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Notes for Session 11 

 

The Poisson distribution 

 

Scientific productivity example (McGinnis, Allison and Long, 1982, Allison, 1999) 

 

An example of a data set that can be analyzed by Poisson methods is as follows:  557 

male biochemists received their doctoral degree from 106 American universities in the 

late 1950s and 1960s.  

   

PDOC  1 if received postdoctoral training, 0 otherwise 

AGE  Age in years at completion of Ph.D. 

MAR  1 if married, 0 otherwise 

DOC  Measure of the prestige of the doctoral institution 

UND  Measure of the selectivity of the undergraduate institution 

AG  1 if degree is from an agricultural department, 0 otherwise 

ARTS  Number of articles published while a graduate student 

CITS  Number of citations to published articles 

DOCID ID number of the doctoral institution 
 

 
The frequency distribution of the number of publications is given as follows: 

 
. hist arts, xlab() ylab()  bin(20) gap(20) 
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The goodness of fit test for a Poisson distribution however, is highly significant (i.e., does 

not support a Poisson-distributed variable).  Notice that you must run a Poisson model 

before poisgof. 

 
. quietly poisson arts 
. poisgof 
         Goodness of fit chi-2 =  1087.821 
         Prob > chi2(556)      =    0.0000 

 

Analysis with a Poisson GLM 

In the case of the Poisson mean, because  is always positive, the function g(.) is chosen 

so that the linear predictor XX 111o   , that can take any real-number value, 

gets mapped into the positive real numbers.  A good candidate function (link) for the 

Poisson GLM is the logarithm as follows: 

 

 pXpX 11o)log(  

 

We carry out the Poisson regression using either the poisson or glm command in 

STATA.  Here we prefer the glm command, because it produces the deviance that will 

be useful in the following. 

 
. xi: glm   arts age i.mar doc  und i.ag , nolog fam(poisson) 
i.mar             _Imar_0-1           (naturally coded; _Imar_0 omitted) 
i.ag              _Iag_0-1            (naturally coded; _Iag_0 omitted) 
 
Generalized linear models                          No. of obs      =       557 
Optimization     : ML: Newton-Raphson              Residual df     =       551 
                                                   Scale parameter =         1 
Deviance         =  1078.905935                    (1/df) Deviance =  1.958087 
Pearson          =   1497.36098                    (1/df) Pearson  =  2.717534 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   =  -817.464978                    AIC             =  2.956786 
BIC              = -2404.827512 
 
------------------------------------------------------------------------------ 
        arts |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |  -.0165613   .0101663    -1.63   0.103    -.0364868    .0033642 
     _Imar_1 |  -.0153611   .1300267    -0.12   0.906    -.2702088    .2394865 
         doc |  -.0000399   .0004551    -0.09   0.930    -.0009319    .0008521 
         und |   .0723311   .0303235     2.39   0.017      .012898    .1317641 
      _Iag_1 |   .0421593    .099889     0.42   0.673    -.1536195    .2379381 
       _cons |  -.0401208   .3897092    -0.10   0.918    -.8039369    .7236953 
------------------------------------------------------------------------------ 
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Interpretation of the coefficients 

 

The coefficients p ,,1 denote the change in log() for each one-unit change in the 

corresponding explanatory variable.  In our example, the only significant variable is 

UND, the selectivity index of the under graduate institution.  So, if two observations i and 

j have a difference of one unit in explanatory variable X4 (UND), that is 144  jXiX , 

while all the other explanatory variables are the same, then the difference in log() will 

be β4.  

  

a. Given this information please calculate the impact of (thus interpret) the 

coefficients that were produced by the model. 

 

Overdispersion 

 

By the assumptions of the Poisson model, the expected value (mean) of the Poisson 

distribution is theoretically equal to its variance.  Frequently this is not the case and the 

variance is much higher than the mean.  In that situation, we have what is called 

overdispersion.  In this case, the scaled deviance value of 1.96 and scaled Pearson chi-

square of 2.72 point to a potential problem with the model. 

 

One way to deal with overdispersion is to divide the chi-square statistic that tests the 

significance of each variable by the scaled deviance or scaled Pearson chi-square (or 

equivalently multiply each standard error by the square root of the scaled deviance or 

scaled Pearson chi-square; Agresti, 1996).   

 

To carry out the method suggested in Agresti (1996) by STATA we proceed as follows: 

 

We divide each z statistic in the output above by the square root of the scaled Pearson 

chi-square statistic and re-calculate its significance.  Here we go: 
 

 age 
. di 2*norm(-1.629/sqrt(2.717532)) 
.32306707 
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b. Perform the calculations for the remaining coefficients. 

 

We can do this a lot more simply by the following command: 

 
. xi: glm   arts age i.mar doc  und i.ag , nolog fam(poisson) scale(x2) 
i.mar             _Imar_0-1           (naturally coded; _Imar_0 omitted) 
i.ag              _Iag_0-1            (naturally coded; _Iag_0 omitted) 
 
Generalized linear models                          No. of obs      =       557 
Optimization     : ML: Newton-Raphson              Residual df     =       551 
                                                   Scale parameter =         1 
Deviance         =  1078.905935                    (1/df) Deviance =  1.958087 
Pearson          =   1497.36098                    (1/df) Pearson  =  2.717534 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   =  -817.464978                    AIC             =  2.956786 
BIC              = -2404.827512 
 
------------------------------------------------------------------------------ 
        arts |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |  -.0165613    .016759    -0.99   0.323    -.0494084    .0162858 
     _Imar_1 |  -.0153611   .2143483    -0.07   0.943    -.4354761    .4047538 
         doc |  -.0000399   .0007502    -0.05   0.958    -.0015103    .0014305 
         und |   .0723311   .0499882     1.45   0.148    -.0256439    .1703061 
      _Iag_1 |   .0421593   .1646664     0.26   0.798    -.2805809    .3648995 
       _cons |  -.0401208   .6424335    -0.06   0.950    -1.299267    1.219026 
------------------------------------------------------------------------------ 
(Standard errors scaled using square root of Pearson X2-based dispersion) 
 
. 
    arts |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     age |  -.0165613    .016759     -0.988   0.323      -.0494084    .0162858 
  Imar_1 |  -.0153611   .2143482     -0.072   0.943      -.4354759    .4047536 
     doc |  -.0000399   .0007502     -0.053   0.958      -.0015103    .0014305 
     und |   .0723311   .0499881      1.447   0.148      -.0256439     .170306 
   Iag_1 |   .0421593   .1646663      0.256   0.798      -.2805808    .3648994 
   _cons |  -.0401209    .642433     -0.062   0.950      -1.299266    1.219025 
------------------------------------------------------------------------------ 
(Standard errors scaled using square root of Pearson X2-based dispersion) 

 

The results are identical to the calculations above. 
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Accounting for overdispersion: The Negative Binomial distribution 

 

The negative binomial model is fit in STATA either by the nbreg command, or the glm 

command by specifying family(nbinom) as the family of distributions.  The default 

is a log link. 

 
. xi: glm  arts  age i.mar doc und i.ag , family(nbinom) nolog 
i.mar             _Imar_0-1           (naturally coded; _Imar_0 omitted) 
i.ag              _Iag_0-1            (naturally coded; _Iag_0 omitted) 
 
Generalized linear models                          No. of obs      =       557 
Optimization     : ML: Newton-Raphson              Residual df     =       551 
                                                   Scale parameter =         1 
Deviance         =  602.3390862                    (1/df) Deviance =  1.093174 
Pearson          =  805.4735374                    (1/df) Pearson  =  1.461839 
 
Variance function: V(u) = u+(1)u^2                 [Neg. Binomial] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -705.6949434                    AIC             =  2.555458 
BIC              = -2881.394361 
 
------------------------------------------------------------------------------ 
        arts |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |  -.0179105    .014638    -1.22   0.221    -.0466004    .0107794 
     _Imar_1 |  -.0082171    .179777    -0.05   0.964    -.3605735    .3441394 
         doc |   .0000457   .0006079     0.08   0.940    -.0011458    .0012373 
         und |   .0709433   .0404426     1.75   0.079    -.0083228    .1502094 
      _Iag_1 |   .0463118   .1362171     0.34   0.734    -.2206688    .3132925 
       _cons |  -.0272584     .54196    -0.05   0.960     -1.08948    1.034964 
------------------------------------------------------------------------------ 

 

The coefficients are similar to those generated by the poisson regression model, and the 

dispersion value is a great deal closer to 1.0.  The undergraduate selectivity index is 

significant at the 10% level but not the 5% level in this analysis.  No other factors are 

significant. 
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Number of utterances about prognosis 
 

The data set of Christakis and Levinson, 1998) describes the analysis of the number of 

utterances concerning prognosis by a doctor during a patient visit.  The relevant variables  

and information were given in the lecture.  The dataset is prognosis.dta. 
The frequency distribution of the LENGTHPX variable is given below: 

 

. hist  lengthpx, bin(20) xlab() ylab()  gap(20) 
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. quietly poisson  lengthpx 
 
. poisgof 
 
         Goodness of fit chi-2 =  793.6129 
         Prob > chi2(124)      =    0.0000 

 

We see that the data are highly skewed with a substantial proportion of observations at 

zero.  The goodness of fit test however, is significant, implying that the marginal (i.e., 

without considering the explanatory variables) distrbution of lengthpx is not Poisson. 
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Offset 
 

The way we incorporate the length of observation (duration of visit) is by adding what is 

called an “offset” variable to the model, that is, 

ipXpiXitiYE  11o)log()(log . This is done by adding the option 

offset(varname) or lnoffset(varname) in the glm command. The latter is 

what we need if the variable has not been transformed to the logarithmic scale already. 

The results of the analysis for these data are as follows: 
 

. xi: glm  lengthpx ptage i.ptsex  ezcompt mdlikept i.surgeon claims, family(po 
> isson) lnoffset( minutes) nolog 
i.ptsex           _Iptsex_0-1         (naturally coded; _Iptsex_0 omitted) 
i.surgeon         _Isurgeon_0-1       (naturally coded; _Isurgeon_0 omitted) 
 
Generalized linear models                          No. of obs      =       121 
Optimization     : ML: Newton-Raphson              Residual df     =       114 
                                                   Scale parameter =         1 
Deviance         =  682.0299077                    (1/df) Deviance =  5.982718 
Pearson          =  899.6256873                    (1/df) Pearson  =  7.891453 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -455.9056163                    AIC             =  7.651333 
BIC              =  135.3097855 
 
------------------------------------------------------------------------------ 
    lengthpx |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       ptage |  -.0014421   .0030592    -0.47   0.637    -.0074381    .0045538 
   _Iptsex_1 |   .5482447   .1048295     5.23   0.000     .3427827    .7537067 
     ezcompt |     .19809   .0760462     2.60   0.009     .0490422    .3471378 
    mdlikept |  -.0864474    .074387    -1.16   0.245    -.2322432    .0593484 
 _Isurgeon_1 |   1.343119   .1303695    10.30   0.000     1.087599    1.598638 
      claims |   .0519112   .0231909     2.24   0.025     .0064579    .0973645 
       _cons |  -3.175498   .3188584    -9.96   0.000    -3.800449   -2.550547 
     minutes | (exposure) 
------------------------------------------------------------------------------ 

 

c. What kind of offset did we add to this model? Why isn’t there any coefficient 
associated with variable minutes? 

 

Interpretation of the analysis results 

 

Almost all variables are significant.  It seems that there are 73% more utterances about 

prognosis when the subject is male ( 73.01548.0 e ). 

 

d. In a similar fashion with the operations above, interpret the meaning of the rest of 

the coefficients. 

 

However, the results of this analysis are questionable, as the scaled Pearson chi-square 

and scaled deviance statistics are much larger than 1.0. 
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Thus, significant overdispersion is likely present in these data. 

 

Correcting for overdispersion 
 

To correct for overdispersion, we scale the test statistics corresponding to the coefficients 

by the scaled Pearson chi-square statistic.  Only surgeon is significant in predicting 

prognosis utterances. 

 
. xi: glm  lengthpx ptage i.ptsex  ezcompt mdlikept i.surgeon claims, family(po 
> isson) lnoffset( minutes) nolog scale(x2) 
i.ptsex           _Iptsex_0-1         (naturally coded; _Iptsex_0 omitted) 
i.surgeon         _Isurgeon_0-1       (naturally coded; _Isurgeon_0 omitted) 
 
Generalized linear models                          No. of obs      =       121 
Optimization     : ML: Newton-Raphson              Residual df     =       114 
                                                   Scale parameter =         1 
Deviance         =  682.0299077                    (1/df) Deviance =  5.982718 
Pearson          =  899.6256873                    (1/df) Pearson  =  7.891453 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   = -455.9056163                    AIC             =  7.651333 
BIC              =  135.3097855 
 
------------------------------------------------------------------------------ 
    lengthpx |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       ptage |  -.0014421   .0085938    -0.17   0.867    -.0182857    .0154014 
   _Iptsex_1 |   .5482447   .2944842     1.86   0.063    -.0289337    1.125423 
     ezcompt |     .19809   .2136269     0.93   0.354    -.2206111    .6167911 
    mdlikept |  -.0864474   .2089659    -0.41   0.679     -.496013    .3231182 
 _Isurgeon_1 |   1.343119   .3662305     3.67   0.000     .6253199    2.060917 
      claims |   .0519112   .0651472     0.80   0.426     -.075775    .1795973 
       _cons |  -3.175498   .8957284    -3.55   0.000    -4.931093   -1.419902 
     minutes | (exposure) 
------------------------------------------------------------------------------ 
(Standard errors scaled using square root of Pearson X2-based dispersion) 
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Correcting for overdispersion by negative-binomial regression 

 

The previous analysis may be inefficient, so we also undertake a negative binomial 

regression analysis.   
. xi: glm  lengthpx ptage i.ptsex  ezcompt mdlikept i.surgeon claims, family(nb 
> inom) lnoffset( minutes) nolog 
i.ptsex           _Iptsex_0-1         (naturally coded; _Iptsex_0 omitted) 
i.surgeon         _Isurgeon_0-1       (naturally coded; _Isurgeon_0 omitted) 
 
Generalized linear models                          No. of obs      =       121 
Optimization     : ML: Newton-Raphson              Residual df     =       114 
                                                   Scale parameter =         1 
Deviance         =  197.2955808                    (1/df) Deviance =  1.730663 
Pearson          =  203.1605871                    (1/df) Pearson  =   1.78211 
 
Variance function: V(u) = u+(1)u^2                 [Neg. Binomial] 
Link function    : g(u) = ln(u)                    [Log] 
Standard errors  : OIM 
 
Log likelihood   =  -276.385523                    AIC             =  4.684058 
BIC              = -349.4245414 
 
------------------------------------------------------------------------------ 
    lengthpx |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       ptage |   .0002238   .0078626     0.03   0.977    -.0151867    .0156342 
   _Iptsex_1 |   .5829174    .224159     2.60   0.009     .1435738    1.022261 
     ezcompt |    .129117   .1464301     0.88   0.378    -.1578809    .4161148 
    mdlikept |     -.1062    .153993    -0.69   0.490    -.4080207    .1956208 
 _Isurgeon_1 |    1.40706   .2687397     5.24   0.000     .8803401    1.933781 
      claims |   .0514741    .055639     0.93   0.355    -.0575763    .1605245 
       _cons |  -2.758854   .7874139    -3.50   0.000    -4.302157   -1.215551 
     minutes | (exposure) 
------------------------------------------------------------------------------ 
 

 
e. Interpret the results from this output and compare with the results of the 

unadjusted and adjusted poisson regressions that were undertaken originally? 
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