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Model selection
To motivate model selection in the generalized linear model, I present the mechanics of model
selection in the linear model.
Consider the process of starting with a “full” model in the sense that it 13 a model containing all
variables that we are willing to consider. Then the criterion of removing a variable is based on an F

test as follows (here we consider p variables plus the intercept in all models):

SSE(X , )~SSE(X, )

_F
SSE(XF ) /(n —p -1 el

where SSE (Ip_) and S'S'E(Ip ) are the residual sum of squares of the full model and the sub-model

respectively




Example: Plasma retinol levels (continued). The output from the full model 1s as follows:

®Xi: reg retplasm age i.sex 1.smokstat gquetelet i.vituse calories fat fiber alcohol chol
1.s5ex _Isex 1-2 (naturally coded; Isex 2 omitted)
1.smokstat _Ismokstat 1-3 (naturally coded; Ismokstat 1 omitted)
i.vituse _Ivituse 1-3 (naturally coded; Ivituse 3 omitted)
Source | S5 df M= Number of obs = 314
————————————— +-----————————— F( 12, 201) 406
Model | 155584 .44 12 158082.037 Prokb > F = 0.0000
Fesidual | 11723197.4 301 38947.4997 E-=sqguared = 0.1383
————————————— - Ad] R-squared = 0.1050
Total | 13620181.9 313 43514.958 Eoot MSE = 197.35
retplasm | Coef Std. Err. t Px|t]| [95% Conf. Intervall
_____________ +________________________________________________________________
age | 2.653472 .8756372 3.03 0.003 93032267 4_.3766l8
_Isex 1 | Te.8363 37.37¢679 2.086 0.041 3.283403 150.3892
_Ismokstat 2 | 44 90891 25.13723 1.7% a.075 -4_560058 94 37388
_Ismokstat 3 | -.6574155 36.25586¢6 —-0.02 0.986 -72.00408 T0.68925
gquetelet | 1.581298 1.917623 0.82 0.410 -2.192347 5.354944
_Ivituse_l | 35.40501 27.26527 1.30 0.1485 -1B.24968 259.059e9
_Ivituse_: | 27.8062 29.710594 0.94 0.350 -30.66125 B6.27365
calories | .0758574 .0598¢c45 1.27 0.206 -.041948¢ .1936634
fat | -1.512089 .9335381 -1.62 0.106 —-3.349177 .3244958¢
fikber | -4.2078¢l 3.100573 -1.3¢ 0.17¢ -10.30941 1.893684
alcohol | 7.37185¢ 2.602759 2.83 0.005 2.245805449 12.4437¢
chol | -. 0775529 .1048078 -0.74 0.48a0 -.283801¢ 1286959
_cons | 41e.1679 83.85834 4. 9¢g a.000 251.145 581.1907




While the output from the model excluding cholesterol levels 1s.

®xi: reg retplasm age i.s=x i.smokstat gustelst i.vituse calories fat fiber alcochol

i.sex _Isex 1-2 (naturally coded; Isex 2 omitted)
i.smokstat _Ismokstat 1-3 (naturally coded; Ismokstat 1 omitted)
1.vituse _Ivituse 1-3 (naturally coded; Ivituse 3 omitted)
Source | 55 df M3 Number of obs = 314
————————————— - —————————— = F({ 11, 302y = 4,38
Model | 18756€59.489 11 170514.495% Prob > F = (.0000
Eesidual | 11744522.4 302 38889.1469 E-sqguared = 0.1377
————————————— +-———————— = &dj R-squared = 0.10&3
Total | 132620181.9 313 43514 .4958 Eoot MSE = 197.20
retplasm | Coef. Std. Err. t F=lt] [95% Conf. Interwvall
_____________ +________________________________________________________________
age | 2.6878755 .874314¢ 3.06 0.002 .9582353 4399275
_Isex 1 | T2.7701% 36.94293 1.97 0.050 LO0720315 145.4683
Ismokstat 2 | 46,0355 25.07212 1.684 0.067 -3.302663 95.3732¢7
:Ismakstat:B | .1518775 26.212 0.00 0.997 -71.107%2 71.411&8
quetelet | 1.536417 1.915227 0.80 0.423 -2.232463 5.305297
_Ivituse_l | 36.83589 27.19409 1.35 0.179 -1le.8779%9 90.14978
_Ivituse_: | 28.5e312 29.e7107 0.9%9¢ 0.3236e —-29.82509 26.95134
calories | 0674277 .0587265 1.15 0.252 -.0481373 1829927
fat | -1.5925829 9284287 -1.72 0.087 -3.41c001 .2301444
fiber | -3.81258¢6 3.051921 -1.25 0.213 -9_.818308 2.193137
alcohol | T7.534269 2.591544 z2.91 0.004 2.4344649 12.63404

_cons | 412.199 83.623082 4.93 0.000 247 .83587 S5T7€.7583




The criterion for removing cholesterol level from consideration is

SSE(X ) =SSEWX ) 11744522.4-11723197.4 0,547
SSE(X ) /(n=p,=1) 11723197.4/301 S
4522 .,4-11723197.4) /(11723197.4/301) )

di fprob (1,301, (11744522
.455904¢c4

This can also be given by using the test command after regression on the full model as follows

guietly xi: reg retplasm age i.sex i.smokstat quetelet i.vituse calories fat fiber alco
> hol chol

F( 1, 301} 5
> F = 0.4

Frob

n 'i-_'l

95

and 1s equivalent to the 7 test listed in the output of the full model above (recall that an F test with 1

degree of freedom m the numerator is equal to the square of the 7 test with equal degrees of freedom

as 1n the denominator of the F test).




Model selection in the GLM

A similar concept as the residual sums of squares i the GLM is the deviance. In addition, the log-

likelihood can be used 1n the derivation of likelihood-ratio tests. We consider these two concepts here.

The likelihood ratio X 1s the fraction of the maximized likelihood of the sub-model and the full model

respectively. For large samples, —2log 2~y i where v 1s the difference in the dimension of the two

models. For two models that are different by a single variable, v=1 of course.

DX )-DX )
1 2. where @is a scale parameter,
¢

In general, the likelihood-ratio criterion 1s —2log A =

and p, < p,. In particular, m the linear model this 1s 1,

SSE(X )—-SSE(X )
A= * !
ASSE(JLP_: )/(u -p.-1)

L=




Example: Plasma retinol levels (continued)

In our example, we can derive the likelithood-ratio test as follows:

Xi: glm retplasm i.sex age i.smokstat i.vituse quetelet calories fat fiber alcohol

. 5EX _Isex 1-2 ( _ -
.smokstat _Ismokstat_1-3 ( urally codsd; _Ismokstat_
vituse _Iwvituse_1-3 (maturally codsd; _Ivituse_3 cmitted)

Iteration 0O: log likelihood = -2098.3%3¢

eralized linear modsls Ho. of obs =
: ML: HNewton-Raphson Eesidual d4df =

cal - =

= 11723197.42 1/d =

11723197.42 (1/d =

Variance function: Viu) =1 [Faussian]
Link function :giu) =u [Identity]
Standard errcrs : QIM

Log likelihood = -2098.3%358 AIC = 13.44837
BIC = 1172312Z.68

Isex 1 37.37679 2.06 0.040 3.578146 150.0935
ags .ET5£372 3.03  0.002 9372552 4.36959
_Ismokstat 2 25.13723 1.79  0.074 -4.36116 94.17499
Ismokatat 3 36.25566 -0.02  0.988 -71.71721 70.40238
T Ivituse 1 27.26527 1.30 0.1%4 -13.02395 B3.84396
“Ivituse 2 29,71094 0.94  0.349 -30,42617 BE.02856
" quetelet 1.917623 0.82  0.410 -2.177174 5.32977
calories 0588845 .27 0.205 -.041475 18318487

fat 9335381 -1.62  0.105 -3.34179 317612

fiber .100573 -1.26  0.17% 1.388151
alcohal . 602759 2,33 0.00% 12.47317

chol g -0.74  0.459 L1278666

cons : 4,96  0.000 530.5272

cho




"] ‘ P - :
[luxample: Plasma retinol leve]s (continued)

X1: glm retplasm i.sex age i.smoks

 Tom 1ob taﬁ iévituse quetele
_Ismokstat 1-3 e M

. (naturally coded;
_Iv1tusehl—3 (naturally coded;

i.sex
i.smokstat
i.vituse

t calories fat fiber alcohol
_Isex_2 omitted)

_Ismokstat_1 omitted)
_Ivituse 3 omitted)

Iteration 0: log likelihood = -2098.6789

seneralized linear models

Optimizatio . _ No. of obs = 314
P n ML: Newton-Raphson Residual df - 302
i Scale param = 38889.15
Deviance =
Pearson = 113“522'3? (1/df) Deviance = 38889.15
1744522.37 (1/df) Pearson = 38889.15
Vgriance function: V(u) =1 [Gaussian]
Link function : g(u) =u [Identity]
Standard errors : OIM
Log likelihood = =2098.67891 AIC = 13.44381
BIC = 11742786.06
retplasm | Coef Std. Err. z P>|z| [Bﬁgv??Tf;jTE?ff?ii
_____________ ..|,.,.-__...__..._._.__.__._..__.___._._..._.__...._.__.___...____.__.____-__—
701 145.177
Isex 1 | 72.77019 36.94293 1.97 o.ogg .ggg%ga pyp et
age | 2.678755  .8743146 i'gi‘ g'gsﬁ 13.10494  95.17595
Ismokstat 2 | 46.0355 25.07212 B O B g+ e
“Ismokstat 3 |  .1518775 36.212 0. 0 o leseise  39.93532
— o tuse 1 |  36.63589  27.19409 1.35 A2T8 G600 s
_.iv;:tuse—Z | 28.56312  29.67107 g.gg 185 29500 s.amies
v = : 217 g ' 1825296
P .536417  1.9152 -.0476742 A
quetelet | 1.5700°" 4587265 1.15  0.25% "o 695 .2228384
calories | -06 87 -1.72 0.086 3% 169069
fat | ~-1.592929 .92642 _1.25 0.212 -9.79424 2iz p0e
fiber | ~3.812586 3-ggig§i 2.91 0.004 2&232;;? 5?6:0939
alcohol |  17.534269  2.90 o, 4.93 0,000 2482977 T T -
cons | 412.199 RIS S Lol -




The likelihood-ratio test can be constructed as follows:

SSE(lpl)_SSE(Apz):11?44522.3?—11723122.6@
4 o 117732127 20
SSE(X ) /(n=p=D) 11723122.68/301

=0.5477

—2logh =

Its asymptotic (long-term) distribution 1s a chi-square with one degree of freedom.

. di chiprob(l, (11744453.38-11723122.68)/((11723122.68)/(301)))
.45926647

which 1s similar to the results of the F test previously. Notice that we get the same results if we

subgract the maximized log-likelihoods as follows:

—2logh = —2[—2098.6?891- (2098.39358)J: 0.57066

with asymptotic distribution that 1s also chi-square with one degree of freedom.

. di chiprob(1l,-2*(2098.39358-2098.67891))
.4495959677




Wald tests

The easiest way to assess the mmpact of the factor cholesterol in the model 1s with the test

command, which generates the Wald test described previously.

. gquietly xi: glm retplasm i.sex age i.smokstat i.wvituse quetelset calories fat fiber alco

» hol chol

In STATA 7.0, this 1s given by

. test chol

( 1) [retplasm]chol = 0.0

]

-~

chiZ ( 1)
Prob > chiZ

In STATA 6.0, we can derive the chi-square (Wald) test as follows:

I
3L
Lnon

-
= N

93

di chiprob(l, ( -.0775529/.1048078)"2)

.4593282




Finally. we show here the model-selection for the complete problem.

Pzarson X2

Faussian

Isex 1 |
fat |
alcohol |
I

I

Dispersion
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std. Err t

36.4447¢ 2.032
35014169 -1.7&7
2.340494 3.727
8229901 2.503
54.2221¢ 9.197

regress

. %x1: sw glm retplasm 1.sex (i.smckstat ) (i.vituse)

> fiber alcohcl chol, pri.l)

i.sex Isex 1-2 (naturally coded;

i.smokstat Ismoks_1-3 (naturally coded;

i.vituse Ivitus_1-3 (naturally coded;
begin with full model

p = 0.4599% »= 0.1000 removing chol

p = 0.4231 >= 0.1000 removing dquetelet

p = 0.4163 >»>= 0.1000 removing Ivitus_1 Ivitus 2

p = 0.1572 »>= 0.1000 removing Ismoks_ 2 Ismoks 3

p = 0.1806 »>= 0.1000 removing fiber

p = 0.5284 >= 0.1000 removing calcories

Residual df 3009

identity link

P>|t|
0.043
0.078
0.000
0.004
0.000
instead)

age gqustelst

s

Isex Z

Ivitus_ 3

No .

Dispersion =

cmitted)
Ismoks 1 omitted)

of chbs
Deviance

[} (19
2 =] W
N o o =]

N L =] O =
[V JENY SR RS Y 4

calories fa

cmitted)

145.7663
0701208
13.32941

t




Pearson Residuals

The Pearson residuals are defined as

- Vi _/i}z'
L.p _
V(i)

and 1t 1s the raw residual scaled by the estimated standard deviation of Y. The name 1s taken from the
fact that for the Poisson distribution the Pearson residual 1s just the signed square root of the

component of the Pearson x?goodness-of-fit statistic, 1.e.

1

2 32
Zif,p =X
i=1

A disadvantage of the Pearson residual 1s that the distribution of 7, for non-normal distributions is

markedly skewed, and it may fail to have properties similar to those of a normal-theory residual.



Deviance Residuals

If the deviance is used as a measure of discrepancy of a generalized linear model, then each unit

contributes a quantity 4. to that measure, so

Sd,=D

Thus. 1f we define
iD :ngﬂ(.}’f —H, ) \/E

i : : , : 2
we have a quantity that increases with }; —M; and for which ZF ip=D.



Residuals- Linear regression
Recall that variance of the true residuals 1s assumed to be constand. The variance of the fifted
(observed) residuals 1s NOT constant, since there 1s variance in estimation of the line and of the
expected values. Therefore. for model checking we need to standardize the observed residuals.
Lets explore 1t in normal regression

E(Y[x =x)= AB

design matrix

H=x(x"x)]" x7

hat matnx

h.=h = xf( 'X )_lx

i i leverage

e=y—7
Var(e)=(I — H)o™

residuals and



Residuals- Linear regression (continue)

e,

. . = S E— 1
standardized residual si—h here €. are not
i
/ independent since €; enters
sample variance in the calculation of S.
* {?‘1.
studentized residuals’i = s N1 here numerator

|:? ] -\In }-
& denominator are independent
sample variance with i®

observation omitted

#
The distribution of 7; ™ Ty—p1

B " [ f r _ - ® " B "
The it leverage is large if /4, =2p /n where p'= total # of covariates in the model including

intercept, 7 = total # of observations.



Standardized residuals in GLMSs

The key quantities for GLM diagnostics are:
Pearson

id 1<
® Tesidauals

Deviance

The general definition of standardized residuals 1s:

. -~

I el
|7 @) n)
General definition A D= \/A (F:D ) \ leverage
| ol —h
T leverage

(standardized deviance residual)



Model checking
The predicted values and the residuals from the optimal model (the one including gender, fat and

alcohol intake and age) are produced by STATA commands as follows:

quietly reg retplasm sex fat alcohol age

predict yhat
(option xb assumed; fitted values)

predict r, resid
predict rstan, rstand

predict rstud, rstud




Model checking: residuals

The assumptions of the model that must be checked are independence, normality and

-

1- 1 7 1- : . -1 e . g _ ] . :
homoskedasticity. We usually work with the standardized residuals 7 _, .= F (produced with

i

- . - I" - - -, -

the option rstan) or the studentized residuals r,_ , = ﬁ (with option rstud), where ¢ 1s
Yoo J1-h
R

an estimate of the standard deviation derived with all the observations. while and &(i) 1s the estimate

with the i observation missing. On the other hand, /; is the /™ diagonal element of the /af matrix
(recall that in regression v =X(X'X)"!X'y=Hy. where H is the “hat” matrix). The leverage points

are a measure of distance (outlier, potential influential point). We use the Cook’s distances as a

h

. . . . 7 -
combined measure of influence and distance since they are D. =7 —’;
“(1=h

)

fS—




Homoskedasticity

This refers to the homogeneity of variance. We can see what the stud. residuals look like as follows:

. graph r yhat,yline(0) xlab ylab border

We see that there 1s no obvious problem with lack of homoskedasticity in these data.




Normality
The next assumption of the general linear model 1s that of normality of the residuals.

This can be checked using the gnorm command in STATA as follows:




Q-Q plots

These are plots that compare the distribution of a variable to a known distribution. They can be used
alternatively to compare the distributions of two variables. In general. if the distributions are

approximately equal the points on the graph should lie on a straight line.

In the plot above, we see that there are problems with the distribution of retinol levels at the “tails”

which are shorter for small values and “fatter” for larger values.

This Q-Q plot can be produced manually following these steps:
° Sort the residuals from smaller to largest (we are still working with studentized residuals)

o Imagining that the residuals have a normal distribution then their ranked values should be close

:(Ii_lf'fi'],i:l ..... n (this is actually the way

to standard normal distribution percentiles, that is, = . s
\n+1)

STATA produces a q-q plot).




Q-Q plot (continued)

To create the q-q plot above manually we proceed as follows:

sort rstud
gen zi=invnorm( n/( N+1))
label war zi "Inverse Normal"

graph rstud zi zi, =xlab ylab c(.l) s(ol) rlab yline xline

51




The Shapiro-Wilks test of normality

To formally test the hypothesis of normality, we can use the Shapiro-Wilks test as follows:

swilk r=atud

Shapiro-Wilk W test for normal data
Variable | Obs W \Y Z Prob>z

rstud | 314 0.93618 14.159 ©.235 0.00000

The test p value 1s 0.000<0.05 which means that the normality assumption 1s not fulfilled.




Box-Cox transformations
In order to find which transformation to use, a general method 1s that of Box and Cox. The general

Box-Cox transformation 1s as follows:

-

v -1

y¥E=1"

—J—.yz0
A
log(v), v=0

Several possible choices of A are tried. The best choice 1s given through a likelihood criterion.

Some usual transformations are given as follows:

. 2=-1 Inverse transformation
° A=1 No transformation is necessary
. 2=0.5 Square-root transformation

° 2=0 Logarithmic transformation




Box-cox transformation

To implement the Box-Cox technique in STATA we proceed as follows:

boxcox retplasm, lstart(-1) graph generate (newret)
(note: iterations performed using zero =.001)
Iteration Lambda Zero Variance LL
0 —1.0000 89.67819 51344.1853 -1702.8701%9
1 0.1327 2.56310 37070.2753 -1651.72%60
2 0.1676 0.00243 37062.7391 -1651.69768
3 0.1676 0.00000 37062.742 -1651.69770
Transform: (retplasm”L-1) /L
L [95% Conf. Intervall Log Likelihood
0.1676 (not calculated) -1651.68977
Test L == -1 chiz (1) = 104,14 Pr>chi2 = 0.0000
L == 0 chiz(l) = Z2.19 Pr>chi2z = 0.1387
L == 1 chi2 (1) = 49,39 Pr>chi2 = 0.0000




Box-cox transformation (continued)

A wvalue of zero for lamda 1s not unreasonable, suggesting a logarithmic transformation of
(retplasm). The new variable newret contains the transformed values of retplasm (with

lamda = 0.1676).




Further model checking

Running the model newret with as the dependent variable we have:

®1l: swW reg newret ags l1.sex (l1.smokstat) gustelet (1.vitusse) calories fat fi

> ber alcohol betadiet retdiet, pr(.1l)
i.sex Isex 1-Z2 (naturally coded; Isex_2 omitted)
i.smokstat Ismoks 1-3 (naturally coded; Ismoks_1l omitted)
i.vituse Ivitus 1-3 (naturally coded; Ivitus_1 omitted)
begin with full model
8 0.6699 »>= 0.1000 removing retdiet
p = 0.6327 »>= 0.1000 removing guetelet
p = 0.5945 >= 0.1000 removing Ivitus 2 Ivitus 3
p = 0.5018 >= 0.1000 removing betadiet
p = 0.2852 »>= 0.1000 removing Isex 1
5] 0.1146 >= 0.1000 removing Ismoks 2 Ismoks 3
Source | SS df MS Number of obs = 314
————————— +----——— F{ 5, 30g) = T.583
Model | 34.Z24035%cZ 5 ©.84B807524 Frckh > F = 0.0000
Residual | 265.811233 308 .Be302348%5 E-squared = 0.1141
————————— +--— Bdj B-squared = 0.05%97
Total | 300.051€3 313 .958€31405 Eoot MSE = .9Z8%59
newrst | Coef Std. Err. t P>|t| [95% Conf. Intervall]
_________ +____________________________________________________________________
age | .0lel01z 0038357 4.158 0.000 -.0085538 0236487
fat | -.005%2023 0042933 -2.143 0.033 -.017&502 -.0007544
calories | 0004638 0002721 1.704 0.089 -.000071e 00095852
fiber | -.0235039% .0140948 -l.&€&8 0.09¢ -.051z2381 0042303
alcoheol | .0368435 0115156 3.1%99 0.o00z2 0141843 .0555027
_cons | 10.6245 2747965 38.665 0.o000 10.08418 11.165¢1




Epunveia ouvreAeoTwy

E(In



Checks for outliers and influential observations

We produce residuals, /everage values and Cook’s distances as follows:

predict rstud, rstud

predict d,cooksd

predict h, hat

A studentized residual greater than 2 in absolute value, a leverage greater than 2p/n=0.0382. where p
1s the number of predictors plus the intercept, and a Cook’s distance of 1 or higher are indicative of an

outlier or of excessive influence, or both respectively.

list rstud d h if abs(rstud)>2.0 | h>.0382

rstud d h
1. -2.88015¢ .0283224 .0205401
2. —3.3%9221¢ 0174023 0092961

313, 3.294111 .0123143 L00e9778
314, 3.587223 0196182 .0094104
(37 cases)
. list rstud d h if abs(rstud)>2.0 & h>.0382
( 0 cases)




Model checking (continued)

To summarize the Cook’s distances we proceed as follows:

summarize d

Variable | Obs Mean Std. Dev. Min Max

There are no obsrervations with Cook’s distance above 1, although there are several points with large
residuals or leverage. However. the number of points that we are testing for large residuals 1s so
large, that the criterion of 2.0 or higher is probably very liberal (as 314 repeated tests are being

conducted!). Thus, the fit 1s probably acceptable.




