L

Now f(s)=1/s and @{s)= —s + Ins. Laplace’s method applies directly to this transiormced
integral. The maximum of ¢(s) occurs at s = 1 so (6.4.19¢) gives

I(x) ~ xe™*/2n/x, x— +0o0, (6.4.39)
in agreement with (5.4.1). To obtain the next term in the Stirling series we note that ¢(1) = — 1,

(1) =0,¢"(1) = — 1, ¢"(1) = 2, (d*¢/ds*)(1) = —6,f(1) = 1, f'(1) = — 1, f*(1) = 2. Substitul-

ing these coefficients into the formula (6.4.35), we obtain
2 1
r(x)~xte* [ A_ + iiv X +o0, (6.4.40)
X
in agreement with (5.4.1).

The distinction between ordinary and movable maxima is examined in Probs.
6.45 to 6.47.

6.5 METHOD OF STATIONARY PHASE

There is an immediate generalization of the Laplace integrals studied in Sec. 6.4
which we obtain by allowing the function ¢(t) in (6.4.1) to be complex. Note that,
if we wish, we may assume that f(t) is real; if it were complex, f(t) could be
decomposed into a sum of its real and imaginary parts. However, allowing ¢(t) to
be complex poses new and nontrivial problems. In this section we consider the
special case in which ¢(t) is pure imaginary: ¢(t) = iy(t), where (t) is real. The
resulting integral

I(x)= _.g f(t)e™® dr (6.5.1)

with f(t), ¥(¢), a, b, x all real is called a generalized Fourier integral. When
¥(t)=t, I(x) is an ordinary Fourier integral. The general case in which ¢(t) is
complex is considered in Sec. 6.6.

To study the behavior of I(x) in (6.5.1) as x - + oo, we can use integration by
parts to develop an asymptotic expansion in inverse powers of x so long as the
boundary terms are finite and the resulting integrals exist.

Example 1 Asymptotic expansion of a Fourier integral as x — + 0. We use integration by parts
to find an asymptotic approximation to the Fourier integral

1 Q..H_
I(x)= dt.
) ﬁ 1+t
After one integration by parts we obtain
)= — e 4 _g_wmz dt (6.52)
X)= ——¢ - == . -
2x x  xdy (+1)

The integral on the right side of (6.5.2) is negligible compared with the boundary terms as
x — +o00; in fact, it vanishes like 1/x? as x —» +c0. To see this, we integrate by parts again:

i 1 NQ: 1 . 1 2 1 N_.xu
— | —=dt=—— &+ — - | Tt
x ._.o G+3N wt e TR ,_.o C+£u

1he integral on the night 1y bounded because
1

% MM%

0

ixt

1
N 3
m._o (1+1¢) w&uw.

dt

Since the integral on the right in (6.5.2) does vanish like 1/x2 as x — + o, I(x) is asyr
boundary terms: I(x) ~ — (i/2x)e™™ + i/x (x = + o).
Repeated application of integration by parts gives the complete asymptotic
I{x) as x - + o0 I(x) = e*u(x) + v(x) where
i1 (—iytn — 1)

W)~ e e g DT N i
&) 2x  4x? (2x) + X = oo

i 1 —iy(n—1)!
v(x)~—- 4+ — +:.|Afvv=IA=llv| + X = + 0.
x X x

Example 2 Integration by parts applied to {§ ./t €™ dt. Integration by parts can
once for the Fourier integral I(x) = {§ /\m e dr. One integration by parts gives

. i i 1 N..x—
Eol Ix)= ——e* +— | —xdr
b . x 2x .—e /\m
The integral on the right side of (6.5.3) vanishes more rapidly than the boun:
x — +o00. We cannot use integration by parts to verify this because the resulting inte
exist. (Why?) However, we can use the following simple scaling argument. We 1
obtain

i _._ N_.x.& i x N_.u J i © N..u &
—_ ’nﬂ.x[% ——ds ~ .ﬁ —=ds, X — +00.
2x Yy Jt 230y s 230 s
To evaluate the last integral we rotate the contour of integration from the real-
positive imaginary-s axis in the complex-s planc and obtain

@

e )
— %&u = /\m e,

o]

(See Prob. 6.49 for the details of this calculation.) Therefore,

i i ;
16 + x e~ 2x3/2 /\m e, X = +o00.

Clearly, this result cannot be found by direct integration by parts of the integral on
of (6.5.3) because a fractional power of x has appeared. However, it is possible to
asymptotic expansion of I(x) as x — + oo by an indirect application of integration
Prob. 6.50).

In Example 1 we used integration by parts to argue that the integ
right side of (6.5.2) vanishes more rapidly than the boundary terms as x -
Example 2 we used a scaling argument to show that the integral on the
of (6.5.3) vanishes more rapidly than the boundary terms as x — +00. ]
fact, a very general result called the Riemann-Lebesgue lemma that §
that ,

b
_. ft)e™ dt— 0, X~ 400,

a



provided that |, | /()] at exists. This result is valid even when f(t) is not differen-
tiable and integration by parts or scaling do not work. We will cite the Riemann-
Lebesgue lemma repeatedly throughout this section; we could have used it to
justify neglecting the integrals on the right sides of (6.5.2) and (6.5.3).

We reserve a proof of the Riemann-Lebesgue lemma for Prob. 6.51. Although

the proof of (6.5.6) is messy, it is easy to understand the result heuristically. When
x becomes large, the integrand f(¢)e™ oscillates rapidly and contributions from
adjacent subintervals nearly cancel.

The Riemann-Lebesgue lemma can be extended to cover generalized Fourier
integrals of the form (6.5.1). It states that I(x) > O as x > + oo so longas | f(t)| is
integrable, y/(r) is continuously differentiable for a <t < b, and ¥(t) is not con-
stant on any subinterval of a <t < b (see Prob. 6.52). The lemma implies that
[3° et dt — 0 (x » + o0), but it does not apply to [50 e dr.

Integration by parts gives the leading asymptotic behavior as x — + o0 of
generalized Fourier integrals of the form (6.5.1), provided that f (t)/y'(t) is smooth
for a <t < b and nonvanishing at one of the endpoints a or b. Explicitly,

|. \Amv mkn ~nv.|H v&\.:,v h.kn
:xvlgnlvm .\.:_2 Wﬁ G v0° v g,

The Riemann-Lebesgue lemma shows that the integral on the right vanishes more
rapidly than 1/x as x » + oo. Therefore, I(x) is asymptotic to the boundary terms
(assuming that they do not vanish):
@) |
I(x) ~ == gixb®
(x) e -

Observe that when integration by parts applies, I(x) vanishes like 1/x as x — + co.

Integration by parts may not work if ¥'(t) = 0 for some ¢ in the interval
a <t < b. Such a point is called a stationary point of iy. When there are stationary
points in the interval a < t < b, I(x) must still vanish as x — + oo by the Riemann-
Lebesgue lemma, but I(x) ‘usually vanishes less rapidly than 1/x because the
integrand f (r)e™¥® oscillates less rapidly near a stationary point than it does near
a point where /'(t) # 0. Consequently, there is less cancellation between adjacent
subintervals near the stationary point.

The method of stationary phase gives the leading asymptotic behavior of
generalized Fourier integrals having stationary points. This method is very similar
to Laplace’s method in that the leading contribution to I(x) comes from a small
interval of width ¢ surrounding the stationary points of y(t). We will show that if ¢
is a stationary point and if / (c) # 0, then I(x) goes to zero like x "¥/? as x — + oo if
Y¥"(c) # 0, like x™ 12 if y"(c) = 0 but Y (c) # 0, and so on; as Y(t) becomes flatter
at t = c, I(x) vanishes less rapidly as x — + oo.

Since any generalized Fourier integral can be written as a sum of integrals in
which y/(t) vanishes only at an endpoint, we can explain the method of stationary
phase for the special integral (6.5.1) in which y'(a) = O and ¢/'(t) # O for a < t < b.

»  X— +o0. (6.5.7)

I We decompose I(x) into two terms:

a b

I(x) = .— I\Smﬂes dt + ._.

a ate

f(t)e™® dt,

_ where ¢ is a small positive number to be chosen later. The second integra
 right side of (6.5.8) vanishes like 1/x as x — + oo because there are no stz
E points in the interval a + ¢ <t < b.

3 To obtain the leading behavior of the first integral on the right side o
. we replace f(t) by f(a) and y(t) by y(a) + ¥P(a)(t — a)?/p! where ¥*(a)
V@)= =y a) = O:

m:av exp {ix |Y(a) + % Y P(a)(t — a%_ dt, x- +

. Next, we replace ¢ by oo, which introduces error terms that vanish lik
L x > +00 and thus may be disregarded, and let s = (t — a):

o0

I(x)~f @)™ |

exp W.\\EA&% ds, x— +o0.
o .

E To evaluate the integral on the right, we rotate the contour of integration f

plu 1/p

~in/2p
x|¢P(a)| g

s=e€

p! Y7 I°(1/p)
x|y P (a)| P’

where we use the factor ™27 if y”(a) > 0 and the factor e~ ™27 if yP(c

The formula in (6.5.12) gives the leading behavior of I(x) if f Amv.
¥'(a) = Q. If f(a) vanishes, it is necessary to decide whether the contributi
the stationary point still dominates the leading behavior. When it does, th
ior is slightly more complicated than (6.5.12) (see Prob. 6.53).

NAXV )x.\A&vW..BEaVH_.a\Ns X — 400,

Example 3 Leading behavior of {§* ' dt as x - +co. The function y(t) = cos t
tionary point at t=0. Since y"(0)= —1, (6.5.12) with p=2 gives I(x)~ /n/:
(x = + )



M

b e T R Jo ROS XL = 1) dl as X — +00. To use the method of stationary
v:mmmnéo write this integral as {§ cos (xt2 — t) dt = Re [¢ ¢~ gz, The function ¥(t) = t* has
a stationary point at t=0. Since y"(0) =2, (6.5.12) with p =2 gives [ cos (xt? —t) dt ~
Re 3/n/x ™% =L /n/2x (x - + o0).

Hxn:._._w S Leading behavior of J (n) as n — co. When n is an integer, the Bessel function J,(x)
has the integral representation "
~ n
Julx) =~ int—
(x) - .ﬁo cos (x sin ¢t — nt) dt (6.5.13)
(see Prob. 6.54). Therefore, J,(n)

. . Re 5 &"¢i"* = di/n_The function y(t) = sin ¢ — ¢ has a sta-
tionary point at t = 0. Since y"

)=0,y"(0)= —1, (65.12) with p = 3 gives
1 6\13 (1

_pmin/6 | ¥ HJ . -

3¢ C C_ e

”WN!N\uWK:QHJ 4#4 BI—\u
n 3 ’

Observe that because 1)”(0) = 0, J,(n) vanishes less rapidly than n~ 2 as p o5,
If n is not an integer, (6.5.14) still holds (see Prob. 6.55).

©

1
J,(n) ~—Re
n

(6.5.14)

n — 0.

F HEm section we have obtained only the leading behavior of generalized
1oc.non integrals. Higher-order approximations can be complicated because non-
m:::.u:mQ points may also contribute to the large-x behavior of the integral.
Specifically, the second integral on the right in (6.5.8) must be taken into account
.i:os oo?vcacm higher-order terms because the error incurred in neglecting this
_.Eomwm_ 1s usually algebraically small. By contrast, recall that the approximation
in (6.4.2) for Laplace’s method is valid to all orders because the errors are expo-
nentially, rather than algebraically, small. To obtain the higher-order corrections to
(6.5.12), one can either use the method of asymptotic matching (see Sec. 7.4) or the
method of steepest descents (see Sec. 6.6).

6.6 METHOD OF STEEPEST DESCENTS

,;.w method of steepest descents is a technique for finding the asymptotic behavior
of integrals of the form

I(x)= [ h@)e*® dt
c

as x — + 00, where C is an integration contour in the complex-t plane and h(t) and
R:. are analytic functions of ¢. The idea of the method is to use the analyticity of
the integrand to justify deforming the contour C to a new contour C’ on which p(t)
has a constant imaginary part. Once this has been done, I (x) may be evaluated
asymptotically as x — +oo0 using Laplace’s method. To see why, observe that on
the contour C’ we may write p(t) = ¢(t) + iy, where y is a real constant and o(t)
is a real function. Thus, I(x) in (6.6.1) takes the form

(6.6.1)

I(x) =™ | h(t)e™*® dt. (6.62)
n‘

Although ¢t 1s complex, (6.6.2) can be treated by Laplace’s method
because ¢(t) is real.

Our motivation for deforming C into a path C’' on which Im p(t)-
is to eliminate rapid oscillations of the integrand when x is large. Of
could also deform C into a path on which Re p(t)is a constant and th
method of stationary phase. However, we have seen that Laplace’s
much better approximation scheme than the method of stationary p}
the full asymptotic expansion of a generalized Laplace integral is de
the integrand in an arbitrarily small neighborhood of the point wher«
maximum on the contour. By contrast, the full asymptotic expansio
alized Fourier integral typically depends on the behavior of the inte
the entire contour. As a consequence, it is usually easier to obtain the
totic expansion of a generalized Laplace integral than of a generali
integral.

Before giving a formal exposition of the method of steepest «
considerthree preliminary examples which illustrate how shifting ¢
tours can Wnnmzw simplify asymptotic analysis. In the first example w
Fourier integral whose asymptotic expansion is difficult to find by
used in Sec. 6.5. However, deforming the contour reduces the integra.
integrals that are easy to evaluate by Laplace’s method.

Example 1 Conversion of a Fourier integral into a Laplace integral by deforming t}
behavior of the integral 1
Ix)=[ Inte™ar

‘o
as x = +co cannot be found directly by the methods of Sec. 6.5 because ﬁrown I
point. Also, integration by parts is useless because In 0 = — co. Integration by par
fail because, as we will see, the leading asymptotic behavior of I(x) contains the fa
is not a power of 1/x.

To approximate I(x) we deform the integration contour C, which runs from
real-t axis, to one which consists of three line segments: C, which runs up the it
from 0 to iT; C,, which runs parallel to the real-t axis from iT to 1 + iT; and
down from 1 +iT to 1 along a straight line parallel to the imaginary-t axis (s
Cauchy’s theorem, I(x) = f¢,.c,+c, In t € dt. Next we let T — + oo. In this lim
tion from C, approaches 0. (Why?) In the integral along C, we set ¢ = is, and in thi
C, we set t = 1 + is, where s is real in both integrals. This gives

I(x)=i % In (is)e * ds— i % In (1 + is) e+ ds.
0 0
The sign of the second integral on the right is negative because C, is traversed «
Observe that both integrals in (6.6.4) are Laplace integrals. The first integr
exactly. We substitute 4= xs and use In (is) = In s + in/2 and the identity {§ e™*
where y = 0.5772... is Euler’s constant, and obtain
N.‘_. In (is) e"* ds = —i(ln x)/x — (iy + n/2)/x.
0
Weapply Watson’s lemma to the second integral on the right in (6.6.4) using the Ta
In (1 +is) = -~ Y% (—is)'/n, and obtain
® s 2 (=ir(n—1)!
I;. In (1 +is)e™ 2+ ds ~ i %
o n=1 X

X — +00.
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310 LOCAL ANALYSIS

6.33 Show that the last integral on the right side of (6.3.23) vanishes like x 32 as x - + o0.

6.34 Calculate two terms in the asymptotic expansion of [§ e™*~*** dt and [§ e™ (1 + t)”V/? dt as
x — 0+ and as x - +o0.

6.35 Find the leading behavior of {§ ¢ *™* dt for « > 0 as x >0+ and as x —» + o0.

6.36 (a) Verify that the integral representation in (6.4.20) satisfies the differential equation for K (x).
(b) Use the integral representation (6.4.20) to show that K (x) ~ \/n/2v 2v/ex)’ (v = + ).

6.37 (a) Show that

———dt ~—T(x),

© mxluml. 1
‘_» X — + 0.
o I+x 2x

(b) Find the leading behavior as x — + 00 of

ﬁ [ Yx+ )] e dt

0

s
‘% e dt
4]

6.38 Solve Prob. 3.77 using Watson’s lemma.

6.39 The logarithmic integral function 1i (x) is defined as li (x) = P f§ di/In t, where P indicates that
the Cauchy principal part of the integral is taken when x > 1. Show that ki (¢%) ~ €* Y=, nl/a**!
(a— +o).

6.40 Prove that

2N+1 HN:+— 2 u~=+~

Y (1 <sint < Mz (=1

e (2n+ 1) o (2n+ 1)

for all £ > 0 and all integers N.
Clue: Prove that sin t < t by integrating cos ¢ < 1. In the same way, use repeated integration to
establish the general result.

6.41 Show that (6.4.27) is an integral representation of the modified Bessel function I,(x). In other
words, show that the integral satisfies the differential equation x2y” + xy' — (x> + v?)y = 0 and the
relation I,(x) ~ (x/2)'/n! (x > 0+).

6.42 Use Laplace’s method for a movable maximum to find the next correction to (6.4.40). In particu-
lar, show that

1 1

T ~ xX—H2,-x R
(x) ~ x e */2n AH + D lTNMwmxN

+.:v. X — +00.

6.43 (a) Show that Laplace’s method for expanding integrals consists of approximating the integrand
by a é function. In particular, show how the representation 5(t) = lim, _,, \/x/m e * reproduces the
leading behavior of a Laplace integral for which ¢'(c) = 0 but ¢"(c) < 0. [See (6.4.19¢) and (1.5.10c).]

(b) What is the appropriate d-function representation for the case in which ¢(t) < ¢(a) for
a<t<band ¢'(a) < 07 [See (6.4.19a).]

(c) What is the appropriate d-function representation for the case in which ¢'(c) = ¢"(c) = - =
¢ V(c) =0, ¢'P(c) < O with p even? [See (6.4.19d).]

(d) Extend the d-function analysis of parts (a) to (c) to give the higher-order corrections to the
leading behavior.

Clue: The answer is given in (6.4.35).
6.44 Find the leading behavior of the double integral { ds |§ dt ¢ s *Ccos0tinal a5 x 5 o0 for
0<v<1 v=1,and v > 1. Sketch the function for large x.

Clue: Show that when 0 < v < 1, the exponent has four stationary points. As v —» 1 —, thesc
stationary points merge into two. When v > 1, there are no stationary points.
6.45 What happens if we try to treat an ordinary Laplace integral {2 f (t)e**” dt using the methods
appropriate for a moving maximum? Suppose we rewrite the integral as [} e*#@*!"/® d¢ and expand

ASYMPTOTIC EXPANSION OF INTEGRALS .

about the maximum of the integrand. Show that now an interior maximum is shifted slightly fr
t = ¢ where ¢'(c) = 0, but that this does not affect the result given by Laplace’s method in (6.4.19¢ tc
6.46 Show that naive application of Laplace’s method for a moving maximum to the intes
I(x, ) = f§ t"e"* dt = x"*"'['(a + 1) gives the wrong answer! Show that the maximum of the i
grand occurs at ¢t = «/x and retaining only quadratic terms gives

© \

I(x, Qvlmuﬁgi:wx\nl/\m._. e du, x— +oo.
-JV2/2
Explain why we have obtained the wrong answer.
6.47 (a) Show that
1/e e X 1
% ——dt ~ — s X — + 00
o Int xIn x
Clue: See Example 3 of Sec. 6.6.
(b) Show that e
1/e M.IHN - 1 © ©
ﬁ wﬂﬂ& ~ i x =Mo (In x) ;.o (Insye*ds, x- +o0.

(¢) Explain why naive use of Laplace’s method for a moving maximum fails to give the results
and (b) above.

6.48 Find the leading behaviors of
(a) ._. e XTI =1 gt a5 x - 0
0
(b) (@*/dx"(x)|,-, as n — co.

ection 6.5

" Clue: Substitute s = it and rotate the contour of integration from the negative imaginary-t axis
the positive real-t axis.

6.50 Use integration by parts to show that the full asymptotic expansion I(x) in (6.5.3) is

/T | i 1 & =iy 1
I ~ injd __ ix = —_ .
()~ e x/\m.w H+N=M0Axv Lfrwv ., Xo 4o

Clue: Write
ﬁ = _SWRT T ™

N AN W

and use integration by parts on the second integral on the right.
6.51 Prove the Riemann-Lebesgue lemma by showing that [ f(¢)e™ dt - 0 (x - + o) provided t!
1 £(t)|/is integrable.
' lue: Break up the region of integration into small subintervals and bound the integral on ez
terval.
Show that {2 f(¢)e™® dt — 0 (x > + o0) provided that | f(t)| is integrable, y(t) is continuou
erentiable, and () is not constant on any subinterval of a <t <b.
Clue: Use the Riemann-Lebesgue lemma.
683 Find the leading behavior of [%f(t)e™*® dr under the following assumptions: y/'(a) = ---
¥ V(@)= 0; y'P(a) + 0; f(t) ~ Alt —a) (t > a+) with x> ~ L.
(a) What is the leading contribution to the behavior of I(x) from the neighborhood of
stationary point at t = a? This result is a generalization of the formula in (6.5.12).



