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This article is based on data from two major research projects that investigated students
involved in mathematically demanding courses during their transition through college
and into university. It explores the nature of modelling as a mathematical practice in this
important transition phase for students.Theoretical considerations are informed by illus-
trative accounts of a collegemathematicalmodelling lesson and engineering lecture exem-
plifying the complex nature of mathematical modelling in these two phases of post-
compulsory education.This raises important issues concerning the teaching and learning
of mathematical practices in relation to modelling and applications. The discussion pre-
sented here is seen through the lens of Cultural Historical ActivityTheory that informed
the project team’s analysis of the case studies developed of both institutions and individ-
uals. In this article, data and earlier findings are reinterpreted to better understand how
we might support students as they move from learning mathematics to learning to use
mathematics effectively in pursuit of their other studies. The accounts of classroom and
lecture activity illustrate how ‘doing mathematics’ is mediated in different ways ensuring
that students experience modelling and applications as mathematical practices very dif-
ferently in each. This leads me to explain why, but also infer that students are likely to ex-
perience difficulties in transition both ‘vertically’ in progression from one activity system
to another over time (college to higher education) and ‘horizontally’ between activity sys-
tems inwhich they participate concurrently (maths and engineering classes in university).

1. Introduction
In this article, I explore the changing nature of the mathematical practice of modelling as experienced

by students in transition from college to university where they study mathematically demanding

courses. The illustrative example of such a course in Higher Education used here is in structural

engineering. However, much of what I write would be of relevance to those studying a wide range

of courses, particularly those in science or technology. The data on which I draw are from the series of

Transmaths projects that investigated students in transition in post-compulsory education in the UK

(see Section 2). These projects sought to answer research questions that focussed on how teaching and

learning experiences impacted on students’ learning outcomes in terms of their developing identities
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due to their changing relationship with mathematics. The analysis here focuses on issues that arose

relating to modelling and applications.

From the outset, I wish to problematize my use of the terms mathematics and mathematical model-

ling as it is dangerous to assume a common, generally agreed understanding of these concepts. As will

become apparent, and I have already implied by my use of the term ‘mathematical practices’, I wish to

extend the notion of mathematics to be more inclusive and wide ranging in our thinking about the

discipline than is often the case.

Cardella (2008) identified five key aspects that seem a useful starting point when considering the

learning of mathematics for engineering: knowledge base, problem solving strategies, mathematical

practices, use of resources (including social resources, time and metacognitive processes such as

planning and monitoring work) and beliefs and affects. Of particular importance in the discussion

that this article initiates is that of mathematical practices: in particular those that relate to applying

mathematics and mathematical modelling. There is a wide range of published material that describes

mathematical modelling and its teaching and learning in educational settings: much of this arises from

the International Community of Teachers of Modelling and Applications (ICTMA) group. For ex-

ample, see the volumes that are published in the series ‘International Perspectives on the Teaching and

Learning of Mathematical Modelling’ such as Stillman et al. (2015). In attempting to describe model-

ling as a mathematical practice or competency, many authors have broken this down to identify sub-

competencies, which they suggest may be considered to be carried out as part of a cyclical process.

This has led researchers to schematize the practice using a flow diagram such as that suggested by

Blum & Leiß (2007); Blomhöj & Jensen (2003) and Maaß (2006) amongst others.

Fundamental to all different descriptions of the process of applied mathematical modelling is the

connectivity between a problem set in a context outside of mathematics (such as that of business

finance in the college classroom or that of structural engineering in the university lecture theatre) and

the world of mathematics. Both context and mathematics are seen as brought together in the thinking

of the student when they engage in:

� mathematizing—in which relevant mathematics that can lead to a solution, or sense-making, of the

problem set in a particular context is identified.

� interpreting—making sense of their mathematical solution to the mathematical problem in terms of

the context of the problem situation.

Such representations of modelling are often considered cyclical in that they allow that models might

be refined, or completely rethought, to cater for the complexity of the situation they represent. As I

have remarked elsewhere (Wake, 2015), it is at these key moments of connecting mathematics and a

context outside of mathematics that students and others (such as workers) have difficulties.

Changes in university engineering students’ relationships with mathematics are especially important

as they become learners of how to use mathematics in pursuit of their problem solving in engineering

as a discipline outside of mathematics (Harris et al., 2015). This is fundamentally different to the

pursuit of learning mathematics as a discipline in its own right. To add complexity to their learning of

mathematics, engineering students not only need to learn to use mathematics that they already know

but also need to learn and understand new mathematical rules, procedures and techniques which they

will then be expected to go on to apply. Although their university course is likely to be structured

around distinct sub-disciplines of engineering, it is likely that mathematics will form a separate course

unit, especially in early stages of the course. Students will be expected to learn to become users of

mathematics during almost all aspects of the course. This leads to a very different experience when
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compared to the experience of college where the study of mathematics will be very much self-con-

tained and used only peripherally in other subjects: with the notable exception of Physics or vocational

courses in engineering/technology. Through analysis of two classroom vignettes, this paper seeks to

examine the teaching and learning of the application of mathematics and mathematical modelling in

college and university engineering settings and explore the implications of this for students as they try

to connect context and mathematics in their mathematical activity. The vignettes are chosen purpos-

ively to illustrate the complexity of similarities and differences that students may experience in

mathematical activity when they are in transition from the study of college mathematics to a university

course such as engineering. The intention is not to suggest that we might generalize findings from the

vignettes to provide insight into learning College Mathematics and University Engineering rather their

purpose is to provoke discussion about how we might better support transitions for students who need

to engage with modelling and applications as mathematical practices.

2. Project methodologies
This article, in Section 4, presents two, necessarily brief, accounts of episodes from ‘lessons’ in which

mathematical modelling and applications of mathematics are central. The data that underpin these

accounts and the discussion that follows emanate from two research projects that looked at students’

transition (i) through college (Mathematics learning, identity and educational practice: the transition

into post-compulsory education, ESRC grant RES-000-22-2890) and, at a later stage, (ii) into univer-

sity (Mathematics learning, identity and educational practice: the transition into Higher Education,

ESRC grant RES-062-23-1213). These projects sought to add knowledge of mathematics and students

in transition through what is typically the first three years of post-compulsory education in England,

i.e. for students aged 16–19, when studying mathematics becomes a matter of choice. The projects

were complex and called on a range of methods to gather, analyse and interpret both quantitative and

qualitative data with a primary focus on the investigation of experiences and identities/dispositions of

learners.

The project that investigated transition through college used a large-scale questionnaire survey that

involved some 1800 students with the sample including many considered ‘on the edge’ between

engagement and disengagement. The survey was administered three times with the same cohort of

students as they progressed on their college programmes and included specially constructed instru-

ments that were used to measure important learning outcomes. These included students’ mathematical

self-efficacy, their disposition to enter higher education and their dispositions towards studying math-

ematically demanding subjects in higher education (Pampaka et al., 2012). Teaching practices were

investigated using a self-report instrument that measured teachers’ classroom practices in each of the

classes they taught. Case studies of five colleges were developed based on in-depth interviews with

staff and students together with lesson observations and analysis.

The second project investigated transitions into Higher Education and also drew on a variety of

methods including a survey of students (n> 1700), case studies of 13 university courses (mostly in

STEM), and longitudinal interviews with a number of students (n> 50) as they progressed through

university. The case studies in both research projects were developed from mainly qualitative

investigations and involved observations and video recordings of lessons/lectures and tutorials

with interviews of students and teachers. Triangulation was supported by the collection of other

institutional documents and data, and interviews with other stakeholders such as Heads of

Departments.

This article draws on qualitative data from both projects.
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3. Cultural Historical ActivityTheory
To analyse students’ mathematical activity we used Cultural Historical Activity Theory (CHAT) as a

lens. CHAT has developed, particularly recently, from the fundamental thinking of Vygotsky (1978)

which considered how learning takes place through engagement in joint activity mediated by ‘instru-

ments’ such as artefacts (diagrammatic representations, texts, overhead projector, etc.) and discourse/

language (who speaks/listens, what/whose rules, etc.: Wertsch, 1991). This is represented by the upper

triangle in Engström’s well-known schema (Fig. 1). For instance, the representations, language and

gestures that the teacher employs, as well as a range of other resources, including text books, assess-

ment questions and so on are instruments that are essential in mediating the mathematics to be learnt.

In the short timescale of a lesson, such as that of the vignette of learning mathematics in the college

classroom that follows, the way the teacher structures the assessment question to introduce different

mathematical thinking and modelling as a practice is important in prompting students to consider,

more or less effectively, the relationship between (in this case the) financial context and mathematical

model.

Vygotsky’s notion of mediated action of the individual was later expanded by Leont’ev (1981) to

include the community in which the activity is situated. This is represented by the lower triangles in

Engström’s schema which highlight additional mediating nodes that draw attention to how community,

division of labour and rules (in the widest sense) mediate the activity of the subject in relation to the

object of activity. The rules include both explicit rules such as the structuring of the day as imposed by

institutional organizational constraints, the syllabus or specification of the course and more implicit

rules that impact on how the members of the community operate. These include, for example, societal

expectations in relation to teaching and learning as well as more locally derived expectations such as

how students are expected to engage with lectures in light of other ‘classes’ that are provided, whether

or how students are expected to take notes, and so on. Issues of division of labour are important: that is,

issues of the relationships between teacher and learner. In classroom situations, for example, the

teacher almost always has control of the knowledge and is seen as being ‘in control’. This need not

necessarily be the case, of course. We observed, at times, in a small number of classrooms, students

seemingly exerting agency over the direction of their learning. However, even in such situations we

noted that the teacher often had more of a controlling role than may at first have seemed apparent

(Wake & Pampaka, 2008). It is clear that issues of division of labour are connected to how a sense of

community develops, in terms of who has agency and control over deciding the direction of learning,

etc.

For students in the university the situation is more complicated in relation to how we understand

mathematical activity and mathematical practices. At times mathematics may be the object of study,

for example, in lectures and tutorials which comprise specific mathematics units of a degree pro-

gramme. On other occasions, it may be considered an instrument as students use mathematics to

Subject

Community Division of labourRules

Instruments

Object

FIG. 1. Engström’s CHAT model.
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understand and make sense of engineering. Thus, we may consider mathematics as having a major, but

different, role to play in two activity systems: one concerned primarily with, and consequently having

as its object, the learning of mathematics and the other concerned primarily with, and consequently

having as its object, the learning of engineering. In this latter activity system, mathematics plays a

different role to that in the former, it shifts from its learning being the object to being a mediating

instrument supporting the learning of engineering. In this sense, mathematics might be considered as a

boundary object (Star & Griesemer, 1989), i.e. mathematics has different meaning in each of the

different Activity Systems, while retaining its common essence across both.

4. In the ‘classroom’
In colleges, we observed that by far the most common approach to teaching was heavily influenced by

preparation towards forthcoming timed-written assessment. The dominant teaching style, as observed,

and also self-reported by teachers was teacher-centred (Wake & Pampaka, 2008) typically involving a

lot of teacher exposition/input followed by students individually practising routines and procedures. In

general, we found models of teaching and learning mathematics at university, both as a subject in its

own right and in support of other subjects, also to be fairly restricted. Such models consisted of,

perhaps iconically, lectures supported by ‘problem-solving classes’ or ‘workshops’ that provide oppor-

tunities to practise techniques, rules and procedures. Again almost all lecturing and tutoring in prob-

lem-solving classes involved a great deal of teacher exposition.

4.1 Vignette 1: college Use of Maths lesson

The first vignette provides an account of an episode from a ‘lesson’ in a college where the class were

studying towards the AS qualification Use of Mathematics. At the time of the research this AS level

qualification, designed as ‘half an A-Level’ in the English post-16 suite of qualifications, was available

in a number of Colleges and schools. Most AS levels were mainly designed to be taken at the end of

the first year of a two-year course of study leading to the full A Level. AS Use of Mathematics,

however, was one of a handful of such qualifications designed specifically as a stand-alone qualifi-

cation. It was designed to provide a course to support students with their other areas of study such as

the sciences, business/economics and the social sciences. Neither this course nor the full A Level in

Use of Mathematics was designed to support progression to university engineering courses. The vi-

gnette here is chosen due to the significant elements of mathematical modelling it contains. The Use of

Mathematics courses make the mathematical modelling process explicit in many ways in the texts and

assessment encouraging a modelling ethos and pedagogy—as becomes clear in classroom observations

in our case studies and illustrated in this vignette.

The lesson starts with the teacher explaining that the class will work on an extended question (Fig.

2) that the teacher had designed as an example of the type of questions the students will eventually

meet in their external assessment. He goes on to read out the stem of the question which gives

background information. This is typically presented to students in advance of the examination in a

‘data sheet’ which allows them time to immerse themselves in contexts and terminology, here, e.g.

‘revenue’, ‘unit price’, etc., relevant to the questions to be asked. He asks the class to answer the first

part of the question by referring to a version of the graph in Fig. 3 below. At this stage, the graph does

not yet include the tangent to the curve that is parallel to the straight line.

A student initiates a brief period of interaction with the teacher by suggesting that ‘if you sell no

units then you will make no money’ which the teacher confirms as being correct (although this
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interpretation is not quite correct as the graph plots price per unit against revenue). This is quickly

passed over and the teacher asks the students why they think the curve ‘starts to come down?’ dis-

playing a copy of the curve in Fig. 3. Throughout the lesson this pattern of the teacher carefully

directing the class with questions that focus them on thinking of how mathematics relates to the

context of finance continues. For example, following this early exchange a student contributes that,

‘as you increase the price then you start making a total amount of money (revenue) that falls.’ The

1 A local manufacturing firm makes a single product. The revenue (money coming in) from selling this product 
depends on the price they charge according to the following equation: 
    y = 160x – 8x2

where x is the price in £ per unit, and y is the revue in thousands of £ per year. 
A graph of this function is on the attached sheet. 

(a) Explain briefly why it is reasonable for the curve for revenue to pass through the point (0,0). 

(b) At what price will the firm maximise its revenue? 

 The revenue also depends on the number of products made, but so do the costs of making the product. The 
company has derived a simple model of costs against selling price £x as follows: 

y = 32x + 384, 
where y represents annual costs, in thousands of £. 

(c) Briefly explain the meanings of the numbers 32 and 384 in this equation, in terms of the costs to the company. 

 The company will ‘break even’ when the yearly revenue is equal to the yearly costs. 

(d) Explain briefly why the selling price £x in order to break even satisfies the equation 
   160x – 8x2 = 32x + 384. 
The yearly profit is the difference between the revenue and the costs. This is maximised when costs and revenue 
are both increasing at the same rate. 

(e) By drawing a suitable tangent to the revenue curve, estimate the selling price which will maximise the yearly profit 
for the company. 

(f) What is the maximum yearly profit.

FIG. 2. Sample AS Use of Mathematics examination-style question used in college lesson.

FIG. 3. Graph relating to example examination question used in college AS Use of Mathematics lesson.
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teacher encourages such discourse by adding a further explanation: ‘So there is a certain point at which

the firm is going to maximise it’s revenue.’ A student goes on to contribute that this is at ‘10’, with the

teacher adding context again, suggesting that this is when the price is £10 per unit, but that this is not

necessarily where the profit is maximized. Thus the teacher explicitly and repeatedly adds contextual

detail, moving the discourse to the financial concepts of the ‘firm’, its ‘revenue’ and ‘profit’, and so

forth.

The teacher then draws attention to the model, y = 32x + 384. He explains that this was suggested by

someone in the company to show how costs increase with unit selling price. He asks students the next

part of the written question, i.e. to explain the meanings of the numbers 32 and 384 in the ‘simple

model’. A student contributes that the 32 is the ‘gradient’. The teacher confirms that this is ‘correct - in

terms of the line’, explicitly drawing attention to the mathematical domain of the term, with the student

then adding that the 384 gives the intercept (on the vertical axis, although this is not made explicit).

The teacher then asks why the line goes through 384 rather than the origin. Another student identifies

this as the £384, 000 of ‘starting up costs’. Attention is now focused on the meaning of ‘32’, with a

student suggesting that this gives the ‘rate of change’ (expanding on the notion of gradient).

The students clearly have difficulty with interpreting this and the teacher suggests that the way to

interpret such graphs is to consider what happens if x increases by one pound of unit-price, ‘So, for

every £1 increase in the price of the unit it is going to cost you another £32,000 per year to make.’ He

emphasizes what each of the variables represent together with their associated units by writing this

information on the whiteboard at the front of the classroom.

The teacher goes on to point out that there are two points where the ‘costs line’ crosses the revenue

curve and that these are ‘the break even points’ where the costs match the revenue coming in. This

allows him to explain that this is where the two equations are equal: he writes the equation given in the

question on the whiteboard and emphasizes for students why the two equations for costs and revenue

are equal at the points where their graphs intersect. At this point the teacher realizes that when devising

the question he had not asked students to solve this equation so he introduces a new sub-part of part (d)

into the question, ‘Find the solutions of this equation using the graph.’ The students suggest that the

‘answers’ are x = 4 and x = 12.

The teacher then moves the class on to the next part of the question that considers profit as the

difference between the revenue and the costs and asks at what price the company would maximize

their profit. He goes on to suggest that the way to find this is to find where the costs and revenue are

both going up at the same rate: he gestures with his hands to indicate that this is where the line and the

curve are parallel, ‘Because there comes a point after that where the revenue is not going up at the

same rate and the costs are still going up at the same rate and so the difference starts to come down

again.’ Having pointed out that at x = 10, although the revenue is maximized the difference between

the two graphs is not maximum and this therefore needs to be found. A student suggests that this is in

the region where x = 8. The teacher now suggests that the students draw a tangent to the curve that is as

near as possible parallel to the straight line (Fig. 4). The students, immediately see that the answer to

sub-part (e) of the question is where x = 8. The teacher suggests that sub-part (f) could be answered by

counting squares on the graph but more accurately can be found by substituting x = 8 into the two

which he proceeds to demonstrate.

The remainder of the lesson continues in much the same way with the teacher emphasizing that in

the examination of the qualification the students will be expected to be able to use and interpret a graph

in this way to solve questions such as this.

This vignette shows how the teacher seeks to ensure motivation of the mathematical ideas in the

financial context of the question. This is explicitly attended to by the teacher ensuring that the math-

ematics is consciously constituted as ‘mathematical modelling’ for the learners, and not simply as an
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exercise in learning the mathematics of slope/gradient and rate of change for its own sake. I infer that

this is necessary because this is a ‘maths class’ and the students might not otherwise choose to see their

mathematics as a modelling activity with significance outside mathematics. This explicitness of math-

ematical modelling is not only evident in the dialogue of the lesson, but of course is explicitly named

and codified in the Use of Mathematics syllabus/specification, assessment, and guidance for teachers;

the whole design intends to make modelling explicit, in contrast to other mathematics courses where

the presumption is that only ‘the mathematics itself’ counts.

4.2 Vignette 2: university structural engineering lecture

Vignette 2 presents a short episode from a structural engineering lecture in which ideas of structural

analysis, important in civil engineering, rely heavily on mathematical modelling and applications. The

choice of this episode from an engineering lecture rather than a lecture specifically aimed at the

teaching and learning of mathematics might at first sight seem a little strange, but mathematics-spe-

cific lectures deal mainly with the pure and abstract rather than focussing on applications. It was in

lectures such as the one partially described below that we found students engaged in meaningful

activity that might be considered as mathematical modelling/applications under discussion here.

The lecturer starts by drawing attention to some conventions that had been introduced in previous

lectures: that is (i) shearing forces at a section through a beam (represented as a point on the diagrams

here draws, e.g. point C in Fig. 4) are considered positive upwards when on the left face and negative

when downwards on the right-hand face, and (ii) bending moments are considered positive when a

beam is sagging and negative when hogging. He introduces these ideas using overhead transparencies

projected onto a screen at the front of the lecture theatre. Having done so, the lecturer works through a

problem using a roll of blank overhead transparency film developing his solution freehand as he goes

along. We saw many lecturers working in this way, demonstrating how they would tackle mathem-

atical problems themselves. They either used an overhead projector or its modern equivalent, the

visualizer connected to a computer together with a data projector, as they attempted to mimic the

writing at the board that we observed in many college classrooms and university workshops or ‘prob-

lem-solving classes’ (Pepin, 2014).

FIG. 4. Shearing force diagram for uniformly distributed load. This figure appears in colour in the online
version of Teaching Mathematics and its Applications.
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The lecturer draws attention to the two types of force system that will be discussed naming them

‘concentrated and uniformly distributed loading’, before introducing a system of concentrated loading

on a beam that is supported at both ends, A and B. He discusses this in abstract and mathematical terms

arriving at algebraic expressions for the shearing forces in each section of the loaded beam. Having

done so he then introduces some values that he uses to exemplify how these expressions might be

applied to calculate shearing forces. The lecturer goes on to sketch a shearing force diagram. In a

departure from the rest of the lecture where the lecturer usually works from the abstract to the concrete

he then continues to develop a bending moment diagram for the situation by using the values of

distances and forces which he introduced earlier.

He returns to developing abstract algebraic expressions when he goes on to introduce how to arrive

at a shearing force diagram for uniformly distributed loading (w KN/m) on a beam supported at ends A

and B a distance L metres apart (Fig. 4). However, he does give some possible suggestions for values

of the evenly distributed load and the distance between the supports and emphasizes that the

generalized working he goes through can be used for any values of w and L including those he

specifically suggested.

At this point, the lecturer asks a question of the whole group: a rare event in the lecture theatre

setting. After drawing attention to the uniform loading of w kN/m and the distance between the

supports as L, he asks them to tell him the total loading on the whole beam. A student eventually

responds ‘wL’. The lecturer then attempts to get students to tell him the magnitude of the reactions at A

and B. He is this time unsuccessful and has to tell them that due to the symmetry of the situation these

forces will be wL
2

N, writing this down as he proceeds. In an attempt to explain how to determine the

shearing forces at various points along the beam the lecturer introduces three new points C
L
4

fromA
� �

;D L
2

fromA
� �

and E 3L
4

fromA
� �

, equally spaced between A and B. He proceeds to work out

the shearing force at each of these points in terms of the generalized forces and dimensions he has

introduced (Fig. 4).

The lecturer goes on to explain how although he calculated all shearing force values by considering

forces to the left of each point, he could equally have used forces to the right and demonstrates the

veracity of this by re-calculating the shearing force at D by considering forces to the right and arriving

at the same result. By plotting these values at appropriate points along a diagram of the beam the

lecturer arrives at a sketch of the shearing force diagram. Following this, a student draws attention (a

relatively rare event in the lecture theatres observed as part of case-study work) to the expression

‘uniformly distributed’ and asks for clarification about the two types of loading that had been referred

to in the lecture. The lecturer explains by asking students to consider (i) a car passing over a bridge

which will give rise to concentrated loading and (ii) the loading due to the bridge itself (made

from concrete) which leads to uniformly distributed loading in units of kilonewtons per metre. At

last after some considerable time the lecturer is provoked into making the context of the problem clear

to the students for the first time: of course, the lecturer will have understood the relationship between

the mathematics that he had been discussing and its potential application in structural engineering

contexts but his discourse focused on rules and procedures that kept this connectivity hidden from the

students.

The lecture continues much in this vein with the lecturer carefully introducing rules and procedures

in relation to developing shearing force and bending moment diagrams, but without making explicit

appropriate engineering contexts that are modelled in this way. In contrast to the previous vignette,

there seems to be no emphasis on the connection of the mathematics to its context being important per

se: it seems to be taken for granted. In this case I infer that, at least for the lecturer, it is a given that

mathematics is a tool for doing engineering (calculations): no significant questioning of this is needed.

In terms of the CHAT analysis, this use of mathematics is implicit in the lecturer’s practice and
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pedagogy. This is in contrast to the previous vignette where the teacher brings the use of mathematics

to make sense of a situation explicit through his questioning of students as the lesson proceeds.

5. Comparative analysis and discussion
The two vignettes presented here highlight a significant feature of how students engage in applying

their mathematics as a practice in the two different settings. Essentially: the most stark contrast is the

amount of attention directed by the teachers, and therefore, experienced by the students, towards the

connectivity between context and mathematics. In the college lesson, although the students were often

inclined to focus on mathematical features such as the gradient and intercept of the straight line, the

teacher is keen for them to make sense of this in terms of the financial situation it represents. Although

the written questions he had designed are concerned with, and require proficiency in, the use of

procedures and techniques, his oral questioning ensures that students need to consider how these

mathematical features connect with the financial context. The example assessment question is used

by the teacher to ensure students have the opportunity to focus their attention on the connection

between model and context.

In contrast, in the engineering lecture, in which you might have expected the engineering lecturer to

have emphasized such connectivity, the emphasis is much more on the efficient and accurate imple-

mentation of rules and procedures. This is most clearly brought to our attention when well into the

lecture a student asks for the concept of a uniformly distributed load to be clarified. It was only at this

point that the lecturer injected any sense of context (a car driving across a bridge) into the abstract

mathematical models that had been his focus until this point. Here, although the mathematics has the

potential (as an instrument) to connect consciously with the engineering context of the loading of a

bridge, this opportunity is only taken by their lecturer in response to a student’s question.

To provide further insight into how mathematical practices come to be shaped by the activity

systems in which they are situated, Table 1 provides a very brief summary of some of the key features

of the two activity systems of college Use of Maths and university engineering ‘classrooms’ in general

summarizing our observations across case studies. There is not space here to explain the details of this

fully but the key contrast in mediating factors that I draw out in this article are emboldened.

Table 1 illustrates important factors that are important to our understanding of our case studies.

These factors have significant impact on how the collective or community view of mathematics, and

mathematical modelling and application as a practice is socially experienced and constructed. (In the

university, this collective view derives from experiences when learning both mathematics and engin-

eering.) In this respect, it can be considered that different student groups share and produce different

cultural models of mathematics (Gee, 1999) depending on the different experiences they have in the

different activity systems in which they learn mathematics. The purposively chosen vignettes pre-

sented here together with the analysis of the two activity systems illustrate the complexity that under-

lies how different cultural models may develop and be influenced.

There is no doubt that the different teachers’ narratives in respect to mathematical modelling and

applications have considerable impact on the way in which students come to see, and develop, their

own mathematical practices. In general in classrooms, in both colleges and universities, we rarely saw

evidence of discussion of mathematical modelling and application as a practice. Any learning of how

to apply mathematics was almost entirely tacit with little overt support in teaching. The main differ-

ence we detect in the vignettes here is the college teacher’s focus on, and insistence that students

engage in making sense of, connections between context and mathematics. This was undoubtedly due

to the assessment requirements of the AS Use of Mathematics course. In parallel classrooms where

students were following the ‘traditional’ A Level in mathematics, we saw no evidence of such

G.WAKE 181

D
ow

nloaded from
 https://academ

ic.oup.com
/team

at/article/35/3/172/2223597 by Access provided by H
EAL-Link (U

niversity of Athens) user on 31 M
ay 2021

Deleted Text: emphasised 
Deleted Text: summarising 


TABLE 1. CHAT analysis of college Use of Mathematics lessons and University engineering lectures

College: AS Use of Mathematics lesson University: Structural engineering lecture

Object

Learning mathematics

Mathematics as an individual discipline rarely

connected with other discipline. Teachers re-

flect this compartmentalization (Morgan,

2011) with their teaching almost always re-

stricted to the subject of mathematics.

Learning engineering (the role of mathematics)

Unit courses in engineering strongly bounded for

students but lecturers have weakly boundaries be-

tween disciplines in their own engineering practice

particularly in their own connectivity between

mathematics and engineering.

Outcome

Qualification—set and awarded externally.

Outcome

Qualification (unit pass)—set and awarded

internally.

Individual goal

Predominantly focused on gaining a qualifica-

tion to move on to further study or work.

Very few students focused on learning as sup-

port for learning other disciplines or for

interest.

Individual goal

Predominantly to gain course unit credits but also

important in supporting engineering problem

solving.

System motivation

High level of performativity – aggregated stu-

dent grades in external assessment leading to

college league table positions are extremely im-

portant to managers and affect all aspects of

system including at classroom level.

Courses developed in response to external

specifications.

System motivation

The importance of competence in applying math-

ematics effectively in engineering is widely recog-

nized and sought by lecturers.

Courses controlled internally but with require-

ments for graduates to meet externally controlled

chartered engineering standards.

Instruments

Resources

Heavily informed by external assessment with

text books and teacher notes aligned to this.

Low use of technology: mainly scientific

calculator.

Informal student use of technology as learning

resource such as web-based revision resources.

Resources

Mainly developed internally, bespoke to courses.

Internally controlled and developed.

Increasing use of computer technology both as a

mathematical tool and increasingly as a learning

resource (including providing bespoke e-learning

and assessment).

Pedagogy

Characteristically long periods of exposition

with procedural approaches highlighted, fol-

lowed by practise of these.

AS Use of Maths assessment design supports

pedagogies that focus on connecting a range

of context situated problems and mathematics.

Pedagogy

Focused on learning rules and procedures.

Problem solving classes/workshops provide

models of problem solving practices.

Connectivity between context and mathematics

not necessarily highlighted.

(Continued)
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connectivity: the course leading to this A Level has no similar requirement to engage with modelling

and applications.

6. Conclusion
Analysis of the learning of mathematics in post-compulsory education for progression to engineering

leads to the conclusion that students have diverse experiences of, and presumably come to a wide

range of understandings of, mathematical modelling and applications as a mathematical practice.

CHAT points to how this is the case because of variations in the mediating factors that come to

define the social and cultural relations which affect the learning of mathematics as an activity.

TABLE 1. Continued.

College: AS Use of Mathematics lesson University: Structural engineering lecture

Rules

At an institutional level aggregated scores of

students’ performance in national assessment

dominate. These permeate all aspects of col-

lege and classroom activity with maximizing

grades seen as beneficial to students and the

institution (Wake, 2013).

Attendance and performance continuously

monitored with targeted intervention.

Assessment is externally controlled and domin-

ates teaching and learning. AS Use of Maths

focuses on modelling and applications.

Traditional Maths on pure mathematics.

At an institutional level student performance is

considered as mainly a function of the student

rather than teaching. Even though students are

monitored and support mechanisms are provided

whether students engage or not is left to the

student.

Assessment is internally controlled and reflects

courses developed internally by lecturers.

Division of labour

Clearly defined roles for teachers and students

with teachers mediators of static body of

knowledge.

Clearly defined roles for teachers and students

with teachers mediators of static body of

knowledge.

Community

Students taught in relatively small groups often

with a strong sense of sociality.

Teachers and students aligned together in ad-

versity against the examination system.

Teachers supportive of students to maximize

performance which is attributed to their

teaching.

The wider role of college community often

influential.

Students taught in both large and small groups

often with a weak sense of sociality.

Lecturers and students seemingly opposed with

lecturers in control of assessment of students.

Student performance attributed mainly to them

rather than as a function of teaching.
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Significant in this regard, and pertinent to the two carefully selected vignettes in this article, is the role

that the assessment design of AS Use of Mathematics plays in providing rules that promote explicit

engagement with modelling and applications.

Of particular importance is how teachers and students come to understand and experience the

connections between context and the mathematics that they use to model this. The two vignettes

illustrate quite different ways in which this can be constituted. In the engineering lecture, this coupling

of context and mathematics was implicit as far as the lecturer was concerned and for him the math-

ematics did not need to be explicitly motivated by the engineering context. On the other hand, the

college teacher made the coupling between the context of the financial problem and the mathematics

explicit and encouraged students to consider how the structure of the situation and structure of the

mathematics are connected. On numerous occasions the teacher highlighted how the abstract and

general mathematical concepts that the students were using related to the applied problem under

investigation.

It follows that to support students in transition we need to be cognizant of the issues raised here: that

students have very different experiences of mathematical modelling and applications and these result

from complex interactions of a large number of significant mediating factors. The vignettes are helpful

in pointing to the kinds of factors that we need to be sensitive about: however, each particular activity

system needs to be analysed to take account of its own specific conditions.

In general, our research leads me to conclude that if we wish to ensure students experience learning,

in their classrooms, that prioritizes and emphasizes mathematical models and applications this needs to

be designed into course specifications. This has to be achieved so as to inform all other mediating

factors: instruments (including resources and pedagogies), rules (most importantly those relating to

assessment), and the allied aspects of division of labour and community. Appropriate courses need to

be implemented in ways that ensure students develop agency in enquiring into connectivity between

context and mathematics.

In summary, to ensure that students are better prepared to use and apply mathematics it is important

that teachers and learners:

� develop an expanded conceptualization of mathematics that goes beyond a well-defined knowledge

base, to include problem solving strategies, mathematical practices, use of resources and pays

attention as to how these come together to inculcate attitudes and beliefs;

� understand how societal, institutional and community rules, resources and ways of working impact

on how they come to teach, learn and understand mathematics as a discipline and its potential

relationship and connectivity with problems in other fields;

� ensure that mathematical modelling and applications whenever, and wherever, being used, are made

explicit (even when they are usually tacit in the teacher’s day-to-day practice and will eventually

become so for the students);

� prioritize modelling, applications and problem solving strategies in their mathematical practices in

ways that allows them to focus on how mathematics connects with the world outside of mathematics

and how they can use such connectivity to gain insight into situations and solve problems.

7. Post-script
In addition to the important aspects of the AS Use of Mathematics programme reported here, the

Transmaths research found that it performs more effectively than the AS Traditional programme in

developing students’ self-efficacy in mathematics and dispositions towards study of mathematics. Over

the period of the course, it was also effective in retaining students with lower entry grades in the study
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of mathematics and the students were motivated in their learning by engaging in modelling

(Hernandez-Martinez et al., 2011). An overview of the impact of the qualification on student outcomes

is reported in detail elsewhere: for a summary, see Wake (2011)).

Despite these positive aspects, the qualification was terminated in 2015. A full A Level in Use of

Mathematics that was developed after the research period was introduced, but this will recruit for the

last time in 2016. New qualifications in ‘Core Mathematics’ have been recently developed that share

some of the underlying principles and philosophy of the Use of Mathematics qualifications, are similar

in size to an AS Level qualification and are currently in early stages of implementation.
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