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General linear Model
This model deals with data that look as follows:
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Models for binary data

Dichotomous (zero/one or binary) data look like




Binary data — covariate classes
Suppose that for each individual or experimental unit, the response. Y, can take only one of the two
possible values 0.1. We can write
Pr(Y:=0)=1-m; : pr(Y=1)=m

For the probability of “failure” and “success” respectively.

In most observational studies we have. associated with each mdividual, a vector of covariates or
explanatory variables (x;, X». ..., X,). The vector of covariates consists of measure variables thought
likely to influence the probability of positive response. The principal objective of the a statistical
analysis, therefore, is to investigate the relationship between the response probability m=n(x) and the
explanatory variables x=(xi, X2, ..., Xp). Suppose that of the N=m;+mp+...+m, individuals under
study my; share the covariate vector (Xi1, Xi. ..., Xip). These individuals are said to form a covariate

class.



Alternative ways of presenting the same data

a)Data listed by subject ID b)Data listed by covariate class

Subject No Covariate (x3.x2)  Response Y Covanate (X1.X2) Class sizem  Response Y
1 1,1 0 1.1 2 1

2 1,2 1 1.2 3 2

3 1,2 0 2.1 1 0

4 2,1 0 2,2 1 1

5 2,2 1

6 1,2 1

7 1.1 1

The difference in a) and b) 1s that in b) some information 1s lost.



The contraceptive-use data (Little, 1998, Rodriguez, 2000)

This 1s data from the Finn fertility survey (1975) derived from Little (1998) and presented in

Rodriguez (2000).
Age Education Desires more  Contraceptive use Total
Children? No Yes
<25 Lower Yes 53 6 59
<25 No 10 4 14
<25 Higher Yes 212 52 264
<25 No 50 10 60
25-29 Lower Yes 60 14 74
25-29 No 19 10 29
25-29 Higher Yes 155 54 209
25-29 No 65 27 92
30-39 Lower Yes 112 33 145
30-39 No 77 80 157
30-39 Higher Yes 118 46 164
30-39 No 68 78 146
40-49 Lower Yes 35 6 41
40-49 No 46 48 94
40-49 Higher Yes 8 8 16
40-49 No 12 31 43
Total 1100 507 1607




Individual versus grouped data
In the example above we have data on 1607 women. Each woman uses (¥Y~=1) or does not use (1:=0)

contraceptives. The resulting Bernoulli probability of contraceptive use for each woman 1s:

P =y)=ni(l-n) "

and the log-likelihood 1s

I(mY)= i{n log(m )+(1-y )log(1- ni)}
i=1

Consider the case of the 16 different groups of women according to the explanatory variables above.

The counts y,, of group members in each group have a Binomial distribution, 1.e.,

- I?m :LJ H _‘-L_r
P(}m :ym): y ﬂ-mm (l_ﬂm) o
S m

with associated likelihood

k
:?(JT. ‘1;") = Z {‘1’}“ log(ﬁm )+(”m _,1;}:}?) log(l_ﬁm )} + C1

m=1

: : R n
where £ 1s the number of categories (A=16 i this example) and C=Io g( " ]
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Individual versus grouped data

When binary data are grouped by covariate class, the responses have the form yi/mi. ..., vo/my,
where 0<y; <mj; 1s the number of successes out of ith covariate class. The vector of covariate class
sizes m=(mj, nmy, .... my,) 1s called the binomial index vector or binomial denominator vector.
Ungrouped data, or data listed by individual subjects, can be considered as a special case for which
m;=np= ... =my=1.

The distinction between grouped and ungrouped data 1s important for at least two reasons:

e Some methods of analysis appropriate to grouped data, particularly those involving Normal

approximation, are not applicable to ungrouped data

e Asymptotic approximations for models applied to grouped data can be based on either of two

distinct asymptots, either m—o0 or N—o0. Only the latter limit 1s appropriate for ungrouped data.



Models for binary data

We suppose that the dependence of 7 on (X1. Xo. ..., Xp) occurs through the linear combination :
P
n=>xp,
J=1
for unknown coefficients B,,f,.....p ,. Unless restrictions are imposed on  we have -so<n<oo. Thus

to express 1 the linear combination would be mconsistent with the laws of probability. So, we need

to use a transformation g(m) that maps the mterval (0.1) to the whole line (- . =0). This leads to

GLM m which the systematic part 1s:
ry
gm)=n =D x,B, i=12...n
J=1
The most common link functions are:
e The logit or logistic function g, (m)=log{n/(1—m)}

e The probit or inverse Normal function g, (n)=® ' (n)

e The complementary log-log function g;(m)=Ilog{—log(1-m);



The logistic, probit and c-log-log links

The logistic regression and probit functions are almost linearly related over the mterval 0.1 to 0.9.
Difficult to discriminate between the two. For small values of 7 c-log-log approaches the logistic. As
7 approaches 1. the ¢-log-log approaches infinity much more slowly than the other two functions.




Use of the different link functions
C-log-log function is used in Dilution assays to help the estimation of the number of infective
organisms per unit volume. For more details refer to McCullagh and Nelder, Generalized Linear
Models, pages: 11-12.
Probit function
In toxicology experiments test animals or msects are divided info sets, usually but not necessarily, of
equal sizes. Each set of animal 1s subjected to a known level x of a toxin. The dose varies from set to
set but 1s assumed to be uniform within each set. For the jth set. the number y; surviving out of the
original m; 1s recorded, together with the dose x; administered. It 1s required to model the proportion
surviving T, at dose x as a function of x. The probit model is 7, = ®(a + £x)
where @(.) 1s the cumulative Normal distribution. Note that if =0, the surviving probability 1s
monotonely increasing in the applied dose. Otherwise, 1f <0, the survival probability 1s monotonely

decreasing in the dose.



Logistic regression for grouped data
All asymptotic and approximate theory presented here applies regardless of the choice of the link
function. However, we will be concerned with the logistic function mainly because of its simple
interpretation as the logarithm of the odds ratio.
REMEMBER: The logit 1s the canonical link. Therefore. the log likelihood depends on y only
through the linear combinations X y. These p combinations are sufficient for B.
A. Grouped data

Consider the data of the potency of an insecticide (Finney, DJ 1971):

Dose Number exposed Deaths
0 49 0

2.6 50 6

3.8 48 16

5.1 46 24

7.7 49 42
10.2 50 44

Here we have grouped data: for an 1 dose we have y; deaths out of m; exposed individuals (Binonual

denominator)



Logistic regression for grouped data
All asymptotic and approximate theory presented here applies regardless of the choice of the link
function. However, we will be concerned with the logistic function mainly because of its simple
interpretation as the logarithm of the odds ratio.
REMEMBER: The logit 1s the canonical link. Therefore. the log likelihood depends on y only
through the linear combinations X y. These p combinations are sufficient for B.
A. Grouped data

Consider the data of the potency of an insecticide (Finney, DJ 1971):

Dose Number exposed Deaths D/EXp T,

0 49 0 0/49 o)

iy “ ¢ 6/50 0.12
| 16/48 0.33

3.8 48 16

5.1 46 24

7.7 49 42

10.2 50 44

Here we have grouped data: for an 1 dose we have y; deaths out of m; exposed individuals (Binonual

denominator)



p=y/m (proportion dying: for the zero count. replace 1t with 0.5/m;)

Graph proportions versus dose
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Analyse the data with glm command.:

. glm deaths dose, family (binomial noexp) link (logit)

Iteration 0: log likelihood = -15.088325
log likelihood = -14.739768
log likelihood = -14.739357

log likelihood = -14.739357

Iteration 1:
Iteration 2:
Iteration 3:

Generalized linear models

Optimization : ML: Newton-Raphson
Deviance = 10.25831651
Pearson = 9.697151289

Variance function: V(u) = u*(1-uw/noexp)
Lk function : g(u) = In(w/(noexp-u))
Standard errors : OIM

Log likelithood =-14.73935665

No.ofobs = 6
Residual df = 4
Scale param = 1

(1/df) Deviance = 2.564579
(1/df) Pearson = 2.424288

[Binomial] NTr(1-1)=Y[1-(Y/N)]

[Logit] T/1-Tr=Y/N-Y (T=Y/N)
AIC = 5.579786
BIC = 6.67479757



deaths | Coef. Std. Err. z P> [95% Conf. Interval]
_____________ e e e e e e e e e e e e e
dose | .6051256 .0678129 892 0.000 4722148 .7380363
_cons | -3.225663 .3699181 -8.72 0.000 -3.950689 -2.500637
Note: For grouped data, the response variable 1s the number of failures (deaths) and in the famuly we

have also to define the binomial denominator (noexp: no exposed).

Interpretation:
ddsX 4
logit (x +1) - logt (x) =b=>log(odds._ ,) —log(odds, ) =b= lDU( )=b=
ﬁx+1
l_aﬂ = oddss., = odds ratio =" =1.831
T, odds
-7

The odds of dving is increased by 83% per each unit increase of dose.

e =0.039~0
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Analyse data with blogit:

blogit deaths noexp dose

Logit estiniates Number of obs = 292
LR chi2(l) = 153.49
Prob > chi2 = 0.0000

Log likelihood = -124.31132  Pseudo R2 = 03817

_outcome |  Coef. Std. Err. =z P=|z| [95% Conf. Interval]
_____________ N
dose | 6051256 .0678099 892 0.000 4722207 .7380304
_cons | -3.225663 .3699052 -8.72 0.000 -3.950664 -2.50006062

The option or gives the odds ratio straightforward.

Note: Check results if alternatively the glogit (group logistic via weighted least squares) command 1s

used.



Check linearity assumption.

blogit deaths noexp dose dose2

Logit estimates Number of obs = 292
LR chi2(2) = 162.67
Prob =chi2 = 0.0000

Log likelihood =-119.71879 PseudoR2 = 0.4045

_outcome | Coef. Std. Err.  z P=[zl [95% Cont. Interval]
_____________ e e e em
dose | 1.513806 .359191 421 0.000 .8098049 2.217808
dose2 | -.0764208 .0277264 -2.76 0.006 -.1307635 -.0220782
_cons | -5.466344 1.023386 -5.34 0.000 -7.472143 -3.460545

The square of dose is significant (P=0.006) according to Wald test. Alternatively can be checked by

the likelihood ratio test (blogit) or the deviance test (glm).
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B. Individual data

Consider the example of the contraceptive use data

Contingency tables

Consider the following table:

Desires more children?
Contraceptive use No Yes Total
Yes 288 219 507
No 347 753 1100
Total 635 972 1607

This means that 972 out of the 1607 women desire more children, while 635 do not and 507 out of
1607 use contraception while 1100 do not. Furthermore, 288 women that do not desire any more
children out of 635 use contraception, while 219 women that desire more children out of 972 use

contraception out.




Contingency tables (continued)
Now suppose that you wanted to determune whether there 1s any association between desire for
children and contraceptive use rate. You can perform a the Pearson chi-square test. This 1s based

7 . . . . . .
on the ¥ < distribution which we will cover momentarily.

This test 1s set-up as follows:

1. H,: Contraceptive use rate is not associated with desire for more children

2. H,: There is an association between desire for more children and use of contraceptions




Observed versus expected counts
Now let us consider the implication of the null hypothesis:
If the distinction between the two groups (women that desire more children versus those that do not)

. . . : : . 507 .
is an artificial one, then the rate of contraception use is estimated by p=——=0.3155 the overall

1607

contraception-use rate.

Under this assumption:

1)  The expected number of women that use contraceptives among those that desire more children
18 (0.3155)(972)=306.67 on average (versus the observed 219)

2)  The expected number of women that do not use contraceptives among those that desire more
children 1s (1-0.3155)(972)=665.34 (versus the observed 753)

3)  The expected number of women that use contraceptives among those that desire no more
children 1s (0.3155)(635)=200.34 (versus the observed 288)

4)  The expected number of women that do not use contraceptives among those that desire no

more children 1s (1-0.3155)(635)=434.66 (versus the observed 347).




The Pearson chi-square test
Our test should be based on quantifying whether deviations from these two expected numbers are

sertous enough to warrant rejection of the null hypothesis.

In general. the chi square test looks like this:

re (0.—E )’

=Y
-1 L

1

E; 1s the expected number, O; 1s the observed number, 7 1s the number of rows, and ¢ 1s the number of
¥ . . . . . . . . . ~ ;
columns. Then, ¥~ 1s distributed according to the chi square distribution with df=(r-1)(c-1) degrees

of freedom. Critical percentiles of the chi-square distribution can be found in the appendix of your
textbook.




Example (continued)

Returning to the above example. the chi square test is (notice the continuity correction that improves

the approximation to the chi-square distribution):

. re(|O—E-05)

5 _
i=1 Er'

_(|219—306.67\—0.5)‘Jr[|753—66:’_»_34|—Ur_:_afJr(|288—200.:—2.4|—G'.:f»)1 (347—434.66|—0.5)2

B 306.67 665.34 200.34 434.66

=2478+11.42+38.36+17.48

=92.04

Comparing this value to 3.84, the right tail of the chi-square distribution with (2-1)(2-1)=1 degree of

freedom. the null hypothesis is strongly rejected.



Computer implementation:

Carrving out the test using STATA 1s as follows:

. tabulate cuse more [freq=N]. chu

Contracept | Desires more

ive use |  children?
(Yes/No) | No Yes| Total
______________ R SO
No | 347 753 1100
Yes | 288 219 507
______________ R SO

Total| 635  972| 1607

Pearson chi2(1) = 92.6442 Pr=0.000

Columns 1 and 2 and rows 1 and 2 correspond to “No™ and “Yes” (Desires more children?) and
(Desires no more children?) respectively. Since the p-value of the test 1s 0.0000<0.05, we reject the
null hypothesis. There 1s a strong association between desire for more children and use of
contraceptives. Note that STATA calculates the Pearson % a bit differently (92.64 instead of 92.04

from our hand-calculations).



The odds ratio

The chi square test of association answers only the question of association. It does not comment on
the nature or direction of the association. For a further investigation of this hypothesis one must rely
on a different test.

We define as the odds of having the disease if exposed 1s P(disease|exposed)/[1-P(disease|exposed)].
The odds of having the disease 1f unexposed 1s P(diseaselunexposed)/[1-P(disease[unexposed)].

The odds ratio (OR) 1s defined as:

OR = P(disease |exposed)/[ 1- P(disease |exposed)]

P(disease [1imexposed) /[1 - P(disease |unexposed) |




Consider the following 2x2 table:

Exposed Unexposed Total
Disease a b a+b
No disease C d ct+d
Total atc b+d n

An estimate of the odds ratio 1s

[a/(a+0)]/[ca+c)] _alc _ad
[b/(b+))/[d(b+d)] b/d bc




If the odds of having the disease in the exposed and unexposed groups are equal. then the odds ratio
should be close to 1. A test of this 1s constructed as follows:

H,: There 1s no association between exposure and disease

H.: There is an association between exposure and disease.
If the null hypothesis 1s true, the odds ratio should be close to 1. The test will answer the question:
“How far from 1 is too far to warrant rejection of the null hypothesis?”

The OR 1itself 1s not distributed normally. But its logarithm 1s. In fact. the statistic

e %E)

1, 1,11
Va'p5'c'a

1s approximately distributed according to the standard normal distribution. Tests

and confidence mntervals are derived as usual.




Testing the hypothesis of no association (using the odds ratio)
1. Ho: There 1s no association between exposure and disease (OR=1)

2a. H,: There is a positive or negative association between exposure
and disease (OR>1 or OR<1 respectively)

b. Ha: There is an association between exposure and disease (OR#1)

3. The test statistic 15 Z

4 Rejection rule:
a. Reject the null hypothesis, if Z=2005. or Z=-zp05 (one-sided tests)

b. Reject the null hypothesis. if |Z]>2¢ 025 (two-sided tests)




Confidence intervals (Woolf method)

A (1-a)% confidence mterval of the /og-odds ratio 1s given by

|:]1](OR)— \Xl -|-E1)_|_1_|_d ]ll(OR)‘l'- 1\/i+l+l—|—l

a a b ¢ d

Thus, the (1-c)% confidence interval of the true odds ratio 1s given by

]ﬂ(QR)— 1||l+l—l+l In(OR)+z_ 1, —___l
a b ¢ d e ‘Na d

»

This confidence interval can also be used to perform a hypothesis test by mspecting whether 1t

covers 1 (the OR hypothesized value under the null hypothesis).




Example: Consider the previous example:

TCI 219 288753 347
Proportion
| Exposed Unexposed | Total Exposed
_________________ o
Cases | 219 288 | 507 0.4320
Controls | 753 347 | 1100 0.e845
_________________ o
Total | 972 635 | 1607 0.604%
| |
| Point estimate | [95% Conf. Intervall
| ——— e
O0dds ratio | .3504178 | .2804118 43792495 (exact)
Prev. Lfrac. x. | L 6495822 | 5620705 . 7195882 (exact)
Prev. frac. pop | LA44E6686 |
o
chiz (1) = 92.¢4 Prx=chiz = 0,0000

The odds ratio 1s 0.350 with a 95% confidence interval (0.280, 0.438). Thus. the null hypothesis of

no association 1s rejected as both limits of the confidence interval are below 1.0.

Prev.Frac.=1-RR=1-0.35=0.65
P.(1-RR) 0432(1-035)
P.(1-RR)+RR  0.432(1-0.35)+0.35

Prev.Frac.Pop.= 445

P.=% of cases that are exposed= %3




Analysis using logistic regression

Consider now the analysis of the same table using logistic regression. That 1s, fitting the model

log

L -

L_|=p,_+B,X wherei=1. . nand X = %]‘E oLl da;:sues children hildr
0 i i~ 101f woman wan ts no more children

1

The model probabilities in the 2x2 table are defined as follows:

Contraceptive use Desires more children?
Yes (X=1) No (X=0)
Yes (Y=1) A P TR ) P
l+e™ ™ l+e™
No (1=0) 1—41)=— L . 1—#(0)=—1
1+ eB . TP, 1+ eB
Total 1.0 1.0

where, 7(x)=P(Y =1/ =x). Note that in his notes Rodriguez (2000) uses the group of women

that desire more children as the reference group (that results i estimates that have the opposite sign).




Analysis using logistic regression (continued)

Using STATA this analysis looks as follows (note that we use “No use” as the reference cell):

xi: logit cuse i.more [freg=N], nolog
1.more Imore 0-1 (naturally coded; Imore_0 omitted)
Logit estimates Number of obs = 1607
LR chiZ (1) = 91.67
Prob > chi?2 = 0.0000
Log likelihood = -956.00957 Pseudo R2 = 0.0458
cuse | Coef Std. Err z E>lz| [95% Conf. Interval]
Imore 1 | -1.048629 .110672 -9.475 0.000 -1.265542 -.831716
_cons | -.1863643 .0797124 -2.338 0.019 -.3425977 -.0301309
.Irtest, saving(l)

The estimated coefficients are [30 =—0.186 (s.e. 0.080) and ﬁl ~—1.049 (s.e. 0.111). The likelihood-ratio

test for this model is 91.67. which 1s distributed asymptotically according to a chi-square distribution
with one degree of freedom. This is very close to the Pearson chi-square statistic presented above. The

likelihood of this model 1s saved with the 1rtest command.




Interpretation of the logistic regression coefficients

From the above table we can see that the odds ratio 1s

R
G FONA) 14 PP ) 1P SR g
RO)/1-70) B [ 5.

b,/

l+e 1+€

that 1s, the estimate B: log(\r).

Thus, the above estimate of B results in an estimated odds ratio —¢~1.049 _0 350, This means that

—

women that desire more children (1.e., X=1) have 35% odds (or alternatively are =2.85 times less

0.35
likely) to be using contraceptives compared to women that do not want any more children (X=0). Notice

. : : D : : A~ (21934
that this estimate 1s produced by multiplying the diagonals of the 2x2 table, 1.e.. v _219)347) ~0.350

(288)(753)




STATA produces estimates of the odds ratios in two 1dentical ways: Either by icluding the option

or after the 1ogit statement, or by using the 1ogistic command.

logit , or

Logit estimates Number of obs = 1607
LE chiZ (1) = 91.67

Prob > chi?2 = 0.0000

Log likelihood = -956.00957 Pseudo R2 = 0.0458
cuse | Odds Ratio Std. Err z P>|z| 95% Conf. Interval]
more | 3504178 0387814 -9.475 0.000 28208¢e3 4353017

®xi: logistic cuse i. more [freg=N]
1.more Imore 0-1 (naturally coded; Imore 0 omitted)
Logit estimates Number of obs = 1607
LR chiZ (1) = 91.67
Prob > chiZ2 = 0.0000
Log likelihood = -956.00957 Pseudo R2 = 0.0458
cuse | Odds Ratio Std. Err. z P>|z]| [95% Conf. Intervall]

more | .3504178 .0387514 -9.475 0.000 .26820863 .4353017




The “null” model

Consider the following model:

xi: logit cuse [freg=N], nolog
Loglit estimates Number of obs = 1607
LR chi2 (0) = 0.00
Prob > chi?2 = .
Log likelihood = -1001.8468 Pseudo R2 = 0.0000
cuse Coef Std. Err z B>zl 95% Conf. Interval]
_cons | -.7745545 0536794 ~-14.429  0.000 -.8797641  -.6693448
. " e ?I.-' " 0 - . . .
This 1s the “null” model log . ‘—|=pB_. The likelihood for this model 1s saved usmng the lrtest
—7r
T

command. The estimate B_~—0.775 results in the odds of using contraception (in general) i the study

population, i.e., e ~e=0775 =0.461=507/1100.




Hypothesis testing
. The likelihood-ratio statistic compares the model with more as the covariate against the null model.
Its value 1s 91.67, which compared to a chi-square distribution with one degree of freedom 1s

extremely significant.

~

. The test of significance of the estimate B 1s a Wald test of the form == p —=-9475. The

s.e.(B)

asymptotic distribution of this statistic 1s standard normal.

. The 95% confidence interval is Bi(l .96)5.6.([';’)):[—1 265, —0.832], with 95% confidence interval for
the odds ratio [e712%° ¢70-832]1=[0.282. 0.435]. Women that desire children are 2.30 times (=1/0.435)

to 3.55 times (=1/0.282) less likely to use contraceptive methods.




Hypothesis testing (continued)

The = statistics above 1s consistent to the likelithood-ratio one presented above. In fact, the square of this

statistic 1s 89.9, which 1s very close to the 91.67 likelihood ratio statistic.

statistic can be obtained by the test command in STATA as follows:

This (Wald) chi-square

. test Imore 1

(1) Imore 1 = 0.0
chi2( 1) = 89.78
Prob > chi2 = 0.0000

This 1s very close to our calculations (within round-off error).




The effect of age on use of contraception
The effect of the factor age can be ascertained in a similar manner, considering the following 2 x4 table

in this mstance).

Contraceptive Age
use <25 25-29 30-39 40-49 Total
Yes 72 105 237 93 507
No 325 299 375 101 1100

Total 397 404 612 194 1607




The effect of age on use of contraception

Simce age 1s a factor with four levels, an explicit factorization 1s necessary. Thus, we will construct

three dummy variables X7, Y5> and X5 as follows (here the group of women less than 25 years old is used

as the reference group):

Dummy Age factor

variable <25 25-29 30-39 40-49
D¢ 0 | 0 0
X 0 0 | 0
A 0 0 0 |

The fitted model 1s as follows: log[li =B, +BX, +B, X, +B.X,
_— ?I - - = =




Analysis with STATA
The analysis with STATA 1s presented below. Notice that the first age group (<25) 1s the default

reference group in STATA:

®x1l: logit cuse i.age [freg=N] ,nolog

1.age _Tage 1-4 (naturally coded; _Tage 1 omitted)
Logit estimates Number of obs = 1607
LR chiZ2(3) = 79.19
Prob > chi?2 = 0.0000
Log likelihood = -962.25091 Pseudo R2 = 0.0395
cuse | Coef Std. Err z P>|z| [95% Conf. Interwval]
_Tage 2 | .4606758 .1727254 2.67 0.008 .1221403 .7992114
_Tage 3 | 1.048293 .1544404 6.79 0.000 . 7455955 1.350991
_Tage 4 | 1.424638 .1939573 7.35 0.000 1.0444869 1.804787
cons | -1.507159 .1302527 -11.57 0.000 -1.76245 -1.251868




Interpretation of estimated coefficients
The likelihood ratio test statistic 1s 79.19. which compared to a chi-square distribution with 3 degree of

freedom 1s extremely significant. The model as fitted produces estimates of the odds ratios of each age

group compared to the reference group (<25). For example, women 25-29 vyears old are, 58.5%

(ef =&0461=] 585) more likely to be using contraceptives compared to women less than 25 vears old.

This can be derived from the 2x2 table

tab cuse age [freg=N] 1if age==1 | age==Z
Contracept |
ive use | Age
(Yes/No) | <25 25-29 | Total
__________________________________ _I___________
No | 325 299 | 624
Yes | 72 105 | 177
__________________________________ _|___________
Total | 397 404 | 801
- =
and deriving the odds ratio as |/ _ (32505 ~1.385.

(72)(299)




Interpretation of estimated coefficients (continued)

.. - - — 1048 .
By similar arguments, 30-39 year-old women are 2.85 (=€ ) times and 40-49 year-olds are 4.16

__ 1425 . . .
(—e ) times more likely to use contraceptive methods compared to women less than 25 years of

age.

The mdividual Wald tests for the significance of the age-related coefficients B,B, and B, are given in

the STATA output above. A global test for the significance of all three 1s the Wald chi-square test:

test Iage 2 Iage 3 Iage 4
(1) Iage 2 = 0.0
( 2 Tage 3 = 0.0
( 3) ZIage 4 = 0.0
chiz( 3) = 74.36
Prob > chiZ2 = 0.0000

The value of this test 1s 74.4 and 1t 1s asymptotically distributed as a chi-square distribution with three

degrees of freedom. The value of 74.4 1s extremely significant as indicated by the p value.




