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The Poisson distribution

Poisson regression 1s appropriate for
e variables that take non-negative integer values and have highly skewed (1.e., asymmetrical)
distributions. For example counts or events over a period of time, like number of customers
visiting a bank over a period of time, number of accidents, number of deaths etc
e Rates: events over total prys during which events happened
e Analysis of contingency tables (see Agresti Alan: Categorical data analysis).
The Poisson probability density function is given by
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The mean and variance of the Poisson distribution 1s

EX)=rand Var(Y)=»xr



The Poisson as an approximation to the Binomial distribution
Example: Flying-bomb hits in London during World War II
A classic example that shows the derivation of the Poisson distribution as an approximation to the
biomuial B(n.1) when n—wcand m— 0 but A =»nn remains fixed is as follows:
The table below lists data from flymmg bomb hits in south London during WWIIL. The city was
divided mto 576 areas of one quarter square kilometers each. There were 537 hits. averaging

% =0.9323 hits per grid. The data are given below:

Hits 0 1 2 3 i 5+ A=537/576=
Observed 229 211 93 35 7 1 0.9323
Expected 2267 2114 986 306 7.1 1.6

Assuming that each particular area had a small chance of being hit but having a large number of

attempts leads to a Poisson distribution that approximates well a binomuial B(n. p).




Flying bomb hits of London (continued)

The observed and expected frequency distribution 1s given in the graph below. The agreement is

astounding!
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Scientific productivity example (McGinnis, Allison and Long, 1982, Allison, 1999)
An example of a data set that can be analyzed by Poisson methods 1s as follows: 557 male

biochemuists received their doctoral degree from 106 American universities in the late 1950s and

1960s.

PDOC 1 if received postdoctoral traming, 0 otherwise
AGE Age 1n years at completion of Ph.D.
MAR 1 if married. O otherwise

DOC Measure of the prestige of the doctoral mstitution
UND Measure of the selectivity of the undergraduate mstitution
AG 1 if degree 1s from an agricultural department. 0 otherwise

ARTS Number of articles published while a graduate student

CITS Number of citations to published articles

DOCID ID number of the doctoral institution




Scientific productivity example (continued)
The frequency distribution of the number of publications 1s given below: This distribution 1s a good

candidate for analysis by a Poisson model in terms of its skewness and few non-zero observations.
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The goodness of fit test for a Poisson distribution however, is highly significant (i.e., does not

support a Poisson-distributed variable). Notice that you must run a Poisson model before poisgof.

gquietly poisson arts
poisgof

Goodness of f£fit chi-2 = 1087.82
Prob > chiZ2 (556) = 0.0000




Analysis with a Poisson GLM
As in any GLM analysis, the expected value of the outcome variable Y, or a function thereof, is

associated with a linear combination of the explanatory variables as follows:

glEM)|=g()=B_+PpX, +-- +B,X,

In the case of the Poisson mean, because A 1s always positive, the function g(.) is chosen so that the

linear predictor n=p_+p, X, + -+, X, that can take any real-number value, gets mapped mto the

positive real numbers. A good candidate function (link) for the Poisson GLM 1s the logarithm as

follows:

log(1) =B, +B X, +-+B, X =n

The coetticients BB -,Bp are estimated via maximume-likelihood estimation.




Analysis of the scientific-productivity example
We carry out the Poisson regression using either the poisson or glm command in STATA. Here

we prefer the g1lm command. because it produces the deviance that will be useful in the following.

Xi: glm arts age i1.mar doc und i.ag , nolog fam(polisson)
il.mar Imar 0-1 (naturally coded; Imar 0 omitted)
i.ag Iag 0-1 (naturally coded; Iag 0 omitted)
Residual df = 551 No. of obs = 557
Pearson X2 1497.36 Deviance = 1078.906
Dispersion = 2.717532 Dispersion = 1.958087
Polsson distribution, log link
arts | Coef std. Err z P>z | [95% Conf. Intervall]
_________ +____________________________________________________________________
age | -—-.01leb5¢el3 .0101663 -1.629 0.103 .03e48¢8 .0033642
Imar 1 | -.0153¢ll .13002¢7 -0.118 0.906 .2702088 .2354865
doc | -.0000399 .0004551 -0.088 0.930 .0009315% .0008521
und | 0723311 .0303235 2.385 0.017 .0128981 .1317641
Iag 1 | .04215893 .099889 0.422 0.673 .1536194 .237938
_cons | -.0401209 .3897091 -0.103 0.918 .80393¢66 . 7236948




Interpretation of the coefficients

The coefficients B, -,Bp denote the change in log(X) for each one-unit change in the corresponding

explanatory variable. In our example, the only significant variable 1s UND, the selectivity index of
the under graduate institution. So, if two observations i and j have a difference of one unit in

explanatory variable X4 (UND), that 15 X —XH =1, while all the other explanatory variables are

the same, then the difference in log(A) will be log( 2. ) log( . ) log| —.:[3 4 In other words,
| fj |
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That 1s, P4 —1=¢00723 _1-0.07498 (1.e.. about 7.5%) is the percent increase in the expected number

of publications for each unit increase of the selectivity of the undergraduate mstitution.




Overdispersion

By the assumptions of the Poisson model, the expected value (mean) of the Poisson distribution 1s
theoretically equal to its variance. Frequently this is not the case and the variance 1s much higher
than the mean. In that situation, we have what 1s called overdispersion.

One way to detect this 1s by mspection of the Dispersion category below the deviance or Pearson
chi-square statistics. This 1s the deviance or Pearson chi-square statistic divided by the number of
degrees of freedom. If it 1s much larger than 1.0, it may indicate the presence of overdispersion.

As a cautionary note one must be aware that the deviance and Pearson chi-square statistics do not
approximate a chi-square distribution well in the case of individual data or when the predicted values
are small. In this case however, the scaled deviance value of 1.96 and scaled Pearson chi-square of

2.72 point to a potential problem with the model.




Overdispersion (continued)

One way to deal with overdispersion 1s to divide the chi-square statistic that tests the significance of

each variable by the scaled deviance or scaled Pearson chi-square (or equivalently multiply each

standard error by the square root of the scaled deviance or scaled Pearson chi-square: Agresti, 1996).

The theory of quasi-likelihood (McCullagh and Nelder, 1989) suggests that the latter is better. In the

example this 1s done as follows:

Standard Adjusted
Variable Estimate  Scaled Pearson X2 error standard error  Adjusted = p
AGE -0.0165613 2.717532 0.0101663 0.0167590 -0.988 0.323
MAR  -0.0153611 2.717532 0.1300267 0.2143482 -0.072 0.943
DOC  -0.0000399 2.717532 0.0004551 0.0007502 -0.053 0.958
UND  0.0723311 2.717532 0.0303235 0.0499881 1.447 0.148
AG  0.0421593 2.717532 0.0998890 0.1646663 0.256 0.798

We see that although the estimates themselves do not change. there are no significant predictors of

the number of publications, which indicates that our original results were possibly wrong!

Sqrt(2.717532)=1.6848939




Analysis accounting for overdispersion
The adjustment of the tests and estimates above can be performed automatically by mcluding the
option scale (x2) (the x2 m the parenthesis indicates Pearson X2). The results are identical to

the above table.

®¥i: glm arts age i.mar doc und i.ag , nolog fam(polisson) scale(x2)

1.mar Imar 0-1 (naturally coded; Imar 0 omitted)

i.aqg Iag 0-1 (naturally coded; Iag 0 omitted)

Residual df = 551 No. of obs = 557
Pearson X2 = 14597.36 Deviance = 1078.506
Dispersion = 2.717532 Dispersion = 1.958087

Poisson distribution, log link

arts | Coef. std. Err z P>z | [95% Conf. Interval]
_________ o
age | -.0lebel3 016759 -0.988 0.323 -.045%4084 .0162858
Imar 1 | -.0153¢ll .2143482 -0.072 0.943 -.4354759 LA4047536
doc | -.0000399 0007502 -0.05: 0.958 -.0015103 .0014305

und | .0723311 .0499881 1.447 0.148 -.0256439 .170306
Iag 1 | .0421593 .16de663 0.25 0.798 -.2805808 .3648554
_cons | -.0401209 . 642433 -0.062 0.950 -1.2992¢6¢6 1.219025

(Standard errors scaled using square root of Pearson XZ-based dispersion)




Accounting for overdispersion: The Negative Binomial distribution

The Poisson model log( ?-,):BO+B1‘1'1+---+BPXP, does not allow for extra variability and 1s thus

susceptible to problems with overdispersion. One way to correct for that while avoiding the

inettficient adjustment procedures discussed earlier 1s by mtroducing an extra variation term &.

log(A) =B, +B, X, +-+B, X +e

Assuming that the distribution of Y conditional on € 1.e., F(Y]e) 1s Poisson with parameter A and the
distribution of exp(e) 1s standard Gamma (Agresti, 1996, p. 74). then the unconditional distribution
of Y F(Y) 1s negative binomual.

The negative binomial model 1s fit in STATA either by the nbreg command, or the g1lm command

by specifying family (nbinom) as the family of distributions. The default 1s a log link.




Analysis via negative binomial regression

The analysis via negative-binomial regression 1s produced below:

Xi: glm arts age i.mar doc und i.ag , family(nbinom) nolog
l.mar Imar 0-1 (naturally coded; Imar 0 omitted)
i.ag Iag 0-1 (naturally coded; Iag 0 omitted)
Residual df = 551 No. of obs = 557
Pearson X2 = 805.475 Deviance = ©02.3391
Dispersion = 1.4618342 Dispersion = 1.093174
Negative Binomial (k=1) distribution, log link
arts | Coef Std. Err z P>|zZ| [95% Conf. Intervall
_________ +____________________________________________________________________
age | -.0179106 .014155¢ -1.265 0.206 -.0456552 .0098339
Imar 1 | -.0082166 .178831¢ -0.04¢6 0.963 -.3587201 .3422869
doc | .0000457 .000615¢ 0.074 0.941 -.0011686 .00126
und | .0709435 .0411262 1.725 0.085 -.00%6623 .1515454
Tag 1 | .0463115 .1356871 0.341 0.733 -.2196299 .3122537
_cons | -.0272551 .540429 -0.05 0.960 -1.086476 1.0319¢66

The coefficients are similar to those generated by the poisson regression model. and the dispersion
value 1s a great deal closer to 1.0. The undergraduate selectivity index is significant at the 10% level

but not the 5% level 1n this analysis. No other factors are significant.

Var(Y) = u+ku’




Adjustment for varying time of observation

The Poisson and negative-binomial model assume a fixed (or constant) time of observation. like
accidents over a period of time. colds over a season and so on. In the previous example. the data
were collected over the same period of time for all observations.

When this is not the case, the varying time of observation must be accounted for by the model.

In the Poisson model we incorporate time into the model as follows:

Mt

rLt) e

0.1)

!

where 7; 1s the time of observation for subject 7. so that the expected number of occurrences 1s Ait;.

P(YE_ =r)= , Where =0,12....




Models for Rates
Examples:
e Incidence rate of lung cancer in Finish females m 1990
e Mortality rate of men working in the rubber-manufacturing industry
British doctors study
The following data are from a famous cohort study with main aim the investigation of the effect of

smoking on coronary heart disease (CHD) among male British doctors.

Agegr Smokes Deaths Prys
1: 35-44 1 32 52407
2:45-54 1 104 43248
3:55-64 1 206 28612
4:65-74 1 186 12663
5: 75+ 1 102 5317
1: 35-44 0 2 18790
2:45-54 0 12 10673
3:55-64 0 28 5710
4:65-74 0 28 2585
5: 75+ 0 31 1462

Smokes: 1 for smokers 0 for non-smokers



Construction of Poisson frequency records

Usually data are collected by individual and therefore are stored in the form:

id Age (1n years) Smokes
101 44 1
102 51 1

Note: Remember the Lexis diagram (in epidemiology)

Date entry
1/1/54
3/9/58

Date exit
3/8/71
5/10/69

CHD

To construct from individual data Poisson frequency records as in the example above, you can use

the stata commands: stset and stsplit (see manuals)

Exercise: Complete the following table

Group Person-years of CHD deaths Death rate per Rate ratio
follow-up 1000 person-years

Non-Smokers 39.220 101 2574 1

Smokers 142,247 630 4,429 1.732

Reminder: Crude rate ratio: ignoring age group. In this example=1.72 INTERPRETATION ?




Models for rates
Consider events which occur independently in periods of time t; with rates A;. The random variable
Yi represent the number of events m periods of time t; and have the Poison distributions, with mean
1;=A;t;. The mean can be modelled using a linear predictor of p explanatory variables X;1, Xp, ..., Xjp

via a suitable link function.

In Poisson nearly always link function: Log
e maps positive values of u to the whole line for the linear predictor
e parameters easily interpreted in terms of multiplicative effects on the rates scale

e it 1s the canonical parameterization for the Poisson distribution

Model: In(})) =B, +Byx; +..+B X,
or in terms of the mean
In(u,)—In@,) =B, +Bx,; +.+B,x, =In,) =InE) +, +B,x,; +..+P X,

t; with regression coefficient set equal to 1 (through an offset in the model)



Analysis of the doctor’s data: effect of smoke
xi. poisson deaths i.smokes, e(prvs)
1.smokes _Ismokes 0-1 (naturally coded: Ismokes 0 omitted)
Iteration 0: log likelihood = -480.77391
Iteration 1: log likelihood = -480.52234
Iteration 2: log likelihood = -480.52206
Iteration 3: log likelihood = -480.52206

Poisson regression Number of obs = 10

LR chi2(1) = 29.09

Prob =chi2 = 0.0000

Log likelithood = -480.52206 PseudoR2 = 0.0294

deaths Coef. Std. Err. z P>z [95% Conf. Interval]
_Ismokes 1 .5422211 .1071834 5.06 0.000 3321454 7522968
_cons -5.961822 .0995037 -59.92 0.000 -6.156845 -5.766798

prys (exposure)




Analysis of the doctor’s data: effect of smoke — Interpretation

Bo=-5.96 : The estimated log-rate for non-smokers
e96=0.0026 or rate of CHD for non-smokers: 2.5799 per 1000 prys
B1=0.542 : the estimated difference in log-rate between non-smokers and smokers
e?2%=1.7194 or rate ratio=1.7194 or smokers have 71.94% higher probability of dying from

CHD compared to non-smokers.

NOTE: The rate ratio 1.72 1s crude, 1.e. unadjusted for age (compare 1t with that found in exercise

above).



Doctors’study: Adjusted for age effect of smoke

xi. poisson deaths i.smokes i.agegr, e(prys)

LR chi2(5) = 92293

Prob >chi2 = 0.0000

Log likelihood =-33.600153 PseudoR2 = 09321

deaths Coef. Std. Eir. z P>z [95% Contf. Interval]
_Ismokes 1 3545356  .1073741 3.30 0.001 1440862  .564985
_Tagegr 2 1.484007  .1951034 7.61 0.000 1.101611 1.866403
_Tagegr 3 2.627505  .1837273 14.30 0.000 2.267406 2.987604
_Tagegr 4  3.350493  .1847992 18.13 0.000 2.988293 3.712693
_Tagegr 5 3.700096  .1922195 19.25 0.000 3.323353 4.07684
_cons -7.919326  .1917618 -41.30 0.000 -8.295172 -7.543479

prys (exposure)

Rate/1000 pys for non-smokers age 35-44: 0.3636 [exp(-7_1917618]
Adjusted Rate ratio: e?37436=] 4255: 95% CT: (01440862 ¢0.364985)= (] 16, 1.76)



Risk, Rate and survival time

1. Risk (or odds) are estimated from studies where each subject 1s assumed to have been followed
for roughly the same length of time (e.g. case-control studies). Logistic regression is typically
used.

2. Rates are estimated from studies where each subject cannot be assumed to have been followed
for the same length of time (e.g. cohort studies, clinical trials without early withdrawals), but
true rate can be assumed to be constant over reasonably broad bands of time (Lexis
diagram). Poisson regression models are typically used.

The basis of the analysis of survival time 1s time to event, often with censoring. Cox’s

L

proportional hazards models and Kaplan-Meier survival curves are typically used (see survival
course). It has similarities to Poisson regression. but 1s based on finer subdivision of time,
(Note: a Poisson model for number of events 1s equivalent to an exponential model for times
between events).

NOTE: In certain cases (as in the assignment) we can assume that prys or exposed population
remains the same. e.g. number of daily total deaths in Athens. the population (and thus prys) is
assumed to remain constant.



Number of utterances about prognosis
The following data set (Christakis and Levinson, 1998) describes the analysis of the number of
utterances concerning prognosis by a doctor during a patient visit. The relevant variables are as

follows:

LENGTHPX  Number of utterances regarding prognostic material

PTAGE Patient age (years)

EZCOMPT Doctor’s rating of how easy 1t was to communicate with patient (1-5)
MDLIKEPT  Doctor’s rating of how much they liked the patient (1-5)

SURGEON 1 if doctor is a surgeon, 0 otherwise

CLAIMS Number of malpractice claims filed against the doctor

MINUTES Length of visit in minutes

The problem with these data 1s that the length of observation (MINUTES) that 1s, duration of patient

visit was not the same for all patients.




Number of utterances about prognosis

The frequency distribution of the LENGTHPX variable is given below:

-

We see that the data are highly skewed with a substantial proportion of observations at zero.




Offset
The way we incorporate the length of observation (duration of visit) 1s by adding what 1is called an

“offset” wvariable to the model. This 1s done by adding the option offset (varname) or
Inoffset (varname) m the glm command. The latter is what we need if the variable has not

been transformed to the logarithmic scale already. The results of the analysis for these data are as

follows:
¥xi: glm lengthpx ptage i.ptsex ezcompt mdlikept i.surgeon claims, family(po

> isson) lnoffset( minutes) nolog

i.ptsex Iptsex 0-1 (naturally coded; Iptsex 0 omitted)
i.surgeon Isurge 0-1 (naturally coded; Isurge 0 omitted)

Residual df 114 No. of obs = 121
Pearson HZ = B99.6238 Deviance = €8Z2.025%
Dispersion = 7.891437 Dispersion = 5.982718

Poisson distributicon, log link, coffset ln{minutes)

lengthpx Coef Std. Err. Z Pxlz| 95% Conf. Interwval]
rtags -.0014421 0030592 -0.471 0.637 -.00743381 0045538
Iptsex 1 .5452447 1043294 £.230 0.000 3427828 7537066
ezcompt .1%805801 07680461 2.605 0.00% 0490425 3471377
mdlikept -.0864474 07438369 -1.162 0.245 -.232243 .1593483
Isurge 1 1.34311% .1303¢694 10.302 0.000 1.087599 1.598638
claims 0519112 .0231%09 2.238 0.025 0064579 L0973644
cons -3.1754498 .3188579 -9.95% 0.000 -3.800448 -2.550548

minutes [exposure)




Interpretation of the analysis

Almost all variables are significant. It seems that there are 73% more utterances about prognosis
when the subject is male (e”>*® —1=0.73), 22% when the physician thinks the patient is easier to
communicate with (e%1%® —1=0.22), four times more when the physician is a surgeon (e'3*> =3.83)
and 5.3% more for each malpractice claim that has been filed against the doctor (€92 —1=0.053).
Notice that there 1s no coefficient corresponding to minutes because this has been constrained to
be 1.0.

However. the results of this analysis are questionable, as the scaled Pearson chi-square and scaled
deviance statistics are much larger than 1.0.

Thus, significant overdispersion 1s likely present in these data.




Correcting for overdispersion
To correct for overdispersion, we scale the test statistics corresponding to the coefficients by the

scaled Pearson chi-square statistic. Only surgeon is significant in predicting prognosis utterances.

®xi: glm lengthpx ptage i.ptsex ezcompt mdlikept i.surgeon claims, family(po
> isson) lnoffset( minutes) nolog scale(x2)
i.ptsex Iptsex 0-1 (naturally coded; Iptsex 0 omitted)
i.surgeon Isurge 0-1 (naturally coded; Isurge 0 omitted)
Residual df = 114 No. of obs 121
Pearson X2 = B899.6238 Deviance = ©82.02588
Dispersion = 7.891437 Dispersion = 5.982718
Poisson distribution, log link, offset ln(minutes)
lengthpx | Coef. S5td. Err. z BF=z| [95% Conf. Interval]
_________ .I_____________________________________________________________________
ptage | -.0014421 .0085938 -0.168 0.867 -.0182857 .0154014
Iptsex 1 | .5482447 .2944837 1.862 0.063 -.0289327 1.125422
ezcompt | .1980901 2136264 0.827 0.354 -.22061 .6167901
mdlikept | —.0864474 .2089654 -0.414 0.e7%9 —-.4560121 .3231174
Isurge 1 | 1.34311¢9 .3662297 3.667 0.000 .6253216 2.060916
claims | .05198112 .0651471 0.797 0.42¢6 -.0757747 .1795971
_cons | -3.175498 .B957261 —-3.545 0,000 -4 ,.931089 -1.415907
minutes | (exposure)
(Standard errors scaled using square root of Pearson XZ-based dispersion)




Correcting for overdispersion (continued)
The previous analysis may be inefficient, so we also undertake a negative binomual regression
analysis. The results show that both patient’s sex and whether the doctor 1s a surgeon are significant

predictors of the outcome variable.

®¥i: glm lengthpx ptage i.ptsex ezcompt mdlikept i.surgeon claims, family(nb
> inom) lnoffset| minutes) nolog
i.ptsex Iptsex 0-1 (naturally codsd; Iptsex 0 omitted)
i.surgeson Isurge 0-1 (naturally coded; Isurge 0 omitted)
Eesidual df = 114 No. of cbhs = 121
Pearson HZI = 203.1le0l Deviance = 197.295¢
Dispersion = 1.78210¢ Dispersion = 1.730663
Negative Binomial (k=1)} distribution, log link, offset ln(minutes)
lengthpx Coef 5td. Err. z Px|z| [95% Conf. Interwvall]

ptags 0002237 0085105 0.032 0.974 -.0133208 .0137681
Iptsex 1 5829213 L2197179 2.653 0.008 1522822 1.0135¢
szcompt .12581447 1487535 0.868 0.385 -.1624087 42068561
mdlikept -.1062208 1532717 -0.693 0.488 -.4086278 1541863
Isurge 1 1.407069 248766 5.702 0.000 9234163 1.8580721

claims .0514776 .05437¢1 0.%947 0.344 -. 05508975 .1580527

_cons -2.758898 . 6843703 -4.031 0.000 -4.100239 -1.417557
minutes (exposurs)
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