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Περίληψη

Ασθενής Σύγκλιση Μέτρων Πιθανότητας και Θεωρία Εμπειρικών Διαδικασιών

Η παρούσα διπλωματική εργασία παρουσιάζει τις θεμελιώδεις αρχές της Ασθενούς Σύγκλισης Μέτρων Πι-

θανότητας και της Θεωρίας Εμπειρικών διαδικασιών.

Στο πρώτο μέρος της εργασίας κάνουμε μια εισαγωγή στη θεωρία της ασθενούς σύγκλισης και εξηγούμε τη

σχέση της με την κλασική έννοια της σύγκλισης κατά κατανομή. Παρουσιάζουμε την απόδειξη και κάποιες

εφαρμογές του θεωρήματος-ορόσημου του Prohorov και στη συνέχεια εστιάζουμε σε χώρους συνεχών

συναρτήσεων και στο θεώρημα του Donsker. Τέλος, συζητούμε κάποια ζητήματα μετρησιμότητας που εμ-

φανίζονται στην μελέτη της ασθενούς σύγκλισης, και κάνουμε μια επισκόπηση των πιθανών τρόπων αν-

τιμετώπισης που έχουν προταθεί στη βιβλιογραφία.

Το δεύτερο μέρος της εργασίας εστιάζει στον ομοιόμορφο νόμο των μεγάλων αριθμών. Ξεκινούμε τη μελέτη

με το κλασικό θεώρημα των Glivenko-Cantelli και συνεχίζουμε με γενικεύσεις αυτού του θεωρήματος σε

γενικότερους χώρους συναρτήσεων. Ερευνούμε τη βαθύτερη σύνδεση του ομοιόμορφου νόμου των μεγάλων

αριθμών με την πολυπλοκότητα των αντίστοιχων συναρτησιακών χώρων μέσω μέτρων πολυπλοκότητας

όπως η εντροπία και η πολυπλοκότητα Rademacher. Τέλος, συζητούμε τη σημασία του ομοιόμορφου νό-

μου των μεγάλων αριθμών για τη στατιστική και τη μηχανική μάθηση και παρουσιάζουμε τρόπους με τους

οποίους μπορούμε να χρησιμοποιήσουμε τη θεωρία εμπειρικών διαδικασιών για να βγάλουμε συμπεράσματα

για το ρυθμό σύγκλισης παραμετρικών και μη-παραμετρικών εκτιμητών ελαχίστων τετραγώνων.
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Chapter 1

Weak Convergence of Probability

Measures

In the first part of this thesis, we aim to give a comprehensive introduction to the theory of weak con-

vergence of probability measures. Before moving on to the formal exposition of this theory, we shall

present some elements about its early stages and its development through time. In this preliminary

discussion, we shall also attempt to explain why the theory of weak convergence is important from

a statistical point of view.

First, we should give some elementary definitions. We begin with the definition of the empirical

distribution function.

Definition 1.0.1. Let n be a positive integer and let X1, X2, . . . , Xn : Ω→ R be a random sample from

a distribution with cumulative distribution function (c.d.f.) F. For all x ∈ R we define the random

variable Fn(x) by

Fn(x) =
1
n

n

∑
i=1

1{Xi≤x},

where 1A denotes the indicator function of a set A. The function Fn is called the empirical distribution

function of the sample (X1, X2, . . . , Xn).

Sometimes, the term empirical distribution function will be used in a slightly different context. More

specifically, if X1, X2, . . . , Xn are independent and identically distributed (i.i.d.) random variables,

then Fn(x, ·) is the random variable 1 defined by

Fn(x, ω) =
1
n

n

∑
i=1

1{Xi(ω)≤x}, ω ∈ Ω.

1Notice that, since X1, X2, . . . , Xn are random variables (and thus measurable with respect to the σ−fields of Ω and R),
the quantity Fn(x, ·) is also measurable. Hence, it makes sense to refer to Fn(x, ·) with the term random variable
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In this case, the empirical distribution function of (X1, . . . , Xn) is the stochastic process {Fn(x, ·)}x∈R .

Let x be an arbitrary real number. From the strong law of large numbers and the fact that 1{Xi(ω)≤x}

is a Bernoulli random variable with success probability equal to F(x), it follows immediately that

Fn(x, ·) → F(x) almost surely (a.s.). As we shall see in the next chapter, Fn(x, ·) is "close" to F(x) in

a stronger sense.

If (Ω,A, P) is a probability space and (T, T ) is a measurable space, then an A/T − measurable

function X : Ω → T is called a random element of T. A random variable is simply a special case

of a random element, in which T = R and T = B (R).

If C = C[0, 1] is the space of continuous functions f : [0, 1] → R equipped with the supremum norm

and the corresponding Borel σ-field C, then a random element X of C is simply a stochastic process

with continuous sample paths. Such a process is called Gaussian if

(Xt1 , . . . , Xtk)

is normally distributed for all t1, . . . , tk ∈ [0, 1]. The Wiener process is a Gaussian random element

{Wt}t∈[0,1] of C satisfying the following conditions:

• W0 ≡ 0,

• If 0 = t0 ≤ t1 ≤ . . . ≤ tk = 1, then the random variables

Wt1 −Wt0 , . . . , Wtk −Wtk−1

are independent,

• For all t ∈ [0, 1] it holds that Wt ∼ N (0, t).

A Brownian bridge is a random element B of C defined by

Bt = Wt − tW1,

where W is a Wiener process.

The starting point of the theory of weak convergence can be considered to be the problem of goodness

of fit. In this problem, we are given n independent observations from a distribution with c.d.f. F, and

we want to test the null hypothesis

H0 : F = F0 vs H1 : F 6= F0,
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where F0 is a fixed distribution function. To deal with this problem, A. Kolmogorov used the statistic

Dn := sup
x∈R

|Fn(x)− F0(x)| .

As it was mentioned earlier, Fn(x) should be "close" to the underlying distribution function, so the

null hypothesis is rejected for "large" values of the statistic.

In order to construct a statistical test based on Dn we need to determine the distribution of Dn. An in-

teresting result is that the asymptotic distribution of Kn =
√

nDn does not depend on the underlying

c.d.f. F. Thus, we can determine it using uniformly distributed random variables. In other words,

that distribution is the same as the asymptotic distribution of

sup
t∈[0,1]

|Un(t)| ,

where

Un(t) :=
√

n (Fn(t)− t) ,

and Fn is the empirical c.d.f. constructed from a sequence ξ1, . . . , ξn
i.i.d.∼ Unif(0, 1). The process

{Un(t, ·)}t∈[0,1] is referred to as the uniform empirical process. In 1933, Kolmogorov [Kolmogorov, 1933]

presented a thorough description of the asymptotic distribution of Dn using elementary methods.

In 1949, J. Doob [Doob, 1949] treated

Kn =
√

n Dn =
√

n sup
t∈[0,1]

|Fn(t)− t|

as a function of the uniform empirical process Un(t). In other words, he observed that Kn = f (Un),

where

f (x) = sup
t∈[0,1]

|x(t)| , for x : [0, 1]→ R.

Doob subsequently looked for a general approach to obtain the asymptotic distribution of such

quantities. Using the multivariate Central Limit Theorem and the fact that the random variable

nFn(t), t ∈ [0, 1] has a binomial distribution with probability of success equal to t, he deduced that,

for any t1, . . . , tk, the random vector

(Un(t1), . . . , Un(tk))
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converges in distribution toNk(0, Σ), where Σ = (σij) with σij = min(ti, tj)− titj. This distribution is

the same as that of the random vector

(Ut1 , . . . , Utk),

where {U(t)}t∈[0,1] is the Brownian bridge. Thus, Doob conjectured that Un must converge in some

sense to U. Hopefully, this, yet unknown, notion of convergence, would allow us to deduce that

f (Un) converges in distribution to f (U).

In 1951, M. Donsker [Donsker, 1951] developed a new notion of convergence of stochastic processes,

the so-called weak convergence. In 1952, he showed that the uniform empirical process Un converges

weakly to the Brownian process U [Donsker, 1952]. Moreover, Donsker’s results showed that several

functionals of Un converge in distribution to the corresponding functionals of U. In particular, it

yields that

sup
t∈[0,1]

|Un(t)|
d−→ sup

t∈[0,1]
|Ut| ,

which essentially leads to an accurate description of the asymptotic distribution of Dn.

During the 1950s, the works of Y. Prohorov [Prokhorov, 1956] and A. V. Skorokhod [Skorokhod, 1956]

led to the major development of Donsker’s theory of weak convergence of stochastic processes. Fi-

nally, in 1968, P. Billingsley [Billingsley, 1968] summarized the above works and presented a more

general theory of convergence of probability measures. In what follows, we present the most signifi-

cant results of this theory as well as some of its extensions.

1.1 The Classic Theory of Weak Convergence

1.1.1 Definitions and First Results

Let F and {Fn}∞
n=1 be arbitrary cumulative distribution functions (c.d.f.) defined on the real line. We

say that Fn converges in distribution (or converges weakly) to F if

Fn(x)→ F(x), as n→ ∞, (1.1)

for all continuity points x of F. We indicate weak convergence by writing Fn
d→ F.

Let P and {Pn}∞
n=1 be the Borel probability measures generated by F and the sequence Fn respectively.

This means that P and Pn are uniquely determined by the relations

Pn(−∞, x] = Fn(x) and P(−∞, x] = F(x)
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for all x ∈ R and n ∈N. We know that F is continuous at a point x if and only if P{x} = 0, so Fn
d→ F

means that the implication

Pn(−∞, x]→ P(−∞, x], if P{x} = 0

is true for all x ∈ R. Using the notation ∂A for the boundary of the set A = (−∞, x], the above

relation is written as

Pn(A)→ P(A), if P(∂A) = 0. (1.2)

In this chapter we shall prove that Fn
d→ F if and only if the implication (1.2) is true for any Borel set

A. Any Borel set A with P(∂A) = 0 will be called a P−continuity set. We will say that Pn ⇒ P if

Pn(A) → P(A) is true for all P−continuity sets A, that is, if (1.2) holds. In other words, Pn ⇒ P if

and only if the corresponding distribution functions Fn and F satisfy Fn
d→ F.

The main purpose of this section is the extension of the notion of weak convergence from R to gen-

eral metric spaces. More specifically, let T be an arbitrary metric space, and let B(T) be its Borel

σ−field. If Pn and P are probability measures defined on B(T), we shall give a definition of the weak

convergence Pn ⇒ P and show that it indeed generalizes the familiar concept of weak convergence

discussed above.

For any probability measure Q defined on B(T) and any Borel measurable function f : T → R we

denote

Q f :=
∫

T
f dQ.

Also, a probability measure defined on the Borel σ−field B(T) will be called a Borel probability mea-

sure.

Definition 1.1.1. Let T be a metric space, and let B(T) be its Borel σ−field. Suppose that {Pn}∞
n=1

and P are probability measures defined on B(T). We say that Pn converges weakly to P, and we write

Pn ⇒ P if

Pn f → P f (1.3)

for all bounded, continuous functions f : T → R.

Recall that, if T is a metric space and T is a σ−field on T, then a measure µ on T is called regular if,

for any A ∈ T we have

• µ(A) = sup{µ(F) : F ∈ T , F closed},

• µ(A) = inf{µ(G) : G ∈ T , G open}.
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If P is a Borel probability measure on T, then it is easy to see that P is regular if and only if, for any

set A ∈ B(T) and any ε > 0, there exist an open set G and a closed set F such that F ⊂ A ⊂ G and

P(G\F) < ε.

Theorem 1.1.2. Every Borel probability measure P on (T, T ) is regular.

Proof. Let G be the class of sets A ⊂ T such that, for all ε > 0, there exist sets G and F as in the above

paragraph. We shall show that G is a σ−field that contains the closed sets, which will give us that

B(T) ⊂ G (which is exactly what we want to show). Let d be the metric on T and let dist(x, A) be the

distance of an element x ∈ T from a set A ⊂ T 2.

We shall first show that G contains the closed sets. Let A be a closed set. We take F = A. The sets

Gn = A1/n =
{

x ∈ T : d(x, A) < 1
n

}
, n = 1, 2, . . . are open because they are the inverse images of the

open sets
(
−∞, 1

n

)
with respect to the continuous function x 7→ dist(x, A)3. Also,

∞⋂
n=1

Gn = {x ∈ T : d(x, A) = 0} = A = A

so, since the sequence Gn is decreasing, it follows from the continuity of the measure that

lim
n→∞

P(Gn) = P(A).

Thus, for any ε > 0, we can find n ∈ N such that 0 ≤ P(Gn)− P(A) < ε. We take G = Gn. Since

F = A and A ⊂ Gn, the latter relation can be written as P(G\F) < ε. It follows that A ∈ G, so G

contains all the closed sets in T.

We are now going to show that G is a σ−field. It is obvious that G is nonempty, and it is easy

to see that it is closed under complements. Indeed, if A ∈ G and ε > 0, we can find sets G and

F as above. Then, Fc is open, Gc is closed, Gc ⊂ Ac ⊂ Fc, and P(Fc\Gc) = P(Fc) − P(Gc) =

(1− P(F))− (1− P(G)) = P(G)− P(F) = P(G\F) < ε, so Ac ∈ G. Let {An}∞
n=1 be a sequence of

sets in G and let ε be a positive real number. For each An, we can find an open set Gn and a closed set

Fn such that Fn ⊂ An ⊂ Gn and P(Gn\Fn) < ε/2n+1. We consider a positive integer n0 such that

P

(
∞⋃

n=n0+1

Fn

)
<

ε

2
.

2dist(x, A) = inf{d(x, y) : y ∈ A}
3This function is Lipschitz continuous with Lipschitz constant equal to 1.
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Such a positive integer exists by the continuity of the measure, because the sequence Bn =
⋃n

k=1 Fk is

increasing and its union is
⋃∞

k=1 Fk
4. We now consider the sets

G =
∞⋃

n=1

Gn and F =
n0⋃

n=1

Fn.

The first one is open and the second is closed, and it is true that F ⊂ ⋃∞
n=1 An ⊂ G. Also, since

(
⋃∞

n=1 Gn\
⋃∞

n=1 Fn) ⊂
⋃∞

n=1(Gn\Fn), it follows that

P(G\F) = P(G)− P(F)

= P(G)− P

(
∞⋃

n=1

Fn

)
+ P

(
∞⋃

n=1

Fn

)
− P(F)

< P

(
∞⋃

n=1

Gn\
∞⋃

n=1

Fn

)
+

ε

2

≤ P

(
∞⋃

n=1

(Gn\Fn)

)
+

ε

2

<

(
∞

∑
n=1

ε

2n+1

)
+

ε

2
= ε

and the proof is complete.

The above theorem shows that a Borel probability measure is uniquely determined by the values

P(F) for closed sets F. Indeed, given these values, we can determine the values P(G) for all open sets

G. Then, using regularity, we can find P(A) for all Borel sets A. The next theorem implies that P is

also determined by the values P f for certain functions f : T → R.

Theorem 1.1.3. Two probability measures P, Q on B(T) are equal if P f = Q f for all bounded, uni-

formly continuous functions f : T → R.

Proof. Let F be a closed set and let ε be a positive real number. We consider the function f : T → R

with

f (x) =
(

1− dist(x, F)
ε

)+

=

 1− (dist(x, F)/ε) if dist(x, F) < ε

0 else.

It is obvious that this function is bounded. We will show that | f (a)− f (b)| ≤ d(a, b)/ε for all a, b ∈ T.

If f (a) = f (b) = 0, this is obviously true. If f (a), f (b) 6= 0, we can show the above inequality using

the fact that x 7→ dist(x, F) is Lipschitz continuous with Lipschitz constant equal to 1. Assume that

f (b) = 0 and f (a) 6= 0 (the other case is treated similarly). Then, | f (a)− f (b)| = 1− (dist(a, F)/ε),

4Therefore, there exists a integer n0 ≥ 1 such that P
(⋃∞

k=n0+1 Fk

)
= P

(⋃∞
k=1 Fk

)
− P (Bn0 ) < ε/2.
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so we need to show that d(a, b) ≥ ε− dist(a, F). However, from f (b) = 0 we get that dist(b, F) ≥ ε,

so the Lipschitz continuity of the distance function implies that

ε− dist(a, F) ≤ dist(b, F)− dist(a, F) ≤ d(a, b).

It follows that f is bounded and uniformly continuous.

We are now going to show that

1F(x) ≤ f (x) ≤ 1Fε(x), (1.4)

where 1A denotes the indicator function of the set A, and

Fε = {x ∈ T : dist(x, F) < ε} .

If 1F(x) = 1, then x ∈ F so f (x) = 1. The left side of the inequality follows from this observation.

As for the right side, we observe that f (x) ≤ 1 for all x ∈ T. Also, if 1Fε(x) = 0, then x /∈ Fε so

dist(x, F) ≥ ε, which implies that f (x) = 0. The right inequality follows. Integrating all three sides

of the inequality with respect to P and Q we obtain

P(F) ≤ P f ≤ P(Fε) and Q(F) ≤ Q f ≤ Q(Fε).

Since P f = Q f , it follows that P(F) ≤ Q(Fε).

Just like in the proof of Theorem 1.1.2, we can use the continuity of the measure to show that Q(Fε)→

Q(F) as ε ↘ 0. Thus, P(F) ≤ Q(F). The converse inequality follows in a similar way. We finally get

that P(F) = Q(F) for all closed sets F ⊂ T, so the two measures are equal.

The following theorem, known as the Portmanteau Theorem shows that weak convergence, in the way

we defined it earlier, indeed extends the concept of convergence in distribution discussed at the start

of the section.

Theorem 1.1.4 (Portmanteau Theorem). Let T be a metric space and let {Pn}∞
n=1 and P be Borel

probability measures on T. The following conditions are equivalent:

(i) Pn ⇒ P

(ii) Pn f → P f for all bounded, uniformly continuous functions f : T → R.

(iii) lim supn Pn(F) ≤ P(F) for all closed sets F ⊂ T.
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(iv) lim infn Pn(G) ≥ P(G) for all open sets G ⊂ T.

(v) Pn(A)→ P(A) for all P−continuity sets A ⊂ T.

Proof. The implication (i)⇒ (ii) follows directly from definition 1.1.1.

For (ii) ⇒ (iii) we shall use the function f that was used in the proof of the theorem 1.1.3. This

function is bounded and uniformly continuous, so (1.4) (integrated with respect to Pn) implies that

Pn(χF) ≤ Pn f , which is equivalent to Pn(F) ≤ Pn f . It follows that

lim sup
n

Pn(F) ≤ lim sup
n

Pn f = P f .

However, the same inequality (integrated with respect to P) gives P f ≤ P(Fε). It follows that

lim supn Pn(F) ≤ P(Fε). Letting ε ↘ 0, and using again the fact that P(Fε) → P(F), we get that

lim supn Pn(F) ≤ P(F).

The implication (iii)⇒ (iv) follows easily by taking complements.

We will now show that (iii) and (iv) together imply (v). Conditions (iii) and (iv) together with the

obvious inequalities A ⊃ A ⊃ A◦, imply that

P(A) ≥ lim sup
n

Pn(A) ≥ lim sup
n

Pn(A) ≥ lim inf
n

Pn(A) ≥ lim inf
n

Pn(A◦) ≥ P(A◦).

If A is a P−continuity set, then P(A) − P(A◦) = P(A\A◦) = P(∂A) = 0, so the first and the last

terms in the above inequality are equal. Moreover, since A ⊃ A ⊃ A◦, these terms are equal to P(A)

This shows that all intermediate terms are equal to P(A), so

lim sup
n

Pn(A) = lim inf
n

Pn(A) = P(A),

whence it follows that Pn(A)→ P(A).

For (v)⇒ (i), we will use the equality

P f =
∫ ∞

0
P{ f > t} dt,

which follows from Fubini’s theorem 5. We need to show that Pn f → P f for all bounded, continuous

f : T → R. Due to linearity and the fact that f is bounded, we may assume that 0 < f < 1. Then,

P f =
∫ ∞

0 P({ f > t}) dt =
∫ 1

0 P({ f > t}) dt, and Pn f =
∫ ∞

0 Pn({ f > t}) dt =
∫ 1

0 Pn({ f > t}) dt. Since

5∫
T f (x) dP(x) =

∫
T
∫ ∞

0 χ[0, f (x)](t) dt dP =
∫ ∞

0

∫
T χ[0, f (x)](t) dP dt =

∫ ∞
0

∫
T χ{ f (x)≥t}(x) dP dt
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f is continuous, ∂{ f > t} = { f = t}. The sets { f = t}, t ∈ [0, 1] form a partition of T, so at most

countably many of them can have positive measure (because T has finite measure) 6 Thus, { f > t} is

a P−continuity set except for countably many t ∈ [0, 1], which gives that Pn({ f > t})→ P({ f > t})

λ-almost surely in [0, 1], where λ is the Lebesgue measure on [0, 1] restricted on the corresponding

Borel sets. Thus, the bounded convergence theorem gives

Pn f =
∫ 1

0
Pn({ f > t)}) dt→

∫ 1

0
P({ f > t}) dt = P f .

Another useful criterion for weak convergence is the following one:

Theorem 1.1.5. The following are equivalent:

(i) Pn ⇒ P.

(ii) Each subsequence {Pni} contains a further subsequence {Pnim
} such that Pnim

⇒ P as m→ ∞.

Proof. The direction (i)⇒ (ii) is obvious. For the converse, suppose that Pn 6⇒ P. Then, Pn f 6→ P f for

some bounded continuous real function f . It follows that there exists some positive ε > 0 and some

subsequence Pni such that |Pni f − P f | > ε for all i. This subsequence does not have a subsequence

that converges weakly to P, contradiction.

As we discussed in section 1, the convergence of a sequence of stochastic processes to a limit pro-

cess should imply the convergence in distribution of some function of these stochastic processes to

the corresponding function of the limit process. One of the most important results of the theory of

weak convergence, which ensures this property for various choices of the function, is the Continuous

Mapping Theorem.

Before stating this result, let us first consider metric spaces (S,B(S)), (T,B(T)) together with their

Borel σ−fields, and a Borel measurable function h : S → T, whose set of discontinuity points is de-

noted by Dh. If P is a Borel probability measure defined on B(S), then h induces a Borel probability

measure Ph−1 defined on B(T) by (Ph−1)(A) = P(h−1(A)) for all A ∈ B(T). Since h is Borel mea-

surable, it follows immediately that Ph−1 is well defined. It is also easy to see that Ph−1 is indeed a

probability measure on (T,B(T)).
6If there were uncountably many such sets with positive measure, then infinitely many of them would have measure

greater than 1/n for some n ∈N, so T would have infinite measure.
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Theorem 1.1.6 (Continuous Mapping Theorem). Under the above assumptions, let P, {Pn}n≥1 be

Borel probability measures on B(S). If Pn ⇒ P and P(Dh) = 0, then Pnh−1 ⇒ Ph−1.

Proof. We will use the Portmanteau theorem. Let F ⊂ T be a closed set. If x ∈ h−1(F) then there

exists a sequence {xn} in h−1(F) such that xn → x. From the definition of this sequence, it follows

that h(xn) ∈ F for all indices n. If x ∈ Dc
h, then we have h(xn) → h(x), so h(x) ∈ F = F, which gives

that x ∈ h−1(F). Thus, Dc
h ∩ h−1(F) ⊂ h−1(F). Using the fact that P(Dc

h) = 1, we get

lim sup
n→∞

Pn(h−1(F)) ≤ lim sup
n→∞

Pn

(
h−1(F)

)
≤ P

(
h−1(F)

)
= P

(
Dc

h ∩ h−1(F)
)

≤ P
(

h−1(F)
)

,

where the second inequality follows from the fact that Pn ⇒ P and the Portmanteau theorem. The

above series of inequalities show that condition (iii) of the Portmanteau theorem is satisfied, so

Pnh−1 ⇒ Ph−1.

1.1.2 Convergence in Distribution

The Portmanteau theorem shows that the notion of convergence we have defined indeed generalizes

the notion of convergence in distribution. However, all the results we have proven so far are stated in

terms of probability measures, while convergence in distribution is usually stated in terms of random

variables. Paraphrasing these results using random variables instead of measures gives them a more

familiar and concrete form.

Let (Ω,A, P) be a probability space, (T,B(T)) a metric space with its Borel σ−field, and let X :

Ω → T be a random element, that is, a A/B(T)−measurable mapping. The distribution of X is the

probability measure PX on B(T) defined as PX := PX−1, that is,

PX(A) = P(X−1(A)) = P(X ∈ A).

The measurability of X ensures that PX is well defined. It is easy to see that PX is indeed a probability

measure.



20 Chapter 1. Weak Convergence of Probability Measures

If f : T → R is a Borel measurable function (that is, B(T)/B(R)−measurable), then by change of

variable [Billingsley, 2008, p. 229], we get that

E[ f (X)] =
∫

Ω
f (X(ω)) dP(ω) =

∫
T

f (x) dPX(x) = PX f , (1.5)

where the equality means that either both integrals exist or both do not exist, and if they exist, they

have the same value.

Definition 1.1.7. Let {Xn} be a sequence of random elements. We say that {Xn} converges in distribu-

tion to a random element X if PXn ⇒ PX. We shall then write that Xn ⇒ X.

Note that this definition only makes sense if PX, PX1 , PX2 , . . . are defined on the same measurable

space, that is, if the images of X, X1, X2, . . . are the same sets, with the same topology. However, we

observe that the domains (Ω,A, P), (Ω1,A1, P1), . . . of X, X1, . . . respectively, that is, the underlying

probability spaces, need not be equal.

We shall make the following convention: normally, we would write En for integrals with respect

to the measure Pn, and E for integrals with respect to P. Equation (1.5) implies that En[ f (Xn)] →

E[ f (X)] if and only if PXn f → PX f . From now on, instead of Pn and En, we shall write P and E, to

refer to whatever underlying probability space the random element we are dealing with is defined

on.

Using the definition of convergence in distribution and the above convention we get that Xn ⇒ X if

and only if E[ f (Xn)]→ E[ f (X)] for all bounded, continuous functions f : T → R.

For convergence in distribution we have an analogue of the Portmanteau theorem. In what follows,

an X−continuity set A ∈ B(T) is a set that satisfies the condition P(X ∈ ∂A) = 0. In other words,

P(X−1(∂A)) = 0 or PX(∂A) = 0.

Theorem 1.1.8 (Portmanteau Theorem). Let X : (Ω,A, P) → (T,B(T)) be a random element. The

following conditions are equivalent:

(i) Xn ⇒ X,

(ii) E[ f (Xn)]→ E[ f (X)] for all bounded, uniformly continuous functions f : T → R,

(iii) lim supn P(Xn ∈ F) ≤ P(X ∈ F) for all closed sets F ⊂ T,

(iv) lim infn P(Xn ∈ G) ≥ P(X ∈ G) for all open sets G ⊂ T,

(v) P(Xn ∈ A)→ P(X ∈ A) for all X−continuity sets A ∈ B(T).
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This theorem is an immediate consequence of theorem 1.1.4 so we will omit its proof.

1.1.3 Tightness and Prohorov’s Theorems

Prohorov’s theorems are the second most important results in the theory of weak convergence, after

the continuous mapping theorem. To state these theorems, we first need to introduce the notion of

tightness.

Definition 1.1.9. Let (T,B(T)) be a metric space together with its Borel σ−field. A probability mea-

sure P on (T,B(T)) is called tight if, for any ε > 0, there exists a compact set K ⊂ T such that

P(K) > 1− ε.

Theorem 1.1.10. If the metric space T is separable and complete, then any Borel probability measure

on T is tight.

Proof. Let k ≥ 1 be a positive integer, and ε > 0 an arbitrary positive real number. Since T is separable,

there exists a countable set D that is dense in T. If we choose some arbitrary t ∈ T, then, since D is

dense, there exists an element d ∈ D whose distance from t is less than 1/k. This shows that T can be

covered by a countable family A(k)
1 , A(k)

2 , . . . of open balls of radius 1/k whose centers lie in D.

We consider the sequence of sets

Bn =
n⋃

i=1

A(k)
i , n = 1, 2, . . . .

This sequence is increasing, and

P

(
∞⋃

n=1

Bn

)
= P

(
∞⋃

i=1

A(k)
i

)
= 1,

so lim
n→∞

P(Bn) = 1. We choose nk ∈ N such that P(Bnk) > 1− ε/2k. We repeat this process for all

positive integers k. Notice that the set

A =
∞⋂

k=1

nk⋃
i=1

A(k)
i

is totally bounded. Indeed, if δ > 0 and kδ is a positive integer with 1/kδ < δ, then the above set is

covered by the (finitely many) open balls

A(kδ)
1 , A(kδ)

2 , . . . , A(kδ)
nkδ

.
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We know that, if a set is totally bounded, then its closure is totally bounded too. Thus, A is totally

bounded and, since T is complete, it follows that A is bounded. We have

P(Ac) = P

(
∞⋃

k=1

(
nk⋃

i=1

A(k)
i

)c)

≤
∞

∑
k=1

P

((
nk⋃

i=1

A(k)
i

)c)

<
∞

∑
k=1

ε

2k

= ε,

so P(A) ≥ P(A) > 1− ε.

Tightness of a family of probability measures is defined in a similar way:

Definition 1.1.11. Let T be a metric space and let P be a family of Borel probability measures on T.

We say that P is tight if, for any ε > 0, there exists a compact set K ⊂ T such that P(K) > 1− ε for all

P ∈ P .

Prohorov’s theorems connect tightness with the notion of relative compactness defined as follows:

Definition 1.1.12. Let T be a metric space and let P be a family of Borel probability measures on T.

We say that P is relatively compact if, for any sequence {Pn} in P , there exists a subsequence {Pkn}

that converges weakly to a Borel probability measure Q.

Notice that the above definition requires Q to be defined on (T,B(T)), but Q need not be an element

of P . This definition is analogous to the definition of sequential compactness of a subset of a metric

space.

We are now ready to state Prohorov’s theorems.

Theorem 1.1.13 (Prohorov). If the family P is tight, then it is relatively compact.

Proof. The proof we present is due to Billingsley [Billingsley, 1971] and is split in seven parts. First,

we consider a sequence {Pn} in P . We want to find a subsequence {Pkn} and a Borel probability

measure P such that Pkn ⇒ P.

PART 1: Due to the tightness of P , we can find compact sets {Ku}u≥1 such that K1 ⊂ K2 ⊂ . . . and

Pn(Ku) > 1 − u−1 for all u and n. The set
⋃

u Ku is separable, so there exists a countable class A

of open sets with the property that, if x lies both in
⋃

u Ku and in G ⊂ T, and if G is open, then
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x ∈ A ⊂ A ⊂ G for some A ∈ A. LetH be the (countable) class containing ∅ and all the finite unions

of sets of the form A ∩ Ku, where A ∈ A and u ≥ 1. Note that each Ku belongs to H. Indeed, from

the definition of A it follows immediately that for each x that lies in Ku and in the open set G = T,

there exists an open set Ax ∈ A such that x ∈ A ⊂. Then, {Ax}x∈Ku is an open covering of Ku. Since

Ku is compact, there exist x1, . . . , xn ∈ Ku such that

Ku ⊂
n⋃

j=1

Axj .

From the latter equation it follows that

Ku =
n⋃

j=1

(Axj ∩ Ku),

so Ku ∈ H.

Using the diagonal method and the fact that H is countable, we can find a subsequence {Pni} for

which the limit

a(H) := lim
i→∞

Pni(H) (1.6)

exists for all H ∈ H. Our purpose is to construct on B(T) a probability measure P such that

P(G) = sup
H⊂G

a(H) (1.7)

for all open sets G. If such a measure exists, then the proof will be completed as follows: if G is an

open set and H ⊂ G, then Pni(H) ≤ Pni(G) for i = 1, 2, . . . so

a(H) = lim
i→∞

Pni(H)

≤ lim inf
i→∞

Pni(G).

Using (1.7) we now get that P(G) ≤ lim infi Pni(G), so the Portmanteau theorem gives Pni ⇒ P. Thus,

the existence of a measure satisfying (1.7) indeed proves the theorem.

To construct such a measure, we first observe that H is closed under finite unions. Also, it is easy to

see that a(H) has the following properties:

• a(∅) = 0,

• a(H1) ≤ a(H2) if H1 ⊂ H2,
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• a(H1 ∪ H2) = a(H1) + a(H2) if H1 ∩ H2 = ∅,

• a(H1 ∪ H2) ≤ a(H1) + a(H2).

For open sets G we define

β(G) = sup
H⊂G

a(H). (1.8)

Then, β is monotone and β(∅) = a(∅) = 0. Finally, for any subset M of T we define

γ(M) = inf
M⊂G

β(G). (1.9)

We observe that, if G ⊂ T is an open set, then γ(G) = β(G). Indeed,

γ(G) = inf
G⊂G′

β(G′) ≤ β(G),

and, for the converse inequality, we observe that, for all open sets G′ ⊃ G it is true that β(G′) ≥ β(G),

so

γ(G) = inf
G⊂G′

β(G′) ≥ β(G).

Our purpose is to show that γ is an outer measure. In this case, recall that a set M ⊂ T will

be γ−measurable if and only if γ(L) ≥ γ(M ∩ L) + γ(Mc ∩ L) (this follows immediately from

the definition of Caratheodary for the measurability of a set). Also, from Caratheodary’s theorem

[Folland, 1999, p. 29] it follows that the classM of γ−measurable sets will be a σ−field and the re-

striction of γ to M will be a (complete) measure. Suppose that we are also able to show that each

closed set lies inM. Then, it will follow that B(T) ⊂ M and that the restriction P of γ to B(T) is

a measure satisfying P(G) = γ(G) = β(G). Thus, equation (1.7) will hold. Note that P will be a

probability measure as

1 ≥ P(T) = β(T) ≥ sup
u≥1

a(Ku) ≥ sup
u≥1

(1− u−1) = 1.

For this last series of inequalities we used the fact that each Ku lies in H, as we proved earlier. Thus,

it suffices to show that γ is an outer measure and that each closed set is γ−measurable.

PART 2. In this part we will prove that if F is closed, G is an open set such that F ⊂ G, and if there

exists H ∈ H such that F ⊂ H, then there exists H0 ∈ H such that F ⊂ H0 ⊂ G.

Note that F ⊂ H and H is a union of sets of the form A ∩ Ku (A ∈ A), so F is certainly contained

in
⋃

u Ku. Thus, for each x ∈ F ⊂ G we can choose a set Ax ∈ A such that x ∈ Ax ⊂ Ax ⊂ G.
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Also, we observe that each set of the form A ∩ Ku ⊂ Ku is compact (closed subset of a compact set),

so H is itself compact as a finite union of such sets. It follows that F is also compact because it is a

closed subset of H. Our last observation is that, since K1 ⊂ K2 ⊂ . . ., the set H must be contained

in some Ku. The family {Ax}x∈F is an open cover of F, so it has a finite subcover Ax1 , . . . , Axk . Since

F ⊂ H ⊂ Ku for some u, we can choose

H0 =
k⋃

i=1

(
Axi ∩ Ku

)
.

PART 3. In this part we will show that β is finitely subadditive (on the open sets). Let G1, G2 be open

sets and suppose that H ∈ H satisfies H ⊂ G1 ∪ G2. We consider the sets

F1 = {x ∈ H : ρ(x, Gc
1) ≥ ρ(x, G− 2c)} and F2 = {x ∈ H : ρ(x, Gc

2) ≥ ρ(x, G− 1c)},

where ρ denotes the distance metric of T.

If x ∈ F1 and x /∈ G1, then x ∈ G2 because F1 ⊂ H ⊂ G1 ∪ G2. Since Gc
2 is closed, we get that

ρ(x, Gc
2) > 0 so ρ(x, Gc

1) = 0 < ρ(x, Gc
2), contradiction. Thus, F1 ⊂ G1 and similarly F2 ⊂ G2. Note

that F1, F2 are closed sets due to the continuity of the function ρ. Since F1 ⊂ H, it follows from the

previous part that F1 ⊂ H1 ⊂ G1 for some H1 ∈ H. Similarly, F2 ⊂ H2 ⊂ G2 for some H2 ∈ H. Then,

since H = F1 ∪ F2, the properties of a and equation (1.8) give

a(H) = a(F1 ∪ F2)

≤ a(H1 ∪ H2)

≤ a(H1) + a(H2)

≤ β(G1) + β(G2).

Taking the supremum over all H ⊂ G1 ∪ G2 yields that

β(G1 ∪ G2) ≤ β(G1) + β(G2).

PART 4. We will show that β is countably subadditive (on the open sets). Let {Gn}n≥1 be a sequence

of open sets, and let H ∈ H satisfy

H ⊂
∞⋃

n=1

Gn.
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Recall that H is compact (as an element of H) so the open cover {Gn}n≥1 of H will have a finite

subcover. In particular, there exists n0 ≥ 1 such that

H ⊂
n0⋃

n=1

Gn.

Finite subadditivity implies that

a(H) ≤ β

(
n0⋃

n=1

Gn

)

≤
n0

∑
n=1

β(Gn)

≤
∞

∑
n=1

β(Gn).

Taking the supremum over all such sets H gives that

β

(
∞⋃

n=1

Gn

)
≤

∞

∑
n=1

β(Gn).

PART 5. We are now ready to show that γ is an outer measure. From its definition, it is easy to

see that γ is monotone and that γ(∅) = 0. It remains to show that it is countably subadditive. We

consider an arbitrary ε > 0, and subsets {Mn}n≥1 of T. By the definition of γ, we can find open sets

{Gn}n≥1 such that β(Gn) < γ(Mn) + ε/2n for all n ≥ 1. Since β is countably subadditive, it follows

that

γ

(
∞⋃

n=1

Mn

)
≤ β

(
∞⋃

n=1

Gn

)

≤
∞

∑
n=1

β(Gn)

< ε +
∞

∑
n=1

γ(Mn).

Since ε > 0 was chosen arbitrarily, it follows that

γ

(
∞⋃

n=1

Mn

)
≤

∞

∑
n=1

γ(Mn),

so γ is indeed an outer measure.

PART 6. It remains to show that all closed sets are γ−measurable. We are first going to show that
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β(G) ≥ γ(F ∩ G) + γ(Fc ∩ G) for all closed sets F and open sets G. We first consider ε > 0. The

set Fc ∩ G is open so, from the definition of β, we can choose H1 ∈ H such that H1 ⊂ Fc ∩ G and

a(H1) > β(Fc ∩ G)− ε. Also, the set H1 is compact, so Hc
1 ∩ G is open. Thus, just like before, we can

find H0 ∈ H such that H0 ⊂ Hc
1 ∩ G and a(H0) > β(Hc

1 ∩ G)− ε. Since H0 and H1 are disjoint and

are contained in G, it follows from the definitions of β, γ and from the properties of α that

β(G) ≥ a(H0 ∪ H1)

= a(H0) + a(H1)

> β(Hc
1 ∩ G) + β(Fc ∩ G)− 2ε

≥ γ(F ∩ G) + γ(Fc ∩ G)− 2ε.

Since ε > 0 was arbitrary, the desired inequality follows.

PART 7. We consider a closed set F ⊂ T and set L ⊂ T. From the previous part we get that β(G) ≥

γ(F ∩ L) + γ(Fc ∩ L) for all open sets G such that L ⊂ G. Taking the infimum over all those G gives

us that

γ(L) ≥ γ(F ∩ L) + γ(Fc ∩ L),

so F is indeed γ−measurable, which completes the proof of the theorem.

The above theorem has the following useful corollary:

Corollary 1.1.14. Let T be a metric space and let P be a Borel probability measure on T. Suppose that

the sequence {Pn} of Borel probability measures is tight, and that the limit of any weakly convergent

subsequence is P. Then, Pn ⇒ P.

Proof. Since {Pn} is tight, it follows from Prohorov’s theorem that it is also relatively compact. Thus,

each subsequence has a further subsequence that is weakly convergent. From our hypothesis we get

that the limit of this further subsequence is P. Using theorem 1.1.5, we get that Pn ⇒ P.

Under some additional assumptions, the converse implication of Prohorov’s theorem is also true.

This is shown in the next theorem.

Theorem 1.1.15 (Prohorov). Suppose that T is separable and complete. If P is relatively compact,

then it is tight.

Proof. We consider an increasing sequence {Gn}n≥1 with
⋃

n Gn = T. We will first show the following

assertion: for all ε > 0, there exists an integer n ≥ 1 such that P(Gn) > 1− ε for all P ∈ P . If this
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were not true, then for each n there would exist Pn ∈ P such that Pn(Gn) ≤ 1− ε. From the relative

compactness of the family {Pn}, there exists a subsequence {Pni}i≥1 and a Borel probability measure

Q on T such that Pni ⇒ Q. From the Portmanteau theorem it follows that

Q(Gn) ≤ lim inf
i→∞

Pni(Gn) ≤ lim inf
i→∞

Pni(Gni) ≤ 1− ε

for all n ≥ 1, where the second inequality follows from the fact that {Gn}n≥1 is increasing and

ni → ∞. However, the above relation cannot be true since Gn ↗ T, so Q(Gn)→ Q(T) = 1.

From the above assertion it follows that, if k ≥ 1 and if A(k)
1 , A(k)

2 , . . . is a sequence of open balls

of radius 1/k covering T (such balls exists due to the fact that T is separable - we have used this

argument in theorem 1.1.10), then there exists nk ≥ 1 such that

P

(
nk⋃

i=1

A(k)
i

)
> 1− ε

2k for all P ∈ P .

Indeed, the sequence {G(k)
n }n≥1 defined by

Gn =
n⋃

i=1

A(k)
i

is increasing and
⋃∞

n=1 Gn = T, so the above assertion can be applied. Just like in the proof of the

theorem 1.1.10, the set

A =
∞⋂

k=1

nk⋃
i=1

Aki

is totally bounded, it has compact closure, and P
(

A
)
> 1− ε for all P ∈ P . Thus, P is tight.

1.1.4 Examples

Before concluding the section, we are going to look at two important examples that will help us get

some intuition about the nature of the spaces R∞ (sequences of real numbers) and C = C[0, 1] (space

of continuous functions [0, 1] → R). Although these examples are a bit technical, they will prove

very useful for our analysis of weak convergence on C[0, 1].

We say that a subclass A of the Borel σ−field B(T) of a metric space T is a separating class if, for any

Borel probability measure P on T, the values P(A), A ∈ A completely determine P. In other words,

A is a separating class if, any two Borel probability measures P, Q on T that agree on each A ∈ A are

equal.
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Example 1.1.16. Let R∞ be the space of sequences x = (x1, x2, . . .) of real numbers. We consiδer the

metric b on R defined by b(α, β) = min(1, |α− β|). This metric is equivalent to the usual one and,

with this metric, R is a complete separable metric space. We consider the metric ρ on R∞ defined by

ρ(x, y) =
∞

∑
i=1

b(xi, yi)

2i .

Notice that ρ is well defined because b is bounded. Also, it is easy to check that ρ is indeed a metric.

Obviously, if ρ(xn, x) →n 0, then b(xn
i , xi) →n 0 for all i. We shall show that the converse is also

true. Suppose that b(xn
i , xi) →n 0 for i = 1, 2, . . . and take ε > 0. There exists N ≥ 1 such that

∑i≥N 1/2n < ε/2. Since b(α, β) ≤ 1 for all α, β ∈ R, it follows that ∑i≥N b(xn
i , xi)/2i < ε/2 for all

n ≥ 1. Also, from the condition b(xn
i , xi)→n 0, it follows that there exists an integer nε ≥ 1 such that

b(xn
i , xi) < ε/2 for all i < N and for all n ≥ nε (we have finitely many i, so it is indeed possible to

find a unique nε that works for all of them). Thus, for all n ≥ nε we have

ρ(xn, x) = ∑
1≤i<N

b(xn
i , xi)

2i + ∑
i≥N

b(xn
i , xi)

2i

≤ ε

2 ∑
1≤i<N

1
2i +

ε

2

<
ε

2
+

ε

2
= ε,

which gives that ρ(xn, x) →n 0. Thus, with the metric ρ, the space R∞ has the topology of pointwise

convergence: xn → x if and only if xn
i → xi for i = 1, 2, . . .

Let πk : R∞ → Rk be the natural projection: πk(x) = (x1, . . . , xk). If we assume that Rk has its usual

Euclidean metric, then it is easy to see that πk is continuous. Indeed, if xn → x, then xn
i → xi for all i,

so

(xn
1 , . . . , xn

k )→ (x1, . . . , xk),

or, in other words, πk(xn)→ πk(x). From the continuity of πk it follows that the sets

Nk,ε(x) = {y : |yi − xi| < ε, i = 1, . . . , k}

are open, as they are the inverse images of open sets under πk:

Nk,ε(x) = π−1
k

(
k

∏
i=1

(xi − ε, xi + ε)

)
. (1.10)

Moreover, if y ∈ Nk,ε(x), then ρ(x, y) < ε + 2−k. Given a positive radius r, we can choose k and
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ε such that ε + 2−k < r. Then, it is true that Nk,ε(x) ⊂ B(x, r), so the sets Nk,ε(x) form a base for

the topology of R∞. We observe that the space is separable: a countable, dense subset consists of

those points having only finitely many nonzero coordinates, each of them rational. Also, if {xn} is

a Cauchy sequence, then it is easy to see that each {xn
i } is Cauchy too. Thus, xn

i →n xi, so {xn}

converges to the sequence x = (x1, x2, . . .). It follows that R∞ is also complete.

Let R∞
f be the class of finite-dimensional set, that is, the sets of the form π−1

k (H) for some k ≥ 1 and

some H ∈ B(Rk). Since πk is continuous, it is B(R∞)/B(Rk)−measurable, so R∞
f ⊂ B(R∞). Note

that π−1
k (H) = π−1

k+1(H ×R) so any two sets A, A′ ∈ R∞
f can be written as π−1

k (H) and π−1
k (H′)

respectively, for the same value of k. It follows that A ∩ A′ = π−1
k (H ∩ H′) so R∞

f is a π−system.7

Since the sets Nk,ε(x) form a base and each of them lies in R∞
f (see equation (1.10)), it follows by

separability that each open set is a countable union of sets in R∞
f . Thus, R∞

f generates the Borel

σ−field B(R∞). SinceR∞
f is also a π−system, it follows that it is a separating class.

If P is a Borel probability measure on R∞, its finite dimensional distributions are the Borel probability

measures Pπ−1
k

8 on Rk, k ≥ 1. Since R∞
f is a separating class, these measures completely determine

P.

Example 1.1.17. We will now deal with the space C = C[0, 1]. We denote the uniform metric on

this space by ρ. In other words, ρ(x, y) = ‖x − y‖∞. Note that, if ρ(xn, x) → 0, then xn converges

uniformly to x, so it also converges pointwise.9

The space C is separable. Let Dk be the set of polygonal functions that are linear over each subinterval

Iki = [(i− 1)/k, i/k] and have rational values at the endpoints. Then, each Dk is countable, so
⋃

k Dk

is countable. To show that it is dense, we consider x ∈ C[0, 1] and ε > 0. Notice that x is uniformly

continuous, so it is possible to find k ≥ 1 such that |x(t)− x(i/k)| < ε for all t ∈ Iki, 1 ≤ i ≤ k. We

can now choose y ∈ Dk such that |y(i/k)− x(i/k)| < ε for 1 ≤ i ≤ k. We have that |y(i/k)− x(t)| ≤

|y(i/k)− x(i/k)|+ |x(i/k)− x(t)| ≤ 2ε for all t ∈ Iki, and that |y((i− 1)/k)− x(t)| ≤ |y((i− 1)/k)−

x((i− 1)/k)|+ |x((i− 1)/k)− x(i/k)|+ |x(i/k)− x(t)| ≤ 3ε for all x ∈ Iki. From the construction of

y, it follows that y(t) is a convex combination of y((i− 1)/k) and y(i/k) for t ∈ Iki.10 Thus, the above

inequalities imply that |y(t)− x(t)| < 3ε for t ∈ Iki.11 Thus, ρ(x, y) ≤ 3ε, which shows that
⋃

k Dk is

dense.
7A π−system is a non empty family L of subsets of a set X that is closed under finite intersections.
8You can look at the paragraph before theorem 1.1.6 to remember how Pπ−1

k is defined.
9The converse is of course not true.

10This happens because y(t) lies on the segment with endpoints y((i− 1)/k) and y(i.k).
11If y(t) = ay((i− 1)/k) + by(i/k) with a, b ≥ 0 and a + b = 1, then |y(t)− x(t)| ≤ a|y((i− 1)/k)− x(t)|+ b|y(i/k)−

x(t)| ≤ 2aε + 3bε ≤ 3ε(a + b) = 3ε.
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We are going to show that C is complete too. If {xn} is a Cauchy sequence in C, then, for each

t ∈ [0, 1], the sequence {xn(t)} of real numbers is Cauchy too, so it has a limit x(t). Since {xn}

is Cauchy, it follows that εn = supm>n ρ(xm, xn) →n 0. We have |xn(t) − xm(t)| ≤ εn and, letting

m→ ∞ gives |xn(t)− x(t)| ≤ εn. We take the supremum over all t ∈ [0, 1] and we get that

ρ(xn, x) ≤ εn,

whence it follows that xn converges uniformly to x. Thus, x is continuous and ρ(xn, x) →n 0, so C is

complete.

For 0 ≤ t1 < t2 < . . . < tk ≤ 1, define the natural projection from C to Rk by πt1,...,tk(x) =

(x(t1), . . . , x(tk)). In C, the finite dimensional sets are those of the form π−1
t1,...,tk

(H) for H ∈ B(Rk),

and they lie in the Borel σ−field B(C) because πt1,...,tk are obviously continuous. Just like in the pre-

vious example, the index set defining a finite dimensional set can always be enlarged. For example,

suppose that we want to enlarge t1, t2 to t1, s, t2, where t1 < s < t2. For the projection ψ : R3 → R2

defined by ψ(u, v, w) = (u, w) we have πt1,t2 = ψ ◦ πt1,s,t2 so π−1
t1,t2

(H) = π−1
t1,s,t2

(
ψ−1(H)

)
, and of

course ψ−1(H) ∈ B(Rk) for all H ∈ B(R2) because ψ is continuous. The proof for the general cases

follows the exact same idea. Like in the previous example, the enlargement property of the index

sets allows us to show that the class C f of finite dimensional sets of C is a π−system. Also, it is easy

to see that

B(x, ε) =
⋂

r∈Q∩[0,1]

{y : |y(r)− x(r)| ≤ ε}.

Thus, the σ−field generated by C f contains the closed balls, so, due to separability, it contains all the

open sets. Since C f is a π−system, it follows that C f is a separating class.

1.1.5 Measurability Constraints

In the previous sections, we presented some fundamental theorems of the classical theory of weak

convergence. Throughout our analysis, we assumed that Xn were Borel measurable mappings from

some probability space (Ωn,An, Pn) to a metric space (T,B(T)). This essentially requires that X−1
n (A) ∈

A for all A ∈ B(T). In most cases, this measurability requirement is satisfied when T is a separable

space. However, as we are going to see, it fails even for very simple choices of the map Xn when T is

nonseparable. This problem was initially identified in 1965 by Chibsov [Chibisov, 1965] and was well

analyzed in 1968 by Billingsley [Billingsley, 1968]. Billingsley’s example was essentially the following

one:
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Let ξ1, ξ2, . . . ∼ Unif(0, 1) be independent random variables defined on some probability space

(Ω,A, P). We have defined the empirical distribution function of ξ1, ξ2, . . . as the collection of random

variables {Fn(t, ·)}t∈[0,1], where

Fn(t, ω) =
1
n

n

∑
i=1

1{ξi(ω)≤t}.

The uniform empirical process {Gn(t, ·)}t∈[0,1] is defined as

Gn(t, ·) =
√

n(Fn(t, ·)− t).

omega Both the empirical distribution function and the uniform empirical process are of primal im-

portance for the theory of empirical processes. The theorems of Glivenko-Cantelli and Donsker give

some insight on the behaviour of these two quantities, so the latter will appear very often in our

analysis. It is therefore reasonable to require that the empirical distribution function and the uniform

empirical process have "good" properties.

We observe that, for each ω ∈ Ω, the quantities Fn(t, ω) and Gn(t, ω) are functions of t, so we

would like to have that they are random elements of a function space, so that we can talk about weak

convergence of these quantities.

The first space that comes to our mind is C = C[0, 1], equipped with its uniform metric. If the empir-

ical distribution function and the uniform empirical process were elements of this space, then they

would automatically be A/B(C)−measurable. Indeed, as we have shown in the previous section,

an element X : (Ω,A, P) → C[0, 1] is Borel measurable if and only if the projections Xt = πt ◦ X :

(Ω,A, P)→ R are all Borel measurable. This requirement is fulfilled here, as Fn(t, ·) is Borel measur-

able for all t due to the measurability of ξ1, ξ2, . . . Thus, the empirical distribution function would be

measurable, whence it would follow that the uniform empirical process would also be measurable.

Unfortunately, the above scenario is not true since Fn(t, ·), Gn(t, ·) are not continuous functions of

t. We can see this directly from the defintion of Fn(t, ω). However, it is immediate that Fn(t, ·) is

right-continuous and that it has a left limit everywhere. The functions with these two properties are

called càdlàg functions, standing for "continue à gauche, limite à droite", and the space containing all

càdlàg functions f : [0, 1]→ R is denoted by D[0, 1] or simply by D.

It follows that each element of D is a bounded function, so D can be equipped with the uniform

metric, just like C[0, 1]. The essential difference of these two metric spaces is that D is not separable.

Indeed, {1[0,t)}t∈(0,1] is an uncountable set of isolated points of D.

The next example illustrates the nonmeasurability problem discussed above. More specifically, it
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shows that, if D is equipped with the uniform metric and with the Borel σ−field induced by this

metric, then the empirical distribution function (as well as the uniform empirical process) is not

A/B(D[0, 1])−measurable.

Example 1.1.18. For convenience, let us assume that n = 1. Then, F1(t, ω) = 1{ξ1(ω)≤t}. We shall

show that F1 : Ω → D 12 is not A/B(D)−measurable. Notice that, for any s ∈ [0, 1], the function

1[s,1](t), t ∈ [0, 1] belongs to D. We consider the open ball Bs := B(1[s,1], 1/2). For each subset A of

[0, 1], we consider the set

NA =
⋃

s∈A

Bs.

This set is open as a union of open sets. Notice that {ω ∈ Ω : F1(·, ω) ∈ NA} = {ω ∈ Ω : ξ1(ω) ∈

A}. Indeed, if ξ1(ω) ∈ A, then F1(·, ω) = 1[0,·](ξ1(ω)) = 1[ξ1(ω),1](·) ∈ Bξ1(ω) ⊂ NA, which shows

the first inclusion. For the converse inclusion, assume that F1(·, ω) ∈ NA. Then, 1[0,·](ξ1(ω)) ∈ NA

so 1[0,·](ξ1(ω)) ∈ Bs for some s ∈ A. This means that
∥∥∥1[0,·](ξ1(ω))− 1[s,1]

∥∥∥
∞
< 1/2, which implies

that 1[0,·](ξ1(ω)) = 1[s,1]
13. Since 1[0,·](ξ1(ω)) = 1[ξ1(ω),1](·), it follows that ξ1(ω) = s ∈ A. Suppose

that F1 is A/B(D)−measurable. Then {ω ∈ Ω : F1(·, ω) ∈ NA} ∈ A, so {ω ∈ Ω : ξ1(ω) ∈ A} ∈ A.

Thus, it would be possible to define a probability measure µ on the power set of [0, 1] by

µ(A) = P ({ξ1 ∈ A}) = P ({ω ∈ Ω : ξ1(ω) ∈ A}) .

Notice that, for any interval I we have µ(I) = P({ξ1 ∈ I}) = `(I), where `(I) denotes the length of I.

The last equality in the above relation follows from the fact that ξ1 is uniformly distributed. Hence,

µ coincides with the Lebesgue meausre on the subintervals of [0, 1]. However, the Borel σ−field of

[0, 1] is generated by the family of (open/closed) intervals, so µ is identically equal to the Lebesgue

measure on the Borel σ−field of [0, 1]. Since µ is defined on the whole power set of [0, 1], it follows

that it is an extension of the Lebesgue measure on this set. However, it is well known that such an

extension does not exist. Hence, F1 is not A/B(D)−measurable.

Several attempts have been made to deal with this gap and develop a more complete weak con-

vergence theory. In particular, [Skorokhod, 1956] and [Billingsley, 1968] came up with a separable

topology for D[0, 1], different from the one induced by the uniform metric. Billingsley also showed

that this topology is induced by a metric, under which D[0, 1] is complete. Due to the separability of

D[0, 1], arguments like those used for C[0, 1] can be applied, and the results from the classical theory

of weak convergence are valid. For instance, under the new topology and the Borel σ−field gener-

ated by the corresponding metric, an element X : (Ω,A, P)→ D[0, 1] is Borel measurable if and only
12Recall that (Ω,A, P) is the space in which ξi are defined.
13If they took different values in at least one point, then their distance would be at least 1.
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if the projections πt ◦ X : (Ω,A, P) → R are all Borel measurable. Recall that this result is true for

C[0, 1], but not for D[0, 1] with the uniform topology, which created the nonmeasurability problem

discussed above.

Another approach was developed by [Dudley, 1966],[Dudley, 1967]. Dudley worked on D[0, 1] with

the standard (uniform) metric, but tried to apply the results of the classical theory of weak conver-

gence using a smaller σ−field instead of the Borel σ−field. His idea was that the Borel σ−field is

too large, so the measurability requirements, which usually translate as X−1(A) ∈ A for all Borel

sets A, fail 14. With a smaller σ−field, the above relation would be required to hold for fewer sets

A, so it would be easier to satisfy. Dudley used the ball σ−field, the σ−field generated by the open

balls instead of all the open sets. In nonseparable spaces, this field is strictly contained in the Borel

σ−field. Dudley’s approach deals effectively with the uniform empirical process and with some sim-

ple extensions, but it fails for more general versions of the uniform empirical process, like the general

empirical process which will be defined later.

Pyke and Shorack proposed a different method in 1968 [Pyke and Shorack, 1968]. While in the clas-

sical theory we say that Xn ⇒ X when

E[ f (Xn)]→ E[ f (X)] (1.11)

for all bounded, continuous functions f : T → R 15, Pyke and Shorack proposed that we require the

latter relation only for functions f such that f (Xn) is a measurable map from (Ωn,An) to R 16.

However, the most effective method was that of [Hoffmann-Jørgensen, 1991, Chapter 7]), which does

not make use of any measurability assumptions. For this reason, it is necessary to replace measures

with outer measures, and use (1.11) with outer expectations instead of expectations. This approach is

presented in detail in [Van Der Vaart and Wellner, 1996].

1.2 Weak Convergence on Spaces of Continuous Functions

In the previous section we stated all our results for the general case of a metric space T. However, it

may be clear from chapter 1 that are primarily interested in stochastic processes. The key observa-

tion is that stochastic processes can sometimes be described as random elements of a function space.

14Here X : (Ω,A, P)→ D[0, 1].
15Here, T is the metric space in which Xn and X take values.
16(Ωn,An) is the measurable space in which Xn is defined.
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Indeed, if {Xt}t∈T is a stochastic process indexed by a metric space T and Ω is its underlying prob-

ability space, then, for each ω ∈ Ω, Xt(Ω) is a measurable function from T to R. In other words,

Xt(ω) ∈ RT.

Therefore, if we equip RT with a distance metric such that the mapping X : Ω → RT is Borel mea-

surable, then X can be considered a random element of RT and all the results of the previous section

can be applied.

However, the space RT contains too many functions, so it would be very difficult to extract additional

results for this space. Furthermore, for almost all stochastic processes {Xt}t∈T appearing in our

applications, the function Xt(ω) : T → R has extra properties (i.e. it may be bounded or continuous).

Thus, it is unnecessary to work in a space like RT, because, apart from the fact that it is difficult to

work with, it contains too many functions that are not of so much interest. On the other hand,

working with smaller spaces like `∞(T), the space of bounded functions T → R, or C(T), the space

of continuous functions T → R is more fruitful.17 In this section, we will work with the second space,

C(T), and we will choose T = [0, 1]. We will denote this space by C[0, 1] or C.

This space has a very natural topology, induced by the distance function ‖·‖∞, which is defined as

follows: if x, y ∈ C[0, 1], then

‖x− y‖∞ = sup
t∈[0,1]

|x(t)− y(t)| .

Notice that x, y are bounded, so ‖·‖ is well defined. It is easy to verify that ‖·‖ is indeed a distance

metric.

The main purpose of this section is to prove Donsker’s Uniform Central Limit theorem, which is a

refinement of the Lindeberg-Lévy Central Limit Theorem. The latter implies that, if ξ1, ξ2, . . . is a

sequence of i.i.d. random variables defined on some probability space (Ω,A, P), such that E(ξn) = 0

and Var(ξn) = σ2, then
1

σ
√

n
Sn =

1
σ
√

n
(ξ1 + . . . + ξn)

converges weakly to the normal distribution N (0, 1).

For Donsker’s theorem, we consider a point ω ∈ Ω and we construct on [0, 1] the polygonal function

that is linear in each of the intervals [(i− 1)/n, i/n] and takes the value Si(ω)/(σ
√

n) at the point i/n

(S0(ω) = 0). In other words, we construct the function Xn(ω) : [0, 1]→ R whose value at t ∈ [0, 1] is

Xn
t (ω) =

1
σ
√

n
Si−1(ω) +

t− (i− 1)/n
1/n

· 1
σ
√

n
ξi(ω), for t ∈

[
i− 1

n
,

i
n

]
.

17A stochastic process {Xt}t∈T for which Xt(ω) : T → R is continuous for all ω ∈ Ω is said to have continuous sample
paths. Similarly, if Xt(ω) : T → R is bounded for all ω ∈ Ω, we say that the process has bounded sample paths.
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From the above construction it follows that Xn(ω) is a continuous function on [0, 1]. We will prove

that Xn : Ω → C is A/B(C)−measurable, so we can consider its distribution, that is, a Borel proba-

bility measure Pn on C, defined by

Pn(A) = P ({ω ∈ Ω : Xn(ω) ∈ A})

for all A ∈ B(C). Donsker’s theorem states that

Pn ⇒W,

where W is the Wiener measure, defined as the distribution of the Wiener process.18 Showing the

existence of the Wiener measure is also one of the purposes of this section.

However, before moving on to the proofs of these results, we need some technical tools regarding the

structure of the compact sets in C, as well as some results about tightness in this space.

1.2.1 Weak Convergence and Tightness in C[0,1]

In example 1.1.17, we saw that the class C f of finite dimensional sets of C is a separating class. Thus,

by definition, each Borel probability measure on C is completely characterized by its values on the

finite dimensional sets. One question that arises at this point is whether we can use the finite di-

mensional distributions of a measure (see example 1.1.16 for the definition) to get results about weak

convergence. In particular, let P, {Pn}n≥1 be Borel probability measures on C.19 Assume that, for all

index sets {0 ≤ t1 < . . . < tk ≤ 1} it is true that

Pnπ−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

.

Does this yield that Pn ⇒ P? It would be very natural to assume that, since the finite dimensional

distributions of a measure characterize it completely, the above conclusion is true. However, as the

following example shows, this is not always the case.

Example 1.2.1. We consider the sequence {zn}n≥1 in C, which is defined as follows: zn increases

linearly from 0 to 1 over [0, 1/n], decreases linearly from 1 to 0 over [1/n, 2/n] and stays at 0 after

2/n. In other words,

zn(t) = nt1[0,1/n](t) + (2− nt)1(1/n,2/n](t).

18The Wiener process is a random element of C[0, 1] whose properties were given in section 1
19Before moving on, the reader should stop at this point and make sure they understand what the last phrase means.

It is important to remember that a probability measure on C is a measure that is defined on sets of functions and more
specifically, on the Borel sets induced by the uniform metric.
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Also, let z : [0, 1]→ R be the zero function. We consider the restrictions of Dirac probability measures

Pn = δzn and P = δz to the Borel σ−field B(C).20 It is easy to show that Pn ⇒ P if and only if

zn
‖·‖∞→ z = 0. However, ‖zn − z‖∞ = 1 for all n ≥ 1, so the above relation is not true, which gives

that Pn 6⇒ P.

On the other hand, if 2/n is less than the smallest non zero ti, then πt1,...,tk(zn) = πt1,...,tk(0, . . . , 0), so

Pnπ−1
t1,...,tk

(H) = Pπ−1
t1,...,tk

(H) for n large enough. Thus, in this case, the finite dimensional distribu-

tions of Pn converge weakly to those of P, while Pn 6⇒ P. This counterexample indicates that, in the

space C the arguments and results involving weak convergence go far beyond the finite dimensional

theory.

Example 1.2.2. In the previous example we saw that weak convergence of the finite dimensional

distributions is not strong enough to give weak convergence of the measures themselves. In this

example, we will strengthen our hypothesis so that the above conclusion become true.

More specifically, we consider Borel probability measures P, {Pn}n≥1 on C, and we assume that the fi-

nite dimensional distributions of Pn converge weakly to those of P. Here, we will make the additional

assumption that {Pn} is relatively compact. Then, each subsequence {Pni} has a further subsequence

{Pnim
} that converges weakly to some Borel probability measure Q.

The continuous mapping theorem implies that Pnim
π−1

t1,...,tk
⇒ Qπ−1

t1,...,tk
. From our hypothesis we also

have Pnπ−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

, so from the uniqueness of the limit, it follows that the finite dimensional

distributions of P and Q are identical. However, we saw in example 1.1.17 that the class C f of finite

dimensional sets is a separating class, whence it follows that P = Q. Thus, each subsequence of {Pn}

has a further subsequence converging weakly to P. According to theorem 1.1.5, this implies that

Pn ⇒ P.

Since C is separable and complete, we can use the above argument together with theorem 1.1.15 to

obtain the following result:

Theorem 1.2.3. Let P, {Pn}n≥1 be Borel probability measures on C. If the finite dimensional distribu-

tions of Pn converge weakly to those of P, and if {Pn} is tight, then Pn ⇒ P.

This theorem provides a very powerful method for proving weak convergence in C. In order to use

it, we should first get a closer look on tightness (and hence on compactness) in this space.

20If X is a set and x ∈ X, then the Dirac measure δx is defined in the power set P(X) as follows: δx(A) = 0 if x /∈ A, and
δx(A) = 1 if x ∈ A.
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Recall that, a subset A of a metric space T is called relatively compact if A is compact.21 In other words,

A is relatively compact if and only if each sequence in A contains a convergent subsequence, whose

limit need not belong to A. A very significant result that characterizes relative compacntess in C is

the Arzelà-Ascoli theorem. To state it, we first need to define the modulus of continuity of a function.

Definition 1.2.4. Let x : [0, 1]→ R be an arbitrary function. The modulus of continuity of x is a function

wx : (0, 1]→ R, defined by

wx(δ) = sup
|s−t|≤δ

|x(s)− x(t)|.

The modulus of continuity will occasionally be denoted by w(x, δ) instead of wx(δ). Its importance

lies on the fact that characterizes continuity in the following manner:

Lemma 1.2.5. A function x : [0, 1]→ R is (uniformly) continuous22 if and only if

lim
δ→0+

wx(δ) = 0. (1.12)

Proof. We will prove each direction separately:

(⇒) : Suppose that x is continuous. Since x is defined on a closed interval, it is uniformly continuous.

Now, consider ε > 0. From uniform continuity, we know that there exists r > 0 such that

|x(s)− x(t)| < ε whenever |s− t| ≤ r. It follows that, for δ ∈ (0, r) we have

wx(δ) = sup
|s−t|≤δ

|x(s)− x(t)| ≤ sup
|s−t|≤r

|x(s)− x(t)| < ε.

Hence, wx(δ) tends to zero as δ→ 0+.

(⇐) : Suppose that limδ→0+ wx(δ) = 0, and consider an arbitrary ε > 0. From our hypothesis, there

exists r ∈ (0, 1) such that wx(δ) < ε for δ ∈ (0, r]. In particular,

sup
|s−t|≤r

|x(s)− x(t)| < ε,

which shows that |x(s) − x(t)| < ε for all s, t ∈ [0, 1] with |s − t| < r. Thus, x is uniformly

continuous.

21This notion should not be confused with the notion of relative compactness of a family of measures.
22A continuous function defined on a closed interval is automatically uniformly continuous.
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From the above lemma we get that the elements of C satisfy (1.12). Another useful result regarding

the modulus of continuity is the following one:

Lemma 1.2.6. If x, y : [0, 1]→ R are two continuous functions, then

∣∣wx(δ)− wy(δ)
∣∣ ≤ 2ρ(x, y)

for all δ ∈ (0, 1]. So, for fixed δ ∈ (0, 1], the function w(x, δ) is (Lipschitz) continuous in x.

Proof. We are only going to show that wx(δ)− wy(δ) ≤ 2ρ(x, y). In a similar way, it can be shown

that wy(δ)− wx(δ) ≤ 2ρ(y, x) = 2ρ(x, y), which, combined with the above relation, give the desired

inequality. We consider an arbitrary ε > 0. From the definition of wx(δ), we can choose s, t ∈ [0, 1]

with |s− t| ≤ δ, such that

|x(s)− x(t)|+ ε > wx(δ). (1.13)

It is also true that |y(s)− y(t)| ≤ wy(δ), so

− |y(s)− y(t)| ≥ −wy(δ). (1.14)

Adding (1.13),(1.14) gives

|x(s)− x(t)| − |y(s)− y(t)|+ ε > wx(δ)− wy(δ).

Using the triangle inequality23 gives that

|(x(s)− x(t))− (y(s)− y(t))|+ ε > wx(δ)− wy(δ),

which is equivalent to

|(x(s)− y(s))− (x(t)− y(t))|+ ε > wx(δ)− wy(δ).

Using the triangle inequality again, we get

|x(s)− y(s)|+ |x(t)− y(t)|+ ε > wx(δ)− wy(δ),

so, from the definition of ρ it now follows that 2ρ(x, y)+ ε > wx(δ)−wy(δ). Since ε > 0 was arbitrary,

we get that 2ρ(x, y) ≥ wx(δ)− wy(δ), which completes the proof.

23In the form |a− b| ≥ ||a| − |b||.
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If A ⊂ C and t0 ∈ [0, 1], then the functions in A are called equicontinuous at t0 if

lim
t→t0

sup
x∈A
|x(t)− x(t0)| = 0.

Also, they are called uniformly equicontinuous over [0, 1] if

lim
δ→0

sup
x∈A

wx(δ) = 0.

Notice that uniform equicontinuity implies equicontinuity at all points of [0, 1].

Theorem 1.2.7 (Arzelà-Ascoli). A set A ⊂ C is relatively compact if and only if

sup
x∈A
|x(0)| < ∞ (1.15)

and

lim
δ→0

sup
x∈A

wx(δ) = 0. (1.16)

Proof. Suppose that A is relatively compact. Then, A is compact, so it is bounded. It follows that

supx∈A‖x‖∞ < ∞ so supx∈A |x(0)| < ∞. We know from lemma 1.2.6 that w(x, n−1) is continuous in

x. It is also easy to see that it is nonincreasing in n. From lemma 1.2.5 we get that w(x, n−1) ↘ 0 for

all x ∈ A as n→ ∞. Since A is compact, it follows that the convergence is uniform on A (so it is also

uniform on A). In other words,

lim
n→∞

sup
x∈A

w(x, n−1) = 0.

Since w(x, δ) is nonincreasing with respect to δ, it follows from the last relation that

lim
δ→0

sup
x∈A

wx(δ) = 0,

which is exactly what we wanted to show.

For the converse, assume that both (1.15) and (1.16) hold. From (1.16), we can choose an integer k ≥ 1

(large enough) so that supx∈A wx(k−1) < ∞. Since

|x(t)| ≤ |x(0)|+
k

∑
i=1

∣∣∣∣x( it
k

)
−
(
(i− 1)t

k

)∣∣∣∣ ≤ |x(0)|+ k · wx(k−1),

it follows that

sup
t∈[0,1]

sup
x∈A
|x(t)| < ∞. (1.17)
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We are going to use (1.15) and (1.17) to show that A is totally bounded. This yields that A is also

totally bounded, so, since C is compact, we will get that A is compact (closed and totally bounded).

Suppose that supt∈[0,1] supx∈A |x(t)| = M < ∞., and consider an arbitrary ε > 0. We choose points

−M = t0 < t1 < . . . < tk = M such that ti+1 − ti < ε/2 for i = 0, 1, . . . , k − 1, and let H be the

set containing all these points. From (1.16), there exists an integer k ≥ 1 such that wx(k−1) < ε/2

for all x ∈ A. Also, let B be the subset of C consisting of the polygonal functions that are linear on

each interval Iki = [(i − 1)/k, i/k], 1 ≤ i ≤ k and take values in H at the endpoints. If x ∈ A then

|x(i/k)| ≤ M, 1 ≤ i ≤ k, hence there exists a point y ∈ B such that |x(i/k)− y(i/k)| < ε/2, 1 ≤ i ≤

k.24

Due to the relation wx(k−1) < ε/2, it follows that |y(i/k) − x(t)| < ε for all x ∈ Iki. Similarly,

|y((i− 1)/k)− x(t)| ≤ |y((i− 1)/k)− x((i− 1)/k)|+ |x((i− 1)/k)− x(t)| < ε for all t ∈ Iki. Since

y(t) is a convex combination of y((i− 1)/k) and y(i/k), it follows that |x(t)− y(t)| < ε for all t ∈ Iki.

Notice that i in the above argument can take all the values in {1, . . . , k − 1}, hence it follows that

|x(t)− y(t)| < ε for all t ∈ [0, 1], which translates into ρ(x, y) < ε. This implies that A can be covered

by the (finitely many) balls with radii equal to ε and centers in B. As ε > 0 was chosen arbitrarily, we

get that A is totally bounded, which completes the proof.

Next, we are going to prove a series of intermediate results that will help us prove the main theorem

of this section, Donsker’s theorem. The statements of these results might look a bit too complicated

at first glance, but their proofs are relatively simple.

Theorem 1.2.8. Let {Pn}n≥1 be a sequence of Borel probability measures on C. Then, {Pn} is tight if

and only if the following two conditions hold:

(i) For each η > 0, there exist a > 0 and and integer n0 ≥ 1 such that

Pn ({x ∈ C : |x(0)| ≥ a}) ≤ η for all n ≥ n0, (1.18)

(ii) For each positive ε and η, there exist δ ∈ (0, 1) and an integer n0 ≥ 1 such that

Pn ({x ∈ C : wx(δ) ≥ ε}) ≤ η for all n ≥ n0. (1.19)

Before moving on with the proof of this theorem, we should make a critical remark to clarify the

statement and make sure that it has no gaps. More specifically, the statement only makes sense if

24This follows from the construction of H; for each point t in [−M, M] there exists a point in H whose distance from t is
less than ε/2. Thus, it is possible to construct such a function y.
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the sets {x ∈ C : |x(0)| ≥ a} and {x ∈ C : wx(δ) ≥ ε} belong to the Borel σ−field of C. For the

first one, notice that the projection π0 : C → R with x 7→ x(0) is continuous, and this set is equal to

π−1
0 ((−∞,−a] ∪ [a,+∞)). For the second set, notice that, due to lemma 1.2.6, the function w(·, δ) is

continuous in its first argument (for δ fixed) and the set is equal to the inverse image of [ε,+∞) under

this function.

Also, notice that the second condition can be written in the following form:

(ii)’ For each ε > 0,

lim
δ→0

lim sup
n→∞

Pn ({x ∈ C : wx(δ) ≥ ε}) = 0. (1.20)

Proof of the theorem. Suppose that {Pn} is tight. If η > 0, there exists a compact set K such that

Pn(K) > 1 − η for all n ≥ 1. In particular, K is relatively compact, so, from the Arzelà-Ascoli

theorem it follows that K ⊂ {x ∈ C : |x(0)| ≤ a} for large a, and K ⊂ {x ∈ C : wx(δ) ≤ ε} for

small enough δ. Thus, {x ∈ C : |x(0)| ≥ a} ⊂ Kc for large a, and {x ∈ C : wx(δ) ≥ ε} ⊂ Kc

for small δ. Hence, for if a is chosen large enough and δ small enough, then for all n ≥ 1 we have

Pn ({x ∈ C : |x(0)| ≥ a}) ≤ Pn(Kc) < η and Pn ({x ∈ C : wx(δ) ≥ ε}) ≤ Pn(Kc) < η. Thus, (i) and (ii)

hold.

For the converse implication, we assume that (i) and (ii) hold. Since C is separable and complete,

each Borel probability measure P on C is tight (theorem 1.1.10). Thus, from what we have already

shown, we get that for η > 0 there exists a > 0 such that P ({x ∈ C : |x(0)| ≥ a}) ≤ η, and for ε, η > 0

there exists δ > 0 such that P ({x ∈ C : wx(δ) ≥ ε}) ≤ η. Therefore, if {Pn} satisfies (i) and (ii), we

may assume that (1.18) and (1.19) hold also for n < n0, possibly for a larger value of a and a smaller

value of δ.25 Thus, we may assume that n0 = 1.

Given η > 0, we can choose a > 0 such that, if B = {x ∈ C : |x(0)| ≤ a} then Pn(B) ≥ 1− η for

all n (due to condition (i)). Then, we choose δk > 0 such that, if Bk = {x ∈ C : wx(δk) < 1/k}, then

Pn(Bk) ≥ 1− η/2k for all n (due to condition (ii) for ε = 1/k). Then,

Pn

(
Bc ∪

(
∞⋃

k=1

Bc
k

))
≤ η +

∞

∑
k=1

η

2k = 2η

for all n ≥ 1, so

Pn

(
B ∩

(
∞⋂

k=1

Bk

))
≥ 1− 2η for all n ≥ 1.

25We can indeed do so using the previous argument separately for P1, . . . , Pn0−1 and adapt the values of a and δ if needed.
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If K is the closure of the set B∩ (⋂∞
k=1 Bk), then from the above relation it follows that Pn(K) ≥ 1− 2η

for all n ≥ 1. Since η was arbitrary, it remains to show that K is compact. Notice that K satisfies (1.15)

because K ⊂ B = B26, and it satisfies (1.16) because K ⊂ Bk = {x ∈ C : wx(δk) ≤ 1/k} for all k ≥ 127.

From the Arzelà-Ascoli theorem, we get that K is relatively compact. Since K is closed, it follows that

it is compact, and the proof is completed.

Theorem 1.2.9. Suppose that 0 = t0 < t1 < . . . < tv = 1 and

min
1<i<v

(ti − ti−1) ≥ δ. (1.21)

Then, for arbitrary x ∈ C,

wx(δ) ≤ 3 max
1≤i≤v

sup
ti−1≤s≤ti

|x(s)− x(ti−1)| , (1.22)

and, for an arbitrary Borel probability measure P on C,

P ({x ∈ C : wx(δ) ≥ 3ε}) ≤
v

∑
i=1

P

({
x ∈ C : sup

ti−1≤s≤ti

|x(s)− x(ti−1)| ≥ ε

})
. (1.23)

Note that (1.21) does not require ti − ti−1 ≥ δ for i = 1 and i = v. Also, just like in the previous

theorem, it can be shown that the sets inside P are Borel measurable (inverse images of Borel sets

under continuous functions), so the statement of the theorem indeed makes sense.

Proof of the theorem. Suppose that

max
1≤i≤v

sup
ti−1≤s≤ti

|x(s)− x(ti−1)| = m.

If s, t lie in the same interval Ii = [ti−1, ti], then |x(s)− x(t)| ≤ |x(s)− x(ti−1)|+ |x(t)− x(ti−1)| ≤

2m. If they lie in adjacent intervals Ii and Ii+1 respectively, then |x(s) − x(t)| ≤ |x(s) − x(ti−1)| +

|x(ti−1)− x(ti)|+ |x(ti)− x(t)| ≤ 3m. If |s− t| ≤ δ< then s, t mus lie on the same of those intervals

or in adjacent ones. Thus,

wx(δ) = sup
|s−t|≤δ

|x(s)− x(t)| ≤ 3m,

26B is closed because it is the inverse image of the closed set (−∞,−a] ∪ [a,+∞) under the continuous function π0.
27For each k ≥ 1 and δ < δk, and for any x ∈ K we have wx(δ) ≤ wx(δk) ≤ 1/k, so supx∈K wx(δ) < 1/k, which implies

that supx∈K wx(δ) tends to zero as δ→ 0.
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which proves (1.22). From this inequality, it follows that

P ({x ∈ C : wx(δ) ≥ 3ε}) ≤ P

({
x ∈ C : 3 max

1≤i≤v
sup

ti−1≤s≤ti

|x(s)− x(ti−1)| ≥ 3ε

})

= P

(
v⋃

i=1

{
x ∈ C : sup

ti−1≤s≤ti

|x(s)− x(ti−1)| ≥ ε

})

≤
v

∑
i=1

P

({
x ∈ C : sup

ti−1≤s≤ti

|x(s)− x(ti−1| ≥ ε

})
,

which is the second inequality.

Corollary 1.2.10. Condition (ii) of theorem 1.2.8 holds if, for all positive ε and η, there exist δ ∈ (0, 1)

and an integer n0 ≥ 1 such that

1
δ

Pn

({
x ∈ C : sup

t≤s≤t+δ

|x(s)− x(t)| ≥ ε

})
≤ η, n ≥ n0 (1.24)

for all t ∈ [0, 1].

Proof. We take ti = iδ for i < v = bq/δc. Then, the requirements of theorem 1.2.9 are satisfied. If

(1.24) holds, then by (1.23) we get that

P ({x ∈ C : wx(δ) ≥ 3ε}) ≤ v · δη, n ≥ n0,

at which point we applied (1.24) for t = t0, t1, . . . , tv−1. Since v = b1/δc ≤ 1/δ, it follows that

v · δη ≤ η, which shows that condition (ii) of theorem 1.2.8 holds28.

1.2.2 Random Functions

At the introduction of the section we said that our intention is to construe stochastic processes as ran-

dom elements of C. However, we saw that, for this to happen, we need to prove some measurability

conditions for the stochastic processes we want to deal with29. In this paragraph we will discuss a

method that helps us prove these conditions.

Let (Ω,A, P) be a probabiliy space, and let X be a map of Ω into C30. This means that X(ω) ∈ C

with value Xt(ω) = X(t, ω) at t ∈ [0, 1]. For t ∈ [0, 1] (fixed), let Xt = X(t) : Ω → R be the function

whose value at ω ∈ Ω is Xt(ω) = X(t, ω). Notice that Xt = πt ◦ X, where πt is the projection at t.

28In the place of ε we have 3ε but of course this is not a problem as the two conditions are equivalent.
29Because random elements are, by definition, measurable functions between some measurable spaces.
30From the discussion in the introduction of the section we see that X is actually a stochastic process with continuous

sample paths.
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Indeed, (πt ◦ X)(ω) = πt(X(ω)) = X(t, ω). Also, for 0 ≤ t1 < . . . < tk ≤ 1, let (Xt1 , . . . , Xtk) denote

the mapping Ω→ Rk that sends ω to (Xt1(ω), . . . , Xtk(ω)) = πt1,...,tk(X(ω)).

If X is a random function, that is, a random element of C31, then, since πt1,...,tk is (due to continuity)

B(C)/B(Rk)−measurable, the composition πt1,...,tk ◦ X is A/B(Rk)−measurable, so (Xt1 , . . . , Xtk) :

Ω→ Rk is a random vector. In particular, each mapping Xt : Ω→ R is a random variable.

Conversely, suppose that Xt is a random variable for all t ∈ [0, 1]. It follows that (Xt1 , . . . , Xtk) =

πt1,...,tk ◦ X is a random vector for all 0 ≤ t1 < t2, . . . , tk ≤ 1. Let A = π−1
t1,...,tk

(H), H ∈ B(Rk) be

a finite dimensional set. Then, X−1(A) = X−1π−1
t1,...,tk

(H) = (πt1,...,tk ◦ X)−1(H). Since πt1,...,tk ◦ X

is A/B(Rk)−measurable, it follows that X−1(A) ∈ A. In other words, if C f is the class of finite

dimensional sets, then X−1(C f ) ⊂ A. As we have seen, C f generates B(C), so from the previous

relation it follows that X−1(B(C)) ⊂ A, or, equivalently, that X is A/B(C)−measurable (that is, X is

a random function). Thus, we have shown that X is a random function if and only if Xt is a random

variable for all t ∈ [0, 1].

Finally, if PX = PX−1 is the distribution of X, then for the finite dimensional distributions of PX we

have

PXπ−1
t1,...,tk

(H) = PX

(
π−1

t1,...,tk
(H)

)
= P

(
X−1(π−1

t1,...,tk
(H))

)
= P

(
(πt1,...,tk ◦ X)−1(H)

)
= P ((Xt1 , . . . , Xtk) ∈ H) .

Thus, the finite dimensional distributions of PX are the distributions of the corresponding random

vectors (Xt1 , . . . , Xtk).

Let X, X1, X2, . . . be random functions.

Theorem 1.2.11. If

(Xn
t1

, . . . , Xn
tk
)⇒ (Xt1 , . . . , Xtk) (1.25)

is true for all t1, . . . , tk and if

lim
δ→0

lim sup
n→∞

P ({w(Xn, δ) ≥ ε}) = 0 (1.26)

for each positive ε, then Xn ⇒ X.

31Which in turn means that X is A/B(C)−measurable.
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Proof. From our hypothesis and the above discussion it follows that (1.26) is equivalent to PXn π−1
t1,...,tk

⇒

PXπ−1
t1,...,tk

for all t1, . . . , tk. Also, Xn ⇒ X is equivalent to PXn ⇒ PX. Thus, the result will follow from

theorem 1.2.3 if we also show that {PXn} is tight. We know that Xn
0 ⇒ X0,so {PXn π−1

0 } is tight. In-

deed, this is the distribution of Xn
0 , so it converges weakly to the distribution PXπ−1

0 of X0. Since

{PXn π−1
0 } is weakly convergent, it follows that it is relatively compact, so, from the separability and

completeness of C and from Prohorov’s theorem (1.1.15) we get that {PXn π−1
0 } is tight. Thus, for each

η > 0, there exists a compact set K ⊂ R such that PXn π−1
0 (K) > 1− η for all n ≥ 1, which is exactly

condition (i) of the theorem 1.2.8. We will show that the second condition is also satisfied. We have

P (w(Xn(ω), δ) ≥ ε) = P (Xn(ω) ∈ {x ∈ C : w(x, δ) ≥ ε})

= P
(
(Xn)−1 ({x ∈ C : w(x, δ) ≥ ε})

)
= PXn ({x ∈ C : w(x, δ) ≥ ε})

so from the hypothesis it follows that

lim
δ→0

lim sup
n→∞

PXn ({x ∈ C : w(x, δ) ≥ ε}) = 0,

which is exactly condition (ii)’ of the theorem 1.2.8. Since both conditions of this theorem are satisfied,

it follows that {PXn} is tight.

We have already explained that the projection πt : C → R is Borel measurable, so it can be viewed as

a random variable defined on C. We will denote this random variable by xt. Thus, for a fixed t, the

random variable xt has value x(t) at x. If P is a Borel probability measure on C and t is thought of as

a time parameter, then {xt}0≤t≤1 becomes a stochastic process, and the xt are commonly called the

coordinate variables. We can also consider the distribution of xt under P, defined as Pxt(H) = P({x ∈

C : xt ∈ H}) and often written as P (xt ∈ H).

1.2.3 Wiener’s Measure and Donsker’s Theorem

The first purpose of this chapter is to prove the existence of the Wiener process, a random function

whose properties are stated in section 1. Our method will be the following: we shall first prove the

existence of the Wiener measure, a Borel probability measure on C having certain special properties,

and then we will construct the Wiener process as a random function whose distribution will be the

Wiener measure.

The Wiener measure is a Borel probability measure on C with the following properties:
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• Each coordinate variable xt is normally distributed with mean zero and variance t. More specif-

ically,

W ({x ∈ C : x(t) ≤ a}) = 1√
2πt

∫ a

−∞
e−x2/2t dx for t > 0. (1.27)

By this definition, the coordinate variable x0 is almost surely equal to zero under W.

• The stochastic process Y = Y(x, t) with Y(x, t) = x(t) 32 has independent increments under W.

That is, if 0 = t0 ≤ t1 ≤ . . . ≤ tk ≤ 1, then the coordinate random variables

xt1 − xt0 , xt2 − xt1 , . . . , xtk − xtk−1 (1.28)

are independent under W 33.

We are first going to show that there exists at most one such measure. In example 1.1.17 we saw that

each measure on (C,B(C)) is uniquely determined by its finite dimensional distributions, so it suf-

fices to show that the above two properties uniquely determine the finite dimensional distributions

of W.

If s ≤ t then the random variable xt ∼ N (0, t) is the sum of the independent random variables

xs − x0 = xs ' N (0, s) and xt − xs. It follows that xt − xs ∼ N (0, t − s), which shows that the

stochastic process Y defined above has stationary increments 34. Thus, if 0 = t0 ≤ t1 ≤ . . . ≤ tk ≤ 1

and a1, . . . , ak ∈ R, it follows from (1.28) that

W
(
xti − xti−1 ≤ ai, i = 1, . . . , k

)
=

k

∏
i=1

1√
2π(ti − ti−1)

∫ ai

−∞
e−x2/2(ti−ti−1) dx. (1.29)

We observe that xsxt = x2
s + xs(xt − xs) so, using the independence of xs and xt − xs, we get that

Cov(xs, xt) = E(xsxt)−E(xs)E(xt)

= E(x2
s ) + E(xs(xt − xs))

= Var(xs) + E(xs)
2 + E(xs)E(xt − xs)

= s.

Due to the second property of the Wiener measure, equation (1.29) completely characterizes the dis-

tribution of the random vector v = (xt1 , xt2 − xt1 , . . . , xtk − xtk−1)
T 35. In particular, this vector follows

32Y is defined on the probability space (C,B(C), W) and is indexed by [0, 1].
33Note that these random variables are defined on (C,B(C), W).
34That is, the distribution of xt − xs for t ≥ s depends only on t− s.
35We considered the transpose simply because we want to perform some matrix operations later.



48 Chapter 1. Weak Convergence of Probability Measures

the k−variate normal distribution with zero mean vector and covariance matrix


t1 0 . . . 0

0 t2 − t1 . . . 0
... 0

. . .
...

0 0 . . . tk − tk−1

 .

If A is the matrix 
1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 1 . . . 1

 ,

then Av = (xt1 , . . . , xtk)
T, so the vector (xt1 , . . . , xtk) is also normally distributed 36. From the above

discussion, it follows that its mean vector is the zero vector, and its covariance matrix has the element

min(ti, tj) is the position (i, j).

We deduce that the distribution of (xt1 , . . . , xtk)
T is uniquely determined. By extension, the finite

dimensional distributions of W are completely characterized by its two defining properties. As we

explained, this implies that there exists at most one choice for W.

Wiener’s measure will come up as the weak limit of a sequence of probability measures. First, let

ξ1, ξ2, . . . : (Ω,A, P) → R be a sequence of i.i.d. random variables with E(ξi) = 0 and Var(ξi) =

σ2 > 0. We consider the partial sums Sn = ξ1 + . . . + ξn of the sequence, with the convention S0 = 0,

and let Xn(ω) be a random element of C constructed as follows: for i = 0, 2, . . . , n, Xn(ω) has the

value Si(ω)/σ
√

n at t = i/n. Then, Xn(ω) is extended linearly on each subinterval [(i− 1)/n, i/n].

In other words,

Xn
t (ω) =

1
σ
√

n
Sbntc(ω) +

1
σ
√

n
(nt− bntc)ξbntc+1(ω), t ∈ [0, 1]. (1.30)

The random element Xn is a random function, whose underlying probability space is Ω.

We consider the random variable ψn,t = 1
σ
√

n (nt − bntc)ξbntc+1, which appears at (1.30). We have

E(ψn,t) = 0 because E(ξi) = 0 for all i. Also,

Var(ψn,t) =
(nt− bntc)2

nσ2 E(ξ2
bntc+1) =

(nt− bntc)2

nσ2 Var(ξbntc+1) =
(nt− bntc)2

n
.

36As linear transformation of a normally distributed vector.
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We shall show that ψn,t ⇒ 0 as n → ∞. For t = i/n for some i = 0, . . . , n this is obvious as ψn,t

Assume that t is not of this form. Then, for any ε > 0, Chebyshev’s inequality gives

P (|ψn,t| ≥ ε) = P
(
|ψn,t| ≥

√
nε

nt− bntc

√
Var(ψn,t)

)
≤ (nt− bntc)2

nε2 ≤ 1
nε2 .

The last quantity obviously tends to 0 as n → ∞ so P (|ψn,t| ≥ ε) → 0 as n → ∞. This shows that

ψn,t
P→ 0 37, which, as we know, implies that ψn,t

d→ 0.

We shall now show that Xn
t ⇒

√
tN, where N has the standard normal distribution. First of all, from

the Central Limit Theorem it follows that
Sbntc

σ
√
bntc
⇒ N. Also,

√
bntc

n →
√

t so

Sbntc

σ
√

n
=

√
bntc

n
·

Sbntc

σ
√
bntc

⇒
√

tN.

We have |Xn
t − ψn,t| ⇒

√
tN and ψn,t ⇒ 0, which yields that Xn

t ⇒
√

tN, which proves our claim.

Similarly, if s ≤ t then

(Xn
s , Xn

t − Xn
s ) =

1
σ
√

n
(
Sbnsc, Sbntc − Sbnsc

)
+ (ψn,s, ψn,t − ψn,s)

⇒ (N1, N2),

where the independent random variables N1, N2 are normal, with means equal to zero and variances

s and t− s respectively. The independence of N1, N2 follows from the independence of ξ1, ξ2, . . . By

extension, if 0 ≤ t1 ≤, . . . ≤ tk ≤ 1, then

(
Xn

t1
, Xn

t2
− Xn

t1
, . . . , Xn

tk
− Xn

tk−1

)T
⇒ (N1, . . . , Nk)

T , (1.31)

where the independent random variables N1, . . . , Nk are normal, with mean zero and variances

t1, t2− t1, . . . , tk− tk−1 respectively. Using the continuous mapping theorem for the continuous linear

map induced by the matrix

A =


1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 1 . . . 1


gives us that the limiting distribution of (Xn

t1
, . . . , Xn

tk
)T is the same as the one of corresponding finite

dimensional distribution of the measure W we want to construct.
37Convergence in probability
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In other words, if PXn is the distribution of the random element Xn of C, then PXn π−1
t1,...,tk

, which is the

distribution of (Xn
t1

, . . . , Xn
tk
)T on Rk, converges weakly to what we want Wπ−1

t1,...,tk
to be. For now, we

will denote the limiting distribution of PXn π−1
t1,...,tk

by µt1,...,tk .

Our purpose is to show that {PXn}n≥1 is tight. In this case, Prohorov’s theorem yields that there

exists some subsequence {PXkn }n≥1 converging weakly to a Borel probability measure U on C. Then,

PXkn π−1
t1,...,tk

⇒ Uπ−1
t1,...,tk

so Uπ−1
t1,...,tk

= µt1,...,tk for all t1, . . . , tk ∈ [0, 1]. This essentially means that the

finite dimensional distributions of U are µt1,...,tk , which are equal to what we want Wπ−1
t1,...,tk

to be.

Since the finite dimensional distributions characterize a measure, we deduce that U is exactly the

Wiener measure whose existence we are trying to prove.

The tightness of {PXn}n≥1 will follow more naturally if we first examine the more general case when

{ξi}i≥1 is stationary, that is, the distribution of the vector (ξk, . . . , ξk+i) depends only on its length,

and is independent of k. Obviously, the sequence {ξi}i≥1 we considered before has this property. The

next lemma is very technical but, after we prove it, the existence of the Wiener measure will follow

very easily.

Lemma 1.2.12. Suppose that Xn : (Ωn,An, Pn)→ C[0, 1] is the sequence of random elements of C[0, 1]

defined by (1.30), and that ξi : (Ω,A, P)→ R, i ≥ 1 is stationary. If

lim
λ→∞

lim sup
n→∞

λ2P
(

max
k≤n
|Sk| ≥ λσ

√
n
)
= 0, (1.32)

then {PXn} is tight.

Proof. We shall use theorem 1.2.8. Since Xn
0 = 0 for all n ≥ 1, its first condition is trivially satisfied.

As we have explained, the second condition of that theorem is equivalent to (1.20). In our case, this

relation is equivalent to the requirement that

lim
δ→0

lim sup
n→∞

Pn [w(Xn, δ) ≥ ε] = 0, for all ε > 0. (1.33)

This relation can be shown using theorem 1.2.9. According to this theorem, if (1.21) holds, then (1.22)

and (1.23) are also true, so

Pn (w (Xn, δ) ≥ 3ε) ≤
v

∑
i=1

Pn

(
sup

ti−1≤s<ti

∣∣∣Xn
s − Xn

ti−1

∣∣∣ ≥ ε

)
(1.34)

if min1<i<v (ti − ti−1) ≥ δ. This is easier to analyze if we choose ti = mi/n, where m0, m1, . . . , mv are

integers satisfying 0 = m0 < m1 < . . . < mv = n. The reason for this specific choice of the points
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t0, . . . , tv is that the functions Xn(ω) are polygonal for all ω ∈ Ωn, so the supremum in (1.35) becomes

a maximum of differences
∣∣Sk − Smi−1

∣∣ /σ
√

n, where mi−1 ≤ k ≤ mi. Indeed, since Xn
s (ω), s ∈ [ti−1, ti]

is a polygonal function, its maximum difference from Xn
mi−1/n = Smi−1 /σ

√
n as s varies, is achieved

in one of the points of the set
{

k
n : k = 0, 1, . . . , v

}
∩ [ti−1, ti]. Since Xn

k/n = Sk/σ
√

n, it follows that

sup
ti−1≤s≤ti

∣∣∣Xn
s − Xn

ti−1

∣∣∣ = max
mi−1≤k≤mi

1
σ
√

n

∣∣Sk − Smi−1

∣∣ .

Since {ξi}i≥1 is stationary, it follows that the latter maximum has the same distribution as

max
0≤k≤mi−mi−1

|Sk| .

Hence, from (1.34) it follows that

Pn (w(Xn, δ) ≥ 3ε) ≤
v

∑
i=1

Pn

(
max

0≤k≤mi−mi−1

|Sk|
σ
√

n
≥ ε.

)
. (1.35)

Recall that this inequality only holds if ti − ti−1 ≥ δ for all i ∈ {2, . . . , v − 1}. This translates as

mi −mi−1 ≥ nδ for all i ∈ {2, . . . , i− 1}. To simplify our analysis even more, we shall choose mi = im

for 0 ≤ i < v, and mv = n, where m is an integer. Since we want mi − mi−1 ≥ nδ, we must have

m ≥ nδ, so we can choose m = dnδe. We also need mv−1 = (v− 1)m ≤ n ≤ vm so v ≥ n/m and

v− 1 ≤ n/m. Thus, we can set v = dn/me. Notice that n/m = n/dnδe converges to 1/δ as n → ∞,

due to the squeezing theorem. Thus, for n large enough and δ small enough, we have n/m > 1/2δ.

Also, v = dn/me converges to d1/δe which is smaller than 1 + 1/δ < 2/δ for small enough δ. Since

mv −mv−1 ≤ m, it follows from (1.35) that, for large n and small δ we have

Pn (w(Xn, δ) ≥ 3ε) ≤ v · Pn

(
max

0≤k≤m
|Sk| ≥ εσ

√
n
)

≤ 2
δ
· Pn

(
max

0≤k≤m
|Sk| ≥

ε√
2δ

σ
√

m
)

where the last inequality follows directly from the fact that n/m > 1/2δ. We can now choose λ =

ε/
√

2δ in which case the above inequality translates into

Pn (w(Xn, δ) ≥ 3ε) ≤ 4λ2

ε2 · Pn

(
max

0≤k≤m
|Sk| ≥ λσ

√
m
)

.

Given positive ε, η, (1.34) implies that there exists some λ such that

4λ2

ε2 lim sup
m→∞

Pn

(
max

0≤k≤m
|Sk| ≥ λσ

√
m
)
< η.
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Notice that δ → 0 as λ → ∞, and, for fixed δ, m → ∞ as n → ∞. Thus, from the above relations it

follows easily that

lim
δ→0

lim sup
n→∞

Pn (w(Xn, δ) ≥ ε) = 0 for all ε > 0,

which completes the proof.

The construction of the Wiener measure can be completed using the independence of the random

variables {ξi}i≥1 Because of the independence, {ξi}i≥1 is stationary, and Etemadi’s inequality gives

that

Pn

(
max

0≤u≤m
|Su| ≥ α

)
≤ 3 max

0≤u≤m
P (|Su| ≥ α/3) for all α > 0. (1.36)

To prove the second condition of lemma 1.2.12, we thus need to show that

lim
λ→∞

lim sup
n→∞

{
λ2 max

0≤k≤n
P
(
|Sk| ≥ λσ

√
n
)}

= 0. (1.37)

The interesting fact is that we can use any sequence {ξi}i≥i we want. We assume that each ξi is a

standard normal random variable. Of course, ξ1, ξ2, . . . are also assumed independent. In this case,

we know that Sk ∼ N (0, k) 38 so Sk/
√

k ∼ N (0, 1). From Markov’s inequality it follows that

P (|N| ≥ λ) = P
(

N4 ≥ λ4
)

≤ E(N4)

λ4

=
3

λ4

as E(N4) = 3. Thus, Pn
(
|Sk| ≥ λσ

√
n
)
= Pn

(√
k|N| ≥ λσ

√
n
)
≤ 3/λ4σ4 for k ≤ n. Letting λ → ∞

proves (1.37), which in turn proves the existence of Wiener’s measure.

Theorem 1.2.13. There exists on (C,B(C)) a measure whose finite dimensional distributions are de-

termined by (1.29).

By W, we will denote not only the Wiener measure, but also any random function having the Wiener

measure as its distribution over C.

We are now ready to prove Donsker’s theorem. Notice that, in the above discussion, W came up

as the weak limit of the sequence {PXn}n≥1, where Xn was defined by (1.30), and {ξi}i≥1 are inde-

pendent standard normal random variables. Donsker’s theorem actually shows that we can drop the

requirement of normality of those variables. It was introduced by [Donsker, 1951].

38We can show this result using characteristic functions.
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Theorem 1.2.14 (Donsker). If ξ1, ξ2, . . . are independent and identically distributed random variables

with mean zero and variance σ2, and if Xn is the random function defined by (1.30), then Xn ⇒W.

Proof. The proof depends on theorem 1.2.11. If W : (Ω,A, P) → C denotes the random function

whose distribution over C is the Wiener measure 39. From the definition of the Wiener measure and

the discussion at the beginning of the section, it follows that Ws ∼ N (0, s) for all s ≥ 0. Indeed,

PWt ({x ∈ C : x(t) ≤ a}) = P (Wt ≤ a)

= P (πt ◦W ≤ a)

= P
(

W ∈ π−1
t ((−∞, a])

)
= W

(
π−1

t ((−∞, a])
)

= W ({x ∈ C : x(t) ≤ a})

=
1√
2πt

∫ a

−∞
e−x2/2t dx,

where, in the last two lines W denotes the Wiener measure, which is the distribution of the random

element W. We can similarly show that Wt −Ws ∼ N (0, t − s) for t ≥ s. In the beginning of the

section, we saw that (Xn
s , Xn

t − Xn
s )⇒ (N1, N2), where N1, N2 are independent random variables with

mean zero and variances s and t− s respectively. From the second property of the definition of the

Wiener measure, it follows that Wt −Ws and Ws = Ws −W0 are independent so the last relation can

be written as (Xn
s , Xn

t − Xn
s ) ⇒ (Ws, Wt −Ws). Due to the continuous mapping theorem, it follows

that (Xn
s , Xn

t ) ⇒ (Ws, Wt). By extension, (Xn
t1

, . . . , Xn
tk
) ⇒ (Wt1 , . . . , Wtk) for all 0 ≤ t1 ≤ . . . ≤ tk,

which is relation (1.25) with W in the role of X.

It remains to prove (1.26). We have shown this relation in the proof of the previous theorem, but

under the additional assumption that ξi are normal. To drop this assumption, we shall use the central

limit theorem. Notice that, from the proof of the previous theorem, it suffices to prove (1.37). We

fix some λ > 0. By the central limit theorem, if kλ is large enough, greater than some kλ, then

Sk/σ
√

k ≈ N (0, 1). Markov’s inequality for a random variable Z ∼ N (0, 1) gives P (|Z| ≥ λ) =

P
(
Z4 ≥ λ4) ≤ E(Z4)/λ4 = 3/λ4 so, for large k we have P

(
|Sk| ≥ λσ

√
k
)
< 4/λ4. For k ≤ n it is

true that P
(
|Sk| ≥ λσ

√
k
)
≥ P

(
|Sk| ≥ λσ

√
n
)
, whence it follows that

λ2 max
k≤n

P
(
|Sk| ≥ λσ

√
n
)
< 4/λ2

39We have explained that, for each measure there exists a random element whose distribution is exactly this measure.
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for k ≥ kλ. Notice that Var(Sk) = kσ2 so, for k < kλ, Chebyshev’s inequality gives that P
(
|Sk| ≥ λσ

√
n
)
≤

k/λ2n ≤ kλ/nλ2. Thus, maxk≤n P
(
|Sk| ≥ λσ

√
n
)
≤ max

{
kλ/nλ2, 4/λ4}, so it obviously tends to

zero as λ → ∞. This shows that (1.32) is true, so from the proof of the previous theorem we obtain

that (1.26) is also true. Hence, theorem 1.2.11 implies that Xn ⇒W, which completes the proof.
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Chapter 2

Empirical Process Theory and

Applications in Statistics

In the second part of this thesis, we are going to focus on uniform laws of large numbers and uniform

central limit theorems. We present these topics within the framework of Empirical Process Theory.

Our starting point are the Strong Law of Large Numbers (SLLN).

The SLLN states that, if Z1, . . . , Zn : (Ω,A, P) → (Z ,A) are independent and identically distributed

random elements with distribution PZ in (Z ,A), and if f : Z → R is a measurable function such that

E f (Z) exists, then
1
n

n

∑
i=1

f (Zi)
n→∞−→ E f (Z), P− a.s. (2.1)

This result is one of the most prominent landmarks in Probability Theory. One of its countless ar-

eas of application is consistency of statistical estimators, and, in particular, plug-in estimators. This

application is presented in Example 2.0.1. Before moving forward to ths application, we recall the

definition of the empirical measure.

Let Z1, . . . , Zn : (Ω,A, P) → (Z ,G) be i.i.d. random elements with distribution PZ. The empirical

measure Pn induced by these elements is defined by

Pn(A) =
1
n

n

∑
i=1

1{Zi∈A} =
#{1 ≤ i ≤ n : Zi ∈ A}

n
, A ∈ G. (2.2)

Notice that the empirical measure is a random measure in the sense that it depends on the value of

ω ∈ Ω we choose each time. If the singletons in (Z ,G) are measurable, then the empirical measure

can be described alternatively as the random probability measure that gives mass 1/n to each of the
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observations Zi. For this reason, the empirical measure is usually expressed as

Pn =
1
n

n

∑
i=1

δZi ,

where δz denotes the Dirac measure at point z ∈ Z . The SLLN can be expressed via the empirical

measure in the equivalent form

Pn f a.s.→ PZ f . (2.3)

Indeed, the elements f (Z1), . . . , f (Zn) are i.i.d. random variables, and their expectation is equal to

E ( f (Zi)) =
∫

Ω
f (Zi(ω)) dP(ω)

=
∫

T
f dPZ

= PZ f . (2.4)

Combined with the fact that Pn f = 1
n ∑n

i=1 f (Zi),1 Equation (2.4) verifies the equivalent form (2.3) of

the SLLN.

Example 2.0.1 (Plug-in estimators). Some of the most common quantities of interest in statistics, like

the expectation and the quantiles, can be expressed as functionals of the underlying distribution. For

example, one can define the expectation of a random variable Y as a functional γ : P → R defined

by

γ (Q) =
∫

R
Y dQ, (2.5)

where P is the space of probability measures on (R,B(R)), and Y ∼ Q. This maps any probability

measure Q ∈ P to E[Y], where Y ∼ Q. Analogously, for any fixed threshold α ∈ (0, 1), the α-quantile

of the distribution of g(Y) can be expressed as

γα(Q) = inf {t ∈ R : Q ((−∞, t]) ≥ α} . (2.6)

Let Γ : P → R be any such functional. Then, for any Q ∈ P , the (random) estimator Γ(Qn) is called

a plug-in estimator of Γ(Q), where Qn is the empirical measure corresponding to an i.i.d. sequence

Y1, . . . , Yn ∼ Q.

Plug-in estimators are useful because they can be computed using the observed data points Y1, Y2, . . .

1For each measurable function f : T → R it is true that δz f = f (z).This simple property can be shown in a standard way:
first for indicator functions, then for simple functions, then for non-negative measurable functions using the Monotone
Convergence Theorem, and finally for general measurable functions. Consequently, for every measurable function f :
T → R we have Pn f = 1

n ∑n
i=1 f (Zi).
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unlike estimators that depend directly on the underlying distribution Q, which remains unknown.

An important property that makes plug-in estimators suitable for estimating the target quantity is

consistency, that is, convergence to the target quantity, either almost surely (strong consistency), or

in probability (weak consistency). For example, the SLLN can be used to yield strong consistency for

the plug-in estimator γ(Qn) of the mean, where the functional γ is defined in Equation (2.5).

In a similar way, we can use the SLLN to derive consistency of an abundance of other plug-in estima-

tors. However, rather than expanding our discussion on the use of these two theorems in deriving

useful properties of statistical estimators, we will now investigate some of their most restrictive lim-

itations.

2.1 Limitations of the SLLN

Although the SLLN is a rich source of a multitude of methods and techniques in Probability and

Statistics, it still faces severe limitations. The main root of these limitations is the assumption that g

is a nonrandom function. On the contrary, some of the most established statistical methods make use

of functions that depend on the observed data.

In this subsection, we will present some of these statistical methods and explain why these cases lie

outside of the area of validity of the SLLN.

Example 2.1.1 (Empirical Risk Minimization). Suppose that Z1, . . . , Zn : (Ω,A, P) → Z are i.i.d.

random elements whose distribution belongs to a class
{

Pf : f ∈ F
}

, and is thus determined by an

unknown function f ∈ F . Let f ? denote the true (unknown) value of the function, which we would

like to estimate. The estimation relies on a loss function f 7→ L f (Z), whose expectation with respect

to Pf ? we would like to minimize. The loss function is chosen in such a way that the true value f ? is

the minimizer of the expected loss E f ?
[
L f (Z)

]
,2 which is called the risk and is denoted by R ( f , f ?).

The risk is not computable, because f ? is unknown. Hence, we cannot compute the value of f that

minimizes it. Hence, motivated by the LLN, we resort to its empirical counterpart, namely

R̂n ( f ) :=
1
n

n

∑
i=1
L f (Zi) . (2.7)

We can now compute the value f̂n that minimizes R̂n ( f ) and hope that this value is close to the

minimizer of arg min f∈F R ( f , f ?) = f ?. This general procedure is widely known as Empirical Risk

Minimization (ERM). We shall look at the following examples of ERM:

2The index f ? denotes that the expectation is taken over the true distribution, which is Pf ? . This is totally reasonable, as
we want to minimize the true expected loss, and not the loss based on some false value of the parameter.
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1. Maximum Likelihood Estimation (MLE): In MLE, we assume that the function class F is equal

to a parameter space Θ, and that the distribution of Z is determined by a parameter θ ∈ Θ.

Assume that {Pθ : θ ∈ Θ} is dominated by a σ-finite measure µ, and we denote by pθ the density

of Pθ with respect to µ. The loss function is defined by

Lθ(x) = log
pθ?(x)
pθ(x)

. (2.8)

Using Jensen’s inequality, we can easily show that Eθ?Lθ (X) ≥ 0, and that the equality holds if

and only if θ = θ?. Therefore, the true value θ? minimizes the expected risk. The empirical risk

is equal to

R̂n (θ) =
1
n

n

∑
i=1

log
pθ?(Zi)

pθ(Zi)
.

The numerators pθ?(Zi) are irrelevant for the minimization of the empirical risk, so we can

equivalently maximize the simplified function

1
n

n

∑
i=1

log pθ(Zi).

The MLE estimator θ̂n is then defined as any element of the set

arg max
θ∈Θ

1
n

n

∑
i=1

log pθ(Zi).

2. Binary Classification: suppose that the points Z1, . . . , Zn are pairs (X1, Y1) , . . . , (Xn, Yn) ∈ X ×

{0, 1}. This problem is often encountered in practice. For example, the variable X could denote

the levels of particular biomarkers in a person’s blood, and Y could encode whether that person

has a particular disease (Y = 1) or not (Y = 0). The goal of binary classification is to determine a

function f : X → {0, 1} in some function class F such that the probability of misclassification,

P ( f (X) 6= Y) is minimized. In that case, the loss function would be defined as

L f (x, y) := 1{ f (x) 6=y} =

 1, if f (x) 6= y

0, else
(2.9)

Any function f ? that minimizes E
[
L f (X, Y)

]
= P ( f (X) 6= Y) is known as a Bayes classifier.

It can be easily shown that, if the two classes are marginally equally likely, i.e. P (Y = 1) =
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P (Y = 0), then the function

f ?(x) =

 1, if P(Y=1|X=x)
P(Y=0|X=x) ≥ 1

0, else.
(2.10)

is a Bayes classifier. However, P (Y = 1) , P (Y = 0) , P (Y = 1 | X = x) and P (Y = 0 | X = x)

are unknown, so we do not have access to the Bayes classifier. Therefore, we use the ERM

estimator, which is now defined as

f̂n ∈ arg min
f∈F

R̂n ( f ) = arg min
f∈F

[
1
n

n

∑
i=1

1{ f (Xi) 6=Yi}

]
. (2.11)

3. Regression: suppose that the points Z1, . . . , Zn are again pairs (X1, Y1) , . . . , (Xn, Yn), which are

now determined by the equation Y = µ0(X) + ε. Here, µ0 : X → R is an unknown map that

is referred to as the regression function, and ε is a zero-mean random variable (noise) that is

independent of (X, Y). Once more, we assume that the regression funcion belongs to a function

class F . Since E [ε] = 0, it follows that µ0(x) = E [Y | X = x]. For any µ ∈ F , we define the

loss function Lµ(x, y) = (y− µ(x))2. It can be easily shown that the true regression function

µ0 minimizes E
[
Lµ (X, Y)

]
over F . However, µ0 is unknown, so we estimate it using the ERM

estimator

µ̂n ∈ arg min
µ∈F

R̂n (µ) = arg min
µ∈F

[
1
n

n

∑
i=1

(Yi − µ(Xi))
2

]
. (2.12)

This estimator is known as the least squares estimator.

By definition, the ERM estimator f̂n depends on the data points Z1, . . . , Zn. The reason why this is

problematic will become clear in the next paragraph.

An interesting question that one could ask is the following: how large is R
(

f̂n, f ?
)

, i.e. the (theoreti-

cal) risk of the empirical risk minimizer? Ideally, since R ( f , f ?) is the quantity that we actually want

to minimize (and not R̂n ( f )), we would like that f̂n satisfies

R
(

f̂n, f ?
)
≈ inf

f∈F
R ( f , f ?) ,

at least for large values of n. To investigate whether this holds, we can temporarily assume that

inf f∈F R ( f , f ?) is achieved at some point f0 - not necessarily equal to f ?. We define the excess risk of

f̂n by

E
(

f̂n, f ?
)

:= R
(

f̂n, f ?
)
− R ( f0, f ?) . (2.13)
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It obviously holds that E
(

f̂n, f ?
)
≥ 0. We essentially want to show that E

(
f̂n, f ?

)
n→∞−→ 0. Notice

that the excess risk can be decomposed as

E
(

f̂n, f ?
)

=
[

R
(

f̂n, f ?
)
− R̂n

(
f̂n

)]
+
[

R̂n

(
f̂n

)
− R̂n ( f0)

]
+
[

R̂n ( f0)− R ( f0, f ?)
]

. (2.14)

The second term is non positive since f̂n minimizes the empirical risk. The third term is equal to

[
1
n

n

∑
i=1
L f0 (Zi)

]
−E f ?L f0 (Z) ,

which converges to zero a.s. by the SLLN. A naive first approach would be to use the same argument

(SLLN) for the first term, which can be written as

E f ?L f̂n
(Z)−

[
1
n

n

∑
i=1
L f̂n

(Zi)

]
.

However, this would not be correct, since f̂n is a random quantity that depends on Z1, . . . , Zn and

varies with n. Therefore, it is not possible to use the SLLN to prove that this term converges to zero.

However, it holds that

∣∣∣R ( f̂n, f ?
)
− R̂n

(
f̂n

)∣∣∣ ≤ sup
f∈ f

∣∣∣R ( f , f ?)− R̂n ( f )
∣∣∣ .

Therefore, one potential strategy would be to show that

sup
f∈F

∣∣∣R ( f , f ?)− R̂n ( f )
∣∣∣ n→∞−→ 0, P-a.s. (2.15)

Notice that

R ( f , f ?)− R̂n ( f ) = E f ?L f̂n
(Z)−

[
1
n

n

∑
i=1
L f̂n

(Zi)

]
=
∫
Z
L f dPZ −

∫
Z
L f dPn

=
∫
Z
L f d (PZ −Pn) . (2.16)

Motivated by this discussion, we give the following definition.

Definition 2.1.2. Let Z1, Z2, . . . : (Ω,A, P) → (Z ,G) be a sequence of i.i.d. random elements and let

F be a class of real-valued measurable functions Z → R. We say that F satisfies the Uniform Law of
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Large Numbers (ULLN) if it holds that

sup
f∈F

∣∣∣∣∫Z f d(Pn − PZ)

∣∣∣∣ P−→ 0, as n→ ∞ (2.17)

We shall use the notation

‖Pn − PZ‖F := sup
f∈F

∣∣∣∣∫Z f d(Pn − PZ)

∣∣∣∣
Remark 2.1.3. Equations (2.16) and (2.17) might cause some confusion since f denotes different

things in each of them. This remark aims to clarify the notation and explain this inconsistency.

• For the purposes of ERM, we are interested in the function class LF :=
{
L f : f ∈ F

}
, which

is parametrized by F . This becomes obvious from Equations (2.14) and (2.16).

• However, we can discuss the ULLN in its full generality, outside of the spectrum of ERM. In

that case we can allow for any general function class F .

Therefore, the rule in the rest of this thesis is the following: we discuss the GC function classes in

their full generality using the symbol F . When going back to the specific area of ERM, we switch

from F to LF .

From the above discussion it becomes clear that, the ULLN is a sufficient condition for the con-

vergence of the excess risk to zero (in probability). Therefore, it is necessary to investigate which

function classes satisfy the ULLN. The first result in this direction was proved in 1933 independently

by Glivenko and Cantelli [Glivenko, 1933, Cantelli, 1933].

Theorem 2.1.4 (Glivenko-Cantelli). Let Z1, . . . , Zn : Ω → R be i.i.d. random variables with cumula-

tive distribution function FZ. Let Fn be the empirical c.d.f. of Z1, . . . , Zn. Then, it holds that

‖Fn − FZ‖∞ = sup
z∈R

|Fn(z)− FZ(z)|
a.s.→ 0. (2.18)

Although it might not be obvious how this theorem is related to the ULLN, a closer look reveals that

Fn(z)− FZ(z) =
∫

R
1(−∞,z] d (Fn − FZ) .

Therefore, this theorem essentially tells us that the function class
{

1(−∞,z] : z ∈ R
}

satisfies the ULLN.

Due to this seminal result, the function classes that satisfy the ULLN are alternatively called Glivenko-

Cantell (GC) classes.
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To conclude, the main question that we try to investigate in this chapter is the following: under what

conditions is a function class a GC class? As we shall see, this is closely related to the size and the

complexity of the class. Therefore, we will focus on developing measures of size and complexity

that give insight into the structure of a function class and provide necessary conditions for a class to

satisfy the ULLN.

Throughout this chapter, we follow the exposition of [Wainwright, 2019], with several ideas also

taken by [van de Geer, 2000] and [Vershynin, 2018]. We emphasize that, although the definition of

a GC class only requires convergence in probability, the results we are going to present often yield

almost sure convergence, which is stronger.

2.2 Concentration bounds

Before moving forward to the investigation of complexity measures for function classes, it is neces-

sary to take a step back and study the spread of random variables around their means, as well as in

the tails of their distribution. Throughout this section, we use the following terminology:

1. Tail bound: An upper bound on the probability that a random variable takes values at the tails

of its distribution (i.e. very large or very small values). The simplest and most general tail

bound is given by Markov’s inequality:

for any nonnegative random variable X and any a > 0, it holds that

P (X ≥ a) ≤ E [X]

a
.

2. Concentration bound: An upper bound on the probability that a random variable takes val-

ues away from its mean. One of the most well-known concentration bounds is Chebyshev’s

inequality:

for any random variable X with finite first and second moments, and any κ > 0, it holds that

P (|X−E [X]| > κ) ≤ Var(X)

κ2 .

This section is going to provide us with some concentration bounds that will be extensively used in

the proofs of the upcoming results. Our goal in the next sections will be to show that

sup
f∈F
|Rn ( f )− R ( f , f ?)| ≈ E

[
sup
f∈F
|Rn ( f )− R ( f , f ?)|

]
, (2.19)
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which is nothing more than a concentration property of the random quantity

sup
f∈F
|Rn ( f )− R ( f , f ?)| .

The concentration bounds that we prove in this section will turn out to be very useful in showing

concentration properties of this form.

The upcoming results are not exclusively used in Empirical Process Theory. On the contrary, they

have a very large field of application, ranging from Concentration of Measure, to Optimal Transport,

Optimization, and Stochastic Calculus. Therefore, even though this section might initially seem to lie

out of the spirit of this thesis, it contains a lot of results of independent interest. The importance of

this results in Empirical Process Theory will become very clear in Sections 2.3 and 2.4.

Markov’s and Chebyshev’s inequality have some interesting extensions. One of them is the so-called

Chernoff bound, which is discussed in Example 2.2.1.

Example 2.2.1 (Chernoff bound). Let X be any random variable with mean µ. Suppose that there

exists a constant b such that the moment generating function E
[
eλX] is finite for all λ ∈ [0, b]. From

Markov’s inequality, it follows that, for all λ ∈ R,

P [X− µ ≥ t] = P
[
eλ(X−µ) ≥ eλt

]
≤

E
[
eλ(X−µ)

]
eλt .

This inequality can be rewritten as

log P [X− µ ≥ t] ≤ log E
[
eλ(X−µ)

]
− λt.

Since λ ∈ [0, b] was arbitrary, the latter implies that

log P [X− µ ≥ t] ≤ inf
λ∈[0,b]

{
log E

[
eλ(X−µ)

]
− λt

}
. (2.20)

This last inequality is widely known as the Chernoff bound.

Under distributional assumptions, it is often easy to derive further concentration and tail bounds.

Example 2.2.2 illustrates the derivation of such bounds for Gaussian random variables.

Example 2.2.2 (Gaussian Concentration Bound). Let X ∼ N (µ, σ2) be a Gaussian random variable. It

is well known that the moment-generating function of X is given by E
[
eλX] = eµλ+ σ2λ2

2 for all λ ∈ R.
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From the Chernoff bound, it follows that

log P [X− µ ≥ t] ≤ inf
λ∈[0,∞)

{
log E

[
eλ(X−µ)

]
− λt

}
= inf

λ≥0

[
λ2σ2

2
− λt

]
= − t2

2σ2 ,

where, in the last step, we computed the infimum by setting the derivative d
dλ

(
λ2σ2

2 − λt
)

to zero. It

follows that

P [X− µ ≥ t] ≤ e−
t2

2σ2 . (2.21)

Since −X ∼ N (−µ, σ2), the same argument yields that P [−X + µ ≥ t] ≤ e−
t2

2σ2 . Combining these

two bounds yields the concentration bound

P [|X− µ| ≥ t] ≤ 2e−
t2

2σ2 . (2.22)

To obtain concentration properties for more general classes of random variables, we need to impose

some assumptions on the tail behaviour of the underlying distribution. This already becomes clear

from Chebyshev’s inequality, where it is necessary to assume the existence of the first two moments.

A large group of concentration results concerns sub-Gaussian random variables.

Definition 2.2.3. A random variable X with mean µ = E [X] is sub-Gaussian if there exists a positive

constant σ such that

E
[
eλ(X−µ)

]
≤ eλ2σ2/2, for all λ ∈ R. (2.23)

The constant σ is referred to as the sub-Gaussian parameter of X.

Remark 2.2.4. For Gaussian random variables, the bound in (2.23) holds with equality. Therefore,

Gaussian random variables are sub-Gaussian, with their standard deviation as the sub-Gaussian

parameter. However, there exist sub-Gaussian random variables that are not Gaussian. For example,

it is a standard result that any bounded random variable X ∈ [a, b] is sub-Gaussian with subgaussian

parameter equal to σ = (b− a)/2.

Remark 2.2.5. Intuitively, a random variable is sub-Gaussian if the tails of its distribution decay

at least as fast as the tails of a Gaussian distribution. Indeed, using the definition of a sub-Gaussian

random variable, we can compose an argument similar to the one in Example 2.2.2 and show that any

sub-Gaussian random variable satisfies the bounds (2.21) and (2.22). The last step of that argument

is still vaild because, for any sub-Gaussian random variable X, it holds that −X is also sub-Gaussian

with the same parameter. [Vershynin, 2018, Proposition 2.5.2] some interesting properties related to

the moments and the tails of sub-Gaussian random variables.
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We are now ready to state Hoeffding’s inequality, an inequality that plays a central role in studying

concentration properties of sub-Gaussian random variables.

Theorem 2.2.6 (Hoeffding Bound). Let n ≥ 1 be an integer, and let X1, . . . , Xn be independent sub-

Gaussian random variables with means µ1, . . . , µn and sub-Gaussian parameters σ1, . . . , σn respec-

tively. Then, for all t ≥ 0, it holds that

P

[
n

∑
i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2 ∑n
i=1 σ2

i

}
. (2.24)

Proof. The proof relies on the fact that linear operations preserve sub-Gaussianity. In particular,

we show that X1 + . . . + Xn is sub-Gaussian with mean µ1 + . . . + µn and sub-Gaussian parameter√
σ2

1 + . . . + σ2
n . Since X1, . . . , Xn are independent, it follows that

E
[
eλ(∑n

i=1 Xi−∑n
i=1 µi)

]
= E

[
exp

{
λ(

n

∑
i=1

(Xi − µi)

}]

=
n

∏
i=1

E [exp {λ(Xi − µi)}]

≤
n

∏
i=1

exp
{

λ2σ2
i

2

}
= exp

{
λ2(σ2

1 + . . . + σ2
n)

2

}
, (2.25)

where we used the fact that X1, . . . , Xn are sub-Gaussian in the third step. This shows that X1 + . . . +

Xn is sub-Gaussian. Inequality (2.24) now follows from the bound (2.21), which, as we discussed in

Remark 2.2.5, holds for all sub-Gaussian random variables.

Hoeffding inequality has an interesting extension, known as the Azuma-Hoeffding inequality. This

inequality was introduced by [Azuma, 1967] and it extends the Hoeffding bound to random vari-

ables that have a non-trivial dependence structure. More specifically, it covers the case of martingale

difference sequences. If {Ai}∞
i=1 is a filtration in a probability space (Ω,A, P), then we say that a se-

quence {Di}∞
i=1 of random variables is a martingale difference sequence (MDS) if, for all i ≥ 1, it

holds that Di is Ai-measurable, integrable, and satisfies the condition

E
[

Di | Ai−1

]
= 0. (2.26)
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Theorem 2.2.7 (Azuma-Hoeffding). Let {Di}∞
i=1 be a martingale difference sequence. If, for all i ≥ 1,

the random variable Di lies almost surely within an interval of length Li, then for all n ≥ 1 it holds

that

P

(
n

∑
i=1

Di ≥ t

)
≤ exp

{
− 2t2

∑n
i=1 L2

i

}
(2.27)

Proof. Let i ≥ 1 be an arbitrary index. Since Di lies almost surely within an interval of length Li, the

same holds for the conditioned random variable (Di | Ai−1). Therefore, from Remark 2.2.4, it follows

that (Di | Ai−1) is sub-Gaussian with parameter σ = Li/2. The mean of this random variable is equal

to zero, so, by the definition of a sub-Gaussian random variable, it follows that

E
[
eλDi | Ai−1

]
≤ eλ2L2

i /8. (2.28)

We now use the law of iterated expectation to derive a decomposition of E [exp {∑n
i=1 Di}] in a similar

way as in the proof of Theorem 2.2.6. We have

E

[
exp

{
λ

n

∑
i=1

Di

}]
= E

[
exp

{
λ

n−1

∑
i=1

Di

}
· exp {λDn}

]

= E

(
E

[
exp

{
λ

n−1

∑
i=1

Di

}
· exp {λDn}

∣∣∣∣∣ An−1

])

= E

(
exp

{
λ

n−1

∑
i=1

Di

}
·E [exp {λDn} | An−1]

)

≤ E

(
exp

{
λ

n−1

∑
i=1

Di

}
· exp

{
λ2L2

n/8
})

= E

[
exp

{
λ

n−1

∑
i=1

Di

}]
· exp

{
λ2L2

n/8
}

, (2.29)

where we used the law of iterated expectation in the second step, the fact that exp
{

∑n−1
i=1 Di

}
isAn−1-

measurable in the third step, and Equation 2.28 in the fourth step. Iterating this argument over the

remaining terms yields that

E

[
exp

{
n

∑
i=1

Di

}]
≤ exp

{
λ2

8

n

∑
i=1

L2
i

}
.

This shows that the random variable ∑n
i=1 Di is sub-Gaussian with parameter σ = 1

2

√
∑n

i=1 L2
i . From

the Remark 2.2.5, and from the bound (2.21), it follows that

P

(
n

∑
i=1

Di ≥ t

)
≤ exp

{
− 2t2

∑n
i=1 L2

i

}
,
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which finishes the proof.

Recall that the quantity that we would like to bound is

sup
f∈F
|(Pn − PZ) f | ,

which can be viewed as a function gn : Zn → R. In Theorem 2.2.9, we use the Azuma-Hoeffding

bound to show a concentration property for functions of this type that satisfy a certain assumption,

called the assumption of bounded differences.

Definition 2.2.8. Given two vectors z, z′ ∈ Zn and an index k ∈ {1, . . . , n}, we define a new vector

z\k ∈ Zn by

z\kj :=

 zj, if j 6= k

z′j, if j = k

for all j = 1, . . . , n. In other words, z\k has all its entries equal to the ones of z except from the k-th

one, which is equal to the k-th entry of z′. We say that a function g : Zn → R has the property of

bounded differences if, for any index k ∈ {1, . . . , n}, there exists a constant Lk > 0 such that

∣∣∣g (z)− g
(

z\k
)∣∣∣ ≤ Lk, for all z, z′ ∈ Zn. (2.30)

Theorem 2.2.9 (McDiarmid Bound). Let gn : Zn → R be a measurable function that satisfies the

property of bounded differences with constants L1, . . . , Ln. If Z ∈ Zn is a random vector with inde-

pendent entries, then, for all t > 0, it holds that

P
[

gn(Z)−Egn(Z) ≥ t
]
≤ exp

{
− 2t2

∑n
k=1 L2

k

}
. (2.31)

Proof. Our goal is to decompose the quantity gn(Z) − Egn(Z) into a partial sum of a martingale

sequence and then apply the Azuma-Hoeffding bound. Therefore, for any k ∈ {2, . . . , n}, we define

Di := E [gn(Z) | Z1, . . . , Zi]−E [gn(Z) | Z1, . . . , Zi−1] .

We also define D1 := E [gn(Z) | Z1]−Egn(Z). Obvisously, it holds that gn(Z)−Egn(Z) = ∑n
i=1 Di.

Also, it is easy to see that {Di}n
i=1 forms a martingale difference sequence with respect to the filtration

{σ(Z1, . . . , Zi)}n
i=1. To apply the Azuma-Hoeffding bound, we still need to show that D1, . . . , Dn are
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bounded. For each i ∈ {1, . . . , n}, we define

Ai := inf
z∈Z

E [gn(Z) | Z1, . . . , Zi−1, z]−E [gn(Z) | Z1, . . . , Zi−1] ,

Bi := sup
z∈Z

E [gn(Z) | Z1, . . . , Zi−1, z]−E [gn(Z) | Z1, . . . , Zi−1] .

For all i ∈ {1, . . . , n}, it holds that Ai ≤ Di ≤ Bi. We are now going to show that Bi − Ai ≤ Li, where

Li is the constant that appears in the property of bounded differences. Due to the independence of

the entries of Z, it follows that 3

E [gn(Z) | Z1, . . . , Zi] = Gn,i (Z1, . . . , Zi) ,

where Gi,n (z1, . . . , zi) = E [gn (z1, . . . , zi, Zi+1, . . . , Zn)]. It follows that

Bi − Ai = sup
z∈Z

E [gn(Z) | Z1, . . . , Zi−1, z]− inf
z∈Z

E [gn(Z) | Z1, . . . , Zi−1, z]

≤ sup
z,z′∈Z

∣∣∣Gn,i (Z1, . . . , Zi−1, z)− Gn,i
(
Z1, . . . , Zi−1, z′

) ∣∣∣. (2.32)

However, from the property of bounded differences, it directly follows that

sup
z,z′∈Z

∣∣∣Gn,i (z1, . . . , zi−1, z)− Gn,i
(
z1, . . . , zi−1, z′

) ∣∣∣ ≤ Li

for all z1, . . . , zi−1 ∈ Z . Given Equation (2.32), the latter observation implies that

Bi − Ai ≤ Li,

which is exactly what we wanted to prove. The McDiarmid bound now follows directly from the

Azuma-Hoeffding inequality.

2.3 Rademacher Complexity

Whether a function class F is a GC class naturally depends on the size and the complexity of the

class. For example, if F contains only one element f : Z → R, then

‖Pn − PZ‖F =

∣∣∣∣∫Z f d (Pn − PZ)

∣∣∣∣ ,

3This is a well-known property of the conditional expectation, which can be found in most of the standard probability
textbooks, e.g. [Durrett, 2019, Example 4.1.7].
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which converges to zero due to the SLLN. Similarly, we can show that finite function classes satisfy

the ULLN. Moreover, as the Glivenko-Cantelli theorem shows, there are also infinite classes that

satisfy the ULLN. However, there exist function classes that are not GC. Example 2.3.1, borrowed

from [Wainwright, 2019], presents such a class.

Example 2.3.1. Let S be the family of all finite subsets of R and let FS = {1S : S ∈ S} be the family

of the indicator functions of these sets. We shall show that FS is not a GC class. Suppose that the

distribution PZ of Z1, Z2, . . . has no atoms, i.e. PZ ({z}) = 0 for all z ∈ R. Then, for any S ∈ S , it

holds that PZ(S) = 0, since S is finite. However, for any n ∈ N, the finite set Sn := {Z1, . . . , Zn}

belongs to S , and it clearly holds that Pn (Sn) = 1. Therefore,

‖Pn − PZ‖FS = sup
f∈FS

|(Pn − PZ) f |

= sup
S∈S
|(Pn − PZ) 1S|

≥ |(Pn − PZ) 1Sn |

= 1,

which shows that FS does not satisfy the ULLN.

We should interpret the result of the previous example as an indication that the function class FS is

too large or too complex for the ULLN to hold. How should we measure the size and the complexity

of a function class, especially when it has infinitely many elements? Which measures of size and

complexity are informative as to whether a particular function class is a GC class? Our task in this

section is to develop such measures and to investigate their sufficiency in deriving such properties

of function classes. The first of these measures is the Rademacher complexity, which is defined in

Definition 2.3.2.

Definition 2.3.2. Let Z1, . . . , Zn : Ω→ Z be i.i.d. random elements, and let F be a class of functions

Z → R. The (empirical) Rademacher complexity of F with respect to PZ
4 is defined as

Rn (F ) := EZ,ε

[
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

ε i f (Zi)

∣∣∣∣∣
]

, (2.33)

where ε := (ε1, . . . , εn) is a vector of Rademacher random variables 5 defined on Ω and independent

from Z1, . . . , Zn.
4The Rademacher complexity depends on the underlying distribution PZ, but in this thesis we do not focus on this

dependence. Instead, we always consider the distribution PZ as fixed, and we derive the properties of the Rademacher
complexity with respect to this distribution.

5A Rademacher random variable takes only the values ±1, each with probability equal to 1/2.
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Notice that ∑n
i=1 ε i f (Xi) is equal to the correlation of the vectors (ε1, . . . , εn) and ( f (Z1), . . . , f (Zn)).

The idea behind this definition is that, if F is large (or complex) enough, then, for any randomly

drawn vector ε = (ε1, . . . , εn), there should exist a function f ∈ F such that ( f (Z1), . . . , f (Zn))

has a high correlation with ε. Therefore, large and complex function classes should have a large

Rademacher complexity. The Rademacher complexity has historically been studied as a complexity

measure in the context of Banach spaces [Milman et al., 2001] and lately also in the context of Empiri-

cal Risk Minimization [Van Der Vaart and Wellner, 1996]. More references related to the Rademacher

complexity can be found in [Wainwright, 2019].

The reason why the Rademacher complexity is so closely related to the ULLN becomes clear from

Theorem 2.3.3 [Wainwright, 2019, Theorem 4.10], which we prove below. We say that a function class

F is b-uniformly bounded if, for all elements f : Z → R it holds that supz∈Z | f (z)| ≤ b.

Theorem 2.3.3. Let F be a b-uniformly bounded class of functions Z → R. Then, for any integer

n ≥ 1 and any real number δ > 0, it holds that

‖Pn − PZ‖F ≤ 2Rn (F ) + δ (2.34)

with PZ-probability at least 1− exp
(
− nδ2

2b2

)
.

Proof. The proof of the theorem consists of two parts. First we show that ‖Pn − PZ‖F is tightly

concentrated around its mean, and then we derive an upper bound for this mean.

Concentration around mean: To simplify the notation, we consider the recentered functions f (z) :=

f (z)−E [ f (Z)]. Then, it holds that ‖Pn − P‖F = sup f∈F

∣∣∣ 1
n ∑n

i=1 f (Zi)
∣∣∣. We consider the function

G : Zn → R, defined as

G (z1, . . . , zn) := sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

f (zi)

∣∣∣∣∣ .

We show that G has the property of bounded differences that was defined in Definition 2.2.8. Since G

is symmetric, it only suffices to check that this property is satisfied for the first coordinate. We define

a vector y ∈ Rn which differs from x only in the first coordinate. Notice that

∣∣∣∣∣ 1n n

∑
i=1

f (xi)

∣∣∣∣∣− sup
h∈F

∣∣∣∣∣ 1n n

∑
i=1

h(yi)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n n

∑
i=1

f (xi)

∣∣∣∣∣−
∣∣∣∣∣ 1n n

∑
i=1

f (yi)

∣∣∣∣∣
≤
∣∣∣∣∣ 1n n

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi)

∣∣∣∣∣
=

1
n

∣∣∣ f (x1)− f (y1)
∣∣∣
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≤ 2b
n

, (2.35)

where the last inequality uses the uniform boundedness of f and the fact that f (x1)− f (y1) = f (x1)−

f (y1). Since the inequality (2.35) holds for all f ∈ F , we can take the supremum over F . This yields

that

sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

f (xi)

∣∣∣∣∣− sup
h∈F

∣∣∣∣∣ 1n n

∑
i=1

h(yi)

∣∣∣∣∣ ≤ 2b
n

,

which is equivalent to G(x)− G(y) ≤ 2b/n. Interchanging x, y and using the same argument yields

that G(y)− G(x) ≤ 2b/n, so we deduce that |G(x)− G(y)| ≤ 2b/n. From Lemma 2.2.9 (McDiarmid

bound), it follows that, for all t ≥ 0,

G(X1, . . . , Xn)−EG(X1, . . . , Xn) ≤ t

with P-probability at least 1− exp
(
− nt2

2b2

)
. From the definition of G, this is equivalent to

‖Pn − PZ‖F −E (‖Pn − PZ‖F ) ≤ t

with probability at least 1− exp
(
− nt2

2b2

)
.

Upper bound on E (‖Pn − PZ‖F ): We now show that the mean is upper bounded by 2Rn (F ). We

use symmetrization. We consider random variables Y1, . . . , Yn that are independent with each other,

independent from X1, . . . , Xn and have the same distribution as X1, . . . , Xn. Then, it holds that

E (‖Pn − PZ‖F ) = E

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

f (Xi)−E f (Xi)

∣∣∣∣∣
)

= EX

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

f (Xi)−E f (Yi)

∣∣∣∣∣
)

= EX

(
sup
f∈F

∣∣∣∣∣EY

[
1
n

n

∑
i=1
{ f (Xi)− f (Yi)}

]∣∣∣∣∣
)

≤ EX,Y

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1
{ f (Xi)− f (Yi)}

])
, (2.36)

where the last step follows from Jensen’s inequality and the convexity of the supremum function6.

We now want to compare the latter quantity with the Rademacher complexity of F . Therefore, we

consider i.i.d. Rademacher random variables ε1, . . . , εn, which are also independent from X1, . . . , Xn

and Y1, . . . , Yn. The crucial observation is that, since Xi, Yi are i.i.d. and independent from ε i, the

6It holds that supx∈X [λ f (x) + (1− λ)g(x)] ≤ λ supx∈X f (x) + (1− λ) supx∈X g(x).
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random vector with entries ε i ( f (Xi)− f (Yi)) has the same distribution as the random vector with

entries f (Xi)− f (Yi)
7. It follows that

EX,Y

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1
{ f (Xi)− f (Yi)}

])
= EX,Y,ε

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

ε i { f (Xi)− f (Yi)}
])

≤ EX,Y,ε

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

ε i f (Xi)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

ε i f (Yi)

∣∣∣∣∣
)

= 2EX,ε

(
sup
f∈F

∣∣∣∣∣ 1n n

∑
i=1

ε i f (Xi)

∣∣∣∣∣
)

= 2Rn (F ) .

From this theorem we can deduce that, if Rn (F ) = o(1), then ‖Pn − P‖F
a.s.−→ 0. To prove this, we

can use the Borel-Cantelli lemma. Consider the sets

An :=

{
‖Pn − PZ‖F > 2Rn (F ) +

√
2b
(

2 log n
n

)1/2
}

.

From Theorem 2.3.3 it follows that P (An) ≤ exp (−2 log n) = 1/n2. Since ∑∞
n=1 P (An) = ∑∞

n=1 1/n2,

it follows from the lemma of Borel-Cantelli that P
(
lim supn∈N An

)
= 0. Consider an element ω ∈

Ω\
(
lim supn∈N An

)
. From the definition of lim supn∈N An, it follows that there exists an integer Nω

such that ω /∈ An for all n ≥ Nω. This means that

‖Pn(ω)− PZ‖F ≤ 2Rn (F ) +
√

2b
(

2 log n
n

)1/2

for all n ≥ Nω. SinceRn (F ) = o(1), it follows that

‖Pn(ω)− PZ‖F
n→∞−→ 0.

Since P
(
Ω\ lim supn∈N An

)
= 1, we deduce that ‖Pn − PZ‖F

a.s.−→ 0. Therefore, if Rn (F ) = o(1),

then the class F is a GC class.
7Let Z ∼ FZ be a symmetric random variable and ε a Rademacher random variable, independent from Z. It holds

that P (εZ ≤ z) = P (ε = 1) P (εZ ≤ z | ε = 1) + P (ε = −1) P (εZ ≤ z | ε = −1) = 1
2 P (Z ≤ z) + 1

2 P (−Z ≤ z) = P(Z ≤ z),
where in the last step we used the symmetry of Z.
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2.4 Entropy with Bracketing

Entropy with bracketing is a measure of complexity that can yield the ULLN in a very straightfor-

ward way. It has a different flavour from the Rademacher complexity and its definition resembles

the definition of an open cover of subset of a metric space. Just like the existence of finite open covers

guarantees compactness, a finite entropy with bracketing guarantees that a function class is GC.

Let Q be a measure on (Z ,A) and let p ∈ [1, ∞) be a constant. Recall the definition of the space

Lp(Q):

Lp(Q) :=
{

f : Z → R
∣∣∣∣ ∫ | f |p dQ < ∞

}
.

For any function f ∈ Lp(Q), we define its Lp(Q) norm as ‖ f ‖p,Q :=
(∫
Z | f |

p dQ
)1/p 8.

Definition 2.4.1 (Entropy with bracketing). Let F ⊂ Lp(Q) be a function class and let δ > 0 be a

real number. Let Np,B (δ, F , Q) be a smallest value of N ∈ N such that there exist pairs of functions{[
f L
j , f U

j

]}N

j=1
with the following properties:

• for all j = 1, . . . , N it holds that f L
j , f U

j ∈ Lp(Q).

• for all j = 1, . . . , N it holds that
∥∥∥ f U

j − f L
j

∥∥∥
p,Q
≤ δ.

• for any f ∈ F , there exists an index j = j( f ) ∈ {1, . . . , N} such that

f L
j (z) ≤ f (z) ≤ f U

j (z) for all z ∈ Z .

If no such finite collection exists, we define Np,B (δ, F , Q) = ∞. The δ-entropy with bracketing of F

is then defined as

Hp,B (δ, F , Q) = log N (δ, F , Q) . (2.37)

The pairs
[

f L
j , f U

j

]
are called brackets and they are denoted by these square brackets because of the

third condition in the above definition.

The entropy with bracketing can also be defined for p = ∞. In analysis, it is common practice to use

the essential supremum of a function to define its supremum norm. However, for the next definition,

we define the supremum norm of a function f : Z → R as

| f |∞ := sup
z∈Z
| f (z)| . (2.38)

8In fact, ‖·‖p,Q is a seminorm.
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With denote this norm with single instead of double brackets to distinguish it from the standard

supremum norm that is defined via the essential supremum. Notice that, unlike ‖·‖∞, the norm |·|∞
does not depend on the measure Q.

Definition 2.4.2 (Entropy with bracketing for the supremum norm). Let N∞ (δ, F ) be the smallest

value of N ∈N for which there exists a finite collection
{

f j
}N

j=1 ⊂ F with the property that

sup
f∈F

min
j=1,...,N

∣∣ f − f j
∣∣
∞ ≤ δ.

If no such collection exists, we define N∞ (δ, F ) = ∞. The δ-entropy of F with respect to |·|∞ is then

defined as H∞ (δ, F ) = log N∞ (δ, F ).

As the next result shows, H∞ (δ, F ) upper bounds Hp,B (δ, F , Q) for any p ≥ 1 and any probability

measure Q.

Lemma 2.4.3. Let Q be a probability measure on Z and let F ⊂ Lp (Q) be a function class. Then, for

all δ > 0,

Hp,B (δ, F , Q) ≤ H∞

(
δ

2
, F
)

.

Proof. Fix a positive real number δ. If H∞ (δ/2, F ) = ∞, then there is nothing left to prove. Suppose

that N∞ (δ/2, F ) = N < ∞ and let
{

f j
}N

j=1 ⊂ F be a collection of functions that satisfies Definition

2.4.2 for the threshold value δ/2. From that definition it follows that, for all f ∈ F , there exists an

index j ∈ {1, . . . , N} such that
∣∣ f − f j

∣∣
∞ ≤ δ/2. This is equivalent to

f j(z)−
δ

2
≤ f (z) ≤ f j(z) +

δ

2
, for all z ∈ Z . (2.39)

We consider the brackets
{[

f j − δ/2, f j + δ/2
]}N

j=1. From Equation (2.39), it follows that these brack-

ets cover the whole function class F in the sense of Definition 2.4.1. Since
{

f j
}N

j=1 ⊂ F ⊂ Lp (Q),

it easily follows that the functions f j ± δ/2, j = 1, . . . , N also belong to Lp (Q). Finally, it is obvious

that, for all j = 1, . . . , N, ∥∥∥∥( f j +
δ

2

)
−
(

f j −
δ

2

)∥∥∥∥
p,Q

= δ.

We conclude that
{[

f j − δ/2, f j + δ/2
]}N

j=1 is a finite bracketing class for F , which proves that

Np,B (δ, F , Q) ≤ N = N∞ (δ/2, F ) .
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The importance of entropy with bracketing is demonstrated in the following lemma:

Lemma 2.4.4. Let Z1, Z2, . . . : (Ω,A, P) → (Z ,G) be a sequence of i.i.d. random variables with

distribution PZ. If F ⊂ L1 (PZ) and

H1,B (δ, F , PZ) < ∞ for all δ > 0,

the F satisfies the ULLN.

Proof. Let δ > 0 be an arbitrary real number and let
{[

f L
j , f U

j

]}N

j=1
be a bracketing set for F , i.e. a

collection that satisfies the assumptions of Definition 2.4.1. Then, for any f ∈ F , there exists an index

j ∈ {1, . . . , N} such that f L
j ≤ f ≤ f U

j . For this index j it holds that

∫
Z

f d (Pn − PZ) =
∫
Z

f dPn −
∫
Z

f dPZ

≤
∫
Z

f U
j dPn −

∫
Z

f dPZ

=
∫
Z

f U
j d (Pn − PZ) +

∫
Z

(
f U
j − f

)
dPZ

≤
∫
Z

f U
j d (Pn − PZ) + δ, (2.40)

where the last step follows from the fact that
∥∥∥ f U

j − f L
j

∥∥∥
1,PZ
≤ δ and f L

j ≤ f ≤ f U
j . Using a similar

argument, we can show that

∫
Z

f d (Pn − PZ) ≥
∫
Z

f L
j d (Pn − PZ)− δ. (2.41)

Since the sets
{

f L
j

}N

j=1
and

{
f U
j

}N

j=1
are finite, it follows directly from the SLLN that there exists an

integer N0 ≥ 1 such that

maxj=1,...,N

∣∣∣∫Z f U
j d (Pn − PZ)

∣∣∣ ≤ δ and maxj=1,...,N

∣∣∣∫Z f L
j d (Pn − PZ)

∣∣∣ ≤ δ

Q-almost surely for all n ≥ N0. It follows from Equations (2.40),(2.41) that

sup
f∈F

∣∣∣∣∫Z f d (Pn − PZ)

∣∣∣∣ ≤ 2δ

Q-almost surely. Since δ was arbitrary, we deduce that F is a GC class.
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Remark 2.4.5. If p ∈ [1, ∞), then the condition

Hp,B (δ, F , PZ) < ∞ for all δ > 0

also yields that the class F is GC. Indeed, it is a well known fact that, in probability spaces, the Lp

norm is increasing in p. Therefore, the condition Hp,B (δ, F , PZ) < ∞ implies that H1,B (δ, F , PZ) <

∞, which yields that the class F is GC.

Let us now look at some applications of Lemma 2.4.4.

Example 2.4.6 (Classical GC Theorem). As we explained in the discussion after Theorem 2.1.4, the

function class
{

1(−∞,z) : z ∈ R
}

satisfies the ULLN. We now show that this is closely relate to Lemma

2.4.4. Let Z1, . . . , Zn : (Ω,A, Q)→ R be i.i.d. random variables with cumulative distribution function

FZ. For simplicity, we assume that FZ is continuous 9. Let δ > 0 be an arbitrary real number. Since FZ

is increasing and takes values in the interval [0, 1], there exist points

−∞ = a0 < a1 < . . . < an−1 < an = +∞,

depending on δ, such that FZ (ai+1)− FZ (ai) < δ for all i = 0, . . . , n− 1. We consider the collection

of indicator functions

Find =
{[

1(−∞,ai ], 1(−∞,ai+1]

]}n−1

i=0
.

Then, the two following conditions hold:

• for all i = 0, . . . , n− 1,

∥∥∥1(−∞,ai ] − 1(−∞,ai+1]

∥∥∥
1
=
∫

R

∣∣∣1(−∞,ai ] − 1(−∞,ai+1]

∣∣∣ dPZ

=
∫

R
1(−∞,ai+1] − 1(−∞,ai ] dPZ

=
∫

R
1(−∞,ai+1] dPZ −

∫
R

1(−∞,ai ] dPZ

= FZ (ai+1)− FZ (ai)

≤ δ.

• for all z ∈ R, there exists an index i ∈ {0, . . . , n− 1} such that ai ≤ x < ai+1. This implies that

1(−∞,ai ] ≤ 1(−∞,x] ≤ 1(−∞,ai+1]

9The proof also works similarly in the general case, under some technical tweaks.
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pointwise.

These two conditions yield that H1,B (δ, Find, P) < ∞. Since δ was arbitrary, it follows from Lemma

2.4.4 that Find is a GC class.

The above argument is in essence identical to the original proof of the Glivenko-Cantelli theorem.

This shows that the use of entropy with bracketing to derive the ULLN is a natural extension of this

classical result.

Example 2.4.7 (Bounded Lipschitz Functions). Consider the function class

F := { f : [0, 1]→ [0, 1] | f is Lipschitz continuous with Lipschitz constant equal to L = 1} .

We can show that there exists a constant A > 0 such that

H∞ (δ, F ) ≤ A
δ

, for all δ > 0. (2.42)

According to Lemma 2.4.3, this implies that F has a finite bracketing entropy H1,B (δ, F , PZ) with

respect to any probability distribution PZ on [0, 1] such that F ⊂ L1 (PZ). In turn, Lemma 2.4.4

implies that F is a GC class with respect to PZ
10. To prove Equation (2.42), we fix a threshold value

δ > 0 and we choose a finite sequence

0 = a0 < . . . < aN = 1

such that aj = jδ for all j ∈ {0, . . . , N − 1}. We assume that N takes its largest possible value, i.e.

1− aN−1 ≤ δ. Then, it is easy to see that N ≤ 1 + b1/δc. Denote B1 = [a0, a1] and Bj =
(
aj−1, aj

]
for

all j ∈ {2, . . . , N}. Consider a function f ∈ F . The function f̃ defined by

f̃ =
N

∑
j=1

δ

⌊
f
(
aj
)

δ

⌋
1Bj

is piecewise constant and takes values in the set ∆ := {0, δ, . . . , (N − 1)δ} 11. It also holds that∣∣∣ f − f̃
∣∣∣
∞
≤ 2δ: indeed, consider a point z ∈ [0, 1] and assume that z ∈ Bj for some index j ∈

10Notice that, although it makes sense to define the bracketing entropy for any probability measure Q, the ULLN can
only be expressed for an i.i.d. sequence of random variables. This is why we referred to a GC class with respect to the
distribution PZ of the elements of this sequence. Besides, the condition of Lemma 2.4.4 is also given in this form.

11Notice that f takes values in [0, 1] so 0 ≤ f
(

aj

)
/δ ≤ 1 < Nδ. This is why the set of values of f̃ is upper bounded by

(N − 1)δ.
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{1, . . . , N}. Then, from the Lipschitz continuity of f , it follows that

f (z)− f̃ (z) = f (z)− δ

⌊
f
(
aj
)

δ

⌋

≥ f (z)− δ ·
f (aj)

δ

= f (z)− f (aj)

≥ −(aj − z)

≥ −δ

and

f (z)− f̃ (z) = f (z)− δ

⌊
f
(
aj
)

δ

⌋

≤ f (z)− δ

(
f (aj)

δ
− 1
)

= f (z)− f (aj) + δ

≤
(
aj − z

)
+ δ

≤ 2δ.

It remains to count the number of distince functions f̃ that can be obtained in this way. This is a pure

counting argument that makes some use of the Lipschitz continuity. At first, notice that f̃ is fully

determined by its values at a1, . . . , aN .

• f̃ (a1) can take all possible values in the set ∆ := {0, δ, . . . , (N − 1)δ}, so it can take at most

1 + b1/δc values.

• for any index j ∈ {1, . . . , N − 1}, it holds that

∣∣∣ f̃ (aj+1)− f̃ (aj)
∣∣∣ ≤ ∣∣∣ f̃ (aj+1)− f (aj+1)

∣∣∣+ ∣∣ f (aj+1)− f (aj)
∣∣+ ∣∣∣ f (aj)− f̃ (aj)

∣∣∣
≤ 3δ.

Therefore, given f̃
(
aj
)
, there are only seven possible values that f̃

(
aj+1

)
can take.

From the multiplicative principle, it follows that there exists (1 + b1/δc) · 7b1/δc distinct choices for

f̃ . As we showed, the collection of all these distinct functions satisfies the conditions of Definition
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2.4.2 with threshold value equal to 2δ. Replacing δ with δ/2 gives

H∞ (δ, F ) ≤ log
(

1 +
⌊

2
δ

⌋)
+

(
1 +

⌊
2
δ

⌋)
· log 7,

which implies that H∞ (δ, F ) ≤ A/δ for a suitable constant A > 0.

The last example shows us that sometimes, we might not only be able to show that the bracketing

entropy is finite, but even determine specific upper bounds for it. [Birman and Solomjak, 1967] derive

such bounds for a variety of function classes, with a specific focus on Sobolev spaces. As we shall see

in Section 2.7, bracketing entropy bounds can yield rates of convergence in the ULLN.

2.5 Symmetrization

As we saw in the previous section, the bracketing entropy condition in Lemma 2.4.4 yields uni-

form laws of large numbers for a variety of function classes. The bracketing entropy is often in-

tractable, so it is usually easier to bound the supremum bracketing entropy H∞ (δ, F ) and apply

Lemma 2.4.3. However, the condition H∞ (δ, F , PZ) < ∞ might sometimes be too restrictive. For

instance, as we can easily deduce from Example 2.4.6, the bracketing entropy of the function class

Find :=
{

1(−∞,z] : z ∈ R
}

is upper bounded by log (1 + 1/δ). At the same time, H∞ (δ, Find) = ∞

for all δ < 1 because, for any two distinct functions in this class, it holds that

sup
z∈R

∣∣∣1(−∞,z1] − 1(−∞,z2]

∣∣∣
∞
= 1.

In this section we prove that the ULLN can also be derived from weaker conditions. In particular, we

introduce a new notion of entropy, the so called metric entropy.

Definition 2.5.1 (Metric entropy). Let (S, d) be a metric space and let δ > 0 an arbitrary positive real

number. The covering number of S, denoted by N (δ, S, d), is the minimal number of balls of radius δ

that are needed to cover the entire set S. More formally,

N (δ, S, d) = min

{
n ∈N

∣∣∣∣∣ ∃ {si}n
i=1 ⊂ S : sup

s∈S
min

i=1,...,n
d(s, si) ≤ δ

}
. (2.43)

If no such finite collection of points exists, we set N (δ, S, d) = ∞. We define the metric entropy (or

simply entropy) by H (δ, S, d) = log N (δ, S, d).

If S = F ⊂ Lp(Q) and d = ‖·‖p, then we denote the entropy by Hp (δ, F , Q). We call {si}n
i=1 a δ-

covering set. It is actually not necessary to assume that the elements s1, . . . , sn of this set lie in S. More
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specifically, it is easy to show that any δ-covering with centers outside of S induces a 2δ-covering with

the centers being in S.

The covering number often appears in the literature along the packing number.

Definition 2.5.2 (Packing number). Let (S, d) be a metric space and let δ > 0 be an arbitrary positive

real number. A δ-packing set is a set {si}M
i=1 ⊂ S such that d

(
si, sj

)
> δ for all distinct indices

i, j ∈ {1, . . . , M}. The δ-packing number is the cardinality of the largest δ-packing set and is denoted

by M (δ, S, d).

The covering and the packing numbers are very closely related. This becomes clear from the follow-

ing lemma.

Lemma 2.5.3. For any δ > 0, it holds that

M (2δ, S, d) ≤ N (δ, S, d) ≤ M (δ, S, d) . (2.44)

Proof. For the left inequality, we may assume that N (δ, S, d) < ∞, otherwise there is nothing to show.

If {si}N
i=1 is a δ-covering set with N = N (δ, S, d), then each ball with center si and radius δ can contain

at most one point of a (2δ)-packing set. Therefore, the cardinality of any (2δ)-packing set is at most

N. This proves the left part of the inequality 2.44.

To show the right part, we may assume that M (δ, S, d) < ∞. If {si}M
i=1 is a maximal δ-packing

set, then any new point s ∈ S\ {s1, . . . , sM} must belong to one of the balls B (s1, δ) , . . . , B (sM, δ),

otherwise it would be possible to extend the δ-packing set. This shows that {si}M
i=1, which yields that

N (δ, S, d) ≤ M (δ, S, d).

In Section 2.4 we worked with Lp spaces, for p ∈ [1, ∞). In this section, we will make use of the

empirical counterpart of the Lp norm. This counterpart is a (random) seminorm, which we denote

by ‖·‖n,p, and which is defined by

‖ f ‖n,p :=

(
1
n

n

∑
i=1
| f p(Xi)|

)1/p

. (2.45)

Like before, we denote the entropy of this space by Hp (δ, F , Pn). We emphasize that this is a random

quantity that depends solely on the random elements Z1, . . . , Zn.

The results in this section rely heavily on the technique of symmetrization, which is very important

for Empirical Process Theory. We could argue that this section is a demonstration of how powerful

a simple idea like symmetrization can be. Symmetrization has already been used in the proof of
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Theorem 2.3.3, but in this section we are going to formalize it and show its relation to the ULLN

more generally.

We consider two i.i.d. random vectors Z := (Z1, . . . , Zn) and Z′ = (Z′1, . . . , Z′n). The entries of these

vectors are also assumed to be i.i.d. with distribution PZ We denote by Pn, P′n the empirical measures

induced by Z, Z′ respectively. To arrive to our main result, we first have to prove three technical

lemmas.

Lemma 2.5.4. Let Pn, P′n and PZ be as above. Then, it holds that

E ‖Pn − PZ‖F ≤ E
∥∥Pn −P′n

∥∥
F

. (2.46)

Proof. Fix a function f ∈ F . From the independence of Z, Z′, it follows that E [P′n f | Z] = PZ f .

Also, it is obvious that E [Pn f | Z] = Pn f . Therefore,

E
[(

Pn −P′n
)

f | Z
]
= (Pn − PZ) f .

It follows that

‖Pn − PZ‖F = sup
f∈F

|(Pn − PZ) f |

= sup
f∈F

∣∣∣E [(Pn −P′n
)

f
∣∣ Z
] ∣∣∣

≤ E

(
sup
f∈F

∣∣(Pn −P′n
)

f
∣∣ ∣∣∣∣∣ Z

)
= E

(∥∥Pn −P′n
∥∥

F

∣∣ Z
)

,

where we used Jensen’s inequality in the third step. Taking expectations in both sides and using the

law of iterated expectations yields that

E ‖Pn − PZ‖F ≤ E
∥∥Pn −P′n

∥∥
F

,

which finishes the proof.

Given a function f ∈ F and a vector ε := (ε1, . . . , εn) of i.i.d. Rademacher random variables, inde-

pendent from Z, Z′, we define

Pε
n f = 1

n ∑n
i=1 ε i f (Zi) and P

′,ε
n f = 1

n ∑n
i=1 ε i f (Z′i).
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The following lemma follows directly from Lemma 2.5.4 and from the fact that, for any f ∈ F , the

vectors

{ f (Zi)− f (Z′i)}
n
i=1 and {ε i ( f (Zi)− f (Z′i))}

n
i=1

have the same distribution. Therefore, its proof is omitted 12.

Lemma 2.5.5. Using the same notation as above, it holds that

E
∥∥Pn −P′n

∥∥
F
≤ 2E ‖Pε

n‖F . (2.47)

Intuitively, the reason why the quantity ‖Pε
n‖F is easier to deal with, is that we can control its con-

ditional expectation (given Z) using Hoeffding’s inequality. This will become clearer in the proof of

the main result of this Section, Theorem 2.5.7.

The first two lemmas provide bounds for the expectation of ‖Pn − PZ‖F through the symmetric

versions ‖Pn −P′n‖F and ‖Pε
n‖F . The third lemma complements these results by providing tail

bounds for ‖Pn − PZ‖F . Before moving on to the proof of this lemma, we point out that, for all

f ∈ F and all δ > 0, it follows from Chebyshev’s inequality that

P
(
|(Pn − PZ) f | > δ

2

)
≤ 4Var( f (Z))

nδ2 , (2.48)

where the factor n shows up in the denominator due to the fact that

Var (Pn f ) = Var

(
1
n

n

∑
i=1

f (Zi)

)
=

Var ( f (Z1))

n
.

This observation will be useful in the proof of the last technical lemma.

Lemma 2.5.6. Fix δ > 0, and suppose that n ≥ sup f∈F

(
8Var ( f (Z)) /δ2

)
. Then,

P (‖Pn − PZ‖F > δ) ≤ 2P
(∥∥Pn −P′n

∥∥
F

>
δ

2

)
(2.49)

Proof. For convenience in the notation, we assume that F is centered, i.e. PZ f = 0 for all f ∈ F . It

holds that {
‖Pn − PZ‖F > δ

}
=
{
∃ f ∈ F :

∣∣∣(Pn − PZ) f
∣∣∣ > δ

}
=: A f ? .

Notice that f is a random function that depends only Z. Therefore, we denote this function by f ?Z.

Notice that this function is fixed conditionally on Z. From the law of iterated expectations, it follows

12We have used exactly the same argument in the final part of the proof of Theorem 2.3.3.
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that

P
({
|Pn f ?Z| > δ

}
,
{ ∣∣P′n f ?Z

∣∣ ≤ δ/2
})

= E

E

1{
|Pn f ?Z|>δ

} · 1{
|P′n f ?Z|≤δ/2

} ∣∣∣∣∣∣ Z


= E

1{
|Pn f ?Z|>δ

} ·E
1{

|P′n f ?Z|≤δ/2
} ∣∣∣∣∣∣ Z

 , (2.50)

where the last step follows from the fact that Pn f ?Z is Z-measurable. From Equation (2.48) and from

the conditions n ≥ 8Var ( f ?Z (Z)) /δ2 and PZ f ?Z = 0 (conditionally on Z), it follows that

E

1{
|P′n f ?Z|≤δ/2

} ∣∣∣∣∣∣ Z

 = P
(∣∣P′n f ?Z

∣∣ ≤ δ/2
∣∣ Z
)
≥ 1/2.

It follows from Equation (2.50) that

P
({
|Pn f ?Z| > δ

}
,
{ ∣∣P′n f ?Z

∣∣ ≤ δ/2
})
≥ 1

2
P
(∣∣∣Pn f ?Z

∣∣∣ > δ
)

.

Therefore,

P (‖Pn − PZ‖F > δ)
PZ f=0
= P

(∣∣∣Pn f ?Z
∣∣∣ > δ

)
≤ 2P

({
|Pn f ?Z| > δ

}
,
{ ∣∣P′n f ?Z

∣∣ ≤ δ/2
})

≤ 2P
(∣∣∣ (Pn −P′n

)
f ?Z
∣∣∣ > δ

2

)
≤ 2P

(∥∥Pn −P′n
∥∥

F
>

δ

2

)
, (2.51)

where we used the triangle inequality in the third step. This last inequality finishes the proof.

From the previous lemma, and from the observation that

{ f (Zi)− f (Z′i)}
n
i=1 and {ε i ( f (Zi)− f (Z′i))}

n
i=1

have the same distribution, we can deduce that, if n ≥ sup f∈F

(
8Var ( f (Z)) /δ2), then

P (‖Pn − PZ‖F > δ) ≤ 2P
(∥∥Pn −P′n

∥∥
F

>
δ

2

)
= 2P

(∥∥Pε
n −P′,εn

∥∥
F

>
δ

2

)
≤ 2

(
P
(
‖Pε

n‖F >
δ

4

)
+ P

(∥∥P′,εn
∥∥

F
>

δ

4

))
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= 4P
(
‖Pε

n‖F >
δ

4

)
. (2.52)

where we used the triangle inequality in the third step.

Theorem 2.5.7. Let Z1, . . . , Zn : Ω → Z be i.i.d. random elements with distribution PZ and let F be

a collection of functions Z → R. Suppose that:

• the class F is uniformly bounded by b.

• 1
n H1 (δ, F , Pn)

P−→ 0 for all δ > 0.

Then, F is a GC class.

Proof. Fix δ > 0 and let
{

f j
}N

j=1 be a (possibly infinite) δ/8-covering set of (F , Pn), where N =

N1 (δ, F , Pn) < ∞. This means that, for all f ∈ F , there exists an index j ∈ {1, . . . , N}, such that

1
n

n

∑
i=1

∣∣ f (Zi)− f j(Zi)
∣∣ < δ/8.

Recall that Pε
n f := 1

n ∑n
i=1 ε i f (Zi), where ε1, . . . , εn are i.i.d. Rademacher random variables, indepen-

dent from Z1, . . . , Zn. We can easily show that, for the index j described above, it also holds that∣∣Pε
n
(

f − f j
)∣∣ < δ/8. Therefore, by choosing the index j in a suitable way such that

∣∣Pε
n
(

f − f j
)∣∣ is

minimized, we can show that, for any f ∈ F ,

|Pε
n f | ≤ min

1≤j≤N

∣∣Pε
n( f − f j)

∣∣+ max
1≤j≤N

∣∣Pε
n f j
∣∣ ,

which implies that

sup
f∈F

|Pε
n f | ≤ δ

8
+ max

1≤j≤N

∣∣Pε
n f j
∣∣ .

Therefore,

P

(
sup
f∈F

|Pε
n f | > δ

4

)
≤ P

(
max

1≤j≤N

∣∣Pε
n f j
∣∣ > δ

8

)
≤ P

(
max

1≤j≤N

∣∣Pε
n f j
∣∣ > δ

8

)
.

Using Hoeffding’s inequality in combination with the union bound yields that, for all t ≥ 0,

P

(
max

1≤j≤N

∣∣Pε
n f j
∣∣ > b

√
2 (t + log(2N))

n

)
≤ exp(−t). (2.53)
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Notice that all these expressions still hold if N = ∞, because in this case the above bounds are trivially

true. Consider the set

An :=
{

log (2N1 (δ, F , Pn))

n
>

δ2

28b2

}
.

Also, choose t = nδ2

28b2 . From the second condition of the theorem, it follows that P (An)
P−→ 0. On the

set An, it holds that

b

√
2 (t + log(2N))

n
>

δ

8

Combining the above argument, we deduce from Equation (2.52) that

P (‖Pn − PZ‖F > δ) ≤ 4P
(
‖Pε

n‖F >
δ

4

)
≤ P

(
max

1≤j≤N

∣∣Pε
n f j
∣∣ > δ

8

)
= 4

(
P
(

An ∩
{

max
1≤j≤N

∣∣Pε
n f j
∣∣ > δ

8

})
+ P

(
Ac

n ∩
{

max
1≤j≤N

∣∣Pε
n f j
∣∣ > δ

8

}))
≤ 4

(
P

(
max

1≤j≤N

∣∣Pε
n f j
∣∣ > b

√
2 (t + log(2N))

n

)
+ P (Ac

n)

)

≤ 4
(

exp
{
− nδ2

28b2

}
+ P (Ac

n)

)
P−→ 0,

which finishes the proof.

Remark 2.5.8. The assumption that F is uniformly bounded can actually be replaced by a weaker

one. For a function class F , we define its envelope as

F = sup
f∈F

| f | . (2.54)

If F is uniformly bounded by b, then it holds that F(z) ≤ b for all z ∈ Z . However, we can replace

this assumption with the weaker condition that PZF :=
∫
Z F dPZ < ∞, and Theorem 2.5.7 continues

to hold. The proof is relatively straightforward and can be found in [van de Geer, 2000, Theorem 3.7].

Before the end of this section, we present one example that illustrates how Theorem 2.5.7 can be used

in practice. This example resembles Example 2.4.7, but it shows how much easier it is to derive the

ULLN through H1 (δ, F , Pn) rather than H1,B (δ, F , PZ)

Example 2.5.9. Consider the class

Fiso := { f : R→ [0, 1] | f ↗ R} .
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We shall show that, for all δ > 0, it holds that

H∞ (δ, Fiso, Pn) ≤
(

1 +
1
δ

)
log
(

n +
1
δ

)
, (2.55)

where ‖ f ‖,∞ := max1≤i≤n | f (Zi)|. For any p ∈ [1, ∞), it is easy to see that ‖ f ‖n,∞ ≥ ‖ f ‖n,p, so

H∞ (δ, Fiso, Pn) > H1 (δ, Fiso, Pn) .

Thus, Equation (2.55) implies that Fiso is a GC class. To prove Equation (2.55), we first relabel the

points Z1, . . . , Zn so that Z1 ≤ . . . ≤ Zn. We also set Z0 = −∞ and Zn+1 = +∞. We define the

piecewise constant function

f̃ =

⌊
f (Z1)

δ

⌋
· δ · 1(Z0,Z1) +

n

∑
i=1

⌊
f (Zi)

δ

⌋
· δ · 1[Zi ,Zi+1).

For all i ∈ {1, . . . , n}, it holds that

f (Zi)− f̃ (Zi) = f (Zi)−
⌊

f (Zi)

δ

⌋
· δ

≥ f (Zi)−
f (Zi)

δ
· δ

= 0,

and

f (Zi)− f̃ (Zi) = f (Zi)−
⌊

f (Zi)

δ

⌋
· δ

≤ f (Zi)−
(

f (Zi)

δ
− 1
)
· δ

= δ,

so
∥∥∥ f − f̃

∥∥∥
n,∞
≤ δ. It remains to compute the number of distinct piecewise constant functions that

can be formed in this way.

This is a purely counting argument. Since f takes values in [0, 1], these functions take values in the

set ∆ := {0, δ, . . . , Nδ}, where N ≤ 1/δ. Their jumps belong to the set {Z1, . . . , Zn}. However, we

might have multiple jumps at the same point, e.g. if the function jumps directly from δ to 4δ. Even

if we count the jumps together with their multiplicity (i.e. we count a triple jump as three different

jumps), the total number of jumps cannot exceed N, since f̃ takes values in ∆. Therefore, the number

of distinct functions is upper bounded by the number of ways to choose n elements from a set of
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cardinality N + 1 (with replacement). The latter quantity is equal to

(
N + n

n

)
≤
(
b1/δc+ n

n

)
=

(
b1/δc+ n
b1/δc

)
.

Therefore, from standard bounds on binomial coefficients, it follows that

H∞ (δ, Fiso, Pn) ≤ log
(
b1/δc+ n
b1/δc

)
≤ log [(b1/δc+ n)b1/δc

=

⌊
1
δ

⌋
log
(

n +

⌊
1
δ

⌋)
,

which finishes the proof.

This example shows how much more convenient it is to use Theorem 2.5.7 to prove that certain

function classes are GC. The fact that we are interested in the empirical entropy (i.e. with respect to

Pn instead of PZ) allows us to construct covering sets to approximate functions only on Z1, . . . , Zn

and not on their entire domain.

2.6 Vapnik-Chervonenkis Dimension

Vapnik-Chervonenkis (VC) theory, which was introduced by [Vapnik and Chervonenkis, 1971], led

to a renewed interest in uniform laws of large numbers. In this section, we focus on the VC dimen-

sion. One of the most intriguing features of the VC dimension is that it depends solely on the function

class and not on the underlying probability distribution PZ of the random elements Z1, . . . , Zn. This

feature puts VC dimension in contrast to entropy and Rademacher dimension, which of course de-

pend on PZ or Pn. For that reason, the VC dimension allows us to disentangle the complexity of the

function class from the data distribution in the GC problem. These properties have sparked a very

active interest in the VC dimension, especially in the area of Statistical Machine Learning.

Definition 2.6.1. Let (Z ,G) be a measurable space and let D be a collection of subsets of Z . For

z1, . . . , zn ∈ Z , we define

∆D (z1, . . . , zn) := |{D ∩ {z1, . . . , zn} : D ∈ D}| . (2.56)

∆D (z1, . . . , zn) is commonly referred to as the number of subsets of {z1, . . . , zn} shattered by D . This

number is expected to grow as the size and complexity of D increase. For example, if D = 2Z , then

∆D (z1, . . . , zn) = 2n for any z1, . . . , zn ∈ Z .
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If, for some collection D ⊂ 2Z and some set of points z1, . . . , zn ∈ Z it holds that ∆D (z1, . . . , zn) = 2n,

then we say that {z1, . . . , zn} is shattered by D . In this case, D can pick out any of the 2n subsets of

{z1, . . . , zn}. For any D ⊂ 2Z , we define the maximal shattering number as

mD (n) := sup
{

∆D (z1, . . . , zn) : z1, . . . , zn ∈ Z
}

. (2.57)

If mD (n) = 2n for some n ≥ 1, then there exists a set of n points that is shattered by D .

We are going to measure the complexity of D by looking at the largest possible size of a set that is

shattered by it. This is the motivation for the definition of the VC dimension.

Definition 2.6.2 (VC dimension). Using the above notation, we define the VC dimension of a collec-

tion D ⊂ 2Z by

V (D) := inf
{

n ≥ 1 : mD (n) < 2n
}

. (2.58)

When V (D) < ∞, we say that D is a VC class of sets.

In other words, the VC dimension of D is the integer n ≥ 1 where D fails for the first time, in the sense

that it is not able to shatter any set of size n. The following examples help us obtain some intuition

on the VC dimension of a variety of classes of sets.

Example 2.6.3 (Half-intervals). We consider the class D :=
{

1(−∞,z] : z ∈ R
}

. We shall show that

∆D1 (z1, . . . , zn) ≤ n + 1 for any set of distinct points {z1, . . . , zn}. The idea is to use the order of

z1, . . . , zn on the real line. Without loss of generality, we can assume that z1 < . . . < zn. Then, D1

can only pick out the subsets ∅, {z1} , {z1, z2} , . . . , {z1, . . . , zn}. Indeed, for any arbitrary z ∈ R, there

exist two cases:

• there exists an index j ∈ {1, . . . , n− 1} such that zj < z ≤ zj+1. Thus, {z1, . . . , zn} ∩ (−∞, z] ={
z1, . . . , zj

}
.

• z > zn, in which case {z1, . . . , zn} ∩ (−∞, z] = {z1, . . . , zn}.

• z ≤ z1, in which case we either have {z1, . . . , zn} ∩ (−∞, z] = {z1} or {z1, . . . , zn} ∩ (−∞, z] =

∅.

It follows that ∆D1 (z1, . . . , zn) ≤ n + 1. Strict inequality holds whenever at least two points zi, zj with

i 6= j coincide. It follows that mD1(n) ≤ n + 1. Clearly, D1 shatters any singleton, but it cannot shatter

any set with at least two distinct elements, since n + 1 < 2n for n ≥ 2. Therefore, V (D1) = 2. Using

a similar argument, we can prove that the class Dd = {(−∞, t1]× · · · × (−∞, td] : t1, . . . , td ∈ R}
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satisfies mDd(n) ≤ (n + 1)d. This grows polynomially in n, so V (D) < ∞. This means that Dd is a

VC class of sets.

Example 2.6.4 (Half-spaces). We consider the class of halfspaces

D :=
{{

x ∈ Rd : θTx > w
}

: θ ∈ Rd, w ∈ R
}

.

We shall show that mD (n) ≤ 2d(n
d). Let z1, . . . , zn be any collection of points in Rd. For any subset of

d points, there exists a unique hyperplane containing them. This hyperplane partitions Rd into two

halfspaces A and B. For the points that lie on the hyperplane, we can arbitrarily decide whether they

belong to A or B in 2d ways 13 For the rest of the points, it is clear whether they belong to A or B.

Therefore, D can pick out at most 2d(n
d) subsets. This still grows polynomially in n, which yields that

V (D) < ∞. In fact, [Pollard, 1984] showed that V (D) ≤ d + 2, which is a much tighter bound than

the one we obtain with the above argument.

The following lemma is useful when one wants to combine or transform VC classes of sets. Its proof

is very straightforward and is omitted.

Lemma 2.6.5. Let D , E be two VC classes of subsets of a space Z . Then:

i. D ∪ E is a VC class.

ii. D ∩ E is a VC class.

iii. D c := {Dc : D ∈ D} is a VC class.

From the above definitions, one could imagine that, although mD (n) might not be equal to 2n for

some value of n, it could still, in principle, take the value 2n − 1 - i.e. D could possibly fail to pick out

just one subset. The following deep result, whose proof is omitted 14 shows that this cannot be the

case. If V (D) < ∞, then mD (n) grows with a polynomial rate in n.

Theorem 2.6.6 (Sauer-Shelah Lemma). If V (D) < ∞, then it holds that

mD (n) ≤
V(D)

∑
i=0

(
n
i

)
≤ (n + 1)V(D). (2.59)

Although the quantities ∆D (z1, . . . , zn) , mD (n), V (D) seem to have a combinatorial nature, they can

be used to derive uniform laws of large numbers.

13We can think of rotating the hyperplane slightly so that the points fall on one of the two halfspaces without affecting
the position of the other points.

14The proof uses induction and it is very elementary but contains quite a few of technical details. It can be found in
[Wainwright, 2019, Proposition 4.18].
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Theorem 2.6.7 ([Vapnik and Chervonenkis, 1971]). Let Z1, . . . , Zn : Ω→ Z be i.i.d. random elements

with distribution PZ. If
1
n

log ∆D (Z1, . . . , Zn)
P−→ 0, (2.60)

then {1D : D ∈ D} is a GC function class.

Proof. Fix δ ∈ (0, 1). Let A1, . . . , A∆ be the (random) subsets of {Z1, . . . , Zn} that are picked out by

D , where ∆ = ∆D (Z1, . . . , Zn). For each index i ∈ {1, . . . , ∆}, there exists a set Di ∈ D such that

Di ∩ {Z1, . . . , Zn} = Ai. We consider the collection {1Di}
∆
i=1. We show that this collection forms a

δ-covering of {1D : D ∈ D}. Indeed, fix D ∈ D . Since A1, . . . , A∆ is the complete lists of subsets

of {Z1, . . . , Zn} picked out by D , it follows that there exists an index j ∈ {1, . . . , ∆} such that D ∩

{Z1, . . . , Zn} = Aj. This yields that

∥∥∥1D − 1Dj

∥∥∥
1,n

=
1
n

n

∑
i=1

∣∣∣1Dj (Zi)− 1D (Zi)
∣∣∣ = 0 < δ,

because the intersections of D and Dj with {Z1, . . . , Zn} are exactly the same. This shows that

N1 (δ, {1D : D ∈ D} , Pn) ≤ ∆. Thus, the given condition implies that

1
n

H1 (δ, {1D : D ∈ D} , Pn)
P−→ 0.

The result now follows from Theorem 2.5.7.

From Theorem 2.6.6, we can deduce that any VC class of sets satisfies the condition

1
n

log ∆D (Z1, . . . , Zn)
P−→ 0.

Thus, we obtain the following important result.

Lemma 2.6.8. If D is a VC class of sets, then {1D : D ∈ D} is a GC function class.

Perhaps it is surprising how straightforward it was to formulate a result about GC function classes

using the newly introduced concept of VC dimension. However, this result only concerns classes of

indicator functions. Providing similar results for general function classes requires some more work.

VC dimension seems to be a concept that is inherently connected to sets, not functions. However, we

can make the connection to function classes through the following definition.
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Definition 2.6.9. Let f : Z → R be a function. The graph of f is defined as the set

graph ( f ) := {(z, t) ∈ Z ×R : f (z) ≥ t} . (2.61)

We say that a class F of functions is VC if {graph( f ) : f ∈ F} is a VC class of sets.

For instance, Example 2.6.4 shows that the linear functions on Rd form a VC class. Out goal is to

show that any VC class of functions must satisfy the ULLN. We start with the following technical

lemma:

Lemma 2.6.10. Let N, v, C be constants such that N ≤ C logv(N). Then, it holds that

N ≤ C logv
(

C2 (2v)2v
)

. (2.62)

Proof. Using the inequality log x < x, we obtain that logv(N) =
(

2v log
(

N
1

2v

))v
≤ (2v)v N1/2.

Thus, from the given condition, it follows that

N ≤ C (2v)v N1/2 ⇒ N ≤ C2 (2v)2v

⇒ N ≤ C logv
(

C2 (2v)2v
)

,

where in the last step we used the given condition for the second time.

Remark 2.6.11. The Sauer-Shelah lemma tells us that VC classes of sets satisfy mD (n) ≤ (n + 1)V(D).

If V (D) is fixed, then there exists a universal constant C such that (n + 1)V(D) ≤ C · nV(D) for all

n ≥ 1. Thus, we can characterize a VC class of sets as a class for which mD (n) ≤ CnV(D) for some

class-specific constant C.

To show that a VC class of functions F satisfies the ULLN, we are going to bound the covering

number of this function class using the VC dimension of DF := {graph( f ) : f ∈ F}.

Lemma 2.6.12. Let Q be an arbitrary probability measure on Z and suppose that the class F is VC.

Denote the VC dimension of DF by V. Fix δ > 0 and let F be the envelope of F , as it was defined in

Equation 2.54. Then, there exists a constant A = A (C, V) such that

N1 (δ ·QF, F , Q) ≤ A
(

1
δ

)V

logV
(

1
δ

)
, (2.63)

where C is the constant defined in Remark 2.6.11.
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Proof. This is a rather indirect proof, and the result comes up in a surprising way. The argument uses

a technique known as the Probabilistic Method, which is largely used in combinatorics.

Without loss of generality, we can assume that QF = 1. Otherwise, we simply replace δ by δ/QF

and adjust the value of the constant A. Let { f1, . . . , fM} be a maximal δ-packing set. This means that,

for all distinct indices i, j ∈ {1, . . . , M}, it holds that Q
∣∣ fi − f j

∣∣ > δ. We define a random element

S : Ω→ Z with distribution

P (S ∈ A) =
∫

A
F dQ, A ∈ G .

Given S = s, we define a random variable T ∼ Unif [−F(s), F(s)]. For all indices k, j ∈ {1, . . . , M}, it

holds that

P
(
T lies between fk(s), f j(s)

∣∣ S = s
)
=

∣∣ f j(s)− fk(s)
∣∣

2F(s)
.

This implies that

P
(
T lies between fk(S), f j(S)

)
=
∫
Z

∣∣ f j(s)− fk(s)
∣∣

2F(s)
· F dQ >

δ

2
.

Given i.i.d. pairs (S1, T1) , . . . , (Sn, Tn), it follows that

P
(
∀i ∈ {1, . . . , n}, Ti does not lie between fk(Si), f j(Si)

)
≤
(

1− δ

2

)n

.

The union bound yields that

P

⋃
k 6=j

{
∀i ∈ {1, . . . , n}, Ti does not lie between fk(Si), f j(Si)

} ≤ (M
2

)(
1− δ

2

)n

≤ M2

2
· exp

{
−nδ

2

}
.

It follows from that inequality that, for n ≥ d4 log M/δe,

P
(
∀(j, k) ∃i : Ti lies between fk(Si), f j(Si)

)
≥ 1

2
> 0.

Therefore, there exists an element ω ∈ Ω such that

{
∀(j, k) ∃i : Ti(ω) lies between fk(Si(ω)), f j(Si(ω))

}
⊂{

∆DF ((S1(ω), T1(ω)), . . . , (Sn(ω), Tn(ω))) ≥ M
}

,
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because the condition in the LHS yields that the graphs of fk, f j pick out a different subset of

{
(S1(ω), T1(ω)), . . . , (Sn(ω), Tn(ω))

}
,

and this happens for all pairs (j, k). This yields that

M ≤ ∆DF ((S1(ω), T1(ω)), . . . , (Sn(ω), Tn(ω))) ≤ CnV . (2.64)

This holds for any n such that n ≥ d4 log M/δe. For sufficiently small δ, it holds that 8 log M/δ <

d4 log M/δe, so we can assume that n ≤ 8 log M/δ. Thus, from Equation (2.64), it follows that M ≤

C · 8V ( 1
δ

)V
logV (M). From Lemma 2.6.10 it follows that, there exists a constant A = A(C, V) such

that

M ≤ A
(

1
δ

)V

logV
(

1
δ

)
.

The final result now follows from Lemma 2.5.3, since N (δ, F , Q) ≤ M (δ, F , Q) = M.

This lemma generalizes Theorem 2.6.7 to general function classes through the following result.

Theorem 2.6.13. Let Z1, . . . , Zn : Ω → Z be i.i.d. random elements with distribution PZ, and let F

be a function class with envelope F. If PZF < ∞ and F is a VC class, then F is also a GC class.

Proof. From Lemma 2.6.12, it follows that N1 (δ, F , Pn) ≤ N (δ/PnF), where

N (δ) := A
(

1
δ

)V

logV
(

1
δ

)
.

N (δ) is a strictly decreasing function of δ. Since PZF < ∞, it follows from the SLLN that

P (PnF > 2PZF) P−→ 0.

Therefore,

P
(

N1 (δ, F , Pn) > N
(

δ

2PZF

))
≤ P

(
N
(

δ

PnF

)
> N

(
δ

2PZF

))
= P (PnF > 2PZF)

P−→ 0.

The final result now follows directly from Theorem 2.5.7.
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2.7 Consistency of ERM Estimators

In this section, we revisit Empirical Risk Minimization and use the results that we have presented to

prove that several common Empirical Risk Minimizers are consistent. What does consistency mean

in this setting? Recall from Example 2.1.1 that our goal is to minimize the expected risk R ( f , f ?) :=

Pf ?L f (Z) = E
[
L f (Z)

]
, where f ? is the true value of the parameter f ∈ F . Therefore, we should be

looking for

arg min
f∈F

R ( f , f ?) .

However, since f ? is unknown, we resort to the empirical risk R̂n ( f ) := PnL f =
1
n ∑n

i=1 L f (Zi) and

we use the estimator

f̂n ∈ arg min
f∈F

R̂n ( f ) .

However, since our true goal is to minimize R ( f , f ?) and not R̂ ( f ), we would still hope that f̂n

performs well in terms of R ( f , f ?), namely that

R
(

f̂n, f ?
)
≈ inf

f∈F
R ( f , f ?)

This is exactly the consistency property that we are interested in. The first lemma the we are going to

show makes the connection of consistency with the ULLN.

Lemma 2.7.1. Suppose that the function class LF :=
{
L f : f ∈ F

}
is GC. If f0 ∈ F minimizes

R ( f , f ?), then, it holds that

R
(

f̂n, f ?
)

P−→ R ( f0, f ?) .

Proof. This follows directly from Equation (2.14). Based on the discussion after this equation in Sec-

tion 2.1, it follows that the condition

sup
f∈F

∣∣∣R̂n( f )− R ( f , f ?)
∣∣∣ P−→ 0 as n→ ∞

is sufficient for the proof of the convergence R
(

f̂n, f ?
)

P−→ R ( f0, f ?). However, this condition is

simply the ULLN for the class LF , which is satisfied due to our assumption that this class is GC.

Example 2.7.2 (Linear classification). In Example 2.1.1, we looked at binary classification. One type

of binary classification is the so called linear (binary) classification. In linear classification, we assume

that the points Z = (X, Y) ∈ Rd × {0, 1} are separated by a hyperplane, which determines the

value of Y. Our goal is to estimate this hyperplane. There are several ways to do that, including
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logistic regression and support vector machines. However, these approaches pare based on ERM

and produce only an estimate of the true hyperplane. For example, in Figure 2.1, if we only have

access to the large data points, we can choose the green line as the separating hyperplane. However,

FIGURE 2.1

if we sample new data points from the underlying distribution (like the small ones on the sides), we

might also encounter some incorrect classifications. Using the same notation as in Example 2.1.1, our

assumption is that the true classification function f ? has the form

y = f ?(x) = 1{θ>? x>w?}.

The underlying function class is F :=
{

1{θ>x>w} : θ ∈ Rd, w ∈ R
}

, and

LF :=
{∣∣∣y− 1{θ>x>w}

∣∣∣ : θ ∈ Rd, w ∈ R
}

.

For any function f = 1{θ>x>w} ∈ F , it holds that PZ f = P ( f (X) 6= Y), so we would like to find

the values of θ ∈ Rd, w ∈ R that minimize the probability of misclassification. In this setting, where

there is no noise, this hyperplane is clearly the true hyperplane determined by θ?, w?
15. We can show

that the hyperplane f̂n(x) = 1{θ̂>n x>ŵn} that we derive from ERM is consistent, in the sense that

P
(

f̂n(X) 6= Y
)

P−→ 0 = P ( f ?(X) 6= Y) .

We first show that LF is a VC function class. Notice that

LF :=
{

1{θ>x>w}4{θ>? x>w?} : θ ∈ Rd, w ∈ R
}

.

The class of sets D :=
{{

θ>x > w
}

: θ ∈ Rd, w ∈ R
}

is VC due to Example 2.6.4. It follows from

Lemma 2.6.5 that

D4D := {D14D2 : D1, D2 ∈ D}
15The same actually holds in a noisy setting, under some assumptions on the noise variables.
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is also a VC class of sets. The class

{
D4

{
θ>? x > w?

}
: D ∈ D

}
is a subclass of D4D , so it is also a VC class. It follows now from Lemma 2.6.8 that LF is a VC class

of functions. Since LF is a VC function class, it follows from Theorem 2.6.13 that it is also a GC class.

Finally, it follows from Lemma 2.7.1 that

R
(

f̂n, f ?
)

P−→ R ( f0, f ?) .

In our setting, it holds that R ( f0, f ?) = R ( f ?, f ?) = 0, which yields that

P
(

f̂n(X) 6= Y
)

P−→ 0.

Example 2.7.3 (Isotonic regression). Suppose that Z = (X, Y) ∈ R×R and that Y = f ? (X) + ξ,

where f ? : R → [0, 1] is an increasing function and ξ is a random variable that is independent of X,

such that Eξ = 0, Var (ξ) = σ2 < ∞, and Eξ4 < ∞. The true function f ? is unknown and the only

known information is that it belongs to the class

Fiso := { f : R→ [0, 1] : f is increasing} .

The loss function incurred by a point f ∈ Fiso is the squared error: L f (x, y) := (y− f (x))2. Thus,

LFiso =
{
L f (x, y) : f ∈ Fiso

}
=
{
(y− f (x))2 : f ∈ Fiso

}
.

The empirical minimizer is any element

f̂n ∈ arg min
f∈Fiso

(
1
n

n

∑
i=1

(Yi − f (Xi))
2

)
.

To show that this is a GC class, we use the following lemma:

Lemma 2.7.4. Let F be a function class on a space Z = X ×R. Suppose that Z = (X, Y) ∈ Z is a

pair of random elements such that Y = f ? (X) + ξ, where f ? ∈ F and ξ is a zero-mean noise variable

with variance σ2 < ∞. If:

• 1
n log N2 (δ, F , Pn)

P
−→ 0,

• the envelope of LF is an element of L2 (PZ),
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then LF is a GC class, where L f is the squared loss function.

Proof. This result relies on Theorem 2.5.7- We first use the Cauchy-Schwarz inequality to show that

the first given condition reduces to the second condition of that theorem. For any f , g ∈ F , it holds

that

Pn
∣∣L f −Lg

∣∣ = 1
n

n

∑
i=1

∣∣∣(Yi − f (Xi))
2 − (Yi − g (Xi))

2
∣∣∣

=
1
n

n

∑
i=1

∣∣∣(ξi + ( f ? − f ) (Xi))
2 − (ξi + ( f ? − g) (Xi))

2
∣∣∣

=
1
n

n

∑
i=1

∣∣∣2ξi (g (Xi)− f (Xi)) + ( f ? − f )2 (Xi)− ( f ? − g)2 (Xi)
∣∣∣

=
1
n

n

∑
i=1

∣∣∣2ξi (g (Xi)− f (Xi)) + (g (Xi)− f (Xi)) (2 f ? (Xi)− f (Xi)− g (Xi))
∣∣∣

≤
√

1
n

n

∑
i=1

[
4ξ2

i + (2 | f ?|+ | f |+ |g|)2 (Xi)
]
·
√

1
n

n

∑
i=1

(g(Xi)− f (Xi))
2

=

√
4
n

n

∑
i=1

ξ2
i + Pn

(
2 | f ?|+ | f |+ |g|

)2

︸ ︷︷ ︸
∆n

·
√

Pn (g− f )2. (2.65)

It follows that, for all δ > 0,

N1 (δ,LF , Pn) ≤ N2 (δ · ∆n, F , Pn) . (2.66)

The SLLN yields that

Pn

(
2 | f ?|+ | f |+ |g|

)2 P−→ PZ

(
2 | f ?|+ | f |+ |g|

)2
≤ 16PZF < ∞

and
4
n

n

∑
i=1

ξ2
i

P−→ 4σ2.

This shows that ∆n
P−→ 64σ2PZF =: ∆ < ∞. For all ε > 0, we denote

{ 1
n log N1 (δ,LF , Pn) > ε

}
by

An,ε. It follows from Equation (2.66) that,

P (An,ε) = P (An,ε ∩ {∆n < ∆/2}) + P (An,ε ∩ {∆n ≥ ∆/2})

≤ P (∆n < ∆/2) + P
( 1

n
log N2 (∆δ/2, F , Pn) > ε

)
P−→ 0,
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where, in the last step, we used the fact that ∆n
P−→ ∆ and the first condition of the Lemma. This

shows that the conditions of Theorem 2.5.7 hold, so LF is a GC class.

We now try to apply the result of this lemma for the class Fiso.

• In Example 2.5.9, we showed that

H∞ (δ, Fiso, Pn) ≤
⌊

1
δ

⌋
log
(

n +

⌊
1
δ

⌋)
.

For all δ > 0 it holds that N2 (δ, Fiso, Pn) ≤ N∞ (δ, Fiso, Pn), so, from the above bound, it

follows that 1
n log N2 (δ, Fiso, Pn)

P−→ 0.

• The class Fiso is uniformly bounded between 0 and 1, so, for all f ∈ Fiso, it holds that

L f (x, y) = (y− f (x))2

≤ max
{
(y− 1)2, y2}

≤ (y− 1)2 + y2.

Therefore, for the envelope LF of LF , it holds that F(x, y) ≤ (y− 1)2 + y2. We have

PZ

[
(Y− 1)2 + Y2

]2
= PZ

[
( f ?(X) + ξ − 1)2 + ( f ?(X) + ξ)2

]2
.

Because of the assumption Eξ4 < ∞, and because f ? is bounded between 0 and 1, it follows

that the above quantity is finite. This yields that LF ∈ L2 (PZ).

Indeed, from Lemma 2.7.4, it follows that LFiso is a GC class, so, from Lemma 2.7.1, it follows that

R
(

f̂n, f ?
)

P−→ inf f∈Fiso R ( f , f ?), which is what we wanted to show.

However, we can say a little bit more about that infimum. For all f ∈ Fiso, it holds that

R ( f , f ?) = E
[
L f (X, Y)

]
= E (Y− f ?(X))2

= E (ξ − ( f − f ?) (X))2

= σ2 + E ( f ?(X)− f (X))2 − 2E [ξ ( f (X)− f ? (X))] . (2.67)

It follows from the independence of ξ, X and from Eξ = 0 that the third term is equal to zero.

Therefore, the theoretical risk is minimized by f ?, or any other function that is almost surely equal

to it. From Example 2.5.9, it follows that Fiso is a GC class, so Lemma 2.7.1 and Equation (2.67) yield
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that

R
(

f̂n, f ?
)

P−→ inf
f∈Fiso

R ( f , f ?) = σ2.

Moreover, Equation (2.67) shows that EX

(
f ?(X)− f̂n (X)

)2 P−→ 0.

Example 2.7.5 (Changepoint detection). We assume again that Z = (X, Y) ∈ [0, 1] × R and that

Y = f ?(X) + ξ, where f ? is an unknown function that now belongs to the class

F :=
{

f (x) = (a + bx) 1{0≤x≤c} + (d + ex) 1{1≥x>c} : a, b, c, d, e ∈ [0, 1]
}

.

In other words, f ? is a piecewise linear function with an unknown changepoint. Like before, we use

the squared loss function and we make the same assumptions about the noise variable ξ. In Example

2.4.7, we showed that, for all δ > 0, it holds that H∞
(
δ, FLipschitz

)
≤ A/δ. Notice that F ⊂ FLipschitz,

so H∞ (δ, F ) ≤ A/δ. It also holds that

| f |n,∞ := max
1≤i≤n

| f (Xi)| ≤ sup
x∈[0,1]

| f (x)| = | f |∞ ,

so H∞ (δ, F , Pn) ≤ H∞ (δ, F ). Combining these results, we obtain that

1
n

log N2 (δ, F , Pn) ≤
1
n

H∞ (δ, F , Pn)
P−→ 0.

Also, with an argument identical to the one in Example 2.7.3, we can show that LF has an L2-

integrable envelope. Lemma 2.7.4 yields that LF is a GC class, which implies that

R
(

f̂n, f ?
)

P−→ inf
f∈F

R ( f , f ?) = R ( f ?, f ?) = σ2.

In the above examples, we used Lemma 2.7.4, as well as some set-theoretic arguments, to prove

that the class LF is GC. However, there also exist some more generic ways to show this property.

More specifically, it is possible to show [van de Geer, 2000, Lemma 3.1] that, if the envelope of LF

belongs to Lq(PZ), the space (F , d) is compact, and f 7→ L f (z) is continuous for all z ∈ Z , then

Hq,B (δ,LF , Pn) < ∞, so LF is a GC class.
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2.8 Rates of Convergence of M-Estimators

In the previous section, the property that we were interested in was

R
(

f̂n, f ?
)

P−→ inf
f∈F

R ( f , f ?) .

We called this property consistency. However, if F is itself a (semi-)metric space, we can even talk

about consistency in the traditional statistical sense, namely

f̂n
P−→ f ?.

In this section, we equip F with the random semimetric ‖·‖n and investigate consistency from this

classical perspective. On the way, we introduce chaining, a technique developed by Kolmogorov and

brought to the spotlight of Empirical Process Theory by Richard Dudley.

Throughout this section, we focus on nonparametric regression. We assume that {xi}n
i=1 is a n-tuple

of fixed points and that, for all i ∈ {1, . . . , n},

Yi = f ? (xi) + ε i, (2.68)

where f ? ∈ F is an unknown function, and ε1, . . . , εn ∼ N
(
0, σ2) are independent error terms. We

use the squared loss function L f (x, y) = (y− f (x))2. We can use the same argument as in Equation

(2.67) to show that

f ? = arg min
f∈F

PZL f .

On the other hand, the empirical risk minimizer is the estimator

f̂n ∈ arg min
f∈F

n

∑
i=1

(Yi − g(xi))
2 .

The results we are going to present also generalize to other loss functions, and non-Gaussian errors.

They also generalize to random design {Xi}n
i=1 by considering the conditional measures induced by

X1, . . . , Xn. However, the simpler framework we introduced above does not lack anything in terms

of intuition and technical tools, and is an adequate prototype for the more general theory. Therefore,

we will stick to this framework and make comments about possible generalizations wherever these

generalizations present theoretical interest.

One of the most fundamental tools in this section is the following inequality.
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Lemma 2.8.1. Let Z1, . . . , Zn : Ω → Z be i.i.d. random elements with distribution PZ and let Pn be

the induced empirical measure. Then,

0 ≤ PZ

(
L f̂n
−L f ?

)
≤ − (Pn − PZ)

(
L f̂n
−L f ?

)
(2.69)

Proof. The inequality on the left simply uses the fact that

f ? = arg min
f∈F

PZL f .

The one on the right can be written as Pn

(
L f̂n
−L f ?

)
≤ 0, which holds due to the fact that

f̂n ∈ arg min
f∈F

PnL f .

The most suitable (semi-)norm for the investigation of the consistency of f̂n turns out to be ‖·‖n,p,

defined in Equation (2.45). Since we will only be dealing with the case p = 2, we denote ‖·‖n,2

simply by ‖·‖n. Also, since this norm is only determined by the values of the functions at x1, . . . , xn,

we identify any function f ∈ F with the vector


f (x1)

...

f (xn)

 .

Under the model (2.68), the inequality in Lemma 2.8.1 takes the following form.

Lemma 2.8.2. Let us denote the vector (ε1, . . . , εn)
> by ε. Then, under the above notation, it holds

that ∥∥∥ f̂n − f ?
∥∥∥

n
≤ 2

n
ε>
(

f̂n − f ?
)

. (2.70)

Proof. For all f ∈ F , it holds that

PnL f =
n

∑
i=1

(Yi − f (xi))
2

= ‖Y− f ‖2
n

= ‖ε + ( f ? − f )‖2
n

= ‖ε‖2
n −

2
n

ε> ( f ? − f ) + ‖ f ? − f ‖2
n .
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From this Equation, it follows that

Pn

(
L f̂n
−L?

f

)
= − 2

n
ε>
(

f̂n − f ?
)
+
∥∥∥ f̂n − f ?

∥∥∥2

n
.

Since f̂n minimizes the empirical risk, we obtain that

0 ≥ − 2
n

ε>
(

f̂n − f ?
)
+
∥∥∥ f̂n − f ?

∥∥∥2

n
,

which finishes the proof.

For any δ > 0, we denote the ball
{

f ∈ F : ‖ f − f ?‖n ≤ δ
}

by F (δ). We will show that consistency

in terms of ‖·‖n is very closely related to the empirical entropy H2 (·, F (δ), Pn). For any δ > 0, we

define the entropy integral

J (δ) := 2
∫ δ

0

√
2H2 (u, F (δ) , Pn) du. (2.71)

For our purposes, the constant 2 could be removed from both instances, but it is kept for historical

reasons. The proof of the following lemma is one of the most technical in this thesis, but it opens the

path for the derivation of convergence rates for least squares estimators.

Lemma 2.8.3. For all δ > 0 and t > 0, it holds with probability at least 1− 2e−t that

sup
f∈F (δ)

[
1√
n

ε> ( f − f ?)
]
≤ 2J (δ) + 4δ

√
1 + t (2.72)

Proof. This proof uses the method of chaining.

Fix δ > 0 and t > 0. Then, for any integer S ≥ 1, let
{

f S
j

}NS

j=1
⊂ F (δ) be a minimal 2−Sδ-covering of

F (δ) with respect to ‖·‖n. This means that NS = N2
(
2−Sδ, F (δ) , Pn

)
.

For any f ∈ F (δ), there exists an element f S+1 ∈
{

f S+1
j

}NS+1

j=1
such that

∥∥ f − f S+1
∥∥

n ≤ 2−(S+1)δ.

Similarly, for the point f S+1 ∈ F (δ), we can choose an element f S ∈
{

f S
j

}NS

j=1
such that

∥∥∥ f S+1 − f S
∥∥∥

n
= min

1≤k≤NS

∥∥∥ f S+1 − f S
j

∥∥∥
n
≤ 2−Sδ.

We follow the same process for all s ∈ {1, . . . , S− 1} by defining f s ∈
{

f s
j

}NS

j=1
recursively, in such a

way that ∥∥∥ f s+1 − f s
∥∥∥

n
= min

1≤k≤Ns

∥∥∥ f s+1 − f s
j

∥∥∥
n
≤ 2−sδ.
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This way, we have defined a chain

f S+1, f S, . . . , f 1.

After the choice of f S+1, there is a unique choice of f S, . . . , f 1. Thus, the number of these chains is

N2

(
2−(S+1)δ, F (δ) , Pn

)
.

Since
∥∥ f 1 − f ?

∥∥
n ≤ δ, we can define f 0 = f ?. We can now decompose f − f ? into the telescoping

sum

f − f ? =
(

f − f S+1
)
+

S

∑
s=0

(
f s+1 − f s

)
.

It follows that
1√
n

ε> ( f − f ?) =
1√
n

ε>
(

f − f S+1
)
+

S

∑
s=0

1√
n

ε>
(

f s+1 − f s
)

(2.73)

Notice that
1√
n

ε>
(

f s+1 − f s
)
=

n

∑
i=1

1√
n

(
f s+1(Xi)− f s(Xi)

)
ε i,

which is a sum of independent centered Gaussian random variables with variances

1
n

(
f s+1(X1)− f s(X1)

)2
, . . . ,

1
n

(
f s+1(Xn)− f s(Xn)

)2

respectively. From Hoeffding’s inequality,

P

(∣∣∣∣∣ n

∑
i=1

1√
n

(
f s+1(Xi)− f s(Xi)

)
ε i

∣∣∣∣∣ ≥ 2−sδ
√

2t

)
≤ 2 exp

{
− 2−2sδ2 · 2t

2 ∑n
i=1

1
n ( f s+1(Xi)− f s(Xi))

2

}

= 2 exp

{
− 2−2sδ2 · 2t

‖ f s+1 − f s‖2
n

}
≤ 2 exp {−t} ,

where the last inequality follows from the fact that
∥∥ f s+1 − f s

∥∥
n ≤ 2−sδ. The union bound over all

possible N2

(
2−(s+1)δ, F (δ) , Pn

)
chains f s+1, . . . , f 0 that can be induced by all elements of F (δ)

yields that

P

(
sup

f∈F (δ)

∣∣∣∣∣ n

∑
i=1

1√
n

(
f s+1(Xi)− f s(Xi)

)
ε i

∣∣∣∣∣ ≥ 2−sδ
√

2 (t + Hs+1)

)
≤ 2 exp {−t} , (2.74)
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where HS+1 := log N2

(
2−(S+1)δ, F (δ) , Pn

)
. We deduce that

P

(
sup

f∈F (δ)

[
S

∑
s=0

1√
n

ε>
(

f s+1 − f s
)]
≥

S

∑
s=0

2−sδ
√

2 ((s + 1)(t + 1) + Hs+1)

)

≤
S

∑
s=0

P

(
sup
f∈F

[
1√
n

ε>
(

f s+1 − f s
)]
≥ 2−sδ

√
2 ((s + 1)(t + 1) + Hs+1)

)

≤
S

∑
s=0

2 exp {−(s + 1)(t + 1)}

≤ 2 exp{−t}, (2.75)

where the last inequality follows from the fact that ∑S
s=0 2 exp {−(s + 1)(t + 1)} can be viewed as a

geometric series. Finally, notice that

S

∑
s=0

2−sδ
√

2 ((s + 1)(t + 1) + Hs+1) ≤
S

∑
s=0

2−sδ

(√
2(s + 1)(t + 1) +

√
2Hs+1

)
≤ 4δ

√
1 + t + 2J(δ),

where the last inequality follows from the fact that ∑S
s=0 2−s

√
2(1 + s) ≤ 4 and from the inequality

S

∑
s=0

2−sδ
√

2Hs+1 =
S

∑
s=0

2−sδ
√

2H2
(
2−(s+1)δ, F (δ) , Pn

)
≤ 2

S

∑
s=0

∫ 2−(s+1)δ

2−(s+2)δ

√
2H2 (u, F (δ) , Pn) du

≤ 2J (δ) ,

which in turn follows from the fact that H2 (u, F (δ) , Pn) is decreasing in u. Simplifying the tele-

scopic sum in Equation (2.75) and using the latter bounds yields that

P

(
sup

f∈F (δ)

[
1√
n

ε>
(

f S+1 − f ?
)]
≥ 2J(δ) + 4δ

√
1 + t

)
≤ 2e−t.

It follows from Equation (2.73) that

P

(
sup

f∈F (δ)

[
1√
n

ε> ( f − f ?)
]
> 2J(δ) + 4δ

√
1 + t + 2−(S+1)δ

√
n ‖ε‖n

)

≤ 2e−t + P

(
sup

f∈F (δ)

[
1√
n

ε>
(

f − f S+1
)]

> 2−(S+1)δ
√

n ‖ε‖n

)
.
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However, for all f ∈ F (δ) it holds that

1√
n

ε>
(

f − f S+1
)
≤
√

n ‖ε‖n

∥∥∥ f − f S+1
∥∥∥

n
≤ 2−(S+1)δ

√
n ‖ε‖n ,

so the last term in the above bound is equal to zero. It follows that

sup
f∈F (δ)

[
1√
n

ε> ( f − f ?)
]
≤ 2J(δ) + 4δ

√
1 + t + 2−(S+1)δ

√
n ‖ε‖n

with probability at least 1− 2e−t. Notice that the LHS does not depend on S. Hence, taking the limit

as S→ ∞ yields that

sup
f∈F (δ)

[
1√
n

ε> ( f − f ?)
]
≤ 2J(δ) + 4δ

√
1 + t,

which finishes the proof.

The proof of the above lemma is indeed quite technical, but it illustrates the power of chaining. Most

importantly, it can provide us with convergence rates for (non-parametric) least squares estimators.

This is possible through the following result, which shows the connection between the entropy inte-

gral and the ‖·‖n-distance between f̂n and f ?.

Theorem 2.8.4 (Entropy integrability condition). Suppose that J(δ) < ∞ for all δ > 0, and that

J(δ)/δ2 is a decreasing function of δ. Then, for all t ≥ 0, and for all sequences {δn}∞
n=1 of real

numbers such that

δ2
n ≥ 8

(
2J(δn)√

n
+ 4δn

√
1 + t

n

)
, (2.76)

it holds that
∥∥∥ f̂n − f ?

∥∥∥
n
≤ δn with probability at least 1− e

e−1 · e−t.

Proof. We use the peeling device, namely the bound

P
(∥∥∥ f̂n − f ?

∥∥∥
n
> δn

)
≤

∞

∑
j=1

P

 sup
f∈F(2jδn)

[
2
n

ε> ( f − f ?)
]
≥
(

2j−1δn

)2

 . (2.77)

This bound holds because of the basic inequality in Lemma 2.8.2. Indeed, if
∥∥∥ f̂n − f ?

∥∥∥
n
> δn then

there exists an integer j ≥ 1 such that f̂n ∈ F
(
2jδn

)
\F

(
2j−1δn

)
. The basic inequality yields that

2
n ε>

(
f̂n − f ?

)
>
(
2j−1δn

)2. Therefore

sup
f∈F(2jδn)

[
2
n

ε> ( f − f ?)
]
≥ 2

n
ε>
(

f̂n − f ?
)
>
(

2j−1δn

)2
.
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We can obviously assume that this Because of the assumptions, the function

j 7→
2J
(
2jδn

)
+ 4 · 2jδn

√
1 + t + j(

2jδn
)2

is decreasing, as the sum of two decreasing functions. Thus, for all j ≥ 0,

2J
(
2jδn

)
+ 4 · 2jδn

√
1 + t + j(

2jδn
)2 ≤ 2J (δn) + 4 · δn

√
1 + t

δ2
n

≤
√

n
8

.

Thus,
1
2

(
2j−1δn

)2
=

1
8

(
2jδn

)2
≤

2J
(
2jδn

)
√

n
+ 4 · 2jδn

√
1 + t + j

n

It follows from Equation (2.77) and from Lemma 2.8.3 that

P
(∥∥∥ f̂n − f ?

∥∥∥
n
> δn

)
≤

∞

∑
j=1

P

(
sup

f∈F (δn)

[
2
n

ε> ( f − f ?)
]
≥
(

2j−1δn

)2
)

≤
∞

∑
j=1

P

 sup
f∈F(2jδn)

[
1
n

ε> ( f − f ?)
]
≥

2J
(
2jδn

)
√

n
+ 4 · 2jδn

√
1 + t + j

n


≤ 2

∞

∑
j=1

exp {−(t + j)}

=
e

e− 1
e−t.

Lastly, we present some applications of this theorem in parametric and non-parametric regression.

Example 2.8.5. Suppose that Z = Rr ×R and that Y = fθ?(X) + ξ, where fθ? belongs to the class

Flinear := { fθ(x) = θ1x1 + . . . + θrxr | θ1, . . . , θr ∈ R}

and the noise variable ξ satisfies the standard assumptions. The class Flinear is parametrized by

θ = (θ1, . . . , θr) ∈ Rr, so ERM boils down to finding the value of θ that minimizes the empirical risk.

The least squares estimator in that case is given by θ̂n = X
(
X>X

)−1 X>Y, where

X :=


x11 . . . x1r

...
. . .

...

xn1 . . . xnr
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is the covariate matrix and Y = (Y1, . . . , Yn)
> is the vector of the response variables. It is a standard

result that

n ·
∥∥∥ fθ̂n
− fθ?

∥∥∥2

n
= ξ>X

(
X>X

)−1
X>ξ,

which follows a χ2
r distribution. The expectation of that distribution is equal to r, so

E

∥∥∥ fθ̂n
− fθ?

∥∥∥2

n
=

r
n

.

Thus,
∥∥∥ fθ̂n
− fθ?

∥∥∥
n

converges to zero with a rate equivalent to
√

r/n 16. Let us try to derive the same

convergence rate through Theorem 2.8.4. To do this, we need to check if the integrability condition

J(δ) < ∞ is satisfied.

We first determine a bound for the entropy of the Euclidean ball Br (θ?, δ). Let M be the packing

number of this ball, and let {s1, . . . , sM} ⊂ Br (θ?, δ) be a u-packing set. Then, the balls

Br (s1, u/2) , . . . , Br (sM, u/2)

are disjoint and they are all contained in the larger ball Br (θ?, δ + u/2). Comparing the total volume

of the smaller balls with the volume of the larger one, we obtain

MCr ·
(u

2

)r
≤ Cr

(
δ +

u
2

)r
,

where Cr is the volume of the unit ball in Rr. It follows that

M
(

2δ + u
u

)r

.

Lemma 2.5.3 yields that

H2 (u, Br (θ
?, δ) , ‖·‖2) ≤ r log

(
2δ + u

u

)
.

The mapping θ 7→ ‖ fθ‖n = 1√
n ‖Xθ‖2 defines a norm on the space range(X) and the set Flinear (δ) is

isomorphic to a δ-ball in the space range(X). Therefore, we can use the same volume argument to

show that

H2 (u, Flinear (δ) , ‖·‖n) ≤ r log
(

2δ + u
u

)
.

16We keep r in the notation because in several real-world examples, r also varies with n. Such problem settings are
investigated by high-dimensional statistics.
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Hence,

J(δ) ≤ 2
∫ δ

0

√
2r

√
log
(

1 +
2δ

u

)
du.

A simple computation shows that the last integral is equal to A
√

rδ, where A is a universal constant.

Thus, the condition 2.76 from Theorem 2.8.4 can be written as

δ2
n ≥ 8

(
Aδn

√
r
n
+ 4δn

√
1 + t

n

)
⇔ δn ≥ 8

(
A
√

r
n
+ 4

√
1 + t

n

)
,

which recovers the convergence rate
√

r/n that we know from classical statistics.

Example 2.8.6 (Functions of Bounded Variation). Suppose that Z = R×R and that x1 ≤ . . . ≤ xn.

Consider the function class

FBV := { f : R→ R | TV( f ) ≤ 1} , (2.78)

where TV( f ) := ∑n−1
i=1 | f (xi+1)− f (xi)|. [Birman and Solomjak, 1967] showed that, for all suffi-

ciently small u, δ > 0, it holds that H2 (u, F (δ) , ‖·‖n) ≤ Au−1, where A > 0 is a universal constant.

This yields that

J (δ) ≤ A0
√

δ,

where A0 is another universal constant. Solving

δ2
n ≥ 8

(
2J (δn)√

n
+ 4δn

√
1 + t

n

)
,

we easily obtain that δn needs to be at least of the order of n−1/3. This choice of δn satisfies the

above inequality for sufficiently large n ∈ N, regardless of the value of t. Therefore,
∥∥∥ f̂n − f ?

∥∥∥
n
=

OP
(
n−1/3).

Example 2.8.7 (Lipschitz functions). Suppose that Z = [0, 1]×R, and consider the function class

FLip := { f : [0, 1]→ [0, 1] | f Lipschitz with Lipschitz constant L = 1} .

We have showed in Example 2.4.7 that H∞ (u, F ) ≤ A/u for all u > 0, where A is a universal

constant. Since

N2 (u, F (δ) , ‖·‖n) ≤ N2 (u, F , ‖·‖n) ≤ N∞ (u, F )

it follows from the same argument as in the previous example that
∥∥∥ f̂n − f ?

∥∥∥
n
= OP

(
n−1/3).
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The list of least-squares estimators for which we can derive convergence rates with respect to ‖·‖n

using the entropy integrability condition (Theorem 2.8.4) is very large and it contains concave regres-

sion, isotonic regression, mth-order Sobolev spaces, classification using indicators of convex sets and

many others. The derivation of the entropy bounds is usually approached with analytic methods,

like in [Birman and Solomjak, 1967]. Nevertheless, the entropy integrability condition is a very pow-

erful and interesting method which reveals interesting and deep connections between the complexity

of function classes and Glivenko-Cantelli properties.
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