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Time series models of heteroscedasticity

> Introduction
» Characteristics of financial/economic data
» Time series models of heteroscedasticity and basic properties
» ARCH - Autoregressive conditional heteroscedastic models
» GARCH - Generalised Autoregressive conditional
heteroscedastic models
» EGARCH - Exponential Generalised Autoregressive conditional
heteroscedastic models
» Estimation of time-varying volatility models
» Forecasting time-varying volatility models
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Estimation of time-varying volatility models

Forecasting time-varying volatility models

Introduction

> Introduce time series models of time-varying variance

» Uncertainty i.e. volatility is very crucial (theoretical and
practical aspects)

» model building (due to the presence of heteroscedasticity and
non-normality of the data)

» empirical financial /economic applications (portfolio allocation
decisions, risk management, option pricing, asset pricing)
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Characteristics of financial data

v

volatility clustering (sub periods of high/low variability)

» non-normality, fat tails, excess kurtosis

v

leverage effect

» co-movement in volatility changes across assets
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Descriptive statistics of hedge fund returns

Assets Mean St.D. Kurt LBl LBY 1B% B
EM  058% 42% 767 206 185 135 150.74"
EH  083% 2.6% 480 152 34.4* 36.2° 2078
M 050% 21% 385 90 7.7 65 433
DS  0.65% 16% 1131 311 163 9.1  466.34"
FIA  017% 11% 1941 30.7° 439" 412° 1836.2*
MA  045% 10% 1471 133 99 28  958.1*
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Time series plots - volatility clustering
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Autocorrelation plots of absolute returns
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Autocorrelation plots of squared returns
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Normal probability plots
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Normal quantile plots
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QQ Plot of Sample Data versus Standard Normal
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Part 3: Introduction

Part 3: Characteristics of financial/economic data
Time series models of heteroscedasticity Part 3: Time series models of heteroscedasticity

Part 3: Estimation of time-varying volatility models

Part 3: Forecasting time-varying volatility models

Time series models of heteroscedasticity

> Unconditional and conditional mean and variance
» ARCH models: Autoregressive conditional heteroscedastic models

» GARCH models: Generalized Autoregressive conditional
heteroscedastic models

» EGARCH models: Exponential Generalized Autoregressive
conditional heteroscedastic models

» Model Properties and characteristics
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Unconditional and Conditional mean

Consider the AR(1) model: y; = § + ¢1y; 1 + &, where &, ~ i.i.d.(0,0?)
» Unconditional mean: constant across time

E(y:) = E(0 + ¢1yt—1 +€¢) = E(0) + E(drye—1) + E(etr)

S p=0+¢pn=p(l—¢1)=0=p= 120 =E(n)

» Conditional mean: time-varying
E(ye|®e) = E(0 + drye—1 + ¢ Pr) =
= E(0|®¢) + E(Prye—1]Pe) + E(ee|P)

= E(ye|®:) =0 + 1y
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Unconditional and Conditional Variance

Consider the AR(1) model: y; = § + ¢1y;—1 + &+, where &, ~ i.i.d.(0, 0?)
» Unconditional variance: constant across time

V(y:) = V(0 + ¢rye—1+ &) = V() + V(P1ye-1) + V(er)

Sv=¢iv+at=v(l-¢]) =0’ =v= -2 = Vi)

» Conditional variance: constant over time - to be modeled i.e. to be
time-varying

V(ye|®e) = V(6 + drye—1 + €¢| ) =
= V(5|P¢) + V(d1ye—1|Pt) + V(et|Pe)

= V(y:|®:) = 02
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Modeling conditional variance

At the conditional heteroscedasticity models presented below, we model
the conditional variance at time t, af

Study and model the conditional variance for different reasons:
» to understand the risk of a time series
» to achieve efficient estimates of a time series model

> to construct accurate confidence intervals for a forecast (i.e.
time-varying)

> to capture the stylized facts i.e. the characteristics of a time series
in empirical financial applications

Loukia Meligkotsidou, UoA Time Series



rt 3: Introduction
3: Characteristics of financial/economic data
Time series models of heteroscedasticity Part 3: Time series models of heteroscedasticity
Part 3: Estimation of time-varying volatility models
Part 3: Forecasting time-varying volatility models

Autoregressive Conditional Heteroscedasticity models
[ARCH(p)]

The ARCH(p) model (Engle, 1982) can be written in the form:

Mean equation: y; = 7o + Yix1,t + Y2Xo,¢ + ... + ViXi,t + €t

Conditional distribution: &;|®;_1 ~ N(0,02)

Variance equation: 02 = ag + aie?_; + ...+ apsf_p

2

where, a9 > 0,011,...,, > 0 in order to be well defined the variance o7

The conditional variance depends on lagged squared errors
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ARCH(1) model

The simple ARCH(1) model can be written:
Mean equation: y; = &;
Conditional distribution: &;|®;_1 ~ N(0,0?2)

Variance equation: 02 = ag + a162_1, ap > 0,04 > 0

> the conditional variance depends only on the lagged one squared
error, €2,

> the ARCH(1) model captures the volatility clustering phenomenon

> the ARCH(1) model does not capture the leverage effect
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ARCH(1) - AR(1) representation

The ARCH(1) model can be written as a non-Gaussian AR(1) model for
the squared errors:

2 _ 2 2 2y _ 2 _ 2 _ 2
e =o0; + (e —07) = ap + are;_; + vi, where vy = £ — 07

The conditional mean of v; is

E(ve|®:1) = E(ft—0t|¢t 1) = (€%|¢t71)—E(U?\¢t71) = UE—U? =0

» the ARCH(1) model has significant partial autocorrelation of
squared errors at lag 1

> the ARCH(p) model can be written as an AR(p) model for the
squared errors

> the ARCH(p) model has significant the first p partial
autocorrelations of the squared errors
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ARCH(1) - kurtosis

Engle (1982) proved that the unconditional moments of an ARCH(1)
process can be given by:

E(e?) = -2 and E(c}) = 305 1-of a; < land3a? <1

11— (1—aq)? 17304%’
Then, the kurtosis is given by:

k — E(e}) 30  1-a ol -3 1-a?

[EEE ~ T-a)?1-3a2/ T-a1)? ~ 21-3a?

> the kurtosis is always larger than 3, i.e. larger than the kurtosis of a
normal random variable

> the ARCH(1) model captures the fat tail characteristic of financial
data

> similar arguments hold for the ARCH(p) model, which also produces
kurtosis larger than 3
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Generalised Autoregressive Conditional Heteroscedasticity
models [GARCH(p,q)]

The GARCH(p,q) model (Bollerslev, 1986) can be written in the form:
Mean equation: y; = 7o + vix1,t + Y2Xo,¢ + ... + ViXi,t + €t
Conditional distribution: &;|®;_ 1 ~ N(0,02)

Variance equation:

2 _ 2 2 2 2
of =aptogi_ g+ Faper_,+ fioi_g + ...+ Beoi_g

where, a9 > 0,01,...,0, > 0,051,...,84 > 0 in order to be well defined
the variance o2

The conditional variance depends on lagged squared errors and on lagged
variances

Loukia Meligkotsidou, UoA Time Series



Part 3: Introduction

Part 3: Characteristics of financial/economic data
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GARCH(1,1) model

The simple GARCH(1,1) model can be written:

Mean equation: y; = &

Conditional distribution: &;|®;_1 ~ N(0,0?2)
Variance equation: 02 = ag + a162_; + B102_1, ag > 0,1, 31 > 0

> the conditional variance depends only on the lagged one squared
error, £2_; and on the lagged one variance, 02

> the GARCH(1,1) model captures the volatility clustering
phenomenon

» the GARCH(1,1) model does not capture the leverage effect
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GARCH(1,1) - ARMA(1,1) representation

The GARCH(1,1) model can be written as a non-Gaussian ARMA(1,1)
model for the squared errors:

e2=02+(e2—0%) = o+ a1e?_; + 102 | + v, where v, = &2 — o2
= Qo+ a16§_1 + ﬁl(ﬁf_l —Vi1) + v
=oao+ (v + 51)5%_1 — B1ve—1 + vy
The conditional mean of v; is
E(ve|®i1) = E(5t—0t|¢t 1) = (€%|¢t71)—E(U?\¢t71) = UE—U? =0
> the GARCH(1,1) model has significant autocorrelation and partial
autocorrelation of squared errors at lag 1
» the GARCH(p,q) model can be identified through the

autocorrelation and partial autocorrelation plot of squared residuals
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GARCH(1,1) - kurtosis

Bollerslev (1986) proved that the unconditional moments of a
GARCH(1,1) process are given by:

2y _ 4y _ 3ag(1+a1+p1)
E(et) = maimp and E(¢}) = qea=5)(1-307 2005 30)
Then, the kurtosis is given by:
_ _E(e) _ 6a7
k= [E(eD))?2 — 3+ 1—3(1%—2;1[31—[3%

> the kurtosis is always larger than 3, i.e. larger than the kurtosis of a
normal random variable

> the GARCH(1,1) model captures the fat tail characteristic of
financial data

> similar arguments hold for the GARCH(p,q) model, which also
produces kurtosis larger than 3
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Exponential Generalised Autoregressive Conditional
Heteroscedasticity models [EGARCH(p,q)]

The EGARCH(p,q) model (Nelson, 1991) can be written in the form:
Mean equation: y; = o + Yix1,t +Y2Xo,¢ + ... + ViXk,t + E¢, €t = Zt04
Conditional distribution: z;|®;_; ~ N(0,1) or z;|®;_1 ~ GED(0,1)

Variance equation:
In(0f) = a0+ 327 Biln(o?_;) + 3o [0ize—i + ci(|ze—i] — E|ze—i])]

The logarithm of the conditional variance depends on lagged standardized
errors, lagged absolute standardized errors and on lagged variances
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EGARCH(1,1) model

The simple EGARCH(1,1) model can be written:

Mean equation: y; = &;
Conditional distribution: &;|®;_1 ~ N(0,0?2)

Variance equation:
In(0?) = ag + Buln(o7_1) + 61ze 1 + aa(|ze—1| — E |z:-1])

> the logarithm of conditional variance depends only on the lagged
one standardized error, z,_; = =1 lagged one absolute

or—1'

standardized error, and on the lagged one variance, 0?_1

> the EGARCH(1,1) model captures the volatility clustering
phenomenon

> the EGARCH(1,1) model captures the leverage effect
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Maximum Likelihood Estimation: Regression-GARCH(1,1)

Consider a GARCH(1,1) model of the form:

Mean equation: Ye =" + 71X Fexe e oo+ Ve Xk,e T E
Conditional distribution: &;|®;_1 ~ N(0,0?)

Variance equation: 02 = ag + a162 | + B102 4, ap > 0,00 > 0,51 >0

Aim: Estimate the parameter vector 6 = (yo,71, - - -, Yk, @0, @1, 01)
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Maximum Likelihood Estimation: Computing densities

To compute the conditional likelihood for the regression-GARCH(1,1)
model, we condition on the initial values of errors and variances

Yi =" +7x,1+7vexe1+ .o+ YkXk1 e

= €1 =Y1— 7 —V1X1,1 — V2X2,1 — .- — VkXk,1
yil0 ~ N(vo + vix1,1 + V2x21 + - - - + VX1, 05)
0% = ap + 183 + P103

different alternatives for £3 and o3

The conditional density of the first observation is given by:
(61
f(y1l0) = \Fe xp [ 571
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Maximum Likelihood Estimation: Computing densities

At time t the density f(y:|®:—1,6) is computed as follows:
Y=t 71X, +yexe e + oo+ YkXke €
= Et =Yt — V0 — V1X1,t — VX2t — - — VkXk,t
Ve|®e_1,0 ~ N(yo + vixi,e + Vaxoe + - - + YeXk,e, 07)
2

_ 2 2
oy = o+ augi_q + Prog_q

The conditional density of f(y;|®;—_1,6) is given by:

Fyel®e1,0) = 2= e [4]
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Maximum Likelihood Estimation: likelihood

Therefore, the likelihood is computed by:

Conditional Likelihood = L(0|y, x) = f(y1, Y2, ..., y7|0) =

= fyr|®7-1,0) - Fyr-1|P7—2,0) - ... F(y2|®1,0) - F(11]0) =
= 1o F(yel®e-1.6) - F(11]6) =

= H;[ﬁ] exp (_% Zz—:l[% )

=(2m)" /2. Hthl[(Oéo +one?_ ) + Bro?_ )73

_1 T (== yXe——YXk,e)
exp (3 Sl T
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Maximum Likelihood Estimation: log-likelihood

The log-likelihood for the regression GARCH(1,1) model is given by:
log[L (0], x)] = log[f (y1]0)] + ., log[f (ve|Pe-1,0)] =

.
= —Llog(2m) — 33, log(ao + cue?_y + Bro?_y)

1 ZT [(Yt_’YO—’lel,t—<~-—’Yk><k,t)2]
2 t=1 agtaie?_+Bi1o?_
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Diagnostic checking

After estimating an identified model, the residuals must be (resemble) a
white noise process, i.e. must be:

» Uncorrelated
» Homoskedastic

» Normal distributed

Conduct diagnostic tests as in the case of regression-type and
ARMA-type models
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Forecasting ARCH(1) process

Suppose we are interested in forecasting the values of oﬂ,, i=1,...,s

2

Let 62, ., denote the forecasts of o7,

t+it

Consider an ARCH(1) model: 02 = ag + ;€2

6’t%+1\t = E(ao + alE%‘q)t) = E(a0|¢t) + E(algﬂ(bt) =ap+ 0415%

&?+2\t = E(ao +a1e7,1|®¢) = E(ao|®e) + E(ane 4|®) = ao +al&?+1\t

5'f+$|t = E(ap + 0415%+s—1|¢t) = E(ao|®;) + E(O‘15%+s—1|¢t) =
=g + 162

t+s—1|t
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Forecasting GARCH(1,1) process

Consider a GARCH(1,1) model: 02 = ag + a1€2_; + B1o2_;

t+l\t O[o—|—0[1€t—|-,810'?|¢ )

E(

= E(ao|®:) + E(are|®s) + E(B107|®:) = ag + cue; + pro?

675 = E(ao + arefyy + frog,4|®:) =
)

E(ao|®:) + E(caef 1|Pe) + E(Brof ) =

=ap + Oé1<ATf+1|t + 516f+1‘t =ap+ (a1 + 51)5f+1|t
At?+s|t - E(Ozo + alg%Jrsfl + 510-$+571‘¢t) =
= E(ao|®:) + E(anef s 1|®t) + E(Bro7 s 1|®:) =

_ A2 A2 _ A2
=0+ a0 g T 610t+s—1\t = ap + (a1 + 61)0t+s—1|t
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Application to financial and economic series

» Example 1: GARCH modeling of the Intel stock returns
» Example 2: GARCH modeling of the S&P500 index

» Example 3: Regression - ARMA - GARCH modeling of hedge fund
returns

» Discussion on financial empirical applications i.e. performance
evaluation, predictability, value at risk
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