Notes for laboratory session 5

Logistic regression with grouped data

Open and list Finney’s dataset

. use finney,clear

. list

dose noexp deaths
1. 0 49 0
2. 2.6 50 6
3. 3.8 48 16
4. 5.1 46 24
5. 7.7 49 42
6. 10.2 50 44

Now create a new variable for the rate of deaths in each dose class and then produce a graph
showing the dose-death rate relation

. gen death r= deaths/ noexp
. label var death r "Death rate"

. sc death r dose, xlab(0(1)10) ylab(0(0.1)1)

It appears to follow some sort of sigmoid curve. The logistic transformation (log(p/1-p)) may
straighten the relationship. However the zero proportion will cause problems. We can duck this
problem by pretending half an insect died at dose 0.




replace death r= (deaths+0.5)/ noexp if deaths==

gen logit dr=log( death r/(l1- death r))
label var logit dr "Logit (Death rate)"

sc logit dr dose,xlab(0(1)10) ylab()

This is getting straighter. Now fit a logistic regression model for the probability of death using as

independent variable the dose

. blogit deaths noexp dose

Logit estimates

Log likelihood -124.31132

outcome Coef Std. Err z
dose .6051256 .0678099 8.924
cons -3.225663 .3699052 -8.720

Number of obs = 292
LR chi2 (1) 153.49
Prob > chi2 = 0.0000
Pseudo R2 = 0.3817
P>|z| [95% Conf. Interval]
0.000 4722207 .7380304
0.000 -3.950664 -2.500662

Notice that the binomial denominator (noexp) is required in the blogit command syntax. We can
tell Stata to report Odds Ratios instead of betas in the blogit output using the or option.




. blogit deaths noexp dose,or

Logit estimates

_________ +____________________________________________________________________

Log likelihood = -124.31132
_outcome | Odds Ratio Std. Err
dose | 1.831482 .1241925

Number of obs 292

LR chi2 (1) = 153.49

Prob > chi?2 = 0.0000

Pseudo R2 0.3817

z P>|z| [95% Conf. Interval]
8.924 0.000 1.603551 2.091811

est store Ml

The est
to use it for likelihood ratio tests later).

(estimates) command is used to save the Log likelihood of this model (we may want

a) Calculate the Odds Ratio (and its 95% confidence interval) by hand and compare it with the
second blogit output. Give a meaningful interpretation of this result. How can we
calculate the Odds Ratio for 3 units increase in dose?

If we want to visualize this model’s results we can obtain the linear predictions (log Odds) using the
predict command followed by the xb option.

. predict prel,xb

sc prel logit dr dose,xlab(0(1)10)
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As we can see in the previous graph our data are showing some curvature thus a quadratic term of
dose may be required to improve the fit

gen dose2=dose”2

blogit deaths noexp dose dose?2

Logit estimates Number of obs = 292
LR chi2 (2) = 162.67

Prob > chi?2 = 0.0000

Log likelihood = -119.71879 Pseudo R2 = 0.4045
_outcome | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_________ +____________________________________________________________________
dose | 1.513806 .359191 4.214 0.000 .8098049 2.217808
dose2 | -.0764208 .0277264 -2.756 0.006 -.1307635 -.0220782
cons | -5.466344 1.023386 -5.341 0.000 -7.472143 -3.460545

est store M2

As we can see the Log likelihood is raised by almost five units. We can check the significance of
this result using the 1 rtest command

lrtest M1 M2

likelihood-ratio test LR chi2 (1) 9.19
(Assumption: M1 nested in M2) Prob > chi2 = 0.0024

b) What do you think about the quadratic term? Verify the previous result using hand
calculations

We can produce now a graph showing the raw data and fitted lines obtained by the “linear” and the
“quadratic” model.

predict pre2, xb
label var pre2 "Linear prediction (gquadratic)"

sc prel logit dr pre2 dose,c(l . .) ms(i o o) || gfit pre2 dose ,xlab(0(1) 10) ylab()

We use gfit to connect the predictions of the quadratic model using a quadratic curve instead of
straight lines. As we can see the fit now is clearly improved.
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In many such relationships it is common for the response to increase linearly with the log of the
dose. We can try now to use the log of the dose as independent variable instead of dose and dose2.
We can also add one in dose when dose equals zero to avoid problems in the calculation of its

logarithm

gen logdose=log (dose+l* (dose==0))

label var logdose "Log(dose)"
. blogit deaths noexp logdose

Logit estimates

Log likelihood = -120.23794
outcome Coef Std. Err
logdose 3.182329 .3713164

cons -5.021747 .6130903

Number of obs 292

LR chi2 (1) = 161.63
Prob > chi?2 = 0.0000
Pseudo R2 = 0.4020
[95% Conf. Interval]

0.000 2.454562 3.910090
0.000 -6.223382 -3.820112

We cannot compare this model with the previous ones using likelihood ratio tests since this is not
the “nested models” case, but is clear that the log likelihood is now higher compared with the one of
the simple linear model (these two models have equal number of degrees of freedom) and slightly
lower compared with the “quadratic” model’s one, while in the same time the “log-dose” model is
more parsimonious. We can also check the fit of the model visually (the thicker curve corresponds

to the “log-dose” model).




. predict pre3, xb
. label var pre3 "Linear prediction (Log-dose)"

. sc prel logit dr pre2 pre3 dose,c(l . . .) ms(i o o o) || gfit pre2 dose ||
lowess pre3 dose ,xlab(0(1l) 10) ylab()
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As we can see the fit of the “log-dose” model is quite acceptable thus given its parsimony compared
with the “quadratic” model, this model may be the most preferable.

Estimating the LD50

The LD50 is the dose equivalent to a proportion responding (dying in our case) of 50%. On the
log(Odds) scale used by logistic regression this is zero (log(0.5/(1-0.5))=0). This means for a fitted
relationship y=a+bx we need x from 0=a+bx i.e. x=-a/b or —intercept/slope. CI’s for this ratio have
to be obtained using Fieller’s theorem to obtain the variance of this ratio. The formula that we will
use is as follows:

2[5 - e o)

It is first necessary to extract the betas and their variances and covariance and store them to local
macros




. mat li e(b)
e(b) [1,2]
logdose _cons
yl 3.1823292 -5.0217469
mat 1i e (V)

symmetric e (V) [2,2]

logdose _cons
logdose .1378759
_cons -.21970321 .37587971

mat coef=e (b)

mat varcov=e (V)

local a=coef[1,2]

local b=coef[1l,1]

local var_a=varcov|[2, 2]
local var b=varcov[l,1]

local cov_ab=varcov[1l, 2]

Now we can calculate the ratio, its variance and its 95% CI

local v_aOVb=("a'/ 'b'")"2*( “var a'/('a')"2 - 2*'cov_ab'/("a'*'b') +
‘var b'/('b')"2)

di "v_aOvb'
.0025494¢6

di -"a'/ b’
1.5780099

di -'a'/'b'-1.96*sqgrt("v_aOVb')

, —a'/'b'+1.96*sqrt('v_aOvb')
1.4790452 1.6769745

and on the actual scale

di exp(-‘a'/'b")
4.8453035

di exp(-‘a'/'b'-1.96*sqrt('v_aOVb')) , exp(-'a'/ 'b'+1.96*sqrt('v_aOVb'))
4.3887535 5.3493471

LD50 (95% Cl) = 4.85 (4.39 — 5.35)




Alternatively, one can use the Stata n1com command (Nonlinear combinations of estimators) either
in the log of dose scale (and then exponentiate)

nlcom —_b[_cons]/_b[logdose]

nl 1: - b[ cons]/ bllogdose]
\ Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
nl 1 | 1.57801 .0504922 31.25 0.000 1.479047 1.676973

di exp(1.57801), exp(1.479047), exp(l.676973)
4.8453041 4.3887612 5.349339

or directly in the dose scale

nlcom exp (- b[ cons]/ b[logdose])

nl 1: exp(—_b[_cons]/_b[logdose])
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
nl 1 | 4.845303 .2446499 19.81 0.000 4.365799 5.324808

Finally one can use a Monte-Carlo (simulation) approach by simulating from the bivariate normal
distribution of the coefficients, generating the required expressions of either log(LD50) or LD50
and calculating the median (for point estimation) and 2.5 and 97.5 percentiles (for a 95% CI) :

drawnorm b a ,means (coef) cov(varcov) n(100000) clear
gen log ld=-a/b
centile log 1ld,centile(2.5 50 97.5)

-- Binom. Interp. --

Variable | Obs Percentile Centile [95% Conf. Interval]
_____________ +_____________________________________________________________
log 1d | 100,000 2.5 1.475372 1.474592 1.476307

\ 50 1.577745 1.577387 1.578098

| 97.5 1.678726 1.677725 1.679655

gen ld=exp (log 1d)
centile 1d,centile (2.5 50 97.5)

-- Binom. Interp. —--

Variable | Obs Percentile Centile [95% Conf. Interval]
_____________ +_____________________________________________________________
1d | 100,000 2.5 4.372661 4.369254 4.376754

\ 50 4.844022 4.842286 4.845732

| 97.5 5.358723 5.353366 5.363706

Compare the results from all previous approaches.




