n → R, see [4, Section 6.2]. This result can be
deduced from the isoperimetric inequality on the cube, whose minimizers
are known to be the Hamming cubes – the neighborhoods of single points
with respect to the Hamming distance.

5.2.3 Symmetric group

The permutation group Sn consists of permutations of n symbols, which we
choose to be {1, . . . , n} to be specific. We can view the symmetric group as
a metric measure space

(Sn, d,P).

Here d(π, ρ) is the Hamming distance – the fraction of the symbols where
the permutations π and ρ disagree:

d(π, ρ) =
1

n
|{i : π(i) 6= ρ(i)}| .

The measure P is the uniform probability measure on Sn.
Then concentration inequality (5.8) holds for any function f : Sn → R,

see [4, Section 6.3].

5.2.4 Riemanian manifolds with strictly positive curvature

In addition of arguments based on isoperimetry, there are several other meth-
ods to prove concentration of Lipschitz functions. For a thorough treatment
of this topic, we refer the reader to the books [2, 1, 4, 3]; here we will briefly
survey some of these results.

A very general class of examples is covered by the notion of a Riemannian
manifold. We refer the reader to ... for necessary background in differentialRefer
geometry, and here we will just mention a relevant concentration result.

Let (M, g) be a compact connected smooth Riemannian manifold. The
canonical distance d(x, y) on M is defined as the the arclength (with respect
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to the Riemmanian tensor g) of a minimizing geodesic connecting x and y.
The Riemannian manifold can be viewed as a metric measure space

(M,d,P)

where P = dv
V is the probability measure on M obtained from the Riemann

volume element dv by normalization (here V is the total volume of M).
Let c(M) denote the infimum of the Ricci curvature tensor over all tan-

gent vectors. Assuming that c(M) > 0, it can be proved that

‖f(X)− E f(X)‖ψ2 ≤
C‖f‖Lip√
c(M)

(5.9)

for any Lipschitz function f : M → R. This concentration inequality can be
proved by semigroup tools, see [2, Section 2.3].

To give an example, it is known that c(Sn−1) = n− 1. Thus (5.9) gives
an alternative approach to proving the concentration inequality (5.5) for the
sphere Sn−1. We will give several other examples next.

5.2.5 Special orthogonal group

The special orthogonal group SO(n) consists of all distance preserving lin-
ear transformations on Rn. Equivalently, the elements of SO(n) are n × n
orthogonal matrices whose determinant equals 1. We will view the special
orthogonal group as a metric measure space

(SO(n), ‖ · ‖F ,P) ,

where the distance is the Frobenius norm ‖A−B‖F (see Section 4.1.3) and
P is the uniform probability measure on SO(n).

Technically, P is the Haar measure on SO(n) – the unique probability
measure that is invariant under the action on the group;4 see ... . This Cite
measure allows us to talk about random orthogonal matrices

X ∼ Unif(SO(n))

and discuss concentration inequalities for f(X) where f is a Lipschitz func-
tion on SO(n).

Alternatively, a random orthogonal matrix U ∼ Unif(SO(n)) (and thus
the Haar measure on the special orthogonal group) can be constructed by

4A measure µ on SO(n) is rotation invariant if for any measurable set E ⊂ SO(n) and
any T ∈ SO(n), one has µ(E) = µ(T (E)).
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computing the singular value decomposition G = UGV T of a random Gaus-
sian matrix G with i.i.d. N(0, 1) entries. (Why? Check rotation invariance.)

The concentration inequality (5.8) holds for for any Lipschitz function
f : SO(n)→ R, see [4, Section 6.5.1]. This result follows from concentration
on general Riemannian manifolds discussed in Section 5.2.4.

5.2.6 Grassmann manifold

The Grassmann manifold Gn,m consists of all m-dimensional subspaces of
Rn. In the special case where m = 1, the Grassman manifold can be iden-
tified with the sphere Sn−1 (how?), so the result below will generalize con-
centration on the sphere.

We can view the Grassmann manifold as a metric measure space

(Gn,m, d,P).

The distance between subspaces E and F can be defined as the operator
norm

d(E,F ) = ‖PE − PF ‖

where PE and PF are the orthogonal projections onto E and F , respectively.

The probability P is, like before, the uniform (Haar) probability measure
on Gn,m. This measure allows us to talk about random m-dimensional
subspaces of Rn

E ∼ Unif(Gn,m),

and discuss concentration inequalities for f(E) where f is a Lipschitz func-
tion on Gn,m.

Alternatively, a random subspace E ∼ Unif(Gn,m), and thus the Haar
measure on the Grassmann manifold, can be constructed by computing the
column span (i.e. the image) of a random n ×m Gaussian random matrix
G with i.i.d. N(0, 1) entries. (Why? Check rotation invariance.)

The concentration inequality (5.8) holds for for any Lipschitz function f :
Gn,m → R, see [4, Section 6.7.2]. This result can be deduced from concentra-
tion on the special orthogonal group discussed in Section 5.2.5. Indeed, one
expresses Grassmann manifold as a quotient Gn,k = SO(n)/(SOm×SOn−m)
and note that concentration passes on to quotients, see [4, Section 6.6].

Exercise 5.2.6. State and prove a concentration inequality for Lipschitz
functions on the set of all n×m matrices with orthonormal columns.
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5.2.7 Euclidean ball

The same concentration inequality (5.5) that holds for the unit Euclidean
sphere Sn−1 also holds for the unit Euclidean ball

(Bn
2 , ‖ · ‖2,P)

equipped with the uniform probability measure. This can be deduced from
concentration in Gauss space, see [2, Proposition 2.9]. Exercise?

5.2.8 Continuous cube

Consider the continuous cube

([0, 1]n, ‖ · ‖2,P)

as a metric measure space, equipped with the Euclidean distance and the
uniform probability measure. Thus the coordinates of a random vector

X ∼ Unif ([0, 1]n)

are independent random variables uniformly distributed in the interval [0, 1].
Then concentration inequality (5.7) holds for any Lipschitz function f :

[0, 1]n → R. This result can be deduced from concentration in Gauss space,
see [2, Proposition 2.8]. Exercise?

Other than for Euclidean balls and cubes, sub-gaussian concentration
inequalities hold for many other convex bodies, but not all of them. (A unit
ball in `1 norm is a counterexample.) A weaker sub-exponential concentra-
tion can be proved for general convex bodies using C. Borell’s inequality, see
[4, Section III.3].

5.2.9 Densities e−U(x)

Concentration inequality for Gaussian distribution we proved in Theorem 5.2.1
can be extended for distributions more general densities. Let X be a random
vector in Rn whose density has the form

f(x) = e−U(x), x ∈ Rn,

for some function U : Rn → R. As an example, if X ∼ N(0, In) then the
normal density (3.3) gives

U(x) = ‖x‖22 + c
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where c is a constant (that depends on n but not x).
Suppose U has curvature like ‖x‖22 or better. More rigorously, we require

that the Hessian of U be lower bounded on all of the space. So, suppose
there exists κ > 0 such that

HessU(x) � κIn for all x ∈ Rn.

Then the concentration inequality

‖f(X)− E f(X)‖ψ2 ≤
C‖f‖Lip√

κ

for any Lipschitz function f : Rn → R.
Note a similarity of this result with the concentration inequality (5.9) for

Riemannian manifolds. Both of them can be proved using semigroup tools
[2, Proposition 2.18].

5.2.10 Random vectors with independent bounded coordi-
nates

In Section 5.2.8, we mentioned a concentration inequality for random vec-
tors X = (X1, . . . , Xn) whose coordinates are independent random variables
uniformly distributed in [0, 1]. We may wonder if this can be extended from
uniform to more general distributions.

This indeed can be done. Suppose the coordinates of X = (X1, . . . , Xn)
are independent bounded random variables; to be specific, assume that

|Xi| ≤ 1 almost surely for every i.

Then concentration inequality (5.7) holds for any convex Lipschitz function
f : [0, 1]n → R. In particular, this holds for any norm on Rn. This result is
due to M. Talagrand; see [2, Corollary 4.10].

5.2.11 Bounded differences inequality?
Write

5.3 Application: Johnson-Lindenstrauss Lemma

Suppose we have N data points in Rn where n is very large. We would like
to reduce dimension of the data without sacrificing too much of its geometry.
The simplest form of dimension reduction is to project the data points onto
a low-dimensional subspace

E ⊂ Rn, dim(E) := m� n,
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see Figure ?? for illustration. How shall we choose the subspace E, and how
small its dimension m can be?

Figure 5.2: In Johnson-Lindenstrauss Lemma, the dimension of the data is reduced
by projection onto a random low-dimensional subspace.

Johnson-Lindenstrauss Lemma states that the geometry of data is well
preserved if we choose E to be a random subspace of dimension

m ∼ logN.

We already came across the notion of a random subspace in Section ??..
Let us recall it here. The Grassmann manifold Gn,m is the set of all m-
dimensional subspaces in Rn. It is equipped with Haar measure , which
is the unique rotation-invariant5 probability measure on Gn,m. This mea-
sure allows us to talk about random m-dimensional subspaces uniformly
distributed in the Grassman manifold

E ∼ Unif(Gn,m).

Theorem 5.3.1 (Johnson-Lindenstrauss Lemma). Let X be a set of N
points in Rn and ε > 0. Assume that

m ≥ (C/ε2) logN.

Consider a random m-dimensional subspace E in Rn uniformly distributed in
Gn,m. Denote the orthogonal projection onto E by P . Then, with probability

5Rotation invariance means that for any measurable set E ∈ Gn,m and any orthogonal
matrix U ∈ O(n), the set U(E) has the same measure as E .
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at least 1− 2 exp(−cε2m), the scaled projection

Q :=

√
n

m
P

is an approximate isometry on X :

(1− ε)‖x− y‖2 ≤ ‖Qx−Qy‖2 ≤ (1 + ε)‖x− y‖2 for all x, y ∈ X . (5.10)

The proof of Johnson-Lindenstrauss Lemma is based on concentration
of Lipschitz functions on the sphere, which we studied in Section 5.1. We
will use it to first examine the action of the random projection P on a fixed
vector x− y, and then take union bound over all N2 vectors x− y.

Lemma 5.3.2 (Random projection). Let P be a projection in Rn onto a
random m-dimensional subspace uniformly distributed in Gn,m. Let x ∈ Rn
be a (fixed) point and ε > 0. Then:

1.
(
E ‖Pz‖22

)1/2
=

√
m

n
‖z‖2.

2. With probability at least 1− 2 exp(−cε2m), we have

(1− ε)
√
m

n
‖z‖2 ≤ ‖Pz‖2 ≤ (1− ε)

√
m

n
‖z‖2.

Proof. Without loss of generality, we may assume that ‖z‖2 = 1. (Why?)
Next, we will change the model: instead of a random projection P acting on
a fixed vector z, we will consider a fixed projection P acting on a random
vector z. Specifically, the distribution of ‖Pz‖2 will not change if we let P
be fixed and

z ∼ Unif(Sn−1).

(Show this using rotation invariance.)
Using rotation invariance again, we may assume without loss of gener-

ality that P is the coordinate projection onto Rm viewed as a subspace of
Rn. Thus

E ‖Pz‖22 = E
m∑
i=1

z2
i =

m∑
i=1

E z2
i = mE z2

1 (5.11)

since the coordinates zi of the random vector z ∼ Unif(Sn−1) are identi-
cally distributed. To compute E z2

1 , note that 1 = ‖z‖22 =
∑m

i=1 z
2
i , Taking

expectations of both sides, we obtain

1 =
m∑
i=1

E z2
i = mE z2

1 ,
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which yields

E z2
1 =

1

n
.

Putting this into (5.11), we get

E ‖Pz‖22 =
m

n
.

This proves the first part of the lemma.
The second part follows from concentration of Lipschitz functions on the

sphere. Indeed,

f(x) := ‖Px‖2
is a Lipschitz function on Sn−1, and ‖f‖Lip = 1. (Why?) Then concentration
inequality (5.6) yields

P
{∣∣∣‖Px‖2 −√m

n

∣∣∣ ≥ t} ≤ 2 exp(−cnt2).

(Here we also used Exercise 5.2.5 to replace E ‖x‖2 by the (E ‖x‖22)1/2 in the
concentration inequality.) Choosing t := ε

√
m/n, we complete the proof of

the lemma.

Proof of Johnson-Lindenstrauss Lemma. Consider the difference set

X − X = {x− y : x, y ∈ X}.

We would like to show that, with required probability, the inequality

(1− ε)‖z‖2 ≤ ‖Qz‖2 ≤ (1 + ε)‖z‖2

holds for all z ∈ X − X Since Q =
√
n/mP , this is inequality is equivalent

to

(1− ε)
√
m

n
‖z‖2 ≤ ‖Pz‖2 ≤ (1 + ε)

√
m

n
‖z‖2. (5.12)

For any fixed z, Lemma 5.3.2 states that (5.12) holds with probability at
least 1− 2 exp(−cε2m). It remains to take a union bound over z ∈ X − X .
By doing this, we make the inequality (5.12) hold with probability at least

1− |X − X| · 2 exp(−cε2m) ≥ 1−N2 · 2 exp(−cε2m).

If we choosem ≥ (C/ε2) logN then this probability is at least 1−3 exp(−cε2m/2),
as claimed. Johnson-Lindenstrauss Lemma is proved.
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A remarkable feature of Johnson-Lindenstrauss lemma is dimension re-
duction map A is non-adaptive, it does not depend on the data. It is also
interesting that the ambient dimension n of the data plays no role in this
result.

Johnson-Lindenstrauss Lemma uses a random projection as a means of
dimension reduction. Other linear and non-linear maps are possible to use,
too:

Exercise 5.3.3 (Johnson-Lindenstrauss with sub-gaussian matrices). [Difficulty=6]
Let G be an m× n random matrix whose rows are independent, mean zero,
sub-gaussian isotropic random vectors in Rn. Show that the conclusion of
Johnson-Lindenstrauss lemma holds for Q = 1√

m
G.TODO: Interpret Q

as a sub-gaussian pro-
jection. Discuss this
concept here or, better,
before. Make a coupling
between random orthog-
onal projections and
random sub-gaussian
projections, using the
two-sided bounds on the
spectrum.

5.4 Matrix Bernstein’s inequality

Concentration inequalities for sums of independent random variables
∑
Xi

can be generalized for sums of independent random matrices. In this section,
we will prove a matrix version of Bernstein’s inequality (Theorem 2.8.6). It
is exactly the same inequality, but where random variables Xi are replaced
by random matrices, and the absolute value | · | is replaced by the operator
norm ‖ · ‖.

A remarkable feature of matrix Bernstein’s inequality is that it will not
require any independence of entries, rows, or columns within each random
matrix Xi.

Theorem 5.4.1 (Matrix Bernstein’s inequality). Let X1, . . . , XN be inde-
pendent, mean zero, n×n symmetric random matrices, such that ‖Xi‖ ≤ K
almost surely for all i. Then, for every t ≥ 0, we have

P
{∥∥∥ N∑

i=1

Xi

∥∥∥ ≥ t} ≤ 2n exp
(
− −t2/2
σ2 +Kt/3

)
.

Here σ2 =
∥∥∥∑N

i=1 EX2
i

∥∥∥ is the norm of the matrix variance of the sum.

In particular, we can express this bound as the mixture of sub-gaussian
and sub-exponential tail, just like in the scalar Bernstein’s inequality:

P
{∥∥∥ N∑

i=1

Xi

∥∥∥ ≥ t} ≤ 2n exp
[
− c ·min

(
− t2

σ2
,
t

K

)]
.
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The proof of matrix Bernstein’s inequality will be based on the follow-
ing näıve idea. Can we repeat the classical argument based on moment
generating functions (see Section 2.8), replacing scalars by matrices at each
occurrence? This can indeed be done. In most of the places, scalars can
be replaced by matrices without any problem, but one inequality will be
non-trivial. To prepare for this, we will now develop the basics of matrix
calculus, which basically allows us to treat matrices as scalars.

5.4.1 Matrix calculus

Throughout this section, we will work with symmetric n × n matrices. As
we know, the operation of addition A+B generalizes painlessly from scalars
to matrices. We need to be more careful with multiplication, since it is
not commutative for matrices: in general, AB 6= BA. For this reason, ma-
trix Bernstein’s inequality is sometimes called non-commutative Bernstein’s
inequality. Functions of matrices are defined as follows.

Definition 5.4.2 (Functions of matrices). Consider a function f : R → R
and an n × n symmetric matrix X. Express X through its spectral decom-
position:

X =
n∑
i=1

λiuiu
T
i .

Then define

f(X) :=
n∑
i=1

f(λi)uiu
T
i .

In other words, to obtain the matrix f(X) from X, we do not change the
eigenvectors and apply f to the eigenvalues.

Note that this definition agrees with addition and multiplication of ma-
trices:

Exercise 5.4.3 (Matrix polynomials and power series). 1. Consider a poly-
nomial

f(x) = a0 + a1x+ · · ·+ apx
p.

Check that for matrices X, we have

f(X) = a0I + a1X + · · ·+ apX
p.

In the right side, we use the standard operations of matrix addition and
multiplication, so in particular Xp = X · · ·X (p times) there.
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2. Consider a convergent power series expansion of f about x0:

f(x) =
∞∑
k=1

ak(x− x0)k.

Check that the series of matrix terms converges, and

f(X) =

∞∑
k=1

ak(X −X0)k.

As an example, for each n× n symmetric matrix X we have

eX = I +X +
X2

2!
+
X3

3!
+ · · ·

Just like scalars, matrices can be compared to each other. To do this,
we define a partial order on the set of n× n symmetric matrices as follows.
First, we say that

X � 0 if X is positive semi-definite.

Equivalently, X � 0 if all eigenvalues of X satisfy λi(X) ≥ 0. Next, we set

X � Y if X − Y � 0.

Finally, we obviously set Y � X if X � Y .

Note that � is a partial, as opposed to total, order, since there are
matrices for which neither X � Y nor Y � X hold. (Give an example!)

Exercise 5.4.4. Prove the following properties.

1. ‖X‖ ≤ t if and only if −tI � X � tI.

2. Let f : R → R be an increasing function and X,Y are commuting
matrices. Then X � Y implies f(X) � f(Y ).

3. Let f, g : R → R be two functions. If f(x) ≤ g(x) for all x ∈ R
satisfying |x| ≤ K, then f(X) ≤ g(X) for all X satisfying ‖X‖ ≤ K.
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5.4.2 Trace inequalities

So far, generalization from scalars to matrices was smooth. But the non-
commutativity of the matrix product (AB 6= BA) causes some important
identities to fail for matrices. One of such identities is ex+y = ex ey, which
holds for scalars but fails for matrices:

Exercise 5.4.5. [Difficulty=7] Let X and Y be n× n symmetric matrices.
1. Show that if the matrices commute, i.e. XY = Y X, then

eX+Y = eXeY .

2. Find an example of matrices X and Y such that

eX+Y 6= eXeY .

This is unfortunate for us, because the identity ex+y = ex ey was cru-
cially used in our approach to concentration of sums of random variables.
Indeed, this approach was based on computing the moment generating func-
tion E exp(λS) of the sum, and then breaking it into the product of expo-
nentials using this identity.

Nevertheless, there exists some useful substitutes for the missing identity
eX+Y = eXeY . We will state two of them here without proof; they belong
to the rich family of trace inequalities for matrices.

Theorem 5.4.6 (Golden-Thompson inequality). For any n× n symmetric
matrices A and B, we have

tr(eA+B) ≤ tr(eAeB).

Theorem 5.4.7 (Lieb’s inequality). Let H be an n× n symmetric matrix.
Consider the function

f(X) := tr exp(H + logX).

Then f is concave on the space on n× n symmetric matrices.6

Note that in the scalar case where n = 1, the function f is linear and
Lieb’s inequality holds trivially.

A proof of matrix Bernstein’s inequality can be based on either Golden-
Thompson or Lieb’s inequalities. We will use Lieb’s inequality, which we

6Concavity means that the inequality f(λX + (1− λ)Y ) ≥ λf(X) + (1− λ)f(Y ) holds
for matrices X and Y , and for λ ∈ [0, 1].
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will now restate for random matrices. If X is a random matrix, then Lieb’s
and Jensen’s inequalities imply that

E f(X) ≤ f(EX).

Applying this with X = eZ , we obtain the following.

Lemma 5.4.8 (Lieb’s inequality for random matrices). Let H be a fixed
n×n symmetric matrix, and Z be a random n×n symmetric matrix. Then

E tr exp(H + Z) ≤ tr exp(H + logE eZ).

5.4.3 Proof of matrix Bernstein’s inequality

In this section we prove matrix Bernstein’s inequality, Theorem 5.4.1, using
Lieb’s inequality.

Step 1: Reduction to MGF. To bound the norm of the sum

S :=
N∑
i=1

Xi,

we need to control the largest and smallest eigenvalues of S. We can do this
separately. To put this formally, consider the largest eigenvalue

λmax(S) := max
i
λi(S)

and note that

‖S‖ = max
i
|λi(S)| = max (λmax(S), λmax(−S)) . (5.13)

To bound λmax(S), we will proceed with the method based on computing
the moment generating function as in the scalar case. To this end, fix λ ≥ 0
and use Markov’s inequality to obtain

P {λmax(S) ≥ t} = P
{
eλ·λmax(S) ≥ eλt

}
≤ e−λt E eλ·λmax(S). (5.14)

Since the eigenvalues of eλS are eλ·λi(S), we have

E := E eλ·λmax(S) = Eλmax(eλS).

The eigenvalues of eλS are positive. Then we can bound the maximal eigen-
value of eλS by the sum of all eigenvalues, which is the trace of eλS , leading
to

E ≤ E tr eλS .
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Step 2: Application of Lieb’s inequality. To prepare this quantity
for an application of Lieb’s inequality (Lemma 5.4.8), we separate one term
from the sum S:

E ≤ E tr exp
[N−1∑
i=1

λXi + λXN

]
.

Let us condition on (Xi)
N−1
i=1 and apply Lemma 5.4.8 for the fixed matrix

H :=
∑N−1

i=1 λXi and the random matrix Z := λXN . We obtain

E ≤ E tr exp
[N−1∑
i=1

λXi + logE eλXN
]
.

(To be more specific here, we first apply Lemma 5.4.8 for the conditional
expectation with respect to XN . Then we take expectation of both sides
with respect to X1, . . . , XN and use the law of total expectation.)

Next we separate the term λXN−1 from the sum
∑N−1

i=1 λXi, and apply
Lemma 5.4.8 again for Z = λXN−1. Repeating these steps N times, we
obtain

E ≤ tr exp
[ N∑
i=1

logE eλXi
]
. (5.15)

Step 3: MGF of the individual terms. It remains to bound the
matrix-valued moment generating function E eλXi for each term Xi. This is
a standard task, and the argument will be similar to the scalar case.

Lemma 5.4.9 (Moment generating function). Let X be an n×n symmetric
random matrix such that ‖X‖ ≤ K almost surely. Then

E exp(λX) � exp
(
g(λ)EX2

)
where g(λ) =

λ2/2

1− |λ|K/3
,

provided that |λ| < 3/K.

Proof. First, note that we can bound the (scalar) exponential function by
the first few terms of its Taylor’s expansion as follows:

ez ≤ 1 + z +
1

1− |z|/3
· z

2

2
, if |z| < 3.

(To get this inequality, write ez = 1 + z+ z2 ·
∑∞

p=2 z
p/p! and use the bound

p! ≥ 2 · 3p−2.) Next, apply this inequality for z = λx. If |x| ≤ K and
|λ| < 3/K then we obtain

eλx ≤ 1 + λx+ g(λ)x2,
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where g(λ) is the function in the statement of the lemma.
Finally, we can transfer this inequality from scalars to matrices using

part 3 of Exercise 5.4.4. We obtain that if ‖X‖ ≤ K and |λ| < 3/K, then

eλX � I + λX + g(λ)X2.

Take expectation of both sides and use the assumption that EX = 0 to
obtain

E eλX � I + g(λ)EX2.

To bound the right hand side, we may use the inequality 1 + z ≤ ez which
holds for all scalars z. Thus the inequality I +Z � eZ holds for all matrices
Z, and in particular for Z = g(λ)EX2. (Here we again refer to part 3 of
Exercise 5.4.4.) This yields the conclusion of the lemma.

Step 4: Completion of the proof. Let us return to bounding the
quantity in (5.15). Using Lemma 5.4.9, we obtain

exp
[N−1∑
i=1

logE eλXi
]
� exp

[
g(λ)

N−1∑
i=1

EX2
i

]
.

(Here we also used that part 2 of Exercise 5.4.4 for the logarithmic and the
exponential function.)

Since the matrices on both sides of the inequality in (??) have positive
eigenvalues, the trace of the left side is bounded by the trace of the right
side:Revise the previous few

lines, think how to make
them clear, more concise

E ≤ tr exp [g(λ)Z] , where Z :=
N−1∑
i=1

EX2
i .

Since the trace here is a sum of n positive eigenvalues, it is bounded by n
times the maximum eigenvalue, so

E ≤ n · λmax (exp[g(λ)Z]) = n · exp [g(λ)λmax(Z)] (Why?)

= n · exp [g(λ)‖Z‖] (since Z � 0)

= n · exp
[
g(λ)σ2

]
(by definition of σ in the theorem).

Plugging this bound for E = E eλ·λmax(S) into (5.14), we obtain

P {λmax(S) ≥ t} ≤ n · exp
[
−λt+ g(λ)σ2

]
.

Now we optimize the right hand side in λ. The bound is minimized for
λ = t/(σ2 +Kt/3). (Check!) Substituting this value for λ, we conclude that

P {λmax(S) ≥ t} ≤ n · exp
(
− −t2/2
σ2 +Kt/3

)
.
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Repeating the argument for −S and combining the two bounds via
(5.13), we complete the proof of Theorem 5.4.1. (Do this!)

5.4.4 Discussion of matrix Bernstein’s inequality

Matrix Bernstein’s inequality, Theorem 5.4.1 is a direct generalization of the
scalar Bernstein’s inequality (Theorem 2.8.6). We will now pause to note
its remarkable strength and sharpness.

As an immediate consequence of Theorem 5.4.1, we can bound the ex-
pected deviation of the sum as follows. This is not quite imme-

diate. Make this corol-
lary an exercise?

Corollary 5.4.10 (Expected deviation of sum of random matrices). Let X1, . . . , XN

be independent, mean zero, n × n symmetric random matrices, such that
‖Xi‖ ≤ K almost surely for all i. Then

E
∥∥∥ N∑
i=1

Xi

∥∥∥ .
∥∥∥ N∑
i=1

EX2
i

∥∥∥1/2√
log n+K log n.

In the scalar case where n = 1, such a bound on the expected deviation
is trivial. Indeed,

E
∣∣∣ N∑
i=1

Xi

∣∣∣ ≤ (E ∣∣∣ N∑
i=1

Xi

∣∣∣2)1/2
=
( N∑
i=1

EX2
i

)1/2
.

where we used that the variance of a sum of independent random variables
equals the sum of variances.

This simple argument fails for matrices (why?). Bounding the expected
deviation for a sum of independent random matrices is a non-trivial problem,
which matrix Bernstein’s inequality successfully solves.

The price of going from scalar to matrices is the pre-factor n in the
probability bound in Theorem 5.4.1. It is a light price, considering that this
factor becomes logarithmic in dimension n in Corollary 5.4.10.

The following example shows that a logarithmic factor is needed in gen-
eral; we will give another example in .... Covariance estimation

Exercise 5.4.11 (Sharpness of matrix Bernstein’s inequality). Let X be an
n×n random matrix that takes values eke

T
k , k = 1, . . . , n, with probability 1/n

each. (Here as usual (ek) denotes the standard basis in Rn.) Let X1, . . . , XN

be independent copies of X. Consider the sum

S :=
N∑
i=1

Xi.
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Then S is a diagonal matrix.
1. Show that the entry Sii has the same distribution as the number of

balls in i-th bin when N balls are thrown into n bins independently.
2. Relating this to the coupon collector’s problem, show that if N � n

then

E ‖S‖ � log n

log logn
.

Deduce that Corollary 5.4.10 would fail if the logarithmic factors were re-
moved from its bound.

5.5 Application: community detection in sparse
networks

In Section 4.4, we analyzed a basic method for community detection in net-
works – the Spectral Clustering Algorithm. We examined the performance
of spectral clustering for the stochastic block model G(n, p, q) with two com-
munities (see Definition 4.4.1). We found that the communities are identified
with high accuracy and high probability (recall Theorem 4.4.4).

We will now re-examine the same method but using matrix Bernstein’s
inequality. We will find that spectral clustering works for much sparser
networks than we were able to analyze before. This will be done in a series
of exercises.

As in Section 4.4, we denote by A the adjacency matrix of a random
graph from G(n, p, q). We express A as

A = D +R

where D = EA is a deterministic matrix (“signal”) and R is random
(“noise”). The success of the method hinges on showing that the noise
‖R‖ is small with high probability (see (4.14)).

Exercise 5.5.1. [Difficulty=6] Represent the adjacency matrix A as a sum
of independent random matrices

A =

n∑
i,j=1

Zij .

Make it so that each Zij encode the contribution of an edge between vertices
i and j. Thus the only non-zero entries of Zij should be (ij) and (ji), and
they should be the same as in A.
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Apply matrix Bernstein’s inequality to find that

E ‖R‖ .
√
d log n+ log n,

where d = 1
2(p + q)n. Argue that d is the average expected degree of the

graph.

Exercise 5.5.2. [Difficulty=6] Similarly to Section 4.4, conclude that spec-
tral clustering works. Identify the conditions on p and q. In particular,
argue that spectral clustering works for sparse networks, as long as the av-
erage expected degrees satisfy

d� log n.

5.6 Random matrices with general independent
rows

We will illustrate the matrix Bernstein inequality with an application to
random matrices. In this section, we will prove a remarkably general ver-
sion of Theorem 4.5.1 which holds for random matrices with arbitrary, not
necessarily sub-gaussian distributions of rows.

Such generality is important because, as we noted in Section 3.4.2, dis-
crete distributions are poorly sub-gaussian. So Theorem 4.5.1 does not usu-
ally give a satisfactory result for random matrices whose rows have discrete
distributions. The next result will be more useful.

Theorem 5.6.1 (Random matrices with general rows). Let A be an m ×
n matrix whose rows Ai are independent isotropic random vectors in Rn.
Assume that for some L ≥ 0,

‖Ai‖2 ≤ L
√
n almost surely for every i. (5.16)

Then for every t ≥ 0, one has

√
m− tL

√
n ≤ sn(A) ≤ s1(A) ≤

√
m+ tL

√
n (5.17)

with probability at least 1− 2n · exp(−ct2).

Before we prove this theorem, let us pause to make two remarks. First,
why does the boundedness assumption (5.16) have this form? The isotropy
of random vectors Ai implies by Lemma 3.2.4 that

E ‖Ai‖22 = n.



108 CHAPTER 5. CONCENTRATION WITHOUT INDEPENDENCE

By Markov’s inequality, it follows that with high probability (let’s say, 0.99),
we have

‖Ai‖2 = O(
√
n).

So in applications, we expect that the boundedness assumption (5.16) hold
with

L = O(1).

Next, let us note that by Lemma 4.1.2, we can equivalently restate the
conclusion (5.17) in the following form:∥∥∥ 1

m
ATA− In

∥∥∥ ≤ max(δ, δ2) where δ = tL

√
n

m
. (5.18)

Proof. Our proof of (5.18) will be based on matrix Bernstein’s inequality,
Theorem 5.4.1. To use this result, we express the matrix in question a sum
of independent random matrices:

1

m
ATA− In =

1

m

m∑
i=1

AiA
T
i − In =

N∑
i=1

Xi where Xi :=
1

m
(AiA

T
i − In).

Note that Xi are independent symmetric n× n random matrices, and they
have zero means by the isotropy assumption. So, in order to apply Theo-
rem 5.4.1, it remains to bound the range ‖Xi‖ and the norm of the matrix
variance

∥∥∑m
i=1 EX2

i

∥∥.
To bound the range, we can use boundedness assumption (5.16), where

we necessarily have L ≥ 1 by isotropy. (Why?) By triangle inequality, we
have

‖Xi‖ ≤
1

m
(‖AiAT

i ‖+ 1) =
1

m
(‖Ai‖22 + 1)

≤ 1

m
(L2n+ 1) (by the boundedness assumption)

≤ 2L2n

m
(since L ≥ 1)

=: K. (5.19)

To estimate the norm of the matrix variance
∥∥∑m

i=1 EX2
i

∥∥, we first
compute

X2
i =

1

m2

[
(AiA

T
i )2 − 2(AiA

T
i ) + In

]
.

Taking expectations of both sides and using isotropy of Ai, we obtain

EX2
i =

1

m2

[
E(AiA

T
i )2 − In

]
.
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Now, using boundedness assumption (5.16), we haveRefer to an exercise?

E(AiA
T
i )2 = E ‖Ai‖22AiAT

i

� E
[
L2n ·AiAT

i

]
(by the boundedness assumption– check!)

= L2n · In (by isotropy).

Thus

EX2
i �

L2n

m2
· In.

Summing up, we obtain a bound on the matrix variance:

m∑
i=1

EX2
i �

L2n

m
· In.

Since the matrix variance is a positive semidefinite matrix, it follows that∥∥∥ m∑
i=1

EX2
i

∥∥∥ ≤ L2n

m
:= σ2. (5.20)

Now we are ready to apply the matrix Bernstein inequality (??).

P
{∥∥∥ 1

m
ATA− In

∥∥∥ ≥ ε} = P

{∥∥∥ m∑
i=1

Xi

∥∥∥ ≥ ε}

≤ 2n · exp
[
− cmin

( ε2

σ2
,
ε

K

)]
.

Substituting σ and K from (5.20) and (5.19), we bound this further by

2n · exp
[
− cmin(ε2, ε) · m

2L2n

]
. (5.21)

Returning to (5.18), we set ε := max(δ, δ2) and δ = tL
√
n/m. Substituting

these values into (5.21), we bound the probability that (5.18) fails by

2n · exp
(
− cδ2m

2L2n

)
= 2n · exp(−ct2/2).

This completes the proof.

Notice the pre-factor n in the probability bound 1 − 2n · exp(−ct2) in
Theorem 5.6.1. This theorem is non-trivial when the probability is positive,
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and this happens when t ≥ C
√

log n. So we can restate the conclusion of
Theorem 5.6.1 as follows. For every s ≥ 1, one has

√
m− sL

√
n log n ≤ sn(A) ≤ s1(A) ≤

√
m+ sL

√
n log n (5.22)

with probability at least 1− 2n−cs
2
. (To obtain this, set t = s

√
log n.)

Summarizing, we extended Theorem 4.5.1 from sub-gaussian to general
distributions, and we paid just a logarithmic factor for that.

Exercise 5.6.2 (Non-isotropic distributions). [Difficulty=7] Prove the fol-
lowing version of (5.18) for non-isotropic distributions. Let A be an m× n
matrix which satisfies all assumptions of Theorem 5.6.1 except the isotropy.
Assume that the rows have the same covariance matrix

Σ = EAiAT
i .

Then, for every t ≥ 0, the following inequality holds with probability at least
1− 2n · exp(−ct2):∥∥∥ 1

m
ATA− Σ

∥∥∥ ≤ max(‖Σ‖1/2δ, δ2) where δ = tL

√
n

m
. (5.23)

5.7 Application: covariance estimation for general
distributions

Rewrite the results of
this section as in my
PCMI lectures

In Section 4.6, we showed the covariance matrix of a sub-gaussian distribu-
tion in Rn can be accurately estimated using O(n) samples. In this section,
we will remove the sub-gaussian requirement thus making covariance esti-
mation possible for very general, in particular discrete, distributions in Rn.
The price we will pay is the logarithmic oversampling factor. The following
results shows that O(n log n) samples suffice for covariance estimation of
general distributions in Rn.

Theorem 5.7.1 (General covariance estimation). Consider a random vector
X in Rn with zero mean and covariance matrix Σ. Assume that for some
K > 0,

‖X‖2 ≤ K
√
‖Σ‖n almost surely. (5.24)

Let ε ∈ (0, 1) and t ≥ 1. Suppose the sample size satisfies

m ≥ C(Kt/ε)2n log n. (5.25)
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Then the sample covariance matrix Σm satisfies

‖Σm − Σ‖ ≤ ε‖Σ‖

with probability at least 1− 2n−t
2
.

Proof. Consider the m× n matrix A whose rows are the sample points XT
i .

Then the sample covariance matrix Σ can be represented as

Σm =
m∑
i=1

XiX
T
i =

1

m
ATA.

So, to bound the error ‖Σm − Σ‖ we can apply the non-isotropic form of
Theorem 4.5.1 stated in Exercise 5.6.2. It states that with probability at
least 1− 2n · exp(−cs2), we have

‖Σm − Σ‖ ≤ max(‖Σ‖1/2δ, δ2) where δ = sK

√
‖Σ‖n
m

.

After simplifying, this becomes

‖Σm − Σ‖ ≤ max
(
sK

√
n

m
,
s2K2n

m

)
‖Σ‖.

So, if m ≥ (Ks/ε)2n the right hand side is bounded by ε‖Σ‖ as required. It
remains to choose s = Ct

√
log n to complete the proof.

Let us clarify the form of the boundedness assumption (5.24).
Move this exercise to the
covariance section?Exercise 5.7.2. Let X be a random vector in Rn with EXXT = Σ. Show

that
E ‖X‖22 = tr(Σ).

Since we always have
tr(Σ) ≤ ‖Σ‖n

Markov’s inequality implies that with high probability (let’s say, 0.99), we
have

‖X‖2 = O(
√
‖Σ‖n).

So in applications, we expect that the boundedness assumption (5.24) hold
with

K = O(1).

Such bounded assumption indeed holds in many applications. When it fails,
one may consider enforcing it by truncation, thus rejecting a small fraction
of samples with the largest norm.



112 CHAPTER 5. CONCENTRATION WITHOUT INDEPENDENCE

Exercise 5.7.3. [Difficulty=6] Show that if the boundedness assumption
(5.24) is removed from Theorem 5.7.1, the result may in general fail.

Exercise 5.7.4 (Sampling from frames). [Difficulty=4] Consider a tight
frame (ui)

N
i=1 in Rn (recall Section 3.3.4). State and prove a result that

shows that a random sample of

m & n log n

elements of (ui) forms a frame with good frame bounds (as close to tight as
one wants). The quality of the result should not depend on the frame size
N .

5.7.1 Logarithmic oversampling

We will now argue that the factor log n can not be removed from (5.25). In
other words, logarithmic oversampling is in general needed for covariance
estimation.

To give an example, consider a random vector X with the most discrete
isotropic distribution in Rn, namely the coordinate distribution introduced
in Section 3.3.4. Thus

X ∼ Unif
{√

n ei : i = 1, . . . , n
}

where {ei}ni=1 is the canonical basis of Rn.
The distribution ofX is isotropic, so Σ = I. In order to have a non-trivial

estimation of the form
‖Σm − Σ‖ < ε‖Σ‖

with any ε < 1, the sample covariance matrix Σm must have full rank n.
(Why?) But recalling that

Σm =
1

m

m∑
i=1

XiX
T
i ,

we see that for this to happen, the sample {X1, . . . , Xm} must contain all
basis vectors

√
n e1, . . . ,

√
n en. (Why?)

Rethinking this condition in terms of the classical coupon collector’s prob-
lem, we see that each of the n “coupons”

√
n e1, . . . ,

√
n en must be picked

at least once in m independent trials performed by X1, . . . , Xm.
By the known result on the coupon collector’s problem, one must makeRefer

at least
m & n log n
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trials to pick each of the n coupons with high (and even constant) probability.
This shows that the logarithmic factor log n is necessary for any non-trivial
covariance estimation for the coordinate distribution.

We can track the source of this logarithmic factor to matrix Bernstein
inequality (Theorem 5.4.1). As we saw, its only weakness compared with
the scalar Bernstein’s inequality is the pre-factor n in the probability bound.
Our analysis then shows that this pre-factor is needed, and is optimal.
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Chapter 6

Quadratic forms,
symmetrization and
contraction

6.1 Decoupling

In the beginning of this book, we thoroughly studied sums of independent
random variables of the type

n∑
i=1

aiXi (6.1)

where X1, . . . , Xn are independent random variables and ai are fixed coeffi-
cients. In this section, we will study quadratic forms of the type

n∑
i,j=1

aijXiXj = XTAX = 〈AX,X〉 (6.2)

where A = (aij) is an n × n matrix of coefficients, and X = (X1, . . . , Xn)
is a random vector with independent coordinates. Such a quadratic form is
called a chaos in probability theory.

Computing the expectation of a chaos is easy. For simplicity, assume
that Xi have zero means and unit variances. Then

EXTAX =
n∑
i=1

aii = trA.

115
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(Check!)

It is less trivial to establish concentration of a chaos. The main diffi-
culty is that the terms of the chaos are not independent. To overcome this
problem, we will now introduce the technique of decoupling. This method
will allow us to replace X with a random vector X ′ that is independent of
X yet has the same distribution as X. We call such X ′ an independent copy
of X. So we will seek to replace the quadratic form (6.2) with

n∑
i,j=1

aijXiX
′
j = XTAX ′ =

〈
AX,X ′

〉
.

The usefulness of this new, decoupled form is that it is linear in X, and this
makes it easy to analyze. Indeed, we may condition on X ′ and treat the
decoupled form as a sum of independent random variables

n∑
i=1

( n∑
j=1

aijX
′
j

)
Xi =

n∑
i=1

ciXi

with fixed coefficients ci, much like we treated the sums (6.1) before.

Theorem 6.1.1 (Decoupling). Let A be an n×n, diagonal-free matrix. Let
X = (X1, . . . , Xn) be a random vector with independent mean zero coeffi-
cients. Then, for every convex function F , one has

EF (XTAX) ≤ EF (4XTAX ′) (6.3)

where X ′ is an independent copy of X.

We will actually prove a slightly stronger version of decoupling, where A
needs not to be diagonal-free. Thus, for every matrix A we will show that

EF
( ∑
i,j: i 6=j

aijXiXj

)
≤ EF

(
4
∑
i,j

aijXiX
′
j

)
(6.4)

where X ′ = (X ′1, . . . , X
′
n).

The proof will be based on the following observation.

Lemma 6.1.2. Let Y and Z be independent random variables such that
EZ = 0. Then, for every convex function F , one has

EF (Y ) ≤ EF (Y + Z).
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Proof. This is a simple consequence of Jensen’s inequality. Denote EY and
EZ the conditional expectations with respect to Y and Z respectively. Con-
dition on Y . Since EZ Z = 0, we have

F (Y ) = F (Y + EZ Z) ≤ EZ F (Y + Z).

Taking expectation of both sides with respect to Y completes the proof.

Proof of Decoupling Theorem 6.1.1. Here is what our proof of (6.4) will look
like, in a nutshell. First, we will replace the chaos

∑
i 6=j aijXiXj by the

“partial chaos” ∑
(i,j)∈I×Ic

aijXiXj

where the subset of indices I ⊂ {1, . . . , n} will be chosen by random sam-
pling. The advantage of partial chaos is that the summation is done over
disjoint sets for i and j. Thus one can automatically replace Xj by X ′j with-
out changing the distribution. Finally, we will complete the partial chaos∑

(i,j)∈I×Ic aijXiX
′
j to the full sum using Lemma 6.1.2.

Let us pass to a detailed proof. To randomly select a subset of indices
I, consider selectors δ1, . . . , δn ∈ {0, 1} – independent Bernoulli random
variables with P{δi = 0} = P{δi = 1} = 1/2. We define

I := {i : δi = 1}.

We shall denote the conditional expectation with respect to the selectors
(or, equivalently, with respect to the random subset I) by Eδ and EI , and
the conditional expectations with respect to X and X ′ by EX and EX′
respectively. Since

E δi(1− δi) =
1

2
· 1

2
=

1

4
for all i,

we may express our chaos as

n∑
i,j=1

aijXiXj = 4Eδ
n∑

i,j=1

δi(1− δj)aijXiXj = 4EI
∑

(i,j)∈I×Ic
aijXiXj .

Then, using Jensen’s and Fubini inequalities, we obtain

EX F (XTAX) ≤ EI EX F
(

4
∑

(i,j)∈I×Ic
aijXiXj

)
.
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It follows that there exists a realization of a random subset I such that

EX F (XTAX) ≤ EX F
(

4
∑

(i,j)∈I×Ic
aijXiXj

)
.

Fix such realization. Since the random variables (Xi)i∈I are independent
from (Xj)j∈Ic , the distribution of the sum in the right side will not change
if we replace Xj by X ′j . So we obtained

EF (XTAX) ≤ EF
(

4
∑

(i,j)∈I×Ic
aijXiX

′
j

)
.

It remains to complete the sum in the right side to the sum over all pairs
of indices. In other words, we want to show that

EF
(

4
∑

(i,j)∈I×Ic
aijXiX

′
j

)
≤ EF

(
4

∑
(i,j)∈[n]×[n]

aijXiX
′
j

)
, (6.5)

where we use the notation [n] = {1, . . . , n}. To do this, we decompose the
chaos in the right side as∑

(i,j)∈[n]×[n]

aijXiX
′
j = Y + Z1 + Z2

where

Y =
∑

(i,j)∈I×Ic
aijXiX

′
j , Z1 =

∑
(i,j)∈I×I

aijXiX
′
j , Z2 =

∑
(i,j)∈Ic×[n]

aijXiX
′
j .

Condition on all random variables except (X ′j)j∈I and (Xi)i∈Ic . This fixes
Y , while Z1 and Z2 are random variables with zero conditional expectations.
Use Lemma 6.1.2 to conclude that the conditional expectation satisfies

F (4Y ) ≤ EF (4Y + 4Z1 + 4Z2).

Finally, we take the expectation of both sides with respect to all other
random variables, and conclude that

EF (4Y ) ≤ EF (4Y + 4Z1 + 4Z2).

This proves (6.5) and finishes the proof.
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Remark 6.1.3. The proof of Decoupling Theorem 6.1.1 generalizes without
change to higher dimensions. If Xi are vectors in Hilbert space, then

EF
(∑

ij

aij 〈Xi, Xj〉
)
≤ EF

(
4
∑
ij

aij
〈
Xi, X

′
j

〉 )
.

(Check!) If Xi are vectors in Rm then this can be written in a matrix form
similarly to (6.3). If X is an m×n random matrix with independent, mean
zero columns, then

EF (XTAX) ≤ EF (4XTAX ′).

(Check!)

Theorem 6.1.4 (Decoupling for vectors). Prove the following version of
decoupling in normed spaces. Let (uij)

n
i,j=1 be vectors in a normed space

such that uii = 0 for all i. Let X = (X1, . . . , Xn) be a random vector with
independent mean zero coefficients. Then, for every convex function F , one
has

EF
(∥∥∥∑

i,j

XiXjuij

∥∥∥) ≤ F(4E
∥∥∥∑

i,j

XiX
′
juij

∥∥∥).
where X ′ is an independent copy of X.

Consider includ-
ing a multivariate-
subgaussian exercise,
see my unpublished
folder.

6.2 Hanson-Wright Inequality

We will now prove a general concentration inequality for a chaos. It can be
viewed a as a chaos version of Berstein’s inequalty.

Theorem 6.2.1 (Hanson-Wright inequality). Let X = (X1, . . . , Xn) ∈ Rn
be a random vector with independent, mean zero, sub-gaussian coordinates.
Let A be an n× n matrix. Then, for every t ≥ 0, we have

P
{
|XTAX − EXTAX| ≥ t

}
≤ 2 exp

[
− cmin

( t2

K4‖A‖2F
,

t

K2‖A‖

)]
,

where K = maxi ‖Xi‖ψ2.

We will first prove this result for Gaussian random variables Xi; then we
will extend it to general distributions by an replacement trick.
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Proof of Theorem 6.2.1 for normal distribution. Let us assume that X ∼
N(0, In). As usual, it is enough to bound the one-sided tail

p := P
{
XTAX − EXTAX ≥ t

}
.

Indeed, once we have a bound on this upper tail, a similar bound will hold
for the lower tail as well (since one can replace A with −A). By combining
the two tails, we will complete the proof.

In terms of the entries of A = (aij)
n
i,j=1, we have

XTAX =
∑
i,j

aijXiXj and EXTAX =
∑
i

aii EX2
i ,

where we used that EXiXj = 0 by mean zero assumption and independence.
So we can express the deviation as

XTAX − EXTAX =
∑
i

aii(X
2
i − EX2

i ) +
∑
i,j: i 6=j

aijXiXj .

The problem reduces to estimating the diagonal and off-diagonal sums:

p ≤ P

{∑
i

aii(X
2
i − EX2

i ) ≥ t/2

}
+ P

 ∑
i,j: i 6=j

aijXiXj ≥ t/2

 =: p1 + p2.

Step 1: diagonal sum. Since Xi are independent, sub-gaussian ran-
dom variables, X2

i −EX2
i are independent, mean-zero, sub-exponential ran-

dom variables, and

‖X2
i − EX2

i ‖ψ1 . ‖X2
i ‖ψ1 . ‖Xi‖2ψ2

. 1.

(This follows from the Centering Exercise 2.8.5 and Lemma 2.7.4 that states
that a sub-gaussian random variable squared is sub-exponential.)

Then Bernstein’s inequality (Theorem 2.8.3) yields

p1 ≤
[
− cmin

( t2∑
i a

2
ii

,
t

maxi |aii|

)]
≤ exp

[
− cmin

( t2

‖A‖2F
,
t

‖A‖

)]
.

Step 2: decoupling. It remains to bound the off-diagonal sum

S :=
∑
i,j: i 6=j

aijXiXj .
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The argument will be based on estimating the moment generating func-
tion of S by decoupling and then using rotation invariance of the normal
distribution.

Let λ > 0 be a parameter whose value we will determine later. By
Chebyshev’s inequality, we have

p2 = P {S ≥ t/2} = P {λS ≥ λt/2} ≤ exp(−λt/2)E exp(λS). (6.6)

By using decoupling (Theorem 6.1.1) , we can relate the moment generating
function of S to that of

T :=
∑
i,j

aijXiX
′
j = XTAX ′

where X ′ is an independent copy of X. We have

E exp(λS) ≤ E exp(4λT ). (6.7)

(Note that we do not to remove the diagonal terms aii from T by Exer-
cise ??.)

Step 3: rotation invariance. Express A through its singular value
decomposition

A = UΣV T.

Then

T = XTAX ′ =
∑
i

si 〈ui, X〉
〈
vi, X

′〉 .
By rotation invariance of the normal distribution (see Exercise 3.3.2), g :=
(〈ui, X〉)ni=1 and g′ := (〈vi, X ′〉)ni=1 are independent standard normal random
vectors in Rn. Thus we can represent T as

T =
∑
i

sigig
′
i

where g, g′ ∼ N(0, In) are independent and si are the singular values of A.

In this representation, T becomes a sum of independent random vari-
ables. This allows us to easily bound its moment generating function. In-
deed, by independence we have

E exp(4λT ) =
∏
i

E exp(4λsigig
′
i).
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Now, gig
′
i are mean zero, sub-exponential random variables with

‖gig′i‖ψ1 . 1.

(Here we may use Lemma 2.7.5 which states that a product of two sub-
gaussian random variables is sub-exponential.) We have already seen a
bound on the moment generating function of sub-exponential random vari-
ables in Lemma 2.8.1. It implies that

E exp(4λsigig
′
i) ≤ exp(Cλ2s2

i ) provided that λ2s2
i ≤ c.

It follows that

E exp(4λT ) ≤ exp
[
Cλ2

∑
i

s2
i

]
provided that |λ| ≤ c

maxi si
.

Recall that si are the singular values of A, so
∑

i s
2
i = ‖A‖2F and

maxi si = ‖A‖. Substituting this into the previous inequality and then
into (6.7), we can bound the moment generating function of S as follows:

E exp(λS) ≤ exp(Cλ2‖A‖2F ) provided that |λ| ≤ c

‖A‖
.

Step 5: conclusion. Putting this bound into the exponential Cheby-
shev’s inequality (6.6), we obtain

p2 ≤ exp
(
− λt/2 + Cλ2‖A‖2F

)
provided that |λ| ≤ c

‖A‖
.

Optimizing over λ, we conclude that

p2 ≤ exp
[
− cmin

( t2

‖A‖2F
,
t

‖A‖

)]
.

Summarizing, we obtained the desired bounds for the probabilities of diag-
onal deviation p1 and off-diagonal deviation p2. Putting them together, we
complete the proof.

Our proof of Theorem 6.2.1 for general distributions will be based on a
replacement trick, where we seek to replace general distributions by standard
normal. The following comparison of moment generating functions will make
this possible.
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Lemma 6.2.2 (Comparison for MGF). Let X be a sub-gaussian random
vector in Rn with ‖X‖ψ2 ≤ K and g ∼ N(0, In). Then, for every fixed
θ ∈ Rn and every λ ∈ R, we have

E exp(λ 〈X, θ〉) ≤ E exp(CKλ 〈g, θ〉).

Proof. Without loss of generality, we may assume that ‖θ‖2 = 1. (Why?)
Then the bound ‖X‖ψ2 ≤ K implies by definition that ‖ 〈X, θ〉 ‖ψ2 ≤ K. By
(2.17), the moment generating function can be bounded as follows:

E exp(λ 〈X, θ〉) ≤ exp(CK2λ2) for all λ ∈ R.

On the other hand, 〈g, θ〉 ∼ N(0, 1). So, the formula (2.12) for the
moment generating function of the normal distribution implies that

E exp(λ 〈g, θ〉) = exp(λ2/2) for all λ ∈ R.

Comparing the two expressions, we complete the proof.

Proof of Theorem 6.2.1 for general distributions. Now we assume that the
random vector X may have a general distribution as in Theorem 6.2.1.
Without loss of generality, we may assume that K = 1. (Why?)

Let us examine the previous argument. We had not used normal distri-
bution until Step 3 which relied on the rotation invariance. In particular,
we can control the diagonal sum can be controlled exactly as in Step 1 and
obtain the same good bound for p1.

To bound the contribution of the off-diagonal sum, the decoupling method
works as before, and gives (6.7). The problem is now to bound the moment
generating function

E exp(4λT ) for T = XTAX ′.

We will do it by a replacement trick: we will replace X and X ′ by indepen-
dent random vectors

g, g′ ∼ N(0, In)

using Lemma 6.2.2. (We can apply this lemma since X and X ′ are indeed
sub-gaussian random vectors with ‖X‖ ≤ C and ‖X ′‖ ≤ C by Lemma 3.4.2.)
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Let us write EX when we integrate with respect to X, and similarly for
other random vectors. We have

E exp(4λT ) = EX′ EX exp(4λ
〈
X,AX ′

〉
)

≤ EX′ Eg exp(C1λ
〈
g,AX ′

〉
) (by Lemma 6.2.2 for X)

= Eg EX′ exp(C1λ
〈
X ′, ATg

〉
) (by Fubini Theorem)

≤ Eg Eg′ exp(C2λ
〈
g′, ATg

〉
) (by Lemma 6.2.2 for X ′)

= E exp(C2λg
TAg′).

Summarizing, we showed that X and X ′ in the definition of T can be re-
placed by standard normal random variables; the moment generating func-
tion of T will remain the same (except the constant 4 will change to some
other absolute constant).

This means that from this point on, we can continue the argument as in
the former proof for normal distributions. Theorem 6.2.1 is proved.

Exercise 6.2.3. [Difficulty=7] Give an alternative proof of Hanson-Wright
inequality for normal distributions, without separating the diagonal part or
decoupling. Use the singular value decomposition for A and rotation invari-
ance of X to simplify and control the quadratic form XTAX.

Exercise 6.2.4 (Comparison). [Difficulty=6] 1. Let B be an m × n ma-
trix, X be a sub-gaussian random vector in Rn with ‖X‖ψ2 ≤ K, and
g ∼ N(0, In). Prove that for every λ ∈ R, we have

E exp(λ2‖BX‖22) ≤ E exp(CK2λ2‖Bg‖22).

Hint: Check and use the identity E exp(λ 〈g, x〉) = exp(λ2‖x‖22/2), which is valid for any

fixed x ∈ Rn and λ ≥ 0.

2. Check that for any λ such that |λ| ≤ 1/‖B‖, we have

E exp(λ2‖Bg‖22) ≤ exp(Cλ2‖B‖2F ).

Hint: Use rotation invariance to pass to a diagonal matrix.

6.2.1 Concentration of anisotropic random vectors
Change A to B in this
section; we are applying
HW with A = BTB.

As a consequence of Hanson-Wright inequality, we will now obtain concen-
tration for anisotropic random vectors, which have the form AX, where A
is a fixed matrix and X is an isotropic random vector.
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Exercise 6.2.5. Let A is an m × n matrix and X is an isotropic random
vector in Rn. Check that

E ‖AX‖22 = ‖A‖2F .

Theorem 6.2.6 (Concentration of random vectors). Let A be an m×n ma-
trix, and let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent,
mean zero, unit variance, sub-gaussian coordinates. Then∥∥∥‖AX‖2 − ‖A‖F∥∥∥

ψ2

≤ CK2‖A‖,

where K = maxi ‖Xi‖ψ2.

An important partial case of this theorem when A = In. In this case, we
have ∥∥∥‖X‖2 −√n∥∥∥

ψ2

≤ CK2.

We proved this concentration result in Theorem 3.1.1 using Bernstein’s in-
equality. And now we will prove a more general result, Theorem 6.2.6, using
Hanson-Wright inequality.

Before we start the proof, note that the conclusion of Corollary 6.2.6 can
be stated as a tail bound: for every t ≥ 0, we have

P
{∣∣‖AX‖2 − ‖A‖F ∣∣ > t

}
≤ 2 exp

(
− ct2

K4‖A‖2
)
. (6.8)

Proof. Let us apply Hanson-Wright inequality, Theorem 6.2.1, for the matrix
Q = ATA instead of A. Then

XTQX = ‖AX‖22, EXTQX = ‖A‖2F and ‖Q‖ = ‖A‖2.

Thus we can state the conclusion of Hanson-Wright inequality as follows:
for every u ≥ 0, we have

P
{∣∣‖AX‖22 − ‖A‖2F ∣∣ ≥ u} ≤ 2 exp

[
− c

K4
min

( u2

‖ATA‖2F
,

u

‖A‖2
)]
.

(Here we used that K ≥ c. Why?)

To simplify this bound, note that

‖ATA‖2F ≤ ‖AT‖2‖A‖2F = ‖A‖2‖A‖2F .
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(Check the inequality!) Using this and substituting the value u = ε‖A‖2F
for ε ≥ 0, we obtain

P
{∣∣‖AX‖22 − ‖A‖2F ∣∣ ≥ ε‖A‖2F} ≤ 2 exp

[
− cmin(ε2, ε)

‖A‖2F
K4‖A‖2

]
.

It remains to remove the squares in the inequality in the left hand side.
Denote δ2 = min(ε2, ε), or equivalently set ε = max(δ, δ2). Observe that
that the following implication holds:

If
∣∣‖AX‖2 − ‖A‖F ∣∣ ≥ δ‖A‖F then

∣∣‖AX‖22 − ‖A‖2F ∣∣ ≥ ε‖A‖2F .
(Check it!) Then we conclude that

P
{∣∣‖AX‖2 − ‖A‖F ∣∣ ≥ δ‖A‖F} ≤ 2 exp

(
− cδ2 ‖A‖2F

K4‖A‖2
)
.

Setting δ = t/‖A‖F , we obtain the desired inequality (6.8).

A version of Theorem 6.2.6 holds for general sub-gaussian random vectors
X in Rn, without assuming independence of the coordinates.

Theorem 6.2.7 (Tails for sub-gaussian random vectors). Let B be an m×n
matrix, and let X be a sub-gaussian random vector in Rn with ‖X‖ψ2 ≤ K.
Then for any t ≥ 0, we have

P {‖BX‖2 ≥ CK‖B‖F + t} ≤ exp
(
− ct2

K2‖B‖2
)
.

Exercise 6.2.8. [Difficulty=5] 1. Prove Theorem 6.2.7 by using the results
in Exercise 6.2.4.

2. Argue that there one can not have any non-trivial bound on the prob-
ability of the lower tail P {‖BX‖2 ≤ cK‖B‖F − t}, even if X is isotropic.

Exercise 6.2.9 (Distance to a subspace). [Difficulty=5] Let E be a subspace
of Rn of dimension d. Consider a random vector X = (X1, . . . , Xn) ∈ Rn
with independent, mean zero, unit variance, sub-gaussian coordinates.

1. Check that (
Edist(X,E)2

)1/2
=
√
n− d.

2. Prove that for any t ≥ 0, the distance nicely concentrates:

P
{∣∣d(X,E)−

√
n− d

∣∣ > t
}
≤ 2 exp(−ct2/K4),

where K = maxi ‖Xi‖ψ2.
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6.3 Symmetrization

We say that a random variable X is symmetric if X and −X are identically
distributed random variables. A simplest example of a symmetric random
variable is symmetric Bernoulli, which takes values −1 and 1 with probabil-
ities 1/2 each:

P {ξ = 1} = P {ξ = −1} =
1

2
.

Normal, mean zero distribution N(0, σ2) is also symmetric, while Poisson or
exponential distributions are not.

Exercise 6.3.1 (Constructing symmetric distributions). Let X be a ran-
dom variable with zero mean, and ξ be an independent symmetric Bernoulli
random variable.

1. Check that ξX and ξ|X| are symmetric random variables, and they
have the same distribution.

2. If X is symmetric, show that the distribution of ξX and ξ|X| is the
same as of X.

3. Let X ′ be an independent copy of X. Check that X−X ′ is symmetric.

In this section we will develop the simple and useful technique of sym-
metrization. It allows one to reduce problems about arbitrary distribu-
tions to symmetric distributions, and in some cases even to the symmetric
Bernoulli distribution.

Throughout this section, we will denote by

ε1, ε2, ε3, . . .

a sequence of independent symmetric Bernoulli random variables. We will
assume that they are independent not only of each other, but also of any
other random variables in question.

Lemma 6.3.2 (Symmetrization). Let X1, . . . , XN be independent, mean
zero random vectors in a normed space. Then

1

2
E
∥∥∥ N∑
i=1

εiXi

∥∥∥ ≤ E
∥∥∥ N∑
i=1

Xi

∥∥∥ ≤ 2E
∥∥∥ N∑
i=1

εiXi

∥∥∥.
This lemma allows one to replace general random variables Xi by the

symmetric random variables εiXi.
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Proof. Upper bound. Let (X ′i) be an independent copy of the random
vectors (Xi). Since

∑
iX
′
i has zero mean, we have

p := E
∥∥∥∑

i

Xi

∥∥∥ ≤ E
∥∥∥∑

i

Xi −
∑
i

X ′i

∥∥∥ = E
∥∥∥∑

i

(Xi −X ′i)
∥∥∥.

To see this, use the following version of Lemma 6.1.2 for indepdendent ran-
dom vectors Y and Z:

if EZ = 0 then E ‖Y ‖ ≤ E ‖Y + Z‖. (6.9)

(Check it!)

Next, since (Xi−X ′i) are symmetric random vectors, they have the same
distribution as εi(Xi −X ′i) (see Exercise 6.3.1). Then

p ≤ E
∥∥∥∑

i

εi(Xi −X ′i)
∥∥∥

≤ E
∥∥∥∑

i

εiXi

∥∥∥+ E
∥∥∥∑

i

εiX
′
i

∥∥∥ (by triangle inequality)

= 2E
∥∥∥∑

i

εiXi

∥∥∥ (since the two terms are identically distributed).

Lower bound. The argument here is similar:

E
∥∥∥∑

i

εiXi

∥∥∥ ≤ E
∥∥∥∑

i

εi(Xi −X ′i)
∥∥∥ (using (6.9))

= E
∥∥∥∑

i

(Xi −X ′i)
∥∥∥ (the distribution is the same)

= E
∥∥∥∑

i

Xi

∥∥∥+ E
∥∥∥∑

i

X ′i

∥∥∥ (by triangle inequality)

≤ 2E
∥∥∥∑

i

Xi

∥∥∥ (by identical distribution).

This completes the proof of Symmetrization Lemma.

Exercise 6.3.3. Where in this argument did we use the independence of the
random variables Xi? Is mean zero assumption needed for both upper and
lower bounds?
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Exercise 6.3.4 (Removing the mean zero assumption). [Difficulty=4] 1.
Prove the following generalization of Symmetrization Lemma 6.3.2 for ran-
dom vectors Xi that do not necessarily have zero means:

E
∥∥∥ N∑
i=1

Xi −
N∑
i=1

EXi

∥∥∥ ≤ 2E
∥∥∥ N∑
i=1

εiXi

∥∥∥.
2. Argue that there can not be any non-trivial reverse inequality.

Exercise 6.3.5. Prove the following generalization of Symmetrization Lemma 6.3.2.
Let F : R+ → R be an increasing, convex function. Show that the same in-
equalities in Lemma 6.3.2 hold if the norm ‖ · ‖ is replaced with F (‖ · ‖),
namely

EF
(1

2

∥∥∥ N∑
i=1

εiXi

∥∥∥) ≤ EF
(∥∥∥ N∑

i=1

Xi

∥∥∥) ≤ EF
(

2
∥∥∥ N∑
i=1

εiXi

∥∥∥).
Such generalization can be used to derive tail bounds on the sums. In such
situations, to bound the moment generating function one can use the func-
tion F (x) = exp(λx). Make an exercise?

Exercise 6.3.6. Let X1, . . . , XN be independent random variables. Show
that their sum

∑
iXi is sub-gaussian if and only if

∑
i εiXi is sub-gaussian,

and

c
∥∥∥ N∑
i=1

εiXi

∥∥∥
ψ2

≤
∥∥∥ N∑
i=1

Xi

∥∥∥
ψ2

≤ C
∥∥∥ N∑
i=1

εiXi

∥∥∥
ψ2

.

6.4 Random matrices with non-i.i.d. entries

A typical application of Symmetrization Lemma 6.3.2 has two steps. First,
general random variables Xi are replaced by symmetric random variables
εiXi. Next, one conditions on Xi and leaves the entire randomness within
εi. This reduces the problem to symmetric Bernoulli random variables εi,
which are often simpler to deal with.

To illustrate this technique, we will prove a general bound on the norms
of random matrices with independent but not identically distributed entries.

Theorem 6.4.1 (Norms of random matrices with non-i.i.d. entries). Let
A be an n × n symmetric random matrix whose entries on and above the
diagonal are independent, mean zero random variables. Then

E ‖A‖ ≤ C log n · Emax
i
‖Ai‖2,
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where Ai denote the rows of A.

This result is sharp up to the logarithmic factor. Indeed, since the op-
erator norm of any matrix is bounded below by the Euclidean norms of the
rows (why?), we trivially have

E ‖A‖ ≥ Emax
i
‖Ai‖2.

Note also that unlike all results we have seen before, Theorem 6.4.1 does
not require any moment assumptions on the entries of A.

Proof. The proof of Theorem 6.4.1 will be based on a combination of sym-
metrization with matrix Bernstein’s inequality.

First, we decompose A into a sum of independent, mean zero, symmetric
random matrices Xij , each of which contains a pair of symmetric entries of
A (or one diagonal entry). Previsely,

A =
∑
i≤j

Zij , Zij :=

{
Aij(eie

T
j + eje

T
i ), i < j

Aiieie
T
i , i = j

where (ei) denotes the canonical basis of Rn.
Apply Symmetrization Lemma 6.3.2. This gives

E ‖A‖ = E
∥∥∥∑
i≤j

Zij

∥∥∥ ≤ 2E
∥∥∥∑
i≤j

εijZij

∥∥∥, (6.10)

where (εij) are independent symmetric Bernoulli random variables.
Now we condition on A. This fixes random variables (Zij), leaving

all randomness within (εij). Apply matrix Bernstein’s inequality (Corol-
lary 5.4.10) for

Xij := εijZij .

Then the conditional expectation is bounded as follows:

Eε
∥∥∥∑
i≤j

Xij

∥∥∥ . σ
√

log n+K log n, (6.11)

where
σ2 =

∥∥∥∑
i≤j

EX2
ij

∥∥∥ and K = max
ij
‖Xij‖.

Now, a quick check verifies that

EX2
ij = Z2

ij =

{
A2
ij(eie

T
i + eje

T
j ), i < j

A2
iieie

T
i , i = j.
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The sum of these is the diagonal matrix∑
i≤j

EX2
ij =

∑
i<j

A2
ij(eie

T
i + eje

T
j ) +

∑
i

A2
iieie

T
i

� 2

n∑
i=1

( n∑
j=1

A2
ij

)
eie

T
i = 2

n∑
i=1

‖Ai‖22eieTi .

(Check the matrix inequality!) Thus

σ =
∥∥∥∑
i≤j

EX2
ij

∥∥∥1/2
≤
√

2 max
i
‖Ai‖2

and, similarly,

K = max
i≤j
‖Xij‖ = max

i≤j
‖Zij‖ ≤ 2 max

i≤j
|Aij | ≤ 2 max

i
‖Ai‖2.

Substituting the bounds for σ and K into matrix Bernstein’s inequality
(6.11), we get

Eε
∥∥∥∑
i≤j

Xij

∥∥∥ . log n ·max
i
‖Ai‖2.

Finally, we unfix A by taking expectation of both sides with respect
to A (equivalently, with respect to (Zij)). Using (6.10), we complete the
proof.

By using the so-called “Hermitization trick”, we can obtain a version of
Theorem 6.4.1 for non-symmetric matrices.

Corollary 6.4.2 (Non-symmetric matrices). Let A be an m × n random
matrix whose entries are independent, mean zero random variables. Then

E ‖A‖ ≤ C log(m+ n) ·
(
Emax

i
‖Ai‖2 + Emax

i
‖Aj‖2

)
where Ai and Aj denote the rows and columns of A, respectively.

Proof. It is enough to apply Theorem 6.4.1 for the (m+ n)× (m+ n) sym-
metric random matrix [

0 A
AT 0

]
.

(Write down the details!)

Again, note that Corollary 6.4.2 is sharp up to the logarithmic factor.
Indeed, since the operator norm of any matrix is bounded below by the
Euclidean norms of the rows and columns, we trivially have

E ‖A‖ ≥ Emax
i,j

(
‖Ai‖2, ‖Aj‖2

)
≥ 1

2

(
Emax

i
‖Ai‖2 + Emax

i
‖Aj‖2

)
.
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6.5 Application: matrix completion

A remarkable application of the methods we have studied is to the problem
of matrix completion. Suppose we are shown a few entries of a matrix; can
we guess the other entries? We obviously can not, unless we know something
else about the matrix. We will show that if the matrix has low rank then
matrix completion is possible.

To describe the problem mathematically, consider a fixed n × n matrix
X with

rank(X) = r

where r � n. Suppose we are shown a few randomly chosen entries of
X. Each entry Xij is revealed to us independently with some probability
p ∈ (0, 1) and is hidden from us with probability 1 − p. In other words,
assume that we are shown the n× n matrix Y whose entries are

Yij := δijXij where δij ∼ Ber(p) are independent.

These δij are selectors – Bernoulli random variables that indicate whether
an entry is revealed to us or not (in the latter case, it is replaced with zero).
If

p =
m

n2
(6.12)

then we are shown m entries of X on average.

How can we infer X from Y ? Although X has small rank r by assump-
tion, Y may not have small rank. (Why?) It is thus natural enforce small
rank by choosing a best rank r approximation to Y .1 The result, properly
scaled, will be a good approximation to X:

Theorem 6.5.1 (Matrix completion). Let X̂ be a best rank r approximation
to p−1Y . Then

E
1

n
‖X̂ −X‖F ≤ C log(n)

√
rn

m
‖X‖∞, (6.13)

as long as m ≥ n log n. Here ‖X‖∞ = maxi,j |Xij | is the maximum magni-
tude of the entries of X.

1A best rank k approximation to a matrix A is obtained by minimizing ‖B − A‖ over
all rank k matrices B. The minimizer can be computed by truncating the singular value
decomposition A =

∑
i siuiv

T
i at k-th term, thus giving B =

∑k
i=1 siuiv

T
i . According to

Eckart-Young-Minsky’s theorem , the same holds not only for the operator norm but for
general unitary-invariant norm, e.g. Frobienus.
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Let us pause quickly to better understand the bound in this theorem.
The assumption m & n log n guarantees that we will see at least one entry
in each row and column of X. (Why?) In the left side of (6.13), the recovery
error can be expressed as

1

n
‖X̂ −X‖F =

( 1

n2

n∑
i,j=1

|X̂ij −Xij |2
)1/2

.

This is simply the average error per entry (in the L2 sense). To make the
right side small, assume that

m = Crn log2 n.

If C > 0 is a large constant, Theorem 6.5.1 gives an error that is much
smaller than ‖X‖∞. So, if the rank r of the original matrix X is small, the
number of observed entries m needed for matrix completion is also small –
much smaller than the total number of entries n2.

To summarize, matrix completion is possible if the number of observed
entries exceeds rn by a logarithmic margin. In this case, the expected average
error per entry is much smaller than the maximal magnitude of an entry.
Thus, for low rank matrices, matrix completion is possible with few observed
entries.

Proof. We will first bound the recovery error in the operator norm, and then
pass to the Frobenius norm using the low rank assumption.

Step 1: bounding the error in the operator norm. Using triangle
inequality, let us split the error as follows:

‖X̂ −X‖ ≤ ‖X̂ − p−1Y ‖+ ‖p−1Y −X‖.

Since we have chosen X̂ as a best approximation to p−1Y , the second sum-
mand dominates, i.e. ‖X̂ − p−1Y ‖ ≤ ‖p−1Y −X‖, so we have

‖X̂ −X‖ ≤ 2‖p−1Y −X‖ =
2

p
‖Y − pX‖. (6.14)

Note that the matrix X̂, which would be hard to handle, has disappeared
from the bound. Instead, Y − pX is a matrix that is easy to understand.
Its entries

(Y − pX)ij = (δij − p)Xij
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are independent and mean zero random variables. So we can apply Corol-
lary 6.4.2, which gives

E ‖Y −pX‖ ≤ C log n·
(
Emax
i∈[n]
‖(Y −pX)i‖2+Emax

i∈[n]
‖(Y −pX)j‖2

)
. (6.15)

To bound the norms of the rows and columns of Y −pX, we can express
them as

‖(Y − pX)i‖22 =

n∑
j=1

(δij − p)2X2
ij ≤

n∑
j=1

(δij − p)2 · ‖X‖2∞,

and similarly for columns. These sums of independent random variables can
be easily bounded using Bernstein’s (or Chernoff’s) inequality; this gives

Emax
i∈[n]

n∑
j=1

(δij − p)2 ≤ Cpn.

(We will do this calculation in Exercise 6.5.2.) Combining with a similar
bound for the columns and substituting into (6.15), we obtain

E ‖Y − pX‖ . log(n)
√
pn ‖X‖∞.

Then, by (6.14), we get

E ‖X̂ −X‖ . log(n)

√
n

p
‖X‖∞. (6.16)

Step 2: passing to Frobenius norm. We have not used the low rank
assumption yet, and this is what we will do now. Since rank(X) ≤ r by
assumption and rank(X̂) ≤ r by construction, we have rank(X̂ −X) ≤ 2r.
The simple relationship (4.1) between the operator and Frobenius norms
thus gives

‖X̂ −X‖F ≤
√

2r‖X̂ −X‖.
Taking expectations and using the bound on the error in the operator norm
(6.16), we get

E ‖X̂ −X‖F ≤
√

2rE ‖X̂ −X‖ . log(n)

√
rn

p
‖X‖∞.

Dividing both sides by n, we can rewrite this bound as

E
1

n
‖X̂ −X‖F . log(n)

√
rn

pn2
‖X‖∞.

Recalling the definition (6.12) of p we have pn2 = m, so the desired bound
(6.13) is proved.
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Exercise 6.5.2 (Bounding rows of random matrices). Consider i.i.d. ran-
dom variables δij ∼ Ber(p), where i, j = 1, . . . , n. Assuming that pn ≥ log n,
show that

Emax
i∈[n]

n∑
j=1

(δij − p)2 ≤ Cpn.

Hint: Fix i and use Bernstein’s inequality (Corollary 2.8.4) to get a tail bound for
∑n
j=1(δij−

p)2. Conclude by taking a union bound over i ∈ [n].

Write this based on
Seginer’s theorem as in
my tutorial. However,
this theorem applies for
iid entries, which we
don’t have here. Fix?

Remark 6.5.3 (Removal of logarithmic factor).

Check and write down.

Remark 6.5.4 (Exact matrix completion).

Exercise 6.5.5 (Rectangular and symmetric matrices). (a) State and prove
a version of Matrix Completion Theorem 6.5.1 for general rectangular n1×n2

matrices X.
(b) State and prove a version of Matrix Completion Theorem 6.5.1 for

symmetric matrices X.

Exercise 6.5.6 (Noisy observations). Extend Matrix Completion Theo-
rem 6.5.1 to noisy observations, where we are shown noisy versions Xij+νij
of some entries of X. Here νij are independent and mean zero random vari-
ables representing noise.

6.6 Application: covariance estimation for unbounded
distributions

Let us give one more application of the symmetrization technique. We will
prove a version of matrix Bernstein inequality for unbounded random vari-
ables, and then apply it for covariance estimation for unbounded distribu-
tions.

Theorem 6.6.1 (Matrix Bernstein for unbounded distributions). Let Z1, . . . , ZN
be independent n × n positive-semidefinite random matrices. Consider the
sum

S :=
N∑
i=1

Zi.

Then

E ‖S − ES‖ ≤ C
(√
‖ES‖ · L+ L

)
(6.17)

where L = log n · Emaxi ‖Zi‖.
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Proof. Using symmetrization (see Exercise 6.3.4), we obtain

E ‖S − ES‖ ≤ 2
∥∥∥∑

i

εiZi

∥∥∥. (6.18)

Condition on (Zi) and apply matrix Bernstein inequality (Corollary 5.4.10)
for the bounded random matrices Xi = εiZi. Afterwards, take expectation
with respect to (Zi). This gives

E ‖S − ES‖ . E

[∥∥∥∑
i

Z2
i

∥∥∥1/2√
log n+ max

i
‖Zi‖ log n

]
To simplify this bound, observe that

0 �
∑
i

Z2
i � max

i
‖Zi‖ ·

∑
i

Zi = max
i
‖Zi‖ · S.

(Check this!) This implies that∥∥∥∑
i

Z2
i

∥∥∥1/2
≤
(

max
i
‖Zi‖

)1/2‖S‖1/2.
Taking expectation and using Cauchy-Schwarz inequality, we obtain

E
∥∥∥∑

i

Z2
i

∥∥∥1/2
≤
(
Emax

i
‖Zi‖ · E ‖S‖

)1/2
.

Substituting into (6.18) and denoting L = log(n)Emaxi ‖Zi‖, we get

E ‖S − ES‖ .
√

E ‖S‖ · L+ L.

We almost obtained the desired conclusion (6.17), but not quite: we
will need to replace E ‖S‖ with the smaller quantity ‖ES‖. By triangle
inequality, we bound

E ‖S‖ ≤ E ‖S − ES‖+ ‖ES‖.

Thus, denoting x := E ‖S − ES‖, we have

x .
√

(x+ ‖ES‖) · L+ L.

Solving this inequality and simplifying the solution, we get

x .
√
‖ES‖ · L+ L.

(Do this computation!) The proof is complete.
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Let us illustrate this theorem with an application to covariance estima-
tion. In Section 5.7, we showed that

m ∼ n log n

samples are enough to estimate the covariance matrix of a general bounded
distribution in Rn. We will now relax the boundedness assumption (5.24),
and will prove the following version of Theorem 5.7.1. (For simplicity, we
prove only an expectation version here.)

Exercise 6.6.2 (Covariance estimation for unbounded distributions). [Difficulty=4]
Consider a random vector X in Rn with zero mean and covariance matrix
Σ. Let ε ∈ (0, 1) and K > 0. Suppose the sample size satisfies

m ≥ C(K/ε)2n log n.

Assume also that (
Emax
i≤m
‖X‖22

)1/2 ≤ K√‖Σ‖n. (6.19)

Then

E ‖Σm − Σ‖ ≤ ε‖Σ‖.

Hint: Apply Theorem 6.6.1 for Zi = 1
m
XiX

T
i .

6.7 Contraction Principle

We conclude this chapter with one more useful comparison inequality. Here
will will keep denoting by ε1, ε2, ε3, . . . a sequence of independent symmetric
Bernoulli random variables. (which is also independent of any other random
variables in question).

Theorem 6.7.1 (Contraction principle). Let x1, . . . , xN be (deterministic)
vectors in a normed space, and let a = (a1, . . . , an) ∈ Rn be a coefficient
vector. Then

E
∥∥∥ N∑
i=1

aiεixi

∥∥∥ ≤ ‖a‖∞ · E∥∥∥ N∑
i=1

εixi

∥∥∥.
Proof. Without loss of generality, we may assume that ‖a‖∞ ≤ 1. (Why?)
Define the function

f(a) := E
∥∥∥ N∑
i=1

aiεixi

∥∥∥.
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Then f : RN → RN is a convex function. (Check!)

We would like find an upper bound for f on the set of points a satisfying
‖a‖∞ ≤ 1, i.e. on the unit cube [−1, 1]n. Recall that every convex function
defined on a closed, compact set attains its maximum on an extreme point
of the set. (Check this!) Then the maximum of f is attained at a vertex of
the unit cube, i.e. at a point a whose coefficients are all ai = ±1.

For this point a, the random variables (εiai) have the same distribution
as (εi) due to symmetry. Thus

E
∥∥∥ N∑
i=1

aiεixi

∥∥∥ = E
∥∥∥ N∑
i=1

εixi

∥∥∥.
The proof is complete.

Using symmetrization, we can immediately extend the contraction prin-
ciple for general distributions.

Theorem 6.7.2 (Contraction principle for general distributions). Let X1, . . . , XN

be independent, mean zero random vectors in a normed space, and let a =
(a1, . . . , an) ∈ Rn be a coefficient vector. Then

E
∥∥∥ N∑
i=1

aiXi

∥∥∥ ≤ 4‖a‖∞ · E
∥∥∥ N∑
i=1

Xi

∥∥∥.
Proof. It is enough to apply symmetrization (Lemma 6.3.2), then use con-
traction principle (Theorem 6.7.2) conditioned on (Xi), and finish by apply-
ing symmetrization again. (Write down the details!)

As an application, we will now show how symmetrization can be done us-
ing Gaussian random variables gi ∼ N(0, 1) instead of symmetric Bernoulli
random variables εi.

Lemma 6.7.3 (Symmetrization with Gaussians). Let X1, . . . , XN be inde-
pendent, mean zero random vectors in a normed space. Let g1, . . . , gN ∈
N(0, 1) be independent Gaussian random variables, which are also indepen-
dent of Xi. Then

c√
logN

E
∥∥∥ N∑
i=1

giXi

∥∥∥ ≤ E
∥∥∥ N∑
i=1

Xi

∥∥∥ ≤ 3E
∥∥∥ N∑
i=1

giXi

∥∥∥.
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Proof. This is a standard argument, which combines symmetrization (Lemma 6.3.2)
and contraction (Theorem 6.7.2). Upper bound. We have

E
∥∥∥ N∑
i=1

Xi

∥∥∥ ≤ 2E
∥∥∥ N∑
i=1

εiXi

∥∥∥ (by symmetrization).

To interject Gaussian random variables, recall that E |gi| =
√

2/π. Thus we
can continue our bound as follows:

≤ 2

√
π

2
EX
∥∥∥ N∑
i=1

εi Eg |gi|Xi

∥∥∥
≤ 2

√
π

2
E
∥∥∥ N∑
i=1

εi|gi|Xi

∥∥∥ (by Jensen’s inequality)

= 2

√
π

2
E
∥∥∥ N∑
i=1

giXi

∥∥∥.
The last equality follows by symmetry of Gaussian distribution, which im-
plies that the random variables εi|gi| have the same distribution as gi (recall
Exercise 6.3.1).

Lower bound. Condition on the random vector g = (gi)
N
i=1 and apply

the contraction principle (Theorem 6.7.2). This gives

E
∥∥∥ N∑
i=1

giXi

∥∥∥ ≤ Eg
(
‖g‖∞ · EX

∥∥∥ N∑
i=1

Xi

∥∥∥)
≤
(
E ‖g‖∞

)(
E
∥∥∥ N∑
i=1

Xi

∥∥∥) (by independence).

It remains to recall from Exercise 2.5.8 that

E ‖g‖∞ ≤ C
√

logN.

The proof is complete.

Exercise 6.7.4. Show that the factor
√

logN in Lemma 6.7.3 is needed in
general, and is optimal. (This is where symmetrization with Gaussian ran-
dom variables is weaker than symmetrization with symmetric Bernoullis.)
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Exercise 6.7.5 (Symmetrization and contraction for functions of norms).
Let F : R+ → R be a convex increasing function. Generalize the sym-
metrization and contraction results of this and previous section by replacing
the norm ‖ · ‖ with F (‖ · ‖) throughout.

This generalization is useful for the functions of the form F (z) = exp(λz),
since it allows to bound the moment generating functions. Such bounds, as
we know, are instrumental in proving tail bounds rather than bounds on
expectation.



Chapter 7

Random processes

7.1 Basic concepts and examples

Definition 7.1.1 (Random process). A random process is a collection of
random variables (Xt)t∈T on the same probability space, and indexed by
elements t of a set T . As a standing assumption, we will always suppose
that

EXt = 0 for all t ∈ T,

that is the process has zero drift.

The variable t is classically thought of as time, and in this case T is
a subset of R. But we will primarily study processes in high-dimensional
settings, where T is a subset of Rn and where the analogy with time will be
loose.

Example 7.1.2 (Discrete time). If T = {1, . . . , n} then the random process

(X1, . . . , Xn)

can be identifies with a random vector in Rn.

Example 7.1.3 (Random walks). If T = N, a discrete-time random process
(Xn)n∈N is simply a sequence of random variables. An important example
is a random walk defined as

Xn :=
n∑
i=1

Zi,

where the increments Zi are independent, mean zero random variables. See
Figure 7.1 for illustration.

141
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(a) A few trials of a random walk
with symmetric Bernoulli Zi.

(b) A few trials of the standard
Brownian motion.

Figure 7.1: Random walks and Brownian motion in R.

Example 7.1.4 (Brownian motion). The most classical continuous-time ran-
dom process is the standard Brownian motion (Xt)t≥0, also called the Wiener
process. It can be characterized as follows:

• The process has continuos sample paths, i.e. the random function
t 7→ Xt is almost surely continuous.

• The increments satisfy Xt −Xs ∼ N(0, t− s) for all t ≥ s.

Figure 7.1 illustrates a few trials of the standard Brownian motion.

Example 7.1.5 (Random fields). When the index set T is a subset of Rn, a
random process (Xt)t∈T are sometimes called a spacial random process, or
a random field. For example, if Xt denotes the water temperature at the
location on Earth that is parametrized by t, it can be modeled as a spacial
random process.

7.1.1 Covariance and increments

Similarly to covariance matrices for random vectors, we may define the co-
variance function for a random process (Xt)t∈T as

Σ(t, s) := cov(Xt, Xs) = EXtXs, t, s ∈ T.

We may also study a random process (Xt)t∈T through the behavior of
its increments

‖Xt −Xs‖2 =
(
E(Xt −Xs)

2
)1/2

, t, s ∈ T.
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Example 7.1.6. The increments of the standard Brownian motion satisfy

‖Xt −Xs‖2 =
√
t− s, t ≥ s

by definition. The increments of a random walk of Example 7.1.3 with
Ei Zi = 1 behave similarly:

‖Xn −Xm‖2 =
√
n−m, n ≥ m.

(Check!)

In principle, the index set T may be an abstract set without any struc-
ture. But the increments define a metric on T ,

d(t, s) := ‖Xt −Xs‖2, t, s ∈ T, (7.1)

thus turning T into a metric space. The examples above show, however,
that this metric may not agree with the canonical metric on R.

Exercise 7.1.7 (Covariance and increments). [Difficulty=3] Let (Xt)t∈T be
a random process.

1. Express the increments ‖Xt−Xs‖2 in terms of the covariance function
Σ(t, s).

2. Assuming that the zero random variable 0 belongs to the process, ex-
press the covariance function Σ(t, s) in terms of the increments ‖Xt−Xs‖2.
This shows that the distribution of a Gaussian random process containing the
zero random variable is completely determined by the increments ‖Xt−Xs‖2,
t, s ∈ T .

7.2 Gaussian processes

Definition 7.2.1 (Gaussian process). A random process (Xt)t∈T is called
a Gaussian process if, for any finite subset T0 ⊂ T , the random vector

(Xt)t∈T0

has normal distribution. Equivalently, (Xt)t∈T is Gaussian if every finite
linear combination ∑

t∈T0

atXt

is a normal random variable.
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A classical example of a Gaussian process is the standard Brownian
motion.

The notion of Gaussian processes generalizes that of Gaussian random
vectors in Rn.

From the formula (3.4) for multivariate normal density we may recall
that the distribution of a Gaussian random vector X in Rn is completely
determined by its covariance matrix. Then, by definition, the distribution of
a Gaussian process (Xt)t∈T is also completely determined1 by its covariance
function Σ(t, s).

7.2.1 Canonical Gaussian processes

We will now consider a wide class of examples of a Gaussian processes in-
dexed by higher-dimensional sets T ⊂ Rn. Consider the standard normal
random vector g ∼ N(0, 1) and define the random process

Xt := 〈g, t〉 , t ∈ T. (7.2)

Then (Xt)t∈T is clearly a Gaussian process, and we call it a canonical Gaus-
sian process. The increments of this process define the Euclidean distance

‖Xt −Xs‖2 = ‖t− s‖2, t, s ∈ T.

(Check!)
One can essentially realize any Gaussian process as the canonical process

(7.2). This follows from a simple observation about Gaussian vectors.

Lemma 7.2.2 (Gaussian random vectors). Let Y be a mean zero Gaussian
random vector in Rn. Then there exist points t1, . . . , tn ∈ Rn such that

Y ≡ (〈g, ti〉)ni=1 , where g ∼ N(0, In).

Here “≡” means that the distributions of the two random vectors are the
same.

Proof. Let Σ denote the covariance matrix of Y . Then we may realize

Y ≡ Σ1/2g where g ∼ N(0, In)

(recall Section 3.3.2). Next, the coordinates of the vector Σ1/2g are 〈ti, g〉
where ti denote the rows of the matrix Σ1/2. This completes the proof.

1To avoid measurability issues, we do not formally define the distribution of a random
process here. So the statement above should be understood as the fact that the covariance
function determines the distribution of all marginals (Xt)t∈T0 with finite T0 ⊂ T .
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It follows that for any Gaussian process (Ys)s∈S , all finite-dimensional
marginals (Ys)s∈S0 , |S0| = n can be represented as the canonical Gaussian
process (7.2) indexed in a certain subset T0 ⊂ Rn.

Exercise 7.2.3. Realize an N -step random walk of Example 7.1.3 with Zi ∼
N(0, 1) as a canonical Gaussian process (7.2) with T ⊂ RN . Hint: It might be

simpler to think about increments ‖Xt −Xs‖2 instead of the covariance matrix.

7.3 Slepian’s inequality

In many applications, it is useful to have a uniform control on a random
process (Xt)t∈T , that is to have a bound on2

E sup
t∈T

Xt.

For the standard Brownian motion, the answer is known exactly. As a
consequence of the so-called reflection principle, we have

E sup
t≤t0

Xt =

√
2t0
π

for every t0 ≥ 0.

For general random processes, even Gaussian, this problem is very non-
trivial.

The first general bound we will prove is Slepian’s comparison inequality
for Gaussian processes. It basically states that the faster the process grows
(in terms of the magnitude of increments), the farther it gets.

Theorem 7.3.1 (Slepian’s inequality). Let (Xt)t∈T and (Yt)t∈T be two
Gaussian processes. Assume that for all t, s ∈ T , we have

EX2
t = EY 2

t and E(Xt −Xs)
2 ≤ E(Yt − Ys)2. (7.3)

Then for every τ ≥ 0 we have

P
{

sup
t∈T

Xt ≥ τ
}
≤ P

{
sup
t∈T

Yt ≥ τ
}
. (7.4)

Consequently,
E sup
t∈T

Xt ≤ E sup
t∈T

Yt. (7.5)

Whenever the tail comparison inequality (7.4) holds, we say that the
random variable X is stochastically dominated by the random variable Y .

We will prove Slepian’s inequality now.

2To avoid measurability issues, we will study random processes through their finite-
dimensional marginals as before. Thus we interpret E supt∈T Xt more formally as
supT0⊂T Emaxt∈T0 Xt where the supremum is over all finite subsets T0 ⊂ T .
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7.3.1 Gaussian interpolation

The proof of Slepian’s inequality that we are about to give will be based
on the useful technique of Gaussian interpolation. Let us describe it briefly.
Assume that T is finite; then X = (Xt)t∈T and Y = (Yt)t∈T are Gaussian
random vectors in Rn. We may also assume that X and Y are indepen-
dent. (Why?) Define the Gaussian random vector Z(u) that continuously
interpolates between Z(0) = Y and Z(1) = X:

Z(u) :=
√
uX +

√
1− uY, u ∈ [0, 1].

Then the covariance matrix of Z(u) interpolates linearly between the covari-
ance matrices of Y and X:

Σ(Z(u)) = uΣ(X) + (1− u) Σ(Y ).

(Check this!)
We will study how the quantity

E f(Z(u))

changes as u increases from 0 to 1, where f : Rn → R is a general function.
Of specific interest to us is f that is a smooth approximation to the indicator
function 1{maxi xi<u}. We will be able to show that in this case, E f(Z(u))
increases in u. This would imply the conclusion of Slepian’s inequality at
once, since then

E f(Z(1)) ≥ E f(Z(0)), thus P
{

max
i
Xi < τ

}
≥ P

{
max
i
Yi < τ

}
as claimed.

We will now pass to a detailed argument. To develop Gaussian interpo-
lation, let us start with the following useful identity.

Lemma 7.3.2 (Gaussian integration by parts). Let X ∼ N(0, 1). Then for
any differentiable function f : R→ R we have

E f ′(X) = EXf(X).

Proof. Assume first that f has bounded support. Denoting the Gaussian
density of X by

p(x) =
1√
2π
e−x

2/2,
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we can express the expectation as an integral, and integrate it by parts:

E f ′(X) =

∫
R
f ′(x)p(x) dx = −

∫
R
f(x)p′(x) dx. (7.6)

Now, a direct check gives

p′(x) = −xp(x),

so the integral in (7.6) equals∫
R
f(x)p(x)x dx = EXf(X),

as claimed. The identity can be extended to general functions by an ap-
proximation argument. The lemma is proved.

Exercise 7.3.3. If X ∼ N(0, σ2), show that

EXf(X) = σ2 E f ′(X).

Hint: Represent X = σZ for Z ∼ N(0, 1), and apply Gaussian integration by parts.

Gaussian integration by parts generalizes nicely to high dimenions.

Lemma 7.3.4 (Multivariate Gaussian integration by parts). Let X ∼ N(0,Σ).
Then for any differentiable function f : Rn → R we have

EXf(X) = Σ · E∇f(X).

Exercise 7.3.5. [Difficulty=4] Prove Lemma 7.3.4. According to the matrix-
by-vector multiplication, note that the conclusion of the lemma is equivalent
to

EXif(X) =
n∑
j=1

Σij E
∂f

∂xj
(X), i = 1, . . . , n. (7.7)

Hint: Represent X = Σ1/2Z for Z ∼ N(0, In). Then

Xi =

n∑
k=1

(Σ1/2)ikZk and EXif(X) =

n∑
k=1

(Σ1/2)ik EZkf(Σ1/2Z).

Apply univariate Gaussian integration by parts (Lemma 7.3.2) for EZkf(Σ1/2Z) as a

function of Zk ∼ N(0, 1), and simplify.
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Lemma 7.3.6 (Gaussian interpolation). Consider two independent Gaus-
sian random vectors X ∼ N(0,ΣX) and Y ∼ N(0,ΣY ). Define the interpo-
lation Gaussian vector

Z(u) :=
√
uX +

√
1− uY, u ∈ [0, 1]. (7.8)

Then for any twice-differentiable function f : Rn → R, we have

d

du
E f(Z(u)) =

1

2

n∑
i,j=1

(ΣX
ij − ΣY

ij)E
[ ∂2f

∂xi ∂xj
(Z(u))

]
. (7.9)

Proof. Using the chain rule,3 we have

d

du
E f(Z(u)) =

n∑
i=1

E
∂f

∂xi
(Z(u))

dZi(t)

du

=
1

2

n∑
i=1

E
∂f

∂xi
(Z(u))

(Xi√
u
− Yi√

1− u

)
(by (7.8)). (7.10)

Let us break this sum into two, and first compute the contribution of
the terms containing Xi. To this end, we condition on Y and express

n∑
i=1

1√
u
EXi

∂f

∂xj
(Z(u)) =

n∑
i=1

1√
u
EXigi(X), (7.11)

where

gi(X) =
∂f

∂xi
(
√
uX +

√
1− uY ).

Apply the multivariate Gaussian integration by parts (Lemma 7.3.4). Ac-
cording to (7.7), we have

EXigi(X) =
n∑
j=1

ΣX
ij E

∂gi
∂xj

(X)

=

n∑
j=1

ΣX
ij E

∂2f

∂xi ∂xj
(
√
uX +

√
1− uY ) ·

√
u.

Substitute this into (7.11) to get

n∑
i=1

1√
u
EXi

∂f

∂xj
(Z(u)) =

n∑
i,j=1

ΣX
ij E

∂2f

∂xi ∂xj
(Z(u)).

3Here we use the multivariate chain rule to differentiate a function f(g1(u), . . . , gn(u))
as follows: df

du
=
∑n
i=1

∂f
∂xi

dgi
du

.
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Taking expectation of both sides with respect to Y , we lift the conditioning
on Y .

We can simiarly evaluate the other sum in (7.10), the one containing the
terms Yi. Combining the two sums we complete the proof.

7.3.2 Proof of Slepian’s inequality

We are ready to establish a preliminary, functional form Slepian’s inequality.

Lemma 7.3.7 (Slepian’s inequality, functional form). Consider two mean
zero Gaussian random vectors X and Y in Rn. Assume that for all i, j =
1, . . . , n, we have

EX2
i = EY 2

i and E(Xi −Xj)
2 ≤ E(Yi − Yj)2.

Consider a twice-differentiable function f : Rn → R such that

∂2f

∂xi ∂xj
≥ 0 for all i 6= j.

Then
E f(X) ≥ E f(Y ).

Proof. The assumptions imply that the entries of the covariance matrices
ΣX and ΣY of X and Y satisfy

ΣX
ii = ΣY

ii and ΣX
ij ≥ ΣY

ij .

for all i, j = 1, . . . , n. We can assume that X and Y are independent.
(Why?) Apply Lemma 7.3.6 and using our assumptions, we conclude that

d

du
E f(Z(u)) ≥ 0,

so E f(Z(u)) increases in u. Then E f(Z(1)) = E f(X) is at least as large as
E f(Z(0)) = E f(Y ). This completes the proof.

Now we are ready to prove Slepian’s inequality, Theorem 7.3.1. Let us
state and prove it in the equivalent form for Gaussian random vectors.

Theorem 7.3.8 (Slepian’s inequality). Let X and Y be Gaussian random
vectors as in Lemma 7.3.7. Then for every u ≥ 0 we have

P
{

max
i≤n

Xi ≥ τ
}
≤ P

{
max
i≤n

Yi ≥ τ
}
.

Consequently,
Emax

i≤n
Xi ≤ Emax

i≤n
Yi.
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Proof. Let h : R → [0, 1] be a twice-differentiable, non-increasing approxi-
mation to the indicator function of the interval (−∞, τ):

h(x) ≈ 1(−∞,τ),

see Figure 7.2. Define the function f : Rn → R by

Figure 7.2: The function h(x) is a smooth, non-increasing approximation to the
indicator function 1(−∞,τ).

f(x) = h(x1) · · ·h(xn).

Then f(x) is an approximation to the indicator function

f(x) ≈ 1{maxi xi<τ}.

We are looking to apply the functional form of Slepian’s inequality, Lemma 7.3.7,
for f(x). To check the assumptions of this result, note that for i 6= j we
have

∂2f

∂xi ∂xj
= h′(xi)h

′(xj) ·
∏

k 6∈{i,j}

h(xk).

The first two factors are negative and the others are positive by the assump-
tion. Thus second derivative is positive, as required.

It follows that
E f(X) ≥ E f(Y ).

By approximation, this implies

P
{

max
i≤n

Xi < τ

}
≥ P

{
max
i≤n

Yi < τ

}
.

This proves the first part of the conclusion. The second part follows using
the integral identity in Lemma 1.2.1, see Exercise 7.3.9.

Exercise 7.3.9. Using the integral identity in Lemma 1.2.1, deduce the
second part of Slepian’s inequality (comparison of expectations).
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7.3.3 Sudakov-Fernique’s and Gordon’s inequalities

Slepian’s inequality has two assumptions on the processes (Xt) and (Yt) in
(7.3): the equality of variances and the dominance of increments. We will
now remove the assumption on the equality of variances, and still be able
to obtain (7.5). This more practically useful result is due to Sudakov and
Fernique.

Theorem 7.3.10 (Sudakov-Fernique’s inequality). Let (Xt)t∈T and (Yt)t∈T
be two Gaussian processes. Assume that for all t, s ∈ T , we have

E(Xt −Xs)
2 ≤ E(Yt − Ys)2.

Then
E sup
t∈T

Xt ≤ E sup
t∈T

Yt.

Proof. It is enough to prove this theorem for Gaussian random vectors X
and Y in Rn, just like we did for Slepian’s inequality in Theorem 7.3.8. We
will again deduced the result from Gaussian Interpolation Lemma 7.3.6. But
this time, instead of choosing f(x) that approximates the indicator function
of {maxi xi < τ}, we want f(x) to approximate maxi xi.

To this end, let β > 0 be a parameter and define the function4

f(x) :=
1

β
log

n∑
i=1

eβxi . (7.12)

A quick check shows that

f(x)→ max
i≤n

xi as β →∞.

Substituting f(x) into the Gaussian interpolation formula (7.9) and simpli-
fying the expression shows that d

du E f(Z(u)) ≤ 0 for all u (see the exercise
below). The proof can then be completed just like the proof of Slepian’s
inequality.

Exercise 7.3.11. [Difficulty=6] Show that d
du E f(Z(u)) ≤ 0 in Sudakov-

Fernique’s Theorem 7.3.10. Hint: Differentiate f and check that

∂f

∂xi
=

eβxi∑
k e

βxk
=: pi(x) and

∂2f

∂xi∂xj
= β (δijpi(x)− pi(x)pj(x))

4The motivation for considering this form of f(x) comes from statistical mechanics,
where the right side of (7.12) can be interpreted as a log-partition function and β as the
inverse temperature.
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where δij is the Kronecker delta, which equals 1 is i = j and 0 otherwise. Next, check the
following numeric identity:

If

n∑
i=1

pi = 1 then

n∑
i,j=1

σij(δijpi − pipj) =
1

2

∑
i 6=j

(σii + σjj − 2σij)pipj .

Use Gaussian interpolation formula 7.3.6. Simplify the expression using the identity above
with σij = ΣXij − ΣYij and pi = pi(Z(u)). Deduce that

d

du
E f(Z(u)) =

β

4

∑
i6=j

[
E(Xi −Xj)2 − E(Yi − Yj)2

]
E pi(Z(u)) pj(Z(u)).

By the assumptions, this expression is non-positive.

Exercise 7.3.12 (Gordon’s inequality). [Difficulty=6] Prove the following
extension of Slepian’s inequality due to Y. Gordon. Let (Xut)u∈U, t∈T and
Y = (Yut)u∈U, t∈T be two Gaussian processes indexed by pairs of points (u, t)
in a product set U × T . Assume that we have

EX2
ut = EY 2

ut, E(Xut −Xus)
2 ≤ E(Yut − Yus)2 for all u, t, s;

E(Xut −Xvs)
2 ≥ E(Yut − Yvs)2 for all u 6= v and all t, s.

Then for every τ ≥ 0 we have

P
{

inf
u∈U

sup
t∈T

Xut ≥ τ
}
≤ P

{
inf
u∈U

sup
t∈T

Yut ≥ τ
}
.

Consequently,
E inf
u∈U

sup
t∈T

Xut ≤ E inf
u∈U

sup
t∈T

Yut. (7.13)

Hint: Use Gaussian Interpolation Lemma 7.3.6 for f(x) =
∏
i

[
1−

∏
j h(xij)

]
where h(x)

is an approximation to the indicator function 1{x≤τ}, as in the proof of Slepian’s inequality.

Similarly to Sudakov-Fernique’s inequality, it is possible to remove the
assumption of equal variances from Gordon’s theorem, and still be able to
derive (7.13). We will not prove this result.

7.4 Sharp bounds on Gaussian matrices

We will illustrate Gaussian comparison inequalities that we just proved with
an application to random matrices. In Section 4.3.2, we studied m × n
random matrices A with independent, sub-gaussian rows. We used the ε-
net argument to control the norm of A as follows:

E ‖A‖ ≤
√
m+ C

√
n
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where C is a constant. We will now improve this bound for Gaussian ran-
dom matrices, showing that it holds with the sharp constant C = 1. Our
argument will be based on Sudakov-Fernique’s inequality.

Theorem 7.4.1 (Norms of Gaussian random matrices). Let A be an m×n
matrix with independent N(0, 1) entries. Then

E ‖A‖ ≤
√
m+

√
n.

Proof. We can realize the norm of A as a supremum of a Gaussian process.
Indeed,

‖A‖ = max
u∈Sn−1, v∈Sm−1

〈Au, v〉 = max
(u,v)∈T

Xuv

where T denotes the product set Sn−1 × Sm−1 and

Xuv := 〈Au, v〉 ∼ N(0, 1).

(Check!)
To apply Sudakov-Fernique’s comparison inequality (Theorem 7.3.10),

let us compute the increments of the process (Xuv). For any (u, v), (w, z) ∈
T , we have

E(Xuv −Xwz)
2 = E (〈Au, v〉 − 〈Aw, z〉)2 = E

(∑
i,j

Aij(uivj − wizj)
)2

=
∑
i,j

(uivj − wizj)2 (by independence, mean 0, variance 1)

= ‖uvT − wzT‖2F
≤ ‖u− w‖22 + ‖v − z‖22 (see Exercise 7.4.2 below).

Let us define a simpler Gaussian process (Yuv) with similar increments
as follows:

Yuv := 〈g, u〉+ 〈h, v〉 , (u, v) ∈ T,

where
g ∼ N(0, In), h ∼ N(0, Im)

are independent Gaussian vectors. The increments of this process are

E(Yuv − Ywz)2 = E (〈g, u− w〉+ 〈h, v − z〉)2

= E 〈g, u− w〉2 + E 〈h, v − z〉2 (by independence, mean 0)

= ‖u− w‖22 + ‖v − z‖22 (since g, h are standard normal).
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Comparing the increments of the two processes, we see that

E(Xuv −Xwz)
2 ≤ E(Yuv − Ywz)2 for all (u, v), (w, z) ∈ T,

as required in Sudakov-Fernique’s inequality. Applying Theorem 7.3.10, we
obtain

E ‖A‖ = E sup
(u,v)∈T

Xuv ≤ E sup
(u,v)∈T

Yuv

= E sup
u∈Sn−1

〈g, u〉+ E sup
v∈Sm−1

〈h, v〉

= E ‖g‖2 + E ‖h‖2
≤ (E ‖g‖22)1/2 + (E ‖h‖22)1/2 (by inequality (1.1) for Lp norms)

=
√
n+
√
m (recall Lemma 3.2.4).

This completes the proof.

Exercise 7.4.2. Prove the following bound used in the proof of Theorem 7.4.1.
For any vectors u,w ∈ Sn−1 and v, z ∈ Sm−1, we have

‖uvT − wzT‖2F ≤ ‖u− w‖22 + ‖v − z‖22.

While Theorem 7.4.1 does not give any tail bound for ‖A‖, we can au-
tomatically deduce a tail bound using concentration inequalities we studied
in Section 5.2.

Corollary 7.4.3 (Norms of Gaussian random matrices: tails). Let A be an
m × n matrix with independent N(0, 1) entries. Then for every t ≥ 0, we
have

P
{
‖A‖ ≥

√
m+

√
n+ t

}
≤ 2 exp(−ct2).

Proof. This result follows by combining Theorem 7.4.1 with the concentra-
tion inequality in the Gauss space, Theorem 5.2.1.

To use concentration, we will view A as a long random vector in Rm×n.
In fact, A is the standard normal random vector, A ∼ N(0, Inm). The
Euclidean norm ‖A‖2 of such vector is the same as the Frobenius norm
‖A‖F , and the operator norm ‖A‖ is smaller:

‖A‖ ≤ ‖A‖F = ‖A‖2.

This shows that A 7→ ‖A‖ is a Lipschitz function on Rm×n, and its Lipschitz
norm is bounded by 1. Then Theorem 5.2.1 yields

P {‖A‖ ≥ E ‖A‖+ t} ≤ 2 exp(−ct2).

The bound on E ‖A‖ from Theorem 7.4.1 completes the proof.
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Exercise 7.4.4 (Smallest singular values). [Difficulty=5] Use Gordon’s in-
equality stated in Exercise 7.3.12 to obtain a sharp bound on the smallest
singular value of an m × n random matrix A with independent N(0, 1) en-
tries:

E sn(A) ≥
√
m−

√
n.

Combine this result with concentration to show the tail bound

P
{
‖A‖ ≤

√
m−

√
n− t

}
≤ 2 exp(−ct2).

Hint: Relate the smallest singular value to the min-max of a Gaussian process:

sn(A) = min
u∈Sn−1

max
v∈Sm−1

〈Au, v〉 .

Apply Gordon’s inequality (without the requirement of equal variances, which is noted below
Exercise 7.3.12) to show that

E sn(A) ≥ E ‖h‖2 − E ‖g‖2 where g ∼ N(0, In), h ∼ N(0, Im).

Combine this with the fact that f(n) := E ‖g‖2 −
√
n is increasing in dimension n. (Take

this fact for granted; it can be proved by a tedious calculation.)

Exercise 7.4.5 (Symmetric random matrices). [Difficulty=6] Modify the
arguments above to bound the norm of a symmetric n × n Gaussian ran-
dom matrix A whose entries above the diagonal are independent N(0, 1)
random variables, and the diagonal entries are independent N(0, 2) random
variables. This distribution of random matrices is called the Gaussian or-
thogonal ensemble (GOE). Show that

E ‖A‖ ≤ 2
√
n.

Next, deduce the tail bound

P
{
‖A‖ ≥ 2

√
n+ t

}
≤ 2 exp(−ct2).

Bai-Yin’s law – state it
somewhere, see a section
that is commented out
here

7.5 Sudakov’s minoration inequality

Let us return to studying general Gaussian processes (Xt)t∈T . As we ob-
served in Section 7.1.1, the sizes of the increments

d(t, s) := ‖Xt −Xs‖2 =
(
E(Xt −Xs)

2
)1/2

(7.14)

defines a distance, or metric on the otherwise abstract index set T . We will
call this metric the canonical metric associated with the random process.
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We also observed in Exercise 7.1.7 that the canonical metric d(t, s) deter-
mines the covariance function Σ(t, s), which in turn determines the distribu-
tion of the process (Xt)t∈T . So in principle, we should be able to answer any
question about the distribution of a Gaussian process (Xt)t∈T by looking at
the geometry of the metric space (T, d). Put plainly, we should be able to
study probability via geometry.

Let us then ask an important specific question. How can we evaluate the
overall magnitude of the process, namely

E sup
t∈T

Xt, (7.15)

in terms of the geometry of (T, d)? This turns out to be a difficult a difficult
problem, which we will start to study here and continue in Sections ?? ...Refer.

In this section, we will prove a useful lower bound on (7.15) in terms of
the metric entropy of the metric space (T, d). Recall from Section 4.2 thatRefer to a subsection

here for ε > 0, the covering number

N (T, d, ε)

is defined to be the smallest cardinality of an ε-net of T in the metric d.
Equivalently, N (T, d, ε) is the smallest number5 of closed balls of radius ε
whose union covers T . Recall also that the logarithm of the covering number,

log2N (T, d, ε)

is called the metric entropy of T .

Theorem 7.5.1 (Sudakov’s minoration inequality). Let (Xt)t∈T be a Gaus-
sian process. Then, for any ε ≥ 0, we have

E sup
t∈T

Xt ≥ cε
√

logN (T, d, ε).

where d is the canonical metric (7.14).

Proof. Let us deduce this result from Sudakov-Fernique’s comparison in-
equality (Theorem 7.3.10). Assume that

N (T, d, ε) =: N

is finite; the infinite case will be considered in Exercise 7.5.2. Let N be a
maximal ε-separated subset of T . Then N is an ε-net of T , and thus

|N | ≥ N.
5If T does not admit a finite ε-net, we set N(t, d, ε) =∞.
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(Check this! Recall the proof of the equivalence between covering and pack-
ing numbers in Lemma 4.2.5.) Restricting the process to N , we see that it
suffices to show that

E sup
t∈N

Xt ≥ ε
√

logN.

We can do it by comparing (Xt)t∈N to a simpler Gaussian process
(Yt)t∈N , which we define as follows:

Yt :=
ε√
2
gt, where gt are independent N(0, 1) random variables.

To use Sudakov-Fernique’s comparison inequality (Theorem 7.3.10), we need
to compare the increments of the two processes. Fix two different points
t, s ∈ N . By definition, we have

E(Xt −Xs)
2 = d(t, s)2 ≥ ε2

while

E(Yt − Ys)2 =
ε√
2
E(gt − gs)2 = ε2.

(In the last line, we use that gt − gs ∼ N(0, 2).) So, we have checked that

E(Xt −Xs)
2 ≥ E(Yt − Ys)2 for all t, s ∈ N .

Applying Theorem 7.3.10, we obtain

E sup
t∈N

Xt ≥ E sup
t∈N

Yt =
ε√
2
Emax
t∈N

gt ≥ c
√

logN.

In the last inequality we used that the expected maximum of N standard
normal random variables is at least c

√
logN , see Exercise 2.5.9. The proof

is complete.

Exercise 7.5.2 (Sudakov’s minoration for non-compact sets). [Difficulty=2]
Show that if (T, d) is not compact, that is if N(T, d, ε) =∞ for some ε, then

E sup
t∈T

Xt =∞.
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7.5.1 Application for covering numbers of sets in Rn

Sudakov’s minoration inequality can be used to estimate the covering num-
bers of geometric sets

T ⊂ Rn.

To see how to do this, consider a canonical Gaussian process on T , namely

Xt := 〈g, t〉 , t ∈ T, where g ∼ N(0, In).

As we observed in Section 7.2.1, the canonical distance for this process is
just the Euclidean distance in Rn, i.e.

d(t, s) = ‖Xt −Xs‖2 = ‖t− s‖2.

Thus Sudakov’s inequality can be stated as follows.

Corollary 7.5.3 (Sudakov’s minoration inequality in Rn). Let T ⊂ Rn.
Then, for any ε > 0, we have

E sup
t∈T
〈g, t〉 ≥ cε

√
logN (T, ε).

Here N (T, ε) is the covering number of T by Euclidean balls – the small-
est number of Euclidean balls with radii ε and centers in T that cover T , see
Section 4.2. Let us illustrate the usefulness of this bound with an example.Check reference

Consider the unit ball of the `1 norm in Rn, denoted

Bn
1 = {x ∈ Rn : ‖x‖1 ≤ 1}.

The vertices of Bn
1 are ±e1, . . . ,±en, where (ei) is the canonical basis. So,

in dimension n = 2, this set is a diamond, and in dimension n = 3, a regular
octahedron, see Figure 7.3.

To apply Corollary 7.5.3 for T = Bn
1 , we compute

E sup
t∈Bn1

〈g, t〉 = Emax
i≤n
|gi| ≤ C

√
log n. (7.16)

Here the first equality follows since the maximum of a linear function f(t) =
〈g, t〉 on the polyhedron Bn

1 is attained on the extremal points (vertices)
of Bn

1 , which are ±ei. The final bound in (7.16) then follows from Exer-
cise 2.5.8. Thus, Sudakov’s inequality (Corollary 7.5.3) yields

ε
√

logN (Bn
1 , ε) ≤ Cε

√
log n.

Simplifying this bound, we obtain:
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Figure 7.3: The unit ball of the `1 norm in Rn, denoted Bn1 , is a diamond in
dimension n = 2 and a regular octahedron in dimension n = 3.

Proposition 7.5.4 (Covering numbers of the `1 ball). For every ε > 0, we
have

N (Bn
1 , ε) ≤ NC/ε2 .

In particular, the covering numbers of Bn
1 are polynomial in dimension

n, for each scale ε.
We may recall that we studied a different method for bounding cover-

ing numbers, which is based on volume comparison; see Proposition 4.2.10.
Which of the two methods is better? Sometimes Sudakov’s inequality gives
better results. In the example above, in order to apply the volumetric
method for Bn

1 one would need to bound the volume of the Minkowski sum
Bn

1 + εBn
2 , which is difficult to compute. In other cases – especially for very

small ε > 0 – the volumetric bound can be better.

Exercise 7.5.5. [Difficulty=5] Compare the bounds on the covering numbers
for the unit Eucledian ball Bn

2 given by Sudakov’s minoration and by volume
comparison (Proposition 4.2.10). Which method gives better results?

Exercise 7.5.6 (Covering numbers of polyhedra). Generalize the proof of
Proposition 7.5.4 to arbitrary polyhedra. Let P be a polyhedron in Rn with
N vertices and whose diameter is bounded by 1. Show that for every ε > 0,

N (P, ε) ≤ NC/ε2 .

Hint: Use the result of Exercise 2.5.8.

7.6 The empirical method for constructing ε-nets

Sudakov’s minoration inequality gives only a bound for the covering num-
bers, but not a constructive method to find ε-nets. In this section, we will
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give an explicit recipe for finding ε-nets of polyhedra. This construction
is known as the empirical method of B. Maurey, and it is again based on
probability.

The empirical method itself allows one to approximate convex hulls of
point sets in Rn. Recall that a convex combination of points z1, . . . , zm ∈ Rm
is a linear combination with coefficients that are non-negative and sum to
1, i.e. a sum of the form

m∑
i=1

λizi, where λi ≥ 0 and
m∑
i=1

λi = 1. (7.17)

The convex hull of a set T ⊂ Rn is the set of all convex combinations of all
finite collections of points in T :

conv(T ) := {convex combinations of z1, . . . , zm ∈ T , for m ∈ N} ,

see Figure 7.4 for illustration.

Figure 7.4: The convex hull of a collection of points on the plane.

The number m of elements defining a convex combination in Rn is not
restricted. However, the classical Caratheodory’s theorem states that one
can always take m ≤ n+ 1.

Theorem 7.6.1 (Caratheodory’s theorem). Every point in the convex hull
of a set T ⊂ Rn can be expressed as a convex combination of at most n+ 1
points from T .

The bound n + 1 can not be improved, as it is attained for a simplex
T (a set of n + 1 points in general position). However, if we only want to
approximate x rather than exactly represent it as a convex combination,
this is possible with much fewer points.
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Theorem 7.6.2 (Approximate Caratheodory’s theorem). Consider a set
T ⊂ Rn whose diameter is bounded by 1. Then, for every point x ∈ conv(T )
and every integer k, one can find points x1, . . . , xk ∈ T such that

∥∥∥x− 1

k

k∑
j=1

xj

∥∥∥
2
≤ 1√

k
.

There are two reasons why this result is surprising. First, one can achieve
good approximation with convex combinations whose length m does not de-
pend on the dimension n. Second, the coefficients of the convex combinations
can be made all equal. (Note however that repetitions among the points xi
are allowed.)

Proof. This argument is known as the empirical method of B. Maurey.

Translating T if necessary, we may assume that not only the diameter
but also the radius of T is bounded by 1, i.e.

‖t‖2 ≤ 1 for all t ∈ T. (7.18)

Let us fix a point x ∈ conv(T ) and express it as a convex combination of
some vectors z1, . . . , zm ∈ T as in (7.17). Now we interpret the definition
of convex combination (7.17) probabilistically, with λi taking the roles of
probabilities. Specifically, we can define a random vector Z that takes values
zi with probabilities λi:

P {Z = zi} = λi, i = 1, . . . ,m.

Then

EZ =

m∑
i=1

λizi = x.

Consider independent copies Z1, Z2, . . . of Z. By the the strong law of
large numbers,

1

k

k∑
j=1

Zj → x almost surely as k →∞.

To get a quantitative form of this result, let us compute the variance of
1
k

∑k
j=1 Zj . (Incidentally, this computation is at the heart of the proof of
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the weak law of large numbers). We obtain

E
∥∥∥x− 1

k

k∑
j=1

Zj

∥∥∥2

2
=

1

k2
E
∥∥∥ k∑
j=1

(Zj − x)
∥∥∥2

2
(since E(Zi − x) = 0)

=
1

k2

k∑
j=1

E ‖Zj − x‖22.

The last identity is just a higher dimensional version of the basic fact that
the variance of a sum of independent random variables equals the sum of
variances; see Exercise 7.6.4 below.

It remains to bound the variances of the terms. We have

E‖Zj − x‖22 = E ‖Z − EZ‖22
= E ‖Z‖22 − ‖EZ‖22 (another variance identity; see Exercise 7.6.4)

≤ E ‖Z‖22 ≤ 1 (since Z ∈ T and using (7.18)).

We showed that

E
∥∥∥x− 1

k

k∑
j=1

Zj

∥∥∥2

2
≤ 1

k
.

Therefore, there exists a realization of the random variables Z1, . . . , Zk such
that ∥∥∥x− 1

k

k∑
j=1

Zj

∥∥∥2

2
≤ 1

k
.

Since by construction each Zj takes values in T , the proof is complete.

We can use the Approximate Caratheodory Theorem 7.6.2 to construct
good coverings of geometric sets. Let us give a constructive version of our
previous result on coverings for polyhedra in Exercise 7.5.6.

Corollary 7.6.3 (Constructing ε-nets of polyhedra). Let P be a polyhedron
in Rn with N vertices and whose diameter is bounded by 1. Then, for every
ε > 0, we have

N (P, ε) ≤ N d1/ε2e.

Moreover, an ε-net with this cardinality can be constructed as follows. Let
k := d1/ε2e and consider the set

N :=
{1

k

k∑
j=1

xj : xj are vertices of P
}
.
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Then N is an ε-net of P , and |N | ≤ Nk.

Proof. The polyhedron P is the convex hull of its vertices, which we denote
by T . Thus, we can apply Theorem 7.6.2 to any point x ∈ P = conv(T )
and deduce that x is within distance 1/

√
k ≤ ε from some point in N . This

shows that N is an ε-net of the polyhedron P .

To bound the cardinality of N , note that there are Nk ways to choose k
out of N vertices with repetition. The proof is complete.

Exercise 7.6.4. [Difficulty=3] Check the following variance identities that
we used in the proof of Approximate Caratheodory’s Theorem 7.6.2.

1. Let Z1, . . . , Zk be independent mean zero random vectors in Rn. Show
that

E
∥∥∥ k∑
j=1

Zj

∥∥∥2

2
=

k∑
j=1

E ‖Zj‖22.

2. Let Z be a random vector in Rn. Show that

E ‖Z − EZ‖22 = E ‖Z‖22 − ‖EZ‖22.

7.7 Gaussian width

In our previous study of the Gaussian processes, we encountered an impor-
tant quantity associated with a general set T ⊂ Rn. It is the magnitude of
the canonical Gaussian process on T , i.e.

E sup
t∈T
〈g, t〉 (7.19)

where the expectation is taken with respect to the Gaussian random vector
g ∼ N(0, In).

We have already seen how the quantity (7.19) can be used to bound cov-
ering numbers of T through Sudakov’s minoration inequality (Corollary ??).
We will later see that (7.19) plays a central role in high dimensional proba-
bility and its applications. In this section, we will give the quantity (7.19)
a name and will study its basic properties.

Definition 7.7.1. The Gaussian width of a subset T ⊂ Rn is defined as

w(T ) := E sup
x∈T
〈g, x〉 where g ∼ N(0, In).
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It is useful to think about Gaussian width w(T ) as one of the basic
geometric quantities associated with subsets of T ⊂ Rn, such as volume and
surface area.

Before we proceed to study the basic properties of Gaussian width, we
should mention that several other variants of this concept can be found in
the literature, such as

E sup
x∈T
| 〈g, x〉 |,

(
E sup
x∈T
〈g, x〉2

)1/2
, E sup

x,y∈T
〈g, x− y〉 , etc.

These versions are equivalent, or almost equivalent, to w(T ). We will men-
tion some of them in this section.

7.7.1 Basic properties

Proposition 7.7.2 (Gaussian width).

1. w(T ) is finite if and only if T is bounded.

2. Gaussian width is invariant under affine transformations. Thus, for
every orthogonal matrix U and any vector y, we have

w(UT + y) = w(T ).

3. Gaussian width is invariant under taking convex hulls. Thus,

w(conv(T )) = w(T ).

4. Gaussian width respects Minkowski addition of sets and scaling. Thus,
for T, S ∈ Rn and a ∈ R we have

w(T + S) = w(T ) + w(S); w(aT ) = |a|w(T ).

5. We have

w(T ) =
1

2
w(T − T ) =

1

2
E sup
x,y∈T

〈g, x− y〉 .

6. (Gaussian width and diameter). We have

1√
2π
· diam(T ) ≤ w(T ) ≤

√
n

2
· diam(T ).
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Proof. Properties 1–4 follow immediately from definition and the rotation
invariance of Gaussian distribution. (Check them!)

To prove property 5, we use property 4 twice and get

w(T ) =
1

2
[w(T ) + w(T )] =

1

2
[w(T ) + w(−T )] =

1

2
w(T − T ),

as claimed.
To prove the lower bound in property 6, fix a pair of points x, y ∈ T .

Then both x− y and y − x lie in T − T , so by property 5 we have

w(T ) ≥ 1

2
Emax (〈x− y, g〉 , 〈y − x, g〉)

=
1

2
E | 〈x− y, g〉 | = 1

2

√
2

π
‖x− y‖2.

The last identity follows since 〈x− y, g〉 ∼ N(0, ‖x− y‖2) and since E |X| =√
2/π for X ∼ N(0, 1). (Check!) It remains to take supremum over all

x, y ∈ T , and the lower bound in property 6 follows.
To prove the upper bound in property 6, we again use property 5 to get

w(T ) =
1

2
E sup
x,y∈T

〈g, x− y〉

≤ 1

2
E sup
x,y∈T

‖g‖2‖x− y‖2 ≤
1

2
E ‖g‖2 · diam(T ).

It remains to recall that E ‖g‖2 ≤ (E ‖g‖22)1/2 =
√
n. Define diameter for-

mally somewhere.
Exercise 7.7.3 (Gaussian width under linear transformations). [Difficulty=3]
Show that for any m× n matrix A, we have

w(AT ) ≤ ‖A‖w(T ).

Hint: Use Sudakov-Fernique’s comparison inequality.

7.7.2 Geometric meaning of width

The notion of the Gaussian width of a set T ⊂ Rn has a nice geometric
meaning. The width of T in the direction of a vector θ ∈ Sn−1 is the smallest
width of the slab between the parallel hyperplanes that are orthogonal θ
and contain T , see Figure 7.5. Analytically, we can express the width in the
direction of θ as

sup
x,y∈T

〈θ, x− y〉 .
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Figure 7.5: The width of a set T ⊂ Rn in the direction of a unit vector θ.

(Check!) If we average the width over all unit directions θ in space, we
obtain the quantity

E sup
x,y∈T

〈θ, x− y〉 = ws(T − T )

whereMaybe make this a for-
mal definition. We are
using spherical width
later.

ws(T ) := E sup
x∈T
〈θ, x〉 where θ ∼ Unif(Sn−1). (7.20)

Analogously to the Gaussian width, ws(T ) is called the spherical width or
the mean width of T .

How different are the Gaussian and spherical widths of T? The difference
is what random vector we use to do the averaging; they are g ∼ N(0, In)
for Gaussian width and θ ∼ Unif(Sn−1) for spherical width. Both g and
θ are rotation invariant, and, as we know, g is approximately

√
n longer

than θ. This makes Gaussian width just a scaling of the spherical width by
approximately

√
n. Let us make this relation more precise.

Lemma 7.7.4 (Gaussian vs. spherical widths). We have

(
√
n− C)ws(T ) ≤ w(T ) ≤ (

√
n+ C)ws(T ).

Proof. Let us express the Gaussian vector g through its length and direction:

g = ‖g‖2 ·
g

‖g‖2
=: rθ.

As we observed in Section 3.3.3, r and θ are independent and θ ∼ Unif(Sn−1).
Thus

w(T ) = E sup
x∈T
〈rθ, x〉 = (E r) · E sup

x∈T
〈θ, x〉 = E ‖g‖2 · ws(T ).

It remains to recall that concentration of the norm implies that∣∣E ‖g‖2 −√n∣∣ ≤ C,
see Exercise 3.1.3.

Do Urysohn’s inequality
as an exercise? Com-
mented out.
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7.7.3 Examples

Euclidean ball

The Gaussian width of the Euclidean unit sphere and ball is

w(Sn−1) = w(Bn
2 ) = E ‖g‖2 =

√
n± C, (7.21)

where we used the result of Exercise 3.1.3. Similarly, the spherical width of
these sets equals 1.

Cube

The unit ball of the `∞ norm on Rn is Bn
∞ = [−1, 1]n. We have

w(Bn
∞) = E ‖g‖1 (check!)

= E |g1| · n =

√
2

π
· n. (7.22)

Compare this with (7.21). The Gaussian width of the cube Bn
∞ and its

circumscribed ball
√
nBn

2 have the same order
√
n, see Figure 7.6a.

(a) The Gaussian widths of the
cube and its circumscribed ball
are of the same order n.

(b) The Gaussian widths of Bn1
and its inscribed ball are almost
of the same order.

Figure 7.6: Gaussian widths of some classical sets in Rn.

The `1 ball

The Gaussian width of the unit ball of the `1 norm in Rn is

c
√

log n ≤ w(Bn
1 ) ≤ C

√
log n. (7.23)
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The upper bound was already noted in (7.16) where we discussed applica-
tions of Sudakov’s inequality; the lower bound follows similarly.

Equivalently, the spherical width of Bn
1 is

ws(n) ∼
√

log n

n
,

Surprisingly, this is much smaller than the diameter of Bn
1 , which equals 2!

Further, if we compare with (7.21), we see that the Gaussian width of Bn
1

is roughly the same (up to a logarithmic factor) as the Gaussian width of
its inscribed Euclidean ball 1√

n
Bn

2 , see Figure 7.6b. This again might look

strange. Indeed, the “octahedron” Bn
1 looks much larger than its inscribed

ball whose diameter is 2√
n

! Why does Gaussian width behave this way?

Let us try to give an intuitive explanation. In high dimensions, the cube
has so many vertices (2n) that most of the volume is concentrated near them.
In fact, the volumes of the cube and its circumscribed ball are both of the
order Cn, so these sets are not far from each other from the volumetric point
of view. So it should not be very surprising to see that the Gaussian widths
of the cube and its circumscribed ball are also of the same order.

The octahedron Bn
1 has much fewer vertices (2n) than the cube. A

random direction θ in Rn is likely to be almost orthogonal to all of them.
So the width of Bn

1 in the direction of θ is not significantly influenced by the
presence of vertices. What really determines the width of Bn

1 is its “bulk”,
which is the inscribed Euclidean ball.

A similar picture can be seen from the volumetric viewpoint. There are
so few vertices in Bn

1 that the regions near them contain very little volume.
The bulk of the volume of Bn

1 lies much closer to the origin, not far from the
inscribed Euclidean ball. Indeed, one can check that the volumes of Bn

1 and
its inscribed ball are both of the order of (C/n)n. So from the volumetric
point of view, the octahedron Bn

1 is similar to its inscribed ball; Gaussian
width gives the same result.

We can illustrate this phenomenon on Figure 7.7b that shows a “hyper-
bolic” picture of the Bn

1 that is due to V. Milman. Such pictures capture
the bulk and outliers very well, but unfortunately they may not accurately
show convexity.

Exercise 7.7.5 (Gaussian width of `p balls). Let 1 ≤ p ≤ ∞. Consider the
unit ball of the `p norm in Rn:

Bn
p := {x ∈ Rn : ‖x‖p ≤ 1} .
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(a) General convex set (b) The octahedron Bn1

Figure 7.7: An intuitive, hyperbolic picture of a convex body in Rn. The bulk is a
round ball that contains most of the volume.

Check that
w(Bn

p ) ≤ C min
(√

p′ n1/p′ ,
√

log n
)
.

Here p′ denotes the conjugate exponent for p, which is defined by the equa-
tion 1

p + 1
p′ = 1, and with the convention that 1

∞ = 0.

Finite point sets

Exercise 7.7.6. [Difficulty=3] Let T be a finite set of points in Rn. Show
that

w(T ) ≤
√

log |T | · diam(T ).

Hint: Use the result of Exercise 2.5.8.

In particular, the spherical mean width of a finite point set T is usually
much smaller than the diameter of T , unless there are exponentially many
points. This is just a more general observation than we have seen for the `1
ball Bn

1 , which is a convex hull of 2n points.

7.7.4 Statistical dimension

The notion of Gaussian width will help us to introduce a more robust version
of the classical notion of dimension. In this application, it will be more
convenient to work with a closely related squared version of the Gaussian
width:

h(T )2 := E sup
t∈T
〈g, t〉2 , where g ∼ N(0, In). (7.24)

The squared and usual versions of the Gaussian width are equivalent, up to
constant factor:
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Exercise 7.7.7 (Equivalence). [Difficulty=6] Check that

w(T − T ) ≤ h(T − T ) ≤ w(T − T ) + C1 diam(T ) ≤ Cw(T − T ).

Hint: Use Gaussian concentration to prove the upper bound.

In particular,
1

2
w(T ) ≤ h(T − T ) ≤ C

2
w(T ). (7.25)

The usual, linear algebraic, dimension dimT of a subset T ⊂ Rn, is
the smallest dimension of a linear subspace E ⊂ Rn that contains T . The
algebraic dimension is highly unstable: it can significantly change (usually
upwards) by small perturbations of T . We will now introduce a stable version
of dimension, or complexity of T , which is based on Gaussian width.

Definition 7.7.8 (Statistical dimension). For a bounded set T ⊂ Rn, the
statistical dimension of T is defined as

d(T ) :=
h(T − T )2

diam(T )2
∼ w(T )2

diam(T )2
.

We should first note that the statistical dimension is always bounded by
the algebraic dimension.

Lemma 7.7.9. For any set T ⊂ Rn, we have

d(T ) ≤ dim(T ).

Proof. Let dimT = k; this means that T lies in some subspace E ⊂ Rn of
dimension k. By rotation invariance, we can assume that E is the coordinate
subspace, i.e. E = Rk = Rn. (Why?) By definition, we have

h(T − T )2 = E sup
x,y∈T

〈g, x− y〉2

Since x− y ∈ Rk and ‖x− y‖2 ≤ diam(T ), we have x− y = diam(T ) · z for
some z ∈ Bk

2 . Thus the quantity above is bounded by

diam(T )2 · E sup
z∈Bk2

〈g, z〉2 = diam(T )2 · E ‖Pkg‖22

where Pk is the orthogonal projection onto Rk. Finally, Pkg ∼ N(0, Ik) and

E ‖Pkg‖22 = k.

(Check!) This shows that h(T − T )2 ≤ diam(T )2 · k, as required.
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Exercise 7.7.10. Show that if T is a Euclidean ball in any subspace of Rn
then

d(T ) = dim(T ).

In general, the statistical dimension can be much smaller than the alge-
braic dimension:

Example 7.7.11. Let T be a finite set of points in Rn. Then

d(T ) ≤ log |T |.

This follows from the bound on the Gaussian width of T in Exercise 7.7.6,
the definition of statistical dimension and the equivalence (7.25).

7.7.5 Stable rank

The statistical dimension is more robust than the algebraic dimension. In-
deed, small perturbation of a set T leads to small perturbation of Gaussian
width and the diameter of T , and thus the statistical dimension d(T ).

To see this on an example, consider the Euclidean ball Bn
2 whose both

algebraic and statistical dimensions equal n. Let us decrease one of the axes
of Bn

2 gradually from 1 to 0. The algebraic dimension will stay at n through
this process and then jump to n − 1. The statistical dimension instead
gradually slides from n to n − 1. This is a consequence of the following
simple fact.

Exercise 7.7.12 (Ellipsoids). [Difficulty=4] Let A be an m×n matrix, and
Bn

2 denote the unit Euclidean ball. Check that the squared mean width of the
ellipsoid ABn

2 is the Frobenius norm of A, i.e.

h(ABn
2 ) = ‖A‖F .

Deduce that the statistical dimension of the ellipsoid ABn
2 equals

d(ABn
2 ) =

‖A‖2F
‖A‖2

. (7.26)

This example relates the statistical dimension to the notion of stable rank
of matrices, which is a robust version of the classical, linear algebraic, rank.

Definition 7.7.13 (Stable rank). The stable rank of an m×n matrix A is
defined as

r(A) :=
‖A‖2F
‖A‖2

.
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The robustness of stable rank makes it a useful quantity in numerical
linear algebra. The usual, algebraic, rank is the algebraic dimension of the
image of A; in particular

rank(A) = dim(ABn
2 ).

Similarly, (7.26) shows that the stable rank is the statistical dimension of
the image:

r(A) = d(ABn
2 ).

Finally, note that the stable rank is always bounded by the usual rank:

r(A) ≤ rank(A).

(Check this.)

Gaussian complexity

To finish this discussion, let us mention one more cousin of Gaussian width,
where instead of squaring 〈g, x〉 as in (7.24) we take absolute value:

γ(T ) := E sup
x∈T
| 〈g, x〉 | where g ∼ N(0, In). (7.27)

We call γ(T ) Gaussian complexity of T . Obviously, we have

w(T ) ≤ γ(T ),

with equality if T is origin-symmetric, i.e. T = −T . Since T − T is origin-
symmetric, property 5 of Proposition 7.7.2 implies that

w(T ) =
1

2
w(T − T ) =

1

2
γ(T − T ). (7.28)

In general, Gaussian width and complexity may be different. For example,
if T consists of a single point, w(T ) = 0 but γ(T ) > 0. (What is γ(T ) here
exactly?) Still, these two quantities are very closely related:

Exercise 7.7.14 (Gaussian width vs. Gaussian complexity). [Difficulty=6]
Consider a set T ⊂ Rn. Show that

1

3
[w(T ) + ‖y‖2] ≤ γ(T ) ≤ 2 [w(T ) + ‖y‖2]

for any point y ∈ T . (It is fine if you prove this inequality with other absolute
constants instead of 2 and 3.)

In particular, Gaussian width and Gaussian complexity are equivalent
for any set T that contains the origin:

w(T ) ≤ γ(T ) ≤ 2w(T ).
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7.7.6 Computing Gaussian width

How can we compute the Gaussian width w(T ) of a given set T? Algorith-
mically, this is not difficult, as long as we have a good description of T . To
see this, recall that Gaussian width is invariant under taking convex hulls
by Proposition 7.7.2, so we can assume that T is convex. (Otherwise, one
needs to compute the convex hull of T , for which algorithms are available.)

Next, for a fixed g ∈ Rn, we need to be able to compute.

sup
x∈T

g(x) (7.29)

We can frame this as a convex optimization problem, since we are maximiz-
ing a linear function on a convex set.

Finally, we need to average over g ∼ N(0, In). This can be avoided using
Gaussian concentration. Indeed, computing (7.29) with just one realization
of g will produce a result close to w(T ):

Exercise 7.7.15 (Approximating Gaussian width). [Difficulty=3] Let T ⊂
Rn and g ∼ N(0, In). Show that for any u ≥ 0,∣∣∣ sup

x∈T
〈g, x〉 − w(T )

∣∣∣ ≤ u · r(T )

with probability at least 1− 2 exp(−cu2), where

r(T ) = sup
x∈T
‖x‖2

denotes the radius of T . Hint: Deduce this from Gaussian concentration, Theo-

rem 5.2.1. Is it possible to compute
width with relative 1± ε
error?Computing the Gaussian width w(T ) theoretically for a general given set

T , even up to a constant factor, may not be easy. As we know, Sudakov’s
minoration inequality gives a lower bound on the Gaussian width in terms
of the covering numbers of T . Indeed, Corollary 7.5.3 states that

w(T ) ≥ cε
√

logN (T, ε), ε > 0.

In the next section we will develop an upper bound on the Gaussian width
in terms of the covering numbers of T , known as Dudley’s inequality.
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7.8 Random projections of sets

Let us consider a set T ⊂ Rn and project it onto a random m-dimensional
subspace in Rn chosen uniformly from the Grassmanian Gn,m (see Figure 5.2
for illustration. In applications, we might think of T as a collection of data
points and P as a means of dimension reduction. What can we say about
the geometry of the projected set PT?

If T is a finite set, Johnson-Lindenstrauss Lemma (Theorem 5.3.1) can
be helpful. It states that as long as

m & log |T |, (7.30)

the random projection P acts essentially as scaling of T . Indeed, P shrinks
all distances between points in T by a factor ≈

√
m/n, and in particular

diam(PT ) ≈
√
m

n
diam(T ). (7.31)

If there are too many points in T , or perhaps T is an infinite set, then
(7.31) may fail. For example, if T = Bn

2 is a Euclidean ball than no projec-
tion can shrink the size of T at all, and we have

diam(PT ) = diam(T ). (7.32)

What happens for a general set T? The following result states that a
random projection shrinks T as in (7.31), but it can not shrink beyond the
spherical width of T .

Theorem 7.8.1 (Sizes of random projections of sets). Consider a bounded
set T ⊂ Rn. Let P be a projection in Rn onto a random m-dimensional
subspace E ∼ Unif(Gn,m). Then, with probability at least 1−2e−m, we have

diam(PT ) ≤ C
[
ws(T ) +

√
m

n
diam(T )

]
.

For the proof of this result, it will be convenient to change the model for
the random projection P .

Exercise 7.8.2 (Equivalent models for random projections). Let P be a
projection in Rn onto a random m-dimensional subspace E ∼ Unif(Gn,m).
Let Q be an m×n matrix obtained by choosing the first m rows of a random
n×n orthogonal matrix, which is drawn uniformly from the orthogonal group
U ∼ Unif(O(n)).
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1. Show that for any fixed point x ∈ Rn,

‖Px‖2 and ‖Qx‖2 have the same distribution.

Hint: Use the singular value decomposition of P .

2. Show that for any fixed point z ∈ Sm−1,

QTz ∼ Unif(Sn−1).

In other words, the map QT acts a random isometric embedding of Rm into
Rn. Hint: It is enough to check the rotation invariance of the distribution of QTz.

Proof of Theorem 7.8.1. This proof is one more example of an ε-net argu-
ment. Without loss of generality, we may assume that diam(T ) ≤ 1. (Why?)

Step 1: Approximation. By Exercise 7.8.2, it suffices to prove the
theorem for Q instead of P . So we are going to bound

diam(QT ) = sup
x∈T−T

‖Qx‖2 = sup
x∈T−T

max
z∈Sm−1

〈Qx, z〉 .

Similarly to our older arguments (for example, in the proof of Theorem 4.3.5
on random matrices), we will discretize the sphere Sn−1. Choose an (1/2)-
net N of Sn−1 so that

|N | ≤ 5m;

this is possible to do by Corollary 4.2.11. We can replace the supremum
over the sphere Sn−1 by the supremum over the net N paying a factor 2:

diam(QT ) ≤ 2 sup
x∈T−T

max
z∈N
〈Qx, z〉 = 2 max

z∈N
sup

x∈T−T

〈
QTz, x

〉
. (7.33)

(Recall Exercise 4.3.2.) In order to control this double maximum, we will
first control the quantity

sup
x∈T−T

〈
QTz, x

〉
. (7.34)

for a fixed z ∈ N and with high probability, and then take union bound over
all z.

Step 2: Concentration. So, let us fix z ∈ N . By Exercise 7.8.2,
QTz ∼ Unif(Sn−1). Then we might recognize the expectation of (7.34) as
the spherical width defined in (7.20):

E sup
x∈T−T

〈
QTz, x

〉
= ws(T − T ) = 2ws(T ).
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(The last identity is the spherical version of a similar property of the Gaus-
sian width, see part 5 of Proposition 7.7.2.)

Next, let us check that (7.34) concentrates nicely around its mean 2ws(T ).
For this, we can use the concentration inequality (5.6) for Lipschitz func-
tions on the sphere. Since we assumed that diam(T ) ≤ 1 in the beginning,
once can quickly check that the function

θ 7→ sup
x∈T−T

〈θ, x〉

is a Lipschitz function on the sphere Sn−1, and its Lipschitz norm is at most
1. (Do this!) Therefore, applying the concentration inequality (5.6), we
obtain

P
{

sup
x∈T−T

〈
QTz, x

〉
≥ 2ws(T ) + t

}
≤ 2 exp(−cnt2).

Step 3: Union bound. Now we unfix z ∈ N by taking the union
bound over N . We get

P
{

max
z∈N

sup
x∈T−T

〈
QTz, x

〉
≥ 2ws(T ) + t

}
≤ |N | · 2 exp(−cnt2) (7.35)

Recall that |N | ≤ 5m. Then, if we choose

t = C

√
m

n

with C large enough, the probability in (7.35) can be bounded by 2e−m.
Then (7.35) and (7.33) yield

P
{

1

2
diam(QT ) ≥ 2w(T ) + C

√
m

n

}
≤ e−m.

This proves Theorem 7.8.1.

Exercise 7.8.3 (Gaussian projection). [Difficulty=6] Prove a version of
Theorem 7.8.1 for m × n Gaussian random matrix G with independent
N(0, 1) entries. Specifically, show that for any bounded set T ⊂ Rn, we
have

diam(GT ) ≤ C
[
w(T ) +

√
m diam(T )

]
with probability at least 1− 2e−m. Here w(T ) is the Gaussian width of T .
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7.8.1 The phase transition

Let us pause to take a closer look at the bound Theorem 7.8.1 gives. We
can equivalently write it as

diam(PT ) ≤ C max
[
ws(T ),

√
m

n
diam(T )

]
.

Let us compute the dimension m for which the phase transition occurs be-
tween the two terms ws(T ) and

√
m
n diam(T ). Setting them equal to each

other and solving for m, we find that the phase transition happens when

m =
(
√
nws(T ))2

diam(T )2

∼ w(T )2

diam(T )2
(pass to Gaussian width using Lemma 7.7.4)

∼ d(T ) (by Definition 7.7.8 of statistical dimension).

So we can express the result Theorem 7.8.1 as follows:

diam(PT ) ≤

C
√
m

n
diam(T ), m ≥ d(T )

Cws(T ), m ≤ d(T ).

Figure 7.8 shows a graph of diam(PT ) as a function of the dimension m.

Figure 7.8: The diameter of a random m-dimensional projection of a set T as a
function of m.

For large m, the random m-dimensional projection shrinks T by the
factor ∼

√
m/n, just like we have seen in (7.31) in the context of Johnson-

Lindenstrauss lemma. However, when the dimension m drops below the



178 CHAPTER 7. RANDOM PROCESSES

statistical dimension d(T ), the shrinking stops – it levels off at the spherical
width ws(T ). We saw an example of this in (7.32), where a Euclidean ball
can not be shrunk by a projection.

Exercise 7.8.4 (The reverse bound). [Difficulty=4] Show that the bound in
Theorem 7.8.1 is optimal: prove the reverse bound

Ediam(PT ) ≥ c
[
ws(T ) +

√
m

n
diam(T )

]
for all bounded sets T ⊂ Rn. Hint: To obtain the bound E diam(PT ) & ws(T ), reduce

P to a one-dimensional projection by dropping terms from the singular value decomposition

of P . To obtain the bound E diam(PT ) ≥
√

m
n

diam(T ), argue about a pair of points in

T .

As an application of Theorem 7.8.1, we can obtain a bound on the norms
of random projections of matrices.

Corollary 7.8.5 (Random projections of matrices). Let A be an n × k
matrix.

1. Let P is a projection in Rn onto a random m-dimensional subspace
chosen uniformly in Gn,m. Then, with probability at least 1−2e−m, we have

‖PA‖ ≤ C
[ 1√

n
‖A‖F +

√
m

n
‖A‖

]
.

2. Let G be an m×n Gaussian random matrix with independent N(0, 1)
entries. Then, with probability at least 1− 2e−m, we have

‖GA‖ ≤ C
(
‖A‖F +

√
m ‖A‖

)
.

Proof. The operator norm is clearly one half the diameter of the image of
the unit ball, i.e.

‖PA‖ =
1

2
diam(P (ABk

2 )).

The Gaussian width of the ellipsoid ABk
2 is equivalent to ‖A‖F , see Exer-

cise 7.7.12 and (7.25). Applying Theorem 7.8.1, we obtain the first part
of the conclusion. The second part, for Gaussian projections, follows in a
similar way from Exercise 7.8.3.



Chapter 8

Chaining

8.1 Dudley’s inequality

Sudakov’s minoration inequality that we studied in Section 7.5 gives a lower
bound on the magnitude

E sup
t∈T

Xt

of a Gaussian random process (Xt)t∈T in terms of the metric entropy of T .
In this section, we will obtain a similar upper bound.

This time, we will be able to work not just with Gaussian processes but
with more general processes with sub-gaussian increments.

Definition 8.1.1 (Sub-gaussian increments). Consider a random process
(Xt)t∈T on a metric space (T, d). We say that the process has sub-gaussian
increments if there exists K ≥ 0 such that

‖Xt −Xs‖ψ2 ≤ Kd(t, s) for all t, s ∈ T. (8.1)

An obvious example is a Gaussian process (Xt)t∈T on an abstract set T ,
and with the metric defined by

d(t, s) = ‖Xt −Xs‖2.

But in general, the metric d on T may not be induced by the increments of
the process as in the example above.

Dudley’s inequality gives a bound on general sub-gaussian random pro-
cesses (Xt)t∈T in terms of the metric entropy of T .

179
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Theorem 8.1.2 (Dudley’s integral inequality). Let (Xt)t∈T be a random
process on a metric space (T, d) with sub-gaussian increments as in (8.1).
Then

E sup
t∈T

Xt ≤ CK
∫ ∞

0

√
logN (T, d, ε) dε.

Before we prove Dudley’s inequality, it is helpful to compare it with
Sudakov’s inequality, which for Gaussian processes states that

E sup
t∈T

Xt ≥ c sup
ε≥0

ε
√

logN (T, d, ε).

Figure 8.1 illustrates Dudley’s and Sudakov’s bounds. There is an obvious
gap between these two bounds. It can not be closed in terms of the entropy
numbers alone; we will explore this point later.

Figure 8.1: Dudley’s inequality bounds E supt∈T Xt by the area under the curve.
Sudakov’s inequality bounds it below by the largest area of a rectangle under the
curve, up to constants.

The form of Dudley’s inequality might suggest us that E supt∈T Xt is a
multi-scale quantity, in that we have to examine T at all possible scales ε
in order to bound the process. This is indeed so, and the proof will indeed
be multi-scale. We will now state and prove a discrete version of Dudley’s
inequality, where the integral over all positive ε is replaced by a sum over
dyadic values ε = 2−k, which somewhat resembles a Riemann sum. Later
we will quickly pass to the original form of Dudley’s inequality.

Theorem 8.1.3 (Dudley’s inequality as a sum). Let (Xt)t∈T be a random
process on a metric space (T, d) with sub-gaussian increments as in (8.1).
ThenCall (Xt) a “sub-

gaussian process
throughout
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E sup
t∈T

Xt ≤ CK
∑
k∈Z

2−k
√

logN (T, d, 2−k). (8.2)

Our proof of this theorem will be based on the important technique of
chaining, which can be useful in many other problems. Chaining is a multi-
scale version of the ε-net argument that we used successfully in the past, for
example in the proofs of Theorems 4.3.5 and 7.8.1.

In the familiar, single-scale ε-net argument, we discretize T by choosing
an ε-net N of t. Then every point t ∈ T can be approximated by a closest
point from the net π(t) ∈ N with accuracy ε, so that d(t, π(t)) ≤ ε. The
increment condition (8.1) yields

‖Xt −Xπ(t)‖ψ2 ≤ CKε. (8.3)

This gives
E sup
t∈T

Xt ≤ E sup
t∈T

Xπ(t) + E sup
t∈T

(Xt −Xπ(t)).

The first term can be controlled by a union bound over |N | = N (T, d, ε)
points π(t).

To bound the second term, we would like to use (8.3). But it only
holds for fixed t ∈ T , and it is not clear how to control the supremum
over t ∈ T . To overcome this difficulty, we will not stop here but continue
to run the ε-net argument further, building progressively finer approxima-
tions π1(t), π2(t), . . . to t with finer nets. Let us now develop formally this
technique of chaining.

Proof of Theorem 8.1.3. Step 1: Chaining set-up. Without loss of gen-
erality, we may assume that K = 1 and that T is finite. (Why?) Let us set
the dyadic scale

εk = 2−k, k ∈ Z (8.4)

and choose εk-nets Nk of T so that Change Nk to Tk; this
is the notation adopted
in the generic chaining
later.

|Nk| = N (T, d, εk). (8.5)

Only a part of the dyadic scale will be needed. Indeed, since T is finite, we
can choose κ small enough (for the coarsest net) and K large enough (for
the finest net) so that

Nκ = {t0} for some t0 ∈ T, NK = T. (8.6)

For a point t ∈ T , let πk(t) denote a closest point in Nk, so we have

d(t, πk(t)) ≤ εk. (8.7)
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Since EXt0 = 0, we have

E sup
t∈T

Xt = E sup
t∈T

(Xt −Xt0).

We can express Xt−Xt0 as a telescoping sum; think about walking from t0 to
t along a chain of points πk(t) that mark progressively finer approximations
to t:

Xt−Xt0 = (Xπκ(t)−Xt0) + (Xπκ+1(t)−Xπκ(t)) + · · ·+ (Xt−XπK(t)), (8.8)

see Figure 8.2 for illustration. The first and last terms of this sum are zero

Figure 8.2: Chaining: a walk from a fixed point t0 to an arbitrary point t in T
along elements πk(T ) of progressively finer nets of T

by (8.6), so we have

Xt −Xt0 =

K∑
k=κ+1

(Xπk(t) −Xπk−1(t)). (8.9)

Since the supremum of the sum is bounded by the sum of suprema, this
yields

E sup
t∈T

(Xt −Xt0) ≤
K∑

k=κ+1

E sup
t∈T

(Xπk(t) −Xπk−1(t)). (8.10)

Step 2: Controlling the increments. Although each term in the
bound (8.10) still has a supremum over the entire set T , a closer look reveals
that it is actually a maximum over a much smaller set, namely the set all
possible pairs (πk(t), πk−1(t)). The number of such pairs is

|Nk| · |Nk−1| ≤ |Nk|2,

a number that we can control through (8.5).
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Next, for a fixed t, the increments in (8.10) can be bounded as follows:

‖Xπk(t) −Xπk−1(t)‖ψ2 ≤ d(πk(t), πk−1(t)) (by (8.1) and since K = 1)

≤ d(πk(t), t) + d(t, πk−1(t)) (by triangle inequality)

≤ εk + εk−1 (by (8.7))

≤ 2εk−1.

Recall from Exercise 2.5.8 that the expected maximum of N sub-gaussian
random variables is at most CL

√
logN where L is the maximal ψ2 norm.

Thus we can bound each term in (8.10) as follows:

E sup
t∈T

(Xπk(t) −Xπk−1(t)) ≤ Cεk−1

√
log |Nk|. (8.11)

Step 3: Summing up the increments. We have shown that

E sup
t∈T

(Xt −Xt0) ≤ C
K∑

k=κ+1

εk−1

√
log |Nk|. (8.12)

It remains substitute the values εk = 2−k from (8.4) and the bounds (8.5)
on |Nk|, and conclude that

E sup
t∈T

(Xt −Xt0) ≤ C1

K∑
k=κ+1

2−k
√

logN (T, d, 2−k).

Theorem 8.1.3 is proved.

Let us now deduce the integral form of Dudley’s inequality.

Proof of Dudley’s integral inequality, Theorem 8.1.2. To convert the sum (8.2)

into an integral, we express 2−k as 2
∫ 2−k

2−k−1 dε. Then

∑
k∈Z

2−k
√

logN (T, d, 2−k) = 2
∑
k∈Z

∫ 2−k

2−k−1

√
logN (T, d, 2−k) dε.

Within the limits of integral, 2−k ≥ ε, so logN (T, d, 2−k) ≤ logN (T, d, ε)
and the sum is bounded by

2
∑
k∈Z

∫ 2−k

2−k−1

√
logN (T, d, ε) dε = 2

∫ ∞
0

√
logN (T, d, ε) dε.

The proof is complete.
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Exercise 8.1.4 (Equivalence of Dudley’s integral and sum). [Difficulty=4]
In the proof of Theorem 8.1.2 we bounded Dudley’s integral by a sum. Show
the reverse bound:∫ ∞

0

√
logN (T, d, ε) dε ≤ C

∑
k∈Z

2−k
√

logN (T, d, 2−k).

Dudley’s inequality gives a bound on the expectation only, but adapting
the argument yields a nice tail bound as well.

Theorem 8.1.5 (Dudley’s integral inequality: tail bound). Let (Xt)t∈T be
a random process on a metric space (T, d) with sub-gaussian increments as
in (8.1). Then, for every u ≥ 0, the event

E sup
t∈T

Xt ≤ CK
[ ∫ ∞

0

√
logN (T, d, ε) dε+ u · diam(T )

]
holds with probability at least 1− 2 exp(−u2).

Exercise 8.1.6. [Difficulty=6] Prove Theorem 8.1.5. To this end, first
obtain a high-probability version of (8.11):

sup
t∈T

(Xπk(t) −Xπk−1(t)) ≤ Cεk−1

[√
log |Nk|+ z

]
with probability at least 1− 2 exp(−z2).

Use this inequality with z = zk to control all such terms simultaneously.
Summing them up, deduce a bound on E supt∈T Xt with probability at least
1 − 2

∑
k exp(−z2

k). Finally, choose the values for zk that give you a good
bound; one can set zk = u+

√
k − κ for example.

8.1.1 Remarks and Examples

Remark 8.1.7 (Limits of Dudley’s integral). Although Dudley’s integral is
formally over [0,∞], we can clearly make the upper bound equal the diameter
of T in the metric d, thus

E sup
t∈T

Xt ≤ CK
∫ diam(T )

0

√
logN (T, d, ε) dε. (8.13)

Indeed, if ε > diam(T ) then a single point (any point in T ) is an ε-net of T ,
which shows that logN (T, d, ε) = 0 for such ε.
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Let us apply Dudley’s inequality for the canonical Gaussian process,
just like we did with Sudakov’s inequality in Section 7.5.1. We immediately
obtain the following bound.

Theorem 8.1.8 (Dudley’s inequality for sets in Rn). For any set T ⊂ Rn,
we have

w(T ) ≤ C
∫ ∞

0

√
logN(T, ε) dε.

Example 8.1.9. Let us test Dudley’s inequality for the unit Euclidean ball
T = Bn

2 . Recall from (4.6) that

N(Bn
2 , ε) ≤

(3

ε

)n
for ε ∈ (0, 1]

and N(Bn
2 , ε) = 1 for ε > 1. Then Dudley’s inequality yields a converging

integral

w(Bn
2 ) ≤ C

∫ 1

0

√
n log

3

ε
dε ≤ C1

√
n.

This is optimal: indeed, as we know from (7.21), the Gaussian width of Bn
2

is of the order of
√
n.

Example 8.1.10. Let us do one more test on Dudley’s inequality. If T = P
is a polyhedron with N vertices, then we know from Corollary 7.6.3 that

N (P, ε) ≤ N d1/ε2e.

Substituting this into Dudley’s inequality, we get

w(P ) ≤ C
∫ diam(P )

0

1

ε

√
logN dε.

This is, unfortunately, a diverging integral. Note, however, that it is barely
divergent; a little better bound on the covering numbers should lead to
convergence.

8.1.2 Two-sided Sudakov’s inequality

The previous examples suggest (but not prove) that Dudley’s inequality
should be almost optimal. Although in general it is not true and there is a
gap between Dudley’s and Sudakov’s inequalities, this gap is only logarith-
mically large in some sense. Let us make this more precise and show that
Sudakov’s inequality in Rn is optimal up to log n factor.
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Theorem 8.1.11 (Two-sided Sudakov’s inequality). Let T ⊂ Rn and set

s(T ) := sup
ε≥0

ε
√

logN (T, ε).

Then
c · s(T ) ≤ w(T ) ≤ C log(n) · s(T ).

Proof. The main idea here is that because the chaining is expected to con-
verge exponentially fast, O(log n) steps should suffice to walk from t0 to
somewhere very near t.

As we already noted in (8.13), the coarsest scale in the chaining sum
(8.9) can be chosen as the diameter of T . In other words, we can start the
chaining at κ which is the smallest integer such that

2−κ < diam(T ).

This is not different from what we did before. What will be different is the
finest scale. Instead of going all the way down, let us stop chaining at K
which is the largest integer for which

2−K ≥ w(T )

4
√
n
.

(It will be clear why we made this choice in a second.)
Then the last term in (8.8) may not be zero as before, and instead of

(8.9) we will need to bound

w(T ) ≤
K∑

k=κ+1

E sup
t∈T

(Xπk(t) −Xπk−1(t)) + E sup
t∈T

(Xt −XπK(t)). (8.14)

To control the last term, recall that Xt = 〈g, t〉 is the canonical process,
so

E sup
t∈T

(Xt −XπK(t)) ≤ E sup
t∈T
〈g, t− πK(t)〉

≤ 2−K · E ‖g‖2 (since ‖t− πK(t)‖2 ≤ 2−K)

≤ 2−K
√
n

≤ w(T )

2
√
n
·
√
n (by definition of K)

≤ 1

2
w(T ).
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Putting this into (8.14) and subtracting 1
2 w(T ) from both sides, we conclude

that

w(T ) ≤ 2

K∑
k=κ+1

E sup
t∈T

(Xπk(t) −Xπk−1(t)). (8.15)

Thus, we have removed the last term from (8.14). Each of the remaining
terms can be bounded as before. The number of terms in this sum is

K − κ ≤ log2

diam(T )

w(T )/4
√
n

(by definition of K and κ)

≤ log2

(
4
√
n ·
√

2π
)

(by property 6 of Proposition 7.7.2)

≤ C log n.

Thus we can replace the sum by the maximum in (8.15) by paying a factor
C log n. This completes the argument like before, in the proof of Theo-
rem 8.1.3.

An example of non-
optimality of Dudley?

Exercise 8.1.12 (Limits in Dudley’s integral). [Difficulty=7] Prove the fol-
lowing improvement of Dudley’s integral inequality (Theorem 8.1.8). For
any set T ⊂ Rn, we have

w(T ) ≤ C
∫ b

a

√
logN(T, ε) dε where a =

cw(T )√
n

, b = diam(T ).

8.2 Application: empirical processes and uniform
laws of large numbers

We will give an application of Dudley’s inequality to empirical processes,
which are certain random processes indexed by functions. The theory of
empirical processes is a large branch of probability theory, and we will only
be able to scratch its surface here. Let us consider a motivating example.

8.2.1 Monte-Carlo method

Suppose we want to evaluate the integral of a function f : Ω → R with
respect to some probability measure µ on some domain Ω ⊂ Rd:∫

Ω
f dµ,
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(a) The problem is to com-
pute the integral of f on a
domain Ω.

(b) The integral is approximated
by the sum 1

n

∑n
1 f(Xi) with ran-

domly sampled points Xi.

Figure 8.3: Monte-Carlo method for randomized, numerical integration.

see Figure 8.3a. For example, we could be interested in computing
∫ 1

0 f(x) dx
for a function f : [0, 1]→ R.

Here is how we can use probability to evaluate integrals. Consider a
random vector X that takes values in Ω according to the law µ, i.e.

P {X ∈ A} = µ(A) for any measurable set A ⊂ Ω.

(For example, to evaluate
∫ 1

0 f(x) dx, we take X ∼ Unif[0, 1].) Then we may
interpret the integral as expectation:∫

Ω
f dµ = E f(X).

Let X1, X2, . . . be i.i.d. copies of X. The Law of Large Numbers (Theo-
rem 1.3.1) yields that

1

n

n∑
1

f(Xi)→ E f(X) almost surely (8.16)

as n→∞. This means that we can approximate the integral by the sum∫
Ω
f dµ ≈ 1

n

n∑
1

f(Xi) (8.17)

where the points Xi are drawn at random from the domain Ω; see Fig-
ure 8.3b. for illustration. This way of numerically computing integrals is
called the Monte-Carlo method.

Remarkably, we do not need to know the measure µ to evaluate the
integral; it suffices to be able to draw random samples Xi according to µ.
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Similarly, we do not even need to know f at all points in the domain; a few
random points suffice.

The average error of integration is O(1/
√
n), which follows from the rate

of convergence in the Law of Large Numbers:

E
∣∣∣ 1
n

n∑
1

f(Xi)− E f(X)
∣∣∣ = O

( 1√
n

)
. (8.18)

(Check this by computing the variance of the sum.) Maybe include this rate
in LLN?

8.2.2 A uniform law of large numbers

Can we use one, fixed sample X1, . . . , Xn to evaluate the integral of any
function f : Ω → R? Of course, not. For a given sample, one can choose a
function that oscillates wildly between the sample points, and the approx-
imation (8.17) will fail. However, if we only look at functions f that do
not oscillate wildly – for example, Lipschitz functions, then Monte-Carlo
method (8.17) will work simultaneously over all such f .

This follows from a uniform Law of Large Numbers, which states that
(8.16) holds uniformly over all functions in a given function class. In our
case, it will be the class of Lipschitz functions

F := {f : [0, 1]→ R, ‖f‖Lip ≤ L} (8.19)

where L is some number.

Theorem 8.2.1 (Uniform Law of Large Numbers). Let X be a random
variable taking values in [0, 1], and let X1, X2, . . . , Xn be independent copies
of X. Then

E sup
f∈F

∣∣∣ 1
n

n∑
i=1

f(Xi)− E f(X)
∣∣∣ ≤ CL√

n
. (8.20)

Note that this result, which is uniform over all Lipschitz f , holds with
the same rate of convergence (8.18) as the classical Law of Large numbers
that holds for a single f .

To prepare for the proof of Theorem 8.2.1, let us view the left side of
(8.20) as the magnitude of a random process indexed by functions f ∈ F .
Such random processes are called empirical processes.

Definition 8.2.2. Let F be a class of real-valued functions f : Ω→ R where
(Ω,Σ, µ) is a probability space. Let X be a random point in Ω distributed
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according to the law µ, and let X1, X2, . . . , Xn be independent copies of X.
The random process (Xf )f∈F defined by

Xf :=
1

n

n∑
i=1

f(Xi)− E f(X) (8.21)

is called an empirical process indexed by F .

Proof of Theorem 8.2.1. Without loss of generality we may assume that L =
1 and that

f : [0, 1]→ [0, 1] for all f ∈ F . (8.22)

(Why?) We would like to bound the magnitude

E sup
f∈F
|Xf |

of the empirical process (Xf )f∈F defined in (8.21).

Step 1: checking sub-gaussian increments. We will do this using
Dudley’s inequality, Theorem 8.1.2. To apply this result, we just need to
check that the empirical process has sub-gaussian increments. So, fix a pairsub-gaussian increments

7→ sub-gaussian process of functions f, g ∈ F and consider

‖Xf −Xg‖ψ2 =
1

n

∥∥∥ n∑
i=1

Zi

∥∥∥
ψ2

where Zi := (f − g)(Xi)− E(f − g)(X).

Random variables Zi are independent and have mean zero. So, by Proposi-
tion 2.6.1 we have

‖Xf −Xg‖ψ2 .
1

n

( n∑
i=1

‖Zi‖2ψ2

)1/2
.

Now, using centering (Lemma 2.6.6) we have

‖Zi‖ψ2 . ‖(f − g)(Xi)‖ψ2 . ‖f − g‖∞.

It follows that

‖Xf −Xg‖ψ2 .
1

n
· n1/2‖f − g‖∞ =

1√
n
‖f − g‖∞.

Step 2: applying Dudley’s inequality. We found that the empirical
process (Xf )f∈F has sub-gaussian increments with respect to the L∞ norm.
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This allows us to apply Dudley’s inequality, Theorem 8.1.2. Note that (8.22)
implies that the diameter of F in L∞ metric is bounded by 1. Thus

E sup
f∈F

Xf .
1√
n

∫ 1

0

√
logN (F , ‖ · ‖∞, ε) dε

(recall (8.13)).
Using that all functions in f ∈ F are Lipschitz with ‖f‖Lip ≤ 1, it is not

difficult to bound the covering numbers of F as follows:

N (F , ‖ · ‖∞, ε) ≤
(C
ε

)C/ε
;

we will show this in Exercise 8.2.3 below. This bound makes Dudley’s inte-
gral converge, and we conclude that

E sup
f∈F

Xf .
1√
n

∫ 1

0

√
C

ε
log

C

ε
dε .

1√
n
.

Finally, we note that

E sup
f∈F
|Xf | = E sup

f∈F
Xf

(see Exercise 8.2.4); so this quantity is O(1/
√
n) as well. This proves (8.20).

Exercise 8.2.3 (Metric entropy of the class of Lipschitz functions). Con-
sider the class of functions

F := {f : [0, 1]→ [0, 1], ‖f‖Lip ≤ 1} .

Show that

N (F , ‖ · ‖∞, ε) ≤
(1

ε

)1/ε
for any ε > 0.

Hint: put a mesh on the square [0, 1]2 with step ε. Given f ∈ F , show
that ‖f − f0‖∞ ≤ ε for some function f0 whose graph follows the mesh;
see Figure 8.4. The number all mesh-following functions f0 is bounded by
(1/ε)1/ε.

Exercise 8.2.4. Show that for an empirical process in (8.21) indexed by the
function class

F := {f : [0, 1]→ [0, 1], ‖f‖Lip ≤ 1} ,
we have

E sup
f∈F
|Xf | = E sup

f∈F
Xf .
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Figure 8.4: Bounding the metric entropy of the class of Lipschitz functions in
Exercise 8.2.3. A Lipschitz function f is approximated by a function f0 on a mesh.

Exercise 8.2.5 (An improved bound on the metric entropy). Improve the
bound in Exercise 8.2.3 to

N (F , ‖ · ‖∞, ε) ≤ eC/ε for any ε > 0.

Hint: Use that f is Lipschitz to find a better bound on the number of possible functions

f0.

Exercise 8.2.6 (Higher dimensions). Consider the class of functions

F :=
{
f : [0, 1]d → R, f(0) = 0, ‖f‖Lip ≤ 1

}
.

for some dimension d ≥ 1. Show that

N (F , ‖ · ‖∞, ε) ≤ eC/ε
d

for any ε > 0.

This bound would not
allow to simply use Dud-
ley to generalize uniform
LLN to higher dimen-
sions: the integral would
diverge. See R. van
Handel p. 5.31 how to
use something like Exer-
cise 8.1.12 to do this.

Empirical measure

Let us take one more look at the Definition 8.2.2 of empirical processes. Con-
sider a probability measure µn that is uniformly distributed on the sample
X1, . . . , XN , that is

µ({Xi}) =
1

n
for every i = 1, . . . , n.

Note that µn is a random measure. It is called the empirical measure.

While the integral of f with respect to the original measure µ is the
E f(X) (the “population” average of f) the integral of f with respect to the
empirical measure is 1

n

∑n
i=1 f(Xi) (the “sample”, or empirical, average of
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f). In the literature on empirical processes, the population expectation of
f is denoted by µf , and the empirical expectation, by µnf :

µf =

∫
f dµ = E f(X); µnf =

∫
f dµn =

1

n

n∑
i=1

f(Xi).

The empirical process Xf in (8.21) thus measures the deviation of sample
expectation from the empirical expectation:

Xf = µf − µnf.

The Uniform Law of Large Numbers (8.20) gives a uniform bound on the
deviation

E sup
f∈F
|µnf − µf | (8.23)

over the class of Lipschitz functions F defined in (8.19).

The quantity (8.23) can be thought as a distance between the measures
µn and µ. It is called the Wasserstein’s distanceW1(µ, µn) . The Wasserstein
distance has an equivalent formulation as the transportation cost of measure
µ into measure µn, where the cost of moving a mass (probability) p > 0
is proportional to p and to the distance moved. The equivalence between
the transportation cost and (8.23) is provided by Kantorovich-Rubinstein’s
duality theorem.

8.3 Application: statistical learning theory

Statistical learning theory, or machine learning, allows one to make predic-
tions based on data. A typical problem of statistical learning can be stated
mathematically as follows. Consider a pair of random variables (X,Y ) whose
distribution is unknown. More generally, X is a random vector or even a
point in an abstract probability space Ω like we saw in Section 8.2. It may
be helpful to think of Y as a label of X.

Suppose we have a sample

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) (8.24)

of n independent copies of (X,Y ). This sample is called training data. Our
goal is to learn from the training data how Y depends on X, so we can make
a good prediction of the label Y for a point X.
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Classification problems

Example 8.3.1. Suppose X ∈ Rd is a vector of parameters of a patient. For
example, X1 could be body temperature, X2 blood pressure, etc. Another
example is where X encodes d gene expressions. Let the label Y ∈ {0, 1} be
the diagnosis of the patient (0=healthy, 1=sick).

We conduct a study on n patients whose parameters and diagnoses are
known. This gives us training data (8.24). Our goal is to learn how to
predict the diagnosis Y based on the patient’s parameters X.

This example belongs to the important family of classification problems
where the label Y can take finitely many values that encode the class X
belongs to. Figure 8.5a illustrates a classification problem where X is a
random vector on the plane and the label Y can take values 0 and 1 like in
Example 8.3.1. A solution of this classification problem can be described as
a partition of the plane into two regions, one where f(X) = 0 (healthy) and
another where f(X) = 1 (sick). Based on this solution, one can diagnose
new patients by looking at which region their parameter vectors X fall in.

(a) Right fit (b) Underfitting (c) Overfitting

Figure 8.5: Trade-off between fit and complexity in statistical learning.

Risk, fit and complexity

Generally, a solution to the learning problem can be described as a function
f : Ω→ R. We would naturally want f to minimize the risk

R(f) := E(f(X)− Y )2.

Example 8.3.2. For classification problems, we have Y ∈ {0, 1}, f : Ω →
{0, 1}, and thus

R(f) = P{f(X) 6= Y }.
(Check!) So the risk is just the probability of misclassification (such as
misdiagnosis for a patient).
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How much data do we need to learn, i.e how large sample size n needs
to be? This of course depends on the complexity of the problem. If the
dependence of Y on X is very intricate then we need more data, otherwise,
less. Usually we do not know the complexity a priori. So we may restrict
the complexity of the candidate functions f , insisting that f belong to some
given class of functions F .

Definition 8.3.3. The function f∗ that minimizes the risk a given function
class F , i.e.

f∗ := arg min
f∈F

R(f),

is called the target function.

How do we choose the function class F for a given learning problem?
Although there is no general rule, the choice of F should be based on the
trade-off between fit and complexity. Suppose we choose F to be too small;
for example, we want the interface between healthy (f(x) = 0) and sick
diagnoses (f(x) = 1) to be a line, like in Figure 8.5b. Although we will can
learn such a simple function f with less data, we probably oversimplified
the problem and. The linear function do not capture the essential trends in
this data, which will reflect in a big risk R(f).

Suppose, on the opposite, that we choose F to be too large. This will
result in overfitting where we are trying to fit f to noise like in Figure 8.5c.
Plus we will need a lot of data to learn such complicated functions.

A good choice of F is one that avoids either underfitting or overfitting,
just capturing the essential trends in the data just like in Figure 8.5a.

Empirical risk

The target function f∗ would give the best solution to the learning problem
in the class F , since it minimizes the risk

R(f) = E(f(X)− Y )2.

over all functions in F . Unfortunately, we can not compute R(f) from data
(we are not able to take population expectation E), so f∗ is not computable
either. Instead, we can try to estimate R(f) and thus f from the data.

Definition 8.3.4. The empirical risk for a function f : Ω → R is defined
as

Rn(f) :=
1

n

n∑
i=1

(f(Xi)− Yi)2 .
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The function f∗n that minimizes the risk a given function class F , i.e.

f∗n := arg min
f∈F

Rn(f),

is called the empirical target function.

The empirical risk, and thus the empirical target function f∗n, can be
computed from the data. The outcome of learning from the data is thus f∗n.

The main question: how much data do we need for learning? More
precisely, how large is the excess risk

R(f∗n)−R(f∗)

produced by our having to learn from a finite sample of size n?
Suppose we can approximate the true risk by the empirical risk uniformly

in the class F , so we have a bound like

E sup
f∈F
|Rn(f)−R(f)| ≤ εn (8.25)

with εn small. Then

R(f∗n) ≤ Rn(f∗n) + εn (by (8.25))

≤ Rn(f∗) + εn (since f∗n minimizes Rn)

≤ R(f∗) + 2εn (again by (8.25)).

Thus the excess risk is bounded by 2εn:

R(f∗n)−R(f∗) ≤ 2εn.

We reduced our problem to establishing the uniform deviation inequality
(8.25). Let us show how to prove it for a specific example where F consists
of Lipschitz functions:For higher dimensions,

[0, 1]d, see a marginal
note for Exercise 8.2.6.
I guess d = 2 could be
done easily there (Dud-
ley’s integral barely di-
verges so can use Ex-
ercise 8.1.12), and bor-
rowed here.

F := {f : [0, 1]→ R, ‖f‖Lip ≤ L} . (8.26)

Theorem 8.3.5. Assume that the label Y is in [0, 1] almost surely. Then

E sup
f∈F
|Rn(f)−R(f)| ≤ C(L+ 1)√

n
.

Consequently, the excess risk is

R(f∗n)−R(f∗) ≤ C(L+ 1)√
n

.
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In words, the excess risk of learning from data of size n decays like
O(1/

√
n).

The proof of Theorem 8.3.5 is similar to the proof of the Uniform Law
of Large Numbers, Theorem 8.2.1. It is follows from Dudley’s integral in-
equality for the random process

Xf := Rn(f)−R(f). (8.27)

One just need to check that the process has sub-gaussian increments, and
we will do this in the next exercise.

Exercise 8.3.6. 1. Show that the random process (Xf )f∈F defined in (8.27)
for the Lipschitz functions class F in (8.26) has sub-gaussian increments:

‖Xf −Xg‖ψ2 ≤
CL√
n
‖f − g‖∞ for all f, g ∈ F .

2. Deduce Theorem 8.3.5.

8.4 Generic chaining

Dudley’s and Sudakov’s inequalities are simple and useful tools for bounding
random processes. These bounds are within O(log n) from being optimal,
as we may recall from Theorem 8.1.11. Unfortunately, it is not possible
to close the gap between Dudley’s and Sudakov’s inequality. There are
examples where one inequality gives a sharp bound and the other does not. References?
The issue is even more general. The entropy numbers N (T, d, ε) do not
contain enough information to control the magnitude of E supt∈T Xt up to
an absolute constant factor.

8.4.1 A makeover of Dudley’s inequality

Fortunately, there is a way to obtain accurate, two-sided bounds on E supt∈T Xt

for sub-gaussian processes (Xt)t∈T in terms of the geometry of T . This
method is called generic chaining, and it is essentially a sharpening of the
chaining method we developed in the proof of Dudley’s inequality (Theo-
rem 8.1.3). Recall that the outcome of chaining was the bound (8.12):

E sup
t∈T

Xt .
∞∑

k=κ+1

εk−1

√
log |Tk|. (8.28)
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Here εk are decreasing positive numbers and Tk are εk-nets of T such that
|Tκ| = 1. To be specific, in the proof of Theorem 8.1.3 we chose

εk = 2−k and |Tk| = N (T, d, εk),

so Tk ⊂ T were the smallest εk-nets of T .
In preparation for generic chaining, let us now turn around our choice of

εk and Tk. Instead of fixing εk and operating the smallest possible cardinality
of Tk, let us fix the cardinality of Tk and operate with the largest possible
εk. Namely, fix some subsets Tk ⊂ T such that

|T0| = 1, |Tk| ≤ 22k , k = 1, 2, . . . (8.29)

Such sequence of sets (Tk)
∞
k=0 is called an admissible sequence. PutDo we need to define the

distance from a point to
a set? εk = sup

t∈T
d(t, Tk).

Then each Tk is an εk-net of T . With this choice of εk and Tk, the chaining
bound (8.28) becomes

E sup
t∈T

Xt .
∞∑
k=1

2k/2 sup
t∈T

d(t, Tk−1).

After re-indexing, we conclude

E sup
t∈T

Xt .
∞∑
k=0

2k/2 sup
t∈T

d(t, Tk). (8.30)

8.4.2 Talagrand’s γ2 functional and generic chaining

So far, nothing really happened. The bound (8.30) is just an equivalent way
to state Dudley’s inequality. The important step will come now. The generic
chaining will allow us to pull the supremum outside the sum in (8.30). The
resulting important quantity has a name:

Definition 8.4.1 (Talagrand’s γ2 functional). Let (T, d) be a metric space.
A sequence of subsets (Tk)

∞
k=0 is called an admissible sequence if the cardi-

nalities of Tk satisfy (8.29). The γ2 functional of T is defined as

γ2(T, d) = inf
(Tk)

sup
t∈T

∞∑
k=0

2k/2d(t, Tk)

where the infimum is with respect to all admissible sequences.
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Since the supremum in the γ2 functional is outside the sum, it is smaller
than the Dudley’s sum in (8.30). Still, γ2(T, d) controls the magnitude of
the random process. Let us state and prove this sharpening of Dudley’s
inequality.

Theorem 8.4.2 (Generic chaining bound). Let (Xt)t∈T be a sub-gaussian
process on a metric space (T, d) in the sense of (8.1). Then

E sup
t∈T

Xt ≤ CKγ2(T, d).

Proof. We will proceed with the same chaining method that we introduced
in the proof of Dudley’s inequality Theorem 8.1.3, but we will do chaining
more accurately.

Step 1: Chaining set-up. As before, we may assume that K = 1 and
that T is finite. Let (Tk) be an admissible sequence of subsets of T , and
denote T0 = {t0}. We will walk from t0 to a general point t ∈ T along the
chain

t0 = π0(t)→ π1(t)→ · · · → πK(t) = t

of points πk(t) ∈ Tk that are chosen as best approximations to t in Tk, i.e.

d(t, πk(t)) = d(t, Tk).

The displacement Xt−Xt0 can be expressed as a telescoping sum similar to
(8.9):

Xt −Xt0 =
K∑
k=1

(Xπk(t) −Xπk−1(t)). (8.31)

Step 2: Controlling the increments. This is where we need to be
more accurate than in Dudley’s inequality. We would like to have a uniform
bound on the increments, a bound that would state with high probability
that ∣∣Xπk(t) −Xπk−1(t)

∣∣ ≤ 2k/2d(t, Tk) ∀k ∈ N , ∀t ∈ T. (8.32)

Summing these inequalities over all k would lead to a desired bound in terms
of γ2(T, d).

To prove (8.32), let us fix k and t first. The sub-gaussian assumption
tells us that ∥∥Xπk(t) −Xπk−1(t)

∥∥
ψ2
≤ d(πk(t), πk−1(t)).

This means that for every u ≥ 0, the event∣∣Xπk(t) −Xπk−1(t)

∣∣ ≤ Cu2k/2d(πk(t), πk−1(t)) (8.33)
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holds with probability at least

1− 2 exp(−8u22k).

(To get the constant 8, choose the absolute constant C large enough.)

We can now unfix t ∈ T by taking a union bound over

|Tk| · |Tk−1| ≤ |Tk|2 = 22k+1

possible pairs (πk(t), πk−1(t)). Similarly, we can unfix k by a union bound
over all k ∈ N. Then the probability that the bound (8.33) holds simulta-
neously for all t ∈ T and k ∈ N is at least

1−
∞∑
k=1

22k+1 · 2 exp(−8u22k) ≥ 1− 2 exp(−u2).

(Check the last inequality!)
Step 3: Summing up the increments. In the event that the bound

(8.33) does holds for all t ∈ T and k ∈ N, we can sum up the inequalities
over k ∈ N and plug the result into the chaining sum (8.31). This yields

|Xt −Xt0 | ≤ Cu
∞∑
k=1

2k/2d(πk(t), πk−1(t)). (8.34)

By triangle inequality, we have

d(πk(t), πk−1(t)) ≤ d(t, πk(t)) + d(t, πk−1(t)).

Using this bound and doing re-indexing, we find that the right hand side of
(8.34) can be bounded by γ2(T, d), that is

|Xt −Xt0 | ≤ C1uγ2(T, d).

(Check!) Taking the supremum over T yields

sup
t∈T
|Xt −Xt0 | ≤ C2uγ2(T, d).

Recall that this inequality holds with probability at least 1 − 2 exp(−u2).
This means that the magnitude in question is a sub-gaussian random vari-
able: ∥∥∥ sup

t∈T
|Xt −Xt0 |

∥∥∥
ψ2

≤ C3γ2(T, d).

This quickly implies the conclusion of Theorem 8.4.2. (Check!)
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Remark 8.4.3 (Supremum of increments). A quick glance at the end of the
proof of Theorem 8.4.2 reveals that the generic chaining method actually
yields the bound

E sup
t∈T
|Xt −Xt0 | ≤ CKγ2(T, d)

for any fixed t0 ∈ T . Combining it with a similar bound for Xs −Xt0 and
using triangle inequality, we deduce that

E sup
t,s∈T

|Xt −Xs| ≤ CKγ2(T, d).

Note that in either of these two bounds, we need not require the mean zero
assumption EXt = 0. It is required, however, in Theorem 8.4.2. (Why?)

The argument above gives not only a bound on expectation but also a
tail bound for supt∈T Xt. Let us now give a better tail bound, similar to the
one we had in Theorem 8.1.5 for Dudley’s inequality.

Theorem 8.4.4 (Generic chaining: tail bound). Let (Xt)t∈T be a sub-
gaussian process on a metric space (T, d) in the sense of (8.1). Then, for
every u ≥ 0, the event

E sup
t∈T

Xt ≤ CK
[
γ2(T, d) + u · diam(T )

]
holds with probability at least 1− 2 exp(−u2).

Exercise 8.4.5. Prove Theorem 8.4.4. Hint: State and use a variant of the
increment bound (8.33) with u + 2k instead of u2k/2. In the end of the argument, you
will need a bound on the sum of steps

∑∞
k=1 d(πk(t), πk−1(t)). For this, modify the chain

{πk(t)} by doing a “lazy walk” on it. Stay at the current point πk(t) for a few steps (say,
q − 1) until the distance to t improves by a factor of 2, that is until

d(t, πk+q(t)) ≤
1

2
d(t, πk(t)),

then jump to πk+q(t). This will make the sum of the steps geometrically convergent.

Exercise 8.4.6 (Dudley’s integral vs. γ2 functional). Show that γ2 func-
tional is bounded by Dudley’s integral. Namely, show that for any metric
space (T, d), one has

γ2(T, d) ≤ C
∫ ∞

0

√
logN (T, d, ε) dε.
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8.5 Talagrand’s majorizing measure and compari-
son theorems

Talagrand’s γ2 functional introduced in Definition 8.4.1 has some advantages
and disadvantages over Dudley’s integral. A disadvantage is that γ2(T, d)
is usually harder to compute than the metric entropy that defines Dudley’s
integral. Indeed, it could take a real effort to construct a good admissible
sequence of sets. However, unlike Dudley’s integral, the γ2 functional gives
a bound on Gaussian processes that is optimal up to an absolute constant.
This is the content of the following theorem.

Theorem 8.5.1 (Talagrand’s majorizing measure theorem). Let (Xt)t∈T be
a Gaussian process on a set T . Consider the canonical metric defined on T
by (7.14), i.e. d(t, s) = ‖Xt −Xs‖2. Then

c · γ2(T, d) ≤ E sup
t∈T

Xt ≤ C · γ2(T, d).

The upper bound in Theorem 8.5.1 follows directly from generic chaining
(Theorem 8.4.2). The lower bound is notably harder to obtain. Its proof,
which we will not present in this book, can be thought of as a far reaching,
multi-scale strengthening of Sudakov’s inequality (Theorem 7.5.1).

Note that the upper bound, as we know from Theorem 8.4.2, holds for
any sub-gaussian process. Therefore, by combining the upper and lower
bounds together, we can deduce that any sub-gaussian process is bounded
(via γ2 functional) by a Gaussian process. Let us state this important com-
parison result.

Corollary 8.5.2 (Talagrand’s comparison inequality). Let (Xt)t∈T be a
random process on a set T and let (Yt)t∈T be a Gaussian process. Assume
that for all t, s ∈ T , we have

‖Xt −Xs‖ψ2 ≤ K‖Yt − Ys‖2.

Then
E sup
t∈T

Xt ≤ CK E sup
t∈T

Yt.

Proof. Consider the canonical metric on T given by d(t, s) = ‖Yt − Ys‖2.
Apply the generic chaining bound (Theorem 8.4.2) followed by the lower
bound in the majorizing measure Theorem 8.5.1. Thus we get

E sup
t∈T

Xt ≤ CKγ2(T, d) ≤ CK E sup
t∈T

Yt.

The proof is complete.
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Corollary 8.5.2 extends Sudakov-Fernique’s inequality (Theorem 7.3.10)
for sub-gaussian processes. All we pay for such extension is an absolute
constant factor.

Let us apply Corollary 8.5.2 for a canonical Gaussian process

Yx = 〈g, x〉 , x ∈ T

defined on a subset T ⊂ Rn. Recall from Section 7.7 that the magnitude of
this process,

w(T ) = E sup
x∈T
〈g, x〉

is the Gaussian width of T . We immediately obtain the following corollary.

Corollary 8.5.3 (Talagrand’s comparison inequality: geometric form). Let
(Xx)x∈T be a random process on a subset T ⊂ Rn. Assume that for all
x, y ∈ T , we have

‖Xx −Xy‖ψ2 ≤ K‖x− y‖2.

Then

E sup
x∈T

Xx ≤ CKw(T ).

Exercise 8.5.4 (Two-sided bounds). Show that, in the context of Corol-
lary 8.5.3 (and even without the mean zero assumption) we have State explicitly the

mean zero assumption
in all results where it is
required for the process

E sup
x∈T
|Xx| ≤ CKγ(T ).

Recall that γ(T ) is the Gaussian complexity of T ; we introduced this cousin
of Gaussian width in (7.27). Hint: Fix x0 ∈ T and break the process into two parts:

|Xx| ≤ |Xx−Xx0 |+ |Xx0 |. Use Remark 8.4.3 to control the first part and the sub-gaussian

condition with y = 0 for the second part. Use Exercise 7.7.14 to pass from Gaussian width

to Gaussian complexity.

Exercise 8.5.5 (Tail bound). Show that, in the setting of Corollary 8.5.3,
for every u ≥ 0 we have

sup
x∈T

Xx ≤ CK(w(T ) + u · diam(T ))

with probability at least 1− 2 exp(−u2). Hint: Use Theorem 8.4.4.
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8.6 Chevet’s inequality

Talagrand’s comparison inequality (Corollary 8.5.2) has several important
consequences. We will cover one application now, others will appear in
Chapter ??.

The theorem we are about to state gives a uniform bound for random
quadratic forms, that is a bound on

sup
x∈T, y∈S

〈Ax, y〉 (8.35)

where A is a random matrix and T and S are general sets.
We already encountered problems of this type when we analyzed the

norms of random matrices, namely in the proofs of Theorems 4.3.5 and
7.4.1. In those situations, T and S were Euclidean balls. This time, we will
let T and S be arbitrary geometric sets. Our bound on (6.2) will depend
on just two geometric parameters of T and S: the Gaussian width and the
radius, defined as

rad(T ) := sup
x∈T
‖x‖2. (8.36)

Theorem 8.6.1 (Sub-gaussian Chevet’s inequality). Let A be an m × n
random matrix whose entries Aij are independent, mean zero, sub-gaussian
random variables. Let T ⊂ Rn and S ⊂ Rm be arbitrary bounded sets. Then

E sup
x∈T, y∈S

〈Ax, y〉 ≤ CK [w(T ) rad(S) + w(S) rad(T )]

where K = maxij ‖Aij‖ψ2.

Before we prove this theorem, let us make one simple illustration of its
use. Setting T = Sn−1 and S = Sm−1, we recover a bound on the operator
norm of A,

E ‖A‖ ≤ CK(
√
n+
√
m),

which we obtained in Section 4.3.2 using a different method.

Proof of Theorem 8.6.1. We will use the same method as in our proof of the
sharp bound on Gaussian random matrices (Theorem 7.4.1). That proof
was based on Sudakov-Fernique comparison inequality; this time, we will
use the more general Talagrand’s comparison inequality.

Without loss of generality, K = 1. We would like to bound the random
process

Xuv := 〈Au, v〉 , u ∈ T, v ∈ S.
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Let us first show that this process has sub-gaussian increments. For any
(u, v), (w, z) ∈ T × S, we have

‖Xuv −Xwz‖ψ2 =
∥∥∥∑

i,j

Aij(uivj − wizj)
∥∥∥
ψ2

≤
(∑

i,j

‖Aij(uivj − wizj)‖2ψ2

)1/2
(by Proposition 2.6.1)

≤
(∑

i,j

‖uivj − wizj‖22
)1/2

(since ‖Aij‖ψ2 ≤ K = 1)

= ‖uvT − wzT‖F
= ‖(uvT − wvT) + (wvT − wzT)‖F (adding, subtracting)

≤ ‖(u− w)vT‖F + ‖w(v − z)T‖F (by triangle inequality)

= ‖u− w‖‖v‖2 + ‖v − z‖2‖w‖2
≤ ‖u− w‖2 rad(S) + ‖v − z‖2 rad(T ).

To apply Talagrand’s comparison inequality, we need to choose a Gaus-
sian process (Yuv) to compare the process (Xuv) to. The outcome of our
calculation of the increments of (Xuv) suggests the following definition for
(Yuv):

Yuv := 〈g, u〉 rad(S) + 〈h, v〉 rad(T ),

where
g ∼ N(0, In), h ∼ N(0, Im)

are independent Gaussian vectors. The increments of this process are

‖Yuv − Ywz‖22 = ‖u− w‖22 rad(T )2 + ‖v − z‖22 rad(S)2.

(Check this as in the proof of Theorem 7.4.1.)
Comparing the increments of the two processes, we find that

‖Xuv −Xwz‖ψ2 . ‖Yuv − Ywz‖2.

(Check!) Applying Talagrand’s comparison inequality (Corollary 8.5.3), we
conclude that

E sup
u∈T, v∈S

Xuv . E sup
u∈T, v∈S

Yuv

= E sup
u∈T
〈g, u〉 rad(S) + E sup

v∈S
〈h, v〉 rad(T )

= w(T ) rad(S) + w(S) rad(T ),

as claimed.
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Chevet’s inequality is optimal, up to an absolute constant factor:

Exercise 8.6.2 (Sharpness of Chevet’s inequality). Let A be an m × n
random matrix whose entries Aij are independent N(0, 1) random variables.
Let T ⊂ Rn and S ⊂ Rm be arbitrary bounded sets. Show that the reverse
of Chevet’s inequality holds:

E sup
x∈T, y∈S

〈Ax, y〉 ≥ c [w(T ) rad(S) + w(S) rad(T )] .

Hint: Note that E supx∈T, y∈S 〈Ax, y〉 ≥ supx∈T E supy∈S 〈Ax, y〉.

Chevet’s inequality can be useful for computing general operator norms
of random matrices A. The case we have considered so far is where a random
matrix A : Rn → Rm acts as a linear operator between the spaces equipped
with the Euclidean norm ‖ · ‖2. The norm of A in this case is the classical
operator norm; recall Section 4.1.2. Chevet’s inequality allows to compute
the norm of A even if the spaces Rn and Rm are equipped with arbitrary,definition of general op-

erator norm? possibly non-Eucdliean, norms. Let us illustrate this on the example of `p
norms.

Exercise 8.6.3 (`p → `q norm of a random matrix). Let A be an m × n
random matrix whose entries Aij are independent, mean zero, sub-gaussian
random variables.

(a) Show that for every 1 < p ≤ ∞ and 1 ≤ q ≤ ∞, one hasCheck: if p or q is ≥ 2
then the radius is not
bounded by 2; does this
affect the inequlity?

E ‖A : `np → `nq ‖ ≤ Cp,q(n1/p′ +m1/q). (8.37)

Here p′ denotes the conjugate exponent for p, which is defined by the equa-
tion 1

p + 1
p′ = 1, and with the convention that 1

∞ = 0.
(b) How does the bound modify if p = 1?
(c) Show that the bound (8.37) can be reversed.
Hint: Express

‖A : `np → `nq ‖ = sup
x∈Bn

p , y∈Bm
q′

〈Ax, y〉

and use Exercise 7.7.5.

Exercise 8.6.4 (High probability version of Chevet). Under the assump-
tions of Theorem 8.6.1, prove a tail bound for supx∈T, y∈S 〈Ax, y〉.

Hint: Use the result of Exercise 8.5.5.

Exercise 8.6.5 (Gaussian Chevet’s inequality). Suppose the entries of A
are N(0, 1). Show that Theorem 8.6.1 holds with sharp constant 1, that is

E sup
x∈T, y∈S

〈Ax, y〉 ≤ w(T ) rad(S) + w(S) rad(T ).

Hint: Use Sudakov-Fernique’s inequality (Theorem 7.3.10) instead of Talagrand’s

comparison inequality.Check that this is doable
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8.7 Vapnik-Chervonenkis dimension
Write!
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Chapter 9

Deviations of random
matrices and geometric
consequences

This chapter is devoted to a remarkably useful consequence of Talagrand’s
comparison inequality: a general uniform deviation inequality for random
matrices. Let A be an m×n matrix whose rows Ai are independent, isotropic
and sub-gaussian random vectors in Rn. We will essentially show that for
any subset T ⊂ Rn, we have

E sup
x∈T

∣∣∣‖Ax‖2 − E ‖Ax‖2
∣∣∣ . w(T ). (9.1)

We will prove such inequality in Section 9.2 and garner its many applications
in Sections ??.

Let us pause to check the magnitude of E ‖Ax‖2 that appears in the
inequality (9.1). We should expect that Extend that exercise to

include an approxima-
tion like this one.E ‖Ax‖2 ≈ (E ‖Ax‖22)1/2 (by concentration, see Exercise 5.2.5)

=
(
E

m∑
i=1

〈Ai, x〉2
)1/2

=
√
m‖x‖2 (by linearity of expectation and isotropy). (9.2)

In this light, we may expect that the following more informative version of
(9.1) should also be true:

E sup
x∈T

∣∣∣‖Ax‖2 −√m‖x‖2∣∣∣ . w(T ). (9.3)

209
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We will indeed deduce (9.3) from Talagrand’s comparison inequality
(Corollary 8.5.3). To apply the comparison inequality, all we need to check
that the random process

Xx := ‖Ax‖2 −
√
m‖x‖2

has sub-gaussian increments. We will do this next.

9.1 Sub-gaussian increments of the random ma-
trix process

Theorem 9.1.1 (Sub-gaussian increments). Let A be an m×n matrix whose
rows Ai are independent, isotropic and sub-gaussian random vectors in Rn.
Then the random process

Xx := ‖Ax‖2 −
√
m‖x‖2

has sub-gaussian increments, namely

‖Xx −Xy‖ψ2 ≤ CK2‖x− y‖2 for all x, y ∈ Rn. (9.4)

Here K = maxi ‖Ai‖ψ2.

Remark 9.1.2 (Centered process). Applying Centering Lemma 2.6.6 we see
that the random process in (9.1), i.e.

X ′x := ‖Ax‖2 − E ‖Ax‖2

has sub-gaussian increments, too. The conclusion of Theorem 9.1.1 holds
for this process, possibly with a different absolute constant.

We are now going to prove Theorem 9.1.1. Although this proof is a bit
longer than most of the arguments in this book, we will make it easier by
working out simpler, partial cases first and gradually moving toward full
generality. We will develop this argument in the next few subsections.

9.1.1 Proof for unit vector x and zero vector y

Assume that
‖x‖2 = 1 and y = 0.

In this case, the inequality in (9.4) we want to prove becomes∥∥∥‖Ax‖2 −√m∥∥∥
ψ2

≤ CK2. (9.5)
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Note that Ax is a random vector in Rm with independent, sub-gaussian
coordinates 〈Ai, x〉, which satisfy E 〈Ai, x〉2 = 1 by isotropy. Then the Con-
centration of Norm Theorem 3.1.1 yields (9.5).

9.1.2 Proof for unit vectors x, y and for the squared process

Assume now that
‖x‖2 = ‖y‖2 = 1.

In this case, the inequality in (9.4) we want to prove becomes∥∥∥‖Ax‖2 − ‖Ay‖2∥∥∥
ψ2

≤ CK2‖x− y‖2. (9.6)

We will first prove a version of this inequality for the squared Euclidean
norms, which are more convenient to handle. Let us guess what form such
inequality should take. We have

‖Ax‖22 − ‖Ay‖22 =
(
‖Ax‖2 + ‖Ay‖2

)
·
(
‖Ax‖2 − ‖Ay‖2

)
.
√
m · ‖x− y‖2. (9.7)

The last bound should hold with high probability because the typical mag-
nitude of ‖Ax‖2 and ‖Ay‖2 is

√
m by (9.2), and since we expect (9.6) to

hold.
Now that we guessed the inequality (9.7) for the squared process, let us

prove it. We are looking to bound the random variable

Z :=
‖Ax‖22 − ‖Ay‖22
‖x− y‖2

=
〈A(x− y), A(x+ y)〉

‖x− y‖2
= 〈Au,Av〉 (9.8)

where

u :=
x− y
‖x− y‖2

and v := x+ y.

The desired bound is

|Z| .
√
m with high probability.

The coordinates of the vectors Au and Av are 〈Ai, u〉 and 〈Ai, v〉. So we
can represent Z as a sum of independent random variables

Z =
m∑
i=1

〈Ai, u〉 〈Ai, v〉 ,
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Lemma 9.1.3. The random variables 〈Ai, u〉 〈Ai, v〉 are independent, mean
zero, and sub-exponential; more precisely,∥∥ 〈Ai, u〉 〈Ai, v〉∥∥ψ1

≤ 2K2.

Proof. Independence follows from the construction, but the mean zero prop-
erty is less obvious. Although both 〈Ai, u〉 and 〈Ai, v〉 do have zero means,
these variables are not necessarily independent from each other. Still, we
can check that they are uncorrelated. Indeed,

E 〈Ai, x− y〉 〈Ai, x+ y〉 = E
[
〈Ai, x〉2 − 〈Ai, y〉2

]
= 1− 1 = 0

by isotropy. By definition of u and v, this implies that E 〈Ai, u〉 〈Ai, v〉 = 0.

To finish the proof, recall from Lemma 2.7.5 that the product of two
sub-gaussian random variables is sub-exponential. So we get∥∥ 〈Ai, u〉 〈Ai, v〉 ∥∥ψ1

≤
∥∥ 〈Ai, u〉∥∥ψ2

·
∥∥ 〈Ai, v〉∥∥ψ2

≤ K‖u‖2 ·K‖v‖2 (by sub-gaussian assumption)

≤ 2K2

where in the last step we used that ‖u‖2 = 1 and ‖v‖2 ≤ ‖x‖2+‖y‖2 ≤ 2.

To bound Z, we will use Bernstein’s inequality (Corollary 2.8.4); recall
that it applies for a sum of independent, mean zero, sub-exponential random
variables.

Exercise 9.1.4. Apply Bernstein’s inequality (Corollary 2.8.4) and simplify
the bound. You should get

P
{
|Z| ≥ s

√
m
}
≤ 2 exp

(
− cs2

K4

)
for any 0 ≤ s ≤

√
m. Hint: In this range of s, the sub-gaussian tail will dominate in

Bernstein’s inequality. Do not forget to apply the inequality for 2K2 instead of K because

of Lemma 9.1.3.

Recalling the definition of Z, we can see that we obtained the desired
bound (9.7).

We wish this bound was true for all s, but for large s it may not hold.
The squared process, being sub-exponential, can not have a strictly lighter,
sub-gaussian tail everywhere.
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9.1.3 Proof for unit vectors x, y and for the original process

Now we would like to remove the squares from ‖Ax‖22 and ‖Ay‖22 and deduce
inequality (9.6) for unit vectors x and y. Let us state this goal again.

Lemma 9.1.5 (Unit y, original process). Let x, y ∈ Sn−1. Then∥∥∥‖Ax‖2 − ‖Ay‖2∥∥∥
ψ2

≤ CK2‖x− y‖2.

Proof. Fix s ≥ 0. The conclusion we want to prove is that

p(s) := P

{∣∣‖Ax‖2 − ‖Ay‖2∣∣
‖x− y‖2

≥ s

}
≤ 4 exp

(
− cs2

K4

)
. (9.9)

We will proceed differently for small and large s.

Case 1: s ≤ 2
√
m. In this range, we will use our results from the previous

subsection. They are stated for the squared process though. So, to be able
to apply those results, we multiply both sides of the inequality defining p(s)
by ‖Ax‖2 + ‖Ay‖2. With the same Z as we defined in (9.8), this gives

p(s) = P
{
|Z| ≥ s

(
‖Ax‖2 + ‖Ay‖2

)}
≤ P {|Z| ≥ s‖Ax‖2} .

As we noted in (9.2), typically we have ‖Ax‖2 ≈
√
m. So it makes

sense to break the probability that |Z| ≥ s‖Ax‖2 into two cases: one where
‖Ax‖ ≥

√
m/2 and thus |Z| ≥ s

√
m/2, and the other where ‖Ax‖ <

√
m/2

(and there we will not care about Z). This leads to

p(s) ≤ P
{
|Z| ≥ s

√
m

2

}
+ P

{
‖Ax‖2 <

√
m

2

}
=: p1(s) + p2(s).

The result of Exercise 9.1.4 gives

p1(s) ≤ 2 exp
(
− cs2

K4

)
.

Further, the bound (9.5) and triangle inequality gives

p2(s) ≤ P
{∣∣‖Ax‖2 −√m∣∣ > √m

2

}
≤ 2 exp

(
− cs2

K4

)
.

Summing the two probabilities, we conclude a desired bound

p(s) ≤ 4 exp
(
− cs2

K4

)
.



214CHAPTER 9. DEVIATIONS OF RANDOMMATRICES ANDGEOMETRIC CONSEQUENCES

Case 2: s > 2
√
m. Let us look again at the inequality (9.9) that defines

p(s), and slightly simplify it. By triangle inequality, we have∣∣‖Ax‖2 − ‖Ay‖2∣∣ ≤ ‖A(x− y)‖2.

Thus

p(s) ≤ P {‖Au‖2 ≥ s} (where u :=
x− y
‖x− y‖2

as before)

≤ P
{
‖Au‖2 −

√
m ≥ s/2

}
(since s > 2

√
m)

≤ 2 exp
(
− cs2

K4

)
(using (9.5) again).

Therefore, in both cases we obtained the desired estimate (9.9). This
completes the proof of the lemma.

9.1.4 Proof of Theorem 9.1.1 in full generality

Finally, we are ready to prove (9.4) for arbitrary x, y ∈ Rn. By scaling, we
can assume without loss of generality that

‖x‖2 = 1 and ‖y‖2 ≥ 1. (9.10)

(Why?) Consider the contraction of y onto the unit sphere, see Figure ??:

ȳ :=
y

‖y‖2
(9.11)

Use triangle inequality to break the increment in two parts:

‖Xx −Xy‖ψ2 ≤ ‖Xx −Xȳ‖ψ2 + ‖Xȳ −Xy‖ψ2 .

Since x and ȳ are unit vectors, Lemma 9.1.5 may be used to bound the
first part. It gives

‖Xx −Xȳ‖ψ2 ≤ CK2‖x− ȳ‖2.

To bound the second part, note that ȳ and y are collinear vectors, so

‖Xȳ −Xy‖ψ2 = ‖ȳ − y‖2 · ‖Xȳ‖ψ2 .

(Check this identity!) Now, since ȳ is a unit vector, (9.5) gives

‖Xȳ‖ψ2 ≤ CK2.
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Combining the two parts, we conclude that

‖Xx −Xy‖ψ2 ≤ CK2
(
‖x− ȳ‖2 + ‖ȳ − y‖2

)
. (9.12)

At this point we might get nervous: we need to bound the right hand
side by ‖x − y‖2, but triangle inequality would give the reverse bound!
Nevertheless, looking at Figure 9.1 we may suspect that in our case triangle
inequality can be approximately reversed. The next exercise confirms this
rigorously.

Figure 9.1: Exercise 9.1.6 shows that triangle inequality can be approximately
reversed from these three vectors, and we have ‖x− ȳ‖2 + ‖ȳ − y‖2 ≤

√
2‖x− y‖2.

Exercise 9.1.6 (Reverse triangle inequality). Consider vectors x, y, ȳ ∈ Rn
be satisfying (9.10) and (9.11). Show that

‖x− ȳ‖2 + ‖ȳ − y‖2 ≤
√

2‖x− y‖2.

Using the result of this exercise, we deduce from (9.12) the desired bound

‖Xx −Xy‖ψ2 ≤ CK2‖x− y‖2.

Theorem 9.1.1 is completely proved.

9.2 Matrix deviation inequality

We will now state and quickly deduce the matrix deviation inequality that
we announced in (9.1).

Theorem 9.2.1 (Matrix deviation inequality). Let A be an m × n matrix
whose rows Ai are independent, isotropic and sub-gaussian random vectors
in Rn. Then for any subset T ⊂ Rn, we have

E sup
x∈T

∣∣∣‖Ax‖2 −√m‖x‖2∣∣∣ ≤ CK2γ(T ).

Here γ(T ) is the Gaussian complexity introduced in (7.27), and K = maxi ‖Ai‖ψ2.
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Proof. By Theorem 9.1.1, the random process

Xx := ‖Ax‖2 −
√
m‖x‖2.

has sub-gaussian increments. This allows us to apply Talagrand’s compari-
son inequality in the form of Exercise 8.5.4. It gives

E sup
x∈T
|Xx| ≤ CK2γ(T )

as announced.

Exercise 9.2.2 (The centered process). Show that the conclusion of Theo-
rem 9.2.1 holds with E ‖Ax‖2 instead

√
m‖x‖2, i.e. we have

E sup
x∈T

∣∣∣‖Ax‖2 − E ‖Ax‖2
∣∣∣ ≤ CK2γ(T ).

This form of matrix deviation inequality is dimension-free. Hint: Bound the

difference between E ‖Ax‖2 and
√
m‖x‖2 using (9.5).

Exercise 9.2.3 (Matrix deviation inequality: tail bounds). 1. Prove the
following high-probability version of the conclusion of Theorem 9.2.1. For
any u ≥ 0, the event

sup
x∈T

∣∣∣‖Ax‖2 −√m‖x‖2∣∣∣ ≤ CK2 [w(T ) + u · rad(T )] (9.13)

holds with probability at least 1 − 2 exp(−u2). Here rad(T ) is the radius of
T introduced in (8.36).

Hint: Use the high-probability version of Talagrand’s comparison inequality from Ex-

ercise 8.5.5.

2. Argue that (9.13) can be further bounded by CK2uγ(T ) for u ≥ 1.
Conclude that the result of part 1 of this exercise implies the conclusion of
Theorem 9.2.1.

9.3 Bounds on random matrices and sizes of ran-
dom projections

9.3.1 Two-sided bounds on random matrices

Matrix deviation inequality has a number of important consequences, which
we will cover in the next few sections.
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To get started, let us apply the matrix deviation inequality for the unit
Euclidean sphere T = Sn−1. In this case, we recover the bounds on random
matrices that we proved in Section 4.5.

Indeed, the radius and Gaussian width of T = Sn−1 satisfy

rad(T ) = 1, w(T ) ≤
√
n.

(Recall (7.21).) Matrix deviation inequality in the form of Exercise 9.2.3
together with triangle inequality imply that the event

√
m− CK2(

√
n+ u) ≤ ‖Ax‖2 ≤

√
m+ CK2(

√
n+ u) ∀x ∈ Sn−1

holds with probability at least 1− 2 exp(−u2).
We can interpret this event as a two-sided bound on the extreme singular

values of A (recall (4.2)):

√
m− CK2(

√
n+ u) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ u).

Thus we recover the result we proved in Theorem 4.5.1.

9.3.2 Sizes of random projections of geometric sets

Let us note an immediate application of matrix deviation inequality. for
sizes of random projections of geometric sets we studied in Section 7.8. We
will see how matrix deviation inequality can yield a sharper bound.

Proposition 9.3.1 (Sizes of random projections of sets). Consider a bounded
set T ⊂ Rn. Let A be an m × n matrix whose rows Ai are independent,
isotropic and sub-gaussian random vectors in Rn. Then the scaled matrix

P :=
1√
n
A

(a “sub-gaussian projection”) satisfies

Ediam(PT ) ≤
√
m

n
diam(T ) + CK2ws(T ).

Here ws(T ) is the spherical width of T (recall Section 7.7.2) and K =
maxi ‖Ai‖ψ2.

Proof. Theorem 9.2.1 implies via triangle inequality that

E sup
x∈T
‖Ax‖2 ≤

√
m sup

x∈T
‖x‖2 + CK2γ(T ).
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We can state this inequality in terms of radii of the sets AT and T as

E rad(AT ) ≤
√
m rad(T ) + CK2γ(T ).

Applying this bound for the difference set T − T instead of T , we can write
it as

Ediam(AT ) ≤
√
m diam(T ) + CK2w(T ).

(Here we used (7.28) to pass from Gaussian complexity to Gaussian width.)
Dividing both sides by

√
n completes the proof.

Let us compare Proposition 9.3.1 with our older bounds on sizes of pro-
jections, Theorem 7.8.1. We can see that the new result is more general and
also sharper. It states that the diameter scales by the exact factor

√
m/n

without an absolute constant in front of it.

Exercise 9.3.2 (Sizes of projections: high-probability bounds). Use the
high-probability version of matrix deviation inequality (Exercise 9.2.3) to
obtain a high-probability version of Proposition 9.3.1 with better probability
Namely, show that for ε > 0, the bound

diam(AT ) ≤ (1 + ε)

√
m

n
diam(T ) + CK2ws(T )

holds with probability at least 1− exp(−cε2m/K4).

Exercise 9.3.3. Deduce a version of Proposition 9.3.1 for the original model
of P considered in Section 7.8, i.e. for a random projection P onto a random
m-dimensional subspace E ∼ Unif(Gn,m).

9.4 Johnson-Lindenstrauss Lemma for infinite sets

Let us now apply the matrix deviation inequality for a finite set T . In this
case, we recover Johnshon-Lindenstrauss Lemma from Section 5.3 and more.

9.4.1 Recovering the classical Johnson-Lindenstrauss

Let us check that matrix deviation inequality contains the classical Johnson-
Lindenstrauss Lemma (Theorem 5.3.1). Let X be a set of N points in Rn
and define T to be the set of normalized differences of X , i.e.

T :=
{ x− y
‖x− y‖2

: x, y ∈ X are distinct points
}
.
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Then the radius and Gaussian complexity of T satisfy

rad(T ) ≤ 1, γ(T ) ≤ C
√

logN (9.14)

(Recall Exercise 7.7.6). Then matrix deviation inequality (Theorem 9.2.1)
implies that the bound

sup
x,y∈X

∣∣∣‖Ax−Ay‖2‖x− y‖2
−
√
m
∣∣∣ .√logN (9.15)

holds with high probability. To keep the calculation simple, we will be
satisfied here with probability 0.99, which can be obtained using Markov’s
inequality; Exercise 9.2.3 gives better probability. Also, for simplicity we
suppressed the dependence on the sub-gaussian norm K.

Multiply both sides of (9.15) by 1√
m
‖x − y‖2 and rearrange the terms.

We obtain that, with high probability, the scaled random matrix

Q :=
1√
m
A

is an approximate isometry on X , i.e.

(1− ε)‖x− y‖2 ≤ ‖Qx−Qy‖2 ≤ (1 + ε)‖x− y‖2 for all x, y ∈ X .

where

ε .

√
logN

m
.

Equivalently, if we fix ε > 0 and choose the dimension m such that

m & ε−2 logN,

then with high probability Q is an ε-isometry on X . Thus we recover the
classical Johnson-Lindenstrauss Lemma (Theorem 5.3.1).

Exercise 9.4.1. In the argument above, quantify the probability of success
and dependence on K. Thus, use matrix deviation inequality to give an
alternative solution of Exercise 5.3.3.

9.4.2 Johnson-Lindenstrauss lemma for infinite sets

The argument above does not really depend on X being a finite set. We only
used that X is finite to bound the Gaussian complexity in (9.14). This means
that we can give a version of Johnson-Lindenstrauss lemma for general, not
necessarily finite sets. Let us state such version.
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Proposition 9.4.2 (Additive Johnson-Lindenstrauss Lemma). Consider a
set X ⊂ Rn. Let A be an m × n matrix whose rows Ai are independent,
isotropic and sub-gaussian random vectors in Rn. Then, with high probability
(say, 0.99), the scaled matrix

Q :=
1√
m
A

satisfies

‖x− y‖2 − δ ≤ ‖Qx−Qy‖2 ≤ ‖x− y‖2 + δ for all x, y ∈ X

where

δ =
CK2w(X )√

m

and K = maxi ‖Ai‖ψ2.

Proof. Choose T to be the difference set, i.e. T = X −X , and apply matrix
deviation inequality (Theorem 9.2.1). It follows that, with high probability,

sup
x,y∈X

∣∣‖Ax−Ay‖2 −√m‖x− y‖2∣∣ ≤ CK2γ(X − X ) = 2CK2w(X ).

(In the last step, we used (7.28).) Dividing both sides by
√
m, we complete

the proof.

Note that the error δ in Proposition 9.4.2 is additive, while the classical
Johnson-Lindenstrauss Lemma for finite sets (Theorem 5.3.1) has a multi-
plicative form of error. This may be a small difference, but in general it is
necessary:

Exercise 9.4.3 (Additive error). Suppose a set X has a non-empty inte-
rior. Check that, in order for the conclusion (5.10) of the classical Johnson-
Lindenstrauss lemma to hold, one must have

rank(Q) = m ≥ n.

Remark 9.4.4 (Statistical dimension). The additive version of Johnson-Lindenstrauss
Lemma can be naturally stated in terms of the statistical dimension of X ,

d(X ) ∼ w(X )2

diam(X )2
,
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which we introduced in Section 7.7.4. To see this, let us fix ε > 0 and choose
the dimension m so that it exceeds an appropriate multiple of the statistical
dimension, namely

m ≥ (CK4/ε2)d(T ).

Then in Proposition 9.4.2 we have δ ≤ εdiam(X ). This means that Q pre-
serves the distances in X to within a small fraction of the maximal distance,
which is the diameter of X .

9.5 Random sections: M ∗ bound and Escape The-
orem

Consider a set T ⊂ Rn and a random subspace E with given dimension. How
large is the typical intersection of T and E? See Figure 9.2 for illustration.
There are two types of answers to this question. In Section 9.5.1 we will
give a general bound the expected diameter of T ∩ E; it is called the M∗

bound. The intersection T ∩ E can even be empty; this is the content of
the Escape Theorem which we will prove in Section 9.5.2. Both results are
consequences of matrix deviation inequality.

Figure 9.2: Illustration for M∗ bound: the intersection of a set T with a random
subspace E.

9.5.1 M∗ bound

First, it is convenient to realize the random subspace E as a kernel of a
random matrix, i.e. set

E := kerA

where A is a random m× n random matrix. We always have

dim(E) ≥ n−m,
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and for continuous distributions we have dim(E) = n−m almost surely.

Example 9.5.1. Let A be a Gaussian matrix with independent N(0, 1) en-
tries. Rotation invariance implies that E = ker(A) is uniformly distributed
in the Grassmanian:

E ∼ Unif(Gn,n−m).

Our main result is the following general bound on the diameters of ran-
dom sections of geometric sets. For historic reasons, this results is called
the M∗ bound.

Theorem 9.5.2 (M∗bound). Consider a set T ⊂ Rn. Let A be an m × n
matrix whose rows Ai are independent, isotropic and sub-gaussian random
vectors in Rn. Then the random subspace E = kerA satisfies

Ediam(T ∩ E) ≤ CK2w(T )√
m

,

where K = maxi ‖Ai‖ψ2.

Proof. Apply Theorem 9.2.1 for T − T and obtain

E sup
x,y∈T

∣∣‖Ax−Ay‖2 −√m‖x− y‖2∣∣ ≤ CK2γ(X − X ) = 2CK2w(T ).

If we restrict the supremum to points x, y in the kernel of A, then ‖Ax−Ay‖2
disappears since A(x− y) = 0, and we have

E sup
x,y∈T∩kerA

√
m‖x− y‖2 ≤ 2CK2w(T ).

Dividing by
√
m yields

Ediam(T ∩ kerA) ≤ CK2w(T )√
m

,

which is the bound we claimed.

Exercise 9.5.3 (Affine sections). Check that M∗ bound holds not only for
sections through the origin but for all affine sections as well:

Emax
z∈Rn

diam(T ∩ Ez) ≤
CK2w(T )√

m

where Ez = z + kerA.
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Remark 9.5.4 (Statistical dimension). Surprisingly, the random subspace E
in the M∗ bound is not low-dimensional. On the contrary, dim(E) ≥ n−m
and we would typically choose m� n, so E has almost full dimension. This
makes the M∗ bound a strong and perhaps surprising statement.

It can be enlightening to look at the M∗ bound through the lens of
the notion of statistical dimension d(T ) ∼ w(T )2/diam(T )2, which we in-
troduced in Section 7.7.4. Fix ε > 0. Then the M∗ bound can be stated
as

Ediam(T ∩ E) ≤ ε · diam(T )

as long as
m ≥ C(K4/ε2)d(T ). (9.16)

In words, the M∗ bound becomes non-trivial – the diameter shrinks – as long
as the codimension of E exceeds a multiple of the statistical dimension of T .

Equivalently, the dimension condition states that the sum of dimension
of E and a multiple of statistical dimension of T should be bounded by
n. This condition should now make sense from the linear algebraic point
of view. For example, if T is a centered Euclidean ball in some subspace
F ⊂ Rn then a non-trivial bond diam(T ∩ E) < diam(T ) is possible only if

dimE + dimF ≤ n.

(Why?)

Let us look at one remarkable example of application of the M∗ bound.

Example 9.5.5 (The `1 ball). Let T = Bn
1 , the unit ball of the `1 norm in

Rn. Since we proved in (7.23) that w(T ) ∼
√

log n, the M∗ bound (Theo-
rem 9.5.2) gives

Ediam(T ∩ E) .

√
log n

m
.

For example, if m = 0.1n then

Ediam(T ∩ E) .

√
log n

n
. (9.17)

Comparing this with diam(T ) = 2, we see that the diameter shrinks by
almost

√
n as a result of intersecting T with the random subspace E that

has almost full dimension (namely, 0.9n).
For an intuitive explanation of this surprising fact, recall from Sec-

tion 7.7.3 that the “bulk” the octahedron T = Bn
1 is formed by the inscribed

ball 1√
n
Bn

2 . Then it should not be surprising if a random subspace E tends
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to pass through the bulk and miss the “outliers” that lie closer to the ver-
tices of T . This makes the diameter of T ∩ E essentially the same as the
size of the bulk, which is 1/

√
n.

This example indicates what makes a surprisingly strong and general
result like M∗ bound possible. Intuitively, the random subspace E tends to
pass entirely through the bulk of T , which is usually a Euclidean ball with
much smaller diameter than T , see Figure 9.2.

Sharper bound – later in
Exercise ??

Exercise 9.5.6 (M∗ bound with high probability). Use the high-probability
version of matrix deviation inequality (Exercise 9.2.3) to obtain a high-
probability version of the M∗ bound.

9.5.2 Escape theorem

In some circumstances, a random subspace E may completely miss a given
set T in Rn. This might happen, for example, if T is a subset of the sphere,
see Figure 9.3. In this case, the intersection T ∩E is typically empty under
essentially the same conditions as in M∗ bound.

Figure 9.3: Illustration for the Escape theorem: the set T has empty intersection
with a random subspace E.

Theorem 9.5.7 (Escape theorem). Consider a set T ⊂ Sn−1. Let A be an
m × n matrix whose rows Ai are independent, isotropic and sub-gaussian
random vectors in Rn. If

m ≥ CK4w(T )2, (9.18)

then the random subspace E = kerA satisfies

T ∩ E = ∅

with probability at least 1− 2 exp(−cm/K4). Here K = maxi ‖Ai‖ψ2.
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Proof. Let us use the high-probability version of matrix deviation inequality
from Exercise 9.2.3. It states that the bound

sup
x∈T

∣∣∣‖Ax‖2 −√m∣∣∣ ≤ C1K
2(w(T ) + u) (9.19)

holds with probability at least 1 − 2 exp(−u2). Suppose this event indeed
holds and T ∩ E 6= ∅. Then for any x ∈ T ∩ E we have ‖Ax‖2 = 0, so our
bound becomes √

m ≤ C1K
2(w(T ) + u).

Choosing u :=
√
m2C1K

2, we simplify the bound to

√
m ≤ C1K

2w(T ) +

√
m

2
,

which yields √
m ≤ 2C1K

2w(T ).

But this contradicts the assumption of the Escape theorem, as long as we
choose the absolute constant C large enough. This means that the event
(9.19) with u chosen as above implies that T ∩E = ∅. The proof is complete.

Exercise 9.5.8 (Sharpness of Escape theorem). Discuss the sharpness of
Escape Theorem for the example where T is the unit sphere of some subspace
of Rn.

Exercise 9.5.9 (Escape from a point set). Prove the following version of
Escape theorem with a rotation of a point set instead of a random subspace.

Consider a set T ⊂ Sn−1 and let X be a set of N points in Rn. Show
that, if

σn−1(T ) <
1

N

then there exists a rotation U ∈ O(n) such that

T ∩ UX = ∅.

Here σn−1 denotes the normalized Lebesgue measure (area) on Sn−1.
Hint: Consider a random rotation U ∈ Unif(SO(n)) as in Section 5.2.5. Applying a

union bound, show that the probability that there exists x ∈ X such that Ux ∈ T is smaller

than 1.
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Chapter 10

Sparse Recovery

In this chapter, we study applications of high-dimensional probability to
signal recovery problems that are typical for modern data sciences.

10.1 High dimensional signal recovery problems

Mathematically, a signal is a vector x ∈ Rn. Suppose we do not know x,
but we have m random, linear, possibly noisy measurements of x. Such
measurements can be represented a vector y ∈ Rm with following form:

y = Ax+ w. (10.1)

Here A is an m× n known random measurement matrix, and w ∈ Rm is an
unknown noise vector; see Figure 10.1. Our goal is to recover x from A and
y as accurately as possible.

Note that the measurements y = (y1, . . . , ym) can be equivalently repre-
sented as

yi = 〈Ai, x〉+ wi, i = 1, . . . ,m (10.2)

where AT
i ∈ Rn denote the rows of the matrix A. It is natural to assume

that Ai are independent, which makes the observations yi independent, too.

Example 10.1.1 (Audio sampling). In signal processing applications, x can
be a digitized audio signal. The measurement vector y can be obtained by
sampling x at m randomly chosen time points, see Figure 10.2.

Example 10.1.2 (Linear regression). The linear regression is one of the major
inference problems in Statistics. Here we would like to model the relationship

227
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Figure 10.1: Signal recovery problem: recover a signal x from random, linear mea-
surements y.

Figure 10.2: Signal recovery problem in audio sampling: recover an audio signal x
from a sample of x taken at m random time points.
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between n predictor variables and a response variable using a sample of m
observations. The regression problem is usually written as

Y = Xβ + w.

Here X is an m × n matrix that contains a sample of predictor variables,
Y ∈ Rm is a vector that contains a sample of response variables, β ∈ Rn is a
coefficient vector that specifies the relationship that we try to recover, and
w is a noise vector.

For example, in genetics one could be interested in predicting a certain
disease based on genetic information. One then performs a study on m
patients collecting the expressions of their n genes. The matrix X is defined
by letting Xij be the expression of gene j in patient i, and the coefficients
Yi of the vector Y can be set to quantify whether or not patient i has the
disease (and to what extent). The goal is to recover the coefficients of β,
which quantify how each gene affects the disease.

10.1.1 Incorporating prior information about the signal

Many modern signal recovery problems operate in the regime where

m� n,

i.e. we have far fewer measurements than unknowns. For instance, in a
typical genetic study like the one described in Example 10.1.2, the number
of patients is ∼ 100 while the number of genes is ∼ 10, 000.

In this regime, the recovery problem (10.1) is ill-posed even in the noise-
less case where w = 0. It can not be even approximately solved: the solu-
tions form a linear subspace of dimension at least n−m. To overcome this
difficulty, we can leverage some prior information about the signal x – some-
thing that we know, believe, or want to enforce about x. Such information
can be mathematically be expressed by assuming that

x ∈ T (10.3)

where T ⊂ Rn is a known set.

The smaller the set T , the fewer measurements m could be needed to
recover x. For small t, we can hope that signal recovery can be solved even
in the ill-posed regime where m � n. We will see how this idea works in
the next sections.
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10.2 Signal recovery based on M ∗ bound

Let us return to the the recovery problem (10.1). For simplicity, let us first
consider the noiseless version of the problem, that it

y = Ax, x ∈ T.

To recap, here x ∈ Rn is the unknown signal, T ⊂ Rn is a known set that
encodes our prior information about x, and A is a known m × n random
measurement matrix. Our goal is to recover x from y.

Perhaps the simplest candidate for the solution would be any vector x′

that is consistent both with the measurements and the prior, so we

find x′ : y = Ax′, x ∈ T. (10.4)

If the set T is convex, this is a convex program (in the feasibility form), and
many effective algorithms exists to numerically solve it.

This näıve approach actually works well. We will now quickly deduce
this from the M∗ bound from Section 9.5.1.

Theorem 10.2.1. Suppose the rows Ai of A are independent, isotropic
and sub-gaussian random vectors. Then a solution x̂ of the program (10.4)
satisfies

E ‖x̂− x‖2 ≤
CK2w(T )√

m
,

where K = maxi ‖Ai‖ψ2.

Proof. Since x, x̂ ∈ T and Ax = Ax̂ = y, we have

x, x̂ ∈ T ∩ Ex

where Ex := x+kerA. (Figure 10.3 illustrates this situation visually.) Then

Figure 10.3: Signal recovery: the signal x and the solution x̂ lie in the prior set T
and in the affine subspace Ex.
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the affine version of the M∗ bound (Exercise 9.5.3) yields

E ‖x̂− x‖2 ≤ Ediam(T ∩ Ex) ≤ CK2w(T )√
m

.

This completes the proof.

Remark 10.2.2 (Statistical dimension). Arguing as in Remark 9.5.4, we ob-
tain a non-trivial error bound

E ‖x̂− x‖2 ≤ ε · diam(T )

provided that the number of measurements m is so that

m ≥ C(K4/ε2)d(T ).

In words, the signal can be approximately recovered as long as the number of
measurements m exceeds a multiple of the statistical dimension d(T ) of the
prior set T .

Since the statistical dimension can be much smaller than the ambient
dimension n, the recovery problem may often be solved even if the high-
dimensional, ill-posed regime where

m� n.

We will see some concrete examples of this situation shortly.

Remark 10.2.3 (Convexity). If the prior set T is not convex, we can con-
vexify it by replacing T with its convex hull conv(T ). This makes (10.4) a
convex program, and thus computationally tractable. At the same time, the
recovery guarantees of Theorem 10.2.1 do not change since

w(conv(T )) = w(T )

by Proposition 7.7.2.

Exercise 10.2.4 (Noisy measurements). Extend the recovery result (Theo-
rem 10.2.1) for the noisy model y = Ax+w we considered in (10.1). Namely,
show that

E ‖x̂− x‖2 ≤
CK2w(T ) + ‖w‖2√

m
.

Hint: Modify the argument that leads to the M∗ bound.
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Exercise 10.2.5 (Mean squared error). Prove that the error bound Theo-
rem 10.2.1 can be extended for the mean squared error

E ‖x̂− x‖22.

Hint: Modify the M∗ bound accordingly.

Exercise 10.2.6 (Recovery by optimization). Suppose T is the unit ball of
some norm ‖ · ‖T in Rn. Show that the conclusion of Theorem 10.2.1 holds
also for the solution of the following optimization program:

minimize ‖x′‖T s.t. y = Ax′.

10.3 Recovery of sparse signals

10.3.1 Sparsity

Let us give a concrete example of a prior set T . Very often, we believe
that x should be sparse, i.e. that most coefficients of x are zero, exactly
or approximately. For instance, in genetic studies like the one we described
in Example 10.1.2, it is natural to expect that very few genes (∼ 10) have
significant impact on a given disease, and we would like to find out which
ones.

In some applications, one needs to change basis so that the signals of
interest are sparse. For instance, in the audio recovery problem considered
in Example 10.1.1, we typically deal with band-limited signals x. Those
are the signals whose frequencies (the values of the Fourier transform) are
constrained to some small set, such as a bounded interval. While the audio
signal x itself is not sparse as is apparent from Figure 10.2, the Fourier
transform of x may be sparse. In other words, x may be sparse in the
frequency and not time domain.

To quantify the (exact) sparsity of a vector x ∈ Rn, we consider the size
of the support of x which we denote

‖x‖0 := | supp(x)| = |{i : xi 6= 0}| .

Assume that
‖x‖0 = s� n. (10.5)

This can be viewed as a special case of a general assumption (10.3) by
putting

T = {x ∈ Rn : ‖x‖0 ≤ s} .
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Then a simple dimension count shows the recovery problem (10.1) could
become well posed:

Exercise 10.3.1 (Sparse recovery problem is well posed). Argue that if
m ≥ ‖x‖0, the solution to the sparse recovery problem (10.1) is unique if it
exists.

Even when the problem (10.1) is well posed, it could be computationally
hard. It is easy if one knows the support of x (why?) but usually the support
is unknown. An exhaustive search over all possible supports (subsets of a
given size s) is impossible since the number of possibilities is exponentially
large:

(
n
s

)
≥ 2s.

Fortunately, there exist computationally effective approaches to high-
dimensional recovery problems with general constraints (10.3), and the sparse
recovery problems in particular. We will cover these approaches next.

Exercise 10.3.2 (The “`p norms” for 0 ≤ p < 1). 1. Check that ‖ · ‖0 is
not a norm on Rn.

2. Check that ‖ · ‖p is not a norm on Rn if 0 < p < 1. Figure 10.4
illustrates the unit balls for various `p “norms”.

3. Show that, for every x ∈ Rn,

‖x‖0 = lim
p→0+

‖x‖p.

Figure 10.4: The unit balls of `p for various p in R2.

10.3.2 Convexifying the sparsity by `1 norm, and recovery
guarantees

Let us specialize the general recovery guarantees developed in Section 10.2
to the sparse recovery problem. To do this, we should choose the prior set T
so that it promotes sparsity. In the previous section, we saw that the choice

T := {x ∈ Rn : ‖x‖0 ≤ s}

does not allow for computationally tractable algorithms.
To make T convex, we may replace the “`0 norm” by the `p norm with

the smallest exponent p > 0 that makes this a true norm. This exponent
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is obviously p = 1 as we can see from Figure 10.4. So let us repeat this
important heuristic: we propose to replace the `0 “norm” by the `1 norm.

Thus it makes sense to choose T to be a scaled `1 ball:

T :=
√
sBn

1 .

The scaling factor
√
s was chosen so that T can accommodate all s-sparse

unit vectors:

Exercise 10.3.3. Check that

{x ∈ Rn : ‖x‖0 ≤ s, ‖x‖2 ≤ 1} ⊂
√
sBn

1 .

For this T , the general recovery program (10.4) becomes

Find x′ : y = Ax′, ‖x′‖1 ≤
√
s. (10.6)

Note that this is a convex program, and therefore is computationally tractable.
And the general recovery guarantee, Theorem 10.2.1, specialized to our case,
implies the following.

Corollary 10.3.4 (Sparse recovery: guarantees). Assume the unknown s-
sparse signal x ∈ Rn satisfies ‖x‖2 ≤ 1. Then x can be approximately
recovered from the random measurement vector y = Ax by a solution x̂ of
the program (10.6). The recovery error satisfies

E ‖x̂− x‖2 ≤ CK2

√
s log n

m
.

Proof. Set T =
√
sBn

1 . The result follows from Theorem 10.2.1 and the
bound (7.23) on the Gaussian width of the `1 ball:

w(T ) =
√
sw(Bn

1 ) ≤ C
√
s log n.

The recovery error becomes small if

m ∼ s log n,

if the hidden constant here is appropriately large. In words, recovery is
possible if the number of measurements m is almost linear in the sparsity
s, while its dependence on the ambient dimension n is mild (logarithmic).
This is good news. It means that for sparse signals, one can solve recovery
problems in the high dimensional regime where

m� n,

i.e. with much fewer measurements than the dimension.
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Exercise 10.3.5 (Sparse recovery by convex optimization). 1. Show that
an unknown s-sparse signal x (without restriction on the norm) can be ap-
proximately recovered by solving the convex optimization problem

minimize ‖x′‖1 s.t. y = Ax′. (10.7)

The recovery error satisfies

E ‖x̂− x‖2 ≤ C
√
s log n

m
‖x‖2.

2. Argue that a similar result holds for approximately sparse signals.
State and prove such a guarantee.

10.3.3 The convex hull of sparse vectors, and the logarithmic
improvement

The replacement of s-sparse vectors by the octahedron
√
sBn

1 that we made
in Exercise 10.6 is almost sharp. In the following exercise, we show that the
convex hull of the set of sparse vectors

Sn,s := {x ∈ Rn : ‖x‖0 ≤ s, ‖x‖2 ≤ 1}

is approximately the truncated `1 ball

Tn,s :=
√
sBn

1 ∩Bn
2 =

{
x ∈ Rn : ‖x‖1 ≤

√
s, ‖x‖2 ≤ 1

}
.

Exercise 10.3.6 (The convex hull of sparse vectors). 1. Check that

conv(Sn,s) ⊂ Tn,s.

2. To help us prove a reverse inclusion, fix x ∈ Tn,s and partition the
support of x into disjoint subsets T1, T2, . . . so that T1 indexes the largest s
elements of x in magnitude, T2 indexes the next s largest elements, and so
on. Show that ∑

i≥1

‖xTi‖2 ≤ 2,

where xT ∈ RT denotes the restriction of x onto a set T .
Hint: Note that ‖xT1‖2 ≤ 1. Next, for i ≥ 2, note that each coordinate of xTi

is smaller in magnitude than the average coordinate of xTi−1 ; conclude that ‖xTi‖2 ≤
(1/
√
s)‖xTi−1‖1. Then sum up the bounds.

3. Deduce from part 2 that

Kn,s ⊂ 2 conv(Sn,s).
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Exercise 10.3.7 (Gaussian width of the set of sparse vectors). Use Exer-
cise 10.3.6 to show that

w(Tn,s) ≤ 2w(Sn,s) ≤ C
√
s log(2n/s).

Improve the logarithmic factor in the error bound for sparse recovery (Corol-
lary 10.3.4) to

E ‖x̂− x‖2 ≤ C
√
s log(2n/s)

m
.

This shows that
m ∼ s log(2n/s)

measurements suffice for sparse recovery.

Exercise 10.3.8 (Sharpness). Use Exercise 10.3.6 to show that

w(Tn,s) ≥ w(Sn,s) ≥ c
√
s log(2n/s).

Hint: Covering + Sudakov?Write the hint.

Exercise 10.3.9 (Garnaev-Gluskin’s theorem). Improve the logarithmic
factor in the bound (9.5.5) on the sections of the `1 ball. Namely, show
that

Ediam(Bn
1 ∩ E) .

√
log(2n/m)

m
.

In particular, this shows that the logarithmic factor in (9.17) is not needed.
Hint: Fix ρ > 0 and apply the M∗ bound for the truncated octahedron Tρ := Bn1 ∩

ρBn2 . Use Exercise 10.3.7 to bound the Gaussian width of Tρ. Furthermore, note that if

rad(Tρ ∩ E) ≤ δ for some δ ≤ ρ then rad(T ∩ E) ≤ δ. Finally, optimize in ρ.

10.4 Low-rank matrix recovery

In the following series of exercises, we will establish a matrix version of the
sparse recovery problem studied in Section 10.3. The unknown signal will
now be a d× d matrix X instead of a signal x ∈ Rn considered previously.

There are two natural notions of sparsity for matrices. One is where most
of the entries of X are zero, at it is quantifies by the `0 “norm” ‖X‖0, which
counts non-zero entries. For this notion, we can directly apply the analysis
of sparse recovery from Section 10.3. Indeed, it is enough to vectorize the
matrix X and think of it as a long vector in Rd2 .

But in this section, we will consider an alternative and equally useful
notion of sparsity for matrices: low rank. It is quantified by the rank of X,
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which we may think of as the `0 norm of the vector of the singular values of
X, i.e.

s(X) := (si(X))di=1. (10.8)

Our analysis of the low-rank matrix recovery problem will roughly go along
the same lines as the analysis of sparse recovery, but will not be identical to
it.

Let us set up a low-rank matrix recovery problem. We would like to
recover an unknown d×d matrix from m random measurements of the form

yi = 〈Ai, X〉 , i = 1, . . . ,m. (10.9)

Here Ai are independent d × d matrices, and 〈Ai, X〉 = tr(AT
i X) is the

canonical inner product of matrices (recall Section 4.1.3). In dimension
d = 1, the matrix recovery problem (10.9) reduces to the vector recovery
problem (10.2).

Since we have m linear equations in d× d variables, the matrix recovery
problem is ill-posed if

m < d2.

To be able to solve it in this range, we make an additional assumption that
X has low rank, i.e.

rank(X) ≤ r � d.

10.4.1 The nuclear norm

Like sparsity, the rank is not a convex function. To fix this, in Section 10.3
we replaced the sparsity (i.e. the `0 “norm”) by the `1 norm. Let us try to
do the same for the notion of rank. The rank is the `0 “norm” of the vector
s(X) of the singular values in (10.8). Replacing the `0 norm by the `1 norm,
we obtain the quantity

‖X‖∗ :=

d∑
i=1

si(X)

which is called the nuclear norm of X. (We omit the absolute values since
the singular values are non-negative.)

Exercise 10.4.1. Prove that ‖ · ‖∗ is a norm on the space of d×d matrices.
Make sure that the solu-
tion is not too hard.

Exercise 10.4.2 (Nuclear, Frobenius and operator norms). Check that

〈X,Y 〉 ≤ ‖X‖∗ · ‖Y ‖ (10.10)
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Conclude that

‖X‖2F ≤ ‖X‖∗ · ‖X‖.

Hint: Think of the nuclear norm ‖ · ‖∗, Frobenius norm ‖ · ‖F and the operator norm

‖ · ‖ as matrix analogs of the `1 norm, `2 norm and `∞ norms for vectors, respectively.

Denote the unit ball of the nuclear norm by

B∗ :=
{
X ∈ Rd×d : ‖X‖∗ ≤ 1

}
.

Exercise 10.4.3 (Gaussian width of the unit ball of the nuclear norm).
Show that

w(B∗) ≤ 2
√
d.

Hint: Use (10.10) followed by Theorem 7.4.1.

The following is a matrix version of Exercise ex: sparse into L1.

Exercise 10.4.4. Check that{
X ∈ Rd×d : rank(X) ≤ r, ‖X‖F ≤ 1

}
⊂
√
rB∗.

10.4.2 Guarantees for low-rank matrix recovery

It makes sense to try to solve the low-rank matrix recovery problem (10.9)
using the matrix version of the convex program (10.6), i.e.

Find X ′ : yi =
〈
Ai, X

′〉 ∀i = 1, . . . ,m; ‖X ′‖∗ ≤
√
r. (10.11)

Exercise 10.4.5 (Low-rank matrix recovery: guarantees). Suppose the ran-
dom matrices Ai are independent and have all independent, sub-gaussian en-
tries.1 Assume the unknown d×d matrix X with rank r satisfies ‖X‖F ≤ 1.
Then X can be approximately recovered from the random measurements yir
by a solution X̂ of the program (10.11). The recovery error satisfies

E ‖X̂ −X‖2 ≤ CK2

√
rd

m
.

The recovery error becomes small if

m ∼ rd,
1The independence of entries can be relaxed. How?
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if the hidden constant here is appropriately large. This allows us to recover
low-rank matrices even when the number of measurements m is too small,
i.e. when

m� d2

and the matrix recovery problem (without rank assumption) is ill-posed.

Exercise 10.4.6. Extend the matrix recovery result for approximately low-
rank matrices. (Quantify approximately small rank in a convenient way.)

The following is a matrix version of Exercise 10.7.

Exercise 10.4.7 (Low-rank matrix recovery by convex optimization). Show
that an unknown matrix X or rank r can be approximately recovered by
solving the convex optimization problem

minimize ‖X ′‖∗ s.t. yi =
〈
Ai, X

′〉 ∀i = 1, . . . ,m.

Exercise 10.4.8 (Rectangular matrices). Extend the matrix recovery result
from quadratic to rectangular, d1 × d2 matrices.

10.5 Exact recovery

The guarantees for sparse recovery that we just developed can be dramati-
cally improved. The recovery error of sparse signals x can actually be zero.
In this section, we will deduce an exact recovery result from Escape Theo-
rem 9.5.7.

To see why such a strong, counter-intuitive result can make sense, let
us look at the recovery problem from a geometric viewpoint illustrated by
Figure 10.3. A solution x̂ of the program (10.6) must lie in the intersection
of the prior set T , which in our case is the `1 ball

√
sBn

1 , and the affine
subspace Ex = x+ kerA.

The `1 ball is a polyhedron, and the s-sparse unit vector x lies on the
s− 1-dimensional edge of that polyhedron, see Figure 10.5a.

It could happen with non-zero probability that the random subspace Ex
is tangent to the polyhedron at the point x. If this does happen, x is the
only point of intersection between the `1 ball and Ex. In this case, it follows
that the solution x̂ to the program (10.6) is exact:

x̂ = x.

To justify this argument, all we need to check is that a random subspace
Ex is tangent to the `1 ball with high probability. We can do this using
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(a) Exact sparse recovery hap-
pens when the random subspace
Ex is tangent to the `1 ball at the
point x.

(b) The tangency occurs iff Ex
is disjoint from the spherical part
S(x) of the tangent cone T (x) of
the `1 ball at point x.

Figure 10.5: Exact sparse recovery

Escape Theorem 9.5.7. To see a connection, look at what happens in a small
neighborhood around the tangent point, see Figure 10.5b. The subspace Ex
is tangent if and only if the tangent cone T (x) (formed by all rays emanating
from x toward the points in the `1 ball) intersects Ex at a single point x.
Equivalently, this happens if and only if the spherical part S(x) of the cone
(the intersection of T (x) with a small sphere centered at x) is disjoint from
Ex. But this is exactly the conclusion of Escape Theorem 9.5.7!

Let us now formally state the exact recovery result. We shall consider
the noiseless sparse recovery problem

y = Ax.

and try to solve it using the optimization program (10.7), i.e.

minimize ‖x′‖1 s.t. y = Ax′. (10.12)

Theorem 10.5.1 (Exact sparse recovery). Suppose the rows Ai of A are in-
dependent, isotropic and sub-gaussian random vectors, and let K := maxi ‖Ai‖ψ2.
Then the following happens with probability at least 1− 2 exp(−cm/K4).

Assume an unknown signal x ∈ Rn is s-sparse and the number of mea-
surements m satisfies

m ≥ CK4s log n.

Then a solution x̂ of the program (10.12) is exact, i.e.

x̂ = x.
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To prove the theorem, we would like to show that the recovery error

h := x̂− x

is zero. Let us examine the vector h more closely. First we show that h has
more “energy” on the support of x than outside it.

Lemma 10.5.2. Let S := supp(x). Then

‖hSc‖1 ≤ ‖hS‖1.

Here hS ∈ RS denotes the restriction of the vector h ∈ RS onto a subset of
coordinates S ⊂ {1, . . . , n}.

Proof. Since x̂ is the minimizer in the program (10.12), we have

‖x̂‖1 ≤ ‖x‖1. (10.13)

But there is also a lower bound

‖x̂‖1 = ‖x+ h‖1
= ‖xS + hS‖1 + ‖xSc + hSc‖1
= ‖x+ hS‖1 + ‖hSc‖1 (since xS = 0 and xSc = 0)

≥ ‖x‖1 − ‖hS‖1 + ‖hSc‖1 (by triangle inequality).

Substitute this bound into (10.13) and cancel ‖x‖1 on both sides to complete
the proof.

Lemma 10.5.3. The error vector satisfies

‖h‖1 ≤ 2
√
s‖h‖2.

Proof. Using Lemma 10.5.2 and then Hölder’s inequality, we obtain

‖h‖1 = ‖hS‖1 + ‖hSc‖1 ≤ 2‖hS‖1 ≤ 2
√
s‖hS‖2.

Since trivially ‖hS‖2 ≤ ‖h‖2, the proof is complete.

Proof of Theorem 10.5.1. Assume that the recovery is not exact, i.e.

h = x̂− x 6= 0.

By Lemma 10.5.3, the normalized error h/‖h‖2 lies in the set

Ts :=
{
z ∈ Sn−1 : ‖z‖1 ≤ 2

√
s
}
.
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Since also

Ah = Ax̂−Ax = y − y = 0,

we have
h

‖h‖2
∈ Ts ∩ kerA. (10.14)

Escape Theorem 9.5.7 states that this intersection is empty with high
probability, as long as

m ≥ CK4w(Ts)
2.

Now,

w(Ts) ≤ 2
√
sw(Bn

1 ) ≤ C
√
s log n, (10.15)

where we used the bound (7.23) on the Gaussian width of the `1 ball. Thus,
if m ≥ CK4s log n, the intersection in (10.14) is empty with high probability,
which means that the inclusion in (10.14) can not hold. This contradiction
implies that our assumption that h 6= 0 is false with high probability. The
proof is complete.

Exercise 10.5.4 (Improving the logarithmic factor). Show that the conclu-
sion of Theorem 10.5.1 holds under a weaker assumption on the number of
measurements, which is

m ≥ CK4s log(2n/s).

Hint: Use the result of Exercise 10.3.7.

Exercise 10.5.5. Give a geometric interpretation of the proof of Theo-
rem 10.5.1, using Figure 10.5b. What does the proof say about the tangent
cone T (x)? Its spherical part S(x)?

Exercise 10.5.6 (Noisy measuremments). Extend the result on sparse re-
covery (Theorem 10.5.1) for noisy measurements, whereDo we need to relax the

constraint y = Ax′ in
the program? y = Ax+ w.

Remark 10.5.7. Theorem 10.5.1 shows that one can effectively solve under-
determined systems of linear equations y = Ax with m � n equations in n
variables, if the solution is sparse.
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10.6 Lasso algorithm for sparse regression

10.6.1 Statistical formulation

In this section we will analyze an alternative method for sparse recovery.
This method was originally developed in statistics for the equivalent problem
of sparse linear regression, and it is called Lasso (“least absolute shrinkage
and selection operator”).

Let us recall the classical linear regression problem, which we described
in Example 10.1.2. It is

Y = Xβ + w (10.16)

where X is a known m × n matrix that contains a sample of predictor
variables, Y ∈ Rm is a known vector that contains a sample of the values of
the response variable, β ∈ Rn is an unknown coefficient vector that specifies
the relationship between predictor and response variables, and w is a noise
vector. We would like to recover β.

If we do not assume anything else, the regression problem can be solved
by the method of ordinary least squares, which minimizes the `2-norm of the
error over all candidates for β:

minimize ‖Y −Xβ′‖2 s.t. β′ ∈ Rn. (10.17)

Now let us make an extra assumption that β′ is sparse, so that the
response variable depends only on a few of the n predictor variables (e.g.
the cancer depends on few genes). So, like in (10.5), we assume that

‖β‖0 ≤ s

for some s� n. As we argued in Section 10.3, the `0 is not convex, and its
convex proxy is the `1 norm. This prompts us to modify the ordinary least
squares program (10.17) by including a restriction on the `1 norm, which
promotes sparsity in the solution:

minimize ‖Y −Xβ′‖2 s.t. ‖β′‖1 ≤ R, (10.18)

where R is a parameter which specifies a desired sparsity level of the solution.
The program (10.18) is one of the formulations of Lasso, the most popular
statistical method for sparse linear regression. It is a convex program, and
therefore is computationally tractable.
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10.6.2 Mathematical formulation and guarantees

It would be convenient to return to the notation we used for sparse recovery
instead of using the statistical notation in the previous section. So let us
restate the linear regression problem (10.16) as

y = Ax+ w

where A is a known m× n matrix, y ∈ Rm is a known vector, x ∈ Rn is an
unknown vector that we are trying to recover, and w ∈ Rm is noise which is
either fixed or random and independent of A. Then Lasso program (10.18)
becomes

minimize ‖y −Ax′‖2 s.t. ‖x′‖1 ≤ R. (10.19)

We will prove the following guarantee of the performance of Lasso.

Theorem 10.6.1 (Performance of Lasso). Suppose the rows Ai of A are in-
dependent, isotropic and sub-gaussian random vectors, and let K := maxi ‖Ai‖ψ2.
Then the following happens with probability at least 1− 2 exp(−s log n).

Assume an unknown signal x ∈ Rn is s-sparse and the number of mea-
surements m satisfies

m ≥ CK4s log n. (10.20)

Then a solution x̂ of the program (10.19) with R := ‖x‖1 is accurate:

‖x̂− x‖2 ≤ Cσ
√
s log n

m
,

where σ is such that the noise satisfies ‖w‖2 ≤ σ
√
m.

Remark 10.6.2 (Noise). Let us clarify the dependence of the recovery error
on the noise. The condition ‖w‖2 ≤ σ

√
m simply bounds the average noise

per measurement by σ, since we can rewrite this condition as

‖w‖22
m

=
1

m

m∑
i=1

w2
i ≤ σ2.

Then, if the number of measurements is

m ∼ s log n,

Theorem 10.6.1 bounds the recovery error by the average noise per measure-
ment σ. And if m is larger, the recovery error gets smaller.
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Remark 10.6.3 (Exact recovery). In the noiseless model y = Ax we have
w = 0 and thus Lasso recovers x exactly, i.e.

x̂ = x.

The proof of Theorem 10.6.1 will be similar to our proof of Theorem 10.5.1
on exact recovery, although instead of the Escape theorem we will use Matrix
Deviation Inequality (Theorem 9.2.1) directly this time.

We would like to bound the norm of the error vector

h := x̂− x.

Exercise 10.6.4. Check that h satisfies the conclusions of Lemmas 10.5.2
and 10.5.3, so we have

‖h‖1 ≤ 2
√
s‖h‖2. (10.21)

Hint: The proofs of these lemmas are based on the fact that ‖x̂‖1 ≤ ‖x‖1, which holds

in our situation as well.

In case where the noise w is nonzero, we can not expect to have Ah = 0
like in Theorem 10.5.1. (Why?) Instead, we can give an upper and a lower
bounds for ‖Ah‖2.

Lemma 10.6.5 (Upper bound on ‖Ah‖2). We have

‖Ah‖22 ≤ 2
〈
h,ATw

〉
. (10.22)

Proof. Since x̂ is the minimizer of Lasso program (10.19), we have

‖y −Ax̂‖2 ≤ ‖y −Ax‖2.

Let us express both of this inequality in terms of h and w, using that y =
Ax+ w and h = x̂− x:

y −Ax̂ = Ax+ w −Ax̂ = w −Ah;

y −Ax = w.

So we have
‖w −Ah‖2 ≤ ‖w‖2.

Square both sides:

‖w‖22 − 2 〈w,Ah〉+ ‖Ah‖22 ≤ ‖w‖22.

Simplifying this bound completes the proof.
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Lemma 10.6.6 (Lower bound on ‖Ah‖2). With probability at least 1 −
2 exp(−4s log n), we have

‖Ah‖22 ≥
m

4
‖h‖22.

Proof. By (10.21), the normalized error h/‖h‖2 lies in the set

Ts :=
{
z ∈ Sn−1 : ‖z‖1 ≤ 2

√
s
}
.

Use Matrix Deviation Inequality in its high-probability form (Exercise 9.2.3)
with u = 2

√
s log n. It yields that, with probability at least 1−2 exp(−4s log n),

sup
z∈Ts

∣∣∣‖Az‖2 −√m∣∣∣ ≤ C1K
2
(
w(Ts) + 2

√
s log n

)
≤ C2K

2
√
s log n (recalling (10.15))

≤
√
m

2
(by assumption on m).

To make the last line work, choose the absolute constant C in (10.20) large
enough. By triangle inequality, this implies that

‖Az‖2 ≥
√
m

2
for all z ∈ Ts.

Substituting z := h/‖h‖2, we complete the proof.

The last piece we need to prove Theorem 10.6.1 is an upper bound on
the right hand side of (10.22).

Lemma 10.6.7. With probability at least 1− 2 exp(−4s log n), we have〈
h,ATw

〉
≤ CK‖h‖2‖w‖2

√
s log n. (10.23)

Proof. As in the proof of Lemma 10.6.6, the normalized error satisfies

z =
h

‖h‖2
∈ Ts.

So, dividing both sides of (10.23) by ‖h‖2, we see that it is enough to bound
the supremum random process

sup
z∈Ts

〈
z,ATw

〉
with high probability. We are going to use Talagrand’s comparison inequal-
ity (Corollary 8.5.3). This result applies for random processes with sub-
gaussian increments, so let us check this condition first.
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Exercise 10.6.8. Show that the random process

Xt :=
〈
t, ATw

〉
, t ∈ Rn,

has sub-gaussian increments, and

‖Xt −Xs‖ψ2 ≤ CK‖w‖2 · ‖t− s‖2.

Hint: Recall the proof of sub-gaussian Chevet’s inequality (Theorem 8.6.1).

Now we can use Talagrand’s comparison inequality in the high-probability
form (Exercise 8.5.5) for u = 2

√
s log n. We obtain that, with probability at

least 1− 2 exp(−4s log n,

sup
z∈Ts

〈
z,ATw

〉
≤ C1K‖w‖2

(
w(Ts) + 2

√
s log n

)
≤ C2K‖w‖2

√
s log n (recalling (10.15)).

This completes the proof of Lemma 10.23.

Proof of Theorem 10.6.1. Put together the bounds in Lemmas 10.6.5, 10.6.6
and 10.23. By union bound, we have that with probability at least 1 −
2 exp(−4s log n),

m

4
‖h‖22 ≤ CK‖h‖2‖w‖2

√
s log n.

Solving for ‖h‖2, we obtain

‖h‖2 ≤ CK
‖w‖2√
m
·
√
s log n

m
.

This completes the proof of Theorem 10.6.1.

Exercise 10.6.9 (Improving the logarithmic factor). Show that Theorem 10.6.1
holds if log n is replaced by log(n/s), thus giving a stronger guarantee.

Hint: Use the result of Exercise 10.3.7.

Exercise 10.6.10. Deduce the exact recovery guarantee (Theorem 10.5.1)
directly from the Lasso guarantee (Theorem 10.6.1). The probability that
you get could be a bit weaker.
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Another popular form of Lasso program (10.19) is the following uncon-
strained version:

minimize ‖y −Ax′‖2 + λ‖x′‖1, (10.24)

This is a convex optimization problem, too. Here λ is a parameter which
can be adjusted depending on the desired level of sparsity. The method of
Lagrange multipliers shows that the constrained and unconstrained versions
of Lasso are equivalent for appropriate R and λ. This however does not
immediately tell us how to choose λ. The following exercise settles this
question.

Consider providing
hints from folder Lasso-
unconstrained

Exercise 10.6.11 (Unconstrained Lasso). Assume number of measurements
satisfy

m & s log n.

Choose the parameter λ so that λ &
√

log n‖w‖2. Then, with high probability,
the solution x̂ of unconstrained Lasso (10.24) satisfies

‖x̂− x‖2 .
λ
√
s

m
.



Chapter 11

Supplement:
Dvoretzky-Milman’s
Theorem

Write intro

11.1 Deviations of random matrices with respect
to general norms

In this section we generalize the matrix deviation inequality from Section 9.2.
We will replace the Euclidean norm by any positive homogeneous, subaddi-
tive function.

Definition 11.1.1. Let V be a vector space. A function f : V → R is called
positive homogeneous if

f(αx) = αf(x) for all α ≥ 0 and x ∈ V .

The function f is called subadditive if

f(x+ y) ≤ f(x) + f(y) for all x, y ∈ V.

Note that despite being called “positive homogeneous”, f is allowed to
take negative values. (“Positive” here applies to the multiplier α in the
definition.)

Example 11.1.2. 1. Any norm on a vector space is positive homogeneous and
subadditive. The subadditivity is nothing else than triangle inequality in
this case.

249
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2. Clearly, any linear functional on a vector space is positive homogeneous
and subadditive. In particular, for any fixed vector y ∈ Rm, the function
f(x) = 〈x, y〉 is a positive homogeneous and subadditive on Rm.

3. Consider a bounded set S ⊂ Rm and define the function

f(x) := sup
y∈S
〈x, y〉 , x ∈ Rm. (11.1)

Then f is a positive homogeneous and subadditive on Rm. This function
is sometimes called the support function of S.

Exercise 11.1.3. Check that the function f(x) in part 11.1 of Example 11.1.2
is positive homogeneous and subadditive.

Exercise 11.1.4. Let f : V → R be a subadditive function on a vector space
V . Show that

f(x)− f(y) ≤ f(x− y) for all x, y ∈ V. (11.2)

We are ready to state the main result of this section.

Theorem 11.1.5 (General matrix deviation inequality). Let A be an m×n
Gaussian random matrix with i.i.d. N(0, 1) entries. Let f : Rm → R be a
positive homogenous and subadditive function, and let b ∈ R be such that

f(x) ≤ b‖x‖2 for all x ∈ Rn. (11.3)

Then for any subset T ⊂ Rn, we have

E sup
x∈T

∣∣∣f(Ax)− E f(Ax)
∣∣∣ ≤ Cbγ(T ).

Here γ(T ) is the Gaussian complexity introduced in (7.27).

This theorem generalizes the matrix deviation inequality (in the form we
gave in Exercise 9.2.2) to arbitrary seminorms.

Exactly as in Section 9.2, Theorem 11.1.5 would follow from Talagrand’s
comparison inequality once we show that the random process Xx := f(Ax)−
E f(Ax) has sub-gaussian increments. Let us do this now.

Theorem 11.1.6 (Sub-gaussian increments). Let A be an m× n Gaussian
random matrix with i.i.d. N(0, 1) entries, and let f : Rm → R be a positive
homogenous and subadditive function satisfying (11.3). Then the random
process

Xx := f(Ax)− E f(Ax)



11.1. DEVIATIONS OF RANDOMMATRICESWITH RESPECT TOGENERAL NORMS251

has sub-gaussian increments with respect to the Euclidean norm, namely

‖Xx −Xy‖ψ2 ≤ Cb‖x− y‖2 for all x, y ∈ Rn. (11.4)

Exercise 11.1.7. Deduce the general matrix deviation inequality (Theo-
rem 11.1.5) from Talagrand’s comparison inequality (in the form of Exer-
cise 8.5.4) and Theorem 11.1.6.

Proof of Theorem 11.1.6. Without loss of generality we may assume that
b = 1. (Why?) Just like in the proof of Theorem 9.1.1, let us first assume
that

‖x‖2 = ‖y‖2 = 1.

In this case, the inequality in (11.4) we want to prove becomes

‖f(Ax)− f(Ay)‖ψ2 ≤ C‖x− y‖2. (11.5)

Step 1. Creating independence. Consider the vectors

u :=
x+ y

2
, v :=

x− y
2

(11.6)

(see Figure 11.1). Then

Figure 11.1: Signal recovery: the signal x and the solution x̂ lie in the prior set T
and in the affine subspace Ex.

x = u+ v, y = u− v

and thus

Ax = Au+Av, Ay = Au−Av.

Since the vectors u and v are orthogonal (check!), the Gaussian random
vectors Au and Av are independent. Include such exercise

to the gaussian section,
and refer to it.
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Step 2. Using Gaussian concentration. Let us condition on a := Au
and study the conditional distribution of

f(Ax) = f(a+Av).

By rotation invariance, a + Av is a Gaussian random vector that we canrefer
expressed as

a+Av = a+ ‖v‖2 g, where g ∼ N(0, Im).

We claim that f(a + ‖v‖2 g) as a function of g is Lipschitz with respect to
the Euclidean norm on Rm, and

‖f‖Lip ≤ ‖v‖2. (11.7)

To check this, fix t, s ∈ Rm and note that

f(t)− f(s) = f(a+ ‖v‖2 t)− f(a+ ‖v‖2 s)
≤ f(‖v‖2 t− ‖v‖2 s) (by (11.2))

= ‖v‖2 f(t− s) (by positive homogeneity)

≤ ‖v‖2 ‖t− s‖2 (using (11.3) with b = 1),

and (11.7) follows.

Concentration in the Gauss space (Theorem 5.2.1) then yields

‖f(g)− E f(g)‖ψ2(a) ≤ C‖v‖2,

or ∥∥f(a+Av)− Ea f(a+Av)
∥∥
ψ2(a)

≤ C‖v‖2, (11.8)

where the index “a” reminds us that these bounds are valid for the condi-
tional distribution, with a = Au fixed.

Step 2. Removing the conditioning. Since random vector a − Av
has the same distribution as a+Av (why?), it satisfies the same bound.∥∥f(a−Av)− Ea f(a−Av)

∥∥
ψ2(a)

≤ C‖v‖2. (11.9)

Subtract (11.9) from (11.8), use triangle inequality and the fact that the
expectations are the same; this gives∥∥f(a+Av)− f(a−Av)

∥∥
ψ2(a)

≤ 2C‖v‖2.
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This bound is for the conditional distribution, and it holds for any fixed
realization of a random variable a = Au. Therefore, it holds for the original
distribution, too:∥∥f(Au+Av)− f(Au−Av)

∥∥
ψ2
≤ 2C‖v‖2.

(Why?) Passing back to the x, y notation by (11.6), we obtain the desired
inequality (11.5).

The proof is complete for the unit vectors x, y; Exercise 11.1.8 below
extends it for the general case.

Exercise 11.1.8 (Non-unit x, y). Extend the proof above to general (not
necessarily unit) vectors x, y. Hint: Follow the argument in Section 9.1.4.

Remark 11.1.9. It is an open question if Theorems 11.1.5 and 11.1.6 hold
for general sub-gaussian matrices A.

Exercise 11.1.10 (Anisotropic distributions). Extend Theorems 11.1.5 to
m× n matrices A whose columns are independent N(0,Σ) random vectors,
where Σ is a general covariance matrix. Show that

E sup
x∈T

∣∣∣f(Ax)− E f(Ax)
∣∣∣ ≤ Cbγ(Σ1/2T ).

Exercise 11.1.11 (Tail bounds). Prove a high-probability version of Theo-
rem 11.1.5. Hint: Follow Exercise 9.2.3.

11.2 Johnson-Lindenstrauss embeddings and sharper
Chevet inequality

Just like the original matrix deviation inequality from Chapter 9, the gen-
eral Theorem 9.2.1 has many consequences. In this section we consider an
application related to Johnson-Lindenstrauss lemma and a sharpened form
of Chevet’s inequality.

11.2.1 Johnson-Lindenstrauss Lemma for general norms

Applying the general matrix deviation inequality similarly to Section 9.4, it
is quite straightforward to deduce the following.

Exercise 11.2.1. State and prove a version of Johnson-Lindenstrauss Lemma
for a general norm (as opposed to the Euclidean norm) on Rm.
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Exercise 11.2.2 (Johnson-Lindenstrauss Lemma for `1 norm). Specialize
the previous exerise to the `1 and `∞ norms. Thus, X be a set of N points
in Rn, let A be an m × n Gaussian matrix with i.i.d. N(0, 1) entries, and
let ε ∈ (0, 1).

Suppose that
m ≥ C(ε) logN.

Show that with high probability the matrix Q :=
√
π/2 ·m−1A satisfies

(1− ε)‖x− y‖2 ≤ ‖Qx−Qy‖1 ≤ (1 + ε)‖x− y‖2 for all x, y ∈ X .

This conclusion is very similar to the original Johnson-Lindenstrauss Lemma
(Theorem 5.3.1), except the distance between the projected points is measured
in the `1 norm.

Exercise 11.2.3 (Johnson-Lindenstrauss embedding into `∞). Use the same
notation as in the previous exercise, but assume this time that

m ≥ NC(ε).

Show that with high probability the matrix Q := (logm)−1/2A satisfies

(1− ε)‖x− y‖2 ≤ ‖Qx−Qy‖∞ ≤ (1 + ε)‖x− y‖2 for all x, y ∈ X .

Note that in this case m ≥ N , so Q gives an almost isometric embedding
(rather than a projection) of the set X into `∞.

11.2.2 Two-sided Chevet’s inequality

The general matrix deviation inequality will help us sharpen Chevet’s in-
equality, which we originally proved in Section 8.6.

Theorem 11.2.4 (General Chevet’s inequality). Let A be an m× n Gaus-
sian random matrix with i.i.d. N(0, 1) entries. Let T ⊂ Rn and S ⊂ Rm be
arbitrary bounded sets. Then

E sup
x∈T

∣∣∣ sup
y∈S
〈Ax, y〉 − w(S)‖x‖2

∣∣∣ ≤ Cγ(T ) rad(S).

This is a sharper, two-sided form of Chevet’s inequality (Theorem 8.6.1).

Proof. Let us apply general matrix deviation inequality (Theorem 11.1.5)
for the function f defined in (11.1), i.e. for

f(x) := sup
y∈S
〈x, y〉 .
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To do this, we need to compute b for which (11.3) holds Fix x ∈ Rm and
use Cauchy-Schwarz inequality to get

f(x) ≤ sup
y∈S
‖x‖2‖y‖2 = rad(S)‖x‖2.

Thus (11.3) holds with b = rad(S).
It remains to compute E f(Ax) appearing in the conclusion of Theo-

rem 11.1.5. By rotation invariance of Gaussian distribution, the random refer
vector Ax has the same distribution as g‖x‖2 where g ∈ N(0, Im). Then

E f(Ax) = E f(g) ‖x‖2 (by positive homogeneity)

= E sup
y∈S
〈g, y〉 ‖x‖2 (by definition of f)

= w(S)‖x‖2 (by definition of the Gaussian width).

Substituting this into the conclusion of Theorem 11.1.5, we complete the
proof.

11.3 Dvoretzky-Milman’s Theorem

Dvoretzky-Milman’s Theorem is a remarkable result, which says if you project
a bounded set in Rn onto a random subspace of suitably low dimension, then
the convex hull of the projection will be approximately a round ball with high
probability. Figure... shows a random projection of a unit cube.... Write, add figure

We will deduce Dvoretzky-Milman’s Theorem from the two-sided Chevet’s
inequality, which we proved in Section 11.2.2.

11.3.1 Gaussian images of sets

It will be more convenient for us to work with Gaussian random projections
than with ordinary projections. Here is a very general result that compares refer
the Gaussian projection of a general set to a Euclidean ball.

Theorem 11.3.1 (Random projections of sets). Let A be an m×n Gaussian
random matrix with i.i.d. N(0, 1) entries, and T ⊂ Rn be a bounded set.
Then the following holds with probability at least 0.99:

r−B
m
2 ⊂ conv(AT ) ⊂ r+B

m
2

where
r± := w(T )± C

√
m rad(T ).

The lest inclusion holds only if r− ≥ 0; the right inclusion, always.
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We will shortly deduce this theorem from two-sided Chevet’s inequality.
The following exercise will provide the link between the two results. It asks
you to show that the support function (11.1) of general set S is the `2 norm
if and only if S is the Euclidean ball; there is also a stability version of this
equivalence.

Exercise 11.3.2 (Almost Euclidean balls and support functions). 1. Let
V ⊂ Rm be a bounded set. Show that V = Bm

2 if and only if

sup
x∈V
〈x, y〉 = ‖y‖2 for all y ∈ Rm.

2. Let V ⊂ Rm be a bounded set and r−, r+ ≥ 0. Show that the inclusion

r−B
m
2 ⊂ conv(V ) ⊂ r+B

m
2

holds if and only if

r−‖y‖2 ≤ sup
x∈V
〈x, y〉 ≤ r+‖y‖2 for all y ∈ Rm.

Proof of Theorem 11.3.1. Let us write the two-sided Chevet’s inequality in
the following form:

E sup
y∈S

∣∣∣ sup
x∈T
〈Ax, y〉 − w(T )‖y‖2

∣∣∣ ≤ Cγ(S) rad(T ).

where T ⊂ Rn and S ⊂ Rm. (To get this form, use Theorem 11.2.4 for T
and S swapped with each other and for AT instead of A – do this!)Exercise?

Choose S to be the sphere Sm−1 and recall that it Gaussian complex-
ity γ(S) ≤

√
m. Then, by Markov’s inequality, the following holds withrefer

probability at least 0.99:∣∣∣ sup
x∈T
〈Ax, y〉 − w(T )‖y‖2

∣∣∣ ≤ C√m rad(T ) for every y ∈ Sm−1.

Use triangle inequality and recall the definition of r± to get

r− ≤ sup
x∈T
〈Ax, y〉 ≤ r+ for every y ∈ Sm−1.

By homogeneity, this is equivalent to

r−‖y‖2 ≤ sup
x∈T
〈Ax, y〉 ≤ r+‖y‖2 for every y ∈ Rm.

(Why?) Finally, note that

sup
x∈T
〈Ax, y〉 = sup

x∈AT
〈x, y〉

and apply Exercise 11.3.2 for V = AT to complete the proof.



11.3. DVORETZKY-MILMAN’S THEOREM 257

11.3.2 Dvoretzky-Milman’s Theorem

Theorem 11.3.3 (Dvoretzky-Milman’s theorem: Gaussian form). Let A be
an m× n Gaussian random matrix with i.i.d. N(0, 1) entries, T ⊂ Rn be a
bounded set, and let ε ∈ (0, 1). Suppose

m ≤ cε2d(T )

where d(T ) is the statistical dimension of T introduced in Section 7.7.4.
Then with probability at least 0.99, we have

(1− ε)B ⊂ conv(AT ) ⊂ (1 + ε)B

where B is a Euclidean ball with radius w(T ).

Proof. Translating T is necessary, we can assume that T contains the origin.
Apply Theorem 11.3.1. All that remains to check is that r− ≥ (1− ε)w(T )
and r+ ≤ (1 + ε)w(T ), which by definition would follow if

C
√
m rad(T ) ≤ εw(T ). (11.10)

To check this inequality, recall that by assumption and Definition 7.7.8 we
have

m ≤ cε2d(T ) ≤ ε2w(T )2

diam(T )2

provided the absolute constant c > 0 is chosen sufficiently small. Next, since
T contains the origin, rad(T ) ≤ diam(T ). (Why?) This implies (11.10) and
completes the proof.

Remark 11.3.4. As is obvious from the proof, if T contains the origin then
the Euclidean ball B can be centered at the origin, too. Otherwise, the
center of B can be chosen as Tx0, where x0 ∈ T is any fixed point.

With high probability?

Example 11.3.5 (Projections of the cube). Consider the cube

T = [−1, 1]n = Bn
∞.

Recall that

w(T ) =

√
2

π
· n;

recall (7.22). Since diam(T ) = 2
√
n, that the statistical dimension of the

cube is

d(T ) ∼ d(T )2

diam(T )2
∼ n.
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Apply Theorem 11.3.3. If m ≤ cε2n then with high probability we have

(1− ε)B ⊂ conv(AT ) ⊂ (1 + ε)B

where B is a Euclidean ball with radius
√

2/π · n.
In words, a random Gaussian projection of the cube onto a subspace

of dimension m ∼ n is close to a round ball. Figure 11.2 illustrates this
remarkable fact.

Figure 11.2: A random projection of a 6-dimensional cube onto the plane

Exercise 11.3.6 (Gaussian cloud). Consider a Gaussian cloud of n points
in Rm, which is formed by i.i.d. random vectors g1, . . . , gn ∼ N(0, Im).
Supose that n ≥ exp(Cn) with large enough absolute constant C. Show that
with high probability, the convex hull the Gaussian cloud is approximately a
Euclidean ball with radius ∼ log n. See Figure 11.3 for illustration.

Hint: Set T to be the canonical basis {e1, . . . , en} in Rn, represent the points as

gi = Tei, and apply Theorem 11.3.3.

Figure 11.3: A gaussian cloud of 107 points on the plane, and its convex hull.

Exercise 11.3.7 (Projections of ellipsoids). Consider the ellipsoid E in Rn
given as a linear image of the unit Euclidean ball, i.e.

E = S(Bn
2 )
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where S is an n×n matrix. Let A be the m×n Gaussian matrix with i.i.d.
N(0, 1) entries. Suppose that

m & r(S)

where r(S) is the stable rank of S (recall Definition 7.7.13). Show that with
high probability, the Gaussian projection A(E) of the ellipsoid is almost a
round ball with radius ‖S‖F :

A(E) ≈ ‖S‖FBn
2 .

Hint: First replace in Theorem 11.3.3 the Gaussian width w(T ) with the quantity

h(T ) = (E supt∈T 〈g, t〉
2)1/2, which we discussed in (7.24) and which is easier to compute

for ellipsoids.

Exercise 11.3.8 (Random projection in the Grassmanian). Prove a ver-
sion of Dvoretzky-Milman’s theorem for the projection P onto a random m-
dimensional subspace in Rn. Under the same assumptions, the conclusion
should be that

(1− ε)B ⊂ conv(AT ) ⊂ (1 + ε)B

where B is a Euclidean ball with radius ws(T ). (Recall that ws(T ) is the
spherical width of T , which we introduced in (7.20).)

Summary of random projections of geometric sets

It is useful to compare Dvoretzky-Milman’s theorem to our earlier estimates
on the diameter of random projections of geometric sets, which we developed
in Section 7.8. We found that a random projection P of a set T onto an
m-dimensional subspace in Rn satisfies a phase transition. For m & d(T ),
the projection shrinks the size of T by the factor of order

√
m/n, i.e.

diam(PT ) .

√
m

n
if m ≥ d(T ).

For smaller dimensions, m . d(T ), the size surprisingly stops shrinking. All
we can say is that

diam(PT ) . ws(T ) ∼ w(T )√
n

if m ≤ d(T ),

see Section 7.8.1.
Dvoretzky-Milman’s theorem explains why the size of T stops shrinking

for m . d(T ). Indeed, in this regime the projection PT is approximately
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the round ball of radius of order ws(T ) (see Exercise 11.3.8), regardless how
small m is.

Let us summarize our findings. A random projection of a set T in Rn
onto an m-dimensional subspace shrinks the size of T by the factor

√
m/n

if m & d(T ). For smaller m, the projection becomes approximately a round
ball of diameter ∼ ws(T ), and does not shrink with m.
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projective, 55

Chaining, 181
Chaos, 115
Chebyshev’s inequality, 4
Chernoff’s inequality, 13, 14, 16
Chevet’s inequality, 204, 254
Classification problem, 194
Clustering, 80
Contraction principle, 137, 138
Convex body, 50
Convex hull, 160

convex hull, 164
Coordinate distribution, 48, 53, 112
Coupon collector’s problem, 106, 112
Covariance, 2, 40, 78, 79, 110
Covariance function, 142
Covering number, 62, 64–66, 156

Davis-Kahan Theorem, 74, 82
Decoupling, 115, 116, 121
Discrete cube, 89
Dudley’s inequality, 179, 180, 184, 185,

187, 201
Dvoretzky-Milman’s Theorem, 255

Eckart-Young-Minsky’s theorem, 132
Empirical measure, 192
Empirical method, 159, 161
Empirical process, 187, 189
Empirical risk, 195
Empirical target function, 196
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