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C. Model checking

The contraceptive use example

Consider the contraceptive use data set:

age educatc more cuse H

1. <25 Low Ho 0 10

2. <25 Low Ho 1 4

3. <25 Low Yes 0 53

4. <25 Low Yes 1 G

5. <25 High Ho 0 50

g. <25 High Ho 1 10

7. <25 High Yes 0 212

8 <25 High Yes 1 52

] 25-29 Low Ho 0 19

10 25-29%9 Low Ho 1 10
11 25-29%9 Low Yes 0 &0
12 25-29%9 Low Yes 1 14
13. 25-29%9 High Ho 0 65
14, 25-29%9 High Ho 1 27
15. 25-29%9 High Yes 0 155
16. 25-29 High Yes 1 54
17. 30-3% Low Ho 0 77
18 30-3% Low Ho 1 30
1% 30-3% Low Yes 0 112
20 30-3% Low Yes 1 33
21 30-3% High Ho 0 (3]
22. 30-3% High Mo 1 78
23. 30-3% High Yes 0 118
24, 30-3% High Yes 1 4G
25. 40-4% Low Mo 0 4c
26. 40-4% Low Ho 1 45
27. 40-4% Low Yes 0 35
28 40-4% Low Yes 1 G
29 40-4% High Ho 0 12
30 40-4% High Ho 1 31
31 40-4% High Yes 0 g
2 40-4% High Yes 1 g




Measures of goodness of fit
Goodness of fit tests are, by definition, those that compare the observed to the fitted values. In
logistic regression (as in any GLM) there are two such statistics: The Pearson chi-square and the
deviance.

The deviance is the likelihood ratio test comparing a model against a safurated model as follows:
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where F(fé-;y) i1s the maximized likelihood of the saturated model and f(éz_ y) 1s the maximized

likelithood under the model in consideration. In the case of the binomual likelihood (i.e., when data

are grouped 1n k& categories of n; observations each).




Binomial deviance
In the case of the binomual likelihood (grouped in & categories of »; 0obs.) the deviance is given by,
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sign 1s determuned from the sign of (yi—nl_;?l_). The deviance has an asymptotic chi-square

distribution with &#-(p+1) degrees of freedom IF the number of categories i1s small compared to # and
does not increase with increasmng ». Such would be the case if some of the covariates were
continuous and the data could not be grouped in a small number of categories. d; 1s the Deviance
residual, which we will encounter later in this lecture. NOTE: The X? approximation is usually quite

accurate for differences of deviances even if 1t 1s mnaccurate for the deviances themselves.




The Pearson chi-square statistic

The Pearson chi-square statistic 1s given by

[1’ —HJT}

where 7(y, ﬂ') X? has an asymptotic chi-square distribution with k-(p+1) degrees of

T:r (1- ;r})

freedom. IF the data are grouped m a number of categories that 1s less than » and does not increase

as n—>o0. This means, that the Pearson chi-square statistic does not have a goodness of fit

interpretation m cases of individual data (where k=n). r; 1s the Pearson residual for covariate

pattern 7, which we will encounter later on. It 1s a good practice not to rely on either deviance or
Pearson X when data are sparse. It is much better to look for specific deviations from the model

(e.g. test for interactions, non-linear effects).




Contraceptive use example
In the contraceptive data example. if age 1s not used as a continuous variable, there are 8 covariate

categories (=2x4) in each category of contraceptive use. Some data manipulation is in order:

reshape wide N, 1i(age more educat) J(cuse)
(note: 3 = 0 1)

Numker of obs. 3z —= 1lg
Number of wariakles g - 6

7 wariable (2 walues) cuse - (dropped)
#1ij variables:

sort age more educat
. by age more: gen nl=sum(N1)
. by age more: gen nl=sum(NO)
. by ags more: drop if n< N
. drop educat NO N1
renams nl N1
rename nl NO
. gensrate tot=NO+N1
lakbsl var tot “Total chssrvations (n_1)”

list

age more contage Nl WU tot
1 <25 No 20 14 60 74
2 <25 Yes 20 28 265 323
3 25-29 No 27.5 37 24 121
4. 25-295 Yes 27.5 € 215 283
3. 30-359 No 33 158 145 303
6. 30-359 Yes 33 7o 230 30%
7. 40-49 No 45 7o =1 137
2. 40-45%5 Yes 45 14 43 37




Consider the following alternative analysis of contraceptive use by age and desire for more children:

char more[omit] 0
®xi: blogit N1 tot i.age i.more
i.ages Tage 1-4 (naturally coded; Iage 1 omitted)
i.more Imore 0-1 (naturally coded; Imore 0 omitted)
Logit estimates Number of obs = 1607
LE chiZ (4) = 125.88
Prob > chi? = 0.0000
Log likelihood = -937.40449 Pseudo RZ = 0.0643
_outcome | Coef S5td. Err z Ex>|z| [95% Conf. Intervall]
_________ +____________________________________________________________________
Iage 2 | .3678306 .1753¢e73 2.097 0.036 .024117 .7115443
Tage 3 | .8077588 .1597533 5.05¢ 0.000 494678 1.1209
Tage 4 | 1.022618 L20329337 5.014 0.000 .B6229158 1.422321
Imore 1 | —-.824052 1171128 =-7.037 0.000 -1.053629 —.5945552
_cons | —-.8658414 1571298 -5.53¢ 0.000 -1.17781 -.5618727

Here, N1 is the number of women using contraceptives i each of the eight agexmore categories

and tot is the total number of women. blogit performs the logistic regression on this binomial
sample (1.e., the sample of N1 out of Lot women using contraception). Compare these estimates

with the output in the previous lecture.




Deviance

We can now derive the deviance manually by following the formula given above. To derive flr. the

expected number of women using contraception in each of the sixteen agexmore categories we

proceed as follows (note that blogit produces estimates of counts not probabilities):

predict yhat
(option n assumed; predicted no. of cases)

Then the deviance 1s generated as follows:

gen di = 2*¥ (N1*log(N1l/yhat) + (tot-N1)*log((tot-N1)/(tot-yhat)) )

gen D=sum(di)

display "Deviance = " D[ N]
Deviance = 16.788813

display " p = " chiprob(3, D[ N])
p = .00078105

So the p value i1s p=0.0008, which means that the additive two-factor model does not fit the data
adequately. This result is consistent to the analyses shown in the previous lecture.

Note that the square root of di 1s the deviance residual. We’ll take this up again later on.




Pearson chi-square

The Pearson chi-square statistic 1s derived similarly:

gen r=(Nl-yhat)/sqrt(yhat* (1l-yhat/tot))
gen XZ=sum(r*2)

display "Pearson X2=" X2Z[ N]
Pearson X2=16.283419

display " p = " chiprob(3, X2[ NI)
p = .00099191

The Pearson chi-square statistic 1s close to the deviance statistic and i1s associated with a highly
significant p value, which 1s further evidence for the inadequacy of the two-factor additive model.

Notice that r 1s called the Pearson residual (we will take this up again momentarily).




The Hosmer and Lemeshow statistic
Consider the models where age was entered as a continuous covariate (dismiss for a second the fact
that we assigned a mean age to each group). When individual data are involved, there 1s a definite
need for a goodness of fit statistic. The Hosmer-Lemeshow (HL) statistic fills this need.
The Hosmer and Lemeshow statistic 1s essentially a Pearson chi-square statistic based on a grouping
of the subject group mto g groups (usually g 1s taken to be ten). Then the Pearson chi-square statistic
1s derived by considering the 2xg contingency table.
The grouping can be done by assigning one tenth of subjects to each of the 10 (or g) groups. or by
assigning one tenth of the estimated probabilities to each group. STATA uses the latter method.
A problem that may arise 1s “breaking the ties” in a category with a great deal of the observations
(i.e.. mm which group the software will assign the superfluous observations). See Hosmer &

Lemeshow for a lucid discussion of this matter.




The HL statistic in the contraceptive-data example
STATA mmplements the HL statistic as part of the 1fit command that follows the logistic
command and the latter can only handle individual-level data. We thus return to the original dataset.
The HR statistic 1s computed as follows:
Step 1.  Carry ouf the logistic regression and generate the predicted probabilities
Step 2. Sort the predicted probabilities
Step 3.  Group observations based on the predicted probabilities. Resolve (STATA) ties by
assigning all observations with the same predicted value in the same group.
Step 4. Calculate a Pearson chi-square statistic based on the 2xg contingency table that results

from step 3 and the response variable. Based on simulation studies: X? degr. of fr.=g-2




Here 1s the output:

quietly xi: logit cuse i.more contage [freg=N]
1fit, group(e) table

Logistic model for cuse, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

__Group _Prob _Obs 1 _Exp 1 _Obs 0 _Exp 0 _Total
1 0.1632 58 52.7 265 270.3 323
2 0.2135 8 e0.4 215 222.6 28:
3 0.2743 79 84.8 230 224.2 309
4 0.3828 65 90.2 187 lel.8 252
5 0.4633 158 140.4 145 162.6 303
3 0.5730 79 78.5 58 58.5 137

number of observations = 1e07
number of groups = 6
Hosmer-Lemeshow chi2 (4) = 17.48
Prob > chi2 = 0.001¢6

The p value of the Hosmer-Lemeshow chi-square 1s 17.48, which compared to a chi-square with 4
degrees of freedom results in a p value of 0.0016. This 1s evidence that the two-factor covariance
model with no interaction does not fit the data adequately. Note that we chose g=6 as the total

number of groups was 8.




Just for clarifying further, let’s compute the statistic manually (note that the size of the groups would

be close to 1607/6=268 subjects):

gquietly Xi: logit cuse i.more contage [freg=HN]
. predict phat
{option p assumed; Pr{cuse))
. sort phat
. list age more phat H
age more rhat H
1. <25 Yes .1632108 212,
2. <25 Yes .1632108 5z
3. <25 Yes .1632108 s ¢ =323 SllbiECtS group 1
4, <25 Yes .1632108 53 - =
5. 25-29 Yes .2135374 155
£. 25-29 Yes .2135374 14 .
7. 25-29 ¥Yes  .2135374 54 } = 283 F_-;llb_]ECtS aroup 2
9. 25-29 Yes .2135374 60 . =
9. 30-39 Yes .2742955 11z2.
10. 30-39 Yes .2742955 118
11. 30-39 Yes .2742955 33 = 309 SllbjECtS group 3
12. 30-39 Yes .2742955 46 =
13. <25 Mo .3081821 50
14. <25 Mo .3081821 10
15. <25 Mo .3081821 10
16. <25 Mo .3081821 4
17 40-49 Yes .3700797 B
18 40-49 Yes .37007497 35 - :
19 40-48 Yes  .3700797 3 =252 subjects group 4
20 40-49 Yes .3700797 g
21. 25-29 Mo .3B27633 27
22. 25-29 Mo .3B27633 19
23. 25-29 Mo .3B27633 65
24. 25-29 Mo .3B27633 10
25. 30-39 Mo .4633063 77 -
Z6. 30-39 Mo .4633063 78 )
27. 30-39 No  .4633063 ge ¢ = 303 Sllb]ECtS group 5
28. 30-39 Mo .4633063 BO . - =
29. 40-49 Mo .5729307 4§
30. 40-49 Mo .5729307 31 .
31 40-49 Mo .5728807 48 } = 137 Sllb]E"CtS aroup 6
3z 40-49 Mo .57293807 12 - -




Hand calculation of the HR statistic

The Hosmer-Lemeshow statistic 1s calculated as a Pearson chi-square statistic based on the 2x6 table

26(0. ~E. )?
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4

58-52.7)% (68—60.4)° 58585
:( L L )

52.7 60.4 58.5
=748

where O; 1s the observed count, E; 1s the expected count. The expected counts (£;) are derived by

multiplying Total (ie., the total number of women in this group) in the above output, by Prob
(the estimated probability of using contraceptives) and Total by 1- Prob. The associated p

value 1s

. di "p = " chiprob(4, 17.48)
p = .00155892

which 1s the same as before and is indicative of the inadequacy of the model.




Model checking

Recall the best model as 1dentified in the previous lecture:

gen contageZ=contage*contage

®i:
1.more
i.more*contage
Note: Imore 1 dropped
Note: contage dropped

Imore 0-1
ImXcon_ #
due to collinearity.
due to collinearity.

Logit estimates

Log likelihood = -530.18024
cuse | Coef Stc Err z
contage | .2331551 .0ek1087 3.581
contageZ | -.0024113 .00093%98 -2.566
Imore 1 | 1.292637 .B810191 2.225
ImXcon 1 | -.0659373 .0176673 -3.732
cons | -5.216035 1.123734 -4.642

logit cuse contage contage2 i.more i.more*contage
(naturally coded; Imore 0 omitted)
(coded as above)

Number of obs

LE

chiz (4)

Prob > chi?
Pseudo RZ2

[freq=N],

.1055445
-.0042532
.15358601
-.1005645
-7.418513

nolog

1607
143,33
0.0000
0.0715

.3607658
-.0005693
2.431413
-.0313101
-3.013557

Model checking, is based on residuals and influence measures as was the case in linear regression.




Residuals and influence measures

There are three residuals that we will be focusing on. These are:
Yi—H;
Jao o

1. The Pearson residual for covariate pattern i 1s P, = where ;}j =”r"?%r"' and »; 1s the

number of subjects in the 7® covariate pattern. The Pearson residual is produced with the
predict command in STATA and the option r.

. ) ) . i . — L. )
2. The standardized Pearson residual for covariate pattern 7 1s s. = i_ }f s _ It 1s
I ,Jl—hf J(l_hr' };ff(ni-— H;)/n;

produced by the option rstan in the predict command in STATA. Note that /; 1s similar to

the “hat” matrix H in the general linear model (as extended by Pregibon, 1981 in logistic
regression) and 1s equal to H=V2XXVX)'X'VV? V is a diagonal matrix,

Vo= (HE_ — )/ n = HI_JT(XE__ )1— (X, )].

) ) ) .
3. The deviance residual for covariate patternj1s d. =+ J: { v, h{'}—iJ—(n,. = y,.)h{%ﬂ cItis
H —}TI.

i i

produced by the option deviance i the predict command in STATA.




Residuals and influence measures: Leverage and distance
As an extension of the Cook’s distance measure that was introduced in the linear model’s discussion,
in logistic regression we have its extension in logistic regression (Pregibon, 1981). It 1s essentially

the (standardized) difference between [3 and [3 (_T_)the ML estimate of b excluding all »; subjects with

covariate pattern 7. The approximate Cook’s distance D 1s

D pf’hr_ S;'f.’r_

" a-h)? A-h)

where 7; is the i diagonal element of the hat matrix H. The Pregibon approximation of the Cook’s
distance 1s produced in STATA with option dbeta in the STATA command predict.
The diagonal elements of the hat matrix can be considered as /everages in a similar manner as in the

general linear models. These are produced with the option hat in the STATA command predict.




Leverage
Let 7, denote the i® diagonal element of the matrix H defined in page 15. Then, we can show that

~ ~ r rr - l | a l
h.:' :”iﬁ(xi)[l_ﬂ-(xi)](l‘-xi)(x ‘IX) l[xr ] where b!' :(LX:)(XW?X) 1( ']
\ - / H Xf

3 . s
Vi

~
b.

T

A point that must be kept in mind when interpreting the magnitude of 7, is the effect that v, has on

it. Note that, the fit determines the estimated coefficients and since these determine 7,, points with

large values of 7 are extreme in the covariate space and thus lie far from the mean. This 1s if you

ignore v;. Because of v, at extreme values of 7;the leverage decreases rapidly and approaches 0.

That 1s, the points most extreme in the covariate space may have the smallest leverage.

This 1s the exact opposite of the sifuation i linear regression, where the leverage i1s a monotonic
increasing function of the distance of a covariate pattern to the mean. The practical consequence of
this is that to correctly interpret a particular value of the leverage in logistic regression, we need
to know whether or not 7 is small (<0.1) or large (>0.9). If 0.1<m <0.9 then the leverage will give a
value that may be thought of as distance. When the estimated probability lies outside (0.1,0.9) then
the value of leverage may not measure distance in the sense that further from the mean implies

a larger value.



- . o |
Residuals and influence measures: AX™ and AD

As a simuilar idea of the Cook’s distance derived above, two more measures of goodness of fit of

individual covariate patterns exist. These are r_ﬂff and AD., that 1s, the difference in the Pearson chi

square statistic and the deviance due to removal of the j® covariate pattern. The former measure is

!

2 _

i

i~ (-h)

-

-

—

]

&}Lf 1s produced mm STATA by option dx2 m the command predict. The latter measure 1s

AD =d?+ pil;

i i (=) and upon substitution of pf for fff this becomes,
I

AD. =

[

d’

I

(]—f?f.)

AD. is produced by the option dd in the STATA command predict.



Contraceptive data example

In the example, we produce the fitted values for the probability of contraceptive use as follows:

. guietly xi: logit cuse i.more i.age i.more*i.ages
> [Ereq=N]

. predict prob

{option p assumed; Pr{cuse))

. label war prob "Probability”™

. guietly xi: logit cuse i.more contage

> contagefcontage i.more*contage [freg=N]
. predict phat

. gen phatl=phat if more==1

(lé¢ missing values genserated)

. gen phatl0=phat if more==(

(16 missing values generated)

. graph phatl phat0 prob contage, c(ss.) s(iio) xlab
> ylab border
] ] ] ]
il
[-—
§1A .
S
W
0
[+
a3 -
2 7

20 30 40

Age (continuous)

SOort more

table contage, contents (mean prob

> mean phat) by (more)

__________ +______________
Desires |
more |
children? |
and |
contage | mean (prob)
__________ +______________
No |
20 | .1891892
27.5 | .3057851
35 | .5214521
45 | .57664273
__________ +______________
Tes |
20 | 1795666
27.5 | .2402827
35 | .2556634
45 | .245614
__________ +______________

.1798393

. 348013

4976501

.597039

1760204

.240777

.2641383

.217312




Model checking through residuals and influence measures

. quietly
. predict
. predict
. predict
. predict
. predict
. predict
. predict
. predict

®xi: logit cuse contage contageZ i.more i.more*contage

p, resid

s, rstand
d, deviance
h,hat

D, dbeta
DXZ2, dxZ
Dd, dd

n, n

[freq=N],nolog

Notice that n 1s the number of the covariate pattern. These are

(Cm*::riﬂte D h

pattern) more age (~Cook's D) (leverage)
1 Yes <235 0.805561 0.830118
2 No <25 0.176814 0.610767
3 Yes 25-29 0.000463 0.416496
4 No 25-29 0.965923 0.384639
5 Yes 30-39 0.563625 0.63994
6 No 30-39 4.459163 0.677098
7 Yes 40-49 1.001881 0.599291
8 No 40-49 7.95146 0.841646




Residuals

sum p s d
Variable | Obs Mean Std. Devw Min Max
_________ +_____________________________________________________
P | 32 -.0119643 .B5481008 -.9751577 .8286497
5 | 32 -.0045499 .911074e -1.243111 1.458263
d | 32 —-.0143877 .B483285 -.98525¢6 .8287445

In situations where the number of subjects per category 1s fairly large (as 1s the case here). the
central-limit theorem provides a criterion for deciding how large a residual has to be before 1s
considered problematic. A residual larger than 2.0 should be mspected more carefully. We see that
no residuals are too large as no residual reaches that threshold. However, the 6™ and 8™ categories
(more==No and age==30-39/40-49) are associated with a large Cook’s distance. Here a
criterion similar to the linear-regression situation of a Cook’s distance larger than 1.0 being

considered large 1s adopted.




Distance and influence measures
The leverage can be considered n a similar manner as in the linear-regression case. The sum of the
diagonal elements of the hat matrix i1s (p+1) so any leverage twice the average value or higher should

be considered further (Pregibon, 1981). The average value (=(p+1)/% ) here 1s 5/8=0.625 (the

critical value 1s 2%0.625=1.25). so there are no overly influential categories.

Hosmer and Lemeshow also recommend inspecting graphically the model fit by plotting AX? and AD

as well as D agaimst the estimated probability ”%:' =P(Y =1|X=i) for covariate pattern 7. Then.

poorly fit points will be located at the top left and top right comer of the graph. and in general do not
conform to the pattern defined by the majority of the poimts. In the following plots. we identify the

points by the covariate pattern n.




Distance and influence measures

The crude threshold for AX? and AD is 4.0, the approximation of the 95® percentile of the chi-square

distribution with one degree of freedom (recall that =3.84). By extension of the criterion of

2
£1:0.95

the Cook’s distance, the threshold of D 1s 1.0.

.graph DXZ phat, xlab vlab border s([n]) . graph Dd phat, xlab vlab border s([n]) .graph D phat, xlab wvlab border s([n])

I Y R

We see that no point in the graphs above satisfies any criterion for an unusually poorly fit or
mfluential point. The model fits the data well. At the most, we would like to explore category

n==6 and n==8 (women ages 30-39 and 40-49 wanting no more children) a bit further.




