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Difference Equations

A Difference Equation is an expression relating a variable y; to its
previous values.

Linear First-order Difference Equation:
(only the first lag of y; appears in the equation)

Yt = QY1+ wi,

where w; is called the input variable and y; is called the output
variable.
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Difference Equations

A Difference Equation is an expression relating a variable y; to its
previous values.

Linear First-order Difference Equation:
(only the first lag of y; appears in the equation)

Yt = QY1+ wi,

where w; is called the input variable and y; is called the output
variable.

Linear Second-order Difference Equation:

Ve = Q1Ye—1 + Poyr—2 + wi.
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Solving a Difference Equation by Recursive Substitution

First-order Difference Equation:

Yt = Oyr—1 + Wy,

Loukia Meligkotsidou, University of Athens Time Series: Supplementary Material



Solving a Difference Equation by Recursive Substitution

First-order Difference Equation:

Yt = Oyr—1 + Wy,

Therefore,
y1 = ¢yo + wi,

Y2 = dy1 + wa = d(dyo + wi) + w2 = ¢?yp + pwr + wo
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Solving a Difference Equation by Recursive Substitution

First-order Difference Equation:

Yt = Oyr—1 + Wy,

Therefore,
y1 = ¢yo + wi,

Y2 = dy1 + wa = d(dyo + wi) + w2 = ¢?yp + pwr + wo

By recursive substitution

e = ¢t)/0 + ¢t_1W1 + Prowo + ..+ PWe1 + Wy
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The Effect of the Input Variable

Solving the difference equation by recursive substitution expresses
the output variable, y;, as a linear function of the initial value, yp,
and the historical values of w.
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The Effect of the Input Variable

Solving the difference equation by recursive substitution expresses
the output variable, y;, as a linear function of the initial value, yp,
and the historical values of w.

The effect of w; on y;,; is given by

3)/t+j o
aWt - ¢j7

thus it depends only on j, the length of time separating y;,; and
w;, and not on t.
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The Effect of the Input Variable

Solving the difference equation by recursive substitution expresses
the output variable, y;, as a linear function of the initial value, yp,
and the historical values of w.

The effect of w; on y;,; is given by

3)/t+j o
aWt - ¢j7

thus it depends only on j, the length of time separating y;,; and
w;, and not on t.

Different values of ¢ can produce a variety of dynamic responses of
y to w.
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The Effect of the Input Variable

» If 0 < ¢ < 1, the multiplier ¢/ decays geometrically towards
zero. In this case, the system is stable.

» If =1 < ¢ <0, ¢/ alternates signs, with | ¢/ | decaying
geometrically towards zero. The system is still stable.

» If ¢ > 1, ¢/ increases exponentially over time.

> If ¢ < —1, the system also exhibits explosive oscillation.
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The Effect of the Input Variable

» If 0 < ¢ < 1, the multiplier ¢/ decays geometrically towards
zero. In this case, the system is stable.

» If =1 < ¢ <0, ¢/ alternates signs, with | ¢/ | decaying
geometrically towards zero. The system is still stable.

» If ¢ > 1, ¢/ increases exponentially over time.

> If ¢ < —1, the system also exhibits explosive oscillation.

Note that, for | ¢ |< 1, the system is stable. For | ¢ |[> 1, the
system is explosive. An interesting possibility is the borderline case,

¢ =1:
Yirj =Ye tWe + Wi+ o0+ Weg o1+ Wiy

Hence, 8y;jf =1,forj=0,1,2,.
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First-order Difference Equations - The Backward Operator

Yt = Qyr—1 + we,

or, equivalently,
Yt = ¢By: + w,

(1—9¢B)yr = ws,
where "1" denotes the identity operator, i.e 1y; = y;, and

(1-¢B)~(1—-¢B)=1.
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First-order Difference Equations - The Backward Operator

Yt = Qyr—1 + we,

or, equivalently,
Yt = ¢By: + w,

(1—9¢B)yr = ws,
where "1" denotes the identity operator, i.e 1y; = y;, and
(1-¢B) " (1-¢B)=1
Therefore,

ve=(1—¢B) 'w,

In order for the output variable to be bounded, the right hand side
of this equation has to converge.
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Second-order Difference Equations

Ve = O1Yt—1 + PoYr—2 + Wy,

or, equivalently,

(1 —¢1B — ¢232)Yt = Wt,

(1-MB)(1—XaB)yr = we,
where A1 + A» = ¢1 and A\ = —¢.
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Second-order Difference Equations

Ve = O1Yt—1 + PoYr—2 + Wy,

or, equivalently,

(1 —¢1B — ¢232)Yt = Wt,

(1-MB)(1—XaB)yr = we,
where A1 + A» = ¢1 and A\ = —¢.

2 /2
Solving the system: \; = w and \p» = %.
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Second-order Difference Equations

Ve = O1Yt—1 + PoYr—2 + Wy,

or, equivalently,

(1 —¢1B — ¢232)Yt = Wt,

(1-MB)(1—XaB)yr = we,
where A1 + A» = ¢1 and A\ = —¢.

2 /2
Solving the system: \; = w and \p» = %.

Therefore,
ve=(1—=MB)" Y1 - \B) twy,

In order for the output variable to be bounded, the right hand side
of this equation has to converge.
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pth Order Difference Equations - AR(p) Models

» The previous calculations and observations generalise to pth
Order Difference Equations.
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pth Order Difference Equations - AR(p) Models

» The previous calculations and observations generalise to pth
Order Difference Equations.

» AR models are pth Order Stochastic Difference Equations.
These models are used to describe dynamic relationships
observed in discrete-time data.
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pth Order Difference Equations - AR(p) Models

» The previous calculations and observations generalise to pth
Order Difference Equations.

» AR models are pth Order Stochastic Difference Equations.
These models are used to describe dynamic relationships
observed in discrete-time data.

» Similarly, Stochastic Differential Equations are used to model
continuous-time data.
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Autoregressive Models

AR(1) Model: (1 — ¢1B)y: = ®(B)y: =
where ®(B) = (1 — ¢1B) and the (B ) is such that
®(B)P(B) ! =1.
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Autoregressive Models

AR(1) Model: (1 — ¢1B)y: = ®(B)y: =
where ®(B) = (1 — ¢1B) and the (B ) is such that
®(B)®(B) ! =1.
Then,

ye=(1- ¢1B)_1

The time series, y; is stationary if the righthand side of this
equation converges.
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Autoregressive Models

AR(1) Model: (1 — ¢1B)y; = ®(B)y: =
where ®(B) = (1 — ¢1B) and the (B ) is such that
®(B)®(B) ! =1.
Then,

ye=(1-¢1B)7"
The time series, y; is stationary if the righthand side of this
equation converges.

The polynomial ®(z) = (1 — ¢1z) is called the characteristic
polynomial of the AR(1) model. We have that

(1—(;512) —1+¢>1z+d>1z +.
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Autoregressive Models

AR(1) Model: (1 — ¢1B)y: = ®(B)y: =
where ®(B) = (1 — ¢1B) and the (B ) is such that
®(B)P(B) ! =1.

Then,
ye=(1—¢1B)™!

The time series, y; is stationary if the righthand side of this
equation converges.

The polynomial ®(z) = (1 — ¢1z) is called the characteristic
polynomial of the AR(1) model. We have that
(1—¢12) L =1+ b1z + ¢32° +.

The AR(1) model is stationary if the root of its characteristic

polynomial lies outside of the unit circle, that is if | % |> 1.
Solving for ¢ we get the stationarity condition | ¢1 |< 1.
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Autoregressive Models

AR(2) Model: (1 — ¢1B — ¢2B2)y; = (B)y: = e
where ®(B) = (1 — ¢1B — ¢2B2) = (1 — A1B)(1 — \2B), with
)\ ¢1+V ¢1+4¢2 and )\ ¢1_\/ ¢1+4¢2

= =5 -
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Autoregressive Models

AR(2) Model: (1 — ¢1B — ¢2B2)y; = (B)y: = e
where ®(B) = (1 — ¢1B — ¢2B2) = (1 — A1B)(1 — \2B), with
)\ ¢1+V ¢1+4¢2 and )\ ¢1_\/ ¢1+4¢2

= =5 -

Then,
ye =(1—=MB) 1 - \B) e

The time series, y; is stationary if the righthand side of this
equation converges.
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Autoregressive Models

AR(2) Model: (1 — ¢1B — ¢2B2)y; = (B)y: = e
where ®(B) = (1 — ¢1B — ¢2B2) = (1 — A1B)(1 — \2B), with
)\ (z)l"l‘\/ ¢1+4¢2 and )\ ¢1_\/ ¢1+4¢2

= =5 -

Then,
ye =(1—=MB) 1 - \B) e

The time series, y; is stationary if the righthand side of this
equation converges.

The polynomial ®(z) = (1 — ¢1z — phirz?) is called the
characteristic polynomial of the AR(2) model. The AR(2) model is
stationary if the roots of its characteristic polynomial lie outside of
the unit circle, that is if | < 5 |>1and |5 - = > 1

Find the stationarity conditions of the AR(2) model.
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