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Foreword

Halley’s Comet has been prominently displayed in many newspapers during
the last few months. For the first time in 76 years it appeared this winter,
clearly visible against the nocturnal sky. This is an appropriate occasion to
point out the fact that Sir Edmund Halley also constructed the world’s first life
table in 1693, thus creating the scientific foundation of life insurance. Halley’s
life table and its successors were viewed as deterministic laws, i.e. the number
of deaths in any given group and year was considered to be a well defined
number that could be calculated by means of a life table. However, in reality
this number is random. Thus any mathematical treatment of life insurance
will have to rely more and more on probability theory.

By sponsoring this monograph the Swiss Association of Actuaries wishes
to support the “modern” probabilistic view of life contingencies. We are fortu-
nate that Professor Gerber, an internationally renowned expert, has assumed
the task of writing the monograph. We thank the Springer-Verlag and hope
that this monograph will be the first in a successful series of actuarial texts.

Ziirich, March 1986 Hans Biihlmann
President
Swiss Association of Actuaries



Preface

Two major developments have influenced the environment of actuarial math-
ematics. One is the arrival of powerful and affordable computers; the once
important problem of numerical calculation has become almost trivial in many
instances. The other is the fact that today’s generation is quite familiar with
probability theory in an intuitive sense; the basic concepts of probability the-
ory are taught at many high schools. These two factors should be taken into
account in the teaching and learning of actuarial mathematics. A first conse-
quence is, for example, that a recursive algorithm (for a solution) is as useful
as a solution expressed in terms of commutation functions. In many cases the
calculations are easy; thus the question “why” a calculation is done is much
more important than the question “how” it is done. The second consequence
is that the somewhat embarrassing deterministic model can be abandoned;
nowadays nothing speaks against the use of the stochastic model, which bet-
ter reflects the mechanisms of insurance. Thus the discussion does not have
to be limited to expected values; it can be extended to the deviations from
the expected values, thereby quantifying the risk in the proper sense.

The book has been written in this spirit. It is addressed to the young
reader (where “young” should be understood in the sense of operational time)
who likes applied mathematics and is looking for an introduction into the
basic concepts of life insurance mathematics.

In the first chapter an overview of the theory of compound interest is given.
In Chapters 2—6 various forms of insurance and their mechanisms are discussed
in the basic model. Here the key element is the future lifetime of a life aged z,
which is denoted by T and which is (of course!) a random variable. In Chap-
ter 7 the model is extended to multiple decrements, where different causes for
departure (for example death and disability) are introduced. In Chapter 8 in-
surance policies are considered where the benefits are contingent on more than
one life (for example widows’ and orphans’ pensions). In all these chapters the
discussion focuses on a single policy, which is possible in the stochastic model,
as opposed to the deterministic model, where each policy is considered as a
member of a large group of identical policies. In Chapter 9 the risk arising
from a group of policies (a portfolio) is examined. It is shown how the distribu-
tion of the aggregate claims can be calculated recursively. Information about



X Preface

this distribution is indispensable when reinsurance is purchased. The topic of
Chapter 10 is of great practical importance; for simplicity of presentation the
expense loading is considered only in this chapter. Chapter 11 examines some
statistical problems, for instance, how to estimate the distribution of T" from
observations. The book has been written without much compromise; however,
the appendix should be a sign of the conciliatory nature of the author. For
the very same reason the basic probability space (2, F, P) shall be mentioned
at least once: now!

The publication of this book was made possible by the support of the Fund
for the Encouragement of Actuarial Mathematics of the Swiss Association of
Actuaries; my sincere thanks go to the members of its committee, not in
the least for the freedom granted to me. I would like to thank in particular
Professor Biihlmann and Professor Leepin for their valuable comments and
suggestions. Of course I am responsible for any remaining flaws.

For some years now a team of authors has been working on a compre-
hensive text, which was commissioned by the Society of Actuaries and will
be published in 1987 in its definitive form. The cooperation with the coau-
thors Professors Bowers, Hickman, Jones and Nesbitt has been an enormously
valuable experience for me.

Finally I would like to thank my assistant, Markus Lienhard, for the careful
perusal of the galley proofs and Springer-Verlag for their excellent cooperation.

Lausanne, March 1986 Hans U. Gerber

Acknowledgement

I am indebted to my colleague, Dr. Walther Neuhaus (University of Oslo),
who translated the text into English and carried out the project in a very
competent and efficient way. We are also very grateful to Professor Hendrik
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Chapter 1. The Mathematics of
Compound Interest

1.1 Mathematical Bases of Life Contingencies

To life insurance mathematics primarily two areas of mathematics are funda-
mental: the theory of compound interest and probability theory. This chapter
gives an introduction to the first topic. The probabilistic model will be intro-
duced in the next chapter; however, it is assumed that the reader is familiar
with the basic principles of probability theory.

1.2 Effective Interest Rates

An interest rate is always stated in conjunction with a basic time unit; for
example, one might speak of an annual rate of 6%. In addition, the conversion
period has to be stated; this is the time interval at the end of which interest is
credited or ”compounded”. An interest rate is called effective if the conversion
period and the basic time unit are identical; in that case interest is credited
at the end of the basic time unit.

Let ¢ be an effective annual interest rate; for simplicity we assume that i
is the same for all years. We consider an account (or fund) where the initial
capital Fy is invested, and where at the end of year k£ an additional amount of
Ty is invested, for k = 1,---,n. What is the balance at the end of n years? Let
F} be the balance at the end of year k, including the payment of r. Interest
credited on the previous year’s balance is iF}_;. Thus

Fo=F 1 +iFr1+m, k=1,---,n. (1.2.1)

We may write this recursive formula as
Fro— 14+ )Fe =1y, (1.2.2)
if we multiply this equation by (1+:)"~* and sum over all values of k, all but

two terms on the left hand side vanish, and we obtain

Fo=Q0+0)"Fo+ Y (149" r. (1.2.3)
k=1
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The powers of (1+ 1) are called accumulation factors. The accumulated value
of an initial capital C after h years is (1 + )"C. Equation (1.2.3) illustrates
an obvious result: the capital at the end of the interval is the accumulated
value of the initial capital plus the sum of the accumulated values of the
intermediate deposits.

The discount factor is defined as

1
= 1.24
B (1.24)
Equation (1.2.3) can now be written as
V", =Fo+ Y vty (1.2.5)
k=1
Hence the present value of a capital C, due at time h, is v*C.
If we write equation (1.2.1) as
Fp,—Fo 1 =1tF_1+ 1% (126)
and sum over k& we obtain
Fn—F(): ZiFk—l—’_Zrk' (127)

k=1 k=1

Thus the increment of the fund is the sum of the total interest credited and
the total deposits made.

1.3 Nominal Interest Rates

When the conversion period does not coincide with the basic time unit, the
interest rate is called nominal. An annual interest rate of 6% with a conversion
period of 3 months means that interest of 6%/4 = 1.5% is credited at the end of
each quarter. Thus an initial capital of 1 increases to (1.015)* = 1.06136 at the
end of one year. Therefore, an annual nominal interest rate of 6%, convertible
quarterly, is equivalent to an annual effective interest rate of 6.136%.

Now, let i be a given annual effective interest rate. We define i(™ as the
nominal interest rate, convertible m times per year, which is equivalent to i.
Equality of the accumulation factors for one year leads to the equation

(m)
1 .
(1+—)"=1+i, (1.3.1)

which implies that
i™ = m[(1 +4)VY™ —1]. (1.3.2)
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The limiting case m — oo corresponds to continuous compounding. Let

6= lim i™; (1.3.3)

m—00
this is called the force of interest equivalent to 7. Writing (1.3.2) as

(14 )Y™ — (144)°
1/m ’

im =

(1.3.4)

we see that § is the derivative of the function (1+:)* at the point z = 0. Thus
we find that
6=1In(1+14) (1.3.5)

or
e =1+1. (1.3.6)

We can verify this result by letting m — oo in (1.3.1) and using the definition
(1.3.3).

Thus the accumulation factor for a period of h years is (1 + )" = e%*; the
discount factor for the same period of time is v* = e~%*. Here the length of
the period h may be any real number.

Intuitively it is obvious that i™ is a decreasing function of m. We can give
a formal proof of this by interpreting i(™ as the slope of a secant, see (1.3.4),
and using the convexity of the function (1 + 7)*. The following numerical
illustration is for 1 = 6%.

i(m

0.06000
0.05913
0.05884
0.05870
0.05855
0.05841
0.05827

3

85@»&00[\3»—‘

1.4 Continuous Payments

We consider a fund as in Section 1.2, but now we assume that payments
are made continuously with an annual instantaneous rate of payment of r(t).
Thus the amount deposited to the fund during the infinitesimal time interval
from ¢ to t + dt is r(t) dt. Let F(t) denote the balance of the fund at time
t. We assume that interest is credited continuously, according to a, possibly
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time-dependent, force of interest 6(t). Interest credited in the infinitesimal
time interval from ¢ to t + dt is F'(t)é6(t) dt. The total increase in the capital
during this interval is thus

dF(t) = F(t)8(t) dt + r(t) dt . (1.4.1)

To solve the corresponding differential equation

F'(t) = F(t)6(t) +r(t), (1.4.2)
we write p
a[e_ Jo 5 “Rt)) =€ Jo 5 Br(t). (1.4.3)
Integration with respect to ¢ from 0 to h gives
h h t
e~ Jo b p(p) _ F(0) = / BXCLAnYS (1.4.4)
0

Thus the value at time 0 of a payment to be made at time ¢ (i.e. its present
value) is obtained by multiplication with the factor

RSOl (1.4.5)

From (1.4.4) we further obtain
[ 6(s)ds h [ 8(s)ds
F(h) = elo 5©8 p(0) & / el 8@ sy (4 gt (1.4.6)
0

Thus the value at time h of a payment made at time ¢ < h (its accumulated
value) is obtained by multiplication with the factor

el 8s)ds. (1.4.7)

In the case of a constant force of interest, i.e. §(t) = 6, the factors (1.4.5) and
(1.4.7) are reduced to the discount factors and accumulation factors introduced
in Section 1.2.

1.5 Interest in Advance

Until now it was assumed that interest was to be credited at the end of each
conversion period (or in arrears). But sometimes it is useful to assume that
interest is credited at the beginning of each conversion period. Interest cred-
ited in this way is also referred to as discount, and the corresponding rate is
called discount rate or rate of interest-in-advance.

Let d be an annual effective discount rate. A person investing an amount of
C will be credited interest equal to dC immediately, and the invested capital
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C will be returned at the end of the period. Investing the interest dC at the
same conditions, the investor will receive additional interest of d(dC) = d*C,
and the additional invested amount will be returned at the end of the year;
reinvesting the interest yields additional interest of d(d*C) = d3C, and so on.
Repeating this process ad infinitum, we find that the investor will receive the

total sum of 1

c+dc+d20+d3c+---=l——dc (1.5.1)
at the end of the year in return for investing the initial capital C. The equiv-
alent effective interest rate ¢ is given by the equation

1

which leads to .
i
NS
This result has an obvious interpretation: if a capital of 1 unit is invested, d
(the interest payable at the beginning of the year) is the discounted value of
the interest i to be paid at the end of the year. Furthermore, (1.5.2) implies
that

(1.5.3)

d
Thus the interest payable at the end of the year is the accumulated value of
the interest payable at the beginning of the year.
Let d™ be the equivalent nominal rate of interest-in-advance credited m
times per year. The investor thus obtains interest of %C at the beginning

of a conversion period, and his capital C is returned at the end of it. Equality
of the accumulation factors for this mth part of a year is expressed by

i(m
- 14 =14V, 1.5.
1= d™ Jm + - (1419) (1.5.5)
This leads to
d™ =m[l — (1 +4)7V™]. (1.5.6)
In analogy with (1.5.3) one obtains
;(m)
dm = 1.5,
1+:m/m’ (15.7)
resulting in a very simple relation between (™ and d(™:
1 1 1
It follows that
lim d™ = lim ™ =6, (1.5.9)

m—00 m-—00
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which was to be expected: when interest is compounded continuously, the
difference between interest in advance and interest in arrears vanishes.
The following numerical illustration is for { = 6%.

dm)

0.05660
0.05743
0.05771
0.05785
0.05799
0.05813
0.05827

850’:»&&3[\?»—1 3

1.6 Perpetuities

In this section we introduce certain types of perpetual payment streams (per-
petuities) and calculate their present values. The resulting formulae are very
simple and will later be useful for calculating the present value of annuities
with a finite term.

First we consider perpetuities consisting of annual payments of 1 unit. If
the first payment occurs at time 0, the perpetuity is called a perpetuity-due,
and its present value is denoted by d;]. Thus

1 1
. 2
ig=1+v+v +~--:1_v:8. (1.6.1)
If the first payment is made at the end of year 1, we call the perpetuity an
immediate perpetuity. Its present value is denoted by az) and is given by

1
aa_—.v+vz+vs+-~=1iv=;~ (1.6.2)

Let us now consider perpetuities where payments of 1/m are made m times
each year. If the payments are made in advance (first payment of 1/m at time

0), the present value is denoted by d%) and is

1 1 1 1 1 1
.(m) __ o Ym 2 o2m o - -
gy = —+ ="+ — YT [ olm = g (1.6.3)

cf. (1.5.6). If the payments are made in arrears (first payment of 1/m at time

1/m), the present value is denoted by a%) and given by
. 1 1 1
ago) _ __vl/m + _,U2/m + _v3/m 4o

m m m
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1 ot 1

m1—ov¥/m  m[(144)Ym —1]
1

- (1.6.4)

(m)’

«

of. (1.3.2).

The results in (1.6.3) and (1.6.4) lead to an interpretation of the identity
(1.5.8): since a perpetuity-due and an immediate perpetuity differ only by a
payment of 1/m at time 0, their present values differ by 1/m.

Let us now consider a continuous perpetuity with constant rate of payment
r = 1 and starting at time 0. Its present value is denoted by (’1;] and given

by
[e’s) 1
_ 6t g, L
a5 —/0 e dt = 5 (1.6.5)

The same result can be obtained by letting m — oo in (1.6.3) or (1.6.4).

The systematic pattern in formulae (1.6.1)—(1.6.5) is evident.

A certain type of perpetuities with increasing payments is defined by two
parameters, m (the number of payments per year) and ¢ (the number of
increases per year); we assume that ¢ is a factor of m. If for instance, m = 12
and ¢ = 4, payments are made monthly and increase quarterly. In general,
the payments of such an increasing perpetuity-due are defined as follows:

Time Payment
0 1/m - 1/g—=1/m | 1/(mq)
1/q l/g+1/m -+ 2/qg—1/m | 2/(mq)
2/q 2/g+1/m --- 3/g—1/m | 3/(mq)
3/q 3/¢+1/m .-+ 4/g—1/m | 4/(mq)
and so on

In particular, the last m/q payments of year k are k/m each. We denote
the present value of such a perpetuity by (I (‘1)&)%). We can calculate it by
representing the sequence of increasing payments as a sum of perpetuities

with constant payments of 1/(mq) payable m times per year, and beginning
at times 0,1/¢,2/q,- - -. Thus we obtain the surprisingly simple formula

m ]- < (m
(I(q)d)im) - aagzl)[l+v1/q_,_v2/<1_,_._.]

.(m) (0)
= %) %]
11

5T (1.6.6)
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The corresponding immediate annuity differs only in that each payment is
made one mth year later, thus giving

(m) _v/m 1 1 1

(I(Q)a)gl) = pl/m (I(Q)d)
A superscript of 1 is always omitted. For instance, the present value of a
perpetuity-due with annual payments of 1,2,-- - is

(Ti)gy = (IVa)dy = ‘-112— : (1.6.8)

Equations (1.6.6) and (1.6.7) may also be used with m — oo to calculate
present values of continuous payment streams. One obtains for instance

(Ta)gy = [ te~*dt = 6—12 (1.6.9)

and - .
(la)z = /0 [t+1)e"dt = -, (1.6.10)

without actually calculating the integrals.

We conclude this section by considering a perpetuity with arbitrary an-
nual payments of ro, 7,72, - - - (at times 0,1,2,---). Its present value, denoted
simply by @, is

d=ro+ur +vira+ . (1.6.11)
Such a variable perpetuity may be represented as a sum of constant perpetu-
ities in the following way:

Annual payment Starts at time

To 0
T —T0 1
ro—7T 2
r3 —1To 3
and so on

The present value of this perpetuity may therefore be expressed as
.1
a= a{ro+v(r1 ~T0)+’U2(7‘2—T1)+"'} , (1.6.12)

which is useful if the differences of r; are simpler than the r; themselves. If,
in particular, r; is a polynomial in k, the present value ¢ may be calculated by
repeated differencing. For instance, using 7, = k + 1 one may verify (1.6.8).
We can use (1.6.11) to calculate the present value of exponentially growing
payments. Letting
re=¢e"*fork=0,1,2,---, (1.6.13)
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one obtains 1

i

provided that 7 < 6.

1.7 Annuities

In practice, annuities are more frequently encountered than perpetuities. An
annuity is defined as a sequence of payments of a limited duration, which we
denote by n. In what follows we consider some standard types of annuities,
or annuities-certain as they sometimes are called.

The present value of an annuity-due with n annual payments of 1 starting
at time 0, is denoted by éi;]. It is given by

d;]:1+v+v2+---+v"_1. (1.7.1)
Representing the annuity as the difference of two perpetuities (one starting at

time 0, the other at time n), we find that
1 1 1—9o"

This result can be verified by directly evaluating the geometric sum (1.7.1).
In a similar way one obtains from (1.6.2),(1.6.3) and (1.6.4) the formulas

1_ n
o = i”, (1.7.3)
(m 1—-2"
m 1-9"
afl—]) = (1.7.5)

Note that only the denominator varies, depending on the payment mode (im-
mediate/due) and frequency. Note that n must be an integer in (1.7.2) and
(1.7.3), and a multiple of 1/m in (1.7.4) and (1.7.5).

The final or accumulated value of annuities is also of interest. This is
defined as the accumulated value of the payment stream at time n, and the
usual symbol used is s. The final value is obtained by multiplying the initial
value with the accumulation factor (1 + 7)™

(1+i)"—1

T (”#l (1.7.7)
my _ (49" -1

m 144" —1
s = A+ -1 (1.7.9)

i(m)
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Another simple relation between the initial value and the final value of a
constant annuity may easily be verified:

1 1
— = — . (1.7.10)

% %)

Let us now consider an increasing annuity-due with parameters ¢ and m:

Time I Payment
0 1/m o 1/g—1/m | 1/(mq)
1/q 1/g+1/m -+ 2/g=1/m | 2/(mq)
2/q 2/qg+1/m o 3/qg=1/m | 3/(mq)
n-1/¢q n—-1/¢g+1/m - n—1/m n/m

Such an increasing annuity can be represented as an increasing perpetuity
starting at time 0, minus an identical increasing perpetuity starting at time
n, minus a constant annuity starting at time n. Thus we may write

( ](Q)d)(_']")

n

- (1@)&)%) — 0" (ID4) 5 o i (1.7.11)

Substituting (1.6.6) and (1.6.3) and using (1.7.4), we obtain the equation

dqu]) — no”

..\ (m)
(I(Q)a)m = e

(1.7.12)
Similarly the present value of the corresponding immediate annuity is calcu-

lated:
- (q) — ny®

a
(1@a)% = lum)— (1.7.13)
Note that in these equations n must be a multiple of 1/q.

Important special cases are the combinations of m =1 and ¢ =1, m = 12
and g=1, m=12and ¢ =12, m = o0 and ¢ = 1, and m = oo and q = oo.
Equations (1.7.12) and (1.7.13) facilitate the evaluation of the present and
final values for these combinations.

The annuities just considered are known as standard increasing annuities
(I). Standard decreasing annuities (D) are similar, but the payments are
made in the reversed order. The sum of a standard increasing annuity and
its corresponding standard decreasing annuity is of course a constant annuity.
This relation carries over to the present values, and we obtain

TOH™ L (D@g™ — ( + 1) ™ 1.7.14
( a)m ( a)m n p ) ( )
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Using (1.7.12) and (1.7.14) and the identity

1
--(q) (9) n
a= = aq +(1-2")-, 1.7.15
G-+ (1.7.15)
we obtain
n— a(q)
(D@Da)™ = dT)ﬂ. (1.7.16)

The direct derivation of this identity is also instructive: the standard decreas-
ing annuity-due may be interpreted as a constant perpetuity with mthly pay-
ments of n/m, minus a series of deferred perpetuities-due, each with constant
mthly payments of 1/(mgq), and starting at times 1/¢,2/q,-- -, n.

1.8 Repayment of a Debt

Let S be the value at time 0 of a debt that is to be repaid by payments
ri,+++,Th, made at the end of years k = 1,2,---,n. Then S must be the
present value of the payments:

S=vr + v+ 0", (1.8.1)

Let Sk be the principal outstanding, i.e. the remaining debt immediately after
T has been paid. It consists of the previous year’s debt, accumulated for one
year, minus 7:

Sk = (1+i)Sk_1 — Tk, k= 1,"~,TL. (182)

This equation may be written as
T = 1Sk_1 + (Sk-l - Sk) . (183)

From (1.8.3) it is evident that each payment consists of two components,
interest on the running debt and reduction of principal.

Substituting —Sj, for Fy, one sees that (1.8.2) is equivalent to (1.2.2). Thus
all results of Section 1.2 carry over with the appropriate substitution. From
(1.2.3) one obtains

k
Sk=(1+)*S =3 (1 +4) ", (1.8.4)
h=1

and one may verify that S, = 0, using (1.8.1). Similarly, (1.2.5) may be used
to show
S, = Ulgs1 + ’U2T'k+2 + -4 Un_k’l'n . (185)

Formula (1.8.4) is the retrospective formula, and (1.8.5) is the prospective
formula for the outstanding principal.
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The payments ry,---,r;, may be chosen arbitrarily, subject to the con-
straint (1.8.1). Some of the formulae in Section 1.7 may be derived by proper
choice of the payment stream.

For instance, a debt of S =1 can be repaid by the payments

rN=rg=---=7p_1=1, Th =1+1. (186)

In this case only interest is paid for first n — 1 years, and the entire debt,
together with the last year’s interest, is repaid at the end of the nth year.
From (1.8.1) one finds

1 =ia;l+v", (1.8.7)

which is another form of (1.7.3).
The debt of S =1 may also be repaid by constant payments of

1
TI=Tg= =7, =—. (1.8.8)
%
As an alternative to repaying the creditor at times 1,---,n — 1, one could pay

only the interest on S as in (1.8.6). In order to cover the final repayment one
could make equal deposits to a fund that is to accumulate to 1 at the end of
n years; from this it obvious that the annual deposit must be 1/ a1 Since
the total annual outgo must be the same in both cases, we arrive once again
at equation (1.7.10).

Suppose now that we repay a debt of S = n so that the principal out-
standing decreases linearly to 0, Sy =n — k for k =0,---,n. From (1.8.3) it
is evident that r, =i(n — k + 1) + 1. Using (1.8.1) one obtains the identity

n=i% (Da)n—l + o, (1.8.9)
giving
(Da)y = —— 71 (1.8.10)
"l i
This result is a special case (m = ¢ = 1) of (1.7.16).

The loan itself may consist of a series of payments. Assume that equal
payments of 1 are received by the debtor at times 0,1,---,n — 1. At the end
of each year interest on the received amounts is paid, and, in addition, the
total amount received is repaid at time n:

r. =1tk fork=1,---,n—1, r,=in+n. (1.8.11)
From the equality of the present values one obtains
Gy =1 (Ia);l + no™. (1.8.12)

Equation (1.7.13) is obtained for the special case of ¢ = m = 1.

Many other ways of repayment may be thought up. Present values of
annuities-due can be derived if one assumes that interest is paid in advance.
Another variant is the assumption that interest is debited m times a year, and
that the debt is repaid ¢ time a year in equal instalments (g a factor of m).
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1.9 Internal Rate of Return

An investor pays a price p, which entitles him to n future payments. The
payments are denoted by 7y,---,7, and payment 7, is due at time 74, for
k=1,---,n. What is the resulting rate of return?

The present value of the payment stream to be received by the investor is
a function of the force of interest §. Define

a(d) = Zn: exp(—07)Tk - (1.9.1)
k=1

Let ¢ be the solution of the equation
a(t) =p. (1.9.2)

The internal rate of return or investment yield is defined as ¢ = et — 1.
Equation (1.9.2) may be solved by standard numerical methods, such as
interval bisection or the Newton-Raphson method. We shall present a method
which is more efficient than the former and simpler than the latter of those
methods.
Consider the function

f(6) =1n(a(d)/r), (1.9.3)

(here 7 =11 + - - - + r,, denotes the undiscounted sum of the payments). It is
not difficult to verify that

f0)=0, f(&)=d(8)/a(8) <0,
f"(8) = a"(6)/a(6) — (a'(6)/a(6))? > 0. (1.9.4)

(The last inequality may be verified by interpreting f”(é) as a variance). In-
terpreting f(8)/6 as the slope of a secant and noting that f is a convex func-
tion by (1.9.4), we see that f(6)/6 is an increasing function of §. Hence, for
0 < s < t < u one has the inequality

f(s)/s < f(&)/t < f(u)/u, (1.9.5)
e 0, _ 1w

Thus we have proved that

In(p/r) In(p/r)
T lal(s)/r) a(s)/r)" <t< mlala awn " (1.9.7)

If one has a lower bound s and an upper bound u for the solution ¢ of (1.9.2),
these bounds may immediately be improved by (1.9.7).
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The process may be iterated, yielding the following algorithm: Start with
an arbitrary value &g, and calculate the values 61, 62, - - - by the recursive for-

mula
5ouy = 2 P/T)
In (a(bx)/7)

For 69 < t the resulting sequence will be monotone increasing and converge
to t. For & > t the sequence will decrease monotonically to ¢t. Thus any
arbitrary positive value may be chosen for d.

The method will be illustrated for a security (face amount Fr. 5000, yearly
coupons Fr. 300). Assume that the security has been bought for Fr. 5250, for
a remaining running time of 9 years. Thus we have

6k, k=0,1,---. (1.9.8)

p = 5250,

wn = k (k=1,---,9),
r, = 300 (k=1,---,8),
rg = 5300,

r = 7700.

Assuming we know that the current yield of similar securities lies between
5% and 5.5%, we can use (1.9.7) with s = In1.05 and « = In1.055 to obtain
improved bounds for the investment yield. We thus establish the bounds
0.051461 < t < 0.051572, and obtain for i = €' — 1:

5.2808% < i < 5.2925% (1.9.9)

The algorithm defined by formula (1.9.8) may be used to obtain greater pre-
cision. In order to demonstrate its efficiency, we have chosen an artificially
small initial value (6 = In1.01 i.e. iy = 1%) and an artificially large initial
value (§g = In1.1 i.e. 45 = 10%). The results have been compiled in the
following table. In both cases the solution is arrived at in 4 iterations.

Ok ik | g ik
0.009950 0.01 0.095310 0.1
0.050612 0.051914 | 0.052627 0.054037
0.051503 0.052853 | 0.051551 0.052902
0.051524 0.052875 | 0.051525 0.052876
0.051525 0.052875 | 0.051525 0.052875

Wy = O X

A sufficient condition for the existence of an internal rate of return as
defined by (1.9.2), is that all payments 7 are positive. If some of the payments
are negative (in practice this means that the investor has to supply additional
capital), equation (1.9.2) may have several roots. The internal rate of return
is not uniquely defined in such cases.



Chapter 2. The Future Lifetime
of a Life Aged ¢

2.1 The Model

Let us consider a person aged x years, also called a life aged = and denoted by
(x). We denote his or her future lifetime by T or, more explicitly, by T(z).
Thus z + T will be the age at death of the person.

The future lifetime T is a random variable with a probability distribution
function

G(t)=Pr(T <t), t>0. (2.1.1)

The function G(t) represents the probability that the person will die within t
years, for any fixed t. We assume that G, the probability distribution of T,
is known. We also assume that G is continuous and has a probability density
g(t) = G'(t). Thus one may write

gt)dt =Pr(t < T < t+dt), (2.1.2)

this being the probability that death will occur in the infinitesimal time in-
terval from ¢ to t + dt (or that (z)’s age at death will fall between z + ¢ and
T +t+dt).

Probabilities and expected values of interest may be expressed in terms of
the functions ¢ and G. Nevertheless, the international actuarial community
uses a time-honoured notation, to which we shall adhere. For example, the
probability that a life aged x will die within ¢ years, is denoted by the symbol
G- We have thus the relation

4, = G(t). (2.1.3)
Similarly,
D, =1-G(t) (2.1.4)
denotes the probability that a life aged = will survive at least ¢ years. Another
commonly used symbol is

sl = Pr(s<T <s+1)
G(s +1t) - G(s)
= syt = 9z (215)
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denoting the probability that the life aged x will survive s years and subse-
quently die within t years.

We denote by ,p,_, the conditional probability that the person will survive
another ¢ years, after having attained the age x + s. Thus

1-G(s+1t)
tPors = PT(T > s+ t|T > 5) = —1——G—(s)—_ (2.1.6)
Similarly, we define
G t) — G(s
th+5:Pr(T§s+t|T>s):M (2.1.7)

1-G(s)

the conditional probability of dying within ¢ years, given that the age of z + s
has been attained.
Identities in frequent use are

s+tpx =1- G(S + t) = [1 - G(s)]lz_G—(C‘j(z—)t) = Dy tpx+s! (218)
and
ole = G(s+1) = G(s) =1 - G(s)]w = Dyilzrs- (2.1.9)

These identities have an obvious interpretation.
The expected remaining lifetime of a life aged = is E(T), and denoted by
e, Its definition is

8 = /0oo tg(t)dt (2.1.10)

or, in terms of the distribution function,

?zzzfoxu—(;(t)]dt:/:o pdt. (2.1.11)

If t = 1, the index ¢ is usually omitted in the symbols ,q,, ,p;, ;4. Thus
q, is the probability of dying within 1 year, and g, is the probability of
surviving s years and subsequently dying within 1 year.

2.2 The Force of Mortality

The force of mortality of (z) at the age = + ¢ is defined by

Port = 1—_5%)(7) = —% In [l — G(2)]. (2.2.1)
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From (2.1.2) and (2.1.4) one may derive an alternative expression for the
probability of dying in the interval between ¢ and ¢ + dt:

Pr(t <T <t+dt)= ,plizsedt. (2.2.2)

The expected future lifetime of (z) can now be written as

?:z:/ t popiesedt . (2.2.3)
0

The approximation
s9z+t = UzttS (224)

is valid for small values of s, as one may verify by exchanging the roles of s
and ¢ in (2.1.9) and comparing the result with (2.2.2).
The force of mortality may also be defined by

d
Hatt = = In,p,. (2.2.5)
Integration of (2.2.5) yields
Py = e Jorerids (2.2.6)

2.3 Analytical Distributions of T

We call the function G an analytical or “mathematical” probability distribu-
tion if it may be expressed by a simple formula. There are different reasons
for postulating an analytical distribution for T'.

In the past efforts have been made to derive universally valid analytic
expressions for G(t) from certain basic postulates, in analogy with the laws
of physics. These efforts, seen from a 20th century point of view, now seem
rather naive and surrounded with a certain mystique.

An analytical formula has the advantage that G(t) can readily be calcu-
lated from a small number of numeric parameters. Statistical inference in
particular is facilitated when only a few parameters need to be estimated.
This may be an important consideration when the available data are scarce.

Analytical formulae also have some attractive theoretical properties. Their
popularity is akin to the popularity of the normal distribution in statistics: A
normal model is often used, partly motivated by the Central Limit Theorem,
but mainly for its mathematical tractability.

Some examples of analytical distributions follow, each bearing the name
of its “inventor”.

De Moivre (1724) postulated the existence of a maximum age w for human
beings and assumed that 7" was uniformly distributed between the ages of 0
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and w — z, leading to g(t) = - for 0 <t < w — z. The force of mortality
then becomes

1
}I,I_H:m, 0<t<w—x, (231)

which is an increasing function of ¢.
Gompertz (1824) postulated that the force of mortality would grow expo-
nentially,
fore = Bt £>0 (2.3.2)

which reflects the aging process better than De Moivre’s law and in addition
removes the assumption of a maximum age w.
The law (2.3.2) was generalized by Makeham (1860), who postulated the
law
Pore = A+ B t>0. (2.3.3)

Makeham’s mortality law adds a constant, age independent component A > 0
to the exponentially growing force of mortality of (2.3.2).

A special case of the mortality laws of Gompertz (by putting ¢ = 1) and
Makeham (by making B = 0) is that of a constant force of mortality. The
probability distribution of 7" then becomes the exponential distribution. While
mathematically very simple, this distribution does not reflect human mortality
in a realistic way.

From (2.3.3) and (2.2.6), and putting m = B/ In ¢, the survival probability
in Makeham’s model may be derived:

D, = exp (—At —mc*(ct — 1)). (2.3.4)
Weibull (1939) suggested that the force of mortality grows as a power of
t, instead of exponentially:

with the fixed parameters £ > 0 and n > 0. The survival probability then
becomes

Dy = €Xp (—n—f_—l [(:r + )"t — x"“]) : (2.3.6)

2.4 The Curtate Future Lifetime of (z)

We now return to the general model introduced in Sections 2.1 and 2.2 and
define the random variables K = K(z), S = S(x), S™ = S™)(z), all closely
related to the original random variable T

We define K = [T], the number of completed future years lived by (z), or
the curtate future lifetime of (x). The probability distribution of the integer-
valued random variable K is given by

Pr(K=k)=Pr(k<T <k+1)= Py Qs (2.4.1)
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for k =0,1,---. The expected value of K is called the expected curtate future
lifetime of (z) and is denoted by e,. Thus

ez =Y kPr(K=k) = kP, Gosn (2.4.2)
k=1 k=1
or o0 o0
ez=3 Pr(K>k)=) ,p,. (2.4.3)
k=1 k=1

Use of the expected curtate lifetime has the advantage that (2.4.1) and (2.4.2)
are easier to evaluate than (2.1.11) and (2.2.3). Another advantage is that
one only needs the distribution of K in order to find e;.
Let S be the fraction of a year during which (z) is alive in the year of
death, i.e.
T=K+S. (2.4.4)

The random variable S has a continuous distribution between 0 and 1. Ap-
proximating its expected value by 1 we find, from (2.4.4), the approximation

e, ~eg + (2.4.5)

.2— ’

which may be used in practice for the expected future lifetime of ().
Let us assume that A and S are independent random variables, so that

the conditional distribution of S, given K, is independent of K; thus

Pr(S < ulK = k) = »Jatk (2.4.6)
Qz+k

will not depend on the argument k, so that one can write

uqz+k = H(U) qz-Hg (247)

for k=0,1,--- and 0 < u < 1, and some function H(u).

If we assume that H(u) = u (uniform distribution between 0 and 1), then
the approximation (2.4.5) is exact. Moreover, using (2.4.4) and the assumed
independence, the variance of T becomes

1
Var(T) = Var(K) + TR (2.4.8)
For positive integers m we define the random variable
(m) _ 1
S = —[mS +1]. (2.4.9)
m

Thus S™) is derived from S by rounding to the next higher multiple of 1 /m.
The distribution of S™ has its mass in the points 2,2 ... 1. Note that
independence between K and S implies independence between K and S(™),
Furthermore, if S has a uniform distribution between 0 and 1, then S™ has
a discrete uniform distribution.
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2.5 Life Tables

In the previous sections of this chapter we considered a person of age . The
probability distribution of his future lifetime can be constructed by adopting
a suitable life table.

A life table is essentially a table of one-year death probabilities g,, which
completely defines the distribution of K. In the next section we will show how
to approximate the distribution of T' by interpolation in the life table.

Life tables are constructed from statistical data (see Chapter 11). The
construction of a life table involves estimation, graduation and extrapolation
techniques (the latter are used to account for changing mortality patterns over
time).

Life tables are constructed for certain population groups, differentiated by
factors such as sex, race, generation and insurance type. The initial age x
can have a significant influence in such tables. For instance, let z denote the
age when the person bought life insurance. Since insurance is only offered to
individuals of good health (sometimes only after a medical test), it is reason-
able to expect that a person who has just bought insurance, will be of better
health than a person who bought insurance several years ago, other factors
(particularly age) being equal. This phenomenon is taken into account by
select life tables. In a select life table, the probabilities of death are graded
according to the age at entry. Thus Gzt 18 the one-year probability of death
for (x 4+ t) with z as entry age. Selection leads to the inequalities

o) < Ye—1)41 < Qz—2j42 <" - (2.5.1)

The selection effect has usually worn off after some years, say r years after
entry. We assume that

Yo—r)tr = Qo—r—1)+r41 = Qo—r—24r42 = = Qg - (2.5.2)

The period r is called the select period, and the table used after the select
period has expired, is called an ultimate life table.

Consider a person who buys a life insurance policy at age z. With a select
period of 3 years, the following probabilities are needed in order to determine
the distribution of K:

q[z]’ q[z]+1 3 Q[z]-+-2 ) qz+3 3 qz+4 s qz+5 PE (253)

If a life table varies only with the attained age z. it is called an aggregate
life table. It has the advantage of being single-entry, while a select life table is
double-entry. The one-year probability of death at a given attained age in an
aggregate life table will typically be a weighted average of the corresponding
probabilities in the select life table and in the ultimate life table.

Though it is easy to use a select life table, cf. (2.5.3), we shall, for sim-
plicity, use the notation of the aggregate life table in the sequel.
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2.6 Probabilities of Death for Fractions of a Year

The distribution of K and its related quantities may be calculated from a life
table. For example,

kPe = Dz pz+1 pz—+—2 e pz#—kfl ’ k= 1" 2* 37 T (261)

cf. (2.1.8). To obtain the distribution of T by interpolation, assumptions are

made regarding the pattern of the probabilities of death, ,q,, or the force of

mortality, j,.,. at intermediate ages  + u (z an integer and 0 < u < 1).
We shall discuss three such assumptions.

Assumption a: Linearity of g,

If one assumes that ,g, is a linear function of u, interpolation between u =0
and u = 1 yields
wdy = UG, - (2.6.2)

We have seen in Section 2.4 that this is the case where K and S are indepen-
dent, and S is uniformly distributed between 0 and 1. Then

JLr=1—ugq, (2.6.3)
and (2.2.5) gives
q
sy = T 2.6.4
Hz+ 1-uq, ( )

Assumption b: y,,, constant

A popular assumption is that the force of mortality is constant over each unit
interval. Let us denote the constant value of p,., (0 < u < 1) by fhgyl
Using (2.2.5) one finds

/j’z+% =-—In Dy - (265)
It also follows that
Pe=e E = (py)" (2.6.6)
From (2.4.6) one derives
1—-p% .
Pr(S <ulK =k) = —Path (2.6.7)
1- Pz+k

The conditional distribution of S, given K = k, is thus a truncated exponential
distribution, and it depends on k. The random variables S and K are not
independent in this case.
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Assumption c: Linearity of ,_,q.,,

This hypothesis, well-known in North America as the Balducci assumption,
states

1—u24u = (1 - u) q; - (268)

This leads to
Pr 1-gq,

1-uPztu B 1- (1 - U) a, .
From this and (2.2.5) we obtain

WDy = (2.6.9)

4z

= 2.6.1

and finally
u

1—(1_u)qx+k.
This shows that the random variables S and K are not independent under
the Balducci hypothesis,

Under each of the three assumptions the force of mortality is discontinuous
at integer values. More embarrassing is the fact that under the Balducci
assumption the force of mortality decreases between consecutive integers, cf.
(2.6.10).

For gz+x — 0 both (2.6.7) and (2.6.11) converge to u. Thus, if the prob-
abilities of death are small, S is “approximately” uniformly distributed and
independent of K (even under assumptions b or c).

Pr(S <ulK =k) (2.6.11)



Chapter 3. Life Insurance

3.1 Introduction

Under a life insurance contract the benefit insured consists of a single payment,
the sum insured. The time and amount of this payment may be functions of
the random variable T that has been introduced in Chapter 2. Thus the time
and amount of the payment may be random variables themselves.

The present value of the payment is denoted by Z; it is calculated on the
basis of a fixed rate of interest ¢ (the technical rate of interest). The expected
present value of the payment, E(Z), is the net single premium of the contract.
This premium, however, does not in any way reflect the risk to be carried by
the insurer. In order to assess this one requires further characteristics of the
distribution of the random variable Z, for example its variance.

3.2 Elementary Insurance Types

3.2.1 Whole Life and Term Insurance

Let us consider a whole life insurance; this provides for payment of 1 unit at
the end of the year of death. In this case the amount of the payment is fixed,
while the time of payment (K + 1) is random. Its present value is

Z = vKH, (3.2.1)

The random variable Z ranges over the values v, v%,v3, - - -, and the distribution

of Z is determined by (3.2.1) and the distribution of K:

Pr(Z=v""")=Pr(K =k)= D, ¢,.s (3.2.2)
for k =0,1,2,---. The net single premium is denoted by A, and given by
Az = E[UK+1] = Z Uk+1 kPx qI+]C' (323)
k=0

The variance of Z may be calculated by the identity
Var(Z) = E(Z%) — A2. (3.2.4)
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Replacing v by e~® we see that
E(Z?%) = E[e”#K+1] | (3.2.5)

which is the net single premium calculated at twice the original force of in-
terest. Thus calculating the variance is no more difficult than calculating the
net single premium.

An insurance which provides for payment only if death occurs within n
years is known as a term insurance of duration n. For example 1 unit is payable
only if death occurs during the first n years, the actual time of payment still
being the end of the year of death. One has

B+ for K=0,1,---,n—1,
Z~{0 for K=nn+1,n+2,---. (3.2.6)
The net single premium is denoted by A;:n—]' It is
n—1
A;n—] = Z vk+1 kpz qz+k . (327)
k=0

Again the second moment E(Z?) equals the net single premium at twice the
original force of interest, as is seen from

(3.2.8)

72 _ e~ WK+ for K=0,1,---,n—1,
10 for K=nn+1n+2,--- .

3.2.2 Pure Endowments

A pure endowment of duration n provides for payment of the sum insured only
if the insured is alive at the end of n years:

0 for K=0,1,---,n—1,
Z—{’l)n fOI‘K:n7n+17n+27_._. (329)
The net single premium is denoted by Amll—| and is given by
Asiry = 0" uPe (3.2.10)

The formula for the variance of a Bernoulli random variable gives

Var(Z) = v™ ,p, .4, - (3.2.11)
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3.2.3 Endowments

Assume that the sum insured is payable at the end of the year of death, if this
occurs within the first n years, otherwise at the end of the nth year:

(3.2.12)

7 - vEFl for K=0,1,---,n—1,
] for K=nn+1ln+2---.

The net single premium is denoted by Az:ﬂ' Denoting the present value of
(3.2.6) by Z1, and that of (3.2.9) by Z», one may obviously write

Z=71+2,. (3.2.13)
As a consequence,
_ ol 1
A= Aemt Avan (3.2.14)
and
Var(Z) = Var(Z;) + 2Cov(Zy, Z,) + Var(Zs) . (3.2.15)

The product 7,7, is always zero, hence
Cov(Z1,25) = E(Z122) — E(Z))E(Z,) = — Aiﬂ Aml—ﬂ. (3.2.16)
The variance of Z is thus given by
Var(7) = Var(Z,) + Var(Z,) — 2 Ai;ﬂ Az:l]. (3.2.17)

As a consequence of the last identity, the risk in selling an endowment policy,
measured by the variance, is less than that in selling a term insurance to one
person and a pure endowment to another.

So far, for simplicity, we have assumed a sum insured of 1. If the sum
insured is C, then the net single premium is obtained by multiplying with C,
and the variance by multiplying with C2.

Let us finally consider an m year deferred whole life insurance. lts present
value is

(3.2.18)

7 0 for K =0,1,---,m—1,
Tl oEt for K=mom+1l,m+2,-- .

The net single premium is denoted by m,AI. Alternative formulae for its net
single premium are

A

mPet™ A (3.2.19)

m|“x r+m

and
A= A — A (3.2.20)

m|‘tx

The second moment E(Z?) again equals the net single premium at twice the
original force of interest.
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3.3 Insurances Payable at the Moment of Death

In the previous section it was assumed that the sum insured was payable at the
end of the year of death. This assumption does not reflect insurance practice
in a realistic way, but has the advantage that the formulae may be evaluated
directly from a life table.

Let us now assume that the sum insured becomes payable at the instant of
death, i.e. at time T'. The present value of a payment of 1 payable immediately
on death is

Z =7, (3.3.1)

The net single premium is denoted by A_. Using (2.2.2) we find that

A = /0 V' D iedt . (3.3.2)

A practical approximation may be derived under Assumption a of Section 2.6.
Writing
T=K+S=(K+1)-(1-29), (3.3.3)
and making use of the assumed independence of K and S, as well as the
uniform distribution of S, so that
1 )
\1-S7 \u e
E[(1+ 1) ]_/0 (1+3)du =57 = 1. (3.3.4)
we find )
1L:Ebmﬂmu+0“ﬂ:%Ar
Thus the calculation of A, is a simple extension of that of A_.
A similar formula may be derived for term insurances. For endowments
the factor ¢/6 is only used in the term insurance part:

(3.3.5)

A1 1
Az:ﬂ - Amﬂ_*_ Axm
bt 1
- 3 Ax:ﬂ + Axn—l
= At (% - 1) A, (3.3.6)

Let us finally assume that the sum insured is payable at the end of the mth
part of the year in which death occurs, i.e. time K 4+ S(™ in the notation of
Section 2.4. The present value of a whole life insurance of 1 unit then becomes

7 = v+ (3.3.7)

For calculation of the net single premium we again use the Assumption a of
Section 2.6. We write

K+S8™ = (K+1) - (1-8™) (3.3.8)
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in (3.3.7) and use the assumed independence of K and S™) as well as the
equation

N1=Stmy __ (m)
E[(1 +74) |= S = o - (3.3.9)
Then we obtain
A = BpF B[ +0) ) = S A, (3.3.10)
) m

Equation (3.3.5) may be verified by letting m — oo in (3.3.10).

3.4 General Types of Life Insurance

We commence by considering a life insurance with benefits varying from year
to year, and we assume that the sum insured is payable at the end of the year
of death. If ¢; denotes the sum insured during the jth year after policy issue,

we have
Z = cxvE L. (3.4.1)

The distribution of Z and, in particular, the net single premium and higher
moments are easy to calculate:

o0
E[Z" =3 v b, g - (3.4.2)
k=0

The insurance described may be represented as a combination of deferred
life insurances, each of which has a constant sum insured. Thus the net single
premium may be calculated in the following way:

E(Z)=c A, +(ca—c1) A, + (3 —co) g A+ . (3.4.3)

In the case that the insurance covers only a term of n years, i.e. when ¢,4; =
Cny2 = -+ = 0, the insurance may also be represented as a combination of
term insurances starting immediately:

E(Z) =c, Aglm—\ + (cpor — €p) Ai:m + (Crog — Cp1) Ai:m 4ol (3.4.4)

The alternative representations (3.4.3) and (3.4.4) are useful in calculating
the net single premium, but not the higher order moments of Z.

If an insurance is payable immediately on death, the sum insured may in
general be a function ¢(t), ¢t > 0, and we have

Z =c(T)T. (3.4.5)

The net single premium is

B(Z) = [ ot potteredt (3.4.6)
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The actual calculation of the net single premium may be reduced to a calcu-
lation in the discrete model, see (3.4.2) with A = 1. From

E(Z) = Y E[Z|K =k|Pr(K =k)
k=0
= Y Elc(k + S)0**S|K = k| Pr (K = k)
k=0
= Y Ele(k+S)1+9)"S|K = k"' Pr(K =k), (3.4.7)
k=0
we obtain
E(Z) = Z Ck+lvk+1 Pz Qetk > (348)
k=0
by defining
ki1 = Ble(k 4+ S)(1 4+ 4)75|K = k]. (3.4.9)

The conditional distribution of S, given K = k, is needed in order to evaluate
the expression (3.4.9). Two assumptions about mortality at fractional ages
are appropriate for making this evaluation.

Assumption a of Section 2.6 gives

1
Char = / clk + u)(1 + 1) du,, (3.4.10)
0
whereas Assumption b of the same section results in

U
= Hatk+l Ptk

du. 3.4.11
1- Prtk ( )

1
ckﬂ——-/o clk+u)y(1+1

As an illustration, consider the case of an exponentially increasing sum
insured, ¢(t) = e™. This reduces formula (3.4.10) to

é T
L e —e

— (3.4.12)

Cry1 =€
Note that 7 = 0 gives us (3.3.5) back. The alternative formula (3.4.11) results
in

e Hotksl el — Doyr€

. (3.4.13)
1- Py 6 + Hz%-kﬁ-% -7

Ck+1 = €

(If the denominator in (3.4.12) or (3.4.13) should vanish, the quotients become
¢®. This will happen if the integrand in (3.4.10) or (3.4.11), respectively, is

independent of u).



3.5. Standard Types of Variable Life Insurance 29
3.5 Standard Types of Variable Life Insurance

We begin by considering standard types where the sum insured is payable at
the end of the year of death. The net single premium may be readily calculated
and is useful also when the sum insured is payable immediately on death.

Let us consider a standard increasing whole life insurance, with ¢; = j.
The present value of the insurance is

Z = (K + 1)of*, (3.5.1)

The net single premium is denoted by (/A)_ and is given by

o0
Z k+ Do p, qups - (3.5.2)
For the corresponding n-year term insurance we have

K+1 = —
Z:{ (K +1)v for K=0,1,---,n—1 (3.5.3)

0 for K=nn+1n+2---

Its net single premium is denoted by (IA);_n—‘ and may be obtained by limiting
the summation in (3.5.2) to the first n terms. Inspired by (3.4.3) and (3.4.4)
we may write

and
(IA);;:—\*nA ]~ Azm Al—m— o Aiq—]' (3.5.5)

Note the difference between the symbols (IA) 7] and (TA), o] - the latter
being equal to the sum of the former and the net single premium for a pure
endowment of n.

The benefits of a standard decreasing term insurance decrease linearly from
n to 0, hence

(3.5.6)

7= (n— K)vE*! for K=0,1,--- ,n—1
10 for K=nn+1n+2, -

Standard decreasing insurance is commonly used to guarantee repayment of
a loan, provided that the debt outstanding also decreases linearly under the
amortisation plan of the loan. The identities

n—1

(DA = S0~ KM 4, 4, (3.57)
k=0
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and
(DAY= A+ A=)+ A+ A (3.5.8)

are obvious.

Let us now assume that the sum insured is payable immediately on death,
i.e. Z is of the form (3.4.5), with some function c(¢). For these insurances we
shall use Assumption a of Section 2.6 throughout this section.

If the sum insured is incremented annually, we have c(t) = [t + 1], hence

Z=(K+1)0". (3.5.9)
The net single premium is denoted by (IA)_. Calculating the expectation of
Z = (K + DXt (1 44)*5 (3.5.10)

and using the assumed independence of K and S as well as (3.3.4), we obtain
the practical formula

(14), = % (TA), . (3.5.11)

Let us now consider the situation where the sum payable is incremented ¢
times a year, by 1/q each time:

Z = (K + 89T, (3.5.12)

The corresponding net single premium is denoted by (I‘?A)_. Note that
(3.5.12) may be rewritten as

Z = (K + 17 — T 4+ W1 4)1SpH+1, (3.5.13)

In computing the net single premium we use independence and the relation

@ 1-5 @ Bl iaw
E[S'9(1+) "= (IY 5)1—] = = s (3.5.14)
Hence we obtain
- _ _ i—d@
(I94) = (IA), - A, + g A (3.5.15)
Substituting from (3.3.5) and (3.5.11), we find
. . s (q)
@A) =LAy ~ta 41290 4
(I'PA4), = 5 (I14), 3 A+ @5 A, (3.5.16)

This last expression may be evaluated directly.
In the case of a continuously increasing sum insured, ¢(t) = ¢, the present
value is

Z=Tuv", (3.5.17)
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and the net single premium

1 ] i—6
LA, — 5 A+ 4, (3.5.18)

(IA), =

is obtained by taking the limit ¢ — oo in (3.5.16).
The formulae (3.5.11), (3.5.16) and (3.5.18) may also be obtained by sub-
stituting the appropriate function c¢(¢) in (3.4.10). As an example, taking

c(t) =t leads to

1 - i i—=96
\1—u — I3 = _
Chrt :/0 (k+w)(1+0)'"du = ksg+ (I = ks + ==, (35.19)
which gives us (3.5.18).
Similar equations hold for the corresponding term insurances, for example

g bl 3.5.20
( )zm-g( )Iﬂ—g wn] T g Aenl (3.5.20)

Obtaining an elegant derivation of (3.5.20) from (3.5.16) is left to the reader.
Finally we consider an m-year continuous term insurance with an initial
sum insured of n, which is reduced ¢ times a year, by 1/¢ each time:

— K — S@)yT
Z:{(n+1/q K -S89 forT <n (3.5.21)

0 forT>n °

This insurance may obviously be represented as the difference between a term
insurance with constant sum of n + 1/q insured, and a term insurance with
increasing sum insured. The net single premium is given by

_ 1 _ _
(D@ A), 7 = (n + E) A= (I9A), . (3.5.22)

3.6 Recursive Formulae

Recursion formulae may be used to write algorithms, but they also have in-
teresting theoretical implications.

We start by considering a whole life insurance of 1 payable at the end of
the year of death. One obviously has the equation

A, =vqg,+vA, . p,. (3.6.1)

Thus the values of A, can be found recursively, starting with the highest pos-
sible age. The recursive equation may be proved algebraically by substitution
of

Pz = Pz k-lpz+l (362)
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in all but the first term of the summation (3.2.3). A probabilistic proof may
be built on the relation

Epf ™) = vPr(K = 0) + vE[¥|K > 1) Pr (K > 1). (3.6.3)

The interpretation of (3.6.1) is instructive. The net single premium at age
is the expected value of a random variable defined as discounted sum insured
in case of death, and discounted net single premium at age = + 1 in case of
survival.

Another interpretation is evident if we write (3.6.1) as

Az =v Az+l + U(]. - Az+l) qy - (364)

First the amount of A, ; is reserved in any case (death or survival). In case

of death an additional 1 — A_,, is needed to cover the payment. The net

single premium of a one-year term insurance of this amount is v(1— A, ;) ¢,.
Applying (3.6.4) at age z + k we obtain

Appr =V Appp = 01— Appy) Gogee, K=0,1,2---. (3.6.5)

Multiplying the above equation by v* and summing over all values of k we
obtain

AI = Z vkv(l - Az+k+1) Qrik s (366)
k=0

so that the net single premium at age z is evidently the sum of the net single
premiums of a series of one-year term insurances.
Equation (3.6.4) may also be rewritten as

dAx+1 = (Ax+1 - Az) + U(l - Ax+1) q;- (367)

Thus the interest earned has a dual effect: On the one hand it increases the
net single premium (from age z to age x + 1), and on the other it finances a
fictitious one-year term insurance.

The continuous counterpart to a recursion formula is a differential equa-

tion. Consider the function A, the expected value of vT. For h > 0 we
have

A, = EPT|IT <A Pr(T <h)+ERT|T>hPr(T>h)
ER|T < h] g, + 0" Ayyp wps - (3.6.8)
Hence
Apn— Ay = (1 =" 4p,) Apyp — ERTIT < by, - (3.6.9)

Division by h and letting h — 0 yields

d - _
— A, =0+ p) A, — pz 6.1
A= () A, - (36.10)
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This equation can be recast in a form similar to (3.6.7):

6/11:—(1—/11—!-;11(1~ A). (3.6.11)
dz
The differential equation has a similar interpretation as (3.6.7) for an infinites-
imal time interval, which is seen by multiplying (3.6.11) by dt.

Only the two simplest types of insurance have been formally discussed in
this section. The interpretations we have given for the recursion formulae
resp. differential equations above are, of course, also valid for the general case
and may therefore be used to derive the corresponding recursion formulae and
differential equations.



Chapter 4. Life Annuities

4.1 Introduction

A life annuity consists of a series of payments which are made while the
beneficiary (of initial age x) lives. Thus a life annuity may be represented as
an annuity-certain with a term dependent on the remaining lifetime T'. Its
present value thus becomes a random variable, which we shall denote by Y.

The net single premium of a life annuity is its expected present value,
E(Y). More generally, the distribution of ¥ may also be of interest, as well
as its moments.

A life annuity may, on the one hand, be the benefit of an insurance policy
as a combination of pure endowments; on the other hand, periodic payment of
premiums can also be considered as a life annuity, of course with the algebraic
sign reversed.

4.2 Elementary Life Annuities

We consider a whole life annuity-due which provides for annual payments of
1 unit as long as the beneficiary lives. Payments are made at the time points

0,1,---, K. The present value of this payment stream is
= 2 P K _ & .
Y=14+v4+v4+--+v = G (4.2.1)

the probability distribution of this random variable is given by
Pr(Y = am) =Pr(K=k)= P, qpsr, K=0,1,2,---. (4.2.2)

The net single premium, denoted by d_, is the expected value of (4.2.1):
y = Y G——1tPy Tpik - (4.2.3)
o kTl +
The present value (4.2.1) may also be expressed as

Y =Y oLk, (4.2.4)
k=0
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where I, is the indicator function of an event A. The expectation of (4.2.4) is

i, = > v p,. (4.2.5)
k=0

Thus we have found two expressions for the net single premium of a whole life
annuity-due. In expression (4.2.3) we consider the whole annuity as a unit,
while in (4.2.5) we think of the annuity as a series of pure endowments.

The net single premium may also be expressed in terms of the net single
premium for a whole life insurance, the latter being given by (3.2.1) and
(3.2.3). By virtue of (1.7.2), the net single premium (4.2.1) equals

YZI—UK“:l—Z
d d

(4.2.6)

(This formula may also be obtained by viewing the life annuity as the difference
of two perpetuities-due, one starting at time 0, the other at time K + 1.)

Taking expectations yields
1- A

z
d
After transforming this identity to

a

z (4.2.7)

l=di, + A,, (4.2.8)

we may interpret it in terms of a debt of 1 unit with annual interest in advance,
and a final payment of 1 unit at the end of the year of death. Of course the
higher order moments of Y may also be derived from (4.2.6), so that, for
instance,

Var(Z)
The present value of an n-year temporary life annuity-due is
a for K=0,1,---,n—1,
y={ HK+1 (4.2.10)
am for K=nn+1,n+2---.

Similarly to (4.2.3) and (4.2.5) the net single premium can be expressed by
either

n~1
Gy = 1;) G| #Pe Gotk + G7)nPa (4.2.11)
or 1
EDY v p, (4.2.12)
k=0
Now we have
y=1=%2 (4.2.13)
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but here Z is defined by (3.2.12). As a consequence,

1- A,
i = Tj , (4.2.14)

or

The corresponding immediate life annuities provide for payments at times
1,2, K:

Y:v+v2+~~~+vK=am. (4.2.16)
The random variables (4.2.1) and (4.2.16) differ only by the constant term 1.
Thus the net single premium a, is given by
a, = i, — 1. (4.2.17)

T

From equation (1.8.7), with n = K + 1, we obtain
1= gt (1 + i)™+t (4.2.18)
Taking expectations yields
l=ia,+(1+i)A,, (4.2.19)

in analogy to (4.2.8).
The present value of an m year deferred life annuity-due with annual pay-
ments of 1 unit is

Y:{O for K=0,1,---,m—1, (4.2.20)

v o™ 4 0K for K=mom+1,--- .

The net single premium may be obtained from either one of the obvious rela-
tions:

il = iy — Gy, (4.2.22)

4.3 Payments made more Frequently than Once a Year

Consider the case where payments of 1/m are made m times a year, i.e. at
times 0,1/m,2/m, - - -, as long as the beneficiary, initially aged z, is alive. The
net single premium of such an annuity is denoted by a{™. In analogy with
(4.2.8) we have

1=d™ alm 4 Alm (4.3.1)
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Hence we obtain
1 1 (m)

gm = _-_ _ -

- g g e (4.3.2)

The equation may be interpreted in the following way: The life annuity
payable m times a year can be viewed as the difference of two perpetuities,
one starting at time 0, the other at time K + S(™. Taking expectations then
yields (4.3.2).

To obtain expressions for (™ in terms of d, we use again Assumption a
of Section 2.6, so that (3.3.10) allows us to express A of (4.3.2) in terms
of A,; if we then replace A, in turn by 1 —da,, (4.3.2) becomes

di i —im
Gz = Gimygm) %= 7 glmygim) - (4.3.3)
Introducing
S d _ i 4.34
a(m)—m an 5(m)—Wa (4.34)
we can then write (4.3.2) more economically as
a™ = a(m) a, — B(m). (4.3.5)

For i = 5% the coefficients a(m) and 3(m) are tabulated below, with m = 12
(monthly payments) and with m = oo (continuous payments).

m a(m)  B(m)

12 1.000197 0.46651
oo 1.000198 0.50823

Practical approximations in frequent use are

m—1
~1 N — 4.3.6
afm) =1, f(m) ~ "o (43.)
These approximations are obtained from the Taylor expansion of the coeffi-
cients around 6 = 0, viz.

m?—1 2
a(m)=1+ 12m26 4+, (4.3.7)
m—1 m?-1

Apparently these approximations are useful only when the force of interest is
sufficiently small.
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The net single premium of a temporary life annuity-due with mthly pay-
ments can now also be calculated with the help of a(m) and 8(m):

it = al - pot il
= a(m)d, — B(m) - p,v" {a(m) d,,, — Blm)}
= «a(m)a, Bim){1 - pv"}. (4.3.9)

The net single premium of an immediate life annuity (payments in arrears)
may be calculated in terms of the corresponding life annuity-due:

al™ = - —{1 — po"}. (4.3.10)

ITL

Let us now return to the calculation of ™. Equations (4.2.8) and (4.3.1)
give the exact expression

. (m)

a( d

L) (m) _
2 = g = d<m{A AL}, (4.3.11)

which may be interpreted in the following way: The life annuity on the left
hand side provides payments of 1/m at times 0,1/m,--- K + S™ — 1/m;
it may be represented as the difference of two temporary annuities, the first
providing payments at times 0,1/m,---, K + 1 — 1/m, the second providing
payments at times K + S™ K + 5™ +1/m,--. K 41— 1/m. This second
temporary annuity may in turn be viewed as the difference of two perpetuities
(one starting at K + S™)| the other at K + 1). The first temporary annuity
has the same present value as an annuity-due which provides K + 1 annual
payments of d/d™. Taking expectations of the present values then yields
(4.3.11).
Under Assumption a, we may use equation (3.3.10), giving

.- (m)

d
al

this formula has an obvious interpretation, which is not the case with the
mathematically equivalent formula (4.3.5).

4.4 Variable Life Annuities

We start by considering a life annuity which provides payments of ry, 7, o, - - -
at the time points 0,1,---, K. The present value is

Y = Z Uk’f‘k]{;(zk} , (4.4.1)
k=0
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and the net single premium
=y v*re D, (4.4.2)
k=0

may be readily calculated.

Take now a general life annuity with payments of zg, 21 /m, 22/m, - - - at time
points 0,1/m,2/m, ---, K+S80™ —1/m. We start by replacing the m payments
of each year by one advance payment with the same present value:

m—1

Tk = Z 1)j/mzk+j/m ) k = 07 17 27 Tt (443>
j=0

The correction term in the year of death amounts to a negative life insurance,
the sum insured at time k 4+ u, 0 < u < 1 being the present value of the
omitted payments:

clk+u)=> vj/m_"zkﬂ-/m ; (4.4.4)

jeJ

here J = J(u) is the set of those j € {1,2,---,m — 1} for which j/m > u. In
order to calculate the net single premium we use Assumption a of Section 2.6
and proceed along the lines of Section 3.4. Substituting (4.4.4) in equation
(3.4.10) we obtain

Ch+1 = /21+Z] M s mdu
7

Z (L4 )" ™2 i /m - (4.4.5)

The net single premium for a general life annuity with payments m times a
year is thus

2 vkrk kPz — Z Ck+1U]C+1 Pz Azt k> (4.4.6)
k=0 k=0
with the coefficients defined in (4.4.3) and (4.4.5).

The case of a continuously payable annuity is obtained by letting m — oo.
Let the payment rate at time ¢ be r(¢). The present value is

Y = /OT vir(t) dt . (4.4.7)

The net single premium

E(Y) = /Ooo v'r(t) ,p,dt (4.4.8)
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may be evaluated by (4.4.6), with coefficients
1
Ty = / vUr(k + u) du, (4.4.9)
0
1
Cht1 = / u(l+0) " r(k +u) du. (4.4.10)
0
We illustrate the point by a continuous life annuity with exponential

growth |
r(t)=¢€™. (4.4.11)

From (4.4.9) and (4.4.10) we obtain

1— T—6
e = 6fTe“ (4.4.12)
and
T —1-(6-1) .
Chr1 = ) emk+D) (4.4.13)
for 7 #£ 6, and
1
re=e* cpy1 = 566(k+1) (4.4.14)

for 7 = 6. In the case of a constant payment rate (7 = 0), (4.4.12) and (4.4.13)
become simply

g, Crr1 = B(00), (4.4.15)

which is in accordance with (4.3.12).

Ty =

4.5 Standard Types of Life Annuity

Consider a life annuity of the form (4.4.1) with r, = k + 1. Its net single
premium, which we denote by (/d)_, may be readily calculated by means of
(4.4.2).

A simple identity connects (/a), and (IA),. Replacing n by K +1 in the
identity

x?

i) = d(Id)m—an", (4.5.1)
see (1.8.12), and taking expectations we obtain
a, =d(la), + (IA),, (4.5.2)

which reminds us of (4.2.8).
We consider the case of m payments a year with annual increments:
kE+1

Zhtj/m == J=01-m—1. (4.5.3)
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The net single premium of this life annuity is denoted by (I d)im). Represent-
ing this annuity as a sum of deferred annuities, we obtain, with (4.3.5)

o
(@)™ = 3 wot
k=0

= S ot {a(m) iy, — B(m))

k=0
= a(m) i kvak d1+k - ﬁ(m) i kpzvk
k=0 k=0
= a(m) (Ia), — B(m) a,. (4.5.4)

This expression may be evaluated directly.
Letting m — oo we obtain the corresponding continuous annuity with
payment rate r(t) = [t + 1]. Its net single premium is given by

(Ia), = /Ooo[t + 1)*,p,dt
= afoo) (Id), — B(c0) d, - (4.5.5)

The present value of a continuous life annuity with payment rate r(t) = ¢
is

- T
T _ aﬂ —Tv
v = [t = (Taj = ———-. 456
[“wtar = (Taym = 1 (456
Taking expectations yields the formula
a, — (I4),

(Ia), = (4.5.7)

6

This expression may be evaluated using (3.5.18) and (4.3.5) with m = co.
The derivation of the corresponding formulae for standard decreasing life
and temporary annuities is left to the reader.

4.6 Recursion Formulae

We shall restrict our discussion to recursion formulae for the function d,.
Replacing p, by p, x_1P.41 in all except the first term in (4.2.5) we find

i, =1+vi,,, p,. (4.6.1)

The values of &, may be calculated successively, starting with the highest
possible age.
An equivalent expression is

dl =1+v dl+l -v dz‘+1 q - (462)
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The net single premium is seen to cover the payment due at age x and the
present value of the net single premium at age x+1, less the expected mortality
gain.

Application of (4.6.2) at age x + k yields

Gy —Vlgppy =1 —=0dy gy Gy (4.6.3)

We multiply this equation by v* and sum over & to obtain
=
. . 1 .
Uy = U5 — DV g Gog - (4.6.4)
k=0

The net single premium may thus be viewed as the present value of a perpe-
tuity, reduced each year by the expected mortality gain.
Finally we can write (4.6.2) as

ddz+l =1+ ( dz+1 - az) —-v dg;+1 9z (465)

from which the role of the earned interest becomes evident.
In analogy with (4.6.5) one may derive the differential equation

d
by substituting
_ d - d
=1-¢a — A, =-6—a .6.
A, —0a,, A, 6d$az (4.6.7)

in (3.6.11).

4.7 Inequalities

The net single premium a, is occasionally confused with the present value
dT}. The values are different; in fact one has the inequality

€z

a, < (za. (4.7.1)

In view of (4.6.7) and the identity v' =1 —§ (’zﬂ, with t = e_, an equivalent
inequality may be found:
A, > v, (4.7.2)

Each of these inequalities is a direct consequence of Jensen's inequality;
for instance the second inequality means
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E(wT) > B (4.7.3)

which is obvious since v! is a convex function of .
In what follows we shall generalise these inequalities. Consider the net
single premium A, as a function of the force of interest 6:

A, (8) = E[e™T); (4.7.4)

this is the Laplace transform of the distribution of T. We also define the
function

f(6) = {E[e™* T}, 6>0. (4.7.5)

For small values of § one may approximate (4.7.4) by 1—6 e,. Thus lims_q f(6)
exists, and has the value

o

f(0)=exp(—e,). (4.7.6)

Lemma: The function f(6) is monotone increasing.

To prove the lemma we take two positive numbers u < w, and demonstrate
that

f(w) > f(u). (4.7.7)
Jensen’s inequality implies
Ele™T] = E[{e™*T}*/*] > {E[e™T]}*/". (4.7.8)
Hence
fw)* > f(u)”, (4.7.9)

from which (4.7.7) follows. This proves the lemma.

The lemma implies that f(6) > f(0), hence
F6)° > £(0)°. (4.7.10)

From (4.7.6) one may derive the inequality (4.7.2) once more.
An interesting application uses three different forces of interest, 6; < § <
d,. The lemma implies that

F(61)° < f(6)° < f(&2)° (4.7.11)

and thus
{ AL (80)}70 < AL(6) < { A (82)}%, (4.7.12)

which allows us to estimate A_(6) if the values of A_(6;) and A_(6) are
known.
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For instance, let

Ay = 041272 for i=4%,

Ay =0.34119 for i=5%.

Bounds for the net single premiums Ay, and as, for i = 4;% may now be
found. From (4.7.12) with

5 =1n1.04, 6=1In1.045, & =In1.05

we find immediately .
0.37039 < Ag, < 0.37904 .

The identity ag, = (1 — As,)/6 then gives
14.304 > ay, > 14.107.
Replacing T' by K + 1 and dﬂ by

1—vw

G=—g > t >0, (4.7.13)
we obtain the inequalities
i, < dm, (4.7.14)
A, > vt (4.7.15)
LA} < AL(8) < { A, (81 (4.7.16)

by similar arguments.

The first two derivatives of the function A_(6) are
A (8) = —E[IvT] =~ (I4),(5),
AlL(6) = E[T%T]>0. (4.7.17)

Thus A_(6) is a monotonically decreasing, convex function of §. Hence any
curve segment lies below the secant,

_ by — 6 - 56 -
A,8) < S A0+ Au(8), (4.7.18)

but above the tangents

A (0) > A(br) — (6= 81) (TA), (&),

A(8) > A()+ (6, —0) (TIA),(8). (4.7.19)
Sometimes one obtains narrower bounds from (4.7.18) and (4.7.19) than from

(4.7.12). In the example above an improved upper bound is obtained from
(4.7.18):

Agy < 0.37687;
The lower bound for as is also improved:

a5y > 14.157.
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4.8 Payments Starting at Non-integral Ages

The initial age = will in general not be integer-valued, unless it is rounded.
We shall consider calculation of d, ., for integers z and 0 < u < 1.
Starting with the identity

upz ka+u = kpz upz+k (4.8.1)

we use Assumption a of Section 2.6 to find

(1= wqy) kPoyu = ,Pa(l — U qeyy) - (4.8.2)
Multiplying by v* and summing over all k we obtain

(1-wug)d ., = d, —u(l+1i)A,. (4.8.3)
Now we replace A, by 1 — d d, to obtain the desired formula:

(14 wui)a, —u(l+1i)

= . 4.84
r+u 1—u qz ( )
By means of (4.6.1) we can rewrite the above result as
1- 1-
d1+u - az U( qI) dz+1 P (485)

:1—uqz 1-ugq,

so that a,,, is a weighted mean of 4, and d_,;.
In practical applications d,, is often approximated by linear interpola-
tion, i.e.

u

The approximation is particularly good for small values of ¢, which is imme-
diately evident from (4.8.5).

As an illustration we take d,, = 8.0960, d,, = 7.7364, g;, = 0.05526. The
results are tabulated below.

U dggy, from  dg, from
(4.8.4),(4.8.5) (4.8.6)

1/12 8.0676 8.0660
2/12 8.0389 8.0361
3/12 8.0099 8.0061
4/12 7.9806 7.9761
5/12 7.9511 7.9462
6/12 7.9213 7.9162
7/12 7.8912 7.8862
8/12 7.8609 7.8563
9/12 7.8302 7.8263
10/12 7.7992 7.7963

11/12 7.7680 7.7664
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If linear interpolation is also permitted for annuities with more frequent

payments,
il ~ (1 —w) al™ + ual) (4.8.7)

we obtain from (4.3.5) the practical approximation
a0 = a(m)(1 - w) d, + a(m)u i,y — B(m). (4.8.8)

Similar relations may be derived for the net single premium of whole life
insurances starting at a fractional age. For instance, the following is an im-
mediate consequence of (4.8.5):

1—u 4 +u(1—q2)

T

A

. Apyr (4.8.9)

:1—1_qu 1_uqz



Chapter 5. Net Premiums

5.1 Introduction

An insurance policy specifies on the one hand the benefits payable by the
insurer (benefits may consist of one payment or a series of payments, see
Chapters 3 and 4), and on the other hand the premium(s) payable by the
insured. Three forms of premium payment can be distinguished:

1. One single premium,
2. Periodic premiums of a constant amount (level premiums),
3. Periodic premiums of varying amounts.

For periodic premiums the duration and frequency of premium payments
must be specified in addition to the premium amount(s). In principle, premi-
ums are paid in advance.

With respect to an insurance policy, we define the total loss L to the insurer
to be the difference between the present value of the benefits and the present
value of the premium payments. This loss must be considered in the algebraic
sense: an acceptable choice of the premiums must result in a range of the
random variable L that includes negative as well as positive values.

A premium is called a net premium if it satisfies the equivalence principle

E[L] =0, (5.1.1)

i.e. if the expected value of the loss is zero. If the insurance policy is financed
by a single premium, the net single premium as defined in Chapters 3 and
4 satisfies condition (5.1.1). If the premium is to be paid periodically with
constant amounts, equation (5.1.1) determines the net premium uniquely. Of
course, in payment mode 3 (variable premiums). equation (5.1.1) is not suffi-
cient for the determination of the net premiums.

5.2 An Example

Let us consider a term insurance for a life of age 40 (duration: 10 years;
sum insured: C, payable at the end of the year of death; premium IT payable
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annually in advance while the insured is alive, but not longer than 10 years).
The loss L of the insurer is given by

K+1 _ 175 _
L:{C’v Ham for K=0.1.---.9 ,

—II dm for K > 10; (5:2.1)

here K denotes the curtate-future-lifetime of (40). The random variable L
has a discrete distribution concentrated in 11 points:
Pr(L = Cv**? —Hdm‘) = Paoaosr. k=0.1.---.9,

Pr(L=-Tlig) = oPuo- (5.2.2)

We shall determine the net annual premium. From (5.1.1) one obtains the
condition

1 . _
C Apig)~ Wiy 1) = 0, (5.2.3)
resulting in
Al
m-c 2l (5.2.4)
a40:m

As an illustration. we take ¢ = 4% and assume that the mortality of (40)
follows De Moivre s law with terminal age w = 100. This somewhat unre-
alistic assumption allows the reader to check our calculations with a pocket
calculator. We have

1 _ 1 1 2 1 10 __ 1 _
A40:m = —60U+6—OU +"‘+—60U = gﬁaﬂo —-0.1352,
)
1 10 _
Agie) = V™ =0.5630. (5.2.5)

so that

Apgs) = 06982,
dyge) = (1= Agg)/d=T38476. (5.2.6)
(5.2.4) then gives us the net annual premium:
I1=0.0172C. (5.2.7)

The insurer cannot be expected to pay benefits in return for net premiums:
there should be a safety loading which reflects the assumed risk. In what
follows a method for determining premiums will be demonstrated, which takes
account of the incurred risk.

To this end premiums are determined by a utility function u(-): this is a
function satisfying u'(z) > 0 and u”(z) < 0, and measuring the utility that
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the insurer has of a monetary amount . More specifically. we assume that
the utility function is exponential,

1
u(z) = a(l —e %) (5.2.8)
the parameter a > 0 measures the risk aversion of the insurer. The condition
(5.1.1) is now replaced by the condition
E[u(=L)] = u(0). (5.2.9)

i.e. premiums should now be determined in such a way that the expected
utility loss is zero. With the utility function given by (5.2.8). the annual
premium must satisfy

Ele*l] =1. (5.2.10)

From (5.2.2) with pyg qyox = a5 and 1gpy = 5/6. we obtain

1§ k+1 . 5 .
50 ’gexp(acv 1 all am) + -éexp(—an am) =1. (5.2.11)

We chose a = 1078 arbitrarily for this example. The annual premiums ob-
tained from (5.2.11) are tabulated below.

Annual Percent of

Sum insured C'  premium II net premium
100,000 1,790 104%
500,000 10.600 123%
1,000,000 26,400 153%
2,000,000 85,900 250%
3,000,000 221,900 430%
4,000,000 525,300 764%
5,000,000 1,073,600 1248%

Obviously. now the premium is not proportional to the sum insured. as is
the case with the net premium. but increases progressively with C. This is
perfectly reasonable: A sum insured of 100.000 units represents a small risk
to the insurer. hence the safety loading (4%) is modest. A sum insured of 5
million. on the other hand. represents a considerable risk (at least if a = 1079).
which. in theory, makes a safety loading of 1148% acceptable.

At first glance. this result seems to contradict insurance practice. since
premiums usually are proportional to the sum insured. The contradiction can
be resolved by the following consideration: Assume that the insurer charges
250% of the net premium for all values of C: then policies with a sum insured
exceeding 2 million require reinsurance: policies with a lower sum insured are
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overcharged. which compensates for the relatively high fixed costs of these
policies.

Net premiums are nevertheless of utmost importance in insurance practice.
Moreover. they are usually calculated on conservative assumptions about fu-
ture interest and mortality, thus creating an implicit safety loading.

5.3 Elementary Forms of Insurance

5.3.1 Whole Life and Term Insurance

We consider a whole life insurance of 1 unit. payable at the end of the year of
death. which is to be financed by net annual premiums. which we denote by
P,. The loss of the insurer is

L=UK+1 — PI am (531)
From (5.1.1) it follows immediately that

P =1z (5.3.2)

Representing the premium payments as the difference of two perpetuities (one
starting at time 0. the other at time K + 1). we obtain

P P
=(1 T K+1 _ T . 3.
L ( +—d>v 2 (5.3.3)
Thus
P 2
Var(L) = (1 + 72) Var(vE+1). (5.3.4)

This equation shows that the insurer runs a greater risk (at least expressed by
the variance of L) if the insurance is financed by net annual premiums rather
than by a net single premium.

Equation (5.3.2) can be used to derive two formulae for P, which can be
given instructive interpretations. Dividing equation (4.2.8) by d, we obtain
the identity

1
—=d+ P,. (5.3.5)

ay

This identity has the following interpretation: A debt of 1 can be amortised
by annual advance payments of 1/d,. Alternatively one can pay advance
interest (d) on the debt each year. and the amount of 1 at time K + 1: the
net annual premium for the corresponding life insurance is P,. The identity
(5.3.5) means that the the total annual payments are the same in either way.
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The identity (5.3.5) reminds us of another identity from the theory of

interest,
1 1
— =d+—, (5.3.6)

] K
which also has a similar interpretation (see Section 1.8).
Replacing d, by (1 — A,)/d in (5.3.2), we find

a4 (5.3.7)

The equivalent identity
P.=dA + P A, (5.3.8)

may be interpreted as follows: A coverage of 1 unit can be financed by annual
payments of P_; on the other hand, one can imagine that an amount of A, is
borrowed to pay the net single premium. Interest on the debt of A_ is pald
annually in advance, and the debt is repaid at the end of the year of death; the
annual premium for the corresponding life insurance is P, A,. The identity
(5.3.8) shows that the total annual payments are the same either way.

We shall consider a term insurance of duration n (sum insured 1 unit,
payable at the end of the year of death). The net annual premium is denoted
by Plj The insurer’s loss is

vE+ — Pl aﬁ for K=0,1,---,n—1,
L:{_Pl a —l o for K >n (53.9)
ein] “n] =

or, as in (5.3.3),
L=-— P —]a—]+ 1+ P m —] 1]{K<n}- (5310)

The net annual premium is, of course,

Al
Pln= _=nl, (5.3.11)

5.3.2 Pure Endowments

Let the sum insured be 1 unit and the duration n. The net annual premium
is denoted by Pz:ﬁ. The loss of the insurer is

—Pz_ﬁdm for K=0,1,---,n—1
[ = : 5.3.12
" — Pﬂﬁda for K >n. ( )

The net annual premium is obviously

1
Az
Oy

—

PL=

n

(5.3.13)
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5.3.3 Endowments

The net annual premium is denoted by PI:;]. The equations

A
Py = 0] (5.3.14)
Azl
and
P = Pam+ Pomy (5.3.15)

are obvious. The insurer’s loss is the sum of (5.3.9) and (5.3.12).
In analogy with (5.3.5) and (5.3.8) we have
1
— =d+ P, (5.3.16)
Az

Px:ﬂ = dAxﬂ + PI:F] Az:n ; (5317)

with the corresponding interpretations. Equation (5.3.17) can also be obtained
by adding the relations

each of these having an interpretation similar to that of (5.3.8).

5.3.4 Deferred Life Annuities

The net annual premium payable during the deferment period for a life annuity-
due of 1 p.a. starting at time n, is PI:nl] Gypn-

5.4 Premiums Paid m Times a Year

If the net annual premium is paid by m installments of equal size, the su-
perscript “(m)” is is attached to the appropriate premium symbol. The net
annual premiums

P:gm) , P(m) Pl (m)’ P n_l](m)

zn|' T zn T

are obtained by replacing a_, resp. dzﬂ, by d;’"), resp. d(;:':l), in the denom-

inators of (5.3.2), (5.3.11), (5.3.13), (5.3.14). The net annual premium of an
endowment paying 1 unit is for instance

P = A/ . 6.41)

The expression may be readily evaluated by means of formula (4.3.9).
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In order to compare P e ]| ) with P, e We substitute in (5.4.1)

A = Pomem, (5.4.2)
am = L B(m) AL 5.4.3
a’z:ﬂ dm) az:ﬂ ﬂ(m) z:n | ( -t )
and obtain
P:z:n_]
P = . (5.4.4)

= = qJdm — B(m) Pl
If we now write the last result in the form

P = E]’”Pz(n_] B(m )P(m)Pl—] (5.4.5)

two reasons for the relation Pz;ﬂ < Pfynﬂ) become apparent.
Analogous relations hold for other insurances, e.g.

P, = dil]’”P;m)—ﬂ(m)P;m)Pz, (5.4.6)
Pimy = & By = Bm) Py Poy, (54.7)
Py = a5 Pay™ — B(m) Pay ™ Play. (5.4.8)

Equation (5.4.6) is the limit of (5.4.5) as n — oo. Equation (5.4.5) is the sum
of equations (5.4.7) and (5.4.8).

5.5 A General Type of Life Insurance

We return to the general type of life insurance introduced in Section 3.4. Let
¢; be the sum insured in the jth year after policy issue. We assume that the
insurance is to be financed by annual premiums Iy, 1, I, - - -, II;, being the
premium due at time k. The insurer’s loss is

L= CK+1U Z Hkv (551)
The premiums are net premiums if they satlsfy the equation

Z k10T D, Qi = Z v* ,p, (5.5.2)
k=0

The model is more general than it may appear at fined ance. If negative
values are permitted for the I, it includes pure endowmen and life annuities.
For instance, the endowment of Section 5.3.3 is obtained by setting

cg=c=--=¢=1, Cnt1 = Cng2 =+ =10,

HO Hl _H"_lzpz:n7 H"=_17 Hn+1:Hn+2:"':0.
(5.5.3)
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5.6 Policies with Premium Refund

A large variety of insurance forms and payment plans occur in practical insur-
ance. This makes it impractical to derive the net single premium explicitly for
every possible combination. The fundamental rule to be followed in a given
situation is to specify the insurer’s loss L, and then to apply the condition
(5.1.1). This procedure will be illustrated with an example.

A pure endowment with 1 unit payable after n years is issued with the
provision that, in case of death before n, the premiums paid will be refunded
without interest. What should the net annual premium be if the premium
charged is to exceed the net annual premium by 40% ? (The 40% loading is
used to cover expenses).

We let P denote the net annual premium. The insurer’s loss is obviously

(K 4+ 1)(1.4P)w5*1 - P for K=0,1,---,n—1,
= . K1 (5.6.1)
v"—Pan—] for K >n.
The expected loss is
14PuAﬁﬂ+/gﬁ—Pam, (5.6.2)
and application of (5.1.1) leads to the premium
Al
j zin] (5.6.3)

Qﬂ—14uAgm‘

5.7 Stochastic Interest

The interest rate that will apply in future years is of course not known. Thus
it seems reasonable to ask why future interest rates have not been modelled
as a stochastic process. Two reasons have led us to refrain from such a model:
1) Life insurance is particularly concerned with the long term development of
interest rates and no commonly accepted stochastic model exists for making
long term predictions. 2) A reasonable assumption is that the remaining life-
times of the insured lives are, essentially, independent random variables. With
a fixed interest assumption, the insurer’s losses from different policies become
independent random variables. The probability distribution of the aggregate
loss can then simply be obtained by convolution. In particular, the variance
of the aggregate loss is the sum of the individual variances, which facilitates
the use of the normal approximation. Stochastic independence between poli-
cies would be lost with the introduction of a stochastic interest rate, since all
policies are affected by the same interest development.
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Thus we shall continue using the assumption of a fixed interest rate. The
practical evaluation of an insurance cover should analyse different interest
scenarios. It is also possible to let the interest assumption vary over time,
say using 7; as the interest assumption for year j. This would not lead to
mathematical complications, but would make the notation more laborious, so
that we shall not follow in this direction.



Chapter 6. Net Premium Reserves

6.1 Introduction

Consider an insurance policy which is financed by net premiums. At the
time of policy issue, the expected present value of future premiums equals the
expected present value of future benefit payments, making the expected loss
L of the insurer zero.

This equivalence between future payments and future benefits does not,
in general, exist at a later time. Thus we define a random variable ,L as the
difference at time ¢ between the present value of future benefit payments and
the present value of future premium payments; we assume that ,L is not iden-
tically equal to zero, and we also assume that T > t. The net premium reserve
at time ¢ is denoted by ,V, and it is defined as the conditional expectation of
L, given that T > t.

Life insurance policies are usually designed in such a way that the net
premium reserve is positive, or at least non-negative, for the insured should at
all times have an interest in continuing the insurance. Thus the expected value
of future benefits will always exceed the expected value of future premium
payments. To compensate for this liability the insurer should always reserve
sufficient funds to cover the difference of these expected values, i.e. the net
premium reserve V.

6.2 Two Examples

The net premium reserve at the end of the kth policy year for an endowment
insurance (duration: n, sum insured: 1 payable after n years or at the end of
the year of death, annual premiums) is denoted by sz:ﬂ and given by the

expression

WVer = e~ Pem)Opppn—g) F=01on—1. (621)

Obviously OVx:E] = 0 because of the definition of net premiums.
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The net premium reserve at the end of year k of the corresponding term
insurance is denoted by kvzlzn_]- It is given by

1 _ 1 1 .
WVem = Apwi—i— Pemby v (6.2.2)

For a numerical illustration, we assume a sum insured of 1000 units, initial
age ¢ = 40, and the duration n = 10. The net premium reserve is thus
1000,V m (1000 V2 m) for k=0,1,---,9. Asin Section 5.2 we assume i =

40: 40:
4% and use De Moivre’s survival function with w = 100 for our calculations.
As a first step we find the net annual premium 88.96 for the endowment
and 17.225 for the term insurance. The development of the net premium
reserves is tabulated below; the entries can easily be verified with a pocket
calculator. Though De Moivre’s law is not very realistic, the net premium
reserves follow a characteristic pattern.

Development of net premium reserve for an endowment and a term insurance

a A WV, Al QVi
40+k:10 — k 40+k:10 — k 40:10]  T40+k:10—k 40:10 |

x 1000 %1000 x1000 %1000
0 7.84805 698.15 0 135.18 0.0
1 7.24269 721.44 77 126.02 1.3
2 6.60433 745.99 158 116.08 2.3
3 5.93076 771.89 244 105.30 3.1
4 5.21956 799.25 335 93.61 3.7
5 4.46813 828.15 431 80.94 4.0
6 3.67365 858.71 532 67.22 3.9
7 2.83306 891.04 639 52.36 3.6
8 1.94305 925.27 752 36.27 2.8
9 1.00000 961.54 873 18.85 1.6

The net premium reserve of the endowment grows steadily and approaches
the sum insured towards the end. The net premium reserve of 872.58 at the
end of the 9th year can be easily verified: The sum of this net premium
reserve and the last premium payment of 88.96, plus interest on both, must
be sufficient to cover the payment of 1000 one year later.

The net premium reserve of the term insurance is very small and nearly
constant. Initially it grows since the premium slightly exceeds that of a corre-
sponding one-year term insurance. Towards the end the net premium reserve
decreases again since the insurer has no obligation if the insured survives. The
sum of the net premium reserve at the end of the 9th year (1.62) and the last
premium (17.23) is exactly sufficient to cover a one-year term insurance for a
49-year old (18.85).
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6.3 Recursive Considerations

We return to the general life insurance introduced in Section 5.5. The net
premium reserve at the end of year k is, according to the definition,

e e] [e e}
- ,
WV =D et iPrvk Qovivs — > My 0 iPzvk - (6.3.1)
j=0 7=0
In order to derive a relation between ,V and ,,,V, we substitute
Ptk = hPotk j—hPotkth (6.3.2)

in all except the first A terms of (6.3.1), and use j' = j — h as summation
index. The resulting relation between ,V and .,V is

h—1 h—1
i i+1 R
PV + Z Hk+ﬂ)] iPeyk = Z Cj+k+11)3+ Petk Qpikij T nPryk? kthV - (6-3-3)
=0 =0

It is not surprising that this relation has the following interpretation: If the
insured is alive at the end of year &, then the net premium reserve, together
with the expected present value of the premiums to be paid during the next
h years is just sufficient to pay for the life insurance during those years, plus
a pure endowment of , .V at the end of year k + h.
A recursive equation for the net premium reserve is obtained by letting
h=1:
kV + e = vlcss Goyr + k1 Pogl - (6.3.4)

Thus the net premium reserve may be calculated recursively in two directions:
1) One may calculate ,V, ,V,--- successively, starting with the initial value
oV = 0. 2) If the insurance is of finite duration n, then one may calculate
n-1Vy n_oV,--- in this order, starting with the known value of V. For ex-
ample, in the numerical example of Section 6.2 we have ,V = 1000 for the
endowment, and ;,V = 0 for the term insurance.

Equation (6.3.4) shows that the sum of the net premium reserve at time
k and the premium equals the expected present value of the funds needed at
the end of the year (these being cx41 in case of death, else V). Another
interpretation becomes evident when one writes

lgv + Ik = vV + (k1 = o1V) Qogi] - (6.3.5)

The amount of ,;V is needed in any case. The additional amount needed if
the insured dies , cx41 — 1V, is the net amount at risk.

Equation (6.3.5) shows that the premium can be decomposed into two
components, II, = II} + II}, where

I =, Vo—,V (6.3.6)
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is the savings premium used to increase the net premium reserve, and
H; = (Ck+1 - k+1V)U 9rik (6.3.7)

is the premium of a one-year term insurance to cover the net amount at risk,
or risk premium. Thus the operation in year k + 1 may be interpreted as a
combination of a pure savings operation and a one-year term insurance. We
are assuming, of course, that the insured is alive at time k.

Multiplying (6.3.6) by (1+14)’~* and summing over k =0,1,---,5 — 1, we

obtain
j-1

V=Y 1+ g, (6.3.8)
k=0
which shows that the net premium reserve is the accumulated value of the
savings premiums paid since policy issue.
The decomposition into savings premium and risk premium in the numer-
ical example of Section 6.2 is tabulated below.

Decomposition into savings premium and risk premium

Endowment Term insurance
k I3 1T}, I3 Iy
0 74.17 14.79 1.22 16.00
1 75.24 13.71 0.97 16.26
2 76.43 12.53 0.70 16.53
3 77.74 11.22 0.42 16.81
4 79.18 9.78 0.12 17.10
5 80.77 8.18 -0.19 17.41
6 82.53 6.43 -0.52 17.74
7 84.47 4.49 -0.87 18.09
8 86.60 2.36 -1.24 18.46
9 88.96 0.00 -1.62 18.85

Writing (6.3.5) as
I+ denV = (V= V) + I, (6.3.9)

we see that the premium, plus the interest earned on the net premium reserve,

serves to modify (increase or decrease) the net premium reserve and to finance

the risk premium. This equation is apparently a generalisation of (3.6.7).
Multiplying (6.3.5) by (1 + 4), we obtain an equation similar to (6.3.9):

O +i(V + ) = (V= & V) + (Che1 = 51V doge - (6.3.10)

Equations (6.3.9) and (6.3.10) differ in that the valuation is performed at time
k in (6.3.9), but at time k + 1 in (6.3.10).



6.4. The Survival Risk 63
6.4 The Survival Risk

The derivations of the previous section are valid also if cxy1 < 4V, ie. if
the net amount at risk is negative. But in this case the analysis may also be
modified. We start by expressing (6.3.4) as

WV + = kv + (p1V = o)V Pogi - (6.4.1)

The amount of ¢;,; is needed in any case; in case of survival, an additional
amount of ,,,V — ¢4 falls due. The financial transactions during year k + 1
may thus be allocated partly to pure savings, and partly to a pure endowment
with a face amount of , ;V — cx41. The premium II; may be viewed as the
sum of a modified savings premium,

0 = cepv — ,V, (6.4.2)
and the survival risk premium
I, = (k41V = Ck41)V Py - (6.4.3)

We note that the savings component will often be negative, too. Equation
(6.4.1) may also be expressed as

I, + degsr = (cryr — V) + 107, (6.4.4)

a formula which reminds us of (6.3.9).
The decomposition of premium into (6.4.2) and (6.4.3) is not very common,
and in what follows we shall not use it.

6.5 The Net Premium Reserve of a
Whole Life Insurance

Consider the whole life insurance introduced in Section 5.3.1. Its net premium
reserve at the end of year k is denoted by ,V, and is by definition

WVe= Appp — Py (6.5.1)

We shall derive some equivalent formulae.
Replacing A, by 1 —da,,,, we find

Vo=1— (P, +d)i,,,. (6.5.2)

Now, replacing P, +d by 1/ d,, we obtain

V=1 etk (6.5.3)

ay
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The formula

A ., — A
Vo= etk ‘7z 5.
V= (6.5.4)

may be verified if we replace d, by (1 — A,)/d and d,,, by (1 — A, ,)/d.
The identity P, , G, = A, with (6.5.1) gives

P
KV = (1 ) = ) Aprk (6.5.5)
z+k
and
sz = (PI+k - Pz) dz+k . (656)
Finally we replace d,,; by 1/( P, + d) to find
P —
V. = ﬂ_PI . (6.5.7)

kVz
Pz+k+d

The multitude of different formulae may seem confusing. Apart from
(6.5.1) the formulae (6.5.2), (6.5.5) and (6.5.6) are important because they
are easily interpreted and because they may be generalised to other types of
insurance.

Formula (6.5.2) expresses the fact that the net premium reserve equals the
sum insured, less the expected present value of future premiums and unused
interest. This reminds us of the identity A, = 1 — dd,, which has a similar
interpretation.

Equation (6.5.5) may be interpreted by recognising that the future pre-
miums of P, may serve to finance a whole life insurance with face amount
P,/ P,,\; the net premium reserve is then used to finance the remaining face
amount of 1 — P,/ P, ;.

If the whole life insurance were to be bought at age = + k the net annual
premium would be P, .. The premium difference formula (6.5.6) shows that
the net premium reserve is the expected present value of the shortfall of the
premiums.

Equations (6.5.3), (6.5.4) and (6.5.7) are of lesser importance and have
no obvious interpretation. However, they allow generalisation to endowment
insurance.

6.6 Net Premium Reserves at Fractional Durations

We return to the general insurance discussed in Section 6.3. Let us assume
that the insured is alive at time k+u (k an integer, 0 < u < 1), and denote the
net premium reserve by ,., V. Similarly to (6.3.5), the net premium reserve
can be expressed by

1-

k+uv = k+lVU1_u + (ck+1 - k+lv)v ¢ l—-uq:r+k+u . (661)
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Assumption a of Section 2.6 implies
l—uquy
which permits direct evaluation of ,, V.

We can also express .,V in terms of V. In order to do so we substitute
(6.6.2) in (6.6.1) and use (6.3.7) and (6.3.6). We obtain

1-ulztk+u =

eV = GV + T (1 +4)" + 11—“ (1 + ). (6.6.3)
—u QI+k
In Section 6.3 we saw that the operation in year k£ + 1 could be decomposed;
equation (6.6.3) gives the corresponding decomposition at a fractional dura-
tion: The first term is the balance of a fictitious savings account at time k + u,
and the second term is the part of the risk premium which is still “unearned”
at time k + u.
A third possible formula is
1-u N 1-u
iV = T GV (L4 +{1 S
This shows that , .,V is a weighted average of the accumulated value of
(V + II;) and the discounted value of ,,V; the weights are identical to the
weights in (4.8.5), for £ = 0. To prove (6.6.4), we replace II, by II§ + II};
definition (6.3.6) then shows that (6.6.4) is equivalent to (6.6.3).
In practical applications an approximation based on linear interpolation is

often used:

} VU . (6.6.4)

k+uV ~ (1 —U>(kV+ Hk)-l-ukHV. (665)

To see how good this approximation is, we replace II, by II} 4+ II} and ,,V
by (,V + II3)(1 + ¢). The approximation is then

eV = GV + T (1 + wi) + (1 —w) I, (6.6.6)

which permits direct comparison with (6.6.3)

6.7 Allocation of the Overall Loss to Policy Years

We continue the discussion of the general life insurance. For £ =0,1,---, we
define Ay to be the loss incurred by the insurer during the year k£ + 1; thus the
beginning of the year is used as reference point on the time scale. Three cases
can be distinguished: 1) The insured has died before time k, 2) the insured
dies during year k + 1, 3) the insured survives to k + 1. The random variable
Ay is thus defined by

0 WK <h—1,
Ap={ ceriv—(V+1,) K=k, (6.7.1)
Vo —(GV+1I0,) fK>k4+1.
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Replacing II, by II} + I} and using (6.3.6), we find

0 ifK<k-1,
Ap=1{ —TI+ (k1 — gV K=k, (6.7.2)
— 1 fK>k+1.

Thus, if the insured is alive at time k, Ay is the loss produced by the one-year
term insurance covering the net amount at risk.

The overall loss of the insurer is given by equation (5.5.1). The obvious
result

L=3 At (6.7.3)
k=0
may be verified directly through (6.7.1). Of course the sum is finite, running
from 0 to K.
Using (6.7.2) and (6.3.7) we find

E[Ac|K > k] =0, (6.7.4)

which again implies
E[A¢] = E[A¢|K > k]Pr(K > k) =0. (6.7.5)
While (6.7.3) is generally valid, the validity of (6.7.5) requires that each year’s

payments are offset against the net premium reserve of that year.
The classical Hattendorff’s Theorem states that

Cov(Ag,Aj) =0 fork#37, (6.7.6)
Var(L) = ¥ v*Var(A) . (6.7.7)
k=0

The second formula states that the variance of the insurer’s overall loss
can be allocated to individual policy years, and it is a direct consequence of
the first formula and (6.7.3). The first formula is not directly evident since
the random variables Ag, Ay, - - - are not independent.

In a proof of (6.7.6) we may assume k < j without loss of generality. Then
one has

Cov(Ax,A;) = E[Ax- Ay
E[A - AjIK > j] Pr(K > j)
= —IGE[A|K > j]Pr(K > j)

= 0; (6.7.8)

here (6.7.4) has been used in the last step.
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The variance of Ay may be calculated as follows:

Var(Ay) = E[A}]
= E[A|K > k]Pr(K > k)
= Var(Ax|K > k)Pr(K > k)
= (k41— k+1v)2v2 Patk Qoyk PT(K > k)
= (chy1— k+1v)2”2 k+1Pz Qzyk - (6.7.9)

Substituting this into (6.7.7) we finally find

Var(L) = Z v+ (cpyn — k+1V)2 k+1Pz Qzk - (6.7.10)
k=0

We now assume that the insured is alive at time h (h an integer), and con-
sider the loss defined in Section 6.1, being the difference between the expected
present values of future benefit payments and future premium payments. In
analogy to (6.7.10) we have

Var(,L) = Z V2 (Chyrar — h+k+lv)2 k+1Pz+h Qothik - (6.7.11)
k=0

To prove this we consider a hypothetical insurance, issued at age x + h and
financed by the “premiums”

My= M, + ,V, O,=1,,, fok=12,---. (6.7.12)
The variance of L may be easily evaluated by means of equation (6.7.10).

The results, for the numerical example of Section 6.2, have been compiled in
the table below.

Calculation of the variance of L by policy years

k Endowment Term insurance
0 12905 15114
1 9918 13940
2 7393 12864
3 5292 11876
4 3584 10970
5 2240 10140
6 1231 9379
7 535 8682
8 131 8043
9 0 7457

Sum 43229 108465
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We see that the variance of L is much smaller for the endowment (43 229)
than for the term insurance (108 465).

Equation (6.7.10) is useful in evaluating the influence of the financing
method on the variance of L, when the benefit plan is fixed. Consider for in-
stance a pure endowment, with ¢; = ¢ = --- = 0. The variance of L increases
with the net premium reserve. Thus financing by a net single premium leads
to a greater variance than financing by net annual premiums.

6.8 Conversion of an Insurance

In a technical sense the net premium reserve “belongs” to the insured and
may in principle be used to help finance a modification of the insurance policy
at any time.

A classical example is the conversion of an insurance policy into a paid-
up insurance, i.e. one for which no further premium payments are required.
Consider a whole life insurance issued at age x with a sum insured of 1 unit,
and financed by annual premiums of P,. Assume that the insured is alive at
time k, but, for whatever reasons, unable to pay further premiums. In such a
situation the net premium reserve of ,V, could be considered as the net single
premium for a whole life insurance with a sum insured of

sz/ Az+k =1- Pz/ Pz+k ) (681)

see (6.5.5). Such conversions into paid-up insurance with reduced benefits are
very common for endowments (for which the net premium reserve is substan-
tial).

A type of insurance known as “universal life” or “flexible life”, made pos-
sible by modern data processing, offers the insured a maximum degree of
flexibility. Here the insured may adjust the parameters of the insurance peri-
odically (e.g. annually). The insured who “owns” the premium reserve of ,V
at time k, may change any two of the following parameters:

e [I,, the next premium to be paid,
® Cr.1, the sum insured in case of death during the next year,

o .1V, the target value of his “savings” one year ahead.

The third parameter is then determined by the recursive formula (6.3.4). In
other words, the insured effectively decides next year’s premium, as well as its
decomposition into savings premium and risk premium. Certain restrictions
are usually imposed to reduce the risk of antiselection; for instance, the new
sum insured (cg+1) should not exceed the former sum insured (c;) by more than
a predetermined percentage, which could, possibly, depend on the inflation
rate.



6.9. Technical Gain 69
6.9 Technical Gain

Consider the general life insurance of Section 6.3, and let us assume that the
insured is alive at time k. We assume further that the actually earned interest
rate during year k + 1 is ¢'. The technical gain at the end of the year is then

(V+ )1 +d) ey K=k,

Gt = { (V+I)1+7)— qV fK>k+1. (6:9.1)

Essentially there are two ways in which this technical gain can be decomposed:

Method 1
Replacing 1 +¢' by (¢ — 1) + (1 + ) in (6.9.1), one obtains

The technical gain thus consists of an investment gain and a mortality gain.

Method 2

Since the operation during year k£ + 1 may be considered as part savings
and part insurance, a reasonable approach is to allocate the technical gain
accordingly:

Gk+1 = GZ+1 + G2+1 . (6.9.3)
Here
ke = (Y + I —1) (6.9.4)
is the gain from savings, and
T — 2(1 +7’,) - (Ck+1 - k+lv) lfK = k‘ ,
o { I (1 + ) if K > k+1 (6.9.5)

is the gain from the insurance. The latter may again be decomposed into
ka1 = (e —8) — Ax(1 +19), (6.9.6)

see (6.7.2). The last equation shows the connection to Method 1.

When the technical interest rate ¢ is chosen conservatively, the technical
gain, respectively G}, will usually be positive. If this gain is to be passed on
to the insured through increased benefits, then Method 2 is preferable, since
the gain from savings may be written as

Gip1 = g Vu(@ —1). (6.9.7)
The future benefits may then be increased uniformly by

v(i —1)100%, (6.9.8)
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provided that the insured agrees to future premiums being increased by the
same factor. As a result of this profit sharing, the insured will obtain a
modified insurance policy for which

Gerran = V(1 + 1) hpren, Hppp = v(1+4) T, (6.9.9)

for h =0,1,---. This will be the case if the insured is alive at the end of the
year. In case of death (K = k), the gain from savings G}, may be paid in
addition to the sum insured of ¢j;.

6.10 Procedure for Pure Endowments

Consider a pure endowment (¢; = ¢; = --- = 0). The technical gain at the
end of year k + 1 is

G = { (¥ + (140 K=k, (6.10.1)

GV + M)A +d) — o,V K >k+1.

Since it is desirable to have an investment gain only in the case of survival
(K > k+1), we decompose the technical gain in a slightly different way:

Gep1 = G£+1 + Gﬁflv (6.10.2)
with
1 )0 K=k,
G = { pVo(@ —1) fK>k+1, (6.10.3)
and

_f peenVo(l+d) K=k,

11
G = i — Gk Vo(1+7) fK>k+1. (6.10.4)

The proof of this decomposition follows from (6.10.1) and the fact that
WV + IL) = Dotk kr1VV, (6.10.5)

see (6.3.4). Note that the expectation of Gl is zero, which is not the case
with the expectation of G} ;.

If the insured survives, the gain given by (6.10.3) may be used to increase
the benefits, provided future premiums are increased accordingly, by a factor
determined by (6.9.8).

Similar derivations to the above may be made for life annuities, simply
by equating 7, the contractually agreed payment at time k, to —II;. For
instance, if a pension fund has an investment yield of i’ during a year, the
interest gained from the annuities may be used to increase all annuities by the
factor given in (6.9.8).
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6.11 The Continuous Model

Let us finally consider the continuous counterpart to the general life insurance
of Section 6.3.

The insurance is now determined by two functions, the amount insured c(t)
and the premium rate II(¢), both at the moment ¢, ¢ > 0. The net premium
reserve at time t is

V() = [ et 4 R wpase taseindh = [ FIU(E + h)o" ppyyedh. (6.111)
The premium rate can be decomposed into a savings component,
() = V'(t) - 6V (), (6.11.2)
and a risk component,
I (t) = (c(t) = V(£)) ot - (6.11.3)

That II(¢) is the sum of those two components establishes Thiele’s Differential
Equation:

() + 6V(t) = V'(t) + TI"(t) ; (6.11.4)
it is the continuous version of (6.3.9) and (6.3.10) and has a similar interpre-
tation.

In the special case that

equation (6.11.4) leads to (3.6.11). If
c(t)=0, I(t)=-1, V()= a,,,, (6.11.6)

equation (6.11.4) confirms (4.6.6).

Working within the continuous model simplifies matters. There is for
instance only one method for analysing the technical gain, instead of two, as
in the discrete model of Sections 6.9 and 6.10.

We assume that the insured is alive at time ¢, and that the actual force of
interest at time ¢ is §(¢). The technical gain in the infinitesimal time interval
from t to t + dt, which we denote be G(t,t + dt), can be decomposed into

G(t,t +dt) = G°(t, t + dt) + G'(¢,t + dt); (6.11.7)
here
G*(t,t +dt) = (6(t) — &)V (t)dt (6.11.8)
is the investment gain, and

—(c(t) = V(1) ift<T<t+dt,

T (¢)dt T > ¢+ dt (6.11.9)

GT(t,t + dt) :{
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is the mortality gain. Note that the probability of death is u,,.dt, and the
probability of survival is 1 — p,4+dt, so that the expected value of G"(t,t + dt)
is zero. Note also that

Var[G"(t,t + dt)|T > t] = (c(t) — V(t))* propedt , (6.11.10)

Var[G"(t,t + dt)] = (c(t) — V(t))? ;ptosedt , (6.11.11)

and

Var(L) = /0 T 2 VarlGr(t, ¢ + dt)

— /0 T e(t) = VI(6))? poptesedt (6.11.12)

in analogy with (6.7.7) and (6.7.10).

Using a life annuity as an example, we shall demonstrate how the invest-
ment gain may be used to increase the benefits continuously. Assume that a
continuous life annuity with constant payment rate r(t) is guaranteed at time
t. The net premium reserve at time ¢ is thus

V(t) = r(t) Gy, - (6.11.13)

At time t + dt the payment rate is to be increased to r(t +dt) = r(t) 4+ r'(t)dt,
the cost of which must be covered by the investment gain. This leads to the
condition

G*(t,t+dt) =r'(t)dt a,,,. (6.11.14)
Using (6.11.8) and (6.11.13) we obtain a differential equation for r(t), viz.
(8(t) = &)r(t) =r'(t), (6.11.15)
with solution .
r(t) = r(0) exp {/0 (6(s) — 6)ds} , (6.11.16)

which is in accordance with the result derived at the end of Section 6.10.

We have seen in this and the last two sections how the investment gain
can be used to increase the benefits on an individually equitable basis. On
the other hand, it is impossible to pass on the mortality gain to the insured
on an individual basis: Death of the insured causes a mortality loss (in case
of life insurance) or a mortality gain (in case of an annuity), which naturally
cannot be passed on to the insured.

It is, however, possible to pass on mortality gain (or loss) to a group of
insureds. This will be demonstrated by an example which is reminiscent of
the historical Tontines.

Consider a group consisting initially of n persons; all have the same initial
age x and are initially guaranteed a life annuity of constant rate 1. It has
been agreed to pass on any mortality gain (or loss) to the annuitants in the
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form of increased (or decreased) future payments. What will be the value of
ri(t), the annuity rate at time ¢, if then only k of the initially n persons are
still alive?

Assuming that k persons are alive at time ¢ and that all survive to time
t + dt, the mortality gain will be negative; per survivor it amounts to

G'(t,t+dt) =II"(t)dt = —r(t) Gy pypiztedl, (6.11.17)
see (6.11.9). The reduction in the annuity rate then follows from the condition
G (t,t +dt) =ri(t)dta,,,, (6.11.18)

which, in turn, implies the differential equation
r(t) = —7rk(t) tote - (6.11.19)

If one of the k persons dies at time ¢, an immediate mortality gain of r(t) a,,
results; this is distributed among the & — 1 survivors to increase the annuity
rate. The new annuity rates follow from the condition that the net premium
reserve should be unchanged:

k() dypyy = (k — D)rioy(t) Gy (6.11.20)

Thus one may write

k
k-1

Tk_l(t)z Tk(t), k:2,3,~--,n. (61121)

The explicit solution is found using (6.11.19), (6.11.21) and the initial condi-
tion 7,(0) = 1 to be

Tk(t):%tpzv k:1727"'7n- (61122)

Is is easy to check and not at all surprising that the organiser of such an
arrangement may in fact be considered to be functioning purely as a banker
as long as at least one person lives, and finally to be making a profit of

T1 (Z) ﬁz+z =N ,P, ('—Z'I+z ’ (61123)

if z denotes the time of the last person’s death.
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7.1 The Model

In this chapter we extend the model introduced in Chapter 2 and reinterpret
the remaining lifetime random variable T'.

Assume that the person under consideration is in a specific status at age
x. The person leaves that status at time 7" due to one of m mutually exclusive
causes of decrement (numbered conveniently from 1 to m). We shall study a
pair of random variables, the remaining lifetime in the specified status T' and
the cause of decrement J.

In a classical example, disability insurance, the initial status is “Active”,
and possible causes of decrement are “Disablement” and “Death”.

In another setting T is the remaining lifetime of (x), distinguishing be-
tween two causes of decrement, death by “Accident” and by “Other causes”.
This model is appropriate in connection with insurances which provide double
indemnity on accidental death.

The joint probability distribution of T' and J can be written in terms of
the density functions g1(t),- -, gm(t), so that

gi()dt =Pr(t < T <t+dt,J =) (7.1.1)

is the probability of decrement by cause j in the infinitesimal time interval
(t,t + dt). Obviously

gt) =g1(t) + -+ gm(t) . (7.1.2)

If the decrement occurs at time ¢, the conditional probability of j being the
cause of decrement is

: 9;(t)
Pr(J=jT=t)= . 7.1.3
(=T =1 =42 (713
We introduce the symbols
1. = Pr(T <t,J =j) (7.1.4)

or, more generally,

1 ors = Pr(T < s+1t,J=j|T > s). (7.1.5)
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The latter probability is calculated as follows:

dyera= [ (2211 = G(s)]. (7.1.6)

7.2 Forces of Decrement

For a life (x) the force of decrement at age x + ¢ in respect of the cause j is
defined by
g9i(t) _ g;(t)

=9 gl 7.2.1
S S (20
The aggregate force of decrement is
Pzit = P1zyt + 00+ Bmatt (7.2.2)
see (7.1.2) and definition (2.2.1).
Equation (7.1.1) can be expressed as
Prt <T <t+dt,J =j) = ,pyhtjztedt. (7.2.3)
Furthermore,
. Hjz+t
Pr(J=jT =t) = == (7.2.4)

Kzt

If all forces of decrement are known, the joint distribution of 7" and J may
be determined by first using (7.2.2) and (2.2.6) to determine ,p, and then
determining g;(t) from (7.2.1).

7.3 The Curtate Lifetime of (z)

If the one-year probabilities of decrement,
Gosr = Pr(T <k+1,J=j|T > k) (7.3.1)

are known for k =0,1,---and j = 1,-- -, m, the joint probability distribution
of the curtate time K = [T and the cause of decrement J may be evaluated.
Start by observing that

osk = Dotk T T npiks (732)

from which .p, can be calculated; then
PI‘(K = k7 J = ]) = KDy qj,x+k (733)

fork=0,1,---andj=1,---,m.
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The joint distribution of T' and J can be computed under suitable assump-
tions concerning probabilities of decrement at fractional ages. A popular as-
sumption is that ,g; ., is a linear function of u for 0 < u < 1, k an integer,
i.e.

uljz+k = UQj otk - (734)

This assumption implies Assumption a of Section 2.6, which may be verified
by summation over all j. From (7.3.4) follows

gi(k +u) = Py @ik (7.3.5)

together with the identity ., ,p, = ;p,(1 —u g, ) this yields

qj z+k
ke = — Ttk 7.3.6
Hjztk4u 1—u Tork ( )

Assumption (7.3.4) has the obvious advantage known from Chapter 2, that K
and S become independent random variables, and that S will have a uniform
distribution between 0 and 1. In addition one has

Pr(J = j|K = k,S = u) = dtk (7.3.7)
qz+k

a consequence of (7.2.4) and (7.3.6). The last relation states that the con-
ditional probability of decrement by cause j is constant during the year. In
closing we summarise that S has a uniform distribution between 0 and 1, in-
dependently of the pair (K, J), and that the distribution of (K, J) is given by
(7.3.3).

7.4 A General Type of Insurance

Consider an insurance which provides for payment of the amount c; 41 at the
end of year k41, if decrement by cause j occurs during that year. The present
value of the insured benefit is thus

Z = cjsvE, (7.4.1)
and the net single premium is

7)=33

_1:

J,k+1U b+ &Pz A xvk - (7.4.2)

||M8

If the insurance provides for payment immediately on death, the present value
of the insured benefit is
Z = c;(T)T, (7.4.3)
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and the net single premium is
m o0
=3 / ¢;(t)vtg;(t)dt . (7.4.4)
j=170

This expression may be evaluated numerically by splitting each of the m in-
tegrals, viz.

-3y / ¢ (k + u)v* g (k + u)du. (7.4.5)

j=1k=0

Use of assumption (7.3.4) allows us to substitute (7.3.5) in the expression
above. Thus (7.4.5) assumes the form (7.4.2) if we write

1
Ciprr = / ¢ (k +u)(1 + i)' du. (7.4.6)
0
In a practical calculation the approximation

Cinpr ~ cj(k + = L+ (7.4.7)

2
will often be sufficiently accurate. The above derivations show that the evalu-
ation of the net single premium in the continuous model (7.4.3) can be reduced
to a calculation within the discrete model (7.4.1).

The insured’s exit from the initial status will not always result in a single
payment; another possibility is the initiation of a life annuity. If, for instance,
the cause j = 1 denotes disablement, then c¢;(t) could be the net single pre-
mium of a temporary life annuity starting at age z + ¢t. Thus in the general
model the “payments” ¢; 41 (respectively ¢;(¢)) may themselves be expected
values; however, the formulae (7.4.2) and (7.4.4) remain valid.

7.5 The Net Premium Reserve

Let us assume that the general insurance benefits of Section 7.4 are supported
by annual premiums of Iy, II;,Il5,---. The net premium reserve at the end
of year k is then

m o0 o0 h
= Z Z Cjk+h41V htl BPetk Qotkth — Z ey n?” pPgrk - (7.5.1)
j=1h=0 h=0

The recursive equation

WV T = Vop, o+ D Canav g (7.5.2)
=1
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is a generalisation of (6.3.4). It may be expressed as
WV A=, Vot Z(Cj,kﬂ = k¥ )V 92k - (7.5.3)
Jj=1

Thus the premium may again be decomposed into two components, the savings
premium

Iy = Vo=,V (7.5.4)
to increment the net premium reserve, and the risk premium
I = Z(cj,kﬂ — V) 9 z+k (7.5.5)
j=1

to insure the net amount at risk for one year.
The insurer’s overall loss

K
L=c,, 0" =3 It (7.5.6)
k=0
may again be decomposed into
L=Y At (7.5.7)
k=0
where
0 ifK<k-1,
Ak = - H; + (C‘]yk+1 — k+1V)v if K=k s (758)
— 117 fK>k+1,

is the insurer’s loss in year k + 1, evaluated at time k. Hattendorff’s The-
orem (Equations (6.7.4)—(6.7.7)) remains valid. The variance of L is most
conveniently evaluated by the formula

Var(L) = 3 Var(Ay|K > k)v* p, (7.5.9)
k=0
now with
Var(AulK > k) = 3 (¢jhnn = V)0 gyope — ()2 (7.5.10)
Jj=1

The verification of the last formula is left to the reader.

The activities in year k+ 1 thus may be regarded as a combination of pure
savings on the one hand, and a one-year insurance transaction on the other
hand. The latter can be decomposed into m elementary coverages, one for
each cause of decrement. We may interpret the premium component

HJT‘JC = (Cjk+1 — k¥ )V Q5 zvk (7.5.11)
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as paying for a one-year insurance of the amount (¢; k41— 41V'), which covers
the risk from decrement cause j. The insurer’s loss during year k£ + 1 may be
decomposed accordingly:

A=A+ Ao+ + A, (7.5.12)
if we define
0 if K <k-—1,
Ajp=4q =5+ (e — Vv f K=kand J=3 ,
Tk fK=kand J#j,or K>k+1.
(7.5.13)

The technical gain at the end of the year,

(7.5.14)

G _ (kV+Hk)(1+i1)_CJ,k+1 ifK:k,
ke WV H+IM)A+d) =V fK>k+1,

may similarly be decomposed into m + 1 components. For instance, the de-
composition method 1 (Section 6.9) leads to

Gk+1 2( V+Hk Z —Z A]k 1+Z (7515)

j=1

7.6 The Continuous Model

The model of Section 6.11 can be generalised to the multiple decrement model
of this chapter. Assume that the insured benefit is defined by (7.4.3) and that
premium is paid continuously, with II(¢) denoting the premium rate at time
t. The overall loss of the insurer is thus

L =cy(T)vT — /OTH(t)Utdt. (7.6.1)

The net premium reserve at time t is given by
m o0 o0
Vi) =Y /0 ¢;(t+h)W" WDy eltjzresndh — /0 (t+h)v" 4., dh. (7.6.2)
j=1

The premium rate II(t) can be decomposed into a savings component I15(t),
see (6.11.2), and a risk component

= Z C] ,LL] T+t 3 (763)

Jj=1

Thiele’s differential equation (6.11.4) remains valid.
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The technical gain derived from the insurance component in the infinites-
imal interval from ¢ to t 4 dt is denoted by G (¢, + dt). It is obvious that

0 ifT <t
Grit,t+dt) ={ —(cs(t) = V() ift<T <t+dt,
I (t)dt if T >t+dt .

As a consequence we have

Var[G" (¢, +dt)|T > t] = [{G’(t t+ dt)}2|T > 1]
= Z ))?jzsedlt
and m
Var[G"(t,t +dt)] = > (¢ )? iPaljatedt

—

j=

Finally one obtains
Var(L) = /oo v Var[G" (t,t + dt)]
0

S [0 ei®) = V) pottgasedt.
j=1

(7.6.4)

(7.6.5)

(7.6.6)

(7.6.7)

Note that this result is simpler than its discrete counterpart, see (7.5.9) and
(7.5.10); this is not surprising in view of (7.5.10): the risk premium for the

infinitesimal interval is II"(¢) dt, so its square vanishes in the limit.

From

(7.6.7) it is also evident that the variance of L may be decomposed by causes

of decrement.
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8.1 Introduction

Consider m lives with initial ages xy,x2,- -, ;. For simplicity we denote
the future lifetime of the kth life, T(zx) in the notation of Chapter 2, by
Tr (k=1,---,m). On the basis of these m elements we shall define a status u
with a future lifetime T'(u). We shall accordingly denote by ,p, the conditional
probability that the status u is still intact at time ¢, given that the status
existed at time 0; the symbols g, ty4: etc., are defined in a similar way. We
shall also consider annuities which are defined in terms of u. The symbol a,,
for instance, denotes the net single premium of an annuity-due with 1 unit
payable annually, as long as u remains intact. We shall also analyse insurances
with a benefit payable at the failure of the status u. The symbol A, would
for instance denote the net single premium of an insured benefit of 1 unit,
payable immediately upon the failure of w.

8.2 The Joint-Life Status

The status
U=T]:Tg: " Ty (8.2.1)

is defined to exist as long as all m participating lives survive. The failure time
of this joint-life status is

T(U) = Minimum(Th T27 e aTm) . (822)

We shall assume in what follows that the random variables 171,15, - -, T,
are independent. The probability distribution of the failure time of status
(8.2.1) is then given by

Pr(T(u) > t)
= PI‘(Tl > t,Tg > t,"',Tm > t)

m m

= Pr(Ty > t) = [ wps, - (8.2.3)
k=1 k=1

tpz1:z2:~~~:zm



84 Chapter 8. Multiple Life Insurance

The instantaneous failure rate of the joint-life status is, according to (2.2.5):

d d M m
Hutt = _Et— In tPy = _E Z In tpzk = Z M+t - (824)
k=1 k=1

This identity is reminiscent of (7.2.2). Note, however, that unlike the identity
in Chapter 7, the identity (8.2.4) presupposes that T3, - - -, Ty, are independent.

The principles of Chapters 3 and 4 may now be applied to calculate, for
example, the net single premium for an insurance payable on the first death,

00
— k+1
Azlzx2:~~~:xm - Z v kpzl:zzzn-:xm qzl+k:x2+k:--~:zm+k . (825)
k=0

The net single premium for a joint-life annuity-due is

dm:zmm:zm = Z Uk kaIZIQZ--~:J:‘m . (826)
k=0

Identities similar to those derived in Chapter 4 will be valid, for example

1=di A

T1:T2:T

(8.2.7)

T1:X2: ' Tm °

The definitions and derivations of Chapters 5 and 6 can be generalised by
replacing (z) by (u).
If we denote by =] the status which fails at time n, i.e.
TGE) =n, (8.2.8)

then T'(z : n]) = Minimum(7'(z),n); it is then evident that the net single
premium symbols Ax:ﬂ (endowment) and Oy (temporary annuity) are in
accordance with the joint-life notation.

8.3 Simplifications

A significant simplification results if all lives are subject to the same Gompertz
mortality law, i.e.

Pore = BT ¢>0, k=1,---,m. (8.3.1)
After solving the equation
= (8.3.2)
for w, the instantaneous joint-life failure rate may be expressed by

Hutt = Pwst, €2 0. (833)



8.4. The Last-Survivor Status 85

This implies that the failure rate of the joint-life status follows the same Gom-
pertz mortality law as an individual life with “initial age” w. All calculations
in respect of the joint-life status may then be performed in terms of the single
life (w). As an example we have

A = A,, (8.3.4)

T1:X2:1Tm w

and
(8.3.5)

a'zl:xg:»»»:xm = Ay -

Some simplification also results if all lives follow the same Makeham mor-

tality law,
ot = A+ B, (8.3.6)

Let w be the solution of the equation
P44 =me” (8.3.7)

then (8.2.4) implies that

Hutt = Mplytt = Pwttwtrtwtts b >0. (838)

This means that the m lives aged zy, 25, - -, z,, may be replaced by m lives
of the same “initial age” w. As an example,

azl:xg:m:zm = aw:w:w:w . (839)

Note that the age w defined by (8.3.7) is a sort of mean of the component
ages Iy, Ty, -, Zm, while the age w defined by (8.3.2) exceeds all component
ages Ty, Lo,y Lm-

The simplifications presented in this section, albeit very elegant, have lost
much of their practical value. Nowadays formulae like (8.2.3), (8.2.5) or (8.2.6)
may be evaluated directly.

8.4 The Last-Survivor Status

The last-survivor status
U= T T T (8.4.1)

is defined to be intact while at least one of the m lives survives, so that it fails
with the last death:
T(u) = Maximum(7T', Ty, - -, Tr,) - (8.4.2)

The joint-life status and the last-survivor status may be visualized by
electric circuits: The status (8.2.1) corresponds to connection in series of the
m components, while the status (8.4.1) corresponds to a parallel connection.
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Probabilities and net single premiums in respect of a last-survivor status
may be calculated using certain joint-life statuses. To see this, the reader
should recall the inclusion-exclusion formula in probability theory. Letting
By, B, - - -, By, denote events, the probability of their union is

Pr(BiUByU---UB,) =8-S+ 83—+ (=1)"1S,,; (8.4.3)
here Si denotes the symmetric sum

Sk = Z PI'(le N Bh N---N Bjk) y (844)

where the summation ranges over all ('Z) subsets of £ events.
Denoting by By the event that the kth life still lives at time ¢, we obtain
from (8.4.3)

mﬁﬁfﬁﬁg:$_$+%—m+FWH$” (8.4.5)

with the notation
S’tc = Z tpzjltz]2:~-~:zjk . (846)

Multiplying equation (8.4.5) by v* and summing over ¢, we obtain an analogous
formula for the net single premium of a last-survivor annuity:

dﬁﬁrfﬁz=$_$+$—m+FWH%; (8.4.7)

here we have defined )

Sk =22 lay ey, - (8.4.8)
Consider now an insured benefit of 1, payable upon the last death. Its net
single premium may be calculated as follows:

= 1-da
Ty T3 Im Ty &z Tm
= 1-d(S¢—85+85—...). (8.4.9)
Let us define the symmetric sums
SE=Y" Ag, iz, - (8.4.10)
Substituting
" ™) - Sg
Si = (&) - st (8.4.11)
d
in (8.4.9), we obtain the formula
A =St -S4+ 8 — 4 (-1)m71sA. (8.4.12)

X1 : T Ty
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Note the similarity of equations (8.4.5), (8.4.7) and (8.4.12). Similar formu-
lae may be derived for the net single premium of fractional or continuous
annuities, or insurances payable immediately on the last death.

As an illustration, consider the case of 3 lives with initial ages z, y and z.
In this case we have, for instance,

i

Ty = 8% 53+ 88 (8.4.13)

with

Si = g+ dy+ad,,
Sg = az'y + dz:z + dy:z 3
SE = Gy - (8.4.14)

The net single premiums Gg.y, Gz.», dy.., as well as .., may be calculated
using equations (8.2.3) and (8.2.6).

8.5 The General Symmetric Status

We define the status
k

B e e (8.5.1)
to last as long as at least k of the initial m lives survive, i.e. it fails upon the
(m—k+1)th death. The joint-life status (k = m) and the last-survivor status
(k = 1) are obviously special cases of this status.

The status
u=____H (8.5.2)
T Ty Ty
is defined to be intact when exactly & of the m lives survive. The status starts
to exist at the (m —k)th death and fails at the (m —k+1)th death. The status
(8.5.2) may be of interest in the context of annuities, but not for insurances.
A general solution follows from the Schuette-Nesbitt formula, which is the

topic of the next section. For arbitrarily chosen coefficients ¢y, cq, -+, ¢, One
has

3 . $° Ayt 8.5.3)

opo = ¢oS; 5.

I;]ktpxlzxz:~-~:xm = 0% (
and, similarly,

- o~ A i

kZ:ng i ;}A coS; - (8.5.4)

Here the values S! and S¢ are defined by (8.4.6) and (8.4.8), for j = 1,2, -+, m;
we also define S{ =1 and S¢ = i)
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For arbitrarily chosen coeflicients d1,ds, - - -, d,, one also has
dy,p______ " = AN, St 8.5.5
kglktpan:m:._.:xm ]; 17 ( )

and, similarly,
m k m . .
dy a =3 "A"14,58. 8.5.6
kglkal'lll'gi“'ZiL'm ];1 195 ( )

The last two formulae are a consequence of the former two: with
COZO, Ck=d1+"'+dk, (857)

the left hand sides of (8.5.5) and (8.5.6) assume the form of (8.5.3) and (8.5.4).
The expressions (8.5.5) and (8.5.6) have the advantage that they can be
generalized to life insurances:

m k _ m j-] "
gdkAm _;A diS8. (8.5.8)

This equation is obtained from (8.5.6) in the same way as (8.4.12) was obtained
from (8.4.7).

As an illustration we consider a continuous annuity payable to 4 lives of
initial ages w, z, y, z. The payment rate starts at 8 and is reduced by 50%
for each death. The net single premium of this annuity is obviously

a (4] 4G Bl 4 9a (2] i (1]
W T g 2 WiZT y: 2 W T Y:2 WiT Yz

: (8.5.9)

thus we have the coefficients ¢cc = 0, ¢; =1, ¢ = 2, ¢c3 = 4, ¢4 = 8. The
difference table is as follows:

k Ck Ack A2Ck Asck A4ck
0 0 1 0 1 0

1 1 1 1 1

2 2 2 2

3 4 4

4 8

The net single premium of the annuity is thus S7 + S5, with

S} = @y +a,+a,+a,,
Sg = aw:z:y + aw:z:z + aw:y:z + az:y:z . (8510)
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As a second illustration we consider a life insurance for 3 lives (initial ages
z, y, z), for which the sum insured is 2 on the first death, 5 on the second
death, and 10 on the third death, each payable at the end of the year. The
net single premium of this insurance is

3 2

+54 +104 (8.5.11)
U2 T Y:Z2

2A
T T Yy 2

Starting with d; = 10, d; = 5, d3 = 2 we may complete the difference table:

kodp Adp  A2dg
1 10 -5 2

2 5 -3

3 2

The net single premium of the insurance is thus 10 St — 5 S3! + 2 5!, with
S{o= A+ A+ A,
S5 = Apy+ Ap + Ay,
St = Apye.. (8.5.12)

8.6 The Schuette-Nesbitt Formula

Let By, Bs,---, B, denote arbitrary events. Let N denote the number of

events that occur; N is a random variable ranging over {0,1,---,m}. For
arbitrarily chosen coefficients ¢y, ¢1, - - -, ¢y, the formula
m m
> enPr(N=n)=> Akcy Sy (8.6.1)
n=0 k=0

holds, with Sy defined as in (8.4.4), and Sp = 1.
To prove (8.6.1) we use the shift operator E defined by

Eck = Ck41 - (862)

The shift operator and the difference operator are connected through the re-
lation E = 1+ A. Since 1 — Ip; is the indicator function of the complement
of Bj, it is easy to see that

ZI{N:n}En = H(I—IB]"!—IB].E)
n=0 j=1
= H(l + IB]A)
j=1
= Y (X 1s,08,0-08, ) A (8.6.3)

x>
I
o
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Taking expectations we obtain the operator identity
Y Pr(N =n)E" =Y SiAF. (8.6.4)
n=0 k=0

Applying this operator to the sequence of ¢, at k = 0, we obtain (8.6.1)
The Schuette-Nesbitt formula (8.6.1) is an elegant and useful generalisation
of the much older formulae of Waring, which express Pr(N = n) and Pr(N >

n) in terms of Sy, 52, -+, Sp.
Equation (8.5.3) follows from (8.6.1) when B; is taken to be the event
T; > t.

Finally we shall present an application which lies outside the field of ac-
tuarial mathematics. Letting ¢, = 2" in (8.6.1), we obtain an expression for
the generating function of NV,

E[zV] =Y (2 - 1)*S;. (8.6.5)
k=0
Consider as an illustration the following matching problem. Assume that m
different letters are inserted into m addressed envelopes at random. Let B;
be the event that letter j is inserted into the correct envelope, and let N be
the number of letters with correct address. From

1

Pr(B;; NnB,N---NB; )= 8.6.
I‘( n J2 Jk) m(m—l)(m—k+1)’ ( 66)
it follows that Sy = 1/k!. The generating function of N is thus
N _ = (= 1)F
E[z"] = ,CE_:O T (8.6.7)

For m — oo this function converges to e, which is the generating function
of the Poisson distribution with parameter 1. For large values of m, the
distribution of N may thus be approximated by the Poisson distribution with
parameter 1.

8.7 Asymmetric Annuities

In general a compound status is less symmetric. For example, the status

W T: Y 2 (8.7.1)

<

is intact, if at least one of (w) and (z) and at least one of (y) and (2) survives.
The failure time of the status is

T = Min(Max(T'(w), T(z)), Max(T(y), T(z))). (8.7.2)
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For this status the net single premium of an annuity can be calculated in
terms of the net single premiums of joint-life statuses. This follows from the
relations

tpm = tpu + tp'u - tpu:v 9 (87.3)

respectively
Qg = Gy + Q, — @y, , (8.7.4)

which are valid for arbitrary statuses v and v. Consider for example an annuity
of 1 unit while the status (8.7.1) lasts. By repeated application of (8.7.4) we
obtain an expression for the net single premium,

am:ﬁ = aﬁ:y + Az — aw_::t:y:z
= aw:y + a:z:y - aw:x:y
+aw:z + Ag:z — Qux:z

TQyry:z — Opiyiz + Qy:z:y:z - (875)

Reversionary annuities are relevant when studying widows’ and orphans’
insurance. The symbol a,/, denotes the net single premium of a continuous
payment stream of rate 1, which starts at the death of (z) and terminates at
the death of (y). This net single premium can be calculated with the aid of
the relation

Aafy = Oy — Oy - (8.7.6)

8.8 Asymmetric Insurances

Consider the m lives of Section 8.2 and assume independence of their future
lifetimes. A general insurance on the first death provides a benefit of ¢;(¢) if
life j dies first at time ¢ (i.e. the joint-life status fails due to cause j). Such an
insurance is mathematically equivalent to the insurance discussed in Section
7.4. In analogy to formula (7.4.4), the net single premium of this first-death
insurance is

Z /0 Cj(t)vt tpzlzzzt-~~::tm//“-’t]+tdt . (881)
j=1

The reversionary annuity considered in the previous section is of this type.
Defining
C](t) = ay+t 3 Cz(t) = 0, (882)

we obtain o
Azfy = /0 ay+tvt tPrybaredt . (8.8.3)

This expression presupposes independence between T'(z) and T'(y), in contrast
to (8.7.6).



92 Chapter 8. Multiple Life Insurance

In the special case with cx(¢t) = 1 and ¢;(t) = 0 for j # k, the net single
premium is denoted by

A . , (8.8.4)

Ty T — 1Tk Tht1 1 Cm

and given by the expression

A 1 = /0 Ut tp11212:~~-21muzk+tdt . (885)

T1i g —1 Tk Thy1i T

Note that the symbols introduced in Chapter 3 to denote the net single pre-
mium of a pure endowment, and that of a term insurance, are special cases of
(8.8.4); these are obtained by interpreting n] as a status which fails at time n.
The net single premium (8.8.5) is very easy to calculate if all lives observe
the same Gompertz mortality law, see formula (8.3.1). In that case,
c*
Hzp+t = ‘C—Jﬂm+t:12+t:~~:zm+t7 (8'8'6)

with w defined by (8.3.2); it follows that

_ Tk _ ko_
i i Sy o (8.8.7)

zl:w:zk_lzz}c:zk+1:~--:zm c¥

We shall now consider an insurance which pays a benefit of 1 unit at the

time of death of (z), provided that this is the rth death. Its net single
premium is denoted by

A (8.8.8)

r .
T10 g1 Tk Tkt i Tm

In order that a payment be made at the death of (z), exactly m — r of the
other m — 1 must survive (z;). Hence we have

A Do b redt.  (8.8.9)

Substituting as in equation (8.5.3), we obtain a linear combination of net
single premiums of the form (8.8.4) is, which makes the calculation easier.
Consider for instance

i o 2]
Az =/0 vttpm Dot dt . (8.8.10)

We now use (8.5.3) with ¢g = ¢; = ¢3 =0, ¢; =1 and find that
[2]
tpm = Sé - SSIti = Pue T tPu:y + tpz:y -3 tpw:z:y . (8811)

Substituting the last expression in (8.8.10) yields

Aw:z:y:g :Aw ! +Awyé +Azy; _3Aw:z:y:; . (8812)

Tz



Chapter 9. The Total Claim Amount in a
Portfolio

9.1 Introduction

We consider a certain portfolio of insurance policies and the total amount of
claims arising from it during a given period (e.g. a year). We are particularly
interested in the probability distribution of the total claim amount, which
will allow us to estimate the risk and show whether or not there is a need for
reinsurance.

We assume that the portfolio consists of n insurance policies. The claim
made in respect of policy h is denoted by Sj,. Let us denote the possible values

of the random variable S}, by 0, s14, San, "« *, Smn, and define
Pr(S, = 0) = pr, Pr(Sh=sjn) =g (9.1.1)
forj=1,---,mand h=1,---,n. With respect to the general insurance type

of Chapter 7, g;, may be taken to be the probability of a decrement due to
cause j, and s;, may be taken to be the corresponding amount at risk (i.e. the
difference between the payment to be made and the available net premium
reserve).

The total, or aggregate, amount of claims is

S=51+S+-+5,. (9.1.2)

To enable us to calculate the distribution of S we shall assume that the random
variables Sy, S, -+, S, are independent.

9.2 The Normal Approximation

The first and second order moments of S may be readily calculated. One has

E[S] = i E[Sh], VarlS]= i Var([S], (9.2.1)

h=1
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with
Z S]hq]h y Var Sh] Z S]hq]h E[Sh]2 . (922)
7=1
For a large portfolio (large n) it seems reasonable to approximate the
probability distribution of S by a normal distribution with parameters y =
E[S] and ¢? = Var[S]. However, the quality of this approximation depends
not only on the size of the portfolio, but also on its homogeneity. Moreover,
this approximation is not uniformly good: in general the results are good
around the mean E[S] and less satisfactory in the “tails” of the distribution.
These weaknesses of the approximation by the normal distribution may be
partially relieved by sophisticated procedures, such as the Esscher Method or
the Normal Power Approzimation. However, these methods have lost some of
their interest: if a high-powered computer is available, the distribution of S
can be calculated more or less “exactly”.

9.3 Exact Calculation of the Total Claim Amount
Distribution

The probability distribution of S is obtained by the convolution of the proba-
bility distributions of Sy, - - -, S,. The distributions of S;+.S5;, S1+S5+S3, S;+
Sy + S3+ Sy, - -+, are found successively. If the distribution of S; + -+ S,_;
is known, the distribution of S; + - - - + S, may be calculated by the formula

PI‘(Sl +"'+Sh =.’L‘) = ZPI‘(Sl +"'+Sh—1 =$—th)th
j=1

+Pr(S1+ -+ Spo1 =2)ps - (9.3.1)

With this procedure it is desirable that the s;, are multiples of some basic
monetary unit. Of course, in general this will not be the case unless the basic
monetary unit is chosen very small. The original distribution of Sy, is then
appropriately modified. Two methods are popular in this respect.

Method 1 (Rounding)

The method starts by replacing s;; by a rounded value s,, which is a multiple
of the chosen monetary unit. In order to keep the expected total claim amount
the same the probabilities are adjusted accordingly by the substitutions:

Sjh = Sins Qjn = ‘I;h = qjhsjh/s;hv ph—=pr=1— (g + - +qn). (932)

Method 2 (Dispersion)

Let s;;, denote the largest multiple (of the desired monetary unit) not exceed-
ing s;x, and let s denote the least multiple which exceeds s;,. The original
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distribution of Sy has a point mass of ¢;, at s;,. The dispersion method con-
sists of re-allocating this point mass to s, and s}, in such a way that the
expectation is unchanged. The new point masses g;;, and qj+h must therefore
satisfy the equations

G+ G = Gy S5aGn + Sialn = Sindih (9.3.3)
that is . _
Sh —Sj Sih— S;

o= h S g = ik 9.3.4

djn s?—h — Sj_hq_yha 9jn S;’;z — sj_h qjh - ( -9. )

Consider as an illustration a portfolio of three policies with, for example:

Pr(51 = 0) = 08, Pr(51 = 05) = 017 Pr(51 = 25) = 01,
Pr(S, =0)=0.7, Pr(S,=125)=02, Pr(S;=25)=01, (9.3.5)
Pr(S; =0) =06, Pr(S;=15) =02, Pr(S;=275)=0.2.

The convolution of the three distributions ranges over the values 0, 0.5,
1.25, 1.5, 1.75, 2, 2.5, 2.75, --- , 6.5, 7.75, and it may in principle be cal-
culated. Calculating the convolution of the modified distributions is much
easier, however. We shall use Method 2 to approximate the distribution of Sy
by a distribution on the integers. The modifications prescribed by Method 2
are set out in the table below:

40_0_5@ 0.05 - 0.05 @ 0.0547

!_lj_lj_llI!IIl|lII|IIIIIlIlILlllll{llllllllllllllll
T T 1

0 0.5 1 2 2.5 3

giS@ 0.05 005 @ 0.05

:lIIIIIIIlIlllll_}llL{J_lJ_lJ_lJ_LJ_LLALIIIIILIJIJIJIJIL‘=
T

0 1 1.25 2 2.5 3

. 0.1 @ 0.1 . 0.05 @0_15

lllllJlJLJlJLLIIIIIIIlll=IlIIIlIIIIllIlIIIllIlIlJ
T 1

0 1 1.5 2 275 3
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Hence, the modified distributions are as follows:

Pr(Si=z) 085 005 005 005

Pr(S;=z) 070 015 0.0 0.05
Pr(S3=z) 060 010 015 0.15

Application of (9.3.1) with o = 2 and h = 3 yields the distribution of
S =5, 4+ 5, + 53 in two steps:

z Pr(S1+S2=1z) Pr(S1+S2+S3=z) Pr(S<x)
0 0.5950 0.357000 0.357000
1 0.1625 0.157000 0.514000
2 0.1275 0.182000 0.696000
3 0.0900 0.180375 0.876375
4 0.0150 0.061500 0.937875
5 0.0075 0.038625 0.976500
6 0.0025 0.018000 0.994500
7 0.003625 0.998125
8 0.001500 0.999625
9 0.000375 1.000000

In a realistic portfolio (say a pension fund with 1000 members) the original
distribution of the S, will always have to be modified beforehand. In order to
keep the notation simple we shall assume that the distribution in (9.1.1) has
already been modified, and that the s;), are integers (one may always achieve
this by proper choice of the monetary unit). Thus we may simply assume that
sjn = J, keeping in mind the possibility that some g;;, vanish.

9.4 The Compound Poisson Approximation

Assume that the distribution of Sy, is given by
PI‘(Sh = 0) = Ph , PI‘(Sh = ]) = qjn (] = 1,2, s ,m) . (941)

The generating function of this distribution is

Pty gn? =1+ gn(d —1). (9.4.2)

j=1 j=1
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The distribution of S, may now be approximated by the corresponding com-
pound Poisson distribution whose generating function is

gn(2) = exp (i gin(2’ — 1)) . (9.4.3)

By comparing (9.4.2) and (9.4.3) one will see that the approximation is best
for small values of the g;p.

If we now use the compound Poisson approximation for all terms in (9.1.2),
the resulting approximation of S will have as generating function

g9(z) = ﬁgh(z) = exp (i qj(zj - 1)) , (9.4.4)

with the notation N
G = G- (9.4.5)
h=1

But this means that the distribution of S can also be approximated by a
compound Poisson distribution. In the corresponding model the total claim
amount is

here N denotes the random number of claims, and X; denotes the amount of
the ith claim. Furthermore, the random variables N, X, X,, - - - are indepen-

dent, N has a Poisson distribution with parameter
q=q +qg+ -+ Gnm, (9.4.7)

and the probability that the amount of an individual claim is j is
p() =g;/q (j=1,2,---,m). (9.4.8)

The probability distribution of S is then given by the formula

oo

Pr(S=2z)=Y p*(z)e " /k!. (9.4.9)
k=0
In the numerical example in the previous section we had ¢; = 0.3, ¢ = 0.3,
g3 = 0.25. Thus ¢ = 0.85, and each of the random variables X; may take the
values 1,2 or 3, with probabilities p(1) = 30/85, p(2) = 30/85, p(3) = 25/85.
The model (9.4.6), called the collective risk model, is particularly appro-
priate if the portfolio is subject to changes during the year. Even in such
a dynamic portfolio it will be possible to estimate the expected number of
claims (g) and the individual claim amount distribution.
Note that (9.4.6) can be written as

S=N+2N;+3N3+---+mN,,, (9.4.10)
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if we let N; denote the number of claims for amount j. It can be proved
that the random variables Ny, Ny, -, N, are independent, and that N; has
a Poisson distribution with parameter g; (so that g; is the frequency of claims
for amount 7).

The distribution of S can in principle be calculated by either (9.4.9) or
(9.4.10). A third method, the recursive method, will be presented in the next
section.

9.5 Recursive Calculation of the Compound Poisson
Distribution

Let us denote the probabilities Pr(S = z) by f(x) and the cumulative distri-
bution function by F(z) = Pr(S < z). Thus, for example,

£(0) = Pr(S = 0) = Pr(N = 0) = e°. (9.5.1)

Pangjer directed the attention of actuaries to the useful recursive formula
1 & .
j=1

which enables us to calculate the values f(1), f(2), f(3), - - successively.

In the numerical example considered above the calculations are as follows:

) = e

f(1) = 03f(0),

@) = L035(1)+0650)),

f3) = %(0.3 £(2) + 0.6 (1) + 0.75 £(0)),
f4) = 3(0.3 £3) + 06 £(2) +0.75 £(1)),

(9.5.3)

The numerical results have been compiled in the following table; the partial
sums F(z) could, of course, also have been calculated recursively.
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f(z) F&) = f(2) F(z)
0.427415 0.427415 10 0.001302 0.998886
0.128224 0.555639 11 0.000645 0.999531
0.147458 0.703098 12 0.000277 0.999808
0.147244 0.850342 13 0.000111 0.999920
0.057204 0.907546 14 0.000049 0.999969
0.043220 0.950766 15 0.000019 0.999988
0.026287 0.977053 16 0.000007 0.999995
0.010960 0.988014 17 0.000003 0.999998
0.006434 0.994448 18 0.000001 0.999999
0.003136 0.997584

© 00 U W= OS

The generating function of S can be used to prove the recursive formula
(9.5.2). On the one hand, it is defined by

o) = > 1(@)3", 95,4
while, on the other hand, (9.4.4) implies that
Ing(z) = ilqj(zj -1). (9.5.5)
=
From the identity
2 g2) = gl2) = mg(2) (9.5.)

we obtain

S af()et = (i f(y)zy) (iyq) . (95.7)

=1 y=0
Comparing the coefficients of 2*~!, we find
af(x) =3 flz—35)ig, (9.5.8)
j=1

which establishes (9.5.2)

Until now we have tacitly assumed that only positive claims could occur,
that is that all terms in (9.4.6) are positive. If negative claims can occur,
the total amount of claims can be decomposed into S*, the sum of positive
claims, and S™, the sum of the absolute values of the negative claims:

S=8t-5" (9.5.9)

It can be shown that both St and S~ have compound Poisson distributions
and are independent. We can now compute the distributions of St and S~
separately, e.g. from (9.5.2), and finally obtain the distribution of S by con-
volution.
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9.6 Reinsurance

If inspection of the distribution of S shows that the risk is too high the ac-
quisition of proper reinsurance is indicated. Different forms of reinsurance are
available, two of which will be discussed in this and the next section.

Quite generally a reinsurance contract guarantees the insurer the reim-
bursement of an amount R (a function of the individual claims and thus a
random variable) in return for a reinsurance premium II. The insurer’s reten-
tion is

S=S+I-R. (9.6.1)
With proper reinsurance the distribution of S will be more favourable than
the distribution of S. Let us define f(z) = Pr(S = z) and F(z) = Pr(S < z).

An Ezcess of Loss reinsurance with priority o reimburses the excess X; —a
for all individual claims which exceed «.

Let us assume in our numerical example that excess of loss reinsurance
with o = 1 can be purchased for a premium of IT = 1.2. The original claims
which can assume the values 1,2,3, are all reduced to 1 by the reinsurance
arrangement. Thus the insurer’s retention is

S=12+N; (9.6.2)

here N denotes the number of claims and has a Poisson distribution with
parameter 0.85. The distribution of S is tabulated below:

z  fl=z) F(z)

1.2 0.427415 0.427415
2.2 0.363303 0.790718
3.2 0.154404 0.945121
4.2 0.043748 0.988869
5.2 0.009296 0.998165
6.2 0.001580 0.999746
7.2 0.000224 0.999970
8.2 0.000027 0.999997
9.2 0.000003 1.000000

Since the reinsurance premium contains a loading, IT > E[R], it is clear
from (9.6.1) that E[S] > E[S]; in our example we have E[S] = 2.05, while
E[S] = 1.65. The purpose of reinsurance is to reduce the probabilities of large
total claims; indeed in our example we have 13“(6.2) = 0.999746, which exceeds
the corresponding probability without reinsurance by far (F(6) = 0.977053).
In the next section we shall present a reinsurance form which is extremely

effective in this respect.
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9.7 Stop-Loss Reinsurance

Under a stop-loss reinsurance contract with deductible 3, the excess R =
(S — B)* of the total claims over the specified deductible is reimbursed. In

this case
S+II fS<pg,

B+II ifS>0.

Let us now assume that a stop-loss cover for the deductible § = 3 has
been bought at a premium of II = 1.1. The insurer’s portion of the total
claim amount will be limited to 3. The distribution of S can be derived from
the distribution of S:

§'=S+H—(S—ﬂ)+:{ (9.7.1)

z  f(=) F(z)
11 0427415 0.427415
21 0.128224 0.555639
3.1 0.147458 0.703098
41 0.296903 1.000000

The expected value of S is quite large, E[S] = 2.41, but the “risk” has been
reduced to a minimum.

We shall finally consider calculation of the net stop-loss premium, which
we denote by p(3):

p(8) = El(S - )" = [~ (@~ p)aF(@). (9.7.2)
By partial integration we obtain
o(8) = 71~ Fla)lde. (9.7.3)
Hence, for integer values of 3, we may write
o(8) = f; [1-F), 9.7.4)
or, written recursively,
p(B+1) = p(B) — [L - F(B)]. (9.7.5)

Thus the values p(1), p(2),p(3),- -+ can be computed successively, starting
with p(0) = E[S]. Of course, these computations can be combined with the
recursive calculation of F'(x) (see Section 9.5).

In our example the stop-loss premiums assume the following values.



102 Chapter 9. The Total Claim Amount in a Portfolio

p(B)
1.650000
1.077415
0.633054
0.336152
0.186494
0.094040
0.044807
0.021860
0.009874
0.004322
0.001906

00O U AW O™

Of course, the actual stop-loss premium II will exceed the net premium
p(B) significantly. Our example, with II = 1.1 and p(3) = 0.336152 cor-
responds to a 227% loading. Loadings of this order of magnitude are not

uncommon.
The net premium is still of interest, since it allows one to calculate the

expected value of the retention, which is

E[$] = E[S] + 11 - p(B) . (9.7.6)

In our example we have again E[S] = 1.65 + 1.1 — 0.34 = 2.41.
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10.1 Introduction

The operations of an insurance contract will involve certain expenses, whether
undertaken by pension funds or by insurance companies. In the case of a
pension fund these expenses are most often lumped together and considered
separately from the strictly technical insurance analysis. In the case of insur-
ance companies, on the other hand, the cost element is built into the model,
as explicitly and equitably as possible. As we shall see, however, the result-
ing premiums and reserves are very closely related to the net premiums and
reserves we have been discussing so far, and which will therefore continue to
hold our primary interest.
Expenses can be classified into three main groups:

a. Acquisition Expenses

These comprise all expenses connected with a new policy issue: agents’ com-
mission and travel expenses, medical examination, policy writing, advertising.
These expenses are charged against the policy as a single amount, which is
proportional to the sum insured. The corresponding rate will be denoted by
a.

b. Collection Expenses

These expenses are charged at the beginning of every year in which a premium
is to be collected. We assume that these expenses are proportional to the
expense-loaded premium (see 10.2), at a rate which we will denote by §.

c. Administration Expenses

All other expenses are included in this item, such as wages, rents, data pro-
cessing costs, investment costs, taxes, license fees etc. These costs are charged
against the policy during its entire contract period, at the beginning of ev-
ery policy year, usually as a proportion of the sum insured, respectively the
annuity level, and the corresponding rate is denoted by 7.
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This traditional allocation of expenses is somewhat arbitrary. Some expense
items will obviously be fixed costs, independent of the sum insured. Neverthe-
less, the assumption of proportionality is retained for the sake of simplicity.
The factors a, 8 and v will, however, depend on the type of insurance in-
volved. Expenses in respect of an individual insurance are relatively higher
than expenses in respect of a group insurance; for the latter the acquisition
expense is often even waived entirely (i.e. a = 0).

10.2 The Expense-Loaded Premium

The ezpense-loaded premium (or adequate premium) , which we will denote by
P, is the amount of annual premium of which the expected present value is
just sufficient to finance the insured benefits, as well as the incurred costs in
respect of the insurance policy. Hence we may write

P*=P+P*+P°+ P, (10-2.1)

here P denotes the net annual premium, while P*, P® and P” denote the
three components of the expense loading.

We consider as a first example an endowment (sum insured: 1, duration:
n, age at issue: z). The expense-loaded annual premium must satisfy the
condition

Pim e = Apm) T 0+ B Pla ey + Y G, (10.2.2)
so that At ot i
a I:a « ’yazn_l
Pl = = . 10.2.3

The expense-loaded annual premium will be expressed in terms of the net
annual premium if we replace o by a(Am—| + ddzﬂ) in the above formula:

1+« ad+ 7y
PP =—"P. . 10.2.4

If we now divide (10.2.2) by d.;;], we obtain (10.2.1) in the specific form:
o'
azn_]

As a second example we consider the same endowment, but with a shorter
premium paying period m < n. The expense-loaded annual premium is ob-
tained from the condition

Pa(:l;]: Pz;]"*‘ +5P§;]+’Y (1025)

Padzzm = Az:a +a+ ﬁpadzzm + ’yiiz:j . (10.2.6)
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Its components are

[ Iy S (10.2.7)
az:m az:m
with, of course, P = A,/ bz,

For deferred annuities financed by annual premiums it is customary to
charge acquisition expenses as a fraction of the expense-loaded annual pre-
mium, in the same way as collection expenses. Here it is also possible to use
two administration expense rates, a rate y; for the premium paying period,
and another rate 7y, for the annuity’s duration.

For simplicity, the reader may identify the expense-loaded premium with
the gross premium; the necessary safety loading is then taken to be implicit
in the “net” premium, through conservative assumptions about interest and
mortality rates. In practice, the gross premium may also differ from the
expense-loaded premium in that either surcharges for small policies or dis-
counts for large policies are used.

In some countries the premium quoted by the insurance company consists
of the net premium and administration expenses, but not acquisition and
collection expenses. This premium (German: Inventarprimie),

P™ =P+ P, (10.2.8)

covers the actual costs of insured benefits and internal administration ex-
penses.

10.3 Expense-Loaded Premium Reserves

The expense-loaded premium reserve (or adequate reserve) at the end of year
k is denoted by ,V®. It is defined as the difference between the expected
present value of future benefits plus expenses, and that of future expense-
loaded premiums. The expense-loaded premium reserve can be separated into
components similar to those of the expense-loaded premium:

Vo= V4, Vo4 V. (10.3.1)
Here ,V denotes the net premium reserve, V¢ is the negative of the expected
present value of future P, and the reserve for administration expenses is the
difference in expected present value between future administration expenses
and future P7.
For an endowment we have

o e

Wem = —PTa o

dz-l—k:n —k

azn_]
= —a(l— V) (10.3.2)

= —a
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and VY =0for k=1,2,---,n. Thus
k‘/;:m = (1 + a) kVI:n—] - Q. (1033)

If the premium paying period is reduced to m years, then

kV“ = -pP¢ dz+k:m = —C!(l — k‘/;:m) (1034)
fork=1,2,---,m—1,and ,V* = 0for k > m. The reserve for administration

expenses is then

v _ . Dy
kV ’yaz+k:n——k P az+k:m—k

. éz+k:n —k dz+k;m —k
I:n_] z:m
=7 azn—|( k‘/.:c:m - k‘/z:n_]) (1035)

fork=1,2,---,m—1, and
kV'Y =7 dz-{—k:m_] (1036)

for k > m.

The idea to include the negative acquisition cost reserve V¢ in the pre-
mium reserve is due to Zillmer. In the first few years, the expense-loaded
premium reserve may be negative if « is large. Hence the need for upper
bounds on « arose. One suggestion was to choose the value of o at most
equal to the one for which the expense-loaded premium reserve is zero at the
end of the first year. Consider an endowment as an illustration. The con-
dition lVI"m—] > 0 together with (10.3.3) implies that the acquisition expense
rate cannot exceed

With the substitutions
Ve = (P~ Pe)) Gopan) (10.3.8)
and
1- l‘/:t:ﬂ = d1+1:m/ Eiz:n ’ (1039)
the upper bound becomes
o = ( PI+1:m — Pzn_]) azn—l . (10310)
Thus it is evident that
o «a
P+P = Pzn_]‘f‘a— = Pz+1:m|' (10311)

I:n—l
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This result should not come as a surprise: Since ;V + ,V* =0, the premiums
of P+ P* paid from age z + 1 and onward must be sufficient to cover the
future benefits. It is also clear that then

Icht:n—l + kI/zaa = k_l‘/.’t-i-l:m (10312)

holds for k =2,3,---,n.

In practical insurance, the maximum value of « is usually given as a fixed
percentage (say a = 31%).

In some countries the expense-loaded premium reserve does not include
an acquisition cost reserve. The modified expense-loaded reserve (German:
Inventardeckungskapital) then becomes

V= V4 V. (10.3.13)



Chapter 11. Estimating Probabilities of
Death

11.1 Problem Description

The one-year probability of death ¢, has to be estimated from statistical data;
these data will be generated by a certain group of lives (e.g. policyholders),
which has been under observation for a certain period (one or more calendar
years), the observation period. The estimated value of ¢, will be denoted by
qz-

If all observations are complete, meaning that each life has been observed
from age z until age x + 1 or prior death, the statistical analysis is quite
simple. Unfortunately, this is in practice not the case, as will be illustrated
by the so-called Lexis diagram:

Time

Observation period

SN

@09 3>
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In this diagram each life under observation corresponds to a diagonal line
segment showing the time interval during which the life has been observed.
The horizontal borders of the rectangle are made up by the age group under
consideration, and the vertical borders represent beginning and end of the
observation period. Lives aged x before the observation period begins are
incompletely observed (some may have died without this being observed);
similarly, lives aged z+1 after the observation period ends will be incompletely
observed. Another source of incomplete observations is lives which enter the
group between the ages of z and = + 1, when they buy an insurance policy;
as well as lives leaving the group between the ages of x and x + 1 for reasons
other than death, such as policy termination.

Let n lives contribute to the observations in the rectangle. Assume that
life no. ¢ is observed between the ages of z +t; and z +s; (0 < t; < 5; < 1).
The sum

E,=(s1—t1)+(sa—ta)+ -+ (5n — tn) (11.1.1)

is called the the ezposure. The total length of all line segments in the Lexis
diagram is V2 E..

Let D, denote the number of deaths observed in the rectangle (unlike E;,
D, is of course an integer). Denote by I the set of observations ¢ which were
terminated by death, and define, for i € I,

s = [ms; + 1]/m, (11.1.2)

(

(m) is obtained by rounding s; to the next mth part of the year.

ie. s,

11.2 The Classical Method

The idea behind the classical method is to equate the expected number of
deaths to the observed number of deaths in order to derive an estimator ¢,.
The expected number of deaths is in some sense

n
Z l—ixqr+ii - E l—siqz+si . (1121)

i=1 igl
This expression is simplified by Assumption c of Section 2.6, which states that
1—ulz4u = (1 — u)gz. The expected number of deaths then becomes

n

(1=t — Y (1= 8¢ = Eoge + Y_(1 — 5i)gs - (11.2.2)

i=1 igl iel

Equating this expression to the observed number of deaths, we obtain the

classical estimator
D,

- Eo+Yie(1—s)

4z

(11.2.3)



11.3. Alternative Solution 111

This estimator works well if the volume of data is large. The denominator
is sometimes approximated. For instance, under the assumption that deaths,
on the average, occur at age x + %, the estimator is simply

_ DI
 E.+1iD,

G (11.2.4)

The estimator (11.2.3) does not work satisfactorily with sparse data. One
problem is that the numerator may exceed the denominator, giving an obvi-
ously useless estimate of ¢,; another is that the estimator is not amenable to
confidence estimation or hypothesis testing, since its statistical properties are
hard to evaluate. Alternative suggestions will be presented below.

11.3 Alternative Solution

Let m be a positive integer, and define h = 1/m. We shall estimate g, using
the method of the previous section. To this end we assume that ,_,q,,, is a
linear function of u, i.e.

heuloru = (L =mu) pq, for 0 <u<h . (11.3.1)

In order to make use of all data we also assume that the force of mortality
between the ages of z and z + 1 is a periodic function with period h. This
assumption implies, for j = 1,2,---,m — 1, that

h—uqx+jh+u = h—uqz+u fOI‘ O S u S h . (1132)

Making use of the two assumptions, one may now argue that the expected
number of deaths is

mEz pq, +m Y (™ = 51) 40, - (11.3.3)
iel

Equating this to the observed number of deaths, one obtains the estimator

B hD,
Bt Yies(s™ — s1)

19z

(11.3.4)

Assumption (11.3.2) implies that p, = (,p,)™. An estimator of g, is thus
obtained from (11.3.4) by

Go=1-(1— 44" (11.3.5)

This alternative procedure does not become interesting until we let m —
0o. In the limiting case the assumptions (11.3.1) and (11.3.2) coincide with
Assumption b in Section 2.6, stating piz4, = [ for 0 < u < 1, and the
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expected number of deaths (11.3.3) becomes E, ., +1- This leads us to estimate
the constant value of the force of mortality by the ratio

R D,
oy = 2 (11.3.6)
The probability ¢, is then estimated by
Go=1—exp(—fipy1) =1~ exp(—D,/E,). (11.3.7)

11.4 The Maximum Likelihood Method

The moment method of the previous sections may be criticised on the grounds
that equating “expected” number of deaths in the expressions (11.2.1), (11.2.2)
and (11.3.3) to the observed number of deaths, is a heuristic approach. How-
ever, the estimators (11.3.6) and (11.3.7) can also be derived by a different
method.

We assume that the n lives are independent. The likelihood function of
the observations is then

Hp‘l-f-si Si—tipz+ti ’ H Si—-tipz+ti : (1141)
iel i€l

The assumption of a piecewise constant force of mortality simplifies this to

(ot 1)P7 exp(—py1 Ex) - (11.4.2)

This expression is maximised by /,LI+1 = D,/E,, so that (11.3.6) is also the
maximum likelihood estimator. The invariance principle then implies that ¢,
defined by (11.3.7) will also be the maximum likelihood estimator of ¢,.

11.5 Statistical Inference

Actually, both D, and E, are random variables. However, it is convenient to
treat F, as a non-random quantity. Let us therefore assume that the random
variable D, has a Poisson distribution with mean

A= pip B, (11.5.1)

with unknown parameter p, +1- The probability of D, deaths, apart from
a factor which is independent “of fizyls then is identical with the likelihood
(11.4.2). The point estimators (11. 3. 6) and (11.3.7) therefore retain their
validity.
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It is also possible to treat D, as a non-random quantity, assuming that E,
follows a gamma distribution with parameters @« = D, and 8 = Mgyl This
approach is also compatible with the likelihood (11.4.2); we shall not pursue
this here.

The following table displays confidence limits for the parameter of a Pois-
son distribution, for an observed value of n. The lower limit A is defined in
such a way that the probability of an observation of n or greater, calculated
for the value ), is equal to w; similarly, the probability of observing n or less
for A* is equal to w.

The confidence interval for A may be read off directly in the table from
the number of observed deaths D,. Dividing the confidence limits by E, the
confidence interval for p, +1 is obtained. Finally the limits may be transformed
to give a confidence mterval for ¢,. As an illustration, assume that D, = 19
and E, = 2000. The 90% confidence intervals are then 12.44 < )\ < 27.88,
0.00622 < Hayl < 0.01394, 0.00620 < ¢, < 0.01384.

The estlmated probabilities g, (called “crude” rates in practice) may fluc-
tuate wildly from one age interval to the next. In such a situation one may use
one of the more or less sophisticated methods of graduation theory in order to
obtain a smooth function. We shall not discuss these methods in this book.

It is also possible to use an existing life table as a standard and to pos-
tulate that the forces of mortality in the observed group are a constant (age
independent) multiple of the forces of mortality in the standard life table. De-
noting the forces of mortality in the standard table by utI +1 We thus assume

that
Mapy = flly1, (11.5.2)

the objective now being to estimate the factor f. Under the assumption that
the number of deaths occuring in different age groups are independent random
variables, we see that the total number of deaths,

D=>D,, (11.5.3)

follows a Poisson distribution with mean

)\:Zuz+%E1:pr;+%Ez. (11.5.4)

The estimator for ) is then A = D, and we find

; D
z+§

this expression is referred to as the mortality ratio. A confidence interval for
A may easily be transformed into a confidence interval for f.
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For instance, assume that a total of
D =Dyy+ Dyy + -+ Dyg =932 (11.5.6)

deaths have been observed in the age group between 40 and 50, while the
expected number of deaths according to a standard table is

49
> HoyyEr=11457. (11.5.7)
=40

Then one obtains f = 932/1145.7 = 0.813 = 81.3%. In order to construct
a confidence interval for f, we find approximate 90% confidence limits for A’
and A\* by solving
— M 2— X\

92N _yeas, B2 s (11.5.8)
x Vo
(note that we have made use of the normal approximation to the Poisson
distribution). One obtains A' = 883.1 and A\* = 983.6, and after division by
(11.5.7) the confidence interval turns out to be 0.771 < f < 0.856.
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Confidence limits for the parameter of a Poisson distribution

M (w=0.01) M (w=0.05) n AU (w=0.05) X\ (w=0.01)
0.00 0.00 0 3.00 4.61
0.01 0.05 1 4.74 6.64
0.15 0.36 2 6.30 8.41
0.44 0.82 3 7.75 10.05
0.82 1.37 4 9.15 11.60
1.28 1.97 5 10.51 13.11
1.79 2.61 6 11.84 14.57
2.33 3.29 7 13.15 16.00
2.91 3.98 8 14.43 17.40
3.51 4.70 9 15.71 18.78
4.13 5.43 10 16.96 20.14
4.77 6.17 11 18.21 21.49
5.43 6.92 12 19.44 22.82
6.10 7.69 13 20.67 24.14
6.78 8.46 14 21.89 25.45
7.48 9.25 15 23.10 26.74
8.18 10.04 16 24.30 28.03
8.89 10.83 17 25.50 29.31
9.62 11.63 18 26.69 30.58

10.35 12.44 19 27.88 31.85
11.08 13.25 20 29.06 33.10
11.82 14.07 21 30.24 34.36
12.57 14.89 22 31.42 35.60
13.33 15.72 23 32.59 36.84
14.09 16.55 24 33.75 38.08
14.85 17.38 25 34.92 39.31
15.62 18.22 26 36.08 40.53
16.40 19.06 27 37.23 41.76
17.17 19.90 28 38.39 42.98
17.96 20.75 29 39.54 44.19
18.74 21.59 30 40.69 45.40
22.72 25.87 35 46.40 51.41
26.77 30.20 40 52.07 57.35
30.88 34.56 45 57.69 63.23
35.03 38.96 50 63.29 69.07
39.23 43.40 55 68.85 74.86

(=2}
o

43.46 47.85 74.39 80.62
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11.6 The Bayesian Approach

The idea behind the Bayesian method is to view fizyl @S the value assumed by
a random variable © with prior probability density u(1}). Because of (11.4.2)
the posterior density then is

o 9P exp(—9E; )u(V)
uv) = Joo tP= exp(—t E)u(t)dt

(11.6.1)

The parameter p, +1 may then be estimated by the posterior mean of ©. The
uncertainty attached to the estimate may be quantified by the percentiles of
the posterior distribution of ©.

A common assumption is that the prior distribution of © is a gamma
distribution with parameters o and . From (11.6.1) it is easy to see that
the posterior distribution will again be a gamma distribution, now with the
parameters

d=a+D,, B=B+E.. (11.6.2)
Hence we obtain
a a+D, 8 « E, D,

5 B+E DBrEp B+EE

fipyy = (11.6.3)

a result that reminds us of credibility theory. An estimator of g, is obtained
by taking the posterior expectation of

gp=1—-¢e9, (11.6.4)
namely i
@z =1- <—~ﬂ ) : (11.6.5)
B+1

The percentiles of the posterior gamma distribution can be found using the
table of confidence limits of the Poisson parameter, since it can be shown that
Al is the w-percentile of a gamma distribution with parameters n and 1, and
that A* is the (1 — w)-percentile of a gamma distribution with parameters
n + 1 and 1. Thus the posterior probability that the true value of © lies
between A'/3 and A*/f, is 1 — 2w. To find A we put n = &, and for \* we
put n =a — 1.

11.7 Multiple Causes of Decrement

We return to the model introduced in Chapter 7, where a decrement could be
the result of any of m causes. As before we observe the exposure E, and the
number of decrements D, (for simplicity we shall refer to these as number of
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deaths). In addition we are informed of the number of deaths by cause j, for
j=12,.--,m, denoted by D;,. Obviously

Dig+Dy++Dpy=D,. (11.7.1)

The probability g, can be estimated by the methods discussed before. We
shall now discuss estimation of the probabilities g; ;.
Let us assume piecewise constant forces of decrement, i.e.

Hjatu = Hjgqr for0<u<1. (11.7.2)

Equation (7.2.2) shows then that the aggregate force of decrement also will
be piecewise constant. Assuming again that the n lives under observation are
independent, we see that the likelihood function is given by

s

(Hj041) 77 exp(—p1,4 L Ey) (11.7.3)

j=1

Maximum likelihood estimators are thus

D’z‘ .
Piary =5 §=12.m. (11.7.4)
The corresponding estimator for
[T
G = 22, (11.7.5)
Mz+%
is then D
djc = #q}, (11.7.6)

with ¢, defined by (11.3.7).

In the Bayesian setting the m forces of decrement are considered as realisa-
tions of the random variables ©1,0,, - -, 0,,, which have a prior probability
density u(d,92,---,9,). The posterior probability density is then propor-
tional to

(9,)P5= exp(—0E, Ju(t, Ua, -+ . ), (11.7.7)

J

—:

Il
—

J

with the definition 9 =¥; + 95 + -+ + 9,,. Now ﬂj.z‘+% is the posterior mean
of O, and ¢; , is the posterior mean of

%<1 _ 9, (11.7.8)

if we write © =01 +05 + -+ O,,.
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The analysis is particularly simple under the assumption that the random
variables ©; are independent, ©; having a gamma distribution with parame-
ters ; and 8. In that case the ©; are also independent a posteriori, and ©;
has a gamma distribution with parameters

&;=a;+D;,, B=0+E,, (11.7.9)

which results in the estimate

R _ ay o5+ D,

Since the ratio ©;/0 is independent of © and has a beta distribution, we can
calculate the mean of (11.7.8), obtaining
S, (11.7.11)

qj,x+% = &

here & = &1 + & + -+ - + &, and §, is defined by (11.6.5).

11.8 Interpretation of Results

The probability of death at a given age will often be non-stationary in the
sense that the general mortality declines as time proceeds. Let us denote the
one-year probability of death of a person aged z at calendar time ¢ by ¢.
On the basis of statistical data from a certain observation period, the values
¢t. gt 1,q5 o, - - are estimated; here t is taken to be the middle of the ob-
servation period. A life table constructed in this way is called a current, or
cross-sectional life table. Such a life table is, of course, an artificial construc-
tion.

The probabilities of death*and expected values introduced in the preceding
chapters all refer to one specific life. Assuming that the initial age of the
insured is z at time ¢, the proper probabilities to use are g%, %%}, ¢it3, - - -.
The corresponding life table is called a longitudinal or generation life table,
since it relates to the generation of persons born at time ¢t — z. This life
table defines the probability distribution of K = K(z). The probabilities of
death in a generation life table must be estimated by a suitable method of
extrapolation.



Appendix A. Commutation Functions

A.1 Introduction

In this appendix we give an introduction to the use of commutation functions.
These functions were invented in the 18th century and achieved great popu-
larity, which can be ascribed to two reasons:

Reason 1

Tables of commutation functions simplify the calculation of numerical values
for many actuarial functions.

Reason 2

Expected values such as net single premiums may be derived within a deter-
ministic model closely related to commutation functions.

Both reasons have lost their significance, the first with the advent of powerful
computers, the second with the growing acceptance of models based on prob-
ability theory, which allows a more complete understanding of the essentials
of insurance. It may therefore be taken for granted that the days of glory for
the commutation functions now belong to the past.

A.2 The Deterministic Model

Imagine a cohort of lives, all of the same age, observed over time, and denote
by I, the number still living at age z. Thus d, = [, — l,4; is the number of
deaths between the ages of z and x + 1.

Probabilities and expected values may now be derived from simple pro-
portions and averages. So is, for instance,

Pe = loye/le (A.2.1)
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the proportion of persons alive at age = + ¢, relative to the number of persons
alive at age x, and the probability that a life aged z will die within a year is

@z = dg/l; . (A.2.2)

In Chapter 2 we introduced the expected curtate future lifetime of a life
aged z. Replacing ,p, by l.,+/l; in (2.4.3), we obtain
I, I, .
%=_1ifﬂ;ﬁ (A.2.3)
The numerator in this expression is the total number of complete future years
to be “lived” by the [, lives (z), so that e, is the average number of completed
years left.

A.3 Life Annuities

We first consider a life annuity-due with annual payments of 1 unit, as intro-
duced in Section 4.2, the net single premium of which annuity was denoted
by d,. Replacing ;p, in (4.2.5) by l,,+/l., we obtain

. ll- + 'Ulz+1 + 'U211-+2 + e

T lx ?

(A.3.1)

or
lo iy = lo + vloyr + V1o + - (A.3.2)

This result is often referred to as the equivalence principle, and its interpre-
tation within the deterministic model is evident: if each of the I, persons
living at age x were to buy an annuity of the given type, the sum of net single
premiums (the left hand side of (A.3.2)) would equal the present value of the
benefits (the right hand side of (A.3.2)).
Multiplying both numerator and denominator in (A.3.1) by v*, we find
Vo + v o + 0" 4

i, = ol . (A.3.3)

With the abbreviations
Dz = 'Uzll-, Nz - Dg_- + Dg_-+1 + Dz+2 + - (A34)
we then obtain the simple formula
G, = —. (A.3.5)

Thus the manual calculation of @, is extremely easy if tables of the com-
mutation functions D, and N, are available. The function D, is called the
“discounted number of survivors”.
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Similarly one may obtain formulas for the net single premium of a tempo-
rary life annuity,

b= =5 B (A.3.6)
immediate life annuities,
Nz+1
r = , A3.
a D. (A.3.7)

and general annuities with annual payments: formula (4.4.2) may naturally
be translated to

10Dy + 11 Dgq1 +reDgig + -+

E(Y) = A3.
() 5 (4.38)
For the special case 1, = k + 1 we obtain the formula
Sz
li), = —; 3.
(1d) D, (A.3.9)
here the commutation function S, is defined by
Sz = Da: + 2Dz+1 + 3l)a:+2 +

A.4 Life Insurance

In addition to (A.3.4) and (A.3.10) we now define the commutation functions
= g,

= Cr+Crp1+Copat-,

= Cp+2C0p41+3C2+ -

= M.+ My +Moo+---. (A.4.1)
Replacing ;p,g-+ in equation (3.2.3) by d,,1/l;, we obtain

vdy + V2dps1 + V3dgpg + - -

A, = ;i

_ Ox+cz+l+cz+2+"'

= D
M,

= 5 (A4.2)

Similarly one obtains
(4), - vdy + 20%dg 41 + 303dpin + - -
Tz lz

O+ 20,4 +3C 1+

- 28
R,

= —. (A4.3)

D,
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Obviously these formulae may be derived within the deterministic model by
means of the equivalence principle. In order to determine A, one would start
with

I, A; =vdy + v3dyy + v3dyin + - - (A.4.4)
by imagining that [, persons buy a whole life insurance of 1 unit each, payable

at the end of the year of death, in return for a net single premium.
Corresponding formulae for term and endowment insurances are

M, — M
1 _ T z+n
Az:n—| - Dz ’
A _] _ Mz - Mx+n + D2:+n
n Da: ’
Cr+2C;41+3Ce2+ - +nChryn-
1 _ z z+1 z+2 z4+n-—1
(TA)7 = o
. Mz + Mz+1 + Mz+2 + -+ Mx+n—1 - nMJ:+n
D,
Rz - Rz n - Mx n
- +D il¥ztn (A.4.5)

which speak for themselves.
The commutation functions defined in (A.4.1) can be expressed in terms
of the commutation functions defined in Section 3. From d, = I, — [, follows

C, =vD, — Dyoy . (A.4.6)

Summation yields the identities

M, =vN, - (N, — D;) =D, —dN, (A.4.7)
and
R, =N, —dS,. (A.4.8)
Dividing both equations by-D,, we retrieve the identities
A, = 1-da,,
(I1A), = a,—d(la),, (A.4.9)

see equations (4.2.8) and (4.5.2).

A.5 Net Annual Premiums and Premium Reserves

Consider a whole life insurance with 1 unit payable at the end of the year of
death, and payable by net annual premiums. Using (A.3.5) and (A.4.2) we
find
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Of course, the deterministic approach, i.e. the condition

Pl 4+ vPylosy + V2 Pylyo + - = vdy + v2dpyy + v3dgqn + - -

leads to the same result.
The net premium reserve at the end of year k£ then becomes
Mx+k - PzNz-Hc

kvx = Az+k - an1+k = DI+k
This result may also be obtained by the deterministic condition

kvxlx+k + lex+k + valz+k+l + U2lez+k+2 + -
= vdgik + V2dpipir + U3d1+k+2 +---
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(A.5.2)

(A.5.3)

(A.5.4)

Here one imagines that each person alive at time k is allotted the amount ,V;
the condition (A.5.4) states that the sum of the net premium reserve and the
present value of future premiums must equal the present value of all future

benefit payments.

The interested reader should be able to apply this technique to other, more

general situations.
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In practice, the accumulation factor for a time interval of length A is occa-
sionally approximated by

(1+d) " ~14hi. (B.1)

This approximation is obtained by neglecting all but the linear terms in the
Taylor expansion of the left hand side above; alternatively the right hand side
may be obtained by linear interpolation between h = 0 and h = 1. Similarly
an approximation for the discount factor for an interval of length A is

=(1-d*"~1-hd. (B.2)

The approximations (B.1) and (B.2) have little practical importance since the
advent of pocket calculators.

Interest on transactions with a savings account is sometimes calculated
according to the following rule: If an amount of r is deposited (drawn) at
time u (0 < u < 1), it is valued at time 0 as

ro* =~ r(1 — ud). (B.3)
At the end of the year (time 1) the amount is valued as

r(L+d)'"™ = r(1+i)v* =r(1+1)(1 — ud)
= r{1+ (1 —u)i}. (B.4)
This technique amounts to accumulation from time u to time 1 according to
(B.1) or discounting from u to 0 according to (B.2). With a suitably chosen

variable force of interest the rule is exact; this variable force of interest is
determined by equating the accumulation factors:

1+(1—u)i:exp(/
Differentiating the logarithms gives the expression
i o d
1+(1—-u)i 1-ud

1

6(t)dt) . (B.5)

8(u) = (B.6)
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for 0 < u < 1. The force of interest thus increases from 6(0) = d to 6(1) = ¢
during the year.

The technique sketched above is based on the assumption that the accu-
mulation factor for the time interval from u to 1 is a linear function of u; this
assumption is analogous to Assumption ¢ of Section 2.6, concerning mortality
for fractional durations. The similarity between (B.6) and (2.6.10) is evident.
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C.0 Introduction

These exercises provide two types of practice. The first type consists of theo-
retical exercises, some demonstrations, and manipulation of symbols. Some of
these problems of the first kind are based on Society of Actuaries questions from
examinations prior to May 1990. The second type of practice involves using a
spreadsheet program. Many exercises are solved in Appendix D. For the spread-
sheet exercises, we give a guide to follow in writing your own program. For the
theoretical exercises, we usually give a complete description. We provide guides
for solving the spreadsheet problems, rather than computer codes. The student
should write a program and use the guide to verify it. We use the terminology
of Fzcel in the guides. The terminology of other programs is analogous.

I would like to thank Hans Gerber for allowing me to contribute these exer-
cises to his textbook. It is a pleasure to acknowledge the assistance of Georgia
State University graduate students, Masa Ozeki and Javier Suarez who helped
by checking solutions and proofreading the exercises.

I hope that students will find these exercises challenging and enlightening.

Atlanta, June 1995 Samuel H. Coz
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C.1 Mathematics of Compound Interest:
Exercises

A bond is a contract obligating one party, the borrower or bond issuer, to pay
to the other party, the lender or bondholder, a series of future payments defined
by the face value, F, and the coupon rate, c. At the end of each future period
the borrower pays cF to the lender. The bond matures after N periods with a
fina] coupon payment and a simultaneous payment of the redemption value C.
Usually C is equal to F. Investors (lenders) require a yield to maturity of 1 > 0
effective per period. The price, P, is the present value of future cash flows paid
to the bondholder. The five values are related by the following equation.

_ N
P=cF! 4 Co

where v =1/(1 +1).

C.1.1 Theory Exercises

1. Show that () 4(m)
(m m
i) _ glm) _ B
m

2. Showthat d < d® < d® < ... <6<...<i® <i® < and

g < P
~ min(m,n)

3. A company must retire a bond issue with five annual payments of 15,000.

The first payment is due on December 31, 1999. In order to accumulate the

funds, the company begins making annual payments of X on January 1, 1990

into an account paying effective annual interest of 6%. The last payment is to

be made on January 1, 1999. Calculate X.

4. At a nominal annual rate of interest j, convertible semiannually, the present
value of a series of payments of 1 at the end of every 2 years, which continue
forever, is 5.89. Calculate j.

5. A perpetuity consists of yearly increasing payments of (1 + k), (1 + k)2,
(1 + k)3, etc., commencing at the end of the first year. At an annual effective
interest rate of 4%, the present value one year before the first payment is 51.
Determine k.

6. Six months before the first coupon is due a ten-year semi-annual coupon
bond sells for 94 per 100 of face value. The rate of payment of coupons is
10% per year. The yield to maturity for a zero-coupon ten-year bond is 12%.
Calculate the yield to maturity of the coupon payments.
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7. A loan of 1000 at a nominal rate of 12% convertible monthly is to be repaid
by six monthly payments with the first payment due at the end of one month.
The first three payments are z each, and the final three payments are 3z each.
Calculate z.

8. A loan of 4000 is being repaid by a 30-year increasing annuity immediate.
The initial payment is k, each subsequent payment is k larger than the preceding
payment. The annual effective interest rate is 4%. Calculate the principal
outstanding immediately after the ninth payment.

9. John pays 98.51 for a bond that is due to mature for 100 in one year. It
has coupons at 4% convertible semiannually. Calculate the annual yield rate
convertible semiannually.

10. The death benefit on a life insurance policy can be paid in four ways. All
have the same present value:

(i) A perpetuity of 120 at the end of each month, first payment one month after
the moment of death;

(ii) Payments of 365.47 at the end of each month for n years, first payment one
month after the moment of death;

(iii) A payment of 17,866.32 at the end of n years after the moment of death;
and

(iv) A payment of X at the moment of death.
Calculate X.

C.1.2 Spreadsheet Exercises

1. A serial bond with a face amount of 1000 is priced at 1145. The owner
of the bond receives annual coupons of 12% of the outstanding principal. The
principal is repaid by the following schedule:

(i) 100 at the end of each years 10 through 14, and
(ii) 500 at the end of year 15.

(a) Calculate the investment yield using the built-in Goal Seek procedure.

(b) Use the graphic capability of the spreadsheet to illustrate the investment
yield graphically. To do this, construct a Data Table showing various investment
yield values and the corresponding bond prices. From the graph, determine
which yield corresponds to a price of 1,145.

2. A deposit of 100,000 is made into a newly established fund. The fund pays
nominal interest of 12% convertible quarterly. At the end of each six months
a withdrawal is made from the fund. The first withdrawal is X, the second is
2X, the third is 3X, and so on. The last is the sixth withdrawal which exactly
exhausts the fund. Calculate X.
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3. A loan is to be repaid by annual installments 100, 200, 300, 300, 200 and
100. In the fifth installment, the amount of principal repayment is equal to six
times the amount of interest. Calculate the annual effective interest rate.

4. A company borrows 10,000. Interest of 350 is paid semiannually, but no
principal is paid until the entire loan is repaid at the end of 5 years. In order to
accumulate the principal of the loan at the end of five years, the company makes
equal semiannual deposits, the first due in six months, into a fund that credits
interest at a nominal annual rate of 6% compounded semiannually. Calculate
the internal rate of return effective per year for the company on the entire
transaction.

5. Deposits of 100 are made into a fund at the beginning of each year for 10
years. Beginning ten years after the last deposit, X is withdrawn each year from
the fund in perpetuity.

(a) ¢ = 10%. Calculate X.

(b) Draw the graph of X as a function of i for i varying from 1% to 21% in
increments of 2%.

6. A bank credits savings accounts with 8% annual effective interest on the first
100,000 of beginning year account value and 9% on the excess over 100,000. An
initial deposit of 300,000 is made. One year later level annual withdrawals of X
begin and run until the account is exactly exhausted with the tenth withdrawal.
Calculate X.

7. In order to settle a wrongful injury claim, an annuity is purchased from an
insurance company. According to the annuity contract, the insurer is obliged to
make the following future payments on July 1 of each year indicated:

Year | Amount

1995 50,000
1996 60,000
1997 75,000

1998 | 100,000
1999 | 125,000
2000 | 200,000

The insurer is considering hedging its future liability under the annuity contract
by purchasing government bonds. The financial press publishes the market
prices for the following government bonds available for sale on July 1, 1994.
Each bond has a face amount of 10,000, each pays annual coupons on July 1,
and the first coupon payment is due in one year.

Maturity | Coupon Rate [ Price
1995 4.250% 9,870
1996 7.875% 10,180
1997 5.500% 9,600
1998 5.250% 9,210
1999 6.875% 9,740
2000 7.875% 10,120
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Determine how many bonds of each maturity the insurer should buy on July
1, 1994 so that the aggregate cash flow from the bonds will exactly match
the insurer’s obligation under the terms of the claim settlement. Assume that
fractions of bonds may be purchased.

8. A loan of 100,000 is repayable over 20 years by semiannual payments of
2500, plus 5% interest (per year convertible twice per year) on the outstanding
balance. Immediately after the tenth payment the lender sells the loan for
65,000. Calculate the corresponding market yield to maturity of the loan (per
year convertible twice per year).

9. A bond with face value 1000 has 9% annual coupons. The borrower may
call the bond at the end of years 10 though 15 by paying the face amount plus
a call premium, according to the schedule:

Year 101111121314 ] 15
Premium | 100 | 80 | 60 | 40 | 20 0

For example, if the borrower elects to repay the debt at the end of year 11 (11
years from now), a payment of 1000 + 80 = 1080 plus the coupon then due of
90 would be paid to the lender. The debt is paid; no further payments would
be made. Calculate the price now, one year before the next coupon payment,
to be certain of a yield of at least 8% to the call date.

10. Equal deposits of 200 are made to a bank account at the beginning of each
quarter of a year for five years. The bank pays interest from the date of deposit
at an annual effective rate of i. One quarter year after the last deposit the
account balance is 5000. Calculate i.
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C.2 The Future Lifetime of a Life Aged x:
Exercises

These exercises sometimes use the commutation function notation introduced
in Appendix A and the following notation with regard to mortality tables. The
Illustrative Life Table is given in Appendix E. It is required for some exercises.

A mortality table covering the range of ages z (0 < z < w) is denoted by
I, which represents the number Iy of the new-born lives who survive to age z.
The probability of surviving to age z is s{(z) = l./lp. The rule for calculating
conditional probabilities establishes this relationship to (p.:

_ S(I+t) _ lI+t
Tos(z) T I

pz = Pr(T(0) > z + t|T(0) > z)

In the case that the conditioning involves more information than mere survival,
the notation (pjz) is used. Thus if a person age z applies for insurance and is
found to be in good health, the mortality function is denoted ;p|z) rather than
¢pz- The notation [z] tells us that some information in addition to T'(0) > z
was used in preparing the survival distribution. This gives rise to the select and
ultimate mortality table discussed in the text.

Here are some additional mortality functions:

mg = central death rate = d—x
Ly
L, = average number of survivors to (z,z + 1)
z+1 1
= / lydy =/ lpyedt
z 0
d; = number of deaths in (z,z + 1) =l; — lz41.
Since (prpzyt = —gdjzpz, then in terms of I, we have Iy iz = —%IIH or,
letting y = z + t, we have l,u, = —diyly for all y. The following are useful for

calculating Var(T') and Var(K):

(e o]

E[TQ] = / tzsz/‘x+tdt
0
= / 2ttp1dt
0
oo
E[K2] = Zkz—ﬂ’:(hﬂ—l

ol
Il
—_

Il
WK

(2k + 1)k+1P:-

x>
Il
=}
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C.2.1 Theory Exercises

1. Given:
100 —z —t

100 — z
for 0 <z <100 and 0 <t <100 — z. Calculate p4s.

2. Given:
1.5
—1-(t
tPz (100)

for z = 60 and 0 < t < 100. Calculate E[T(z)].

tPx =

. 1 3
3. Given: pgy¢ = Fr— + 106 3 for 0 <t < 85. Calculate 9op.
1+ 3
4. Given: ¢p; = <m> for t > 0. Calculate the complete life expectancy

of a person age = = 41.
9z

5. Given: ¢; = 0.200. Calculate my = ———
fo !pxdt

using assumption c, the
Balducci assumption.

6. Given:

(i) pz+¢ is constant for 0 <t <1 and

(ii) gz = 0.16.

Calculate the value of ¢ for which ,p, = 0.95.

7. Given:

(i) The curve of death Iz is constant for 0 < z < w.

(ii) w = 100.

Calculate the variance of the remaining lifetime random variable T'(z) at = = 88.
8. Given:

(i) When the force of mortality is gz, 0 <t < 1, then ¢, = 0.05.
(ii) When the force of mortality is pz4+: — ¢, 0 <t < 1, then ¢ = 0.07.

Calculate c.

9. Prove:
(i) 1pz = exp (— f:“ ,usds) and
(ii) aa—ztpz = (#x — fhz4t) Pz

10. You are given the following excerpt from a select and ultimate mortality
table with a two-year select period.
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z | 100g;z) | 100g(zj1+1 | 100gz42
30 0.438 0.574 0.699
31 0.453 0.599 0.734
32 0.472 0.634 0.790
33 0.510 0.680 0.856
M 0.551 0.737 0.937

Calculate 100(y)g(30]+1)-

11. Given:
I, = (121 — )2

for 0 < z < 121. Calculate the probability that a life age 21 will die after
attaining age 40, but before attaining age 57.

12. Given the following table of values of e:

Agez | ey
75 10.5
76 10.0
77 9.5

Calculate the probability that a life age 75 will survive to age 77. Hint: Use the
recursion relation ez = pz(1 + ez41).

13. Mortality follows de Moivre’s law and E[T'(16)] = 36. Calculate Var(T'(16)).

14. Given:

7800 — 70t — ¢2
7800

for 0 <t < 60. Calculate the exact value of gsg — uso.

(100 -z —¢t\?
Pz =\ T100 - «

for 0 <t <100 — z. Calculate Var(T(z)).

tP30 =

15. Given:

16. Given: ¢, = 0.420 and assumption b applies to the year of age z to = + 1.
Calculate mg, the central death rate exactly. (See exercise 5.)

17. Consider two independent lives, which are identical except that one is a
smoker and the other is a non-smoker. Given:

(i) pz is the force of mortality for non-smokers for 0 < r < w.

(ii) cp is the force of mortality for smokers for 0 < z < w, where cis a constant,
c> 1.
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Calculate the probability that the remaining lifetime of the smoker exceeds that
of the non-smoker.

18. Derive an expression for the derivative of g, with respect to z in terms of
the force of mortality.

19. Given: u, = kz for all z > 0 where k is a positive constant and 19p3s = 0.81.
Calculate 29p40 -

20. Given:

(i) Iz = 1000(w® — z3) for 0 < z < w and
(ii) E[T(0))] = 3w/4.

Calculate Var(T(0)).

C.2.2 Spreadsheet Exercises

1. Put the Illustrative Life Table I, values into a spreadsheet. Calculate d; and
1000q; for z =0,1,...,99.

2. Calculate ez, z = 0,1,2,...,99 for the Illustrative Life Table. Hint: Use
formula (2.4.3) to get egg = pog = O for this table. The recursive formula
ez = pz{1 + ez1) follows from (2.4.3). Use it to calculate from the higher age
to the lower.

3. A sub-standard mortality table is obtained from a standard table by adding
a constant ¢ to the force of mortality. This results in sub-standard mortality
rates ¢¢ which are related to the standard rates g, by ¢ =1 —e7¢(1 —¢;). Use
the Illustrative Life Table for the standard mortality. A physician examines a
life age £ = 40 and determines that the expectation of remaining lifetime is 10
years. Determine the constant ¢, and the resulting substandard table. Prepare
a table and graph of the mortality ratio (sub-standard ¢% to standard g.) by
year of age, beginning at age 40.

4. Draw the graph of y, = B,z =0,1,2,...,110 for B = 0.0001 and each
value of ¢ = 1.01,1.05,1.10,1.20. Calculate the corresponding values of I, and
draw the graphs. Use lp = 100, 000 and round to an integer.

5. Let g; = 0.10. Draw the graphs of y; ., for u running from 0 to 1 increments
of 0.05 for each of the interpolation formulas given by assumptions a, b, and c.

6. Substitute ,q, for pz4, in Exercise 5 and rework.

7. Use the method of least squares (and the spreadsheet Solver feature) to fit a
Gompertz distribution to the Illustrative Life Table values of ;p, for z = 50 and
t=1,2,...,50. Draw the graph of the table values and the Gompertz values
on the same axes.

8. A sub-standard mortality table is obtained from a standard table by mul-
tiplying the standard gq, by a constant k > 1, subject to an upper bound of 1.
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Thus the substandard ¢ mortality rates are related to the standard rates g, by
g2 = min(kgq,, 1).

(a) For values of k ranging from 1 to 10 in increments of 0.5, calculate points
on the graph of ;p% for age z = 45 and ¢ running from 0 to the end of the table
in increments of one year. Draw the graphs in a single chart.

(b) Calculate the sub-standard life expectancy at age x = 45 for each value of
k in (a).
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C.3 Life Insurance
C.3.1 Theory Exercises

1. Given:

(i) The survival function is s(z) =1 — z/100 for 0 < = < 100.
(ii) The force of interest is § = 0.10.
Calculate 50,000 A30.

2. Show that
(TA), — A 5

(IA):+1 + AI+1
simplifies to vp;.

3. Z, is the present value random variable for an n-year continuous endowment
insurance of 1 issued to (z). Z is the present value random variable for an
n-year continuous term insurance of 1 issued to z. Given:

(i) Var(Z) = 0.01

(i) ™ = 0.30

(iii) npz = 0.8

(iv) E[Z2] = 0.04.

Calculate Var(Z,).

4. Use the Illustrative Life Table and i = 5% to calculate A 45:70] -
5. Given:

(i) Ax:m =u

(ii) Aalc:?ﬂ =y

(iil) Az4n = 2.

Determine the value of A, in terms of 4, ¥, and 2.

6. A continuous whole life insurance is issued to (50). Given:
(i) Mortality follows de Moivre’s law with w = 100.

(ii) Simple interest with ¢ = 0.01.

(iii) b, = 1000 — 0.1¢2.
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Calculate the expected value of the present value random variable for this in-
surance.

7. Assume that the forces of mortality and interest are each constant and
denoted by u and &, respectively. Determine Var(v7T) in terms of x and 6.

8. For a select and ultimate mortality table with a one-year select period,
qiz] = 0.5¢; for all z > 0. Show that Az — Az} = 0.5vg:(1 — Az41).

9. A single premium whole life insurance issued to (z) provides 10,000 of insur-
ance during the first 20 years and 20,000 of insurance thereafter, plus a return
without interest of the net single premium if the insured dies during the first 20
years. The net single premium is paid at the beginning of the first year. The
death benefit is paid at the end of the year of death. Express the net single
premium using commutation functions.

10. A ten-year term insurance policy issued to (z) provides the following death
benefits payable at the end of the year of death.

Year of Death | Death Benefit
1 10
2 10
3 9
4 9
5 9
6 8
7 8
8 8
9 8
10 7

Express the net single premium for this policy using commutation functions.
11. Given:

(i) The survival function is s(z) = 1 — /100 for 0 < z < 100.

(ii) The force of interest is § = 0.10.

(iii) The death benefit is paid at the moment of death.

Calculate the net single premium for a 10-year endowment insurance of 50,000
for a person age x = 50.

12. Given:

(i) s(z) =992 for z > 0

(i) 6 = 0.04.

Calculate the median of the present value random variable Z = vT for a whole
life policy issued to (y).

13. A 2-year term insurance policy issued to (z) pays a death benefit of 1 at
the end of the year of death. Given:
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(i) gz = 0.50

(ii)i=0

(iii) Var(Z) = 0.1771

where Z is the present value of future benefits. Calculate g4;.

14. A 3-year term life insurance to (z) is defined by the following table:

Year ¢t | Death Benefit | g,4:
0 3 0.20
1 2 0.25
2 1 0.50

Given: v = 0.9, the death benefits are payable at the end of the year of death and
the expected present value of the death benefit is II. Calculate the probability
that the present value of the benefit payment that is actually made will exceed
II.

15. Given:

(i) Azg = 0.800

(ii) D7¢ = 400

(iii) D77 = 360

(iv)] i = 0.03.

Calculate A77 by use of the recursion formula (3.6.1).

16. A whole life insurance of 50 is issued to (z). The benefit is payable at the
moment of death. The probability density function of the future lifetime, T, is

t/5000 for 0 <t <100
s ={{ sis

0 elsewhere.

The force of interest is constant: § = 0.10. Calculate the net single premium.

17. For a continuous whole life insurance, E[v?T] = 0.25. Assume the forces of
mortality and interest are each constant. Calculate E[vT].

18. There are 100 club members age z who each contribute an amount w to
a fund. The fund earns interest at : = 10% per year. The fund is obligated to
pay 1000 at the moment of death of each member. The probability is 0.95 that
the fund will meet its benefit obligations. Given the following values calculated
at 1 = 10%: Ay = 0.06 and 24, = 0.01. Calculate w. Assume that the future
lifetimes are independent and that a normal distribution may be used.

19. An insurance is issued to (z) that

(i) pays 10,000 at the end of 20 years if z is alive and

(ii) returns the net single premium II at the end of the year of death if (z) dies
during the first 20 years.
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Express II using commutation functions.

20. A whole life insurance policy issued to (z) provides the following death
benefits payable at the end of the year of death.

Year of Death | Death Benefit
1 10
2 10
3 9
4 9
5 9
6 8
7 8
8 8
9 8
10 7

each other year 7

Calculate the net single premium for this policy.

C.3.2 Spreadsheet Exercises

1. Calculate the A; column of the Illustrative Life Table at ¢ = 5% . Use the
recursive method suggested by formula (3.6.1). Construct a graph showing the
values of A, for ¢ = 0,2.5%,5%,7.5%,10% and £ =0,1,2,...,99.

2. The formula for increasing life insurances, in analogy to (3.6.1), is (IA), =
vqy + vpz(Azy1 + IAzy1). Use this (and (3.6.1)) to calculate a table of values
of (IA), for the Illustrative Life Table and i = 5%.

3. Calculate the net single premium of an increasing 20 year term insurance
for issue age x = 25, assuming that the benefit is 1 the first year, 1+ g the
second year, (1 + g)? the third year and so on. Use the Illustrative Life Table
at 1 = 5% and g = 6% . Try to generalize to a table of premiums for all issue
agesz =0,1,2,...,99.

4. Calculate the net single premium for a decreasing whole life insurance with
an initial benefit of 100 — = at age z, decreasing by 1 per year. The benefit is
paid at the moment of death. Use the Illustrative Life Table at ¢ = 5% and
z = 50. Generalize so that = and 4 are input cell values, and your spreadsheet
calculates the premium for reasonable interest rates and ages.

5. For a life age £ = 35, calculate the variance of the present value random
variable for a whole life insurance of 1000. The interest rate 7 varies from 0 to
25% by increments of 0.5%. Mortality follows the Illustrative Life Table. Draw
the graph.
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C.4 Life Annuities

C.4.1 Theory Exercises
1. Using assumption a and the Illustrative Life Table with interest at the

. (2)
effective annual rate of 5%, calculate a 40:30]"

2. Demonstrate that } )
(Ia‘)z - a‘x:T'

(I&)z-u + az-H

simplifies to a1

3. (Iza), is equal to E[Y] where

v (I_c:z)ﬂ ) ff0§T<nand
(Ia.)m +n (n|a—T—_—n]) ifT>n

The force of mortality is constant, p, = 0.04 for all z, and the force of interest

is constant, 6 = 0.06. Calculate 3% (I—m &):.

4. Given the following information for a 3-year temporary life annuity due,
contingent on the life of (z):

t | Payment | pz4.
0 2 0.80
1 3 0.75
2 4 0.50

and v = 0.9. Calculate the variance of the present value of the indicated pay-
ments.

5. Given:
(i) Iz = 100,000(100 — z), 0 < z < 100 and
(ii) = 0.

Calculate (Ia)g; exactly.

a(12)

%:m
i = 5%. (The symbol denotes an annuity issued on a life age 25, the first
payment deferred 10 years, paid in level monthly payments at a rate of 1 per
year during the lifetime of the annuitant but not more than 10 years.)

6. Calculate 10] using the Illustrative Life Table, assumption a and

7. Given:
(i)
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T 69 70 71 720 79 80 81 82
Sz | 77,938 | 67,117 | 57,520 | 49,043 { --- { 13,483 | 10,875 | 8,691 | 6,875

(ii) a(12) = 1.00028 and S(12) = 0.46812

(iii) assumption a applies: deaths are distributed uniformly over each year of
age.

Calculate (Ia)2

70:_16] :
8. Show:
n—1
nPedim + Y (1= 0" )kprgasn =1 - Azm
k=0

9. Y is the present value random variable of a whole life annuity due of 1 per
year issued to (z). Given: @, = 10, evaluated with i = 1/24 = ¢ — 1, and
&z = 6, evaluated with ¢ = €26 — 1. Calculate the variance of Y.

10. @.7) is equal to E[Y] where

v GxTT if0< K <nand
] am if K >n.
Show that
M(—26) — M(~6)?

22
where M(u) = E(e* ™n(K+1n)) is the moment generating function of the random
variable min(K + 1, n).

Var[Y] =

11. Given 7 = 0.03 and commutation function values:

z 27 28 29 30 31
S, | 1,868 | 1,767 | 1,670 | 1,577 | 1,488

Calculate the commutation Mog.

12. Given the following functions valued at z = 0.03:

T | ag
72| 8.06
731773
741743
751715

Calculate pr3.
13. Given the following information for a 3-year life annuity due, contingent on

the life of (z):
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t | Payment | pzy¢
0 2 0.80
1 3 0.75
2 4 0.50

Assume that ¢ = 0.10. Calculate the probability that the present value of the
indicated payments exceeds 4.

14. Given I, = 100,000(100 —z), 0 < z < 100 and ¢ = 0. Calculate the present
value of a whole life annuity issued to (80). The annuity is paid continuously at
an annual rate of 1 per year the first year and 2 per year thereafter.

15. As in exercise 14, l; = 100,000(100 — z), 0 < z < 100 and 7 = 0. Calculate
the present value of a temporary 5-year life annuity issued to (80). The annuity
is paid continuously at an annual rate of 1 per year the first year and 2 per year
for four years thereafter.

(oo}

16. Given 6 = 0, / typ-dt = g, and Var(a—]) = h, where T is the future

lifetime random variable for (x). Express E[T] in terms of g and h.

17. Given:
T 69 70 71 721 --- 79 80 81 82
S | 77,938 | 67,117 | 57,520 | 49,043 | --- | 13,483 | 10,875 | 8,691 | 6, 875

Calculate (D&)mm which denotes the present value of a decreasing annuity.
The first payment of 10 is at age 70, the second of 9 is scheduled for age 71, and
so on. The last payment of 1 is scheduled for age 79.

18. Show that . .
aﬂ Sz — aﬂ Sz+1 + al—] Sz+2

D

simplifies to A,.
19. For a force of interest of § > 0, the value of E (&ﬂ) is equal to 10. With

the same mortality, but a force of interest of 28, the value of E (67.-') is 7.375.
Also Var(dﬂ) = 50. Calculate A;.

20. Calculate @z, using the Illustrative Life Table at 5% for age z+u = 35.75.
Assumption a applies.

C.4.2 Spreadsheet Exercises

1. Calculate d, based on the Illustrative Life Table at i = 5% . Use the
recursion formula (4.6.1). Construct a graph showing the values of d, for ¢ =
0,2.5%, 5%, 7.5%,10% and z = 0,1, 2,...,99.
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2. Consider again the structured settlement annuity mentioned in exercise 7
of Section C.1. In addition to the financial data and the scheduled payments,
include now the information that the payments are contingent upon the survival
of a life subject to the mortality described in exercise 3 of Section C.2. Calculate
the sum of market values of bonds required to hedge the expected value of the
annuity payments.

3. A life age z = 50 is subject to a force of mortality v5¢,,; obtained from the
force of mortality standard as follows:

v _ [.I,50+t+c forOStSlS
50+t = 1450+t otherwise

where us04¢ denotes the force of mortality underlying the Illustrative Life Table.
The force of interest is constant § = 4%. Calculate the variance of the present
value of an annuity immediate of one per annum issued to (50) for values of
¢ = —0.01, —0.005, 0, 0.005, and 0.01. Draw the graph.

4. Create a spreadsheet which calculates 05(::3, and Az, for a given age, z 4+ u,
with z an integer and 0 < u < 1, and a given interest rate i. Assume that
mortality follows the Illustrative Life Table. Use formulas (4.8.5) and (4.3.5)
(or (4.8.6) and (4.3.5) if you like.) for the annuity and analogous ones for the
life insurance.

5. Use your spreadsheet’s built-in random number feature to simulate 200 values
of Y =1+v+---+0K = dge7y) Where K = K(40). Use i = 5% and assume

mortality follows the Illustrative Life Table. Compare the sample mean and
variance to the values given by formulas (4.2.7) and (4.2.9).
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C.5 Net Premiums

C.5.1 Notes

The exercises sometimes use the notation based on the system of International
Actuarial Notation. Appendix 4 of Actuarial Mathematics by Bowers et al.
describes the system. Here are the premium symbols and definitions used in
these exercises.

P (A:) denotes the annual rate of payment of net premium, paid continu-
ously, for a whole life insurance of 1 issued on the life of (), benefit paid at the
moment of death.

P (Zz:m) denotes the annual rate of payment of net premium for an endow-
ment insurance of 1 issued on the life of (z). The death benefit is paid at the
moment of death.

A life insurance policy is fully continuous if the death benefit is paid at the
moment of death, and the premiums are paid continuously over the premium
payment period.

Policies with limited premium payment periods can be described symboli-
cally with a pre-subscript. For example, ,P (74_,) denotes the annual rate of
payment of premium, paid once per year, for a whole life insurance of 1 issued
on the life of (z), benefit paid at the moment of death. For a policy with the
death benefit paid at the end of the year of death the symbol is simplified to
nPz.

C.5.2 Theory Exercises

1. Given: 20Pps = 0.046, Pyg 757 = 0.064, and Ags = 0.640. Calculate P} ..

2. A level premium whole life insurance of 1, payable at the end of the year of
death, is issued to (z). A premium of G is due at the beginning of each year,
provided (z) survives. Given:

(i) L = the insurer’s loss when G = P;

(ii) L* = the insurer’s loss when G is chosen such that E[L*] = —0.20
(iii) Var[L] = 0.30

Calculate Var[L*].

3. Use the Illustrative Life Table and ¢ = 5% to calculate the level net annual
premium payable for ten years for a whole life insurance issued to a person
age 25. The death benefit is 50,000 initially, and increases by 5,000 at ages
30, 35,40,45 and 50 to an ultimate value of 75,000. Premiums are paid at the
beginning of the year and the death benefits are paid at the end of the year.

4. Given the following values calculated at d = 0.08 for two whole life policies
issued to (z):
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Death Benefit | Premium | Variance of Loss
Policy A 4 0.18 3.25
Policy B 6 0.22

Premiums are paid at the beginning of the year and the death benefit sare paid
at the end of the year. Calculate the variance of the loss for policy B.

5. A whole life insurance issued to (z) provides 10,000 of insurance. Annual
premiums are paid at the beginning of the year for 20 years. Death claims are
paid at the end of the year of death. A premium refund feature is in effect
during the premium payment period which provides that one half of the last
premium paid to the company is refunded as an additional death benefit. Show
that the net annual premium is equal to

10,0004,
0+ 2, ) - (1 - pr) 12

6. Obtain an expression for the annual premium , P, in terms of net single
premiums and the rate of discount d. (P, denotes the net annual premium
payable for n years for a whole life insurance issued to z.)

7. A whole life insurance issued to (z) provides a death benefit in year j of
b; = 1,000(1.06)7 payable at the end of the year. Level annual premiums are
payable for life. Given: 1,000P, = 10 and ¢ = 0.06 per year. Calculate the net
annual premium.

8. Given:

(i) Az =0.25

(ii) Az+20 = 0.40
(iii) Az:§6"| =0.55
(iv) i = 0.03

(v) assumption a applies.

Calculate 1000P (4, 55)-
9. A fully continuous whole life insurance of 1 is issued to (z). Given:
(i) The insurer’s loss random variable is L = vT — P (4;) ar).

(ii) The force of interest & is constant.

(iii) The force of mortality is constant: py.¢ = pu,t > 0.

Show that Var(L) = p/(26 + u).

10. A fully-continuous level premium 10-year term insurance issued to (z) pays
a benefit at death of 1 plus the return of all premiums paid accumulated with
interest. The interest rate used in calculating the death benefit is the same as
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that used to determine the present value of the insurer’s loss. Let G denote the
rate of annual premium paid continuously.

(a) Write an expression for the insurer’s loss random variable L.

(b) Derive an expression for Var[L].

(c) Show that, if G is determined by the equivalence principle, then

. (f‘izm)z'

Var[L] = 2A! "
10Px

Iiﬁ.l
The pre-superscript indicates that the symbol is evaluated at a force of interest
of 26, where § is the force of interest underlying the usual symbols.
11. Given:
(i) ¢=0.10
(ii) A30.5] = 5.6
(iii) v1%0p30 = 0.35
1
Calculate 1000 Pso:ﬁ']

12. Given:

(i) i = 0.05

(ii) 10,0004, = 2, 000.

Apply assumption a and calculate 10,000P (A;) — 10,000P (A).

13. Show that
(P30:E] - 15P30) aBOzﬁ]

15
v " 15P30

1-

simplifies to Ays.

14. Given:

() Az =0.3

(ii) § = 0.07.

A whole life policy issued to (z) has a death benefit of 1,000 paid at the moment

of death. Premiums are paid twice per year. Calculate the semi-annual net
premium using assumption a.

15. Given the following information about a fully continuous whole life insur-
ance policy with death benefit 1 issued to (z):

(i) The net single premium is A; = 0.4.

(i) 6 = 0.06

(iii) Var[L] = 0.25 where L denotes the insurer’s loss associated with the net
annual premium P (A_z).
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Under the same conditions, except that the insurer requires a premium rate of
G = 0.05 per year paid continuously, the insurer’s loss random variable is L*.
Calculate Var[L*].

16. A fully discrete 20-year endowment insurance of 1 is issued to (40). The
insurance also provides for the refund of all net premiums paid accumulated at
the interest rate 7 if death occurs within 10 years of issue. Present values are
calculated at the same interest rate . Using the equivalence principle, the net
annual premium payable for 20 years for this policy can be written in the form:

A40: 20]

k

Determine k.

17. L is the loss random variable for a fully discrete, 2-year term insurance of 1
issued to (z). The net level annual premium is calculated using the equivalence
principle. Given:

(i) - = 0.1,

(ii) gz+1 = 0.2 and

(iii) v = 0.9.

Calculate Var(L).

18. Given:

(i) ALz =0.4275

(ii) 6 = 0.055, and

(iii) pz4e = 0.045,t >0

Calculate 1,000P (Az:ﬁ] )

19. A 4-year automobile loan issued to (25) is to be repaid with equal annual
payments at the end of each year. A four-year term insurance has a death
benefit which will pay off the loan at the end of the year of death, including the
payment then due. Given:

(i) 2 = 0.06 for both the actuarial calculations and the loan,
(i) dgg, 77 = 3.667, and

(a) Express the insurer’s loss random variable in terms of K, the curtate future
lifetime of (25), for a loan of 1,000 assuming that the insurance is purchased
with a single premium of G.

(b) Calculate G, the net single premium rate per 1,000 of loan value for this
insurance.

(c) The automobile loan is 10,000. The buyer borrows an additional amount to
pay for the term insurance. Calculate the total annual payment for the loan.
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20. A level premium whole life insurance issued to (z) pays a benefit of 1 at
the end of the year of death. Given:

(i) Az = 0.19
(ii) 2A, = 0.064, and
(iii) d = 0.057

Let G denote the rate of annual premium to be paid at the beginning of each
year while (z) is alive.

(a) Write an expression for the insurer’s loss random variable L.

(b) Calculate E[L] and Var[L], assuming G = 0.019.

(c) Assume that the insurer issues n independent policies, each having G =
0.019. Determine the minimum value of n for which the probability of a loss
on the entire portfolio of policies is less than or equal to 5%. Use the normal
approximation.

C.5.3 Spreadsheet Exercises

1. Reproduce the Illustrative Life Table values of C,. Calculate M, recursively,
from the end of the table where Mgg = Cgg, using the relation M, = C;+M,_;.
Calculate the values of S; = M; + Mz41 + ... using the same technique.

2. Use the Illustrative Life Table to calculate the initial net annual premium
for a whole life insurance policy issued at age £ = 30. The benefit is inflation
protected: each year the death benefit and the annual premium increase by a
factor of 1 + 7, where 7 = 0.06. Calculate the initial premium for interest rates
of 7 = 0.05,0.06,0.07 and 0.08. Draw the graph of the initial premium as a
function of ¢ .

3. Use i = 4%, the Illustrative Life Table, and the utility function u(z) =
(1-e~%%)/a,a = 1075, to calculate annual premiums for 10-year term insurance,
issue age 40, using formula (5.2.9) : E[u(—L)] = u(0). Display your results in
a table with the sum insured C, the calculated premium, and the ratio to the
net premium (loading). Draw the graph of the loading as a function of the sum
insured. Do the same for premiums based on a = 1074,1075,10~7 and 10~2
also. Show all the graphs on the same chart.

4. A whole life policy is issued at age 10 with premiums payable for life. If
death occurs before age 15, the death benefit is the return of net premiums paid
with interest to the end of the year of death. If death occurs after age 15, the
death benefit is 1000. Calculate the net annual premium. Use the Illustrative
Life Table and ¢ = 5%. Convince yourself that the net premium is independent
of ¢; for z < 15. (This problem is based on problem 21 at the end of Chapter
4 of Life Contingencies by C. W. Jordan.)

5. A 20-year term insurance is issued at age 45 with a face amount of 100,000.
The net premium is determined using ¢ = 5% and the Illustrative Life Table.
The benefit is paid at the end of the year. Net premiums are invested in a fund
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earning j per annum and returned at age 65 if the insured survives. Calculate
the net premium for values of j running from 5% to 9% in increments of 1%.

6. Determine the percentage z of annual salary a person must save each year
in order to provide a retirement income which replaces 50% of final salary.
Assume that the person is age 30, that savings earn 5% per annum, that salary
increases at a rate of j = 6% per year, and that mortality follows the Illustrative
Life Table. Draw the graph of z as a function of j running from 3% to 7% in
increments of 0.5%

7. Mortality historically has improved with time. Let ¢, denote the mortality
table when a policy is issued. Suppose that the improvement (decreasing g)
is described by k'q, where t is the number of years since the policy was issued
and k is a constant, 0 < k < 1. Calculate the ratio of net premiums on the
initial mortality basis to net premiums adjusted for ¢ = 10 years of mortality
improvement. Use z = 30, k = 0.99, the Illustrative Life Table for the initial
mortality and ¢ = 5%.
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C.6 Net Premium Reserves

Here are the additional symbols and definitions for reserves used in these ex-
ercises. Policies with premiums paid at the beginning of the year and death
benefits paid at the end of the year of death are called fully discrete policies.
Policies with premiums paid continuously and death benefits paid at the mo-
ment of death are called fully continuous.

g (/L) denotes the net premium reserve at the end of year k for a fully
continuous whole life policy issued to (z).

vV (/iz:ﬁ]) denotes the net premium reserve at the end of year k for a fully
continuous n-year endowment insurance policy issued to (z).

Policies with limited premium payment periods can be described symbol-
ically with a pre-superscript. For example, }V(A,) denotes the net premium
reserve at the end of year k for an n-payment whole life policy issued to (z) with
the benefit of 1 paid at the moment of death. Note that the corresponding net
premium is denoted , P(A;).

C.6.1 Theory Exercises

1. A 20-year fully discrete endowment policy of 1000 is issued at age 35 on the
basis of the Illustrative Life Table and : = 5%. Calculate the amount of reduced
paid-up insurance available at the end of year 5, just before the sixth premium
is due. Assume that the entire reserve is available to fund the paid-up policy as
described in section 6.8.

2. Given: 10V25 = 0.1 and 19V35 = 0.2. Calculate 99Vos.

3. Given: 2V(Ag) = 0.3847, dg0 = 20.00, and @g = 12.25. Calculate
20V (As0) — 20V (Aso)-

4. Given the following information for a fully discrete 3-year special endowment
insurance issued to (z):

k| ckr1 | Getk
0 2 0.20
1 3 0.25
2 4 0.50

Level annual net premiums of 1 are paid at the beginning of each year while (z)
is alive. The special endowment amount is equal to the net premium reserve for
year 3. The effective annual interest rate is ¢ = 1/9 . Calculate the end of policy
year reserves recursively using formula (6.3.4) from year one with ¢V = 0.

5. Given: i = 0.06,¢; = 0.65,¢;41 = 0.85, and gz+2 = 1.00. Calculate ;V;.
(Hint due to George Carr 1989: Calculate the annuity values recursively from
a2 back to @;. Use (6.5.3).)

6. A whole life policy for 1000 is issued on May 1, 1978 to (60). Given:
(i) i=6%
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(ii) g70 = 0.033

(iii) 100049Vgo = 231.14

(iv) 1000Pgp = 33.00, and

(v) 1000, Vo = 255.40

A simple method widely used in practice is used to approximate the reserve on

December 31, 1988. Calculate the approximate value.

7. Given: For k=0,1,2,... ¢ = (0.5)k*1, Show that the variance of the loss
random variable L for a fully discrete whole life insurance for (z) is

1 v?
2\ 2 -2

8. Given, for a fully discrete 20-year deferred life annuity of 1 per year issued
to (35):

where v = (1 4+14)7 L.

(i) Mortality follows the Illustrative Life Table.

(ii) < = 0.05

(iii) Level annual net premiums are payable for 20 years.

Calculate the net premium reserve at the end of 10 years for this annuity.

9. A special fully discrete 2-year endowment insurance with a maturity value of
1000 is issued to (z). The death benefit in each year is 1000 plus the net level
premium reserve at the end of that year. Given i = 0.10 and the following data:

k| qzik Ck+1 | &V
0] 0.10 | 1000 4+ ,V 0
1| 0.11 2000 ?
2 1000

Calculate the net level premium reserve ;V.

10. Use the Illustrative Life Tables and ¢ = 0.05 to calculate 100015‘/45:%] .
11. Use the Illustrative Life Tables and 7 = 0.05 to calculate 1000 15\/415_m .

12. Given the data in exercise 4, calculate the variance of the loss A; allocated
to policy year two.

13. Given:
k ag) | k-1
1]1.000| 0.33
2| 1.930 0.24
312795 | 0.16
413.600| 0.11
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Calculate 2V=:Z’| .

14. A fully discrete whole life policy with a death benefit of 1000 is issued to
(40). Use the Illustrative Life Table and i = 0.05 to calculate the variance of
the loss allocated to policy year 10.

15. At an interest rate of i = 4%, 33V;5 = 0.585 and 33V, = 0.600. Calculate
P3s-

16. A fully discrete whole life insurance is issued to (z). Given: P, = 4/11,
+Vz = 0.5, and d4¢ = 1.1. Calculate 1.

17. For a special fully discrete whole life insurance of 1000 issued on the life
of (75), increasing net premiums, Ik, are payable at time k, for k =0,1,2,....
Given:

(i) Ok = Mp(1.05)% for k =0,1,2,...

(ii) Mortality follows de Moivre’s law with w = 105.

(iii) ¢ = 5%

Calculate the net premium reserve at the end of policy year five.

18. Given for a fully discrete whole life insurance for 1500 with level annual
premiums on the life of (z):

(i) i =0.05

(ii) The reserve at the end of policy year h is 205.
(iii) The reserve at the end of policy year h —1 is 179.
(iv) Gz = 16.2

Calculate 1000g; 4,1

19. Given:

(i) 14 =(1.03)2

(ii) gz+10 = 0.08

(iii) 1000,V = 311.00

(iv) 1000P, = 60.00

(v) 1000, Vz = 340.86

(a) Approximate 1000195V, by use of the traditional rule: interpolate between
reserves at integral durations and add the unearned premium.
(b) Assumption a applies. Calculate the exact value of 100019 5Vz.

20. Given: g¢3; = 0.002, &32;ﬁ] =9, and ¢ = 0.05. Calculate 1V31:m.
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C.6.2 Spreadsheet Exercises

1. Calculate a table of values of , V3 for t = 0,1, 2,..., 69, using the Illustrative
Life Table and : = 4%. Recalculate for i = 6% and 8%. Draw the three graphs
of ;Vap as a function of ¢, corresponding to i = 4%, 6%, and 8%. Put the graphs
on a single chart.

2. A 10-year endowment insurance with a face amount of 1000 is issued to (50).
Calculate the savings I}, and risk II; components of the net annual premium
1000P50:—1—0-] (formulas 6.3.6 and 6.3.7) over the life of the policy. Use the Illus-

trative Life Table and i = 4%. Draw the graph of II}, as a function of the policy
year k. Investigate its sensitivity to changes in ¢ by calculating the graphs for
1 = 1% and 7% and showing all three on a single chart.

3. A 10,000 whole life policy is issued to (30) on the basis of the Illustrative
Life Table at 5%. The actual interest earned in policy years 1 - 5 is ¢’ = 6%.
Assume the policyholder is alive at age 35 and the policy is in force.

(a) Calculate the technical gain realized in each year using method 2 (page 69).
(b) Calculate the accumulated value of the gains (using i’ = 6%) at age 35.

(c) Determine the value of i’ (level over five years) for which the accumulated
gains are equal to 400.

4. This exercise concerns a flexible life policy as described in section 6.8. The
policyholder chooses the benefit level cc,; and the annual premium II; at the
beginning of each policy year k+1. The choices are subject to these constraints:

(i) Ie = 100, 000 P, the net level annual premium for whole life in the amount
of 100,000.

(ll) 0 S Hk+1 < 12Hk for k = 0,1, NN
(lll) C1 S Ck+1 S 1.20), for k = 1,2,...
(lV) k+1V > 0 for k = 0,1,2,...

The initial policyholder’s account value is oV = 0. Thereafter the policyholder’s
account values accumulate according to the recursion relation (6.3.4) with the
interest rate specified in the policy as i = 5% and mortality following the Illus-
trative Life Table with z = 40. Investigate the insurer’s cumulative gain on the
policy under two scenarios:

(51) The policyholder attempts to maximize insurance coverage at minimal
costs over the first five policy years. The strategy is implemented by choosing
ck+1 = 1.2¢, for k= 1,2,... and choosing the level premium rate which meets
the constraints but has sV = 0. Calculate the insurer’s annual gains assuming
i = 5.5% and the policyholder dies during year 5.

(S2) The policyholder elects to maximize savings by choosing minimum coverage
and maximum premiums. Calculate the present value of the insurer’s annual
gains assuming ' = 5.5% and the policyholder survives to the end of year 5.
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C.7 Multiple Decrements: Exercises

C.7.1 Theory Exerciscs

1. In a double decrement table p z4¢ = 0.01 for all ¢ > 0 and pg z4¢ = 0.02 for
all t > 0. Calculate q; 5.

2. Given pjz+¢ = j/150 for j =1,2,3 and t > 0. Calculate E[T | J = 3].

3. A whole life insurance policy provides that upon accidental death as a pas-
senger on public transportation a benefit of 3000 will be paid. If death occurs
from other accidental causes, a death benefit of 2000 will be paid. Death from
causes other than accidents carries a benefit of 1000. Given, for all ¢t > 0:

(i) #jz+¢ = 0.01 where j = 1 indicates accidental death as a passenger on public
transportation.

(ii) f2jz+¢ = 0.03 where j = 2 indicates accidental death other than as a pas-
senger on public transportation.

(ii1) pj,z+¢ = 0.03 where j = 3 indicates non-accidental death.
(iv) 6 = 0.03.

Calculate the net annual premium for issue age z assuming continuous premi-
ums and immediate payment of claims.

4. In a double decrement table, pujz+¢ = 1 and pp z4¢ = —t_forallt > 0.

t+1
Calculate
Qx

a fol tpzdt.

4z

5. A two year term policy on (z) provides a benefit of 2 if death occurs by
accidental means and 1 if death occurs by other means. Benefits are paid at the
moment of death. Given for all ¢ > 0:

(i) p1,z+¢ = t/20 where 1 indicates accidental death.

(ii) p2,z+¢ = t/10 where 2 indicates other than accidental death.

(ili) 6 =0

Calculate the net single premium.

6. A multiple decrement model has 3 causes of decrement. Each of the decre-
ments has a uniform distribution over.each year of age so that the equation
(7.3.4) holds for at all ages and durations. Given:

(l) H1,3040.2 = 0.20

(ii) p2,30+0.4 = 0.10

(iii) ps3 30408 = 0.15
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Calculate g¢3p.

7. Given for a double decrement table:

T| 1z | 9x Pz
251 0.0110.15 ] 0.84
26 | 0.02 ] 0.10 | 0.88

(a) For a group of 10,000 lives aged =z = 25, calculate the expected number of
lives who survive one year and fail due to decrement j =1 in the following year.
(b) Calculate the effect on the answer for (a) if g2 25 changes from 0.15 to 0.25.

8. Given the following data from a double decrement table:

(i) g1,63 = 0.050
(ii) go,63 = 0.500
(iii) 1,963 = 0.070
(iv) 2/91,63 = 0.042
(v) 3pe3 = 0.

For a group of 500 lives aged z = 63, calculate the expected number of lives
who will fail due to decrement j = 2 between ages 65 and 66.

9. Given the following for a double decrement table:

(l) /.1.1,;,:+0.5 = 0.02

(i) g2, = 0.01

(iii) Each decrement is uniformly distributed over each year of age, thus (7.3.4)
holds for each decrement.

Calculate 1000q ;.

10. A multiple decrement table has two causes of decrement: (1) accident and
(2) other than accident. A fully continuous whole life insurance issued to (z)
pays c; if death results by accident and ¢ if death results other than by accident.
The force of decrement 1 is a positive constant p;. Show that the net annual
premium for this insurance is c3 P, + (c1 — e2)p.
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C.8 Multiple Life Insurance: Exercises

C.8.1 Theory Exercises

1. The following excerpt from a mortality table applies to each of two indepen-
dent lives (80) and (81):

z 9z
80 | 0.50
81| 0.75
82| 1.00

Assumption a applies. Calculate q810:81, qgo;gl, gso:81 and ggga7-

2. Given:

(i) 6 = 0.055
(ii) pzse = 0.045,t > 0

Calculate AZ, as defined by formula (8.8.8).

3. In a certain population, smokers have a force of mortality twice that of non-

smokers. For non-smokers, s(z) =1 —z/75, 0 < z < 75. Calculate 255;55 for a
smoker (55) and a non-smoker (65) .

4. A fully-continuous insurance policy is issued to (z) and (y). A death benefit
of 10,000 is payable upon the second death. The premium is payable continu-
ously until the last death. The annual rate of payment of premium is ¢ while
(z) is alive and reduces to 0.5c upon the death of (z) if (z) dies before (y). The
equivalence principle is used to determine c. Given:

(i) 6§ =0.05

(ii) ap = 12

(iii) @, = 15

(iv) azy =10

Calculate c.

5. A fully discrete last-survivor insurance of 1 is issued on two independent lives
each age z. Level net annual premiums are paid until the first death. Given:

(i) A = 0.4
(ii) Agz = 0.55
(iii) az = 9.0
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Calculate the net annual premium.

6. A whole life insurance pays a death benefit of 1 upon the second death of
(z) and (y). In addition, if (z) dies before (y), a payment of 0.5 is payable at
the time of death. Mortality for each life follows the Gompertz law with a force
of mortality given by p, = Bc?,z > 0. Show that the net single premium for
this insurance is equal to

A+ A, — A, (1-05¢v)

where ¢ = & + V.
7. Given:

(i) Male mortality has a constant force of mortality u = 0.04.

(ii) Female mortality follows de Moivre’s law with w = 100.
Calculate the probability that a male age 50 dies after a female age 50.
8. Given:

(i) Z is the present-value random variable for an insurance on the independent
lives of (z) and (y) where

7 T if T(y) > T(x)
10 otherwise
(ii) (z) is subject to a constant force of mortality of 0.07.
(iii) (y) is subject to a constant force of mortality of 0.09.

(iv) The force of interest is a constant § = 0.06.

Calculate Var[Z].

9. A fully discrete last-survivor insurance of 1000 is issued on two independent
lives each age 25. Net annual premiums are reduced by 40% after the first death.
Use the Illustrative Life Table and 1 = 0.05 to calculate the initial net annual

premium.

10. A life insurance on John and Paul pays death benefits at the end of the
year of death as follows:

(i) 1 at the death of John if Paul is alive,

(ii) 2 at the death of Paul if John is alive,

(iii) 3 at the death of John if Paul is dead and

(iv) 4 at the death of Paul if John is dead.

The joint distribution of the lifetimes of John and Paul is equivalent to the joint

distribution of two independent lifetimes each age z. Show that the net single
premium of this life insurance is equal to 7A; — 2Az;.
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C.8.2 Spreadsheet Exercises

1. Use the Illustrative Life Table and ¢ = 5% to calculate the joint life annuity,
az:y, the joint-and-survivor annuity, az;, and the reversionary annuity, a;/,,
for independent lives lives age z = 65 and y = 60.

2. (8.4.8) A joint-and-survivor annuity is payable at the rate of 10 per year at
the end of each year while either of two independent lives (60) and (50) is alive.
Given:

(i) The Illustrative Life Table applies to each life.

(ii) ¢ = 0.05

Calculate a table of survival probabilities for the joint-and-survivor status. Use
it to calculate the variance of the annuity’s present value random variable.

3. Use the Illustrative Life Table and i = 5% to calculate the net level annual
premium for a second-to-die life insurance on two independent lives age (35)
and (40). Assume that premiums are paid at the beginning of the year as long
as both insured lives survive. The death benefit is paid at the end of the year
of the second death.

4. Calculate the net premium reserve at the end of years 1 through 10 for the
policy in exercise 3. Assume that the younger life survives 10 years and that
the older life dies in the sixth policy year.

5. Given:

(i) pz = A+ Bc* for £ > 0 where A = 0.004, B = 0.0001, ¢ = 1.15, and
(ii) 6 = 5%.

Approximate asg.40 and A}g.40-
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C.9 The Total Claim Amount in a Portfolio

C.9.1 Theory Exercises

1. The claim made in respect of policy h is denoted Si. The three possible
values of Sy are as follows:

100  if the insured surrenders the policy, and

0 if the insured life (z) survives,
Sp =
1000 if the insured dies.

The probability of death is g, ; = 0.001, the probability of surrender is go ; =
0.15, and the probability of survival is p = 1 — ¢1z — g2z Use the normal
approximation to calculate the probability that the aggregate claims of five
identically distributed policies S = S; + - - - + S5 exceeds 200.

2. The aggregate claims S are approximately normally distributed with mean
u and variance 02. Show that the stop-loss reinsurance net premium p(3) =
E[(X — B)*] is given by

p(B) = (1 - B)® (i;ﬁ) +od (# - ﬁ)

o
where ® and ¢ are the standard normal distribution and density functions.

3. Consider the compound model described by formula (9.4.6): S = X +..+ Xn
where N, X; are indépendent, and X; are identically distributed. Show that the

moment generating function of S is Mg(t) = My (log(Mx(t))) where My (t)
and Mx(t) are the moment generating functions of N and X. This provides a
means of estimating moments of S from estimates of moments of X and N. For
example, E[S] = E[N]E[X] and

E[S?] = E[N|E[X]? + E[N] (E[X?] - E[X}?).

4. A reinsurance contract provides a payment of

RolS-B iB<S<y
T ly-8 ifS>y

Express E[R] in terms of the cummulative distribution function of S.

5. (a) Express F(z) in terms of the function p(f3).
(b)  Given that p(8) = (2+ 8+ $6%),8 >0, find F(z) and f(z).
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6. Suppose that f(0), f(1), f(2),... are probabilities for which the following
holds:

f(1) = 3£(0), f(2) =2f(0) +1.5f(1),
(@) é(Sf(:z:——3)+4f(:c——2)+3f(z—1))forz=3,4,...

What is the value of f(0)?

7. Suppose that log S is normally distributed with parameters, 4 and o. Cal-
culate the net stop-loss premium p(8) = E[(S — 8)*] for a deductible 8.

8. (a) For the portfolio defined by (9.3.5), calculate the distribution of
aggregate claims by applying the method of dispersion with a span of 0.5.

(b) Apply the compound Poisson approximation with the same disceti-
zation.



C.10. EXPENSE LOADINGS 163

C.10 Expense Loadings

C.10.1 Theory Exercises

1. Consider the endowment policy of section 6.2, restated here for convenience:
sum insured = 1000, duration n = 10, initial age £ = 40, De Moivre mortality
with w = 100, and i = 4%.

(i) The acquisition expense is 50. No other expenses are recognized (8 = v = 0).
Calculate the expense-loaded annual premium and the expense-loaded premium
reserves for each policy year.

(ii) Determine the maximum value of acquisition expense if negative expense-
loaded reserves are to be avoided.

2. Give a verbal interpretation of — V<.

3. Consider the term insurance policy of section 6.2, restated here for conve-
nience: sum insured = 1000, duration n = 10, initial age z = 40, De Moivre
mortality with w = 100, and i = 4%.

(i) The acquisition expense is 40. No other expenses are recognized (8 = v = 0).
Calculate the expense-loaded annual premium and the expense-loaded premium
reserves for each policy year.

(ii) If the expense-loaded premium reserves are not allowed to be negative, what
is the insurer’s initial investment for selling such a policy?

4. Calculate the components 1000P, 1000P%, 1000P? and 1000P7” of the ex-
pense-loaded premium 1000P*° for a whole life insurance of 1000 issued to a life
age 35. The policy has level annual premiums for 30 years, becoming paid-up
at age 65. The company has expenses as follows:

acquisition expense 12 at the time of issue,

collection expenses 15% of each expense-loaded premium, and
administration expens 1 at the beginning of each policy year.

Use the Illustrative Life Table and i = 5%.

5. For the policy described in exercise 4, calculate components 1000V, 1000,V *,
and 1000,V of the expense-loaded premium reserve 1000,V for year k = 10.
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C.10.2 Spreadsheet Exercises

1. Develop a spreadsheet to calculate the expense-loaded premium components
and the expense-loaded premium reserve components for each policy year of a
20-year endowment insurance issued to a life age 40. Use the Illustrative Life
Table and ¢ = 6%. Assume that acquisition expense is 20 per 1000 of insurance,
collection expense is 5% of the expense-loaded premium, and administration
expense is 3 at the beginning of each policy year.
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C.11 Estimating Probabilities of Death

C.11.1 Theory Exercises

1. Consider the following two sets of data:

(a) D;=36 E,=4820
(b) Dr=360 E,=48200

For each set, calculate a 90% confidence interval for q..

2. We model the uncertainty about # (the unknown value of iz 1/2) by a gamma
distribution such that E[#] = 0.007 and Var(8) = 0.000007. An additional 36
deaths are observed for an additional exposure of 4820. Calculate our posterior
expectation and standard deviation of 4, and our estimate for ¢..

3. Write down the equations from which
(i) M and
(ii) A¥ are obtained.

(iii) Rewrite these equations in terms of integrals over f(z;n), the probability
density function of the gamma distribution with shape parameter n and scale
parameter 1.

4. In a clinical experiment, a group of 50 rats is under observation until the 20th
rat dies. At that time the group has lived a total of 27.3 rat years. Estimate
the force of mortality (assumed to be constant) of this group of rats. What is
their life expectancy?

5. A certain group of lives has a total exposure of 9758.4 years between ages z
and z + 1. There were 357 deaths by cause one, 218 deaths by cause two, and
528 deaths by all other causes combined. Estimate the probability that a life
age z will die by cause one within a year.

6. There are 100 life insurance policies in force, insuring lives age z. An additional
60 polices are issued at age ¢ + 41. Four deaths are observed between age = and
Z + 1; we assume that these deaths occur at age z + 0.5. Calculate the classical
estimator given by formula (11.2.3), and the maximum likelihood estimator based
on the assumption b, a constant force of mortality (11.4.2).

7. The force of mortality is constant over the year age (z, z +1]. Ten lives enter
observation at age z. Two lives enter observation at age z+0.4. Two lives leave
observation at age z+0.8, one leaves at age £+ 0.2 and one leaves at age z+0.5.
There is one death at age £ +0.6. Calculate the maximum likelihood estimate
of the force of mortality.
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8. A double decrement model is used to study two causes of death in the interval
of age (x,z +1].

The forces of each cause are constant.

1,000 lives enter the study at age =z.

40 deaths occur due to cause 1 in (z,z + 1].
50 deaths occur due to cause 2 in (z,z + 1].

Calculate the maximum likelihood estimators of the forces of decrement.

9. The Illustrative Life Table is used for a standard table in a mortality study.

The study results in the following values of exposures E, and deaths D, over
[40, 45)

x E; D,
40 1150 6
41 900 5
42 1200 12
43 1400 9
44 1300 13

Calculate the mortality ratio f and the 90% confidence interval for f. Calculate

the estimates of 40, 41, . . - §s5 corresponding to f' .
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D.0 Introduction

We offer solutions to most theory exercises which we hope students will find
useful. When the solution is straightforward we simply give the answer. For
the spreadsheet exercises we describe the solution and give some values to use
to verify your work. We leave the joy of writing the program to the student.

We have tried hard to avoid errors. We hope that students and other users
who discover errors will inform us promptly. We are also interested in seeing
elegant or insightful solutions and new problems.

The solutions occasionally refer to the Illustrated Life Table and its func-
tions. They are in Appendix E.
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D.1 Mathematics of Compound Interest

D.1.1 Solutions to Theory Exercises

1. This follows easily from equation (1.5.8).

2. Fix i > 0 and consider the function f(z) = [(1 +i)* — 1]z ! = (%% — 1)/z.
From the power series expansion

1 1
f(a:)=6+§62a:+3—!63z2+...,

it is easy to see that f/(z) > 0 for all z > 0. It follows that f(z) increases from
f(04) =6 to f(1) = i. Therefore g(z) = f(z~!) decreases on [1,00) from i to
8. Thus, i(™) = g(m) decreases to § as m increases. Similarly, d™) increases to
6 as m increases.

3. The accumulated value of the deposits as of January 1, 1999 is X $79]0.06*
The present value of the bond payments as of January 1,1999 is 15, 000“3]0.06-
Equate the two values and solve for X = 4794.

4. Let i be the effective annual interest rate. Then 14 i = (1 + 5/2)2. The
equation of value is

580 = vZ40i4...

v2

1—02
Hence (1 +3/2)* =1+ 1/5.89 and so j = 8%.

5. Let u = -H% and write the equation of value as follows:
1+k  [(1+k\?
51 = —— _—
104 + ( 1.04 > +

u+u2+...
u

1—u
1+k
0.04 — k’

Solve for k =2%.

8. Use equation (1.9.8) with a starting value of § = 12%. The price of the
coupon payments is p = 94 — 100(1.12) !0 = 61.80. The sum of the payments

is 7 = 100 and
5 _51 _6—106
a’( ) - 86/2 _ 1 .

The solution is § = 9.94%. This is equivalent to 10.19% per year convertible
semiannually.



170 APPENDIX D. SOLUTIONS

7. The equation of value is

1000 = z(v+v%+v3) 4+ 3z(v? + 0% +2°)

2(3413] - 2a§~| )
z(11.504459)

where the symbols correspond to a values of i = 1%. So = = 86.92.

8. At the time of the loan,

4000 = kv + 2kv? +3kv3 + ... + 30kv3°
= k(la)g
dgg) — 30v%
0.04

so k = 18.32. Note that the initial payment is less than the interest (160)
required on the loan so the loan balance increases. Immediately after the ninth
payment the outstanding payments, valued at the original loan interest rate, is
found as follows:

10kv + 11kv? + ... + 30kv?!

Qkam +k (Ia)m
(18.32)(9(14.02916) + 134.37051)
4774.80.

9. Let j = i(?/2 and solve 98.51 = 2(1 4+ )1 +102(1 4+ 5) 2 for (1 +5)" ! =
0.9729882. This corresponds to i(?) = 5.55%.

10. From (i) and (ii) we get 12(120) ol = 12(365.47) o and solve for

v™ = 0.6716557. Now use (iii) and (iv) to solve for X = 12000.

D.1.2 Solutions to Spreadsheet Exercises
1. (a) The investment yield is 9.986%.

2. Guide: Set up a spreadsheet with a trial value of X. Since a total of X +2X +
3X +---+6X = 21X is withdrawn, a good trial value is about 100,000/20 =
5,000. Use the fundamental formula (1.2.1) to calculate the fund balance at the
end of each half-year. Then experiment with X until an end-of- period six bal-
ance of zero is found. X = 6,128.(Alternatively, in the last stage, use Goal
Seek to determine the value of X which makes the target balance zero.) Note
that the end-of-period six balance is the fund balance beginning the seventh
half-year. Adapting notation of the text to half-years we have Fy = 100,000,
F1 =Fy(1.03)2 - X, F = F, (1.03)2F; —2X, and so on.

3. Guide: Set up an amortization table using a spreadsheet and a trial value
of i = 0.03. In a cell apart from the table, calculate the target P — 61 for the
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fifth year. Then use Goal Seek to determine i so that the target cell is zero.
1 = 10.93%.

4. Guide: The fund deposit X satisfies X“"To]:o.os = 10,000. In effect, the
company accepts 10,000 now in exchange for 10 semiannual payments of 300+ X.
Calculate X using the spreadsheet financial functions. The internal rate of
return j equates the future cash flows 300+ X to 10,000. Set up your spreadsheet
with a trial value of j. Use the Goal Seek feature to detemine the value of j.
j = 7.80%

5. Guide: Put 1 = 10% and a trial value of X into cells. Calculate the net
present value of the payments of 100 minus the payments of X in another cell

as follows:
100 — ’010100 - 1)19X

d

Use the Goal Seek feature to determine the valaue of X for which the resent
value is zero. X = 375.80

100d.1g) — Xv'%is) =

6. Guide: Set up a spreadsheet to amortize the loan using a trial value of
X = 30,000. The interest credited in year k is

0.08 min(100000, B) + 0.09 max(0, B — 100000)

where By is the beginning year balance. By = 300,000, B; = 300, 000+ 8,000+
18,000 — X , and so on recursively. Use the Goal Seek feature to determine X
so that Bj; = 0 (beginning year 11 = end of year 10). X = 45,797.09

7. Guide: Work from the last year back to the present. The required cash
flow for the last year is known and so is the coupon, so you can calculate the
number of longest maturity bonds to buy. Then work on the next to the last
year, knowing the required cash flow and the number of bonds paying a coupon
(but maturing in the following year). And so on.

The total market value is 450,179. You need 1.87 bonds maturing in 1995,
etc.

8. Guide: Use the Goal Seek feature. The market yield is 7.46

9. Guide: Use the Goak Seek feature to find the price for each call date to yield
8%. The price is the minimum of these: 1,085.59.

10. Guide: With a trial value for the interest rate, use the future value function
(FV) to find the balance after 20 quarters. Use Goal Seek to set the future value
to 5000. The solution is i = 8.58%
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D.2 The Future Lifetime of a Life Aged x

D.2.1 Solutions to Theory Exercise

1. Use equation (2.2.5). pas = ———d% In(;p.) evaluated at t = 45 — z. Thus

_ _d, (l00-z—¢
Has =~ 10—z

1
100 —z -t
1
gg.

t=45—zx

2. Use equation (2.1.11).

E[T(z)] = /ow,p,dt
- " (- (%))

1 £2.5 100
= '~ To00 (5’5’)

60.

0

li

3. Use (2.2.6). First: [° pz4edt = —In(85 — t) — 3In(105 — £)[3° =

3
—1In (% (%) ) . Then 9p,
4. Use (2.1.11). -
enn = / tpa1dt
0

- [ (w%)
(42)3 (42+1¢)72

-2
= 2L

85 (85)° = 0.4057.

o0

0

5. The symbol m, denotes the central death rate: Deaths d; = I, — ;4 and

z+1 1 l
average population = / lydy =l; / Zttdt . Divide each of deaths and
0

z Ly
average population by I, to obtain m; = qu dt. Use (2.6.9).
o tPz

1 1
1- 9z
dt = —_—dt
A P /0 1- (1 - t)‘?::
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1

= Zmi-(1-1t)
9z 0

—pz In(pz)
0z

The formula for m; is the reciprocal of this quantity multiplied by g.. To work
the exercise substitute ¢, = 0.2 and p; = 0.8. The answer is m, = 0.224.

6. Use equation (2.2.6). e ¥ =p; =1 —0.16 = 0.84 s0 (p; = e~ = (0.84)¢ =
0.95 and, ¢t = In(0.95)/ In(0.84) = 0.294.

7. Since Iy, is constant, [ is linear. Thus T'(88) is uniform on (0,12). Therefore
Var(T) = (12)%/12 = 12.

8. Before: 0.95 = exp (—- fol p,“dt) = p;. After: 0.93 = exp (—- fol(#z+: - c)dt)
= pze® = 0.95¢°. Therefore e¢ = 93/95, ¢ = log(93/95) = —0.0213.

9. Make the change of variables z + s = y in equation (2.2.6) to prove (i). Use
the rules for differentiating integrals to prove (ii).

10.
100yigi30141 = 100 (p(aoj+1) (9j30)+2)
= (1 - qpo)+1) (100g33)
= (1-0.00574)(0.699)
0.695
11.

l40 - 157 _ (81)1/2 - (64)1/2 =0.10
l,, (100)1/2 -

12. Use this relation:

ez = E[K(z)] = p E[K(2)|T(z) 2 1] + ¢ E[K(2)|T () <1] = pz(1 + ez41)-

Thus pz = ez/(1 + €z41). 2p75 = pr5pre = #3_51—};% = 0.909.

13. T(16) is uniform on (0, w — 16) since we have a de Moivre mortality table.
Hence E[T(16)] = (w—16)/2 and Var[T'(16)] = (w—16)2/12. Therefore w—16 =
2(36) = 72 and Var[T] = (72)%/12 = (72)(6) = 432.

14. gso = 1 —21p30/20p30 = 111/6000. And pi304¢ = —,plao 21P30 = 750 tapr-
Therefore, gso — uso = 1/6000.

15. E[T] = 0100-: pzdt = [§ ("T_‘)2 dt = $ where a = 100 — z. E[T?] =

0100_"' 2t,pzdt = 2 [ t;pzdt. Use integration by parts to obtain E[T?] = &.

Hence Var(T) = E(T?) — E(T)? = a%(1/6 — 1/9) = (100 — z)?/18.
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16. m, = —f—,—q’—; and, because of the constant force of mortality, ;p, = e #¢
° tPz

where p = —In(p.). Hence, fol Pzdt = qz/pu and my = p = 0.545.

17. Let T = T'(z) be the lifetime of the non-smoker and T* = T*(z) be the life-
time of the smoker. Use formula (2.2.6): Pr(T* > t) = exp (— fot cpz+udu) =
(¢pz)® where (p; = Pr(T > t). Hence Pr(T* > T) = [;°Pr(T* > t)g(t)dt =
I (epz)°g(t)dt = — [° w(t)°w'(t)dt where w(t) = (p,. Hence, Pr(T® > T) =

@~ _
e+l |, 1/(c+1).

18. See exercise 9. ¢z =1 —p; =1 —exp (— f:“pydy) which we get by a
change of variable of integration in formula (2.2.6). Now apply the rules for
differentiation of integrals:

dqz z+1
dz = —exp (—/ ,“'ydy> (—pzt1 + pz) = pz(pizt1 — pz).

19. f;; pzdr = 400k and so 0.81 = 1op35 = exp(— f;: pzdr) = exp(—400k).
Similarly gops0 = exp(— [y pzdz) = e~ 1000k — ((0.81)1/400)1000 — (0 81)5/2 —
(0.9)° = 0.59

20. E[X?] = 2 [} zzpodz = 3w?/5. Var[X] = (3w?/5) — (3w/4)? = w?(3/5 —
9/16) = 3w?/80.

D.2.2 Solutions to Spreadsheet Exercises

1. See appendix E.
2. Check value: eg = 71.29.

3. ¢=0.09226. Assume that “expectation of remaining life” refers to complete
life expectation and that assumption a applies, so that 3,: ex +0.5.

4. Use formula (2.3.4) with A = 0. Check values: €4 = 99,510 when ¢ = 1.01
and ¢59 = 680 when ¢ = 1.20.

5. Under assumption a, pri0.6 = 0.10638 for example.
6. Under assumption b, ¢.4q9. = 0.04127 for example.

7. Use trial values such as B = 0.0001 and ¢ = 1 to calculate Gompertz
values, and the sum of their squared differences from the table values. Use the
optimization feature to determine values of B and ¢ which minimize the sum.
Solution: B = 2.692107° and c = 1.105261.

8. For k = 7.5, eqs = 12.924. For k =1, e45 = 30.890.
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D.3 Life Insurance

D.3.1 Solutions to Theory Exercises

1. The issue age is z = 30. From (i), T = T'(30) is uniformly distributed on
(0,70). The present value random variable is Z = 50,00007. Hence, Az =

E[Z] = 50,000 f07° vt Jsdt = (50,000/70)(1 — e~7)/(0.10) = 7,136.

2. Use the recursion relation:
(TA)e = AL+ vPa(Azs1 + (TA)zp1).

An alternative solution in terms of commutation functions goes like this: The
numerator can be written as follows:
R: - C:: _ Mz + Rz+l - C:r _ M:+l +R::+l
DI Dz DI '

. . M. .
The denominator is B%“". Hence the ratio is Dz41/Dz = vp;.
x

3. Let Z3 be the present value random variable for the pure endowment, so
Zy = Zy+Z3. It follows that Var(Z,) = Var(Z2)+2Cov(Z;, Z3)+ Var(Z3). Now
use the fact that Z3Z3 = 0 to obtain Cov(Zy, Z3) = —E[Z3]E[Z3]. Z3 is v™ times
the Bernoulli random variable which is 1 with probability ,p., zero otherwise.
Hence Var(Z;) = 0.01 + 2(—E[Z3]E[Z3]) + Var(Z3) = 0.01 — 2(0.04)(0.24) +
(0.30)2(0.8)(1 — 0.8) = 0.0052.

4. A45:'2'd] = (Mys — Mgs + Des)/Dys = 0.40822.

5. Use the recursion relation A; = A;:?ﬂ +0" . pz Az and the relation Azm) =
A;:m + v",p;. In terms of the given relations these are A; = y + v™,pz2 and
u=y+v",p;. Hence A =y + (u—y)z= (1 — 2)y + u=.

6. From (ii), the discount function is v, = 1/(1 + 0.01¢) = 100/(100 + t).
The benefit function is: b, = (10,000 — ¢2)/10 = (100 + t)(100 — ¢)/10. Hence
Z = vrbr = 10(100 — T') and so E[Z] = 10(100 — E[T]). Now use item (i):
T = T(50) is uniform on (0, 50] so E[T] = 25 and E[Z] = 750.

. o w—ét—#‘dt= = © TV = 24, = k-

7. EpT] /Oe e My A #_‘_5311(1}3[(”)] A u+26
)

. TR S

Therefore, Var[v' | = *A, — A/ (i +26) (1 + 6)2

8. Consider the recursion relation Az = vgz(1 — Az41) + vAz41. The analog
for select mortality with a one year select period goes like this: Since the select
period is one year, K([z] + 1) and K(z + 1) are identically distributed. Hence,
using the theorem on conditional expectations, we have A[; = E[pX [I]“] =
vqg) + ERHEIIH - g)) = v + ERpKEDy(1 - q)) = vgy) +
Az+19(1 — q)). Hence, Ag) = vqgj(1 — Az41) + vAz41. By combining the
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two recursion relations, we see that Az — Ay = v(gz — qi)(1 — Az41) =
0.5v¢5(1 — Azt1).

9. Let P be the single premium. Use formula (3.4.3). The benefit function is
ck+1 = 10,0004+ P for k = 0,1,...,19 and ¢4y = 20,000 for k£ = 20,21,....
Hence PD, = (10,000 + P)M_ + (10,000 — P)M_,20. Now solve for P =
Mx + Mz:+20

10, 000 .

Dz - (Mz - M:c+20)
10. Use formula (3.4.3). Make a column of differences of the death benefit
column ck. In calculating the differences, use a death benefit of 0 at age = — 1
and age z + 11. Also put in the ages to avoid confusion about which age to use
in the solution. You will obtain a table like this:

Age at Death | Year of Death | cx | ck — ce—1

T 1 10 10
z+1 2 10 0
T+2 3 9 -1
z+3 4 9 0
z+4 5 9 0
z+5 6 8 -1
z+6 7 8 0
z+7 8 8 0
z+8 9 8 0
z+9 10 7 -1
z+10 11 0 -7

From the table, we see that the net single premium is written in terms of com-
mutation functions as follows:
IOMz - Mz+2 - Mx+5 - Mz+9 - 7Mz+10
D, ’

11. .
Z={v ifT <10

v10  otherwise

T is uniform on (0, 50). Hence, the net single premium is

40 10
50 000 - —(0. 10) 10 / t —dt
: [50'j ) V50

= 10,000[1 + 3e™!] = 21,036.

10
50, 000 [vwlopso +/ vt!](t)dt]
0

12. Let m be the answer. m = vT, where tpy = 0.5. Since py, = 7 ;t =
€002 = 0.5, then m = 004 = (£70-02)2 = (4.5)? = 0.25.

13. Since: =0,then Z=0o0r 1. Z=1if K = 0 or K = 1 which occurs with
probability 2¢; = ¢ + pzqz+1 = 1/2+ 1/2¢,4;. And Z = 0 if K > 1, which
occurs with probability 1 —(gz +pzgz+1) = 1/2—1/2¢z+1. Hence Z is Bernoullj;
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its variance is (1/2 + 1/2¢z+1)(1/2 — 1/2¢241) = 1/4(1 — g2,,). Set this equal
to 0.1771 and solve. The result is g4+ = 0.54.

14. Calculate values of Z and its density function f(t) in the given table.
Obtain the following:

t | ct) | gz+t Z | fi)y] Zf(@)
0 3 0.20 | 2.700 | 0.2 | 0.5400
1 2 0.25 ]| 1.620 | 0.2 | 0.3240
2 1 0.50 | 0.729 | 0.3 | 0.2187
>3 0 0 0.3 0

IT = 1.0827. The values of Z which are greater than II = 1.0827 are Z = 2.7
and Z = 1.620. Hence Pr[Z > 1) = 0.2+ 0.2 =04.

15. A; = vqy +vpz Az 50 Azg = vq76 + (D77/D76) A7 since D7/ D7 = vpre.
Since prs = (1 + i)(Dr7/Drg) = (1.03)(360/400) = (1.03)(0.9) = 0.927 then
0.8 = (1.03)~!(1 — 0.927) + (0.9) A77. Now solve for A77 = 0.810.

16. The net single premium is 50 fol 00 v'g(t)dt. Integrate by parts to get a net

single premium of 1 — 11e!% = 0.999501.

17. See Exercise 7. E[v?T] = 0.25 implies that —#5 = 0.25 so 3u = 26.

18. 0.95 = Pr[(Z1+ Z2+" - -+ Z100)1000 < 100w] where the random variables Z;
are independent and identically distributed like vT. Now Y = (1/100) 2,1:):01 Zy
is approximately normal with mean E[Z] = 0.06 and variance equal to
(1/100)Var(Z) = (1/100)[0.01 — (0.06)?] = 0.64(10~%). Thus the mean and
standard deviation of Y are 0.06 and 0.008. Therefore 0.95 = Pr(Y <
w,/1000) implies that w = 1000(0.06 + (1.645)(0.008)) = 73.16.

19. UseIl =11 A;%-I +10, 0001)20201)1 orlID; = H(M:—M;;+2o)+10, 000D,_-+20
and solve for II.

20. Use formula (3.4.3). Make a column of differences of the death benefit
column ck. Use a death benefit of 0 at age =z — 1.

Age at Death | Year of Death | ¢k | ck — ck—1

T 1 10 10
z+1 2 10 0
z+2 3 9 -1
z+3 4 9 0
z+4 5 9 0
z+5 6 8 -1
z+6 7 8 0
z+7 8 8 0
z+8 9 8 0
z+9 10 7 -1
>z+10 >11 7 0
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Then the net single premium is given as follows:

lOM:I: - Mz+2 - M::+5 - M::+9
D, )

D.3.2 Solution to Spreadsheet Exercises

1. For i = 2.5%, 5.0%, and 7.5%, the single premium life insurance at age zero
is Ag = 0.19629, 0.06463 and 0.03717.

2. At i = 5%, (IA), = 2.18345.

3. Guide: Set up a table with benefits and probabilities of survival to get them.
The net single premium is 0.0445.

4. Guide: Use the VLOOKUP() function to construct the array of survial
probabilites for a given issue age. Check values: (D“i)sozﬁ] = 9.23 at i = 5%.

(DA)Q&ﬁ'I = 3.50 at ¢ = 6%.

5. Guide: Set up a spreadsheet to calculate the values of A; and 2A,. According
to formula (3.2.4), the second moment can be calculated by changing the force
of interest from 6 to 26. Put 6 in a cell and let it drive the interest calculations.
Use the Data Table (or What if?) feature to find the two values of E[v**1],
corresponding to § and 26. Check values: Var(vK+!) = 20,190 when i = 5%,
and Var(vK+1!) = 17,175 when i = 2%.
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D.4 Life Annuities

D.4.1 Solutions to Theory Exercises

1. Use formula (4.3.9) with m = 2,z = 40,n = 30. G35 = D' (Ngo —
N70) = 151404, D70/D40 = ,U30p40 = 01644, 0(2) = m{%ﬁy = 100015, and
B(2) = 0.25617. The answer is &‘(1?:331 = 14.9286.

2. Use the recursion formula (4.6.2) for a.7) to develop the following recursion
formula: (Id), = “==T| + vpz (Gz41+ (I&)z+1)‘ The ratio simplifies conse-
quently to vp, = a,1)-

3. (Im a), = Jo tvtepzdt + [° nvtyp.dt. Differentiate before making the sub-
stitutions v, = e %% and ,p, = e7%%¢. Use Liebnitz’s rule for differentiating
integrals:

8, i o )
5. (Ii] a)z = NV ppz + v pedt — v, p.
n

on
o0 o o]
= / vhpLdt =/ e 010t — 10e—0-10n
n n

4. Arrange the calculations in a table:

Event | Pr[Event] | Present Value (PV) | (PV)Pr[Event] | (PV)“Pr|Event]
K=0 0.2 2.00 0.400 0.800
K=1 0.2 4.70 0.940 4418
K>2 0.6 7.94 4.764 37.826

E[PV] = 6.104 and E[PV?] = 43.044. Hence, the variance is 43.044 —(6.104)? =
5.785.

5. (16)95 = ags + 1895 + 2|Gg5 + 3dgs + * - . Since w = 100, 7 = 0 and T(95) is
uniform on (0, 5), then the five non-zero terms are ags = E[T(95)] = 2.5,)1895 =
Posags = (0.8)(2) = 1.6,5/G95 = 2pgsagr = (0.6)(1.5) = 0.9,3)@95 = 3Posdgs =
(0.4)(1) = 0.4 and 4 ags = 4posige = (0.2)(0.5) = 0.1 . Hence, the answer is
5.5. Alternatively, we can calculate expected present values conditionally on the
year of death. There are five years of interest and they are equally likely. This
yields (0.5 + 2.0+ 4.5+ 8.0 + 12.5)/5 = 5.5.

6. Use formula (4.3.9) or its equivalent in terms of commutation functions.
10|ﬁ25:m~| = D25_1 (N35 - N45) = 4.85456, (D35—D45)/D25 = 0.24355, 0(12) =

1.00020, and B(12) = 0.46651. Hence,

10I&§15?)1_0'| = (12) 10/855,75) ~ B(12)(10p2sv'® — 20p25v®®) = 4.74191.
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Another solution is based on formula (4.3.2) and (3.3.10), adjusted for tempo-
rary rather than whole life contracts:

(12) _ i 1 10
Ay 35:10] _i(12) A35.75'| + 10P35v
= (12) (M3s — Mys) /Das + Dys/Dss = 0.61814.
Hence,
12
10|a§5 10] = (Dss/Das) ( A:(;s:)l—o]) /d(1?) = 4.74200.

7. Use formula (4.3.9) to derive a formula analogous to formula (4.5.4) for
temporary annuities. Then use the formulas analogous to (A.3.6) and (A.3.9)
to write the result in terms of commutation functions:

U8 = a(m) ((Ia)mm) — B(m) (dzm — nv"apz)

a(m)SI - SI+B —’I’I.Nz+n _ ﬂ(m) N;- - N:+Dn - ﬂD:+n
z z

Now calculate the N and D values by differencing the successive values of the
given values of S. We need N;g = S79 — S7; = 9597, Ngg = Sgg — Sg1 = 2184,
Dqo = N7g — N7p = 9597 — 8477 = 1120, and Dgp = Ngo — Ng; = 368. We get

(12)
(1)) = 29.16.

8.

1- 'u"+1
an n] +d Z ( )kpzq:z+k

Ii

n—1
d (am Pr(K >n)+ ) fi) Pr(K = k))
k=0

= dE (éi min(K+l,n)])
d&z:'ﬁ] =1- Az:ﬁ]

Il

9. Use formulas (4.2.9), (3.2.4) and (3.2.5). Var(Y) = d~2 (E[e"26(K+1] — A2).
Now use A; = 1 — da, twice. A; evaluated at 6 is 1 — (0.04)10 = 0.6. The
discount corresponding to 26 is 1 —v% = 1 — (0.96)? = 0.0784 so E[e~26(K+1)] =
“Ay evaluated at 26,” is 1 — (0.0784)(6) = 0.5296. Therefore and Var(Y) =
(0.5296 — (0.6)2)/(0.04)2 = 106.

10. Use formulas (4.2.13) and (3.2.12).
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11. Use formula (A.4.7). N23 = st d Sgg = 97, NQg = Sgg - 530 = 93, and
Dqg = Nog — Nog = 4. Hence, Mg =4 —(3/103)97 = 1.1748 where we used the
commutation function version of formula (4.2.8): Dy = dN; + M;.

12. Use the recursion relation d; = 1 4+ vpzdz+1. 7.73 = 1 + (1.03)"1ps3(7.43)
s0 pr3 = (1.03)(6.73)/7.43 = 0.93.

13. The values of the present value random variable Y are 2, 2 + 3v = 4.7273,
and 2 + 3v + 4v? = 8.0331. Hence, Pr(Y >4) = Pr(K > 0)=1-0.20 = 0.80
14. Use formula (4.4.8) with r(t) = 1if0 <t < 1and r(t) = 2 for ¢t >
1. Integration by parts applied to E(Y) = f020 r(t)(1 — 0.05¢)dt with w(t) =
fo r(s)ds yields E(Y) = 0.05 f w(t)dt = 19.025. Alternatively, the annuity
can be viewed as the sum of two annuities each having constant rate of payment
of 1 per year. The first begins paying at age 80, the second at age 81. Using
this approach we have E(Y) = aso + vpsods1 = E(T(80)) + 0.95E(T'(81)) where
T'(80) and T'(81) are uniformly distributed on (0,20) and (0, 19), respectively.
Again we get E(Y) = 10 + 0.95(9.5) = 19.025.

15. Consider the sum of two annuities approach, as in exercise 14: E(Y) =
ag.5] + UPs0dgy 3] = E[min(T(80), 5)] + 0.95E[min(7(81),4)] = (2.5)(0.25) +

(5)(0.75) + (0.95)[(2)(4/19) + 4(15/19)] = 7.775.

16. Since § = 0, h = Var(T) = E(T?) — (E(T))>. Also E(T?) = [3° t2g(t)dt
2 fo (1 - G(t))dt = 2g by parts mtegratlon Hence E(T ) \/2g —h.

17. (Da)70:ﬁ] = —,‘0 (10N7p — S71 + Sgy) = 42.09.

18.
015 — 851 S%er1 +a)Sat2 08, — (14+0)Sa11 + Seo
D, D,
_ vN; — N:c+l
= el

The formula (A.4.6) Cy = vDy — Dy, summed over y running from z to the
end of the table, gives My = vN; — N1, from which we see the simplification
to A;.

19. Let Z=e%TandY = ap) = 671(1—Z). From the given data, we find that
E(Z) =1-106, E(Z%) = 1 - 14.756, and 50 = Var(Y) = 6% (E(Z?) — E(2)?).
First solve for 6 = 3.5%. Then A, =1 - éa, = 0.65.

20. Apply formula (4.8.9) to obtain Ass 75 = 0.17509. Apply formula (3.3.5) to

obtain A35_75 = 0.18046. Then aszs.7s = (1 - A35_75)/§ = 16.79725.

D.4.2 Solutions to Spreadsheet Exercises

1. Set up your spreadsheet to calculate the required annuity value with reference
to a single age and interest rate. Use VLOOKUP() references to the mortality
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values, which may be on a separate sheet. Then use the Data Table feature to
calculate the array of values for z running down a column and ¢ accross a row.
Check values: dgp = 18.058 at i = 5% and a2 = 13.753 at i = 7.5%.

2. The expected market value is 309,153.

3. Guide: Set up a table to calculate A, and E[Z?] with a reference to a single
value of ¢. Use formula (3.2.4). Then use the Table feature to allow for different
values of c.

4. For i = 5%, 52 = 18.3831 and Agss = 0.11255. For i = 6%, aShys =

15.37108 and Aszo.25 = 0.10369.

5. Guide: From the Illustrative Life Table set up a table with the cummula-
tive distribution function of K. Fill a column with 200 random numbers from
the interval [0, 1] using RAND(). Use the VLOOKUP() function to find the
corresponding value of K. Evaluate Y for each value of K, then calculate the
sample mean and variance using the built-in functions. The theoretical answers
are a4 = 16.632 and Var(Y') = 10.65022.
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D.5 Net Premiums:Solutions

D.5.1 Theory Exercises

1. Use formula (5.3.15): P25:§6'| = P'zls-i‘o]

relation 99 Pos = leszﬁ] + P25:%] Ays = 0.046 to obtain

1 _
+ P25:%~| = 0.064. Now use the

PZM_})] = (0.064 — 0.046)/(1 — 0.64) = 0.05.

1 _ _
Therefore P25;§6’| = 0.064 — 0.05 = 0.014.

2. L* =K+l Gagey =-G/d+(1+ G/d)vK+! and hence

Var[L*] = (1 4+ G/d)?Var[pX*!] = (d + G)%d2Var[p¥*!].
Similarly,

L=+ Prigrr) = —P:/d+ (1 + P /d)yvK+!

and
Var[L] = (d + P;)%d~*Var[v¥*1] = 0.30.
Now use E[L] = 0 and E[L*] = —0.20 to find that 0 = A;— Prd, = 1—(d+Pz)é,
and —0.2 =1 - (d + G)a,. Hence
Var[L*] (d+ G)%2d~2Var[v¥*1] = 0.30(d + G)?/(d + P.)?
0.30[(d + G)/(d + P,))* = 0.432.

3. Let P denote the net annual premium.

5.000(10A3s + 5|A2s + 10| A2s + 15]A2s + 20| A2s + 25]A2s
&25 : ﬁ]
5.000(10Ma5 + M3o + Mas + My + Mys + Mso
Nos — N3s

P =

]

1012.33.

Loss A = 4v**! - 0.18igy
= —0.18/d+ (44 0.18/d)v**! = —2.25 + 6.250K *!

Using the table we find that Var[Loss A] = 3.25 = (6.25)*Var[vX*!]. Simi-
larly, Loss B = 6vX+! — 0.224577) = -2.75 + 8.75vK+1 and Var[Loss B] =

(8.75)2Var[vX +1] = (8.75)2(3.25)/(6.25)2 = 6.37.
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5. Let @ be the answer. The death benefit is 10,000 + Q/2 initially. After
the premiums are paid up it reduces to 10,000. Hence, the expected value of
the present value of benefits is 10,0004, + (Q/2) A;.m . The expected present

value of premiums is Q&z:;‘m. The equivalence principle implies that

10, 000 A,
&z:ﬁ] - ( Ai%.l )/2

Now rearrange the denominator.

1+ d/2)ax56] —(1=v®y%P,)/2.

I

Hence,
10,0004,

= (l + d/2)az§(_)1 - (1 - U2020Pz)/2.

Q

6. Az = nPrizm) = nP:(1 — Azwy)/d. Hence nP; = dA: /(1 — Az.m).

7. The present value of death benefits is 1000(1.06)v in year 1,10000(1.06)%v?
in year 2, etc. Since v = 1/1.06, the present value of death benefits is 1000,
independent of the year of death. Let @ be the net annual premium. The
expected present value of net annual premiums is Qa.. Hence Q = 1,000/d, =
1000(d + P;) = 1000(0.06/1.06) + 1000P, = 66.60.

8. Solve the two equations:

Az = A::m + v2gOPIA1+20 and A::m - A;-2—0-] = ”202017: for ’0202on =05
1 —

and Az;'z_o] = 0.05.

Use 4,357 = 1 = di, 5] to find 5] = 15.45. This yields 1000P (4,55 ) =

. . i o 1.
1000 (AIE-I + 1)20201;:) /az:%'l = 1000 [(E)Azm +v 20;)::' /GI:E‘I = 35.65

9. L =vT - P(A;) = —P(A;)/6 + (6 + P(A.))(6)"'vT. By the continuous
payment analog of formula (5.3.5), we have a;(6+ P(A;)) = 1. Hence, Var(L) =
Var(vT)/(6a;)?. By exercise 7 of chapter 3,

T _ T} _ (Elv _ pb?
VartoT] = B™T) — (B 1) = gt
Finally, Var(L) = u/(26 + p) since a; = 1/(6 + p).

10. (a) The insurer’s loss random variable is the present value of benefits less
the present value of premiums. The death benefit payable at the moment of
death is 1 + Ggﬂ , provided T < 10. The present value of death benefits is
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vT(1 +Gs =vT 4+ Ga= if T < 10 and 0 if T > 10. The present value of
T T]
premiums is Gc‘zﬂ if T < 10 and Gam if T > 10. Therefore, the insurer’s loss

T if T <10
L= _G‘_‘ﬁ] otherwise.

1S

(b) E[L] = EpT|T < 10]104z + (“Gaﬁ] )10Pz = Aitm - G&m 10Pz-

E[L?) = Ep*"|T < 10}104; + (~Car5))*10pz = m;m +G*(agg)) 10P=-
Var[L] = 2/1;:%] + (Gags))*10pz — (A;:m ~ Gayg10p:)%.

(¢) If G is determined by the equivalence principle, then G = Ai;iﬁ] / (&1—0] 10Pz )
This can be substituted into the last expression to find

Var{L] = 2Ai;ﬁ] + (/ii:—m] )?/10Pz-

11. &mﬁ] =1+ d30.3] = 6.6. Hence Aso;ﬁ] =1 daao:l_o] = 0.4 Therefore

Aéom = Ag.10] ~ v'%0Ps = 0.4 — 0.035 = 0.05. Hence, 1000P310:m =

1000430, 157 /ibs0.75) = 7-58.

12. A; = 0.2and Az = (i/6) Az = 0.2049593 by assumption a. Hence, a; = (1—
Az)/d = 16.8 and hence 10000P(A;) = 100004, /d, = 2,049.59/16.8 = 122.
Also, a; = (1 — A;)/6 = 16.2951. Hence, 10000P(A;) = 2049.59/16.2951 =
125.78 and the answer is 3.78.

13.
1 (Pso;ﬁ] - 15P30) &30:T§] - 1 Aso:ﬁ] — Ao
vls(lspao) 15E30
_ Aso, B~ Aszo
= 1-—
Aao:ﬁ]
_ Aso:TIE] — A, 15) + A3
= 1
A%:ﬁ]
1
- T4 1
ASO:E]
_ May— (M3 — Mys) A
= D = Ags.
45
6 0.07

14. Under assumption a, Ay = A = W—O.Of& = 0.289622.
) eV 07 1
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1-Az _ 10507587

by =
Using (4.3.5), @ =a@q, — 8 = 10.252457.

Therefore, 1000 (0.5P(2>(A,)) - io—?:-)’l = 14.63.

iz
15. Var[L] = 0.25 where L = vT - P (4;) ar) = (8az) "' oT — P (4s) /6.
Therefore Var[L] = Var[vT)/ (6a;)* = (100/36) Var[vT]. Hence 0.25 = Var[L] =
(100/36)Var[p”) and Var[v”] = 0.09. L* = +T — Gap = (1+ G/6)wT —G/6
and Var[L*] = (11/6)?Var[vT] and hence Var[L*] = (11/6)%Var[vT] = 0.3025.

A4o:53]

16. Let P = k = net annual premium. Then P%;m = A40:m +
E[W] where W = PvK'H's'ml if K < 10 and W = 0 if K > 10. Since

EW]=P (&40:’16’] - 10E40§W])’ P (640:%1 - &40;'1_0] + 10E40§1'6'|) = A4o:§6]

and therefore
k= d40.35) ~ G40 10] T 10E40315)

17. Let P denote the annual premium. Then L = —P — Pv with proba-
bility (0.9)(0.8) = 0.72,L = v? — P — Pv with probability (0.9)(0.2) = 0.18
and L = v — P with probability 0.1. By the equivalence principle, P =
(vqz +v®Pzgz+1) / (1 + vpz) = 0.13027621. Thus the values of L are L =
—0.2475 with probability 0.72. L = 0.5625 with probability 0.18 and L =
0.7697 with probability 0.1. Hence Var[L] = E[L?] = (-—0.2475)%(0.72) +
(0.5625)2(0.18) + (0.7697)2(0.1) = 0.160

18. 1,000P (Az.m)) = 1,0004z.57)/8z.m). 0.4275 = AL ) = [ pe~(Hi)idt =
0.45 (1 — e~%!") and hence e~%1" = 0.05. Therefore A;.7 = 0.05 + 0.4275 =
0.4775 and @7} = (1-0.4775)/0.055 = 9.5. 1,000P (A..7)) =

1,000(0.4775) /9.5 = 50.26.

19. Theloan payment for aloanof 1,000is P = 1, OOO/aﬂ = 288.60. The death
benefit paid at K+1isbgy) = P&m—] if K <4 and bx+; = 0 otherwise. The
present value of the death benefit is Z = vK b ) = PvK+1 (1 —v4-K) /d if
K<4and Z=0if K > 4.

(@) L=Z-G=P@wK*'-1%)/d-GifK<4and L=-GifK >4.
(b) 0=E[L]=E[Z]—G= P (AQS:E] —‘U54q25> /d—G

So now calculate as follows: Azslzi] == A251ﬂ —vips =1- dazs:?] — vl pos =

0.0043. G = 288.6(0.0043 — 0.00373629)/d = 2.87.
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(c) Let G* denote the additional amount of the borrowing to pay for term
insurance and L* denote the loss random variable in this case.

L= { DR =) -6 (k<)
-G*

(otherwise)

o 10,0004 G* . .
E[L ] = az]d (A25:3"| v 4!]25) G'=0
Using the result in (i), A}_ ., —v%4g25 = 0.0005638. Therefore

25:7
(10,000 +G*)(0.0028745) — 3' =0, and G* = 28.827866. The annual payments is
(10,000+28, 827866) /a5 = 2,894.23.
20. (a) L = v¥+! - Gigry) = (14 G/d)vK+! — G/d where K is the curtate
lifetime of (z).
(b) E[L] = A; — Gz = (1 + G/d) A — G/d = —0.08 and
Var[L] = (1 + G/d)*(?Ar — A2) = 0.0496.

(c) 0.05 = probability of loss = Pr[S > 0] where S = Ly + ...+ Ln and the
L; are independent and distributed like L. Thus E[S] = NE[L] = N(-0.08)
and Var[S] = NVar[L] = N(0.0496) and, using the normal approximation, we
have 0.95 = Pr(S < 0] = Pr(Z < (0 — N(-0.08))/(0.0496N)"?) = Pr(Z <
N'/2(0.3592)). This gives 1.645 = N1/2(0.3592) and N = 20.97. So a portfolio
of N = 21 would have a probability of a loss of a little less than 0.05.

D.5.2 Solutions to Spreadsheet Exercises

1. Check value: Sy = 21, 834, 463.
2. For ¢ = 5%, the premium is 0.0253. For i = 8%, it is 0.0138.

Guide: Set up a spreadsheet with survival probabilities, increasing benefits
and increasing premiums. Calculate the expected present value of benefits and
premiums and use the solver feature to find the initial premium so that the
difference is 0.

3. Some values of the premium P are as follows:
P = 36675.49 with C = 500,000, a = 10~%, and
P =43920.03 with C = 500,000,a = 10~5,
P = 375046 with C = 1,000,000, a = 1075.

Guide: Set up a table with columns for the present value of benefits and present
value of premiums for each of the ten years. Find L and U(—L) and calculate
E[U(-L)]. Use the solver feature to find the premium so that formula (5.2.9)
holds.

4. P=3.0807.
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Guide: Set up a table with probabilities of survival, death benefits and premi-
ums. Set the death benefits according to the refund condition. Set the expected
present value of premiums and benefits equal by using the solver function and
letting the premium vary. Try it with different death probabilities for the first
five years.

5. Guide: Set up a spreadsheet with survival probabilities and present value of
premiums. Find the balance and present the value of benefits. Use the solver
feature to find the premium that equates the present value of premiums to the
present value of benefits.

6. z = 8.5% for 7 = 3% and z =14.3% for j = 6%

Guide: Set up a spreadsheet with survival probabilities and cash flows. Cash
flows consist of savings during the pre-retirement period and payments during
the retirement period. Use the solver feature to find z so that the expected
NPV of the cash flows at 5% is 0.

7. The ratio is 1.0601.
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D.6 Net Premium Reserves:Solutions

D.6.1 Theory Exercises

1. Pss:%] = 0.03067, P40:E] = 0.04631, Reduced Paid-up = 337.84.

2. Use the formula

1—2Vs = %:—z
a3 das
= (1 -10Vas)(1—10Vas) =0.72

and 99Vos5 = 0.28.
12.25

189

3. 20V (A40) —20V (Ag0) =1- 90 _ v (Ag) =1- —55— —0-3847 = 0.0028.

aso
4.

k 0 1 2
k+1V | 0.8889 | 1.7984 | 2.2187.

5. 4+ = 1.14151, d, = 1.37691, Answer: 0.171.
6. Answer: 258.31
7. Use

d
(1+ P:/d)® Var [vK+1]

7 _lA X (E[c—(K+1)26] _ (E[e—(K+1)6])2)

Calculate the moment generating function of K + 1,

1 —pK+1
Var(L) = Var [vK“ - P,—]

= i 0.5)
e = A — —~(k+1)s _ k+100 5)k+1 — v( _
M(-s)= 4 kzzoe k9= ;" (05) 1-v(05)  2-v

where v = e~*. Obtain E [e~(K+1?] by setting s = 6, and E [¢~(K+1)2¢] by

setting s = 26. Substitute and simplify. It is not easy.
8. Answer: 4.88.

9. Answer: 480.95.

10. Answer 644.50.
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11. Premium = 7.92, Reserve = 33.72.

0 with probability 0.2
12. A, = {Bv —1V —1  with probability 0.2
2Vv — 1V —1 with probability 0.6

E[A1] =0, and Var[A,] = 0.1754
13. Answer: 0.2841.

14. Use formula (6.7.9): Var[Ag] = v2(1.000)%(1 — 10Va0)?9p40pa9gas =

1 ) 5 8,950,994
——)2(1.000)%(14.6 . it = )
To5)" (1:000)°(14.63606/16.632258)" > 12--20.00546 = 3, 685.83

15. The recursion relation between the two reserves is especially simple since
we are beyond the premium paying period: 0.585(1.04) = 0.600p38 + ¢3s and
hence pas = [1 — (1.04)(0.585)] + (0.4) = 0.979.

16. Use ;V; =1 — (P; + d) G4 to solve for d = % and 7 = 0.10.
17. Answer: 15.25.
18. Answer: 3.99.
19. (a) 1000505V, = 0.5(311 + 340.86) + 0.5(60) = 355.93.
(b)
100005V, = 1000(v°0 5pz+10+0.5 (11Vz)) + 10000°%0 5¢z 4 1005

0.5 4

Use assumption a to obtain ¢s¢z+10405 = =410 —. This yields
1- 0.5qx+10 96

1000;9 5V = 1000(1.03)~* (&) + (1.03)~! () (340.86) = 357.80.

20. Answer: 0.058

D.6.2 Solutions to Spreadsheet Exercises

1. 10V30 = 0.09541 with ¢ = 4%
Guide: Use formula (6.5.4).

2. For ¢ = 6%, I1§ = 0.0706 and IIj = 0.0052.
For i = 4%, I1§ = 0.0791 and IIj = 0.0052.

3. (a) G1 =156
Gs = 20.1
(b.) accumulated gain = 98.5
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(c.) i = 23.24%

4. (Sl)Hl, ey H4= 231.09 and G2 = 361.03
(S2) the present values of gains is 1,396.5

Guide: Set up a table with premiums, benefits, revenues and gains. Use
formula (6.9.1) to calculate the gains. Use the solver feature to find II, so that
sV=0withIl; =1l =Ml3 =1, =IL
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D.7 Multiple Decrements:Solutions
D.7.1 Theory Execrciscs

1. ip: = exp (— fot #x+sd$) = ¢ 003 qi,z = folgl(t)dt = fol tPzhil,z+etdl =
0.00985.

2. Because T is exponential with parameter p = 0.04,
1 [e o)
E[T|J=3]= mA tiPz i3,z 4+ dL

—————1———3—/°°t dt
“PrJ=3)150J, P*

1 3 150 [
= ST tiPrpztedt
0

Pr(J=3)150 6
11 1 1/1
= Pr(J=3) 3 BT = Pr(J=3)2 (m)
Also Pr(J = 3) = u3/p = 0.5, hence E[T|J = 3] = E[T] = 25.

3. The present value of future benefits is
b 00
1000 / (391(t) + 292(t) + g3(t)) e ¥dt = 1000 / 0.12¢~0-07t~0.03¢ gy
0 0

= 1200

The net annual premium paid continuously, P, satisfies Pa, = 1200. Since T is
exponentially distributed with parameter 0.07, then a; = 1/(0.07 4 0.03) = 10.
Hence, P = 120.

1
4. fot pzysds = 2t—log(t+1) and so ,p, = (t+1)e™ 2. / (Ppzdt = 0.75-1.25¢72.
0

_ 1-2"2
T 0.75 — 1.25e2
5. The NSP is equal to

2 2 279 ¢
/0 2tpz/‘1,x+tdt+/0 thﬂz,sztz/(; (%+E) Pz dt

Since (p, = exp (— (; —g%ds) = exp (:‘—,30‘—2), then the NSP is given by

= 1.25567.

Mg

2 [? —3¢2 4 03

6. Apply equation (7.3.6) three times. Use the relation ¢ 30+ ¢2,30 + 43,30 = g30
to solve for g3p = 0.375.

7. (a) 10000(0.84)(0.02) = 168 (b) 10000(1 - 0.01 - 0.25)(0.02) = 148.

8. 500,/¢2,63 = 500pe3pe4q2,65 Now calculate in order:
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(1) pes =1~ q1,63 — g2,63 = 0.45
(ii) pe3ges = 17963 = 0.07
(ili Q64 = 315' and 2P63 = 0.38

(iv) 2Pe3q1 65 = 0.042 so q1,65 = $%2

(v) ges =1 and so gz 65 = %533?:88

Hence, 5002/g2,63 = 500(0.338) = 169.

q1,z
1-0.5¢

10. The NSP is given by

9. 0.02 = and q; ; + g2,z = ¢z 50 1000g = 19.703.

oo oo
/ Clvttp:c,ul,z-ktdt + / CZ'Uttp:l:l"?,x-i-tdt
0 0

oo
cpaz + Cg/ 'Uttp:: (/‘z+t - ,”'1.::+t) dt
0
= cipz + 2Az — cop@s.

Hence, the net annual premium is NSP/a, = (c; — c2) 1 + c2 Px.
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D.8 Multiple Life Insurance: Solutions
D.8.1 Theory Exercises
1. Apply equations (2.6.3) and (2.6.4).
1
Gos1 = / ¢P80:81 480+ At
0

1
= / tPsoeps1 (Hso+¢) dt
0

1
= /:qusodt
0
= ggo(1 — 0.5¢81) = 0.3125.

Similarly
1
gs0:a; = / (1 — ¢pso) tps1 (us14¢) dt
0
0.5¢80gs1
0.1875
— 1 1
g80:81 = ggo:81 1+ 480:81
= ggo(1 —0.5¢s;) + gs1(1 — 0.5¢g0)
= ¢80+ gs1 — 980981
= 0.875
d55817 — 4980981
0.325.
2.

AZ’y = /0 ”t(l _th)tPZI‘:Hdt

[o ]
= / e (1 — e P=t)e Pty dt
0

1 1
- e <6+uz B 5+uz+uy>
= 0.1167.

3. For non-smokers,

75—z —

t
tPr = —— for0<t<75—=.
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Let ' denote the mortality functions for smokers. Since u}, = 2u,,z > 0, then

z+t
s = on(- [ )
x4+t
= exp (—2/ p,dz)
= (tp::)2
Hence
. 10
€65:55 = / tPe5tPssdt
0
10 )
= / tPes (¢pss)” dt
0
3 /1°<10—t> <2O—t)2dt
0 10 20
13
= 3—.
24

4. From the equation obtained from the equivalence principle, we have
10, 000 Az = ¢, + 0.5¢ (@y — Gzy) -

Use Azy = 1 — 8azy and @zy = az + ay — Gy together with the given values to
determine ¢ = 103.45.

5. Let IT denote the answer. By the equivalence principle,
a,, = As=.

Since G, = 1+a; = 10 and A = 1 —dad,, then d = 0.06. Since Azz = 1 — dd.,
then é,, = 7.5. Since Az, + Azz = 2A;, ATZ = 0.25. Hence I1 = 55.

6. The net single premium is
05AL, + Az = 05AL + A+ Ay, — Ay
Now use the following result from the discussion of Gompertz’ Law in section
8.3:
_ o0
A:lcy = / V! Prypiz 4 edt
0

oo
= / Uttp:yBCF+tdt
0

c ® wtt
(c"‘+cy>/0 v Py BT dt
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(553) [ oot

(m) A

FvA,

&

where ¢* = ¢® + ¢¥. The solution now follows easily by using A,y = Ay.

7.

1
oo d50M:50F

oo
/ tPs0M tPSOFﬂ£‘0+tdt
0

50 0.04¢ 1
O _dt
/0 50

0.4323.

Therefore, ooq?’OMsop =1- OOQéOMSOF = 0.5677.

8.

E[Z]

E[Z?]

Var[Z]

A2
Ay::l:

®
/o v (1 - ¢pz) tPyhydL
Hy Hy

4y O+ py+ps
21

110

0

0.1909091
2 42
Ay::l:

Hy Hy

26
3
28

Yy 264 py + ps

0.1071429
0.0706966

9. Let II denote the initial premium.

1000 Agsz

10.

E((2)]

I

1000 (2A25 — Ass:25)

1.2495 — 0.2d2s:25
3.5349.

o2 h
/ v (tp:)Paul (tp-‘c/"z+t)Jo " dt
0
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= Al

E[()] = 2E[()]

E[(ii)] = 3 /o " 0t (1= )P () O
= 3(4; - AL,)

E(iv)] = 4(A: - AL,)

Total = 7A; —4Al, =7A; —2A,..
D.8.2 Solutions to Spreadsheet Exercises

1. Check values: ags.60 = 7.9479, agsgg = 12.7011, and ags 60 = 3.10736.

Guide: Set up a table with values for ;pg and (pes. Use formulas (8.2.3)
and (8.7.3) to calculate the corresponding joint and last surviver probabilities.
Calulate the annuities based on this probabilities. Use the discrete version of
(8.7.6) to calculate the reversionary annuity.

2. The variance is 589.772.

Guide: From the Illustrative Life Table, calculate probabilities of survival for
the last-survivor status. See the guide to exercise 1. Find the present value
for the annuities certain and calculate the expected present value. Use formula
(4.2.9).

3. P =0.0078

Guide: Calculate probabilities of survival for the joint and last-survivor status.
Find the insurance single premium for the last survivor status and the annuity
for the joint status.

4. 3V =0.0258 2V = 0.2247

Guide: Use equation (6.3.4) to find the reserve for the first five years. Recognize
that after the death of (40), the reserves are the net single premiums for (35).

5. G300 ~ 7.02017 and Al ., ~ 0.14558

Guide: For a Makeham law, the formula (7.3.4) provides ;p;. Integrate numeri-
cally to find a, for typical values of z, A, B and cin four cells. Now use the fact
that ps30.40(t) = A'+Bevtt = Hw+t Where A’ = 24 and ¢ = £ +¢¥, so asgp.q0 =
@y, With these values in the appropriate cells: = = log (c3° + c4°) /logc = 41.58,
c = 1.15, A = 0.008, and B = 0.0001. To obtain A}, ,, either evaluate an
integral numerically or use the relations:

ALy = S (Aey — AL - & )ay) and Auy =1 - b0,
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D.9 The Total Claim Amount in a Portfolio

D.9.1 Theory Exercises

1. E[$)] = 1000(0.001) + 100(0.15) = 16 and Var[Si] = 1000%(0.001) +
1002(0.15) — 162 = 2244. E[S] = 5E[S?] = 80 and Var|[S] = 5Var[$;] = 11, 220.
Pr(S > 200) = 1 — &((200 — 80)/+/(11,220))) ~ 1 — ®(1.1329) ~ 0.1286. The
exact value is Pr(S > 200) = 1 — Pr(S = 0) — Pr(S = 100) — Pr(S = 200) =
1 — (0.849)% — 5(0.15)(0.849)* — 10(0.15)2(0.849)3 = 0.032.

2. p(B) = E[(S - B)*] = 0 [{*(z — k)¢(x)dz where ¢(z) = e~=*/2//2x and
k = (B — p)/o. Hence p(B) = o [° z¢(z)dz — ak(1 — ®(k)). Now use the fact
that z¢(z) = —¢'(z) to obtain

p(B) = a¢(k) — ok(1 — &(k)) = od(—k) + (4 — B)®(—F)

= ooCt) 1+ (u-prat?)

g

3. Ms(t) = i Elexp(t (X1 + - -+ + X&)] Pr(N = k) = i(Mx ()% Pr(N = k)

k=0 k=0
=) " exp(klog(Mx(t))) Pr(N = k) = My (log(Mx (t)))
k=0
Differentiate to get the moment relations:
Mx(t)
’ — ’ X
Ms(t) = MN(log(Mx(t))Mx(t) and

, 2
M0 = M log(Mx ) (3

+  Mjy (log(M(t))) [M%(t)Mﬁi)(th);M& (t))z] Evaluate with ¢t = 0.

4. E[R] = ‘[:[l — F(z)]dz

5. (a) F(z)=1+p'(z),z>0
1 2

(b) F(z)=1- (1 + %:c + 41z2> e * and f(z) = (% +77 ) e*

6. ¢ 8

S {1 _ ¢<M>] 8 [1 - cp(lgﬂ_—#)]

ag g
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8. (a)
z Pr(S14+S2=1z) Pr(S1+S2+S3=z) F(z)
0 0.56 0.336 0.336
0.5 0.07 0.042 0.378
1.0 0.08 0.048 0.426
1.5 0.09 0.166 0.592
2.0 0.01 0.020 0.612
2.5 0.15 0.162 0.774
3.0 0.01 0.087 0.861
3.5 0.01 0.023 0.884
4.0 0.01 0.053 0.937
4.5 0.012 0.949
50 0.01 0.024 0.973
5.5 0.018 0.991
6.0 0.002 0.993
6.5 0.004 0.997
7.0 0.001 0.998
7.5 0.001 0.999
8.0 0.001 1.000
(b)

z  f(z) F(z)

0 0.4066 0.4066

0.5 0.0407 0.4472

1.0 0.0427 0.4899

1.5 0.1261 0.6160

2.0 0.1364 0.7524

2.5 0.0659 0.8183

3.0 0.0365 0.8548

3.5 0.0446 0.8994

4.0 0.0372 0.9366

4.5 0.0214 0.9580

5.0 0.0126 0.9707

5.5 0.0101 0.9807

6.0 0.0075 0.9882

6.5 0.0045 0.9927

7.0 0.0026 0.9954

7.5 0.0018 0.9971

8.0 0.0012 0.9983

199
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D.10 Expense Loadings

D.10.1 Theory Exercises

l.a.
Development of Endowment Reserves
k Net Premium Expense-Loaded
0 0
1 77 31
2 158 116
3 244 206
4 335 302
5 431 403
6 532 509
7 639 621
8 752 740
9 873 867

1.b. 83.60

APPENDIX D. SOLUTIONS

2. —x V< is the unamortized acquisition expense at the end of policy year k.

3.a. The expense-loaded premium is 22.32
Development of Term Insurance Reserves

k Net Premium Expense-Loaded
0 0.0

1 1.3 -35.6
2 2.3 -31.3
3 3.1 -27.1
4 3.7 -22.9
5 4.0 -18.8
6 3.9 -14.8
7 3.6 -10.9
8 2.8 -7.10
9 1.6 -3.50

3.b. The one-year net cost of insurance is 1000vq, = 16.03. The first year
loading is 22.32 - 16.03 = 6.29. The acquisition expense is 40, requiring an
investment of 40 - 6.29 = 33.71.

4. 1000P = 11.C6,1000P* = 0.78,1000P# = 2.28, and 1000P” = 1.13. The
expense-loaded premium is 1000P* = 15.25.

5. The first 10 years of reserves are given below. They can be developed easily
using a spreadsheet program and the recursion relations:
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k gz+k 1000V 1000,V™ 1000,V 1000,V°
0 0.00201 0.00 0.00 0.00 0.00
1 0.00214 9.63 -11.81 0.13 -2.05
2 0.00228 19.62 -11.61 0.27 8.29
3 0.00243 30.01 -11.40 0.42 19.03
4 0.00260 40.80 -11.18 0.58 30.19
5 0.00278 51.99 -10.95 0.74 41.78
6 0.00298 63.60 -10.71 0.91 53.80
7 0.00320 75.64 -1047 1.10 66.27
8 0.00344 88.12 -10.21 1.29 79.20
9 0.00371 101.05 -9.94 1.49 92.61
10 0.00400 114.43 -9.65 1.71 106.49

UPpz+k k+1VT+v—P7 for0<k<29
KV7 = {
04 for k =64

ve = ‘Upz+kk+1V°—P° forOSkSQQ
=30 for k > 30

v (pz+k k+1V“ + 1000qx+k) + Y for 30 S k S 64

¥ (Patk k+1V® +1000g;45) — (1 = B)P*+ for 0 <k <29
Ve =
~ + 1000v for k = 64

D.10.2 Spreadsheet Exercises

Guide: Use the recursion formulas. Here are the results: 1000P = 28.42, 1000P*
1.70,1000P? = 1.74, and 1000P” = 3.0. The expense-loaded premium is 1000P*
34.68.

oo e
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k gz+k 1000V 1000V* 1000V~ 1000.V°
0 0.00278 0.00 -20.00 0.00 -20.00
1 0.00298 2742 -19.45 0.00 7.97
2 0.00320 56.38 -18.87 0.00 37.51
3 0.00344 86.97 -18.26 0.00 68.71
4 0.00371 119.28 -17.61 0.00 101.67
5 0.00400 153.42 -16.93 0.00 136.49
6 0.00431 189.51 -16.21 0.00 173.30
7 0.00466  227.68 -15.45 0.00 212.23
8 0.00504  268.06 -14.64 0.00 253.42
9 0.00546  310.79 -13.78 0.00 297.01
10 0.00592  356.05 -12.88 0.00 343.17
11 0.00642  404.01 -11.92 0.00 392.09
12 0.00697  454.88 -10.90 0.00 443.98
13 0.00758  508.87 -9.82 0.00 499.05
14 0.00824  566.24 -8.68 0.00 557.57
15 0.00896  627.27 -7.45 0.00 619.82
16 0.00975  692.28 -6.15 0.00 686.12
17 0.01062  761.62 -4.77 0.00 756.85
18 0.01158  835.69 -3.29 0.00 832.41

19 0.01262 914.98 -1.70 0.00 913.28
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D.11 Estimating Probabilities of Death

D.11.1 Theory Exercises

(a) (0.00553, 0.00981)

1 (b) (0.00682, 0.00811)

2. 0.007388, 0.00112, 0.007360

3.a.

Z (/\‘)

k=n

or

n A“
Z (9
/wf(x;n)dx=1—w
A

/w flzin+1)dz=w
Av

4. 0.7326, 1.365 years
5. 0.0346

6. The classical estimator is 4/145 = 0.02759. The MLE is 1 — exp(—4/143) =
0.02758.

7. 4=1/9.1
90

A_-—‘ A= —_/‘=
8p—100,q 1 —e* =0.0861

. 4.

q1=-§q=0.0383

. 5,

q2=§q=0.0478

9. Observed deaths = 45. Expected deaths =19.4 from the Illustrative Life
Table. From the table in section 11.5, we get a 90% confidence interval 34.56 <
A < 57.69. Therefore f = 45/19.4 = 2.32 and the 90% interval is (1.78, 2.97).
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E.0. ILLUSTRATIVE LIFE TABLES

E.0 Illustrative Life Tables

Basic Functions and Net Single Premiums at i = 5% !

z £: d: 1000g. d- 10004, 1000 (*A:) =

0 10,000,000 204,200  20.42 19.642724  64.63 2872 0

1 9795800 13,126 1.34 19.982912  48.43 1147 1

2 9,782,674 11,935 1.22  19.958801 49.58 11.33 2

3 9,770,739 10,943 1.12  19.931058  50.90 11.28 3

4 9,759,796 10,150 1.04 19.899898  52.39 11.33 4

5 9,749,646 9,555 0.98 19.865552 54.02 1146 5

6 9,740,091 9,058 0.93 19.828262 55.80 1167 6

7 9,731,033 8,661 0.89 19.788078 57.71 11.95 7

8 9,722,372 8,458 0.87 19.745056 59.76 1229 8

9 9,713,914 8,257 0.85 19.699446 61.93 1269 9
10 9,705,657 8,250 0.85 19.651122 64.23 13.15 10
11 9,697,407 8,243 0.85 19.600339 66.65 13.66 11
12 9,689,164 8,333 0.86 19.546971 69.19 14.23 12
13 9,680,831 8,422 0.87 19.491083 71.85 14.84 13
14 9,672,409 8,608 0.89 19.432543 74.64 15.50 14
15 9,663,801 8,794 0.91 19.371410  77.55 16.21 15
16 9,655,007 8,979 0.93 19.307550  80.59 16.98 16
17 9,646,028 9,164 0.95 19.240821 83.77 17.81 17
18 9,636,864 9,348 0.97 19.171075 87.09 1870 18
19 9,627,516 9,628 1.00 19.098154 90.56 19.67 19
20 9,617,888 9,906 1.03  19.022085 94.19 20.71 20
21 9,607,982 10,184 1.06 18.942699 97.97 21.82 21
22 9,597,798 10,558 1.10 18.859825  101.91 23.02 22
23 9,587,240 10,929 1.14 18.773468  106.03 2431 23
24 9,576,311 11,300 1.18 18683440  110.31 25.69 24
25 9,565,011 11,669 1.22 18589547  114.78 27.17 25
26 9,553,342 12,133 1.27 18491584  119.45 28.77 26
27 9,541,209 12,690 1.33 18389518  124.31 3049 27
28 9,528,519 13,245 1.39 18.283311  129.37 32.33 28
29 9,515,274 13,892 146 18172737  134.63 34.30 29
30 9,501,382 14,537 1.53 18.057738  140.11 36.41 30
31 9,486,845 15274 1.61 17.938070  145.81 38.67 31
32 9,471,571 16,102 1.70 17.813654  151.73 41.09 32
33 9455469 16,925 1.79 17.684401  157.89 43.68 33
34 9438544 17,933 1.90 17.550034  164.28 46.45 34
35 9,420,611 18,935 2.01 17.410616  170.92 4940 35
36 9,401,676 20,120 2.14 17.265850  177.82 52.56 36
37 9,381,556 21,390 2.28 17.115771  184.96 55.93 37
38 9,360,166 22,745 2.43  16.960229  192.37 59.52 38
39 9,337,421 24,277 2.60 16.799062  200.04 63.35 39
40 9,313,144 25,891 2.78 16.632259  207.99 67.41 40
41 9,287,253 27,676 2.98 16.459630  216.21 71.74 41
42 9,259,577 29,631 3.20 16.281129  224.71 76.34 42
43 9,229,946 31,751 344 16.096696  233.49 81.23 43
44 9,198,195 34,125 3.71 15.906249  242.56 86.41 44
45 9,164,070 36,656 4.00 15.709844  251.91 91.90 45
46 9,127,414 39,339 431 15.507365  261.55 97.71 46
47 9,088,075 42,350 4.66 15.298671  271.49 103.86 47
48 9,045,725 45,590 5.04 15.083893  281.72 110.36 48
49 9,000,135 49,141 5.46 14.862997  292.24 117.23 49

207
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Basic Functions and Net Single Premiums at i = 5%

z £y d:  1000q: dz 10004, 1000(°A:) =
50 8,950,994 52,990 5.92 14.636061  303.04 124.46 50
51 8,898,004 57,125 6.42 14403131  314.14 132.08 51
52 8,840,879 61,621 6.97 14.164220  325.51 140.10 52
53 8,779,258 66,547 7.58 13.919449  337.17 148.53 53
54 8,712,711 71,793 8.24 13.669034  349.09 157.36 54
55 8,640,918 77,423 8.96 13.413011  361.29 166.63 55
56 8,563,495 83,494 9.75 13.151498  373.74 176.33 56
57 8,480,001 90,058  10.62 12.884699  386.44 186.47 57
58 8,389,943 97,156  11.58 12.612883  399.39 197.05 58
59 8,292,787 104,655  12.62 12.336384  412.55 208.08 59
60 8,188,132 112,669  13.76 12.055342  425.94 219.56 60
61 8075463 121,213  15.01 11.770064  439.52 23149 61
62 7,954,250 130,291  16.38 11.480898  453.29 243.87 62
63 7,823,959 139,892  17.88 11.188205  467.23 256.69 63
64 7,684,067 149,993  19.52 10.892369  481.32 269.94 64
65 7,534,074 160,626  21.32 10.593780  495.53 283.63 65
66 7,373,448 171,728  23.29 10.292913  509.86 297.73 66
67 7,201,720 183,212 2544  9.990230  524.27 312.23 67
68 7,018,508 195,044  27.79  9.686158  538.75 327.11 68
69 6,823,464 207,229  30.37 9.381167  553.28 342.37 69
70 6,616,235 219,527  33.18  9.075861  567.82 357.96 70
71 6,396,708 231,945  36.26  8.770664  582.35 373.88 71
72 6,164,763 244,248  39.62  8.466182  596.85 390.09 72
73 5,920,515 256,358  43.30 8162908  611.29 406.56 73
74 5,664,157 267,971  47.31  7.861452  625.65 42326 74
75 5,396,186 278929  51.69  7.562297  639.89 440.15 75
76 5,117,257 288,972  56.47  7.265989  654.00 45721 76
77 4,828,285 297,809  61.68  6.973063  667.95 47438 77
78 4,530,476 305,218  67.37  6.683979  681.71 491.66 78
79 4,225258 310,810  73.56  6.399299  695.27 508.97 79
80 3,914,448 314,330  80.30  6.119411  708.60 526.31 80
81 3,600,118 315,514  87.64  5.844708  721.68 543.60 81
82 3,284,604 314,041 9561  5.575590  734.50 560.84 82
83 2,970,563 309,770  104.28  5.312277  747.03 577.99 83
84 2,660,793 302,506 113.69  5.055031  759.28 594.95 84
85 2,358,287 202,168  123.89  4.803941  771.24 611.84 85
86 2,066,119 278,802 134.94  4.558938  782.91 62849 86
87 1,787,317 262,539  146.89  4.319797  794.29 645.05 87
88 1,524,778 243,675 159.81  4.085991  805.43 661.36 88
89 1,281,103 222,592 173.75  3.856599  816.35 677.76 89
90 1,058,511 199,815 188.77  3.630178  827.13 694.07 90
91 858,696 175973  204.93  3.404320  837.89 710.54 91
92 682,723 151,749  222.27  3.175241  848.80 727.33 92
93 530,974 127,800 240.86 2936743  860.15 74541 93
94 403,084 105,096 260.73  2.678823  872.44 764.65 94
95 297,988 84,006 281.91  2.384461  886.46 787.86 95
96 213,982 74,894  350.00  2.024369  903.60 817.60 96
97 139,088 66,067 475.00  1.654770  921.21 847.96 97
98 73,021 49,289  675.00  1.309539  937.65 885.10 98

99 23,732 23,732 1000.00 1.000000 952.35 914.67 99
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E.1 Commutation Columns

COMMUTATION COLUMNS

Illustrative Life Table and i = 5%

z Dz N C. M. =

0 10,000,000.0 196,427,244.2 104,476.190 646,321.725 0

1 9,329,333.3 186,427,244.2  11,905.669 451,845.535 1

2 8873,173.7 177,097,910.9  10,309.902 439,939.866 2

3 8,440,331.7 168,224,737.2 9,002.833 429,629.964 3

4 8,029,408.3 159,784,405.5 7,952.791 420,627.131 4

5  7,639,102.8 151,754,997.2 7,130.088 412,674.340 5

6  7,268,205.9 144,115,804.4 6,437.351 405,544.252 6

7 6,915,663.5 136,847,688.5 5,862.106 399,106.901 7

8  6,580,484.1 129,932,025.0 5452.102 393,244.795 8

9  6,261,675.6 123,351,540.9 5,069.082 387,792.693 9
10 5,958,431.5 117,089,865.3 41,823.604 382,723.611 10
11 5,669,873.0 111,131,433.8 4,590.011 377,900.007 11
12 5,395,289.1 105,461,560.8 4,419.168 373,309.996 12
13 5,133,951.4 100,066,271.7 4,253.682 368,800.828 13
14  4,885,223.8  94,932,320.3 4,140.595 364,637.146 14
15  4,648,453.5  90,047,096.5 4,028.633 360,496.551 15
16  4,423,070.0  85,398,643.0 3,917.508 356,467.918 16
17 4,208,530.1  80,975,573.0 3,807.831 352,550.410 17
18  4,004,316.0  76,767,042.9 3,6909.321 348,742.579 18
19 3,809,935.0  72,762,726.9 3,628.692 345,043.258 19
20  3,624,880.8  68,952,791.9 3,555.683 341,414.566 20
21  3,448,711.8  65,327,911.1 3,481.399 337,858.883 21
22  3,281,006.0 61,879,199.3 3,437.382 334,377.484 22
23 3,121,330.2  58,598,193.3 3,388.732 330,940.102 23
24  2,969,306.7  55,476,863.1 3,336.921 327,551.370 24
25  2,824,574.3  52,507,556.4 3,281.798 324,214.449 25
26  2,686,788.9  49,682,982.1 3,249.804 320,932.651 26
27  2,555,596.8  46,996,193.2 3,237.138  317,682.847 27
28  2,430,664.6  44,440,596.4 3,217.824 314,445.709 28
29  2,311,700.8  42,009,931.8 3,214.296 311,227.885 29
30 2,198,405.5  39,698,231.0 3,203.366 308,013.589 30
31  2,090,516.2  37,499,825.5 3,205.496 304,810.223 31
32 1,987,762.3  35,409,309.3 3,218.348  301,604.727 32
33 1,880,888.6  33,421,547.0 3,221.755 298,386.379 33
34  1,796,672.2  31,531,658.4 3,251.079 295,164.624 34
35  1,707,865.3  29,734,986.2 3,269.268 291,913.545 35
36 1,623,260.1  28,027,120.9 3,308.445 288,644.277 36
37  1,542,662.1  26,403,851.8 3,349.789 285,335.832 37
38  1,465,852.2  24,861,189.7 3,392.370 281,986.043 38
39  1,392,657.4  23,395,337.5 3,448.443 278,593.673 39
40  1,322,891.9  22,002,680.1 3,502.576 275,145.230 40
41  1,256,394.5  20,679,788.2 3,565.765 271,642.654 41
42 1,193,000.4  19,423,393.7 3,635.854 268,076.889 42
43 1,132,555.0  18,230,393.3 3,710.464 264,441.035 43
44  1,074,913.3  17,097,838.3 3,797.993 260,730.571 44
45  1,019,929.0  16,022,925.0 3,885.414 256,932.578 45
46 967,475.5  15,002,996.0 3,071.241 253,047.164 46
47 917,434.0  14,035,520.5 4,071.618 249,075.923 47
48 869,675.1  13,118,086.5 4,174.399  245,004.305 48
49 824,087.6  12,248,411.4 4,285.278 240,829.906 49

209



210 APPENDIX E. TABLES

Illustrative Life Table and ¢ = 5%

T D. Nz C: M. z
50 780,560.0 11,424,323.8 4,400.881 236,544.628 50
51 738,980.6 10,643,763.8 4,518.379 232,143.747 51
52 699,281.3  9,004,774.2 4,641.901 227,625.368 52
53 661,340.3 9,205,492.9 4,774.263 222,983.467 53
54 625,073.6 8,544,152.6 4,905.357 218,209.204 54
55 590,402.8 7,919,079.0 5,038.129 213,303.847 55
56 557,250.3 7,328,676.2 5,174.462 208,265.718 56
57 525,540.1 6,771,425.9 5,315.486 203,091.256 57
58 495,198.9 6,245,885.8 5,461.362 197,775.770 58
59  466,156.6 5,750,686.9 5,602.760 192,314.408 59
60 438,355.9  5284,530.3 5,744.566 186,711.648 60
61 411,737.3 4,846,174.4 5,885.897 180,967.082 61
62 386,244.8 4,434,437.1 6,025.437 175,081.185 62
63 361,826.8 4,048,192.3 6,161.376 169,055.748 63
64 338,435.6 3,686,365.5 6,291.679 162,894.372 64
65 316,027.9 3,347,929.9 6,416.853 156,602.693 65
66 294,562.1 3,031,902.0 6,533.683 150,185.840 66
67 274,001.7 2,737,339.9 6,638.678 143,652.157 67
68 254,315.3 2,463,338.2 6,730.866 137,013.479 68
69 235,474.2 2,209,022.9 6,810.823 130,282.613 69
70 217,450.3  1,973,548.7 6,871.439 123,471.790 70
71 200,224.1  1,756,098.4 6,914.416 116,600.351 71
72 183,775.2  1,555,874.3 6,934.453 109,685.935 72
73 168,089.5 1,372,099.1 6,931.684 102,751.482 73
74 153,153.6 1,204,009.6  6,900.656 95,819.798 74
75 138,959.9 1,050,856.0 6,840.801 88,919.142 75
76 125,502.0 911,896.1 6,749.626 82,078.341 76
77 112,776.0 786,394.1 6,624.796 75,328.715 77
78 100,781.0 673,618.1 6,466.295 68,703.919 78
79 89,515.6 572,837.1 6,271.206 62,237.624 79
80 78,981.7 483,321.5 6,040.218 55,966.418 80
81 69,180.5 404,339.8 5,774.257 49,926.200 81
82 60,111.9 335,159.3 5,473.619 44,151.943 82
83 51,775.8 275,047.4 5,142.073 38,678.324 83
84 44,168.2 223,271.6 4,782.374 33,536.251 84

85 37,2826 179,103.4 4,398.990  28,753.877 85
86  31,108.3 141,820.8 3,997.853  24,354.887 86
87  25,629.1 110,712.5 3,585.383  20,357.034 87
88  20,823.2 85,083.4 3,160.300  16,771.651 88
89  16,662.4 64,260.2 2,757.228  13,602.351 89
90  13,111.7 47,597.8 2,357.230  10,845.123 90
91  10,130.1 34,486.1 1,977.109  8,487.893 91
92 17,6706 24,356.0 1,623.757  6,510.784 92
93  5,681.6 16,685.4 1,303.294  4,887.027 93
94  4,107.7 11,003.8 1,020.006  3,583.733 94
95  2,892.1 6,806.1  776.493  2,563.727 95
96 1,977.9 4,004.0  659.303 1,787.234 96
97  1,2244 2,026.1  553.902 1,127.931 97
98 612.2 801.7  393.559 574.029 08

99 189.5 189.5 180.470 180.470 99
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E.2 Multiple Decrement Tables

Illustrative Service Table

z £: dl,z d2,z d3,z d4,z
30 100,000 100 19,990 0 0
31 79,910 8 14,376 0 0
32 65454 72 9858 0 0
33 55,524 61 5,702 0 0
34 49,761 60 3971 O 0
35 45,730 64 2,693 46 0
36 42,927 64 1,927 43 0
37 40,893 65 1,431 45 0
38 39,352 71 1,181 47 0
39 38,053 72 989 49 0
40 36,943 78 813 52 0
41 36,000 8 720 54 0
42 35,143 91 633 56 0
43 34,363 96 550 58 0
44 33,659 104 505 61 0
45 32,989 112 462 66 0
46 32,349 123 421 71 0
47 31,734 133 413 79 0
48 31,109 143 373 87 0
49 30,506 156 336 95 0
50 29,919 168 299 102 0
51 29,350 182 293 112 0
52 28,763 198 259 121 0
53 28,185 209 251 132 0
54 27,593 226 218 143 0
55 27,006 240 213 157 0
56 26,396 259 182 169 0
57 25,786 276 178 183 0
58 25,149 297 148 199 0
59 24,505 316 120 213 0
60 23,856 313 0 0 3,552
61 19,991 298 0 0 1,587
62 18,106 284 0 0 2,692
63 15,130 271 0 0 1,350
64 13,509 257 0 0 2,006
65 11,246 204 0 0 4448
66 6,594 147 0 0 1,302
67 5,145 119 0 0 1,522
68 3,504 83 0 0 1,381
69 2,040 49 0 0 1,004
70 987 17 0 0 970
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Conversion of insurance 68
Conversion period 1
Convolution 94
Credibility theory 116
Cross-sectional life table 118
Current life table 118
Curtate future lifetime 18, 76

De Moivre

Debt 11

Decrement
cause
force

17, 50, 60

75

76
probability 75

Deferred insurance
Deferred life annuities

Deterministic model

Difference operator

Differential equation 4, 32, 43,

71-73, 80

Disability insurance

Discount 4

Discount factor
Discounted number of survivors

Dispersion
Due 6, 35

Duration of premium payment

94

2

25

89

54

75

Effective interest rate
24, 54, 59, 84, 104, 122

Endowment
Equivalence principle

Excess of loss

Expected

curtate lifetime

100

19

remaining lifetime

Expense loadings

Expense-loaded premium reserve

Exponential

growth

8

mortality 18
Exponentially
growing annuity level

increasing sum insured 28

Exposure

110

103

1

119

16

49, 120

41

120

49

105



216 Index

Fixed costs 104 Makeham 18, 85
Flexible life 68 Maximum likelihood 112, 117
Force Mortality
of decrement 76 gain 69
of interest 3 ratio 113
of mortality 16, 84, 112
Fractional Nesbitt 87, 89
age 46 Net amount at risk 61, 79
death probabilities 21 Net annual premium 52, 122
durations 64 Nominal interest rate 2
payment 37 Normal approximation 93

premiums 54

Future lifetime 15, 75, 83 Orphans’ insurance 91

Paid-up insurance 68
Panjer 98
Pension fund 70, 96
Perpetuity 6
Poisson distribution 90, 112, 115
Premium 49
difference formula 64

Gamma distribution 113, 116, 118
General type 27, 55, 77
Generating function 90, 96
Generation life table 118
Gompertz 18, 84, 92

Gross premium 105

Hattendorff’s theorem 66, 79 paid m times a year 54
paying period 104-106
Immediate 6, 37 rate 71
Inclusion-exclusion formula 86 refund 56
Individual claim amount 97 reserve 59, 78, 105, 122
Interest Present value 2, 4, 23, 35
in advance 4 Principal 11
rate 1 Profit sharing 70
Internal rate of return 13 Prospective debt 11
Inventar 105 Pure endowment 24, 53
Investment
gain 69 Reinsurance 51, 100
yield 13 Retention 100
Retrospective debt 11
Jensen’s inequality 43 Reversionary annuity 91
Joint-life status 83 Risk aversion 51
Risk premium 62, 71, 79
Laplace t?ansform 44 Rounding 94
Last-survivor status 85
Lexis diagram 109 Safety loading 50
Life Savings premium 62, 71, 79
annuity 35 Schuette 87, 89
contingencies 1 Security 14
insurance 23 Select life table 20
table 20 Selection 20
Longitudinal life table 118 Shift operator 89

Loss in a policy year 65, 79 Simple interest 125



Index

Standard decreasing
annuity 10
insurance 29

Standard increasing
annuity 10, 121
insurance 29, 121

Status 83

Stochastic interest 56

Stop-loss reinsurance 101

Sum insured 23

Survival
probability 15
risk 63
risk premium 63

Symmetric sum 86

Technical gain 69, 80
Temporary annuity 36

Term insurance 23, 52
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Thiele’s differential equation 71, 80

Tontines 72

Total
claim amount 93
loss 49, 66, 79

Ultimate life table 20
Universal life 68
Utility function 50

Variable life annuity 39

Waring 90
Weibull 18

Whole life insurance 23, 52, 63

Widows’ insurance 91

Zillmer 106











