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Mathematical Modeling to Mathematical Thinking

Jennifer A. Czocher

Texas State University

ABSTRACT

This study contributes a methodological tool to reconstruct the cognitive
processes and mathematical activities carried out by mathematical mode-
lers. Represented as Modeling Transition Diagrams (MTDs), individual mod-
eling routes were constructed for four engineering undergraduate students.
Findings stress the importance and limitations of using micro-analysis to
examine modeling processes. The findings and the MTDs were used to
critically question the implications of using modeling cycles as a theory of
mathematical modeling processes.

Over the past 25 years, the importance of mathematical modeling in the work place and science,
technology, engineering, and math careers has received a steady increase in attention. Mathematical
modeling has been incorporated into classrooms from elementary to postsecondary levels to teach
both mathematical concepts and modeling skills (English, 2006; Hamilton, Lesh, Lester, &
Brilleslyper, 2008; Mousoulides & English, 2011; Stillman, 2000). This has led to closer consideration
of mathematical modeling’s place in the school curriculum (Blum & Niss, 1991; Doerr & English,
2003; Lesh, Hoover, Hole, Kelly, & Post, 2000; National Governors Association Center for Best
Practices and Council of Chief State School Officers (CCSSM), 2010).

Given its long history as an object of study, mathematical modeling has been conceptualized in a
variety of ways. It has been investigated as a process (Blum & Leif3, 2007; Zbiek & Conner, 2006) and
as a skill (Lesh, Galbraith, Haines, & Hurford, 2013; Yoon & Thompson, 2003). It has also been
conceptualized as a theory of student learning (Lesh, Cramer, Doerr, Post, & Zawojewski, 2003; Lesh,
Doerr, Carmona, & Hjalmarson, 2003). Meanwhile, a wealth of companion inquiries attests to the
richness of theoretical and methodological problems related to studying individuals’ construction of
mathematical models and defining the accompanying modeling skills (Arlebdck, 2009; Borromeo
Ferri, 2006, 2007; Doerr & Tripp, 1999; English, Fox, & Watters, 2005; Haines & Crouch, 2001;
Haines, Crouch, & Davis, 2001; Kaiser, Blomhgj, & Sriraman, 2006; Lesh & Doerr, 2003; Lesh &
Yoon, 2007; Lesh & Zawojewski, 2007; Maaf3, 2010; Sriraman, Kaiser, & Blomhoj, 2006; Verschaffel,
Greer, & de Corte, 2000; Yoon, 2006). This work has been carried out from both cognitive (e.g.,
Borromeo Ferri, 2007) and social perspectives (e.g., Schwarzkopf, 2007), using individual and group
problem-solving protocols (Borromeo Ferri, 2007; Galbraith & Stillman, 2006; Mousoulides &
English, 2011), and drawing on many theoretical frameworks (e.g., Kehle & Lester, 2003; Lesh
et al., 2003; Meira, 2002).

Scholars have produced descriptive models of the phases involved in constructing a mathematical
model (Blum & Leif, 2007; Dym, 2004; Huber, 2010; Kehle & Lester, 2003; Zbiek & Conner, 2006),
empirically differentiated among those phases (Borromeo Ferri, 2006), identified factors that con-
tribute to or inhibit progress (Galbraith & Stillman, 2006; Stillman, 2000), distinguished modeling
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from problem solving (Lesh & Yoon, 2007; Lesh & Zawojewski, 2007), and developed approaches to
measuring modeling competency (Haines et al., 2001; Mousoulides, Christou, & Sriraman, 2008).
Thus far, the cognitive perspective on mathematical modeling has described the mathematical
modeling process and the mathematical and nonmathematical thinking that support it, but some
questions remain. For example, how does theory account for its functioning and development? How
can mathematical modeling processes be documented?

Many descriptive models, both a priori descriptions and those based in research, characterize
mathematical modeling as a cyclic, iterative process that renders a real-world problem as a math-
ematically well-posed problem conducive to mathematical analysis. Its solution is then interpreted in
terms of real-world constraints and validated against real-world observations. Based on the valida-
tion process, the model is accepted, rejected, or revised. The revision process can lead the modeler
back through the cycle. Typically, mathematical models begin as crude representations or explana-
tions and become more detailed and sophisticated after multiple iterations of this cyclical process.
This type of theoretical framework is referred to as a mathematical modeling cycle. One such
example of a mathematical modeling cycle is illustrated in Figure 1.

Use of mathematical modeling cycles to describe modeling processes has diffused outside of
research frameworks. Not only do mathematical modeling cycles appear in mathematics and
engineering textbooks, they are featured in the Common Core State Standards (CCSSM, 2010) in
two places. The CCSSM verbally described mathematical modeling in terms of a mathematical
modeling cycle as a Mathematical Practice (p. 7) and offered a diagram to orient educators to
mathematical modeling as a content standard (pp. 72-73). Because mathematical modeling cycles
feature so prominently in literature about mathematical modeling, they are already appearing in
practitioner journals as definitions of mathematical modeling (Anhalt & Cortez, 2015).

As such, understanding how we may expect students’ modeling processes to align with theoretical
predictions based on modeling cycles is crucial to taking advantage of them in classroom and research
contexts. Some lines of inquiry around this work have suggested that individuals do not strictly follow the
stages outlined by modeling cycles in order (Arlebick, 2009; Borromeo Ferri, 2007). Instead of being
universal, individuals’ modeling routes are idiosyncratic. This article offers a way to document students’
mathematical thinking during mathematical modeling to better understand their modeling processes.

Paralleling descriptions of how mathematical models develop, this study tests the efficacy and
robustness of Mathematical Modeling Cycles as representations of how individuals engage in
mathematical modeling. To achieve this goal, this article extends work on methodological tools
previously used to represent modeling processes. Modeling Transition Diagrams (MTDs) are
introduced as an analytic tool for capturing and representing an individual’s modeling process.
The methods used to create the MTDs reconstruct the mathematical thinking that individuals exhibit
while modeling by connecting macroscopic modeling processes to micro-level observable mathema-
tical activities. In this way, analysis is grounded in empirical observations of students’ mathematical
thinking that are guided by theoretical descriptions of the modeling process. The net result is an
elaboration of theory based on systematic examination of individuals’ modeling processes.

The accompanying research questions were:

(1) How can explicitly attending to mathematical thinking broaden our understanding of
mathematical modeling processes?

(2) To what extent can mathematical modeling cycles explain mathematical modeling
processes?

Mathematical modeling as a process

Kaiser and Sriraman (2006) observed that “there does not exist a homogeneous understanding of
modelling and its epistemological backgrounds within the international discussion on modelling” (p.
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302). Indeed there are many conceptualizations of mathematical modeling, each of which can be tied
to the researcher’s or educator’s goals. This study adopted a process view of mathematical modeling
because the goal was to focus on students’ mathematical thinking during mathematical modeling. In
this view, there is a mathematical world and the rest of the world (Pollak, 1979) or the “real” world.
The modeling process bridges these two together by creating a mathematical representation of the
real world. Because “mathematical model” could refer to both an external, verbal, or written
expression or to an internal, conceptual mathematical structure, and each may correspond to the
real-world problem situation, a careful distinction must be made. To appropriately distinguish
between the two, the mathematical model’s expression (e.g., graphical, symbolic, or verbal repre-
sentations) were seen as distinct from how the individual coordinates mathematical structure with its
external expression. In order to be sensitive to this distinction, a mathematical model was con-
ceptualized as a tripartite entity (S, M, R), where S is the situation to be modeled, M, is the external
representation in mathematical terms, and R is a relation that maps the objects and relationships
found in S to the mathematical objects and relationships (Blum & Niss, 1991).

Mathematical modeling cycles explain how the relation R is formed and M is obtained. The
modeling process transforms a real-world problem into a mathematically well-formulated problem.
The mathematical problem can then be analyzed and interpreted in terms of real-world constraints.
The interpreted solution is validated against real-world constraints.

Blum and Leif¥’s (2007) mathematical modeling cycle was selected as a research framework to coordi-
nate data generation because it defines stages and transitions that appear during the modeling process. It is
also sufficiently complex to subsume many other modeling cycles. Blum and Leif$’s description of the
mathematical modeling process as depicted in Figure 1 will be referred to as the research framework to
distinguish it from the general idea of mathematical modeling cycles (of which there are many).

In Blum and Leiff’s (2007) Mathematical Modeling Cycle (the research framework; Figure 1),
there are six stages of model construction (stages [a]-[f]), sequentially linked by six transitions
(transitions [1]-[6]). The modeling transitions are comprised of mathematical activities. The transi-
tions were the focus of data analysis in this study, and were viewed as collections of observable
mathematical activities. Table 1 and Table 2 give brief descriptions of each of the stages and
transitions among the stages. The inclusion of stages [c] (the idealized problem setting) and [d]
(the mathematical representation) reflect the distinction between the representation M and the
relationship R. A more detailed narrative of the modeling cycle, described in terms of the mathe-
matical activities that support it, is offered later in the article. The next section introduces the
methodological tool (Modeling Transition Diagrams) and demonstrates the use of the Modeling
Transition Diagram as an analytic tool to examine the mathematical modeling process in this study.

Table 1. Stages of model construction.

Stage of Model Definition

[a] real situation Situation, as observed in the world

[b] situation model Conceptual model of problem

[c] real model Idealized version of the problem (serves as basis for mathematization)
[d] mathematical model Model in mathematical terms

[e] mathematical results Answer to mathematical problem

[f] real results Answer to real problem

Table 2. Transitions between stages of model construction and sample indicators.

Transition Captures

[1] understanding Forming an idea about what the problem is asking for
[2] simplifying and structuring Identify critical components of the problem situation
[3] mathematizing Represent the idealized real model mathematically

[4] working mathematically Mathematical analysis

[5] interpreting Re-contextualizing the mathematical result

[6] validating Verifying results against the real-world
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Origins of the modeling transition diagrams

Borromeo Ferri (2007) employed individual modeling routes to study mathematical model con-
struction from a cognitive perspective. An individual modeling route is “the individual modeling
process on an internal and external level” where “from a cognitive viewpoint, one has to speak of
visible modelling routes, as one can only refer to verbal utterances or external representations for the
reconstruction of the starting point and the modelling route” (p. 265). Borromeo Ferri developed
individual modeling routes in order to document an individual’s mathematical thinking during
modeling. Her representations of individuals’ modeling activities took the form of arrow diagrams
imposed on the research framework along with highlights from protocol corresponding to arrows in
the diagram (see Figure 2). Similarly, in the present study, only visible modeling routes are
considered. However, because the arrow diagrams themselves were difficult to follow chronologi-
cally, I sought a change in representation that would still be rooted in mathematical thinking.

Borromeo Ferri (2007) used the individual modeling routes to trace the influence of indivi-
duals’ thinking styles on their modeling decisions. The study provided evidence that empirical
distinctions between different stages and transitions of model construction are possible, that
micro-level analysis of modeling processes can expose modeling routes, and that modeling routes
are idiosyncratic. Specifically, Borromeo Ferri argued that individual mathematical thinking
styles impact the choices students make during mathematical modeling. Given these findings,
examining individuals’ modeling processes using micro-level analysis was appropriate.

In a different study, Arlebick (2009) developed Modeling Activity Diagrams (MADs) to
document how mathematical models are constructed in terms of the mathematical thinking
used to create it. MADs are two dimensional graphs that visually display mathematical thinking
during modeling. A sample is given in Figure 3 (Arlebick, 2009). Arlebick’s (2009) MADs
record the length of time that the modeler was engaged in certain activities. The MADs map a
group’s modeling session to a set of horizontal lines, reminiscent of a musical staff, on which
each line is coded for a modeling activity, and activities are recorded over time. The result is a
chronological representation of mathematical activity during model construction. Arlebick used
these representations to examine students’ group work on mathematical modeling tasks in terms
of certain activities—reading, making model, estimating, calculating, validating, and writing.
Arlebick found that a particular class of problems, Fermi problems, were capable of eliciting
all of the modeling activities described by mathematical modeling cycles.

exra-mathematical 4

1 Understanding
Simplifying/Structuring
Mathemalising
Working mathematically
Interpreting

Validating

o o A W N

rest of the 5

mathematics
world

Figure 2. Individual modeling route (Borromeo Ferri, 2007).

© Elsevier. Reproduced by permission of Elsevier. Permission to reuse must be obtained from the rightsholder.
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Figure 3. Sample Modeling Activity Diagram. The abbreviations along the vertical axis stand for: reading, making a model,
estimating, validating, calculating, and writing (Arlebéck, 2009).

Figure re-used with permission from B. Sriraman (Editor), The Montana Mathematics Enthusiast. Original figure found in Arlebéck, J.
B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Montana Mathematics
Enthusiast, 6(3), 331-364.

The primary advantage of representing modeling processes as MAD:s is that they provide a chronolo-
gical structure for the observations, which allows them to be more easily compared. The main drawback to
using MAD:s is that they are highly sensitive to how interview protocol is coded. They are created via a
coding procedure that depends on the grain size of analysis and also whether verbal and written evidence
are considered equally. When coding, the researcher must decide when a particular transition begins or
ends since only his or her observations can be recorded. Quite naturally, this can lead to measuring the
length of time the individual spends carrying out the transition. But it is difficult to make sense of what the
observed length of time might mean. For example, if an individual spends a long time working mathema-
tically, it could mean that the solution had a lot of steps to it. It could also mean that the individual struggled
to carry out the analysis. Or it could mean that she paused to think about something else and only appeared
to be continuing the mathematical analysis. Thus it is difficult to meaningfully compare “length of time
spent on a transition” meaningfully across tasks or individuals.

All of these methodological issues are important to consider when building and interpreting representa-
tions of mathematical activities. In the present study, I combined the strength of emphasizing individual
modeling routes (Borromeo Ferri, 2007) with the representational power of modeling activity diagrams
(Arlebick, 2009) to connect individuals’ mathematical thinking to mathematical modeling as described by
Blum and Leif3 (2007). I adapted the generation of the MAD:s to account for difficulties reported by other
scholars. To do so, I established a correspondence between Arlebick’s (2009) activities and the transitions
in Blum and Leifl (2007), which can be seen in Table 3 correspondence between Arleback’s (2009)

Table 3. Correspondence between Arleback’s (2009) modeling activities and the modeling transitions in Blum and Leif's (2007)
framework.

Arlebdck’s Modeling Activities Blum and LeiB3's Transitions
Reading Understanding

Estimating + model making Simplifying/structuring + mathematizing
Calculating Working mathematically

Validating Interpreting + validating

Writing
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modeling activities and the modeling transitions in Blum and Leif$’s (2007) framework. To aid in
conceptualization and data analysis, the mathematical model (stage [c] in the research framework) was
taken to mean “mathematical representation.” This was necessary to make sense of the data collected in
terms of separating the product of mathematical modeling (a partially conceptual, partially external
construction) from the expression of it in conventional mathematical terms.

Rather than measuring the duration of each transition, I recorded the time when a particular
transition was first observed. The result was the MTDs, which present visible modeling routes but
preserve chronological ordering of individuals’ modeling processes. Their construction and use in
this study is described next.

Methodology

Because the goal of this research was to examine students’ mathematical modeling processes, task-
based interviews were used to elicit the transitions defined by the research framework. Each of the
interview tasks was audio and video recorded and then transcribed. In this section, I provide details
for the research setting, the development of an observational rubric, the construction of the MTDs,
and the micro- and macro-level analyses of the students’ work.

Setting and participants

The study constituted mathematical modeling processes as a single phenomenon and examined how
the individuals’ MTDs collectively compared to predictions made by the research framework. The
sample considered for this study consisted of four engineering majors enrolled in a course on
differential equations at a large, Midwestern university in the United States. Because the participants
had studied engineering, science, and advanced mathematics I assumed that they would exhibit the
mathematical activities relevant to mathematical modeling. Therefore, they could help generate data
that would be valuable to the literature on mathematical modeling.

A calculus screening test was administered to volunteers since some of the tasks required calculus
knowledge. The screening test was a combination of the Calculus Concept Inventory (Epstein, 2013),
procedural calculus tasks, and a related rates modeling task. The Calculus Concept Inventory was
developed and validated as a measure of individuals’ conceptual knowledge of one variable differ-
ential calculus. The procedural tasks and the related rates tasks were taken from departmental final
exams in single and multivariable calculus. The procedural tasks were used to ensure proficiency in
calculus computations (e.g., taking a partial derivative). The related rates task was used to get a sense
of students” written modeling work.

Four individuals were selected to participate in the study (Mance, Torrhen, Orys, and Trystane;
all names are pseudonyms) according to a 2 x 2 participant selection design: high/low modeling
(performance on the related rates task) and high/low calculus (performance on remaining tasks).
Because introducing variety to a sample allows for generalizing in case-oriented analysis, the 2 x 2
selection design was chosen to ensure that there would be variety in the students’ approaches to the
interview tasks. For example, I expected that the more mathematically proficient students might try
to use more advanced mathematical tools and concepts, whereas the comparatively weaker students
might try to rely on linear or proportional reasoning. The variety among engineering majors
occurred naturally and introduced different scientific knowledge bases into the sample. For example,
Orys and Mance took more chemistry courses than did Torrhen and Trystane. All participants were
male and they were compensated for their time.

Mance was selected to represent the low mathematics/high modeling category. He was a second-
year environmental engineering major who had completed his first year engineering sequence and
the calculus sequence. Torrhen was selected to represent the high mathematics/low modeling
category. He was a first year honors electrical and computer engineering student intending to
minor in physics. He completed the first-year engineering honors sequence and calculus. Trystane
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represented the low mathematics/low modeling category. Within his major, he was a second year
student, but since he transferred from another university and carried AP credit hours, he was
technically a senior. He was a mechanical engineering major and had completed an internship
doing design work with Honda. He had completed some upper-division mechanical engineering
courses. Orys represented the high mathematics/high modeling category. He was a first-year student
in the honors engineering program majoring in chemical engineering. He had completed the first-
year engineering course work, first-year physics, had tested out of the chemistry sequence, and
completed the honors, accelerated calculus sequence.

Due to the case-oriented analysis and small sample size, it is beyond the scope of this article to
report variable-oriented outcomes. Any conjectures about common patterns of modeling activity for
high vs. low modelers or high vs. low calculus performance would be premature.

Instrumentation and interviews

Structure of interviews

Each subject participated in seven task based-interviews during one academic semester and one
member check (Glesne, 1999) session a year later. The goal of each interview was to elicit the
participants’ modeling processes.

The interview methodology incorporated two principles from design research: reflection and cross-
fertilization. Reflection refers to analysis conducted between interview sessions in order to generate
conjectures about students’ mathematical thinking and how it could be elicited via the modeling tasks
and follow-up questions. Cross-fertilization is a design research principle that encourages the use of
information and experiences from one interview session to inform task tweaks, follow-up questioning,
and sensitivity to student responses during another session. Working with individuals with diverse
mathematical proficiencies allowed for cross-fertilization (Brown, 1992) across the sessions, and
opportunities for reflection between sessions were built in to the interview schedule.

Each session began with reflective and clarifying questions about the participants’ thinking based
on the ongoing analysis of previous interviews (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003).
During each session each participant was also asked to share what he was learning in his differential
equations course to establish intersession continuity and to allow for multiple points of contact with
the differential equations curriculum (Nair, 2010; Tall, 1987). Because I was interested in students’
mathematical thinking, and not their memory of their coursework, they were permitted to use
resources and tools like reference books, the Internet, and graphing calculators.

The seventh session reserved time to pose reflective questions to the students about their
experiences in the research study (Dahlberg & Housman, 1997; Lesh, Kelly, & Yoon, 2008). A
final eighth session served as a follow-up and member check (Glesne, 1999). In the final session,
participants were asked to directly comment on the researcher’s account of their modeling processes.
In total, 60 hours of interviews were conducted, 51 events were analyzed, of which 17 events
(approximately 8 hours) are presented here.

Interview task design: The process

Task selection began with a survey of the literature on mathematical modeling. I examined the
research and educational literature on mathematical modeling along two strands: (i) principles for
designing tasks that would elicit modeling transitions and (ii) aspects of mathematical thinking
related to modeling. This coordinated, multitiered review helped to articulate objectives for task
design. The tasks needed to fall between the depth of a classroom project (e.g., recommendations
from Lesh et al,, 2000) and multiple-choice competency assessments (Haines et al., 2001) to be
suitable for one-on-one cognitive interviews. Sources included the Lively problems (Arney, 1997),
community-maintained collections (Community of Ordinary Differential Equations Educators,
2012), the biennial International Community of Teachers of Mathematical Modelling and
Applications (ICTMA) publications, special issues of ZDM-The International Journal on
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Mathematics, mathematics and engineering education research journals, differential equations text-
books, modeling textbooks designed for engineers (e.g., Edwards & Hamson, 2007), and teacher
resources (Mason & Davis, 1991).

The task pool was created and revised iteratively. A panel of mathematics educators, mathema-
ticians, and instructors of differential equations were asked to assess the face and content validity of
the tasks. Based on the panel’s input, tasks were field tested with a second panel of mathematics
educators and engineering undergraduates. Construct validity was assessed by examining the results
of the field tests for whether the modeling transitions were elicited. Unsuitable tasks (e.g., problem
statement was incomprehensible; task did not elicit transitions) were modified or removed from the
pool. The tasks reported here elicited all modeling transitions and drew on a variety of mathematical
and nonmathematical contexts.

Some of the tasks used concepts from differential equations. Although other scholars have studied
learners’ mathematical thinking within the applied differential equations context, the tasks used in
those studies did not meet the goals of the current work, as described next.

Several scholars have examined students’ knowledge construction in differential equations within
an inquiry-oriented social setting. In particular, the work of Rasmussen and colleagues (e.g.,
Rasmussen & Blumenfeld, 2007; Rasmussen & King, 2000; Tabach, Hershkowitz, Rasmussen, &
Dreyfus, 2014) demonstrated that students are capable of reinventing solutions to and analyzing
graphically and numerically solutions of differential equations. The tasks they selected were therefore
oriented toward recreation of mathematical concepts, which was not a focus of the present study.
Additionally, the researchers made simplifying assumptions for the student or provided instructions
for which representations (graphical, numerical symbolic) to use. For example, the canonical
predator-prey problem used by Tabach and colleagues (2014) yields a system of linear differential
equations in which students are guided to generate (and justify the interpretations of) multiple
representations of solutions to those equations. Students were told to assume that there was a
population of ten rabbits which produced continuously, had no predators, and had unlimited
resources. Students were then asked to produce a graph that would describe the rabbit population.
Thus, most of the modeling work—the modeling transitions simplifying/structuring and mathema-
tizing—had already been carried out by the task-writers.

For the present study, tasks were selected according to whether they meet the design principles of
modeling contexts (Lesh et al., 2000; Maaf3, 2010) rather than for their capacity to reveal student
knowledge construction in differential equations. The tasks are described next.

Interview task design: The tasks

Students’ work on six modeling tasks served as the basis for analysis in this report. I chose this
collection for their theoretical capacity on both mathematical and pedagogical levels. Collectively,
tasks make available a range of mathematical and nonmathematical contexts. They utilize concepts
from arithmetic to differential equations and involve everyday contexts as well as those that resemble
school mathematics. Each task was sufficiently complex so I had opportunities to discuss and
question aspects of the students’ modeling decisions. The tasks, and their backgrounds in the
literature, are described in the following section.

Tropical FIsh Tank problem

One canonical ordinary differential equations problem is called a “mixing problem.” In a mixing
problem, a contaminant is introduced to a (possibly) changing volume of liquid. The goal is to model
the amount of contaminant in the tank at any time . The modeler has to coordinate multiple conceptions
of change in a quantity: absolute change, average rate of change, and instantaneous rate of change. The
result is a first-order, linear, nonhomogeneous, differential equation for the instantaneous rate of change
of contaminant in the tank. Along with information about the initial conditions, the equation can be
solved for the quantity of contaminant. The mathematical content of this task has been discussed at
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length elsewhere (Czocher, Tague, & Baker, 2013) and student difficulties with coordinating quantity
with rate-of-change of that quantity have been documented (Rowland, 2006).

To regulate the pH balance in a 300 L tropical fish tank, a buffering agent is dissolved in water and
the solution is pumped into the tank. The strength of the buffering solution varies according to 1 — e
grams per liter. The buffering solution enters the tank at a rate of 5 liters per minute. How much
buffering agent is in the tank at any point in time?

Fermi problems

These problems are named after physicist Enrico Fermi who famously asked his undergraduate
physics class “How many piano tuners are there in Chicago?” They are commonly used in physics or
science classes to teach dimensional analysis and estimation skills. With only modestly accurate
estimations for input parameters, and typically using only arithmetic operations, the results of Fermi
problems are surprisingly accurate. The tasks are pedagogically useful because they force the modeler
to clarify assumptions and conditions that arise from making educated guesses about the circum-
stances surrounding the problem (Sriraman & Lesh, 2006).

Fermi problems have several distinguishing characteristics. They (a) are accessible to different
educational levels; (b) allow for increasing levels of complexity; (c) are realistic, since they are
directly related to the daily environment; (d) are open so that the modeler must explicitly engage in
simplifying and structuring; (e) require the modeler to make reasonable estimates for identified
parameters; and (f) promote discussion because the modeler is naturally inclined to validate and
justify his or her assumptions and estimate. For these qualities, three Fermi problems were used and
are reported in this study: the Piano Tuners Problem, the Cell Problem (Schoenfeld, 1982), and the
Empire State Building Problem (Arlebick, 2009):

The Piano Tuners Problem: How many piano tuners are there in New York City?
The Cell Problem: Estimate how many cells there are in the average adult human body.

The Empire State Building Problem: There is an information desk on the street level in the Empire State
Building. The two most frequently asked questions to the staff are: (i) How long does the tourist elevator take to
the top floor observatory? (ii) If one instead decides to walk the stairs, how long does this take? Your task is to
provide answers to the staff at the information desk, including the assumptions on which you base your reasoning.

The Baker’s Yeast problem

The Baker’s Yeast problem can be tackled using discrete mathematical model (geometric progres-
sion) as well as a continuous model (exponential growth). The question was phrased so as to obtain a
concrete numerical answer and then encourage the students to rely on other methods, other than
direct observation, to validate their predictions.

Baker’s yeast is a type of fungus that reproduces through budding. Each cell reproduces once every 30 minutes. To
grow yeast for baking bread, you have to proof it first—allow it to form a colony—in a bowl of warm water.
Suppose that in a particular bowl, after 6 hours, the surface of the water is covered in yeast cells. When was one

half of the surface covered?

The Falling Body problem

The Falling Body problem is a typical dynamics task used in calculus and first year mechanics
courses. It is based on a differential equations task where a body is falling with no constant
acceleration. In such a case, air resistance is nonzero. The problem can be solved with reasonable
accuracy using only kinematics under the assumption that acceleration is constant by treating the
body as though it is in free fall, which is standard in first year mechanics courses.

On November 20, 2011, Willie Harris, 42, a man living on the west side of Austin, TX died from injuries sustained
after jumping from a second floor window to escape a fire at his home. What was his impact speed?
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Analytic methods

Since the goal of this study was to examine students’ modeling processes, one student working on
one task (defined as an event) was taken to be the unit of analysis. An event is a set of activities
linked together into a larger pattern (Spradley, 1980), such as the transitions defined by the research
framework. Viewing the student’s work on a task as a stream of observable behaviors that seem
distinct allowed for the development of the coding rubric in terms of mathematical activities that
support each modeling transition.

Each of the interviews was audio and video recorded and underwent micro- and macro-level
analysis. The events were transcribed and parsed into complete student ideas and interviewer
interjections. Micro-level analysis treated utterances as the unit of analysis, which were analyzed
according to the observational rubric (described next) using the method of constant comparison
(Glaser & Strauss, 1967). Micro-level analysis yielded the production of the MTDs. Macro-level
analysis treated each event as a unit of analysis and the collection of MTDs was analyzed via cross-
event analysis (Katz, 1983) and compared to predictions from the research framework to develop a
typology (Goetz & de Lecompte, 1981).

It is important to note that because that the purpose of the study was to examine the mathema-
tical modeling process, it is beyond the scope of this study to compare students’ modeling compe-
tence. Analysis traced the mathematical thinking that supported the modeling transitions rather than
differentiating performance by their mathematical characteristics (e.g., high vs. low math category).

The rubric: Indicators of mathematical activity

In order to ground the study of mathematical modeling processes in mathematical thinking, an
observational rubric of mathematical activity was developed inductively through analysis of the
interviews. This technique is in line with the method of constant comparison (Glaser & Strauss,
1967). At the outset, a rubric of expected mathematical and epistemic activities (written and verbal)
was created based on a literature review. Each of these activities was then linked to specific indicators
(see Table 4) observable during the interviews.

A table of anticipated mathematical activities (both written and verbal) was created based on the
review of modeling cycles. For example, understanding captures the process of forming an idea
about for what the problem is asking. Some indicators for this transition were reading the task,
returning to elements in the statement of the task, clarifying what needs to be accomplished, and
taking stock of data/information given. Protocol that could be described as the modeler “taking stock
of data/information given” would be assigned this indicator and then coded as understanding. When
a segment of modeling activity could not be coded using existing indicators, a new indicator was
added to the rubric. For example, working mathematically was initially conceptualized as carrying
out symbolic or verbal operations (e.g., solving an algebraic equation, taking a derivative). Orys was
observed “using deductive reasoning to make mathematical inferences about his solution to the
differential equation he derived for the Tropical Fish Tank problem. This was interpreted as working
mathematically. The indicator making inferences or deductions without reference to nonmathema-
tical knowledge was added to the rubric. In such cases, all previously analyzed protocols were
compared against the new rubric. In this way the final rubric (Table 4) was created as a typology
for identifying modeling transitions. A detailed example of how the rubric was applied in data
analysis is provided in the following section.

Data processing

A spreadsheet was created for each event to organize data analysis. Each student or interviewer
utterance was assigned to a row. The rows had the following columns: time, description of the
interviewer’s or students’ conduct, transcript segment, memos about protocol content, an indicator
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Table 4. Observational rubric with indicators for transitions in the modeling cycle.

Indicators

Activity Trying to Capture

Understanding the Forming an initial idea about what the
problem problem is asking for

Simplifying/ Identify critical components of the

mathematical model; create an
idealized view of the problem

structuring

Mathematizing Represent the real-model
mathematically
Working Mathematical analysis

mathematically

Interpreting Re-contextualizing the

mathematical result

Validating

Verifying results against constraints

Reading the task

Returning to elements in the statement of the task
Comparing the problem to problems seen before
Clarifying what needs to be accomplished

Taking stock of data/information given

Making assumptions to “simplify” the problem [note: not all
assumptions may simplify]

“Classifying” the problem (e.g., stating that the problem is a
“maximization” problem)

Listing assumptions

Referring to assumptions

Listing variables, parameters, constants

Mentioning variables, parameters, constants

Specifying conditions

Operationalizing quantities or relationships (e.g.,
interpreting “best” as “largest”)

Using data/information from the problem statement to help
with any of the above

Introducing outside knowledge to help with any of the
above

Carrying out an “experiment” to observe stated or implied
conditions, parameters, constants, conditions, relationships
“Running out” of conditions, assumptions, variables,
parameters

Estimating a parameter

Drawing or labeling sketches that correspond to stated or
implied conditions/assumptions/variables/parameters
Writing mathematical representations of ideas (e.g.,
symbols, equations, graphs, tables, etc.)

Speaking in terms of symbols, operations, or relationships
Cataloguing/searching for existing equations that relate
given variables

Using dimensional analysis in order to incorporate a
parameter, variable, constant

Explicit algebraic manipulations

Speaking about algebraic manipulations

Making inferences and deductions without reference to
nonmathematical knowledge

Changing mathematical representation

Explicit mathematical operations that may not be
arithmetic/algebraic (e.g., comparing, rounding,
partitioning)

Referring to units

Stating the answer as an answer to the contextual question,
not just the mathematical question

Considering whether the result answers the question posed
Interpreting meaning from an equation or its elements; or
from a mathematical representation

Speaking about the result in context of the problem
Referring to conditions/variables/parameters from
“simplifying/structuring”

Implicit or explicit statements about the reasonableness of
the answer/model

Checking extreme cases (of variables, parameters,
relationships, etc.)

Checking special cases (of variables, parameters,
relationships, etc.)

Comparing an answer to a known (theoretical or practical)
result

Checking/comparing behavior of elements of the model
Indication that he will solve the problem a different way
Estimating an appropriate result

Adding limitations of the model or result (note: this is like
simplifying/structuring but is done on the basis of results/
finalized model)

Talk about ideal results

Comparing merits of different models

Dimensional analysis
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serving as evidence for a modeling transition, the modeling transition observed, and memos about
analysis (including links to other tasks, participants, and literature). In this way, the events were
reduced to individual modeling routes (Borromeo Ferri, 2007).

To represent the individual modeling routes as MTDs, I used MATLAB. Each route was
represented as an # X 2 matrix. The first column was a vector of timestamps (in seconds). The
second column was a vector of integers between 1 and 6, corresponding to a specific transition in the
research framework. The matrix was plotted as a block at a y-value associated with a transition
number in the research framework matched to a t-value along the time axis. Each MTD is a visual
summary of the verbal, textual, and mathematical activities that the student exhibited during his
modeling process.

An ideal MTD was created to represent the hypothetical modeling route where the individual
continually cycled through the transitions of the research framework. The hypothetical modeling
route was processed and graphed according to the analytic methods. The result is the saw tooth
pattern depicted in Figure 4.

The spreadsheets, interview recordings, MTDs, and students’ written work were triangulated to
coordinate macro-level analysis. I considered each event as a constellation of personal experiences,
mathematical knowledge, and nonmathematical knowledge used in the course of modeling phases
(Stillman, 2000) and searched the MTDs for patterns and anomalies via cross-event analysis (Katz,
1983). Cross-event analysis proceeded task-by-task because comparisons across students were not
the focus. The students’ MTDs were compared to the hypothetical modeling route to generate
conjectures about the patterns among data. I used writing to process my evaluation of the con-
jectures in relation to the data sources. By maintaining close contact between the evolving con-
jectures and the data sources, I began to search for ways in which the data confirmed or refuted
previously reported findings (Becker, 1998, 2007). The conjectures were continually refined in light
of the new data analyzed, the theoretical framework, and prior research. Detailed records were kept
of all analytic decisions, notes on related literature, and analytic memos. Member checks (Glesne,
1999) were used to verify the accuracy of analysis during a follow-up session one year after the close
of data collection.

Reading the MTDs

An MTD is a two-dimensional graphical representation of a mathematical modeling event. The
horizontal axis marks time and the vertical axis marks the transitions in the research framework,
where each transition corresponds to a number between 1 and 6. A mark on the graph represents
that the corresponding transition was observed at that time. Only the time when a particular
transition was first observed was marked. The graphs should be read from left to right for an
overview of the individual’s modeling route over time and from bottom-to-top to get a sense of the
sequencing of transitions. Since each box represents a transition between two stages of model
construction, one can imagine that on either side of that box the student was mentally or mathe-
matically operating on two different stages of the model. For example, mathematizing (transition
[3]) requires operations on the idealized version of the problem situation (stage [c]) and a mathe-
matical representation (stage [d]).

The markings are intentionally scaled to be large so that they are visible when printed. Elongated
boxes are artifacts of the scale and not an indication of the length of time that an individual was
engaged in an activity. Since it was possible to code an utterance with more than one transition, it is
possible that there is more than one box associated with a time.

Sample coding

This section offers an example of how the transcripts were coded using the observational rubric. The
excerpt in Table 6 is from Mance’s work on the Tropical Fish Tank problem. The first column is the
time in minutes and seconds, the second column summarizes the action, the third column is the
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Figure 4. Idealized modeling transition diagram.

verbatim transcript, the fourth column is the appropriate indicator from the observational rubric,
and the final column is the transition from the research framework indicated by the observational
rubric. The associated MTD is in Figure 10 and the written work is shown in Figure 5.

In the first row of Table 6, beginning at 0 seconds into the task, Mance read the problem silently to
himself. The indicator exhibited here was reading the task (column 4) which is one way that under-
standing the problem was operationalized. Therefore column 5 has the transition understanding the
problem. A mark was placed at (0, 1), time 0 seconds and height 1 corresponding to the transition
understanding, on the MTD. At 15 seconds, Mance began writing ¢,y = 500 g and ¢; = 0 g/L. The
indicators exhibited here were taking stock of data/information given and listing/mentioning variables,
parameters, or constants. These activities corresponded to the transitions understanding and simplifying/
structuring. In the MTD, two marks were placed. One at (15, 1) and another at (15, 2), corresponding to
understanding and simplifying/structuring being observed at 15 seconds. Later, at time 2 : 53, Mance
explained his work, “If you just multiply those two [expressions] together, you'll have five times the
buffering strength entering and that'd give you grams per minute.” He also wrote 5(1 — e‘é) g/min to
accompany this statement. The statement and accompanying written work were coded with the indicators
speaking in terms of operations and dimensional analysis which correspond to the transitions mathema-
tizing and validating, respectively. In the MTD, two marks were placed. One at (173, 3) corresponding to
mathematizing occurring at time ¢ = 173 seconds and another at (173,6) corresponding to validating
occurring at time # = 173. In this way the entire transcript was coded and processed into a MTD. This
procedure was carried out for all of the events. Results of the cross-case comparison are presented next.

Results

In this section, I present the cross-case analysis of the students’ modeling processes by
describing the ways in which the MTDs did and did not conform to the idealized modeling
cycle represented in Figure 4. An overview of the MTDs (Figure 6-Figure 10) reveals that
individuals do not only move “forward” in the cycle, but return to visit previous stages of
model construction. In the idealized version of a modeling cycle, the mgﬂgler transitions from

erstan
one stage of model construction to the next (real situation — conceptual model
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mathematizing . .
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transitions until a satisfactory model is constructed. However in any single MTD, there are
transitions that appear out-of-order. This was largely because three of the modeling transitions
(understanding, simplifying/structuring, and validating) appeared early and often throughout
the students’ modeling processes. Because each student was given as much time as needed to
explore the tasks, not all students got to try all of the planned tasks. In particular, the Baker’s
Yeast Problem was attempted by Mance and Trystane and Mance did not attempt the Piano
Tuner’s Problem. Table 5 summarizes the tasks, who tried each one, and the duration of each
event.

simplifying/structuring workingmathematically
— —

math-

Macrostructure: Signal and noise

A signal is defined as “any nonverbal action or gesture that encodes a message” and as “an electric
quantity ... whose modulation represents coded information about the source from which it comes”
(Princeton University, 2006). I introduce the signal metaphor to describe the saw tooth pattern
visible in Figure 4. If the “message encoded” is information about the individuals’ mathematical
thinking during mathematical modeling, then the signal is his passage through the activities
prescribed by the research framework. The signal is graphically represented as a quantity against
time. Here, it is the expression of the progression of modeling transitions 1 — 2 — 3 —4 —5
— 6. Noise is the deviations which do not conform to the signal pattern. With this metaphor in
place, analysis can be presented as a characterization of the noise and its possible sources.

As an example of noise, consider the first 200 seconds of Torrhen’s work on the Empire State
Building (Figure 7), we see the sequence understanding, understanding, simplifying/structuring,
understanding, simplifying/structuring, and simplifying/structuring as he revisited the problem
statement and made assumptions about the situation. Beginning at 500 seconds, we see a jump
from validating back to understanding and then to mathematizing as he adjusted his mathematical
representation in light of his re-reading of the problem. The source of the noise in this case is
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Figure 6. Trystane’s MTD for the cell problem.

Table 5. Mean time on task and students’ attempted tasks.

Task Attempted by Mean Time on Task
Cell Problem Al 17:41
Empire State Building Problem All 13:48
Piano Tuners Problem Torrhen, Trystane, Orys 16:34
Falling Body Problem All 26:26
Tropical Fish Tank Problem All 39:12
Baker’s Yeast Problem Mance, Trystane 8:54

Torrhen’s adjustment of his mathematical representation (mathematizing), which he does without
revising his assumptions (simplifying/structuring). As another example, the excerpt of Mance’s work
on the falling body problem in Table 6 shows how transitions may be out of order but the individual
continues to progress in the modeling process.

The noise visible in the MTDs did not have a single character from event to event, across events,
across tasks, or across individuals. For example, in the ambiguous Fermi type problems, the most
common type of noise was a notable presence of the simplifying/structuring activity. For the non-
Fermi Falling Body problem, validating was pervasive in only some of the events. Orys (a mathe-
matically strong student) tended to exhibit validating transitions more consistently within and across
tasks, but Torrhen (also a mathematically strong student) exhibited validating transitions more often
in any single event. Working mathematically was the least exhibited activity among all participants
and across all events, but was most visible in the Tropical Fish Tank problem where the analysis of a
differential equation was required. Taken together, these observations suggest that the modeling
process is idiosyncratic and dependent upon the knowledge, strategies, and techniques that the
individual brings into the task and also on task characteristics.

The following results present and describe the common sources of noise: a substantial presence of
understanding, simplifying/structuring, and validating activities (as compared to the idealized MTD
in Figure 4). The pervasiveness of these transitions within any single event points to a heightened
interaction between the tasks, characteristics of the individual, and his knowledge bases for which
has yet to be accounted.

Macrostructure: Banding

Data indicated a correspondence between the plurality of bands in the MTD and the modeler’s
approach to the task. A single band corresponds to the student applying a single scheme to solve a
well-known problem type. Multiple bands corresponds to the student making multiple passes



MATHEMATICAL THINKING AND LEARNING ‘ 93

Table 6. Excerpt from the event map for Mance’s work on the Tropical Fish Tank problem.

Time (mm:ss) Action Description Indicator Transition

0 S reads Reading the task Understanding
problem
silently

0:15 S begins  ((working silently)) [[writes ¢;s = 500g; c; = 0 Taking stock of data/information Understanding;
writing  g/Ll] given; listing variables, simplifying

parameters, etc.

1:15 S traces Returning to elements in the Understanding
words in statement of the task
task
S works
silently

1:58 S It's uh, it gave me the initial values, so um, the Specifying conditions; Simplifying/
explains  strength, of the buffering solution varies structuring
work according to time according to 1 — e~% grams

per liter.

2:10 S You're given a rate in which is the buffering  Listing parameter Simplifying/
explains  solution enters at 5 L /min [[writes r;, =5 L/ structuring
work min]]

2:15 S so if you multiply those two together you're ~ Speaking in terms of Working
explains  gonna get an answer in grams per minute and mathematical operations; mathematically;
work that's how fast it's gonna be changing interpreting meaning mathematizing

2:28 S You know your fish tank is 300 liters. [[writes Stating parameter Simplifying/
explains  V; =300 L]] structuring
work

2:33 S In order for the fish tank to not over flow I'm Making assumption to simplify ~ Simplifying/
explains  gonna assume that rate in is also your rate  the task structuring
work out.

2:39 S So the rate out is 5 L per minute. [[writes Assigning value to parameter Simplifying/
explains 1oy =5 /L min]] structuring
work

2:46 S You can make that [[the rate out]] negative  Operationalizing quantities or Simplifying/
explains  depending on how you wanna look at it. relationships structuring
work

2:53 S If you just multiply those two together you'll Speaking in terms of operations; Mathematizing;
explains  have 5 times the buffering strength entering  dimensional analysis validating
work and that'd give you grams per minute. [[writes

5(1- e’$) g/min]]

3:02 S It's asking for how much buffering is in it at  Clarifying what needs to be Understanding
explains any point in time accomplished
work

3:07 S If you were to plug in a time for that you'd be Speaking about algebraic Working
explains  multiplying for a minute rate. manipulations; considering mathematically;
work whether result answers question interpreting

posed

3:13 S That would give you the amount of buffering Speaking about result in context Interpreting
explains  agent in the tank at that given time. of problem; considering whether
work result answers question

3:28 S So, | think. Implicit statement about Validating
explains reasonableness of answer
work

3:32 Sreads  strength of buffering solution Returning to elements in Understanding
problem statement of the task
aloud

3:36 S affirms  Yeah, that'd be right. Implicit statement about Validating

reasonableness of answer

3:50 S So | think it’s, C is equal to 5 times that. Speaking in terms of symbols, Mathematizing;
justifies  Because if you plug in time you're gonna get operations, or relationships; validating

an answer in grams and that’s what you want. dimensional analysis
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through the transitions in the research framework as he dealt with the decision-making required
during mathematical modeling.

Some of the MTDs exhibited only one band from the saw tooth pattern (the sequence under-
standing simplifying/structuring mathematizing working mathematically interpreting validating)
whereas others exhibited multiple bands. Each band corresponds to one pass through the transitions
of the research framework. For example, though Mance’s MTD from the Falling Body problem
(Figure 9) is noisy, there was a definite upward rightward tendency to the graph. This tendency
corresponded to his selection of one situation model and real model and sticking with them
throughout the task. He did not revise his mathematical representation nor his conceptualization
of the real situation.

In other events, such as Torrhen on the Piano Tuners problem (Figure 8), there were multiple
bands. In this event, there were two groupings of bands (0-1000 seconds and 1000-2000 seconds),
which corresponded to his change in approach to the task. Another example is Trystane’s work on
the Falling Body problem (Figure 9), where each band corresponded to a change in assumptions
(e.g., introducing an additional variable) or to a change in the mathematics he used to address the
task (e.g., switching from algebraic to differential equations).

Pervasiveness of understanding

The understanding transition was not limited only to the beginning of an event, but could be found
interspersed among other transitions. The most common indicator for this activity was the student
returning to the problem statement by reading it (or part of it) aloud. This suggested that individuals
were regulating their modeling processes (in the sense of Schoenfeld, 1992) by monitoring how their
immediate goals or subgoals related to the problem statement. In other instances the student
returned to the statement to find or justify information for the simplifying/structuring transition.
Although the pervasiveness of the understanding transition is not explicitly accounted for by the
research framework, it can be explained by considering an individual’s understanding of what needs
to be done as a moving target. The modeler forms an initial interpretation of the problem (Doerr &
Tripp, 1999; Lesh et al., 2003), which is a consequence of his understanding of the problem
statement. The mathematical model and the individual’s conceptualization of how mathematics
could be used evolve in tandem (Kehle & Lester, 2003; Schwarzkopf, 2007; Verschaffel et al., 2000).
The individual’s interpretation of the task therefore impacts the individual modeling route and
subsequent mathematical thinking. Revisions in the individual’s conceptualization appear as under-
standing without necessarily being followed by the rest of the modeling transitions. Thus, attending
to understanding suggests a way to study the interaction between task and individual.

Pervasiveness of the simplifying/structuring transition

The simplifying/structuring transition was observed throughout the events, but was especially
pervasive on the Fermi problems or during tasks when the individual frequently considered the
real-world context of the task (e.g., Trystane in the Falling Body problem). During the Fermi
problems, students repeatedly considered the real-world context in order to identify and account
for quantities that would impact the predicted quantity, detect sources of variation in those
quantities, and consider qualitative relationships among them. The participants were more willing
to visibly reason about assumptions and estimates in these tasks in order to connect the real world
situation to mathematics. These tasks were not necessarily more authentic, but they facilitated entry
to the problem because they used more familiar mathematical structures somehow bringing the
situations “closer” to reality. Fermi tasks encouraged this type of activity independently of the
individual or his progress through the transitions of the research framework, confirming that they
in particular are valuable resources for evoking students’ assumption-making and estimating.
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Pervasiveness of the validating transition

Validating occurred early and often throughout the students’ work, with the exception of two
of the MTDs (Trystane on the Empire State Building problem, Figure 7, and Mance on the
Falling Body problem, Figure 9). This observation differs from the predictions of the research
framework, which places the validating transition at the end of each full cycle. Validating often
occurred at sites where there were no real results to verify, and so the students must have been
justifying whether to accept or reject some other aspects of their models. For instance, in
Table 6, Mance’s work, validating occurs at 3:28 and 3:36. In both cases, Mance confirmed the
reasonableness of the mathematical model by commenting directly on the representation
(“That would give you the amount of buffering agent in the tank at that given time. So I
think”) and comparing it to what was requested in the problem statement (“...strength of
buffering solution. ... Yeah, that’d be right”). Both instances of validating were coded as such
because they fit the indicators, but neither compared the outcome of mathematical analysis to
a real-world setting. In this case, Mance was validating that the model satisfied the request of
the problem statement.
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Figure 7. Modeling transition diagrams for the Empire State Building problem (Top: Torrhen; Bottom: Trystane).
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Across all tasks, Mance tended to rely primarily on checking that his analysis of the model
was correct (i.e., checking his computations). He tacitly assumed that the mathematical model
was accurate once he had recorded a symbolic representation for it. His work on the Falling
Body problem exemplifies this trend—he checked and corrected his manipulations of the
kinematics equations he introduced but not whether it represented the situation (it did not).
Torrhen and Orys also checked their computations but also regularly performed dimensional
analysis and checked whether their models were representative of the situation in the problem
context.

Trystane’s MTD for the Empire State Building problem misses validating transition altogether. Of
the four participants, Trystane was the only one who had never visited a tall building and therefore
he did not have any lived experiences riding a tourist elevator. He made no observable attempt to
judge whether the real result was appropriate or whether the variables he selected were relevant to
the model (beyond assuming that they were).

Anomalies

Three of Trystane’s MTDs were anomalous when compared to the idealized MTD and to the other
events in the data sample. They were anomalous because they were missing one or more modeling
transitions. The Empire State Building problem (Figure 7) had no validating transition and the Piano
Tuners (Figure 8) and Cell (Figure 6) problems had no working mathematically or interpreting
activities. These MTDs can be explained by examining the interaction between the Trystane’s
knowledge and the task.

Trystane was the only of the four students to never have ridden the tourist elevator in a tall
building. Although he constructed a mathematical model, analyzed it, and interpreted it, his work
was based on his lived experiences in regular elevators. He lacked relevant encyclopedic knowledge
of the world (Stillman, 2000), which negatively impacted his model building capacity. For example,
he considered the number of stops made by the elevator and built this factor into his model.
Although he was able to analyze the model, he did not outwardly reflect on whether the variables
he was selecting were indeed relevant or whether the final answer was reasonable. Either of these
would have been tagged as validating transitions and their absence explains the lack of validating
transitions in the MTD.

In the Cell problem and Piano Tuners problem, Trystane did not exhibit working mathematically
or interpreting activities. In both cases, he recorded mathematical representations that included
parameters he could not estimate. He was left with models that could not be analyzed even though
they represented his interpretation of the situation. In the Cell problem, Trystane adjusted his
variables and parameters multiple times as he searched for a set that was compatible with informa-
tion (parameter estimates) he found using a Google search. When he realized that an accurate
answer would require considering the sizes of cells from different organs, he alluded to a weighted
sum model using verbal and diagrammatic descriptions. A symbolic representation never materi-
alized and so he could not move forward with mathematical analysis.

In the Piano Tuners problem, Trystane set up a proportion to relate the number of piano tuners
in New York to the number of piano tuners in Chicago. He was unable to use proportional reasoning
to analyze the model because he did not have enough information about either city. On multiple
occasions, however, Trystane assessed his choices for variables to include in the model and how they
might be related, demonstrating his intention to validate many components of the model, not just its
predictions.

These anomalies demonstrate that although the MTDs are highly idiosyncratic, the MTDs make it
possible to make inferences about the mathematical modeling process. Taken together, these examples
provide evidence that the validating transition is broader and more functional than checking whether a
mathematically derived prediction is in line with the real world. Trystane’s work on the Empire State
Building problem demonstrates that carrying out the validating transition is related to his ability to
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Figure 8. Modeling transition diagrams for the Piano Tuners problem (From the top: Torrhen, Trystane).

develop expectations about the situation. His work on the other two tasks demonstrate that validating
can occur even when working mathematically and interpreting are not present. Since all three anomalies
occur for Trystane on Fermi problems, they may be task and individual dependent. However, in general,
the MTDs show visually that modeling transitions are not strictly ordered.

Discussion

Blum and Leif} (2007) mathematical modeling cycle (the research framework) provides a view of the
mathematical modeling process as a cyclic flow of validating and revising models. The flow moves
through various transitions as the modeler progresses in developing the model. Drawing on this
work, the current study captured students’ modeling routes by graphically representing them as
MTDs in an attempt to document how individuals carried out the modeling process in connection to
mathematical thinking. In parallel with the mathematical modeling process itself, the remainder of
the article discusses the interpretation and validation of the results to reflect on both the model and

the theory that produced it.
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Figure 9. Modeling transition diagrams for the Falling Body problem (From the top: Torrhen, Orys, Trystane).

Prevalence of the validating transition was perhaps the most surprising observation since it was
predicted to potentially occur prominently at the end of a modeling cycle. Yet successful problem
solvers do spend more time thinking about the problem and tend to go back and reflect (Schoenfeld,
1985). The MTDs from the two students in the high math category tended to exhibit more instances
of understanding and validating than the two students from the low math category. This suggests
some commonalities between successful problem solving and progress in mathematical modeling
through analogous activities. Future research could examine the extent to which encouraging
validating at various stages of model construction may facilitate the students’ progress and the
extent to which looking back and validating overlap.

Because it is difficult to measure divergence between the idealized modeling process and the
empirical data, this study qualitatively described how students’ modeling processes intersected
with the different phases depicted in the research framework. Analysis of the MTDs provided
further support that the modeling process is complex and often does not match a sequential
progression towards model construction as described in various mathematical modeling cycles. In
particular, micro-level analysis of students’ work demonstrated that the mathematical modeling
process could be directly connected to observable mathematical activities. Macro-level analysis
across events revealed that individuals engage in understanding, simplifying/structuring, and
validating transitions throughout the modeling process, not only at their respective places in
the research framework. Indeed, modeling processes may be better described as “haphazard
jumps between different stages and activities” (Arlebdck, 2009, p. 353). Micro-level analysis
revealed that students’ progress in mathematical modeling is highly dependent on their own
mathematical thinking and nonmathematical knowledge. Therefore, analysis confirms earlier
hypotheses that the modeling process is idiosyncratic (Arlebick, 2009; Borromeo Ferri, 2007;
Niss, Blum, & Galbraith, 2007).

Although the sampling categories did not drive analysis, it is still possible to consider the
variation in individuals’ modeling routes represented in the MADs participant-by-participant or
task-by-task. In this work, no universal patterns could be identified. When relevant sources of



MATHEMATICAL THINKING AND LEARNING ‘ 29

- Mance - Tropical Fish Tank Problem (v1)
validating| == m sm - @ EEEEE. —
interpreting | = am n n
working - N I . [ | | [ B |
mathematically
mathematizing | s u smm = sumn - "
SEmpllf)ﬂngf N N e | Il EEE E - .
structuring
understanding m mms = == - am

0 500 1000 1500 2000 2500 3000

Figure 10. Mance’s modeling transition diagram for the Tropical Fish Tank problem.

knowledge were either missing or inaccessible, some modeling transitions seemed to vanish and
subsequently halt progress. At other times, the modeler continued on without hindrance. For
example, Trystane’s work on the Empire State Building problem provides evidence that without
personal knowledge of the situation, a validated mathematical model may not be constructed.
Mance’s work on the Falling Body Problem exemplifies which are familiar both mathematically
and contextually produce MTDs that more closely resemble that corresponding to the ideal model-
ing cycle. Trystane’s work on the Empire State Building problem had no validating transition, and
Orys’s work could be characterized by a strong presence of validating transitions. In particular, the
simplifying/structuring and validating transitions were pervasive in his work on the Piano Tuners. In
contrast, Trystane’s work on the Piano Tuner’s problem was also missing some transitions. However
Mance’s work on the Falling Body Problem and Torrhen’s work on the Empire State Building
problem very closely resemble the predictions from the research framework.

Some scholars have developed alternative frames for analyzing students’ modeling patterns in
order to address the naturally arising question of how modeling processes depend on prior knowl-
edge. For example, Stillman (2000) offered a tripartite framework to characterize the knowledge
sources brought to bear on a task: academic knowledge (knowledge learned in a classroom environ-
ment), encyclopedic (general knowledge about the world), and episodic (lived experiences). Episodic
prior knowledge was found to be more likely to have a positive influence on progress than the other
two types of knowledge. These results echo earlier findings that primary grade students were more
successful in solving word problems when the contexts they encountered involved familiar events,
people, or activities (Verschaffel et al.,, 2000). Galbraith and Stillman (2006) and Stillman, Brown,
and Galbraith (2013) used this framework to elaborate task-specific knowledge elements that could
hinder student progress in executing transitions in a modeling cycle.

The absence of discernable task-by-task or participant-by-participant patterns in the MTDs,
coupled with previous findings, suggest two inferences. First, well-developed prior knowledge
bases are important to modeling success. Second, future research may examine interactions among
knowledge bases, rather than documenting whether the student brought that knowledge to bear.
This would aid in theorizing how each knowledge base contributes to successful modeling. For
example, one might consider how personal, lived experience guides the student’s identification and
prioritization of related variables, parameters, assumptions, conditions, and constraints (e.g., sim-
plifying/structuring during the Empire State Building task) or whether previous scholastic experience
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with a problem context makes that task routine (e.g., the Falling Body Problem). Examples from
physics education research (e.g., Wittmann, 2006) may be well-adapted to suit these purposes.

It is intuitively sensible to suggest the MTDs did not resemble the research framework because
students are not yet “expert modelers.” If that is the case, then the implications and recommenda-
tions would be to design a set of interventions for educators to carry out that would help reduce
differences between the MTDs produced by students and the illustration in Figure 4. Such a
conclusion, however, fails to provide convincing explanation for why students should be coached
to produce MTDs that resemble those of “expert modelers.”

First, it is not clear what is meant by an “expert” modeler. Applied mathematicians, engineers,
statisticians, life and physical scientists, those who teach mathematical modeling, and classroom
mathematics teachers may all be considered modeling “experts.” Their individual modeling routes
may vary substantially depending on the context to be modeled, the mathematics required to do so,
and the individual’s familiarity with the mathematical and nonmathematical domain. That is, expert
modeling may not yield “perfect” MTDs. By extension, the modeling processes of each type of expert
may vary and it is therefore unclear which “experts” we would want our students’” growth to imitate.

Second, there is an implicit assumption that “perfect” MTDs would indicate that expert-level
modeling is occurring. This is not necessarily the case. The MTDs do not reveal whether the
mathematical model is accurate nor whether it serves its purpose. For example, Mance’s work on
the Falling Body Problem resembled the ideal MTD but his model was incorrect, was analyzed with
errors, and produced an inaccurate result. In contrast, Orys’s work on the Piano Tuners Problem
yielded a reasonable prediction but his modeling route involved a lot more simplifying/structuring
and validating than predicted by the modeling cycle. Likewise, Torrhen’s work on the Piano Tuners
Problem did not resemble the ideal MTD but he too obtained a reasonable estimate. The MTDs are
limited to revealing only the observable modeling transitions. Thus, setting the ideal MTD as a goal
for students’ modeling processes may not necessarily result in successful modeling.

It is possible that “perfect” MTDs may not exist. It is also possible that they may only be elicited
when the real problem has already been solved by the modeler and in effect he or she knows what to
do. In science and industry, mathematical models are developed based on aspects of a real-world
system that are understood by the modeler. They are used to measure, make decisions, replicate
systems, predict outcomes, explain outcomes, or manipulate the system (Thompson & Yoon, 2007).
Toward a given purpose, the modeler infers properties or consequences of aspects of the system that
are not understood through analysis of the mathematical model. In terms of problem solving: they
use givens to work out unknowns. Many aspects of the mathematical models are implicit and are
used as interpretational systems by the modeler rather than as explicit objects of reasoning
(Borromeo Ferri & Lesh, 2013). In the present study, the students were simultaneously deriving
the mathematical model and communicating it to the interviewer. Thus the variation among MTDs
could be representative of the difficulty in moving from an implicit model to an explicit model. It
may be that already-explicit models conformed to the research framework and that “perfect” MTDs
are a consequence of experience. New lenses on modeling processes are necessary in order to
examine ways in which implicit models are used implicitly and how they are (if ever) made explicit.

These considerations caution us about interpreting modeling cycles as the key to instruction
about how to carry out mathematical modeling processes. Theories that describe processes like
learning, modeling, or problem solving (e.g., Action, Process, Object, Schema [APOS] theory, van
Hiele levels, and Polya’s problem solving steps) help researchers describe global construction of an
entity such as a mathematical structure or a problem solution. As has been pointed out, conceptual
development within an individual happens in fits and starts with fallbacks and regressions (Battista,
2004; Pirie & Kieren, 1994). Global models are not always helpful in describing an individual’s route
and may even serve to impede understanding an individuals” thinking.

Likewise modeling cycles, including the research framework or that presented in the CCSSM
(2010), are protocols that serve to organize student activity into large-scale structure of how a
mathematical model is constructed. Such overviews do not necessarily capture the nuances of the
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winding and idiosyncratic paths which depend on student knowledge of the problem context, the
mathematical knowledge available and seen as relevant to him, nor his capacity to recognize when a
model must be adjusted in light of either of those knowledge bases. That is, like presentations of
Polya’s characterization of problem solving, modeling cycles are descriptive rather than prescriptive.

Because modeling cycles function as a tool to explain the modeling process to teachers and to
teacher educators, it should be emphasized that modeling cycles themselves are models of a process
and not the reality of that process. Such an emphasis would provide for a more inclusive view of
students’ work when it does not conform to the ideal modeling cycle. It would also support moving
“beyond the notion of trying to directly teach what experts apparently ‘do’ to novices” (p. 769), and
beyond transforming descriptive information about experts’ behavior into (potentially unhelpful)
prescriptive lists for students to learn (Lesh & Zawojewski, 2007).

The three transitions understanding, simplifying/structuring, and validating were pervasive in the
MTDs because problems where real-world givens and goals must be interpreted mathematically are
not straightforward. They seem integral to progress in mathematical modeling because the primary
goal of modeling is to adapt or create a mathematical structure that can be used to interpret the real-
world situation. For problems that do not reference the real world, the modeler adapts or creates a
mathematical structure that can be used to interpret another mathematical situation or structure.
Specifically problems requiring a proof demand interpretation and manipulation of axioms to
formulate arguments that may be entirely independent of empirical reasoning. During procedural
tasks, the solver may need to use notation or conventional representations to access and manipulate
mathematical structure. Again, the solution may be entirely independent of empirical reasoning.
Modeling, in contrast, requires empirical reasoning to carry out validating since it compares the
mathematical interpretation of the real-world situation against the real world. Thus, acceptable
solutions to these different classes of problems derive from differing epistemologies and might
induce different cognitive demands. It is also possible that understanding, simplifying/structuring,
and validating are modeling-specific instantiations of more general problem solving activities that
could be observed during other types of problem solving. It would be valuable to investigate the
extent to which each of the modeling transitions has analogues in other kinds of problems solving.

The Fermi tasks were useful for challenging the engineering students to reveal their mathematical
thinking about variables and constraints related to the problem contexts. In the MTDs this is visible
through repeated appearance of the simplifying/structuring transition. Engineering students may
benefit from exposure to problems whose contexts are amenable to multiple valid mathematical
models so that they can practice validating their models and selecting a “best” model according to
particular criteria. Tasks that require both analysis and synthesis, rather than those which have
already been analyzed in terms of domains of knowledge, would help students strengthen their
thinking within each of the modeling transitions.

I note here that four methodological decisions could have impacted the results reported here.
First, the grain size selected for micro-level analysis impacted the appearance of transitions in the
research framework. The grain size was the shortest meaningful utterance that could be tagged with
an indicator from the rubric and each tagged utterance received a timestamp. Since the coding
procedure traced each transition, there were more of them graphed in the MTDs than in previous
representations of individual modeling routes. The choice addressed previously reported limitations
in analysis via MADs and helped to organize the modeling routes chronologically. However the
grain size made it difficult to discern macroscopic structure in the MTDs. Thus analysis was capable
of identifying sources of noise but it was incapable of characterizing it.

A related point is that all of the MTDs began with the understanding transition, which is
predicted by the research framework. None began with validating or interpreting. This is a con-
sequence of the coding rubric and the nature of written tasks. The student must begin by reading the
task, which was classified as understanding. A student could not generally begin with validating
because there is nothing to validate. Even in the absence of written tasks, it is unlikely that
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mathematical modeling could begin with any transition other than understanding because one needs
to understand that there is a problem to begin searching for its structure.

A second point is that the small number of events sampled makes generalization to other tasks or
to the population difficult. Although I was careful in analysis to describe macroscopic patterns in the
collective group of MTDs and to avoid task-by-task or participant-by-participant analysis, variation
in the MTDs may potentially be the result of observing error rather than an underlying phenom-
enon. Future research should work toward examining the sources of noise in terms of individual or
task characteristics. Specifically, it should address which individual modeling routes may be more
probable and under which circumstances they might be expected. Knowing how modeling routes are
linked to task, individual, or even interviewer characteristics would aid in the development of tasks
and learning environments that could contribute to the growth of students’ modeling skills.

Third, in this study the students’ modeling process was prioritized over the models™ accuracy.
Correcting students” work was not a part of this study’s interview methodology, because neither
teaching mathematics nor teaching modeling were goals of this study. Yet I recognize that an
invalid model is of limited use. One of the major unresolved issues in developing modeling skills
is how to encourage students to validate their models and how to get them to spontaneously
recognize errors in representation or analysis. Researchers and teachers often default to pointing
out students’ errors so that they may be corrected. However, this interrupts the students’
modeling process and the students’ concept of the situation may not be compatible with that
of the teacher or researcher. The final related issue is that in the current study I did strategically
interact with the students’ work by posing reflective questions which challenged the students’
models and assumptions. These interactions may ultimately be responsible for the pervasiveness
of the understanding, simplifying/structuring, and validating transitions. Therefore the impact of
the interview environment and interviewer interventions should be more closely examined in
order to understand what elements could be borrowed as principles for nurturing students’
abilities to construct accurate, valid models.

Finally, because the participants in this study were engineering majors and as such, it is likely that
they had more training in dealing with variables and constraints as they arise during simplifying/
structuring and validating than would be expected from other populations. Their differential
equations course was amenable to mathematical modeling and their experiences in engineering
and science classes may have positively impacted their sensitivity to carrying out the modeling
transitions. The students were aware of the need to carefully consider potential variables and
assumptions, reevaluate problem contexts, and build in check points. The associated understanding,
simplifying/structuring, and validating transitions may be supported or even explicitly demanded by
the engineering curriculum. If so, research and teaching in mathematical modeling would benefit
from identifying and examining these aspects of the engineering curriculum and incorporating them
into the students’ mathematical education. Such a move would also serve to better align the
mathematics teaching and learning with the rest of the science, technology, engineering, and math
curricula.

Conclusions

Any model of a human process is “good” insofar as it is useful. The modeling cycle used here
(Blum & Leif3, 2007) was useful as an overview of the modeling process, for task design, and for
data processing. In general, modeling cycles are a powerful way to explain modeling tasks to
teachers and teacher educators and they are already being used to introduce modeling to these
audiences (e.g., Anhalt & Cortez, 2015; Bal & Doganay, 2014; Clarke, Roche, & Mitchell, 2015;
CCSSM, 2010). Because researchers are engaged in a model development process that parallels
the students’ mathematical model construction process (Lesh & Carmona, 2003), it is important
to recognize that our early-iteration models of mathematical modeling are marked by inadequa-
cies analogous to those of the mathematical models produced by students. As suggested by the
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mathematical modeling research forum at IGPME38, “modeling cycles unintentionally hide much
of the real work of mathematical modeling” (Cai et al., 2014). Indeed, the MTDs revealed that the
modeling process looks messy and haphazard in real time lending support to the idea that
modeling cycles are highly idealized and simplified (Arlebick, 2009). For example, when the
modeling task is challenging or the individual does not bring to bear the anticipated domain or
contextual knowledge, the MTD may not be recognizable as a modeling cycle. Alternatively, when
a task has become routine for an individual, the modeling route for that task may better resemble
the modeling cycle overview.

The MTDs are a useful tool for documenting individuals’ movement through the modeling
process and provide a vehicle for systematically examining our models of mathematical modeling.
Yet there are limits to relying solely on the MTDs as a source of information about how individuals
are thinking mathematically, how they understand the modeling task, or how they validate their
models. In this regard, it may be more beneficial to idealize the qualities and skills we want students
to develop and then use modeling tasks to foster those, rather than popularizing modeling cycles as
an ideal to imitate (regardless of how closely it reflects experts’ mathematical modeling processes).
Thus, the way forward is not to obtain a correct model of individuals’ modeling processes—no
model is correct. The way forward is to go beyond the schematics to understand how individuals
synthesize their mathematical and nonmathematical knowledge.
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