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Stationary ARMA Models and Box-Jenkins methodology

Introduction
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The time series models:

» Moving Average models [MA]
» Autoregressive models [AR]
» Autoregressive and Moving Average models [ARMA]
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Properties of time series models

Estimation of time series models
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Forecasting time series models
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Introduction

» Explain the movements of the time series by its own
characteristics.

» Emphasis is on the analysis of probabilistic or stochastic
properties of the time series.

» Construct models that explain the series y; by using past
values y;_; and past stochastic error terms €;_;...

» ...instead of (or apart from) explaining y; by using explanatory
variables x1, xo, ..., Xk.
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Introduction: Time Series models

Use lagged data points or/and lagged errors
Autoregressive models [AR(p)]

Ve =0+ ¢1¥e—1+ Goye—2+ ...+ PpYi—p + &t
Moving Average models [MA(q)]

Ve =p+01et—1 + 02t + ...+ 0get—g + &t
Autoregressive Moving Average models [ARMA(p,q)]

Ye=0+ @1yt 1+ ...+ pyrpt+Oiee-1+ ... +0gct_qg+ et
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Introduction: Aim of the analysis

» Try to study the characteristics of the time series
(identification step)...

> in order to build - construct and estimate an appropriate
model (estimation step)...

» which can be used to explain what has generated the observed
time-series data (diagnostic checking step)...

» and can be also used for predictions (forecasting step).

Loukia Meligkotsidou, UoA Time Series



Part 2: Introduction

Part 2: Time series models and their properties
Stationary ARMA Models and Box-Jenkins methodology Part 2: Estimation of ARMA models

Part 2: Diagnostic checking of residuals

Part 2: Forecasting

Introduction: Box-Jenkins methodology

» ldentification step
Use autocorrelation and partial autocorrelation of the series to
find appropriate values of p and gq.

» Estimation step
Estimate the model's parameters using Maximum Likelihood
or Least Squares method.

» Diagnostic checking step
Examine if the chosen (estimated) model fits the data
reasonably well - test if the residuals of the estimated model
are uncorrelated, homoscedastic and normal, i.e. white noise.

» Forecasting step
Compute forecasts based on the fitted model.
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White Noise

The basic building block for all processes and models considered in
time series analysis is the White Noise process

A process ¢; that satisfies the following conditions is called a
White Noise process:
» E(e¢) =0, zero mean.
> V(er) = Eler — E(et)]? = E(e3) — [E(er)]? = E(e}) = 0
constant variance.
> Yi-s = Cov(er,es) = El(er — E(er))(es — E(e5))] =
E(etes) = 0 for t # s, uncorrelated elements across time.

Furthermore, if the &; follow the Normal distribution, i.e.
et ~ N(0,0?) the process ¢; is called Gaussian White Noise
process.
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Example 1: y; = pu + &

Consider a process y; which is the sum of a constant p plus a
Gaussian White Noise process ¢; i.e. y; = ju + ¢, £r ~ N(0,0?)

E(ye) = E(n+er) = E(u) + E(ee) =

%0 = V() = V(u+ee) = V(u) + V(er) = 0% or

%0 = V(ye) = Elye — E(ye)]” = Elye — p? = E(et)? = 0?
i = Cov(ye, ye-j) = El(yr — E(ye))(ye—j — E(ye-j))] =

= El(ye — 1) (yej — )] = E(cezes) =0

y+ moves around j with variance o (uncorrelated y/s)

Loukia Meligkotsidou, UoA Time Series



Introduction

Time series models and their properties
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Example 2: y; = Bt + &

Consider a process y; which is a time trend, §t, plus a Gaussian
White Noise process ¢ i.e. y; = Bt + &, ¢ ~ N(0,02)

E(y:) = E(Bt +e¢) = E(Bt) + E(er) = Bt

70 = V(ye) = V(Bt +e¢) = V(Bt) + V(er) = 0® or

%0 = V(ye) = Elye — E(ve)]” = Elye — Bt]* = E(e)* = 0
i = Cov(ye, ye-j) = El(yr — E(ye))(ye—j — E(ye-j))] =

= E[(ye — Bt)(ye—j — B(t = j))] = E(cece—j) =0

y: move around trend (3t with variance o2 (uncorrelated y/s)
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Moving Average process: MA(1) - Mean - Variance

Let y; follow a Moving Average of order one, MA(1), model:
Ye=p+ 0181 +¢r, e ~ N(0,0%)

E(y:) = E(p+ O16¢-1 + &) = E(p) + E(bher—1) + E(er)
= E(u) + 01E(ce—1) + E(ee) = 1

V(ye) = Elye = E(ve)l> = Elye — p]* = E(bree-1 +&1)* =
= E(Glet 1+ €2 4 20161 _16¢) =

= E(07e7 1) + E(e3) + E(2016¢-12¢) =

= 07E(e2 1) + E(e) + 201 E(ernee) =

— p2.2 2 _ 2\ 2
=0i0°+o0°=(1+0f)0
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Moving Average process: MA(1)
Autocovariance at lag 1, v; - Autocorrelation at lag 1, p;

71 = Cov(ye,ye-1) = E[(ye — E(ye))(ye—1 — E(ye-1))] =

= E[(ye — #)(ye—1 — p)] = E[(br6e-1 + €e)(br6e—2 + €-1)] =
= E(0%er_16t—2 + 0162_1 + 0164610 + £1e4-1) =

= 02E(ct_16t-2) + 01 E(2 1) + 01E(crer—2) + E(crer—1) =

= 102

o 9102 _ 01
PL= % = @492 — 1462 70
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Moving Average process: MA(1)
Autocovariance at lag 2, v, - Autocorrelation at lag 2, p,

Y2 = Cov(ye, yr—2) = E[(ye — E(yt))(vt—2 — E(yt—2))] =
= E[(yr — 1)(yt—2 — )] = E[(O16¢-1 + &r)(016t-3 +€c2)] =
= E(Q%Et—1€t—3 + b1er_16t—2 + O16¢6r—3 + €16¢-2) =

= Q%E(Et_1€t_3) + 91E(5t—15t—2) + elE(EtEt_:i) -+ E(€t€t_2) =0

e 0 _
P2 =35 = Greyer = 0
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Moving Average process: MA(1)
Autocovariance at lag kK > 2 - Autocorrelation at lag k >

Yk = Cov(ye, ye—k) = E[(ye — E(ve))(ye—k — E(ve—k))] =

= El(ye = )(ye—k — p)] = E[(Oree-1 + ce)(016e—k—1 + €r—k)] =
= E(03ct_16t k-1 + 016016k + 016661 k1 + EtEt_k) =

= 02E(ct—16t k1) +01E(ce—16t—k) + 01E(eeer—k_1) + E(crer_k)
=0

Yk 0 —
Pk =5 = @7 = 0
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Moving Average process: MA(1) Useful comments

» The mean, the variance and the
autocovariances-autocorrelations are constant over time.

» The MA(1) is weakly stationary process, without imposing
restrictions on the model parameters.

> In the MA(1) process the autocovariance-autocorrelation at
lag one is different from zero, and all the other
autocorrelations are zero.
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Moving Average process: MA(2) - Mean - Variance

Let y; follow a Moving Average of order two, MA(2), model:
Ve =+ 01601+ Ooer o+t , e¢ ~ N(0,0?)

E(y:) = E(u+016¢-1 + Ot 2 +e¢) =
E(p) + 01E(ee-1) + 02E(ee—2) + E(ee) = p

V(}/t) = E[)/t - E()/t)]2 = E[)/t - M]z =
E(01€t—1 + 925t72 + 5t)2 =...= (1 + 9% + 0%)0‘2
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Moving Average process: MA(2)
Autocovariance at lag 1, v; - Autocorrelation at lag 1, p;

71 = Cov(ye, ye-1) = E[(yr — E(ve))(ye-1 — E(ye-1))] =
= E[(ye — ) (yr—1 — p)] =

= E[(016t—1 + O2et—2 + ¢)(016¢—2 + o3+ e1-1)] =
= 0102 + 010202 = (01 + 0105)0?

_n _ (614610)0® 614010,
PL= 5 = (14024+62)07 ~ 1+02+62 #0
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Moving Average process: MA(2)
Autocovariance at lag 2, v, - Autocorrelation at lag 2, p,

Y2 = Cov(yt,ye—2) = E[(yr — E(yt))(yt—2 — E(yt-2))] =
= E[(ye — 1) (yr—2 — p)] =

= E[(016¢—1 + Ooet—2 + 1) (016¢—3 + Ooct—a +€12)] =
= fr0?

R 00
P2 =5 T +e2+2)0? 1+92+92 70
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Moving Average process: MA(2)
Autocovariance at lag k, v - Autocorrelation at lag k, px

Vi = Cov(ye, ye—k) = E[(ye — E(ve))(ve—k — E(ye—k))] =

= Ellye =) (ye—k — )] =

= E[(016t—1 + O2et—2 +t)(016t—k—1 + O2et—k—2 + k)] =
=0

Thus, v =0 for k>3

pE= 5% = w0

Thus, px =0 for k>3
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Moving Average process: MA(q) - Mean - Variance

Let y; follow a Moving Average of order g, MA(q), model:
Ye =1 + 915157]_ —+ ...+ Oqé—tfq +E¢, Er ~ N(O,U2)
E(yt) =E(p+016e—1+ ...+ 0get—q +et) =

V()’t) = E[}’t - E(}’t)]2 = E[)’t - M]z =
E(O1et—1+ ...+ 0gct—q + ee)? = (1+ 0% 4+ ...+ 93)02
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Moving Average process: MA(q)
Autocovariance at lag k, ¢ - Autocorrelation at lag k, px

Yk = Cov(ye, ye—k) = E[(ye — E(ve))(Ye—k — E(ye—k))] =
= E[(ye — 1) (ye—k — )] =
= (O +010k41 + ... + eq_keq)0'2

S (9k+916k+1+~-~+9q—k9q)52 o 6k+619k+1+---+0q—k9q # 0
Pk= % = @420 1+02+.462

Thus, for k =1,2,...,q the autocovariances-autocorrelations are
different from zero, while for k > g these metrics are zero.

Loukia Meligkotsidou, UoA Time Series



Part 2: Introduction

Part ime series models and their properties
Stationary ARMA Models and Box-Jenkins methodology Part stimation of ARMA models

Pa gnostic checking of residuals

Part 2: Forecasting

Moving Average process: MA(q) Useful comments

» The mean, the variance and the
autocovariances-autocorrelations are constant over time.

» The MA(q) is weakly stationary process, without imposing
restrictions on the model parameters.

> In the MA(q) process the autocovariance-autocorrelation at
lag 1,..., g are different from zero, and all the other
autocorrelations are zero.
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Autoregressive process: AR(1) - MA representation
AR(1) as a linear process

Let y; follow an Autoregressive model of order one, AR(1):
Yt =0+ d1yr-1+er

This model can be written as a MA(co0) model:
Ye=0+¢1ye-1+er =0+ ¢1(6 + drye—2 +ee-1) + &t
=0+ ¢16 + diye 2+ Pree1 + e

=0+ ¢16 + 07(6 + drye-3 + et 2) + drec 1 + €

=0+ 010 + d30 + ¢lye-3 + ¢Ter2 + Pree1 +er

... go backwards m periods

=6(l+d1+ @3+ + o)+ o dheei+ M yem
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Autoregressive process: AR(1) - MA representation
AR(1) as a linear process

ve=0y "0 ¢’1 +30 ¢£5t—i + ¢,1n+1.)/t7m71

if |p1] < 1, then ¢! — 0 as m — oo
if |p1] <1, then 1+ ¢1+¢3+...4+ ¢ =7 ¢ as m — oo
Thus, the AR(1) model can be written as a MA(oco) model:

Ye = 1_;5@ + Z?io ¢i5t—i

Note that [¢1] < 1 implies Y [¢f| < oo
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Autoregressive process: AR(1) - Mean

Let y; follow an Autoregressive model of order one, AR(1):
Ye=0+¢1ye1+er or

Yt = 1,6(171 +Z?i0 Qbiet—iy if ‘¢1| <1

The mean of the AR(1) process is given by:
E(yt) = E(lfqbl + Z(,)io ¢Ii€t—i) =
= E(%m) +E(CE g diee-i) =

= ﬁ + 220 $1E(ee-i) =

)
1-¢1
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Stationary ARMA Models and Box-Jenkins methodology Part 2: Estimation of ARMA models

Part 2: Diagnostic checking of residuals

Part 2: Forecasting

Autoregressive process: AR(1) - Variance

Let y; follow an Autoregressive model of order one, AR(1):
Ye =0+ ¢1yr-1+ee or

Ve =15 + i e if [dn] < 1

The variance of the AR(1) process is given by:

Vi) = V(s + Y% dlees) =

= V(%@) + V(e diee-i) =

=220 ¢V (et-i) =

=1+ +¢7+..)0%=

= 1_¢%
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Autoregressive process: AR(1) - Mean

Let y; follow an Autoregressive model of order one, AR(1):
Ve =06+ d1yr-1+er , |p1] < 1 (stationary process)

E(ye) = E(ye-1) = =H
Then the mean of the AR(1) process is calculated by:

E(y:) = E(6 + ¢1ye—1 + &¢) = E(0) + E(drye—1) + E(ze)

= p=0+ o= p(l —d1) =08 = p= 25 = E(v)

Note that for ¢; = 1 the mean is not defined
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Autoregressive process: AR(1) - Variance

Let y; follow an Autoregressive model of order one, AR(1):

ye =0+ ¢1ye—1 + e , |¢p1] < 1 (stationary process)

V(ye) = V(ye-1) = ... =v

Then the variance of the AR(1) process is calculated by:

V(ye) = V(6 + d1ye-1 + &) = V(0) + V(drye—1) + V(ee)

S v=gvt+o? = v(l-d}) =02 = v =175 = V(n)
1

Note that the variance is well defined if |¢1] < 1

V(yt) > 0= ;Z ¢2 >0=1-¢7>0

S¢i<l=-1<¢g<l=|p1| <1
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Autoregressive process: AR(1) - Variance

Let y; follow an Autoregressive model of order one with mean zero,
ie. 0 =0:
Yt = P1yt-1+ €t

Then the variance of the AR(1) process is calculated by:
Yo = Cov(ye, ye) = E[(ve — E(ye))(ye = E(ve))] = Eyeye) =
= E(YtZ) = E(¢rye—1 + Et)2 = E(¢%yt2_1 + 5% + 2¢1yr-18¢) =

= 2E(y2 1) + E(e2) + 201 E(yr-16¢) =

2
= =0¢10+02=>(l—¢7) =0’ =0 = -
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Autoregressive process: AR(l)
Autocovariance at lag 1, v; - Autocorrelation at lag 1, p;

Yt = Q1yt-1+ &t

The autocovariance and autocorrelation at lag 1 are calculated by:

N = Cov(ye,ye-1) = E[(yr — E(y2))(ye-1 — E(ye-1))] =
= E(ytyr-1) = E[(d1ye—1 + €)yr-1] =

= E(p1y? 1 +etye-1) = 170

=7 = ¢11i'7;§

p1 = % 925170 = ¢
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Autoregressive process: AR(1)
Autocovariance at lag 2, v, - Autocorrelation at lag 2, p,

Yt = Q1yt-1+ &t

The autocovariance and autocorrelation at lag 2 are calculated by:

Y2 = Cov(yt, ye—2) = E[(ye — E(yt))(ye—2 — E(yt—2))] =

= E(ytyi—2) = E[(P1ye—1 + €t)yi—2] =
= Elyr—2(¢1(d1ye—2 + e¢-1) + €1)] =
= Elyt—2(d3ye—2+ pree-1+€¢)] =

= E(0y? o + d16t 1yt 2 + Erye2) =

:>’72—¢170:>72 (bll ¢2

— 2 $10 :gb%
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Autoregressive process: AR(l)
Autocovariance at lag k, ¢ - Autocorrelation at lag k, px

Yt = P1ye-1+ e
In this way, the autocovariance at lag k is:

Yk = Cov(ye, ye—k) = E[(ye = E(ve))(Ve—k — E(ve—r))] = ... =
2

= Yk = 50 = Tk = Of 15 P

And the autocorrelation at lag k is given by:

Pk = :z,i ¢1'YO — ¢1

Note: In the AR(1) process all the autocorrelations are different
from zero, i.e. the process has infinite memory
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Autoregressive process: AR(2) - Autocovariances,

Yt = 1ye-1+ Paye—2 + &
The variance is computed by:

Yo = E(yeye) = Elye(d1ye—1 + doyr—o + 1)) =

= E(d1ytyr—1 + dayeyr—2 + yeer)

= Y0 = ¢171 + ¢272 + 02

The autocovariance at lag 1 is computed by:

71 = E(yeye—1) = Elye—1(d1ye—1 + doyr—2 + 1)) =
= E(¢1y? 1 + PoVe—1Yt—2 + Ye_15t)

=71 = ¢170 + d2n1
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Autoregressive process: AR(2) - Autocovariances,

Yt = 1ye-1+ Paye—2 + &
The autocovariance at lag 2 is computed by:

Y2 = E(ytyr—2) = Elyr2(d1yt-1 + dayr—2 +&1)] =

= E(d1ye-1Ye—2 + P2yi o + Ve-28t)

= 72 = 171 + P20

Generally, the autocovariance at lag k, k > 2 is computed by:
Ve = E(yeye—k) = Elye—k(d1ye—1 + doyr—2 +e¢)] =

= E(¢1ye—kye—1+ $2Ve—kYe—2 + Ye—kEt)

= Yk = P1Vk—1 + P2Vk—2
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Autoregressive process: AR(2) - Autocovariances,

Yt = 1ye-1+ Paye—2 + &
Solving the following equations

Yo = 171 + P22 + 02
71 = ¢17 + P21
Y2 = 9171 + $270

with respect to g, 71 and 7> we obtain:

_ (1—¢2)0?
70 = 15 6)[(1—¢2)— 7]

= 1?;5270
and for kK > 2
= Yk = P1Vk—1 + P2Vk—2
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Part 2: Forecasting

Autoregressive process: AR(2) - Autocorrelations, py

Yt = 1ye-1+ Paye—2 + &
The autocorrelations in the AR(2) process are given by:

$170 8
S R i N )
PL= 7 Yo 1—¢2

— 2 _ ¢t — 3
p2 =0 = o = ga i = ¢2 + 0

and for kK > 2
Pk = P1pk—1 + P2pk—2

Useful comments: In the AR(2) process all the autocorrelations are
different from zero. Similar calculations provide the
autocovariances - autocorrelations for the general AR(p) process.
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The Partial Autocorrelation Function, ay

AR(l) D Ye = P1Yi—1 &t
AR(2) DY = Q1Yi—1 + PaYi—2 + €t
AR(P) i yt = d1ye—1+ daye—o+ ...+ dpYr_p + &t

First step: compute the autocovariances, vk
VeYi—k = Ye—k(O1ye—1+ Poyr—o + ... + OpYi—p + £¢) =

E(ytye—«x) =
E(P1yt—1Ye—k + GoYi—oYi—k + - .- + PpYt—pYt—k + EtVi—k) =

Y0 = 171 + B2 + .- + Ppyp + 02
7= 170 + P21+ - PpYp-1

Vo = P1Yp—1 + P2Yp—2 + ... + DPp0
Yk = P1Yk—1 + P2Vk—2 + - .. + PpVk_p, fOr k > p
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The Partial Autocorrelation Function, ay

Second step: compute the autocorrelations, pg

p1 = P1+ G2p1+ ...+ Pppp-1

Pp = O1pp—1+ P2pp-—2+ ...+ Op

Pk = P1pk—1 + G2pk—2 + ... + Pppk—p, for k > p
These equations are called Yule-Walker equations

Third step: To obtain the partial autocorrelations solve the
Yule-Walker equations with respect to ¢1, ¢», ... iteratively for
different values of p, i.e. for p=1,p=2,...
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The Partial Autocorrelation Function, ay

p = 1: Solve the Yule-Walker equations with respect to ¢
Equation: p; = ¢

The solution with respect to ¢1 is: ¢1 = p1

Thus, the partial autocorrelation at lag 1 is: a; = gbAl =p1.

p = 2: Solve the Yule-Walker equations with respect to ¢»

Equations:
p1=¢1+ P2p1
p2 = $1p1 + P2 ,
The solution with respect to ¢» is: ¢» = ’)12_;521
1
~ A A2
Thus, the partial autocorrelation at lag 2 is: ap = ¢ = fi—pﬁf%

and so on...
to obtain general formulas which provide the partial

autocorrelations.
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The Partial Autocorrelation Function : AR(1) model

Recall that in the AR(1) process, the autocorrelations are given by:
p1=¢1,p2 = b7, 03 =93, ...

Applying the general formulas of partial autocorrelations, using the
AR(1) autocorrelation estimates, we obtain:

a1 = p1 = ¢1, different from zero

2 2 42

p2—p P1—¢

OZ2 — 1— 21 = 11_¢21 = 0
P1 1

az =0

Useful comments: In the AR(1) model, the partial autocorrelation
at lag 1 is different from zero.

Generalization: In the AR(p) model, the partial autocorrelation at
lag 1, 2, ..., p are different from zero, while the remaining partial
autocorrelations are zero.
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Autoregressive Moving Average: ARMA(1,1) - Mean

Let y; follow an ARMA(1,1) model:
Ye =0+ Pp1ye—1 + 0160—1 + &+, |¢1| < 1 (stationary process)

E(yt) =E(yt-1)=...=p
Then the mean of the ARMA(1,1) process is calculated by:

E(y:) = E(0 + d1ye—1 + O16e—1+¢€¢) =

= E(6) + ¢1E(ye—1) + 01 E(ge1) + E(ee) =

:>u:5+¢>1,u=>,u(1—¢1):5:>:“:1—5¢1:E(yf)

Note that for ¢; = 1 the mean is not defined.
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Autoregressive Moving Average: ARMA(1,1) - Variance

Let y; follow an ARMA(1,1) model with mean zero:

Ve = ¢1ye—1 + bher—1 +er , |¢1| < 1 (stationary process)

Then the variance of the ARMA(1,1) process is calculated by:

% = V(ye) = El(ye — E(%))’] = E(v?) =

= E(¢1yr-1 4 bher1+e1)? =

= E(p2y? [ +022 | +e2420101yt160—1+201Yr—16:+2016451-1)
= ¢370 + 0202 + 02 + 2010102

= 70(1 — ¢1) = o*(1 + 0f + 201¢1)

(1+9 +291 (151)(7

:>70 1— ¢2
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Autoregressive Moving Average: ARMA(1,1) - 11 - p1

Let y; follow an ARMA(1,1) model with mean zero:

Ve = ¢1ye—1+ bher—1 +er , |¢p1| < 1 (stationary process)

The autocovariance and the autocorrelation at lag 1 are given by:
71 = Cov(ye, ye-1) = El(yr — E(ye))(ye-1 — E(ye-1))] =

= E(ytyr-1) = E[(d1yt—1 + bher—1 + e)yr—1] =

= E(p1y? { + 016c-1Ye—1 + Erye-1) =

1+624-20
= ¢170 + 610% = ¢1 %4—0102 =

(¢1+91)(1+¢>191) o2

=M= 1-32
_m (¢1+91)(1+¢191)
PL =% = T 1t6i+200n
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Autoregressive Moving Average: ARMA(L,1) - 72 - p2

Let y; follow an ARMA(1,1) model with mean zero:

Ve = ¢1ye—1 + b1er—1 + e , |¢1| < 1 (stationary process)

The autocovariance 7, of the ARMA(1,1) process is calculated by:
Y2 = Cov(yr, yr—2) = E[(ye — E(yt))(ye—2 — E(ye—2))] =

= E(ytyr—2) = E[(d1ye—1 + bher—1 + €t)yr—2] =

= E(p1ye—1yt—2 + O1et—1Yt—2 + Etyr—2) =

=72 =M
Then the autocorrelation at lag 1 is calculated by:
po = ://2 ¢1’Yl = ¢1p1
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Autoregressive Moving Average: ARMA(1,1) - v« - p«

Let y; follow an ARMA(1,1) model with mean zero:
Ve = ¢1yr—1 + O160-1 + &, |¢1| < 1 (stationary process)

The autocovariance, 7, and the autocorrelation, pyx, k > 2 of the
ARMA(1,1) process are given by:

Tk = P1Vk-1

Pk = DP1Pk—1
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Backward Operators

The backward operators are defined as follows:
BEt = &t-1, 8251_- =E&t-2,y... BkEt = &t—k
The AR(p) process can be written:

Ve = Q1¥t-1+P2yr2+ ...+ dpyrp tEr =

= Y — O1Yt-1— Q2Yt-—2 — - — PpYt—p = Et =

= (1—¢1B—¢2B%— ... — ¢pBP)yr = &1 =

= O(B)y: =&+

The polynomial ®(z) =1 — ¢1z — 22> — ... — ¢pzP is called the

characteristic polynomial of the AR(p) model.
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Backward Operators

The MA(q) process can be written:
Ye =b1ee1 + b+ ... +0get—g +cr =
=y = (1—|—018—|—9282++9q8q)€t =

= Yt = e(B)Et
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Backward Operators

The ARMA(p) process can be written:

Ve =O1Yt—1+ ...+ Gpyr—p+biet—1+ ... +0qet—g+er =
=Vt — 01Vt 1— . — OpYrp=ther1+... + 046t g+t =
=1-¢p1B—...—¢pBP)yy =1+ 6B+ ... +04B%)e; =

= ®(B)y: = ©(B)e:
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Stationarity

Example: AR(1) process: y: = ¢1yi—1 + et = (1 — ¢1B)yr = &+
That is, the characteristic polynomial of the AR(1) model is:
®(z) =1—¢12

¢(z):0:1—¢1z:O:>¢1z:1:>z:ﬁ

Stationary solution if : |z] > 1 = ‘ﬁ‘ >1= |41 <1

An AR(p) process is stationary if the roots of the characteristic
polynomial ®(z) =1 — ¢1z — 222 — ... — $,zP lie outside the
unit cirlce.

Therefore, an AR(p) process is stationary if we impose some
restrictions on the autoregressive coefficients.
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Backward operator

Note that manipulating operators like ®(z) is like manipulating
polynomials:

= 1+ oz+ 0227 + ¢35+

provided that |¢| < 1 and |z| < 1.
Remember:
=l x+x3+x3+ ..

—x

provided that |x| < 1.
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Invertibility

Generally speaking, y; is invertible if ®(B)y; = ¢; .

The Autoregressive processes, AR(p), are invertible without
imposing any restrictions on the model parameters.

The Moving average processes are invertible if we impose
restrictions on the model parameters.

Consider the MA(q) process:

ye=thet_1+ bt 2+ ... +0gctg+er =

=y =1+0B+60:B>+... +0,B%e =

=y, = O(B)er = O YB)y; = &

So y; is invertible if ©~1(B) converges. It converges if the roots of

the polynomial ©(B) = 1+ 01z + 6222 + ... + 0429 = 0 lie outside
the unit cirlce.
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Invertibility - Example MA(1) process

Consider the MA(1) process:

yie =bier1 +er =

=yt =(1+60:B)ey =

If 61| < 1, we can write:

e =1+0B)ly; &
Ser=(1-0B+0iB>-G3B3+.. )y &
<&t = Z?io(—el)i)’tfi

and y; is invertible.

Loukia Meligkotsidou, UoA Time Series



Part 2: Introduction

Part 2: Time series models and their properties
Stationary ARMA Models and Box-Jenkins methodology Part 2: Estimation of ARMA models

Part 2: Diagnostic checking of residuals

Part 2: Forecasting

Estimation of ARMA models

Estimation of ARMA(p,q) models can be done by using
» Least Squares method
» Minimize the sum of squared residuals of the model under
consideration
» The idea is based on the minimization of a function: no need
for distributional assumptions for the error process
» Maximum Likelihood method

» Maximize the likelihood (log-likelihood) function
» Use a distribution for the error process
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Least Squares Method: AR(p) model

Suppose that y; is a stationary process, and we want to estimate
an AR(p) model:

Ve =0+ d1ye—1+ Gaye 2+ ...+ OpYip t+Er

parameter vector: 6 = (J, ¢1,P2..., Pp)
Rewrite the model as follows:

€t =Yt —0— Q1ye—1 — P2Yr—2 — ... — ¢p)/t—p

and then minimize the sum of squared errors with respect to the
model parameters, i.e

. T 2
ming Y, €;
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Least Squares Method: ARMA(p,q) model

Suppose that y; is a stationary process with mean zero, and we
want to estimate an ARMA(p,q) model:

Ye=O1Ye-1+ ...+ Opyrpt+ 0161+ ...+ 0gct_q + et

parameter vector: 0 = (¢1,...,¢p,01,...,0q)
We can write the model as follows:

Vi — O1Ye—1— .. — GpYr—p = b1et—1+ ... +O0qet—g + €t =
=1 —-—¢1B—...=9pBP)y: =(14+601B+...+04B%)e: =
= O(B)y; = O(B)er = er = ©7HB)D(B)y:
and then minimize the sum of squared errors with respect to the
model parameters, i.e

ming ZtT:1 g2
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Least Squares Method: Useful comments

» For autoregressive models (AR) least squares estimation is
straightforward, since the derivatives of the function of the
sum of squared residuals with respect to the model
parameters are obtained easily, and the corresponding system
of equations to be solved is linear.

» For moving average (MA) and autoregressive moving average
(ARMA) models, non-linear least squares estimation
procedures/routines must be used, due to the MA part of the
model (the roots of the corresponding polynomial lie outside
the unit circle).
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Maximum Likelihood method

>

The approach is based on calculating the likelihood i.e. the
joint probability density fy, v, v;(y1,y2,...,yT:0), which
might be viewed as the probability density of having observed
this particular sample.

» The maximum likelihood estimate (MLE) of 6 is the value for
which this sample is most likely to have been observed.

» That is, it is the value of 6 that maximizes
i Yo, vr (Y1 Y2, .o, yT: 0)

» step 1: compute the likelihood (or log-likelihood)

» step 2: maximize the likelihood function
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Maximum Likelihood method - Compute the likelihood

The likelihood is the joint probability density f(y1,y2,...,y7;0)
which can be computed as follows:

L(ev)/) = f()’l,)/2’ cee ayT|9) =
= f()’T‘)’l, e ayt—179)f(yla e 7yt—1)9)

= f()/T‘)/h cee 7yt—179)f(.y7——1‘.y17 cee 7)/t—2;9)f()/1, CIEaE 7yt—279)

=f(yrlye, - Ye—1, O)F (yT—1ly1, - -, ye—2,0) ... F(y2ly1,0)f(y1]0)
= f(yl\ﬁ) Hthz f(}/t|}/t—1a 9)
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Maximum Likelihood method - Maximize the likelihood

We maximize the likelihood function L(6; y) with respect to

L(8; y) = F(l0) TT{_ f (velye-1,6)

or the logarithm of the likelihood function log[L(6; y)]

log[L(6; y)] = log[f (y1]6)] + >° [, log[f (velye—1,0)]
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Maximum Likelihood method: Conditional-Exact likelihood

In order to calculate the likelihood of ARMA models, one will have
to decide how to treat the initial values (known as initial
conditions) of the y’s and the ¢’s, i.e. the initial values of y and ¢
that appear in the likelihood function.

There are two approaches:

» Conditional likelihood: treat the initial values as given, i.e.
compute the likelihood conditional on the initial values
(simplifies the computation of the likelihood function).

» Exact likelihood: treat the initial values as unknown, i.e.
consider them to be random variables, which usually follow a
Normal distribution with mean and variance based on the
unconditional mean and variance of the y; process.

Loukia Meligkotsidou, UoA Time Series



2: Introduction
2: Time series models and their properties
Stationary ARMA Models and Box-Jenkins methodology : Estimation of ARMA models
: Diagnostic checking of residuals
: Forecasting

AR(1) model: Exact likelihood

Suppose we have observed a sample y1, v, ...,y of size T, and
we want to estimate an AR(1) model:

Vi =0+ d1ye—1 + er,er ~ N(0,02).

Parameter vector: 6 = (9, ¢1,7?).

» Consider the probability distribution of y1, f(y1|6).

It is a random variable with mean l_i(m and variance I ¢2
2
e yp~ N(l o1 1U¢2)

Thus, the denS|ty of the first observation is given by:
§/(1—¢1))?
f(y1l0) = \ﬁ\/we xp [~ [ylgg/l ¢2;))] ]
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AR(1) model: Exact likelihood

» Next consider the distribution of y»|y1, f(y2|y1,6)

y2 =0+ d1y1 + €2,62 ~ N(0,02)

Thus, y2|y1 ~ N(6 + ¢1y1,0?)
Therefore, the density of the ys|y; is given by:

5+¢1}/1)] ]

F(yaly1, 0) = = exp [
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AR(1) model: Exact likelihood

> In general, the distribution of y:|y:—1, f(yvt|yt—1,6) can be
calculated as follows:

Ve =08+ ¢1ye-1 + e, 66 ~ N(0,02)

Thus, )/t’)/t—l ~ N(5 + ¢IYt—laU2)

Therefore, the density of the y;|y:—1 is given by:

—[y:— 2
Fyilye-1,0) = o exp [(Croreal
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AR(1) model: Exact likelihood

The likelihood of the complete sample can be calculated by:

L(@,y) = f()/h)/z, oo ;YT‘H) = f(Ylye) Ht—"—:2 f()/t’)/t—lae) =

exp [= yi—(6/(1— ¢1))]2]_
Fw/a2/ —o7) TP LT 20219

HtT 27 exp[ lye— 6+¢1yt )P ]
= 2

Loukia Meligkotsidou, UoA Time Series



Introduction

Time series models and their properties
Stationary ARMA Models and Box-Jenkins methodology Estimation of ARMA models

Diagnostic checking of residuals

Forecasting

AR(1) model: Exact likelihood

The log-likelihood of the complete sample can be calculated by:
log[L(0; y)] = log[f (y1|0)] + 0., log[f (ytlyt—1,0)] =

—(§/(1— 2
— ~Llog(2r) - blog(o?/(1 - ¢3)) — lazGlu=onr

—[(T = 1)/2log(27) — [(T — 1)/2]log(c?) — 31, e=t=byye-ll®

202
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AR(1) model: Conditional likelihood

If we consider that the initial value is known/given i.e. is the first
observation in the sample, then the conditional likelihood is:

L(O;y) = f(y2, .- yTlva,0) =
= f(}’T‘)/h s a}’t—179)f()’T—1‘YI7 s 7.)’1’—279) s f(Yz’)/h@)

= HZ—:2 f()/t|yt71a 9)

T —(yt—0—1yr—1)?
- Ht:2 \/2;02 eXp[ L 20(1251% 2 ]

= (2r0%) (T2 exp| -} S, Lty
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AR(1) model: Conditional likelihood

In the conditional likelihood approach, the conditional
log-likelihood for the AR(1) model is given by:

log[L(0; y)] = Y2/ log[f (velyt-1,0)] =
— —[(T—1)/2]log(27) — [(T —1)/2)log(0?) — ¥, L=zl

Note that, maximization of the conditional log-likelihood with
respect to d and ¢; is equivalent to minimization of

S (e =0 — ryeo1)?

which is achieved by an ordinary least squares (OLS) regression of
¥+ on a constant and its own lagged values.
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MA(1) model: Conditional likelihood

Suppose we have observed a sample yi,y»,...,y7 of size T, and
we want to estimate an MA(1) model:

vt = p+bier 1+ e, e ~ N(0,07)

Parameter vector: 0 = (u, 601, 0°).
To calculate the conditional likelihood for the MA(1) model, we
condition on the initial values of the &’s.

» Based on the MA(1) model, y; = p + 0160 + €1
Conditional on g9 =0, y3 = u+¢e1 0or e1 = y; — i and

(v1leo = 0) ~ N(p, %)
The conditional density of the first observation is given by:

fyleo = 0,0) = e exp [0
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MA(1) model: Conditional likelihood

» Based on the MA(1) model, y» = 1+ 011 + 2
2=y —p—ther=y2 — p—01(y1 — p)
Thus, the conditional distribution of y» given y;1,e0 = 0,0, is
given by:
()/2|}/1750 = Oa 0) ~ N(M + 91517 0-2)
The conditional density of the second observation is given by:

— — i — 2
f(y2|y1,60 =0,0) = 7 [ (y2—pu—b1e1) ]

1
T2 exp 2072
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MA(1) model: Conditional likelihood

In general, the distribution of y¢|y1,...,yt—1,€0 = 0,6,
f(velyi,. .-, yt—1,60 = 0,0) can be calculated as follows:

Ye=p+01et1+er ==y — p—biee—

Thus, (yely1, .-, Ye—1,60 = 0,0) ~ N(u + Hlst_1,02)

Therefore, the density of the yt|yi,...,yt—1,60 = 0,0 is given
by:

f(yt|y17"' 7yt71a€0 = 07 9) = \/211, exp[ U 915t 1] ]
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MA(1) model: Conditional likelihood

The conditional likelihood for the MA(1) model is given by:
L(6:y) = f(y1,y2,- -, ¥TlE0 = 0,0) =

= f(yl‘eo = 0’0) HZ-:Q f(yt|50 = Ovyla cee 7yt71’9) =

T (Vi p—Or e )2
- \/231'02 eXp[ (202 ] ’ Ht:2 \/2:;02 exp[ = M20-218t 1) ]

=TT s e [5]

= (270%) 2 exp[- L, 5h]
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MA(1) model: Conditional likelihood

The conditional log-likelihood for the MA(1) model is given by:

log[L(0; ¥)] = 3211 log[f (velyt—1,60 = 0,0)] =

T &
= —Jlog(2m) — Flog(o?) = X[y 5
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Maximum likelihood Method: Useful comments

» Two approaches: exact and conditional likelihood.

» AR(p) models - conditional likelihood: maximization is
straightforward, since the derivatives of the log-likelihood
function with respect to the model parameters are obtained
easily, and the corresponding system of equations to be solved
is linear (similar to least squares method).

» AR(p) models - exact likelihood: maximization requires
iterative or numerical procedures.

» MA(q), ARMA(p,q) models - conditional likelihood:
maximization requires iterative or numerical procedures (due
to the MA part of the model, i.e. the ¢’s are constructed
iteratively creating nonlinearities - the roots of the
corresponding polynomial lie outside the unit circle).
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Model fit

Different measures can be used to assess the model fit.

» Akaike's information criterion (AIC):

AlC,, = —2log(Lm) + 2npp, or
AlCy, = —2log(Lm)/ T + 2npm/ T
» Schwartz's information criterion or Bayesian information
criterion (BIC):
BIC,, = —2log(Lm) + npmlog(T) or
BIC, = —2log(Lm)/ T + npmlog(T)/T

where L, is the value of the likelihood for the fitted model m, np,

is the number of model parameters, T is sample size (number of
observations).

» Small values of AIC, BIC indicate better fit.
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Stationary ARMA Models and Box-Jenkins methodology

Diagnostic checking

After estimating an identified model, the residuals must be
(resemble) a white noise process, i.e. must be:

» Uncorrelated
» Homoskedastic

> Normally distributed

In ARMA(p,q) models, the residuals are estimated through the
following formula:

€= é_l(B)&)(B)Yt
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Test for Autocorrelation of Residuals

Different tests can be used to test for autocorrelation of residuals:
» Bartlett test

» Box-Pierce and Ljung-Box test

» Autocorrelation and partial autocorrelation plots
» Durbin-Watson test (autocorrelation test at lag 1)
» Breusch-Godfrey test

Loukia Meligkotsidou, UoA Time Series
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Test for Autocorrelation of Residuals

Estimate the autocorrelation of residuals at lag k:

PO Syl T,

A L

Bartlett's test (for a particular lag k):

Ho:pxk=0

Hy:pk #0

If the residuals are random (white noise), then the sampling

distribution of py is approximately normal, i.e. px ~ N(O, %) test
[ — =0

statistic: Z = T N(0,1)

Reject Hp, at level of significance «, if the observed value of the

test statistic Z < =2y o0 or £ > 2y 42
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Test for Autocorrelation of Residuals

Hy:pr=p2=...=pm =20, for a fixed m
Hi : pi # 0, for at least one i < m

Box-Pierce test statistic: Q = T L1 f ~ Xon_np

~2
Ljung-Box test statistic: LB = T(T +2) Y11 727 ~ x4 _,p
np: is the number of ARMA parameters, i.e. np = p+ q, that
have been estimated in the model under consideration

Reject Hp, at level of significance «, if the observed value of the
. . 2 2
test statistic @ > X7 np1-a (LB > Xm—np1-a)
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Test for Heteroskedasticity of Residuals

Different tests (directly or indirectly) can be used to test for
heteroscedasticity of residuals:

» Autocorrelation test of squared residuals

» Autocorrelation and partial autocorrelation plots of squared
residuals

» Goldfeld-Quandt test

» Breusch-Pagan test

» White test

» ARCH LM test of heteroscedasticity
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Normality Test for residuals

Different tests can be used to test for normality of residuals:
» Jarque-Bera test
» Kolmogorov-Smirnov test
» Shapiro-Wilk test
» QQ-plot
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Jarque-Bera Normality Test of Residuals

Hp : e; follow a Normal distribution
Hy : &; are not Normal
_2)2
Jarque-Bera test statistic: JB = T_6"p [S? + (K43) 1 ~x3
where S denotes the skewness, K denotes the kurtosis, T is the

sample size, and np is the number of parameters in the model
under consideration

Reject Hp, at level of significance «, if the observed value of the
test statistic JB > x3,_,
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Forecasting: the Loss Function

> Suppose we are interested in forecasting the value of y;11
based on a set of observations y;, yt—1,...,Yt—m+1 i.€. based
on the m most recent values of the series

> Let §; 1) denote the forecast of y;+1. The usefulness of this
forecast can be specified with respect to a certain loss function

» The most commonly used loss function is the quadratic loss
function. The best prediction y;;|; according to the quadratic
loss function is that which minimizes the Mean Squared Error:

MSE()A’t—s-l\t) = E(yt+1 — )7t—|r1|t)2
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Forecasting: Conditional Expectation

Theorem: The minimum Mean Squared Error predictor §; |, of
Yt+1 is given by the conditional expectation:

)A’t+1\t = E(yt+1|yt7yt—17 s 7}/t—m+1) = E(Yt+1|)7t)
Proof

Let V1) = 8(Ves Ye—1, - - -5 Ye—m+1) = &(Jt), where g is any
function of the most recent values of the series

Elyes1 — Perre)? = Elyers — g(70)1> =
= Elyes1 — E(yesal9e) + E(yeqalye) — 8(5e)
= E[yes1 — E(ves1|70)]? + E[E(yer1l5e) — g(70)]*+
+2E[[ye+1 — E(ver1[7e)I[E(veralye) — g(7e)]]+

= Elyes1 — E(ye1|7e)]? + E[E(yes1lye) — g(9e))

=
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Forecasting: Conditional Expectation

Denote 711 = [yer1 — E(ver1|7)|[E(ver1l9t) — g(Fe)]

Law of iterated expectations: E(nes1) = Ey,(E[nes1]7])
E[nev1lye] = Ellyess — E(veral VOIE (verale) — g(7e)ll7e] =
= [E(yes1lyt) — 8(5e)] - Ellyers — E(yeral9e)llye] =

= [E(yes1l92) —&(3)] - 0=0

Thus, E(nt+1) = Ep (E[net1l3]) =0

Loukia Meligkotsidou, UoA Time Series



Introduction
: Time series models and their properties
Stationary ARMA Models and Box-Jenkins methodology Part 2: Estimation of ARMA models
Part 2: Diagnostic checking of residuals
Part 2: Forecasting

Forecasting: Conditional Expectation

Therefore, E[y;+1 — )7t+1|t]2 = Elyt+1 — g(f/t)]2 =

= Elytr1 — E(yera|7e))? + E[E(yesalie) — g(70))?

The function g(¥;) that makes the Mean Squared Error as small as
possible is the function that makes the second term zero, i.e.

E(yer1lye) = g(5t)

That is, the forecast g(y:) that minimize the mean squared error is
the conditional expectation E(y¢+1|yt)

The Mean Squared Error of this optimal forecast is:
Elyer1 — Per1)el® = Elyer1 — 8(7e)* = Elyer1 — E(veral7e)]?
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Forecasting a MA(1) process

Consider the MA(1) model: y; = p+ 01641 + &¢

The one-step ahead forecast, y;,1);, is computed as follows:
Ver1e = E(e1[®e) = E[p + b18¢ + 41|Pe] =

= E(u[®¢) + E(b1e¢|Pr) + E(e41|Pe) =

=+ 016+

The Mean Squared Error of §, ), is:

MSE()A/t-i-l\t) = Elyr+1 — )A’t+1\t]2 =

= E[p+ 016 + 041 — pt — O16¢)?

= E(ct41)? = 02
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Forecasting a MA(1) process

The forecast error is given by:
Et41 = Ye+1 — Vey1)r = €r+1 [see previews slide]

The variance of the forecast error is given by:

V(t+1) = V(yer1 — }7t+1|t) = V(ets1) = a?

» the variance of the forecast error is equal to the mean squared
error of the forecast

> the standard error of the one-step ahead forecast in the
MA(1) model is given by the square root of its variance or by
the square root of the mean squared error of the forecast

» it is useful to evaluate the accuracy of the forecasts as well to
construct confidence intervals
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Forecasting a MA(1) process

Consider the MA(1) model: y; = p+ 01641 + &¢

The two-step ahead forecast, J;, 5, is computed as follows:
Vi)t = E(yer2|®t) = E[p + 018641 + €142|Pe] =

= E(u|®t) + E(01€41|Pt) + E(er42|Pr) =

= p

The Mean Squared Error of y; o; is:

MSE(§¢12)¢) = Elyera — Jeqopel® =

= E[u+ 16041 + ev2 — pi)?

= 0202+ 0% = (1 + 01)0?
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Forecasting a MA(1) process

The forecast error is given by:

Et12 = Yi42 — Veyo|r = 016041 + €ey2 [see previews slide]

The variance of the forecast error is given by:

V(Et+2) = V(Vet2 — ryoe) = V(bieet1 +eer2) = (1 + 61)0?
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Forecasting a MA(1) process

Consider the MA(1) model: y; = p+ 01641 + &¢
The s-step ahead forecast, J; 4, is computed as follows:

Vislt = E(Yers|®Pe) = E[u+ O16t1s-1 + €eys|Pe] = 1
The Mean Squared Error of §; g, is:

MSE (9r1s¢) = Elyers — Jevse)® = Elp+ O1ets 1 + e0ps — il
= 0202 + 0% = (1 + 61)0?

Notice that

E(eti1|®:) = E(ery2|Pt) = ... = E(et4s|P:) =0

E(e1|®:) =1, E(e2|®:) = e, ..., E(et|Ps) = &¢
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Forecasting a MA(1) process

The forecast error is given by:

Et1s = Yits — }7t+s|t = 0161451 + €45 [see previews slide]

The variance of the forecast error is given by:

V(étys) = V(yers — )A/t—i-s\t) = V(01t4s-1 +eeqs) = (1 + 91)0'2
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Forecasting an AR(1) process

Consider the AR(1) model: y; =0 + ¢1yt—1 + &

The one-step ahead forecast, y;,1);, is computed as follows:
Vera)e = E(ve+1|®t) = E[0 + Q1ye + 41| Pe] =

= E(6|®¢) + E(d1ye|Pe) + E(ge41|Pe) =

=0+ 1yt

The Mean Squared Error of y, ), is:

MSE()A/t-i-l\t) = Elyr+1 — )A’t+1\t]2 =

= E[6 + ¢rye + 41— 0 — drye]?

= E(ct41)? = 02

Loukia Meligkotsidou, UoA Time Series
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Forecasting an AR(1) process

The forecast error is given by:

Et41 = Ye+1 — Vey1)r = €r+1 [see previews slide]

The variance of the forecast error is given by:

V(t+1) = V(yet1 — }7t+1|t) = V(ert1) = a?
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Forecasting an AR(1) process

Consider the AR(1) model: y; =0 + ¢1yt—1 + &t

The two-step ahead forecast, J;,5¢, is computed as follows:
Veroie = E(et2|®t) = E[6 + d1ye+1 + €r4|Pe] =

= E(5|®¢) + E(dryes1|®Pr) + E(er41|Pr) =

=6+ ¢1(0 + ¢1yt) = 0 + 610 + iy

= 6(1 4 ¢1) + PRye

or Yeqolt = 0 + d19e 41t
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Forecasting an AR(1) process

Consider the AR(1) model: y; = + ¢1y:—1 + &

The Mean Squared Error of y, 5, is:

MSE(}/}t+2\t) = Elyt12 — }7t+2\t]2 =

= E[0 + ¢ryer1 +eep2 — (6 4 610 + ¢iye)]

= E[6 + ¢1(6 + Prye + €41) + €12 — § — 10 — d3y:]?
= E[0 + ¢16 + ¢tye + ¢16e41 + Ee42 — 0 — $10 — dFye)?
= E[pree11 + €e42]? = (1 + ¢7)0?
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Forecasting an AR(1) process

The forecast error is given by:

Et12 = Yi42 — Yeyo|r = P16¢41 + Erp2 [see previews slide]

The variance of the forecast error is given by:

V(Et+2) = V(Vet2 — Jriot) = V(d16e41 +ee42) = (1 + ¢3)o?
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Forecasting an AR(1) process

Consider the AR(1) model: y; =0 + ¢1yt—1 + &t

The s-step ahead forecast, J;;, is computed as follows:

Vst = E(Yees|®Pe) = E[6 + d1yt1s-1 + t15|Pe] =

= E(0]Pe) + E(P1yers—1|Pe) + E(ceas|Pe) = 0+ 1 E(yeqs—1|Pe) =
= 0+ P1(6+ P1E(Vers—2|Pt)) = 6+ 010+ PFE(yeqs—2|Pe) = ... =
=01+ 1+ +...+ T ) + iy

or Yepslt = 0 + P1Vr4s—1)t
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Forecasting an AR(1) process

Consider the AR(1) model: y; =0 + ¢1yt—1 + &t

The Mean Squared Error of y; g, is:

MSE (§r1s¢) = Elyers — Peaslel® = - = ?(1+ 67 +. .. +¢%(S_l))
The forecast error is given by:

Etts = Yi+s — Yrrs|t =

= Etps + P1Eras—1 T Pieers2+ ...+ ] e

The variance of the forecast error is given by:

V(Eers) = Vers = Jersie) = 2L+ G+ 161 Y)

Similar computations provide the forecasts and the Mean Squared
Error for any MA, AR, ARMA model
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Confidence Intervals of the Forecasts

Consider a time series model [AR, MA, ARMA]. Assuming Normal
errors, i.e. the process ; ~ N(0, c?), the forecast errors follow
approximately (asymptotically) a normal distribution:

Etts = Yits — )A’t+s\t ~ N[O, V(&tys)]

and a (1 — «)100% confidence interval for the forecast y;s is
computed by

Wetsle = L1/ V(Etts)s Jeps)e + Zi—a\/ V(Etss)

where « is the level of significance and Zl_% isthe 1 -5
percentile of the standard normal distribution
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Application to financial and economic series

» Time series modeling and forecasting financial return series

» Example 1: ARMA modeling and forecasting Johnson &
Johnson quarterly data
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