GENERALIZED LINEAR MODELS
Multinomial Logistic Regression
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Mammography Experience Study (Hosmer & Lemeshow, 2000)

Variable  Description Codes/Values Name
1 Identification Code 1-412 OBS
2 Mammography Experience 0 = Never ME

1 = Within One Year
2 =0ver One Year Ago
3 "You do not need a mamogram unless 1 = Strongly Agree SYMPT
you develop symptoms" 2 = Agree
3 = Disagree
4 = Strongly Disagree

4 Perveived benefit of mammography* 5-20 PB
5 Mother or Sister with a history 0=No.1="Yes HIST
of breast cancer

6 "Has anyone taught you how to 0=No, I =Yes BSE
examine your own breasts: that i1s BSE"

7 "How likely 1s 1t that a mamogram 1= Not likely DETC
could find a new case of 2 = Somewhat likely
breast cancer" 3 = Very likely

*The variable PB i1s the sum of five scaled responses, each on a four point scale.
A low value 1s indicative of a woman with strong agreement with the benefits of mammography.




Multinomial logistic regression
Since the outcome variable ME takes on values 0. 1 or 2, we are involved 1in a multinonual

(polytomous) logistic regression situation. We define the following models:
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The multinomial logistic regression likelihood

It we consider three indicator variables Y .Y and ¥, such that Yj_ =1 1if Y=, 7=0.1.2, then the
multinonual logistic likelihood can be written (Hosmer & Lemeshow, 2000)
L= 11 75" 7,6 7y ' |
i=
where p'=®B, "B, ') the coefficients corresponding to ME==1 and ME==2 respectively. The log-
likelihood (realizing that ¥, =1-Y, -1, ) 1s:
I(m,B)=x|v, log(n )+y Jog(n, )+(1-y -y )og(n m)j

i g1x 052 (x) :}

which 1s maximized in order to obtain the ML estimates of .




The two 2x2 tables corresponding to the logistic-regressions mentioned above are:

“Within one year” versus “Never”

tab ME hist if ME==0 | ME==1
Mammograph | Fam. history
experience | No Yes | Total
________________ +______________________+__________
Never | 220 14 | 234
Within one year | 85 19 | 104
________________ +______________________+__________
Total | 305 33 | 338
“Over a year ago” versus “Never”
tab ME hist if ME==0 | ME==2
Mammograph | Fam. history
experience | No Yes | Total
________________ +______________________+__________
Never | 220 14 | 234
Over a year ago | 63 11 | 74
________________ +______________________+__________
Total | 283 25 | 308




xi: logit ME i.hist if ME==1 | ME==0, nolog

1.hist IThist 0-1 (naturally coded; Ihist 0 omitted)
Logit estimates Number of obs 338
LR chiZ2 (1) 11.32
Prob > chi2 = 0.0008
Log likelihood = -202.96528 Pseudo R2 0.0271
ME | Coef std. Err z P>|z| [95% Conf. Intervall
_________ +____________________________________________________________________
Thist 1 | 1.256358 .3746603 3.353 0.001 5220373 1.9%0679
_cons | -.9509763 1277112 -7.446 J).000 -1.20128¢ -.7006669

xi: logit ME i.hist if ME==2 | ME==0, nolog

i.his Thist 0-1 (naturally coded; Thist 0 omitted)
Logit estimates Number of obs 308
LR chiZ2 (1) 5.26
Prob > chi2 = 0.0218
Log likelihood = -167.19417 Pseudo R2 0.0155
ME | Coef std. Err z P>|z| [95% Conf. Intervall
_________ +____________________________________________________________________
Thist 1 | 1.009331 4274999 2.361 J).018 .17144¢64 1.847215
cons | -1.250493 1428932 -8.75: ). 000 -1.530558 -.9704273




We can perform the above two logistic regressions in one step using the multinomual logit

(mlogit) command of STATA is as follows:

xi: mlogit ME i.hist, nolog
i.hist Thist 0-1 (naturally coded; Ihist 0 omitted)
Multinomial regression Number of obs = 412
LR chiZz (2) = 12.86
Prob > chi2 = 0.001e
Log likelihood = -396.16997 Pseudo R2 = 0.0160
ME | Coef Std. Err z P>z | [95% Conf. Intervall]
_________ +____________________________________________________________________
Within o |
Thist 1 | 1.256358 .3746603 3.353 0.001 .5220372 1.9%0679
_cons | -.9509763 1277112 -7.44¢ 0.000 -1.20128¢ -.7006669
_________ +____________________________________________________________________
Over a y |
Thist 1 | 1.009331 .4274998 2.361 0.018 .17144¢6 1.847215
_cons | -1.250493 .1428932 -8.751 0.000 —-1.530558 —-.9704273
(Qutcome ME==Never is the comparison group)
lrtest, saving(l)

Notice that the mammography experience category “Never” has been used as the reference outcome




Comments: Comparing the output above to the two 2x2 tables shown earlier we see the following:
The estimates of the coefficients and their interpretations are as follows:

| oP1 126 _(220)19) _

3.51 1s the estimate of the odds ratio referring to the first 2x2 table.
(85)14)

Women with family history of breast cancer are 3.5 times more likely to have had a mammogram

in the last year compared (versus not ever having had one) to women with no family history of

breast cancer. The Wald test of significance for [, 1s 3.353, which compared to a normal

1

distribution results in a significant p value,

2. P2 =101 :mzl'f’al is the estimate of the odds ratio referring to the second 2x2 table.

Women with a family history of breast cancer are 2.7 times more likely to have had a

mammogram over a year ago (versus never having one) compared to women with no family

history of breast cancer. The test of significance for B,1s 2.361, which compared to a normal

distribution has a significant p value. This p value 1s close to the Pearson chi-square test

associated with the second table.

Relative Risk Ratio




Graphical inspection of the results
We can mspect graphically the results as follows:

. quistly xi: mlogit ME i.hist

. predict p0 pl pZ2

{option p assumed; predicted probabilities)

. gen logit 1=log(pl/pd)

. label var logit 1 "Est. logit probs (Within-ocns-vysar vs. Never)"
. gen logit 2=log(p2/pd)

. lakesl wvar logit 1 "Est. logit probs (Over—a-yesar—agc vs. Nevesr)"
. graph logit 1 logit 2 hist, <(l1l) =lab(0 1) ylak bordsr
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Finally, the almost parallel lines in the graph above mmply that the odds ratios when ME==1 and

ME==2 are approximately equal.




Testing the equality of the two odds ratios

To test whether OR, =OR, 1s the same as testing whether the odds ratio that corresponds to the

following table 1s one:

tab ME hist 1f ME==1 | ME==2,chi
Mammograph | Fam. history
experience | No Yes | Total
________________ +______________________+__________
Within one year | 85 19 | 104
Qver a year ago | 11 | 74
________________ +______________________+__________
Total | 148 30 | 178
. . T 85 11 . 2 ‘~. _P 175
The odds ratio 1is ‘P:M:U.T’Sl. Notice that W =eP217P11) _ 5(1.009-1.256) _ ,~0.247 14
(63)(19)
standard deviation 1s D':\X8—1_+1—11—é—%:0.4137. The test stafistic 1s == 1(A ):—0.59?, which 1s
5
. G

associated with a p value p=0.551. There is no significant difference between the two odds ratios.

This 1s a consistent result to the graph above.




Testing the equality of the two odds ratios (continued)
The null hypothesis H_:'W=1=H _:B, =p,,=H_:B,, —B,,=0. This can be tested as follows:

test [1]
( 1) [Within o]lIhist 1 = 0.0
Hy:B,,=0
chiz( 1) = 11.24 0 Bll
Prob > chi2 = 0.0008
test [Z2]
( 1) [Over a ylIhist 1 = 0.0
Ho:B,,=0
chi2( 1) =  5.57 0-B2s
Prob > chi2 = 0.0182
test [1=2]
( 1) [Within o]lTIhist 1 - [Over a y]Ihist 1 = 0.0 HO:Bﬂ:BZl
chiz( 1) = 0.36
Prob > chi2 = 0.5505

Notice that the chi-square statistic 0.36 1s equal to the square of the - statistic mentioned above.




Testing of hypotheses (continued)

The significance of the effect of famuly history of breast cancer (hist) can be measured by the

Wald statistic (with two degrees of freedom) or, preferably. the likelihood-ratio test. This test 1s

derived from the comparison of the model containing the factor hist versus the null model.

. mlogit ME, nolog

Multinomial regression

Log likelihood = —-402

ME Coef
Within o

COons -.8108302

Over a y

cons

-1.151Z256

(Outcome ME==Never 1is

lrtest, saving(0)

the comparison group)

Number of cbs
LE chiZ (Q)
Prob > chiZ

Pseudo RZ2
Px|z| 95% C
0.000 -1.041%5
0.000 -1.412¢

= 412
= 0.00
= 0.0000

onf. Interwvall]
14 —-.57994¢62
52 —.889859¢

In the null model, the estimates Bl =—0.811=log(104/234) while BW

——1.151=log( 74/234).




Likelihood-ratio and Wald tests

The likelihood-ratio test is produced as follows:

lrtest, using(l) model (0)

Mlogit: 1likelihood-ratio test chiz (2) = 12.86
Prob > chiz = 0.0016

The LR test can also be dertved manually as —2logA =—2(—402.599 —(-396.170)) =12.86.

On the other hand, the Wald test is given as follows:

. quietly xi: mlogit ME i.hist, nolog

. test Ihist 1
= Ihist | /%1 O

( 1) [Within o]Ihist 1 = FiO . =
( 2) [Over a ylIhist 1 ﬂ21 O

L]

[

chiz( 2) = 12,01
Prob > chi2 = 0.0025

Both statistical tests reach the same conclusion: History of breast cancer is a significant predictive

factor with respect to the frequency of Mamograms. Note that the degrees of freedom are (3-1)x1.

BE: (Emitreda eésprnuévneg-1)*apiBuoc aveéaprnrwv perafAnrwv




Incorporating a polytomous covariate
We will consider the addition of a categorical covariate with more than two categories. In the

mammography example above, we investigate the significance of factor detc (“How likely 1s 1t that
a mammogram will detect a new case of breast cancer”). The 3x3 contingency table that

corresponds to this problem 1s as follows:

tab ME detc

Mammograph | Likely find cancer
experience | Not likel Somewhat Very like | Total
________________ S
Never | 13 77 144 | 234
Within one year | 1 12 91 | 104
Over a year ago | 4 16 54 | 74
________________ S
Total | 18 105 289 | 412




Effect of in detc predicting frequency of mammograms

char detc[omit] 1
. ®%i: mlogit ME i.detc, nolog
i.detec Idetc 1-3 (naturally coded; Idetc 1 omitted)
Multinomial regression Number of obs = 412
LE chiZ (4) = 26.80
Prob > chi?Z = 0.0000
Log likelihood = -389.20054 Pseudo RZ2 = 0.0333
ME | Coef St Err z Ex|z| [95% Conf. Interval]
_________ +____________________________________________________________________
Within o |
Idetc 2 | . 7060506 1.08313¢6 0.652 0.514 -1.416856 2.828958
Idetc 3 | 2.10599¢ 1.046325 2.013 0.044 .0552361 4.156755
cons | -2.5€4949 1.03772 -2.472 0.013 -4.598843 -.531055¢
___r _____ .|_ ____________________________________________________________________
over a v |
Idetc 2 | —.3825617 .6343589 -0.6l9 0.536 -1.635882 .850759
Idetec 3 | 1878257 .593622° 0.333 0.739 -.9656522 1.361304
_cons | -1.1786€55 5717729 -2.061 0.039 -2.295309 -.0580007
(Qutcome ME==Never is the comparison group)

The reference category of 1s detc==1, that 1s, “Not likely”. The LR test corresponding to the

overall significance of the effect of a woman’s opinion on the effectiveness of mammography on her

decision to have a mammogram.



Interpretation of the estimated coefficients (logit I)
Two design variables Idetc 1 (detc==2)and Idetc 3 (detc==3) have been created. The

estimated coefficients from the logistic regression are as follows:

o ﬁll =0.706=Io g{((ligf))} =log(2.026). That 1s, women who think that mammograms are
“somewhat likely” to detect new breast cancers are more than twice as likely (since the odds ratio

estimate 1s ‘¥ =2.026) to have had a mammogram within one year, compared to women that think

that manmmograms are “not likely” to detect new cases. Notice that B, 1s not significantly

different from zero (p-value=0.652).

] . .
) =log(8.215), meaning that women who think mammograms

e Similarly, [%11 =2.106=log (lif)g(l)

L
are “very likely” to discover new cases of breast cancer are more than eight times more likely

(W =8.215) to have had a mammogram within the past year compared to women that consider

~

mammograms “not likely” to detect cancer. 3, . 1s significantly different from zero (p=0.044).

1




Interpretation of the estimated coefficients (logit II)

. ,5’?1 =-0.393=log] % '=log(0.675). That 1s, women who think that mammograms are

“somewhat likely” to detect new breast cancers are 1.5 times (=1/0.675) less likely (since the odds
ratio estimate 1s ‘¥ =0.675) to have had a mammogram over one year ago, compared to women

that think that mammograms are “not likely” to detect new cases. 3 " 1s not significantly different

from zero (p-value 0.536).

e Simularly, [ﬁ ,=0.198=1o g{%} =log(1.219). meaning that women who think mammograms
are “very likely” to discover new cases of breast cancer are 22% more likely (‘i’ =1.219) to have

had a mammogram over one year ago compared to women that consider mammograms “not

likely” to detect cancer. B3, 1s not significantly different from zero (p-value=0.739).




Graphical inspection of the model

graph logit 1 logit 2 detc, c(111)
("log odds") gap(4)

>

xlab(l 2 3)

ylab border 11

there 1s an indication of an interaction that there 1s a difference between the odds ratios.




Hypothesis tests
The hypothesis H_:3,, —B,, =0and B,, —B,, =0 can be tested as follows:

. test [1]
( 1) [Within o]Idetc 2 = 0.0 ﬂll O
i 2] [Within ol]Idetc 3 = 0.0 HO . =
chi2( 2) = 20.41 '812
Prok » chil = 0.ooo0
. test [Z]
[ 1) [Over a y]Idetc 2 = 0.0 H ﬂZl . O
{ 2) [Over a y]Idetc 3 = 0.0 0 ﬂ = O
chi2({ 2) = 3.4¢ 22
Prok > chiZ = 0.1773

. test [1=2]

H - 1811_1621 0

(1) [Within olIdetc 2 - [Owver a y]Idste 2 = 0 _
{ 2) [Within o]Idetc 3 - [Over a y]Idetc 3 = 0.0 0o- ﬂ ﬁ - O
12 22
chiz( 2) = .20
Prob » chiZ = 0.0450

This 1s a chi-square test with 2 degrees of freedom. The results are consistent with the graph (1.e.,
the association 1s strongest when comparing the women who have had a mammograph within the

last year to those who had never had one, and comparing the not likely to very likely response).




Assessment of the significance of a continuous factor

We can measure the effect of perceived benefit (pb) of mammography (higher scores denote a

smaller perceived benefit). The output of the STATA command mlogit 1s as follows:

mlogit ME pb,nolog
Multinomial regression Number of obs = 412
LR chiZ (2) = 35.25
Prob > chiZ2 = 0.0000
Log likelihood = -384.97236 Pseudo R2 = 0.0438
ME | Coef. std. Err. z P>|z| [95% Conf. Intervall]
_________ +____ — — —_ e S
Within O 0.70 (1.42)
pb | -.351685 0666009 -5.280 J).000 -.4822205 .221145¢
_cons | 1.76865 .484798 3.648 0.000 .8184631 2.718836
_________ +____________________________________________________________________
over a y |
ph | -.207975 .0684675 -3.038 0.002 -.3421688 -.0737812
_cons | .4314007 .5228924 0.825 0.409 -.59344%9¢ 1.456251
(Outcome ME==Never 1s the comparison group)




We can see graphically the model as follows:

predict lhatl,

predict lhat2z,

graph lhat* pb,

¥b outcome (1)
¥bh outcome (2)

xlab ylab c(l11l) border

o Limear prediction, NE=1 & Linear prediction, NE=2
[ [ [

T T T
10 15

Percehed benefit

tn—

The impression from the graph is that there is a differential relationship between perceived benefit
and the odds of having a mammogram. Overall, the lower the perceived benefit the lower the

probability of a mammogram.




Testing the effect of a continuous covariate

The overall effect of the perceived benetfit on the likelithood of a mammogram is tested as follows:

test pb
(1) [Within olpb = 0.0 H _(l%lj__(oj
( 2) [Over a y]lpb = 0.0 0- -
o 0
chi2( 2) = 31.00
Prob > chi2 = 0.0000

On the other hand, we can test whether the relationship between pb and ME as follows:

test [l]lpbk=[2]pb
( 1) [Within olpb - [Over a ylpb = 0.0 Fio:/%lzzﬁgl
chiz( 1) = 3.02
Prob » chiZ = 0.0821

We see that the result of this statistical test (chi-square with one degree of freedom) does not totally
reflect the graphical picture i the previous page but mmplies a certain difference in the two groups
(““within one year” and “over a year ago”) in terms of the impact of the perceived benefit on the

probability of mammogram.




The method of Begg & Gray (Biometrika, 1984)
Begg and Gray suggest that multinomial logistic regression can be fit by separately fitting A-1
logistic regressions (where & are the levels of the outcome variable). Note that mn accordance to the
analysis i Hosmer & Lemeshow (page 275-279) variable sympt has been dichotomized as
“Agree/Strongly agree” versus “Disagree/Strongly disagree” and variable detc has been
dichotomized as “Not likely/Somewhat likely” versus “Very likely”.

We fit two logistic regressions, one for ME==1 | ME==0 and one for ME==2 | ME==0 as follows:

Xi: logit ME 1l.symptd pb 1.hist BSE 1.detcd 1f ME==1|ME==0, nolog
Log likelihood = -161.78145

ME | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_________ +____________________________________________________________________
Isympt 1 | -2.091002 .4651287 -4.,496 J).000 -3.002638 -1.1793¢66
ph | -.24Z6l4e 073756 -3.289 0.001 -.3871737 —.098055
Thist 1 | 1.385025 .4682596 2.958 0.003 .4672527 2.302796
IBSE 1 | 1.363308 .5338954 2.553 0.011 .3168847 2.409732
Idetcd 1 | -.852694 .36545¢64 -2.333 J).020 -1.5688975 -.1364125
_cons | 1786085 . 7400723 0.241 0.809 -1.271907 1.629124




The method of Begg & Gray (continued)

xi: logit ME i.symptd pb i.hist BSE i.detcd if ME==2|ME==0, nolog
Log likelihood = -153.47232 Pseudo RZ = 0.0963
ME | Coef Std. Err z P> z| [95% Conf. Interwval]
_________ +____________________________________________________________________
Isympt 1 | -1.152%99 .3565788 -3.233 0.001 -1.851871 -.4541082
pbh | -.15376%96 .0726013 -2.118 0.034 -.29600655 -.0114736
IThist 1 | 1.09769¢6 .4593413 2.390 0.017 1974035 1.997588
IBSE 1 | . 9534598 .5097419 1.871 0.061 -.0455759 1.952576
Idetcd 1 | -.0987046 .3150788 -0.309 0.757 -.7240876 .5266785
_cons | -.5864061 . 744739 -0.787 0.431 -2.046068 .8732556

The advantage of the method of Begg and Gray is that model selection and checking can proceed
individually in each of the subgroups, a greatly simplified process compared to the multinonual

logistic case.




The full multinonual logistic regression is as follows (we follow Hosmer and Lemeshow’s analysis

from Table 8.10 on page 279):

Log likelihood = -349.5663
ME | Coef Std. Err z P>z | [95% Conf. Interval]
_________ e e e
Within o |
Isympt 1 | -2.09475 .4574302 -4.579 0.000 -2.991297 -1.19820
pb | -.249474¢ .072579 -3.437 0.001 -.3917269 -.1072224
Thist 1 | 1.3098¢64 .4336022 3.021 0.003 .4600195 2.159709
IBSE 1 | 1.237011 .5254241 2.354 0.019 .207199 2.266824
Ideted 1 | -.8851839 .3562379 -2.485 0.013 -1.583397 -.1869705
_cons | .3561754 . 7340069 0.485 0.628 -1.082452 1.794802
_________ o e e
Over a y |
Isympt 1 | -1.127417 .3563621 -3.1¢64 0.002 -1.825874 -.4289603
pb | -.1543182 .072620 -2.125 0.034 -.296652 -.0119845
Thist 1 | 1.063179 .4528412 2.348 0.019 1756263 1.950731
IBSE 1 | . 9560104 .50733¢66 1.884 0.060 -.0383511 1.950372
Idetcd 1 | -.1141572 .3182122 -0.35 0.720 -.737841¢6 .5095272
_cons | -.5823074 . 7412705 -0.786 0.432 -2.035171 .87055¢62
(Outcome ME==Never 1s the comparison group)

The results are very close to those shown above from the individually-fit logistic regressions




Checking the goodness-of fit: The Hosmer and Lemeshow test

quietly xi: logit ME i.symptd pb i1.hist BSE i.detcd if ME==1|ME==0
1fit, group(l0)

Logistic model for ME, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 338
number of groups = 10
Hosmer-Lemeshow chi2 (8) = 12.20
Prob > chi2 = 0.1424

quietly xi: logit ME i.symptd pb i1.hist BSE i.detcd if ME==2|ME==0
1fit, group(l0)

Logistic model for ME, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 308
number of groups = 10
Hosmer-Lemeshow chi2 (8) = 9.62
Prob > chi2 = 0.2929

The H-L statistics show that the model fits adequately.




Checking the goodness-of fit: The Pearson chi-square statistic

quietly xi: logit ME 1i.symptd pb 1.hist BSE i.detcd 1if ME==1|ME==0
1fit

Logistic model for ME, goodness-of-fit test

number of observations = 338
number of covariate patterns = 74
Pearson chi2 (68) = 67.84
Prob > chiZ = 0.4828

quietly xi: logit ME i.symptd pb i1.hist BSE i.detcd if ME==2Z|ME==
1fit

Logistic model for ME, goodness-of-fit test

number of observations = 308
number of covariate patterns = 75
Pearson chi2(69) = ©3.83
Prob > chiZ2 = 0.6535

Note the degrees of freedom. They are equal to A-(p+1). So in the first model they are 74-(5+1)=68.

while m the second model they are 75-(5+1)=69. The p values support the good fit of the model.



Checking the goodness-of fit: The Stukel test*™ (J454, 1988)

The Stukel test 1s implemented as follows (Hosmer & Lemeshow, page 155):

Step 1: Produce the predicted probabilities ﬁj .j=1.....k over all covariate patterns £.

o
ik

o P " . .
L= xj[}._ j=L....k over all covariate patterns £.
i)

o l'
Step 2. Produce the fitted logits g; =log|
|l\.

Step 3. Compute two new covariates z, . =—0.5x gj X I(ﬁj >(0.5) and 5= (0.5)><§j xl(ﬁj <0.5)

1j
Step 4. Perform the Score test for the addition of z; and z> into the model. Alternatively. we can

perform the likelihood-ratio test.

* Optional topic




Checking the goodness-of fit: The Stukel test (continued)

gquietly xi: logit ME i.symptd pb i.hist BSE i.detcd if ME==1|ME==0
lrtest, saving(l0)
predict phatl
(option p assumsd; Pr(ME))
gen gl=log(phatl/(l-phatl))
gen z11=.5*(gl) *2* (phatl>=0.5)
gen zZ21=-.5*(gl)*2* (phatl<0.5)
gquietly xi: logit ME i.syvmptd pb i.hist i.BSE i.detcd zll =z21 if ME==1|ME==0

lrtest, saving(ll)
lrtest, using(ll) model (10)
Logit: likelihood-ratioc test chi2 (2) = 1.02
Prob >» chiZ = 0.e006

gquietly xi: logit ME i.syvmptd pb i.hist BSE i.detcd if ME==Z |ME==0
lrtest, saving(Z0)
predict phatZ
(option p assumsd; Pr(ME))
gen gZ=log(phat2/(l-phat2))
gen zZ21=.5%*(g2) "2* (phatZ>=0.5)
gen zZZ2=-.5% (gZ) "2* (phatZ<0.5)
gquietly xi: logit ME i.syvmptd pb i.hist i1.BSE i.detcd z21 z22 if ME==Z|ME==0
lrtest, saving(Z1)
lrtest, using(21l) model (20)
lrtest, using(21l) model (20)
Logit: likelihood-ratioc test chi2 (2) 1.8
Prob > chiZ = 0.393

The Stukel test supports the adequate fit of both models.




