GENERALIZED LINEAR MODELS: Model sellection

Καθηγήτρια Βιοστατιστικής και Επιδημιολογίας Εργ. Υγιεινής, Επιδημιολογίας και Ιατρικής Στατιστικής Ιατρική Σχολή Πανεπιστημίου Αθήνας

gtouloum@med.uoa.gr

Model selection

To motivate model selection in the generalized linear model, I present the mechanics of model selection in the linear model.

Consider the process of starting with a "full" model in the sense that it is a model containing all variables that we are willing to consider. Then the criterion of removing a variable is based on an F test as follows (here we consider p variables plus the intercept in all models):

$$\frac{SSE(X_{p_1}) - SSE(X_{p_2})}{SSE(X_{p_2}) / (n - p_2 - 1)} \sim F_{1, n - p_2 - 1}$$

where $SSE(X_{p_i})$ and $SSE(X_{p_i})$ are the residual sum of squares of the full model and the sub-model respectively

Example: Plasma retinol levels (continued). The output from the full model is as follows:

```
. xi: reg retplasm age i.sex i.smokstat quetelet i.vituse calories fat fiber alcohol chol
            _Isex_1-2 (naturally coded; Isex 2 omitted)
i.sex
i.smokstat
            Ismokstat 1-3 (naturally coded; Ismokstat 1 omitted)
i.vituse
            Ivituse 1-3 (naturally coded; Ivituse 3 omitted)
           SS df MS
                                       Number of obs = 314
    Source |
                                      F(12, 301) = 4.06
    Model | 1896984.44 12 158082.037
                                     Prob > F = 0.0000
  Residual | 11723197.4 301 38947.4997
                                  R-squared = 0.1393
                                     Adj R-squared = 0.1050
    Total | 13620181.9 313 43514.958
                                       Root MSE = 197.35
  retplasm | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      age | 2.653472 .8756372 3.03 0.003 .9303267 4.376618
   _Isex_1 | 76.8363 37.37679 2.06 0.041 3.283403 150.3892
_Ismokstat_2 | 44.90691 25.13723 1.79 0.075 -4.560058 94.37388
quetelet | 1.581298 1.917623 0.82 0.410
                                         -2.192347
                                                  5.354944
 _Ivituse_1 | 35.40501 27.26527 1.30 0.195
                                         -18.24968 89.05969
 -30.66125
                                                  86.27365
                                         -.0419486
  calories | .0758574 .0598645 1.27 0.206
                                                  .1936634
      fat | -1.512089 .9335381 -1.62 0.106
                                         -3.349177
                                                   .3249986
    fiber | -4.207861 3.100573 -1.36 0.176 -10.30941
                                                   1.893684
   alcohol | 7.371856 2.602759
                            2.83 0.005
                                         2.249949
                                                   12.49376
     chol | -.0775529 .1048078 -0.74 0.460 -.2838016
                                                  .1286959
                                         251.145
    _cons |
          416.1679 83.85834 4.96 0.000
                                                   581.1907
```

While the output from the model excluding cholesterol levels is,

i.sexIsex_1-2 i.smokstatIsmokstat_1-3		smokstat quetelet i.vituse calories fat fiber alcohol (naturally coded; _Isex_2 omitted) (naturally coded; _Ismokstat_1 omitted) (naturally coded; _Ivituse_3 omitted)						
						Number of obs		
Model Residual		11 302	170514 38889.	.499 1469		F(11, 302) Prob > F R-squared Adj R-squared	= =	0.0000 0.1377
						Root MSE		
retplasm	Coef.	Std.	 Err.	t	P> t	[95% Conf.	Int	terval]
						.9582353		
_Isex_1	72.77019	36.94	293	1.97	0.050	.0720315	14	45.4683
_Ismokstat_2	46.0355	25.07	212	1.84	0.067	-3.302663	95	5.37367
						-71.10792		
						-2.232463		
_Ivituse_1								
						-29.82509		
	.0674277							
						-3.416001		
						-9.818308		
						2.434499		
_cons	412.199	83.623	92	4.93	0.000	247.6397	57	6.7583

The criterion for removing cholesterol level from consideration is

$$\frac{SSE(X_{p_1}) - SSE(X_{p_2})}{SSE(X_{p_2}) / (n - p_2 - 1)} = \frac{11744522.4 - 11723197.4}{11723197.4/301} = 0.5475$$

```
. di fprob(1,301,(11744522.4-11723197.4)/(11723197.4/301))
.45990464
```

This can also be given by using the test command after regression on the full model as follows:

and is equivalent to the t test listed in the output of the full model above (recall that an F test with 1 degree of freedom in the numerator is equal to the square of the t test with equal degrees of freedom as in the denominator of the F test).

Model selection in the GLM

A similar concept as the residual sums of squares in the GLM is the *deviance*. In addition, the log-likelihood can be used in the derivation of likelihood-ratio tests. We consider these two concepts here. The likelihood ratio λ is the fraction of the maximized likelihood of the sub-model and the full model respectively. For large samples, $-2\log \lambda \sim \chi_{\nu}^2$ where ν is the difference in the dimension of the two models. For two models that are different by a single variable, ν =1 of course.

In general, the likelihood-ratio criterion is $-2\log \lambda = \frac{D(X_{p_1}) - D(X_{p_2})}{\phi}$, where ϕ is a scale parameter,

and $p_1 < p_2$. In particular, in the linear model this is is,

$$-2\log \lambda = \frac{SSE(X_{p_1}) - SSE(X_{p_2})}{SSE(X_{p_2}) / (n - p_2 - 1)}$$

Example: Plasma retinol levels (continued)

In our example, we can derive the likelihood-ratio test as follows:

```
. xi: glm retplasm i.sex age i.smokstat i.vituse guetelet calories fat fiber alcohol cho
> 1
              _Isex_1-2 (naturally coded; _Isex_2 omitted)
_Ismokstat_1-3 (naturally coded; _Ismokstat_1 omitted)
_Ivituse_1-3 (naturally coded; _Ivituse_3 omitted)
i.sex
i.smokstat
Iteration 0: log likelihood = -2098.3936
Generalized linear models
                                        No. of obs =
                                      Residual df =
Optimization : ML: Newton-Raphson
                                         Scale param = 38947.5
Deviance = 11723197.42
                                        (1/df) Deviance = 38947.5
Pearson = 11723197.42
                                        (1/df) Pearson = 38947.5
Variance function: V(u) = 1
                                        [Gaussian]
Link function : g(u) = u
                                        [Identity]
Standard errors : OIM
                                     AIC = 13.44837
Log likelihood = -2098.39358
BIC = 11723122.68
   retplasm | Coef. Std. Err. z P>|z|
                                               [95% Conf. Interval]
    Isex 1 | 76.8363 37.37679 2.06 0.040 3.579146
                                                         150.0935
       age | 2.653472 .8756372 3.03 0.002 .9372552
                                                       4.36969
_Ismokstat_2 | 44.90691 25.13723 1.79 0.074 -4.36116
                                                         94.17499
Ismokstat 3 | -.6574155 36.25566 -0.02 0.986 -71.71721
                                                       70.40238
 Ivituse 1 | 35.40501 27.26527 1.30 0.194 -18.03395 88.84396
 calories | .0758574 .0598645 1.27 0.205 -.041475
                                                         .1931897
      fat | -1.512089 .9335381 -1.62 0.105 -3.34179 .317612
     fiber | -4.207861 3.100573 -1.36 0.175 -10.28487 1.869151
    alcohol | 7.371856 2.602759 2.83 0.005 2.270543
                                                         12.47317
      chol | -.0775529 .1048078 -0.74 0.459 -.2829723 .1278666
      cons | 416.1679 83.85834 4.96 0.000 251.8086
                                                         580.5272
```

Example: Plasma retinol levels (continued)

```
. xi: glm retplasm i.sex age i.smokstat i.vituse quetelet calories fat fiber alcohol
                                           (naturally coded; _Isex_2 omitted)
i.smokstat
                    _Ismokstat_1-3 (naturally coded; _Isex_2 omitted)
_Ivituse_1-3 (naturally coded; _Ismokstat_1 omitted)
(naturally coded; _Ivituse_3 omitted)
i.vituse
                                           (naturally coded; _Ivituse_3 omitted)
Iteration 0:
                 log likelihood = -2098.6789
generalized linear models
                                                        No. of obs
                                                                               314
Optimization : ML: Newton-Raphson
                                                        Residual df
                                                                               302
                                                        Scale param
                                                                        = 38889.15
Deviance
                   = 11744522.37
                                                        (1/df) Deviance = 38889.15
Pearson
                    = 11744522.37
                                                        (1/df) Pearson = 38889.15
Variance function: V(u) = 1
                                                         [Gaussian]
Link function
                    : g(u) = u
                                                         [Identity]
 Standard errors : OIM
                                                                      = 13.44381
                                                        AIC
                    = -2098.67891
Log likelihood
                    = 11742786.06
 BIC
                                                               [95% Conf. Interval]
                        Coef.
                                 Std. Err.
     retplasm |
                                                                           145.177
                                                              .3633701
                                                      0.049
                               36.94293
                                              1.97
                    72.77019
      Isex 1 |
                                                                            4.39238
                                                            .9651303
                                                      0.002
                                              3.06
                                 .8743146
           age |
                    2.678755
                                                                           95.17595
                                                              -3.10494
                                                      0.066
                                               1.84
                                 25.07212
                    46.0355
                                                                         71.1261
 Ismokstat 2 |
                                                               -70.82235
                                                      0.997
                                              0.00
                                   36.212
                    .1518775
                                                                           39.93532
                                                              -16.66354
  Ismokstat 3 |
                                                      0.178
                                              1.35
                                 27.19409
                                                                           36.71735
                    36.63589
                                                              -29.5911
    Ivituse 1 |
                                                      0.336
                                               0.96
                                 29.67107
                                                                           5,290193
                                                              -2.21736
   _Ivituse_2 |
                    28.56312
                                                      0.422
                                               0.80
                                                                         .1825296
                                 1.915227
                                                              -.0476742
                    1.536417
                                                      0.251
     quetelet |
                                              1.15
                                                                           .2228384
                                 .0587265
                                                               -3.408695
                    .0674277
                                                      0.086
     calories |
                                              -1.72
                                 .9264287
                                                                           2.169069
                                                              -9.79424
                   -1.592929
                                                      0.212
                                             -1.25
                                                                           12.6136
           fat l
                                 3.051921
                                                               2.454936
                   -3.812586
                                                      0.004
                                                                           576.0989
                                               2.91
         fiber |
                                 2.591544
                                                               248.2991
                    7.534269
                                                      0.000
                                               4.93
       alcohol |
                                 83.62392
                      412.199
         cons
```


$$-2\log \lambda = \frac{SSE(X_{p_1}) - SSE(X_{p_2})}{SSE(X_{p+1})/(n-p-1)} = \frac{11744522.37 - 11723122.68}{11723122.68/301} = 0.5477$$

Its asymptotic (long-term) distribution is a chi-square with one degree of freedom.

```
. di chiprob(1,(11744453.38-11723122.68)/((11723122.68)/(301)))
.45926647
```

which is similar to the results of the F test previously. Notice that we get the same results if we subgract the maximized log-likelihoods as follows:

$$-2\log \lambda = -2[-2098.67891 - (2098.39358)] = 0.57066$$

with asymptotic distribution that is also chi-square with one degree of freedom.

. di chiprob(1,-2*(2098.39358-2098.67891))
.44999677

The easiest way to assess the impact of the factor cholesterol in the model is with the test command, which generates the Wald test described previously.

```
. quietly xi: glm retplasm i.sex age i.smokstat i.vituse quetelet calories fat fiber alco
> hol chol
```

In STATA 7.0, this is given by

In STATA 6.0, we can derive the chi-square (Wald) test as follows:

```
. di chiprob(1,( -.0775529/.1048078)^2)
.4593282
```

Finally, we show here the model-selection for the complete problem.

```
. xi: sw glm retplasm i.sex (i.smokstat ) (i.vituse) age quetelet calories fat
> fiber alcohol chol, pr(.1)
                   Isex 1-2 (naturally coded; Isex 2 omitted)
i.sex
i.smokstat
                 Ismoks 1-3 (naturally coded; Ismoks 1 omitted)
                  Ivitus 1-3 (naturally coded; Ivitus 3 omitted)
i.vituse
                  begin with full model
p = 0.4599 >= 0.1000 removing chol
p = 0.4231 >= 0.1000 removing quetelet
p = 0.4163 >= 0.1000 removing Ivitus 1 Ivitus 2
p = 0.1572 >= 0.1000 removing Ismoks 2 Ismoks 3
p = 0.1806 >= 0.1000 removing fiber
p = 0.5284 >= 0.1000 removing calories
Residual df = 309
                                               No. of obs = 314
Pearson X2 = 1.21e+07
                                                Deviance = 1.21e+07
Dispersion = 39055.6
                                                Dispersion = 39055.6
Gaussian (normal) distribution, identity link
retplasm | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 Isex 1 | 74.055 36.44476 2.032 0.043 2.343714 145.7663
   fat | -.6188433 .3501419 -1.767 0.078 -1.307807 .0701208
 alcohol | 8.724091 2.340494 3.727 0.000
                                                 4.11877 13.32941
    age | 2.389427 .8229901
                               2.903 0.004
                                                 .7700534
                                                            4.008801
  cons | 498.7073 54.22216 9.197 0.000
                                                  392.0159
(Model is ordinary regression, use regress instead)
```

Pearson Residuals

The Pearson residuals are defined as

$$r_{i,p} = \frac{y_i - \hat{\mu}_i}{\left[V(\hat{\mu}_i)\right]^{\frac{1}{2}}}$$

and it is the raw residual scaled by the estimated standard deviation of Y. The name is taken from the fact that for the Poisson distribution the Pearson residual is just the signed square root of the component of the Pearson X^2 goodness-of-fit statistic, i.e.

$$\sum_{i=1}^{n} r_{i,p}^{2} = X^{2}$$

A disadvantage of the Pearson residual is that the distribution of $r_{i,p}$ for non-normal distributions is markedly skewed, and it may fail to have properties similar to those of a normal-theory residual.

Deviance Residuals

If the deviance is used as a measure of discrepancy of a generalized linear model, then each unit contributes a quantity d_i to that measure, so

$$\sum d_i = D$$

Thus, if we define

$$r_{i,D} = sign(y_i - \mu_i) \sqrt{d_i}$$

we have a quantity that increases with $y_i - \mu_i$ and for which $\sum r_{i,D}^2 = D$.

Residuals-Linear regression

Recall that variance of the true residuals is assumed to be constand. The variance of the fitted (observed) residuals is NOT constant, since there is variance in estimation of the line and of the expected values. Therefore, for model checking we need to standardize the observed residuals.

Lets explore it in normal regression

Residuals-Linear regression (continue)

here e_i, S are not

independent since e_i enters in the calculation of S.

studentized residuals
$$r_i^* = \frac{e_i}{S_{(i)}\sqrt{1-h_i}}$$
 sample variance with ith

observation omitted

here numerator

& denominator are independent

The distribution of $r_i^* \sim t_{n-p-1}$

The ith leverage is large if $h_i \ge 2 p'/n$ where p' = total # of covariates in the model including intercept, n = total # of observations.

Standardized residuals in GLMs

The key quantities for GLM diagnostics are:

The general definition of standardized residuals is:

(standardized deviance residual)

The predicted values and the residuals from the optimal model (the one including gender, fat and alcohol intake and age) are produced by STATA commands as follows:

- . quietly reg retplasm sex fat alcohol age
- . predict yhat
 (option xb assumed; fitted values)
- . predict r, resid
- . predict rstan, rstand
- . predict rstud, rstud

Model checking: residuals

The assumptions of the model that must be checked are independence, normality and homoskedasticity. We usually work with the standardized residuals $r_{std,i} = \frac{r_i}{\hat{\sigma}\sqrt{1-h_{ii}}}$ (produced with

the option rstan) or the studentized residuals $r_{stud,i} = \frac{r_i}{\hat{\sigma}_{(i)} \sqrt{1 - h_{ii}}}$ (with option rstud), where $\hat{\sigma}$ is

an estimate of the standard deviation derived with all the observations, while and $\hat{\sigma}_{(i)}$ is the estimate with the i^{th} observation missing. On the other hand, h_{ii} is the i^{th} diagonal element of the hat matrix

(recall that in regression $\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'y} = \mathbf{Hy}$, where \mathbf{H} is the "hat" matrix). The leverage points

are a measure of distance (outlier, potential influential point). We use the Cook's distances as a

combined measure of influence and distance since they are $D_i = r_{std,i}^2 \frac{h_{ii}}{(1-h_{ii})}$.

Homoskedasticity

This refers to the homogeneity of variance. We can see what the stud. residuals look like as follows:

. graph r yhat, yline(0) xlab ylab border

We see that there is no obvious problem with lack of homoskedasticity in these data.

Normality

The next assumption of the general linear model is that of normality of the residuals.

This can be checked using the qnorm command in STATA as follows:

Q-Q plots

These are plots that compare the distribution of a variable to a known distribution. They can be used alternatively to compare the distributions of two variables. In general, if the distributions are approximately equal the points on the graph should lie on a straight line.

In the plot above, we see that there are problems with the distribution of retinol levels at the "tails" which are shorter for small values and "fatter" for larger values.

This Q-Q plot can be produced manually following these steps:

- Sort the residuals from smaller to largest (we are still working with studentized residuals)
- Imagining that the residuals have a normal distribution then their ranked values should be close to standard normal distribution percentiles, that is, $z_{(i)} = \Phi^{-1}\left(\frac{i}{n+1}\right)$, i = 1,...,n (this is actually the way STATA produces a q-q plot).

Q-Q plot (continued)

To create the q-q plot above manually we proceed as follows:

- . sort rstud
- . $gen zi=invnorm(_n/(_N+1))$
- . label var zi "Inverse Normal"
- . graph rstud zi zi, xlab ylab c(.1) s(oi) rlab yline xline

The Shapiro-Wilks test of normality

To formally test the hypothesis of normality, we can use the Shapiro-Wilks test as follows:

The test p value is 0.000<0.05 which means that the normality assumption is not fulfilled.

Box-Cox transformations

In order to find which transformation to use, a general method is that of Box and Cox. The general

Box-Cox transformation is as follows:

$$y^* = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & y \neq 0 \\ \log(y), & y = 0 \end{cases}$$

Several possible choices of λ are tried. The best choice is given through a likelihood criterion.

Some usual transformations are given as follows:

- λ=-1 Inverse transformation
- λ=1 No transformation is necessary
- λ =0.5 Square-root transformation
- λ=0 Logarithmic transformation

Box-cox transformation

To implement the Box-Cox technique in STATA we proceed as follows:

. boxcox retplasm, lstart(-1) graph generate (newret)
(note: iterations performed using zero =.001)

	LL
0 -1.0000 89.67819 51344.1853 -1702.87 1 0.1327 2.56310 37070.2753 -1651.72 2 0.1676 0.00243 37062.7391 -1651.69 3 0.1676 0.00000 37062.742 -1651.69	L.72960 L.69768

Transform: (retplasm^L-1)/L

	L	[95% Conf. Interval]	Log Likelihood
	0.1676	(not calculated)	-1651.6977
Test:	L == -1 L == 0 L == 1	chi2(1) = 104.14 chi2(1) = 2.19 chi2(1) = 49.39	Pr>chi2 = 0.0000 Pr>chi2 = 0.1387 Pr>chi2 = 0.0000

Box-cox transformation (continued)

A value of zero for lamda is not unreasonable, suggesting a logarithmic transformation of (retplasm). The new variable newret contains the transformed values of retplasm (with lamda = 0.1676).

Further model checking

Running the model newret with as the dependent variable we have:

```
. xi: sw req newret age i.sex (i.smokstat) quetelet (i.vituse) calories fat fi
> ber alcohol betadiet retdiet, pr(.1)
i.sex
                 Isex 1-2 (naturally coded; Isex 2 omitted)
i.smokstat Ismoks 1-3 (naturally coded; Ismoks 1 omitted)
i.vituse Ivitus 1-3 (naturally coded; Ivitus 1 omitted)
                 begin with full model
p = 0.6699 >= 0.1000 removing retdiet
p = 0.6327 >= 0.1000 removing quetelet
p = 0.5945 >= 0.1000 removing Ivitus 2 Ivitus 3
p = 0.5018 >= 0.1000 removing betadiet
p = 0.2852 >= 0.1000 removing Isex 1
p = 0.1146 >= 0.1000 removing Ismoks 2 Ismoks 3
 Source | SS df MS
                                            Number of obs = 314
                                            F(5, 308) = 7.93
  Model | 34.2403962 5 6.84807924
                                            Prob > F = 0.0000
                                           R-squared = 0.1141
Adj R-squared = 0.0997
Residual | 265.811233 308 .863023485
                                           Root MSE = .92899
 Total | 300.05163 313 .958631405
 newret | Coef. Std. Err. t P>|t| [95% Conf. Interval]
  age | .0161012 .0038357 4.198 0.000 .0085538 .0236487
   fat | -.0092023 .0042933 -2.143 0.033 -.0176502 -.0007544
calories | .0004638 .0002721 1.704 0.089
                                              -.0000716 .0009992
  fiber | -.0235039 .0140948 -1.668 0.096
                                              -.0512381 .0042303
alcohol | .0368435 .0115156 3.199 0.002 .0141843 .0595027
  cons | 10.6249 .2747965 38.665 0.000 10.08418 11.16561
```

Checks for outliers and influential observations

We produce residuals, *leverage* values and Cook's distances as follows:

```
predict rstud, rstudpredict d,cooksdpredict h, hat
```

A studentized residual greater than 2 in absolute value, a leverage greater than 2p/n=0.0382, where p is the number of predictors plus the intercept, and a Cook's distance of 1 or higher are indicative of an outlier or of excessive influence, or both respectively.

```
. list rstud d h if abs(rstud)>2.0 | h>.0382
        rstud
 1. -2.880156 .0283224
                           .0205401
 2. -3.392216
                .0174023
                            .0092961
       3.294111
                 .0123143
                              .0069778
 313.
       3.587223
                  .0196182
                              .0094104
    (37 cases)
 list rstud d h if abs(rstud)>2.0 & h>.0382
 0 cases)
```

Model checking (continued)

To summarize the Cook's distances we proceed as follows:

. summarize o	d				
Variable	Obs	Mean	Std. Dev.	Min	Max
d	314	.0031528	.0058947	9.35e-11	.0390723

There are no observations with Cook's distance above 1, although there are several points with large residuals or leverage. However, the number of points that we are testing for large residuals is so large, that the criterion of 2.0 or higher is probably very liberal (as 314 repeated tests are being conducted!). Thus, the fit is probably acceptable.