GENERALIZED LINEAR MODELS
Ordinal Logistic Regression
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Ordinal scales
Ordinal scales occur very frequently (examples: food-testing, classification of radiographs,
determination of physical or mental well-being)
The choice and the definition of the response categories: arbitrary or subjective

If a new category is formed by combining adjacent categories of the old scale, the form of the

conclusions should be unaffected
The above lead to models based on cumulative response probabilities rather than category
probabilities

y; =Pr(Y < j) rather than 7, =Pr(Y = /)
The two sets of probabilities are equivalent, but cumulative probabilities are likely to have
better properties
GLM models with link functions:

logistic scale : log{y, /(1-y,)}

comlementary log—log scale: log{—log(l-y;)}



Models for ordinal scales
R . o T_. - . o ;
logly.(x)/((I=y. ()} =x,-f'x ,j=1..I-1 I=#of categories (1)
where y. = pr(Y < j|x) cumulative probability up to and including category |

Model 1 1s known as the proportional-odds model because the ratio of the odds of the event Y= at

x=x; and X=X, 1S:

7 () [(L=y;(x))
- il - &1 =exp{~f" (x,—x,)}
}/j(lg)“"(l_}/j(lg))

which 1s independent of the choice of the category (j).

. : : . : : T.. :
The negative sign m (1) 1s a convention ensuring that large values of B~ X lead to an increase of
probability in the higher-numbered categories.

K must satistfy &, <K, <. <K,
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Fig. 5.1a. Diagram showing how the response probabilities for the logistic
medel (5.1} very with ¢ when § > 0. Response categortes are represented
as four contiguous intervals of the z-azis. Higher-numbered caiegories
heve greater shade density.
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Fig. E'I.b' Diogram showing how the probabilities for the four response
categories in the complementary-log-log model (5.3) vary with © when

0> 0. mi(z) and 74(x) each change by a factor of 10 or more, whereas
ra(z) ts almost constant over 1 < ¥ < 4.



Logistic regression: a latent-variable approach

Imagine a continuous measure U, which 1s related with the outcome so that the probability of
“success” n=PY =1)=P{U>x). Conversely, 1-n=P(Y=0)=P(U <x). In other words,
“success” occurs when the underlying (latent) variable attains measurements above a threshold «.

The logit model can be derived as follows: The contmuous variable U is related to a set of

explanatory variables X, X, ,-- -,Xp by a linear model
T — * v & w * p— *' .
U=pX+ +;3po+£_|3 X+

where ¢ 1s distributed according to distribution F(g). Notice the absence of an intercept in this

formulation (in some references, the intercept 1s retained and 1s grouped later with the threshold «).



The latent-variable approach*
From above,
7=PU >x)
=P{U-p*X>x—-p*'X)
:P[g};c—ﬁ**X] =1-F(x—p*'X)
Thus, l-nt=F(x—p*'X)
Fll-m)=x—-p*X=n*.

X . This is a generalized linear model with link n=g(m)=F(1-n)

where n* :K—BTXI —-- -—BP »

for some distribution F.
Notice that we defined n=P(Y =1)=P(U >«)to remain consistent with the results of the STATA

output. Although this resulted i deriving the model in terms of the probability of “failure™ 1t will

not affect the results.




Latent-variable approach

The continuous measure U, which 1s related with the outcome so that the probability of “success”

n=P(Y =1)=P(U >«) 1s shown below:




The latent-variable approach

The advantage of the latent-variable formulation 1s

e The model arises frequently in this manner in the real world

e This formulation aids in the understanding of other possibilities of distributions for € (e.g.. n

probit or complementary log-log regression)

e This formulation leads to a more natural generalization to ordinal outcome variables




Logistic distribution

The logistic random variable X with mean p and variance ¢ has a cumulative distribution function

and density function

F(x| 1,0) = {1 +exp[-7(x— 1) (B3]}

—00 < X < OO

< < o >0, X ~logistic(u, o)
E(X)=u; Var(X)==z

3

flx|p.o)= :::/T:F(r' w.o)l-F(x|uo)l

Consider the “canonical form™ (u1=0, c=1) which corresponds to the random variable Z with mean

=0 and variance 7°/3 . It has cumulative distribution and density functions:

|
l+e~
f(Z)=F(Z)[1-F(Z)]

F(Z) =




Logistic regression

=
. e _ 1 e .
If F(e) 1s the logistic distribution then, 1-n=F(*)=——— << n=——. Substifutingn we

{1%‘“1 {1%‘"1

,where f =—x and ﬁj = ﬁ;

have,
e(ﬁﬂ +B X+ -+,8po)

=
[1+e(’8° thXyreh pxp}}

This 1s of course the ordinary logistic regression model. This can also be extended by setting

F =@, the standard normal distribution function. This is the probit regression model =0 1(1-n)

n=1-®n )=P¥ =1) :f:” Jl_exp(—%f}ix

il 2

A less frequently used analysis mvolves the “complementary log-log” (or c-log-log) link
nzlog[—log(l—n:)]

which corresponds to the extreme-value distribution t=F(n)=1—e"¢ "




The logistic, probit and c-log-log links

The logistic regression and probit regressions tend to give similar results, although, since the logistic
distribution (u=0, c=1) has standard dewviation ﬂr/ ‘\E . logistic-regression coefficients should be

divided by fr/ \/?: before compared to probit-regression coefficients.




Logistic regression analysis

We repeat here the analysis of the contraceptive use by fitting the two-factor additive model:

char moref[omit] 0
®xi: logit cuse i.more i.age [freg=N], nolog
i.more Imore 0-1 (naturally coded; Imore 0 omitted)
1.age Tage 1-4 (naturally coded; Iage 1 omitted)
Logit estimates Number of obs 1607
LR chiZz (4) = 128.88
Procb > chiZz = 0.000
Log likelihood = -937.40449 Pseudo R2 = 0.0643
cuse | Coef Std. Err z P>z | [95% Conf. Interval]
_________ +____________________________________________________________________
Tage 2 | .3678306 .1753673 2.097 0.03¢ 024117 .7115443
Iage 3 | .8077888 .1597533 5.05 0.000 .494¢678 1.1209
Tage 4 | 1.022618 .2039337 5.014 0.000 .6229158 1.422321
Imore 1 | .824092 .1171128 7.037 0.000 -1.053629 -.5945552
_cons | .3698414 .1571298 5.536 0.000 -1.17781 -.5618727




Analysis as an ordinal logistic regression
The former model can be analyzed as an ordinal regression model. We can 1magine some latent

measure U such that P(U=x)=P(Y=1). The output of the command ologit is as follows:

®xi: ologit cuse i.more i.age [freqg=N], nolog table
i.more Imore 0-1 (naturally coded; Imore 0 omitted)
i.ags Tage 1-4 (naturally coded; Iage 1 omitted)
Ordered logit estimates Number of obs = 1607
LE chiZ (4) = 125.88
Prob > chi? = 0.0000
Log likelihood = -937.40449 Pseudo RZ = 0.0643
cuse | Coef. Std. Err. z Ex|z| [95% Conf. Interval]
_________ +____________________________________________________________________
Tags 2 | .36783086 .1753673 2.0987 0.036 .024117 .7115443
Iage 3 | .8077888 L1597533 5.058 0.000 .484878 1.1209
Tage 4 | 1.022618 .2038337 5.014 0.000 .82248158 1.422321
Imore 1 | -. 824082 L1171128 -7.037 0.000 -1.053¢629 —.5845552
_________ +____________________________________________________________________
_cutl | 86558414 15712498 (Ancillary paramseter)
cuse | Probability Observed
_________ |_____________________________________ .
No |  Prl xb+u<_cutl) 0.6845 No contraceptlv_e use
Yes | Pr( cutl<zb+u) 0.3155 YeS, Contraceptlve use




Interpretation of results

The model fitted by STATA is P(Y =1| X, X,) = P(U > k| X, X,) =1-(X) = 13;()'(%‘:{‘_?{) ._

where y=P(U <«). The estimates Pi..... P4+ measure the log-odds ratio of each factor as before.

Notice that the estimates of the intercept and the estimate of the cutoff point k¥ are equal but have

opposite signs, that 1s, k = B, - the mtercept estimated by an ordinary logistic regression.
It 1s very important to notice that the odds ratio does not depend on k. We see this by comparing
two 25-29 years of age. one that desires more children and one that does not. The odds ratio of these

two women in terms of using contraceptive methods 1s

_ P(Y=1X;=1X,=1)/P(Y=0/X,=LX,=1) 1-y(X;=1.X,=1)/y(X;=1X,=1)
- P(Y=1X;=1.X,=0)/P(Y=0/X;=1X,=0) 1-y(X;=1X,=0)/y(X;=1X,=0)

exp(By+B4 —x) 1
_ l+exp(Py+Py—x)/ l+exp(By+Py—x) _ exp(By+B4—x) _
exp (P —x) 1 exp(By—x) exp(B,)

lrexp (B —x)/ l+exp(Py—x)




Interpretation of the results (continued)

Fimally, consider the following table of the overall use of contraceptive methods in the sample:

tab cuse [freg=N]

Contracepti |

ve use |

(Yes/No) | Freq. Percent Cum.

____________ e

No | 1100 €8.45 680.45

Yes | 507 31.55 100.00

____________ e
Total | 1607 100.00

Notice that the percentage of contraception use 1s 0.3155 and of no use 1s 0.6845. These are exactly

the estimates of the probabilities listed by the table option in the 010git command.




Predicted values

The predicted probabilities of contraceptive use are produced as follows:

The probabilities P(Y =1|x) =1-y(X, =x,--- X, =x,) = :?;fé;i;f ;;f;i) . For example, for a

woman 25-29 years old that desires more children, we have:

exp[-.824002+0.3678306-.8698414] 020980474
l+exp|-.824092+0.3678306-.8608414 |

n=P(Y =1)=1-7(1,0,0]1)=

We see this from the following output:

predict p0 pl
(option p assumed; predicted probabilities)

list age educat more cuse p0 pl 1f age==2 & more==

age educat more cuse pO pl
9. 25-29 High Yes Yes . 7901953 2098047
10. 25-29 Low Yes No . 7901953 2098047
11. 25-29 High Yes No . 7901953 2098047
le. 25-29 Low Yes Yes . 7901953 2058047

where p1 1s the predicted probability of contraceptive use and p0 of non-use.




Probit regression analysis

Xi: probit cuse 1.age 1.more
1.age Iage 1-4
i.more Imore 0-1

[fregq=N], nolog
(naturally coded; Iage 1 omitted)
(naturally coded; Imore 0 omitted)

Problit estimates Number of obs = 1607
LR chiZ2 (4) 127.5:
Prob > chi?2 = 0.0000
Log likelihood = -938.09112 Pseudo R2 = 0.0636

cuse | Coef std. Err z P>z | [95% Conf. Interval]
_________ o
Tage 2 | .2086109 .1003457 2.079 0.038 0119369 LA405285
Tage 3 | LA4685637 .092832¢ 5.047 0.000 2866152 .6505122
Tage 4 | .6048679 1226446 4.932 0.000 3644889 .8452469
Imore 1 | -.49e4¢l8 .0714451 -6.949 0.000 -.6364916 -.3564319
cons | -.515345 .0922618 -5.58¢ 0.000 -.6961748 -.3345152

We notice that the results are almost identical to the logistic-regression analysis. Recall however

that the logit coefficients are not standardized but must be divided ,f-r/ \ﬁ . Having done this, the

estimates are extremely close.

713 ~1.81




Ordinal regression
If ¥ 1s the outcome variable taking I response categories y, <y,---<y, ,<y,. Then if U 1s
distributed according to a continuous distribution F we define Y, = PU < K ), j=L1---ITwith «

1 =%
so vy, =P(U=x,)=1. The probability of the first outcome 1s 7t

= ';flaud for each jﬂ‘ outcome it 1s.

SV YT =L.../-land , =1-y

I-1
The situation 1s shown graphically, for the logistic-distribution situation and /=5:

1 1
37

,/’ \
/ .
2 i

Logistic pdf
-

= Epsilon %3 1




Treatment of lung cancer (Holtbrugge and Schumacher, App Stat, 1991)
Consider the followimg example: Lung-cancer patients were randomized to receive two different
kinds of chemotherapy (sequential therapy and alternating therapy). The outcome was classified as
“progressive disease”, “no change”, “partial remission” and “complete remission”. The goal of this

analysis 1s to compare the two therapies in terms of patient outcome. The data are presented below:

Progressive No Partial Complete

Therapy Sex Disease Change  remission remission
Sequential Male 28 45 29 26
Female 4 12 5 2
Alternative Male 41 44 20 20
Female 12 7 3 1

We will analyze these data as an ordinal-regression model with four categories (1.e., I=4).




The proportional-odds model

Since v, =P(Usk )=PU-pXsk —pX)= Plesx;—p'X|= F(x ,—p'X). Thus,

B 1
J l+exp(P'X—x ;)

Y

1-y. J

'V
Thus, the log-odds of the response variable being less than or equal to x; 15102{
J

] —(B'X-x)

and thus the log-odds ratio for two ditferent values of x; and x; 1s -B'(x, —x,). which 1s independent

C. Pr(Y = v, | X
of j. This is called the proportional-odds model (alternatively: log(C,) =log(—'—) =log| 4> ] J]).

1-C Pr(Y, < 1, |.Y)

I

The proportional-odds model implies that the relationship between each of the covariates X and Y 1s
independent of 1. 1.e., log odds ratio across response categories 1dentical. It 1s invariant when codes
of the response Y are reverse (i.e., yi=complete remission. etc) and under collapsibility of the

categories (1.e., categories 1 and 2 combined).




Ordinal data analysis

Analysis proceeds with STATA’s command ologit. The output is as follows:

char sex[omit] 2
xi: ologit outc i.sex i.therapy, nolog tab
i.sex Isex 1-Z (naturally coded; Isex 2 omitted)
i.therapy Ithera 0-1 (naturally coded; Ithera 0 omitted)
Ordered logit sstimates Number of cbs = 295
LE chiZ (2) = 10.91
Probh > chiZ = 0.0043
Log likelihood = -394.52832 Eseudo RZ = 0.0136
out Coef 5td. Err z Px|z| [95% Conf. Interwvall
Isex 1 .5413938 .2871816 1.885 0.05% -.0214717 1.104255%
Ithera 1 -.580&85 .2121478 -2.737 0.008 -.9964871 -.164883
_cutl -.7766452 .2880856 (EAncillary paramsters)
_cut2 . 1906273 .28662Z23
_cut3 1.8414%5 .30561Z23
out Probability Obssrved
Progress Pr{ xb+u< _cutl) 0.2843 85/299 progressive disease
No chang Pr( cutl<zb+u< cutZ) 0.361Z2 108/299 no change
Partial Pr{ cutZ<zxbtu< cut3) 0.190¢ 67/299 partia| remission
I T S e e
COmpoSte Pz (_cut3<xbtu) 016379 49/299 complete remission




Interpretation of the coefficients

The estimated coefficients 3, and B, are respectively the log-odds ratios of having each of the four or

more outcomes versus having any of the previous ones, between males and females and those
receiving alternating versus sequential therapy.

THE PROPORTIONAL-ODDS MODEL SPECIFIES THAT THERE IS NO DIFFERENCE
IN THE ODDS RATIO REGARDLESS OF THE DICHOTOMIZATION OF THE
RESPONSE

For example, two male subjects receiving different therapies have log-odds ratio of experiencing

outcome j or higher versus any of the outcomes 1.....j—1 equal to

| exp(B+py ) 1
P(Y=>jlX,=1.X,=1)/P(¥Y<jX,=1.X,=1 ltexp(f,+B,—x ) | l+exp(f+B,—x )
log(¥) =log| TU>/ LA D/PXEIN XD | g Lz e
P(¥>j|X,=0.X,=1)/P(Y<j|X,=0.X,=1) exp(fy—x ;) )
l+exp( B, —x‘j) l+exp(B, —.rcj}

This does not depend on which outcome we refer to. A simular argument holds for ..




Interpretation of the coefficients (continued)

e sex: The estimate ﬁl =0.541, which is translated to an estimated odds ratio of ¢%>%1=1.72.

Males receiving the same therapy are 72% more likely than females to experience full remission
versus at best partial remission (or partial or full remission versus at best no change and so on).

The gender effect 1s significant at the 10% but not the 5% level.

e therapy: In this case, we have Bj =—0.581. This means that the odds ratio of two subjects of

the same gender is e~ %31 x0.56. Subjects receiving alternating therapy (X>=1) are almost half as
likely as subjects receiving sequential therapy to experience full remission versus at most a partial
remission. Equivalently (by the assumptions of the proportional-odds model), the odds ratio are
the same for these subjects in terms of the experience of partial or complete remission versus no

change or progressive disease.




Interpretation of the ordinal model
The underlying logistic distribution 1s:

1 1 | e
)=

l+e l+e © (IH_ET

JE)=F()*[1-F(eg)]=

according to an index ¢ that is related to patient outcome (e.g.. percent change of tumor size). For

example, the logistic pdf for male subjects receiving alternating therapy 1s shown below:




Interpretation of the model (continued)

! . j=12.3. For the previous example of male

The probabilities Y; (X, X,)=

subjects receiving alternating therapy (1.e.. X  =LX, =1)we have:

|

~0.3235821
1-|—exp[{}.54'1 393 8+(—0.580685)—(—0.??66492)]

(L) =

1
'1+exp[0.5413938+(—0.580635)—0.?9062?3 }

7. (L= =0.6963377

|

=0.86769624
1+exp[0.‘54'1 3938+(—0.580685)—1.84145 ]

:yj (1_ ]_) =

Thus, the probabilities in this group 7, (L) = '}*’1(1,1) =0.323, n,(LD)=v, (L) —vy . (1.1)=0.373,

n (L)=y,(L)—7,(11)=0.171 and 7,(L)=1-y,(L1)=0.132.
Male, alternating therapy: 125

Progressive disease: 41
41/125=0.323




The predicted probabilities are produced by the command predict

Probit analysis

The previous example can be easily analyzed via probit analysis. The STATA output follows:

Xi: oprobit outc i.sex i.therapy, nolog
1.5ex Isex 1-2 (naturally coded; Isex 2 omitted)
i.therapy Ithera 0-1 (naturally coded; Ithera 0 omitted)
Ordered probit estimates Number of obs = 299
LR chiZ (2) = 10.79
Prob > chiZ = 0.0045
Log likelihood = -394.5871 Pseudo R2 = 0.0135
outc | Coef std. Err z P>|z| [95% Conf. Intervall]
_________ +____________________________________________________________________
Isex 1 | .3401406 .174502 1.945 0.052 —.0026¢61 .6829422
Ithera 1 | -.33447¢4 .125435 -2.667 0.008 -.5803245 -.0886282
_________ +____________________________________________________________________
_cutl | -.455358 .176613 (Ancillary parameters)
_cutz | 5050685 17601597
_cut3 | 1.122025 .1836877

The coefficients of the probit regression are similar in sign and size to those of the logistic

regression, if the latter are divided by nt/+/3 .




A test for the validity of the proportional-odds assumption

. ¥i: omodel logit outc i.therapy i.sex
i.therapy Ithera 0-1 (naturally coded;

Ithera 0 omitted)

i.sex Isex 1-2 (naturally coded; Isex 2 omitted)

Iteration 0: log likelihood = -39%.98398

Iteration 1: log likelihood = —-394.53988

Iteration Z2: log likelihood = -394 52832

Iteration 3: log likelihood = -394.52832

Ordered logit estimates Number of cbs 299
LE chiZ (2) = 10.91
Prob > chiZ = 0.0043

Log likelihood = -394.52832 Pseudo RZ2 = 0D.013¢

outc Coef S5td. Err bt P>|z| [95% Conf. Interwval]
Ithera 1 -.580e85 2121478 -2.737 0.006 -.9964871 -.164883
Isex 1 5413938 287181¢ 1.885 0.059 -.0214717 1.10425%
_cut —-.7766452 2880856 (Ancillary paramsters)
_cutZ 1906273 2866223
_cut3 1.58414% 3056123

Lpproximate likelihood-ratio test of proporticnality of odds
across response categories:

chiz() = = 3.2¢ DF: (3-1)*2=4

Prob > chiZ = 0.5147




Checking the proportional-odds assumption
The approximate likelihood-ratio test reported by the omodel command tests the hypothesis that
the coefficients in models arise from arbitrary dichotomization of the outcome variable (e.g.,
complete remission versus up to partial remission, partial and complete remission versus no change
or progressive disease and no change or better versus progressive disease).
The test has four degrees of freedom equal to the number of pair-wise comparisons between the
dichotomizations of the outcome variable minus one times the number of the coefficients of the
model. The approximate value 1s 3.26. which, compared to a chi-square with 4 degrees of freedom
results in a non-significant p-value 0.5147.

There 1s no evidence that the proportional-odds assumption is violated in this model.




Constrained multinomial models*
The proportional-odds or cumulative-logit model 1s a multinonual model where some constrains
have been imposed on the coefficients. In this case. and all the other models we consider, we allow
tor different intercepts, but force the slope coefficients to be equal for the various dichotomizations

of the outcome variable. The proportional-odds model is given as follows:

=a_ —X'p. where y =P(U=<=x).j=1...1-1
SR J J

The adjacent-categories model specifies that the effect of the explanatory variables is constant

across adjacent categories. Different mtercepts are allowed here as well. The model is given by

log_[ Yo—a +x'B, j=2....1
Pj 1 J

A specialized model is the continuation-r atio model. Tt specifies that, to reach each subsequent

category, one has to go through the previous ones. This model is applied mostly to education

research. It is given from the following equation:

Pr(¥Y=j|x) ) .
log| PI{},JM] o +x'B . j =2, d




