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Preface

As thi s Preface is being written, th e twentieth century is coming to an end .
Historians may perhaps come to refer to it as the cent ury of information, jus t
as its predecessor is associated with the process of industrialisation. Successive
technological developments such as the telephone, radio, television , computers
and the Internet have had profound effects on th e way we live. We can see pic­
tures of the surface of Mars or the early shape of the Universe. Th e contents of
a whole shelf-load of library books can be compressed onto an almost weight­
less piece of plastic. Billions of people can wat ch the same football match, or
can keep in instant touch with friends around the world without leaving home.
In shor t , massive amounts of informati on can now be sto red, t ransmitted and
processed, with surprising speed, accuracy and economy.

Of course, these developments do not happen without some theoret ical ba­
sis, and as is so oft en the case, much of this is provided by mathematics . Many
of t he first mathematical advances in this area were made in the mid- twentieth
cent ury by engineers, often relying on intuition and experience rather th an a
deep theoretical knowledge to lead them to their discoveries. Soon the math­
ematicians , delighted to see new applicat ions for their subject , joined in and
developed the engineers' pract ical examples into wide-ranging theories, com­
plete with definitions, theorems and proofs . New branches of mathematics were
created , and several older ones were invigorated by unexpected appli cations:
who could have predicted that erro r-correct ing codes might be based on alge­
braic curves over finite fields, or that cryptographic systems might depend on
prim e numb ers?

Information Theory and Coding Theory are two relat ed aspects of the prob­
lem of how to transmit information efficiently and accurately from a source,
through a channel, to a receiver. This includes the problem of how to store
information, where the receiver may be the same as the source (but later in
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VI Information and Coding Theory

time) . As an example, space exploration has created a demand for accurate
transmission of very weak signals through an extremely noisy channel: there is
no point in sending a prob e to Mars if one cannot hear and decode the mes­
sages it sends back. In its simplest form this theory uses elementary techniques
from Probability Theory and Algebra, though later advances have been based
on such topics as Combinatorics and Algebraic Geometry.

One important problem is how to compress information, in order to transmit
it rapidly or store it economically. This can be done by reducing redundancy: a
familiar example is the use of abbreviations and acronyms such as "UK", "IBM"
and "radar" in place of full names, many of whose symbols are redundant from
the point of view of information content. Similarly , we often shorten the names
of our closest friends and relatives , so that William becomes Will or Bill.

Another important problem is how to detect and correct errors in infor­
mation. Human beings and machines cannot be relied upon always to avoid
mistakes, and if these are not corrected the consequences can be serious. Here
the solution is to increase redundancy, by adding symbols which reinforce and
protect the message . Thus the NATO alphabet Alpha, Bravo , Charlie, . . . ,
used by armed forces, airlines and emergency services for spoken communica­
tion , replaces the letters A, B, C, . . . with words which are chosen to sound as
unlike each other as possible: for instance, B and V are often confused (they are
essentially the same in some languages) , but Victor is unlikely to be mistaken
for Bravo , even when misheard as Bictor.

Information Theory, much of which stems from an important 1948 paper of
Shannon [Sh48], uses probability distributions to quantify information (through
th e entropy function) , and to relate it to the average word-lengths of encodings
of that information. In particular, Shannon 's Fundamental Th eorem guarantees
th e existence of good error-correct ing codes, and the aim of Coding Theory is
to use mathematical techniques to construct them, and to provid e effective
algorithms with which to use them. Despite its name , Coding Theory does not
involve the study of secret codes: this subject, Cryptography, is closely related
to Information Theory through the concepts of entropy and redundancy, but
since the mathematical techniques involved tend to be rather different, we have
not included them.

This book, based on a third-year undergraduate course introduced at
Southampton University in the early 1980s, is an attempt to explain the basic
ideas of Information and Coding Theory. The main prerequisites are elemen­
tar y Probability Theory and Linear Algebra, together with a little Calculus,
as covered in a typical first-year university syllabus for mathematicians, engi­
neers or scientists. Most textbooks in this area concentrate mainly or entirely
on either Information Theory or Coding Theory. However, the two subjects are
intimately related (through Shannon 's Theorem) , and we feel that there are
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strong arguments for learning them together, at least initially.
Chapters 1-5 (representing about 60% of the main text) are mainly on In­

formation Theory. Chapter 1, which has very few prerequisites, shows how to
encode information in such a way that its subsequent decoding is unambiguous
and instantaneous: the main results here are the Sardinas-Patterson Theorem
(proved in Appendix A), and the Kraft and MacMillan inequalities, concerning
the existence of such codes. Chapter 2 introduces Huffman codes, which ­
rather like Morse code - minimise average word-length by systematically as­
signing shorter code-words to more frequent symbols; here (as in Chapters 3-5)
we use some elementary Probability Theory, namely finite probability distri­
butions. In Chapter 3 we use the entropy function, based on probabilities and
their logarithms, to measure information and to relate it, through a theorem
of Shannon, to the average word-lengths of encodings. Chapter 4 studies how
information is transmitted through a channel, possibly subject to distortion
by "noise" which may introduce errors; conditional probabilities allow us to
define certain system entropies, which measure information from several points
of view, such as those of the sender and the receiver. These lead to the concept
of channel capacity, which is the maximum amount of information a channel
can transmit. In Chapter 5 we meet Shannon's Fundamental Theorem, which
states that, despite noise, information can be transmitted through a channel
with arbitrarily great accuracy, at rates arbitrarily close to the channel capac­
ity. We sketch a proof of this in the simple but important case of the binary
symmetric channel; a full proof for this channel , given in Appendix C, relies on
the only advanced result we need from Probability Theory, namely the Law of
Large Numbers, explained in Appendix B.

The basic idea of Shannon's Theorem is that one can transmit information
accurately by using code-words which are sufficiently unlike each other that,
even if some of their symbols are incorrect, the receiver is unlikely to confuse
them (think of Bravo and Victor). Unfortunately, neither the theorem nor its
proof shows us how to find specific examples of such codes, and this is the aim
of Coding Theory, the subject matter of Chapters 6 and 7. In these chapters,
which are rather longer than their predecessors, we introduce a number of fairly
simple examples of error-correcting codes. In Chapter 6 we use elementary, di­
rect methods for this; the main result here is Hamming 's sphere-packing bound,
which uses a simple geometric idea to give an upper bound on the number of
code-words which can correct a given number of errors. In Chapter 7 we con­
struct slightly more advanced examples of error-correcting codes using Linear
Algebra and Matrix Theory, specifically the concepts of vector spaces and sub­
spaces , bases and dimensions, matrix rank , and row and column operations.
We also briefly show how some ideas from Combinatorics and Geometry, such
as block designs and projective geometries , are related to codes.
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Th e usual const raints of space and time have forced us to omit several
interest ing topics, such as the links with Cryptography mentioned above, and
only briefly to sketch a few others. In Information Theory, for inst ance, Markov
sources (those with a "memory" of previous events) appear only as an exercise,
and similarly in Coding Theory we have not discussed cyclic codes and th eir
connect ions with polynomial rings. Instead, we give some suggest ions for further
reading at the end of the book.

Th e lecture course on which this book is based follows Chap ters 1-7, usu­
ally omitt ing Sections 5.5, 6.5, 6.6 and 7.5 and the Appendices. A course on
Information Theory could be based on Chapters 1-5 , perhaps with a little more
material on Markov sources or on connections with Cryptography. A course on
Coding Theory could follow Chapters 6 and 7, with some background material
from Chapter 5 and some extra material on, for instance, cyclic codes or weight
enumerators.

We have tried, wherever possible, to give credit to the originators of the
main ideas presented in this book, and to acknowledge the sources from which
we have obtained our results , examples and exercises. No doubt we have made
omissions in th is respect: if so, they are unintentional , and no slight was in­
tended.

We are grateful to Keith Lloyd and Robert Syddall, who have both taught
and improved the course on which this book is based , together with the hun­
dreds of students whose reactions to the course have been so instructive. We
thank Karen Barker, Beverley Ford, David Ireland and their colleagues at
Springer for their advice , encouragement and exper t ise dur ing the writing of
this book. We are indeb ted to W.S. (further symbols are surely redundant)
for providing the quotations which begin each chapter, and finally we thank
Peter and Elizabeth for tolerat ing their occasionally distracted parents with
unteenagerly patience and good humour.
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Notes to the Reader

Chapters 1-5 cover the basic material on Information Theory, and they should
be read in that order since each depends fairly heavily on its predecessors.
The Sardinas-Patterson Theorem (§1.2) and Shannon 's Fundamental Theorem
(§5.4) are important results with rather long proofs; we have simply outlined
the proofs in the text, and the complete proofs in Appendices A and C can be
omitted on first reading since their details are not required later. Other sections
not required later are §5.5, §6.5, §6.6 and §7.5.

In a sense, the book starts afresh with Chapters 6 and 7, which are about
Coding Theory. These two chapters could be read on their own, though it would
help to look first at some of Chapter 5, in particular §5.2 for the example of
repetition codes, §5.3 for the concept of Hamming distance, and §5.4 and §5.6
for the motivation provided by Shannon's Theorem.

We assume familiarity with some of the basic concepts of Probability Theory
(in Chapters 1-5) and Linear Algebra (in Chapters 6 and 7), together with a
few results from Calculus ; there is some suggested background reading on these
topics at the end of the book, in the section Suggestions for Further Reading,
together with some comments on further reading in Information and Coding
Theory.

The exercises are an important feature of the book. Those embedded in
the text are designed to test and reinforce the reader 's understanding of the
concepts immediately preceding them. Most of these are fairly straightforward,
and it is best to attempt them right away, before reading further. The sup­
plementary exercises at the end of each chapter are often more challenging;
they may require several ideas from that chapter, and possibly also from ear­
lier chapters. Some of these supplementary exercises are designed to encourage
the reader to explore the theory further, beyond the topics we have covered.
Solutions of all the exercises are given at the end of the book, but it is strongly
recommended to try the exercises first before reading the solutions.

xiii



1
Source Coding

Words, words, words. (Hamlet)

This chapter considers how the information emanat ing from a source can be
encoded, so that it can later be decoded unambiguously and without delay.
These two requirements lead to the concepts of uniquely decodable and instan­
taneous codes. We shall find necessary and sufficient conditions for a code to
have these properties, we shall see how to construct such codes, and we shall
prove Kraft's and McMillan's inequalities, which essentially say that such codes
exist if and only if they have sufficiently long code-words.

1.1 Definitions and Examples

Information theory is concerned with the transmission of information from a
sender, through a channel , to a receiver. The sender and receiver could be
people or machines. In most cases they are different, but when information is
being stored for later retrieval, the receiver could be the sender at some future
time. We will assume that the information comes from a source S, which emits
a sequence s = X1X2X3 . . . of symbols X n ; for instance, X n might be the
n-th symbol in some message, or the outcome of the n-th repetition of some
experiment. In practice, this sequence will always be finite (nothing lasts for
ever) , but for theoretical purposes it is sometimes useful also to consider infinite

1
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2 Information and Coding Theory

(1.1)

sequences. We will assume that each symbol X n is a member of some fixed
finite set S = {81,"" 8 q } , called the source alphabet of S . For simplicity we
will also assume that the probability Pr (Xn = s.), that the n-th symbol X n is
si , depends only on i but not on n, so we write

Pr (Xn = 8i) = Pi

for i = 1, .. . , q. Thus different symbols may have different probabilities, but
these remain constant in time (so S is stationary), and do not depend on the
preceding symbols X m where m < n (so S is memoryless). In more advanced
forms of this theory, such factors are taken into consideration, but we will
ignore them here. As with any probability distribution, the probabilities Pi
must satisfy

q

Pi ~ 0 and :l:>i = 1
i==1

(so each Pi ~ 1). In statistical terms, one can regard S as a sequence of indepen­
dent , identically distributed random variables X n , with probability distribution
(Pi),

Example 1.1

S is an unbiased die1 , S = {I , . . . ,6} with q = 6, s, = i for i = 1, . . . , 6, X n is
the outcome of the n-th throw, and Pi = 1/6 for i = 1, . .. ,6. A biased die is
similar, but with different probabilities Pi.

Example 1.2

S is the weather at a particular place, with X n representing the weather on
day n. For simplicity, we could let S consist of q = 3 types of weather (good,
moderate and bad, for instance) , so Pi (i = 1,2,3) is the probability of each
type, say PI = 1/4, P2 = 1/2, P3 = 1/4. (Here we ignore seasonal variations,
which may cause the probability distribution (Pi) to vary in time .)

Example 1.3

S is a book, S consists of all the symbols used (letters, punctuation marks ,
numerals , etc .), X n is the n-th symbol in the book, and Pi is the frequency of
the i-th symbol in the source alphabet. (Here we ignore the effect of preceding
symbols on probabilities: for instance, in English text the symbol "q" is almost
always followed by "u".)

To encode a source, we use a finite code alphabet T = {t l , . . . , tr } consisting
of r code-symbols tj' In general , this is distinct from the source alphabet S =

1 The singular of dice, as in "the die is cast" .
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{si . . . . , Sq}, since it depends on the technology of the channel rather than
the source. We call r the radix (meaning "root"), and we refer to the code as
an r-ary code. In many examples, r = 2 and the code is called binary. Most
binary codes, such as ASCII (used in computing), have T = Z2 = {O, I}, the
set of integers mod (2). Codes with r = 3 are called ternary. We encode S by
assigning a code-word Wi (a finite sequence of code-symbols) to each symbol
s, E S; to encode s = X 1X2X3 • • . we represent each X n = S i by its code-word
Wi , giving a sequence t of symbols from T . For conciseness, we do not separate
the code-words in t with punctuation marks or blanks ; if these are used, they
must be regarded as elements of T appearing at the beginning or end of each
Wi . Thus Morse, which appears to be binary, is actually a ternary code: the
three symbols are ., - and a blank.

Example 1.4

If S is an unbiased die, as in Example 1.1, take T = Z2 and let Wi be the binary
representation of the source-symbol Si = i (i = 1, . . . ,6). Thus Wi = 1, W2 =
10, . . . , W6 = 1l0, so a sequence of throws such as s = 53214 is encoded as
t = 10111101100.

For clearer exposition, we will occasionally break our rule not to use punc­
tuation, and insert full stops or brackets to show how t is decomposed into
code-words: in Example 1.4 we could write t = 101.11.10.1.100, for instance.
Th is is purely for the reader's benefit , and the punctuation symbols should not
be regarded as part of t .

We need to define codes more precisely. A word W in T is a finite sequence
of symbols of T, its length Iwi is the number of symbols. The set of all words
in T is denoted by T*; this includes the empty word , of length 0, which we will
denote bye. The set of all non-empty words in T is denoted by T+. Thus

and T+ = UTn ,
n>O

where T" = T X • • • X T (with n factors) is the set of words of length n . A
source code (or simply a code) C is a function S -+ T+, that is, an assignment
of code-words Wi =C(Si) E T+ to the symbols Si E S. Many properties of codes
depend only on the code-words Wi, and not on the particular correspondence
between them and the symbols Si, so we will often regard C as simply a finite
set of words Wi, .. • ,wq in T+ . If S* is defined by analogy with T*, then one
can extend C to a function S* -+ T* in the obvious way, encoding each s in S*
by using C to encode its successive symbols:
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The image of this function is the set

Information and Coding Theory

C* = {WilWi2 ... W i n E T * I each W i; E C, n 2: O} .

We denote the length IWil of W i by Ii , so each Ii 2: 1. The average word-length
of C is

q

L(C) = LPiIi .

i= l

(1.2)

Example 1.5

The code C in Example 1.4 has it = 1, 12 = 13 = 2 and 14 = 15 =16 =3, so

1 7
L(C) = 6(1 + 2 + 2 + 3 + 3 + 3) = 3·

The aim is to construct codes C for which

(a) there is easy and unambiguous decoding t f-7 S ,

(b) the average word-length L(C) is small.

The rest of this chapter considers criterion (a) , and the next chapter considers
(b).

1.2 Uniquely Decodable Codes

A code C is uniquely decodable (= uniquely decipherable, or u.d. for short) if
each t E T* corresponds under C to at most one S E S*; in other words, the
function C : S* --t T * is one-to-one, so each t in its image C* can be decoded
uniquely. We will always assume that the code-words W i in C are distinct ,
for if Wi = Wj with i -:j; j then t = Wi could represent either s, or Sj, so
C is not uniquely decodable . Under this assumption, the definition of unique
decodability of C is that whenever

with U1 , • . • , Um, V1 , • . . , Vn E C, we have m = nand U i = Vi for each i . In
algebraic terms we are saying that each code-sequence t E C* can be factorised
in a unique way as a product of code-words.
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Example 1.6

In Example 1.4, the binary coding of a die is not uniquely decodable: for in­
stance, t = 11 could be decomposed into code-words as 1.1 or 11, representing
s = 11 or s = 3 (two throws of 1, or one throw of 3). We could remedy this by
using a different code, with 3-digit binary representations of the source-symbols:

1 t-+ 001, 2 t-+ 010, .. . , 6 t-+ 110.

Then s = 11 t-+ t = 001001 whereas s = 3 t-+ t = OIl. More generally, we have:

Theorem 1.7

If the code-words Wi in Call have the same length, then C is uniquely decodable .

Proof

Let l be the common word-length. If some t E C* factorises as Ul .. . Urn =
Vl .. • Vn with each Ui, Vj E C, then lm = [t] = In , so m = n. Now Ul and Vl

both consist of the first l symbols of t, so Ul = Vl, and similarly Ui = Vi for all
z, 0

If all the code-words in C have the same length l, we call C a block code of
length l . We will study such codes in detail in Chapters 5-7. The converse of
Theorem 1.7 is false:

Example 1.8

The binary code C given by

has variable lengths, but is still uniquely decodable. Within t, each symbol 0
indicates the start of a code-word W i , and i is 1 plus the number of subsequent
Is. For instance,

In effect, we are using the symbol 0 E T here as a punctuation mark .

We are going to state a necessary and sufficient condition for a code C to
be uniquely decodable . We use induction to define a sequence Co, C1, . . . of sets
of non-empty words, so Cn ~ T+ for all n. Specifically, we define Co = C, and

Cn = {w E T+ \ UW = V where U E C, v E Cn - 1 or U E Cn - 1 , V E C} (1.3)
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for each n 2: 1; we then define

00

Coo = Uc..
n=1

Information and Coding Theory

(1.4)

This definition may look a little daunting at first, but it should become clearer if
we take it step by step: we start with Co =C, we then construct each Cn (n 2: 1)
in terms of its predecessor Cn - 1 , and finally we take Coo =C1 UC2 U . . . . Note
that for n = 1 the definition of Cn can be simplified: since Cn - 1 = Co = C the
two conditions separated by the word "or" in (1.3) are identical , so

C1 ={w E T+ Iuw = v where u, v E C}.

Note also that if Cn - 1 = 0 then Cn = 0, so iterating this gives Cn +! = Cn+2 =
. . . = 0.

Example 1.9

Let C = {O,OI,Ol1} as in Example 1.9. Then (1.3) gives C1 = {I ,ll}: we have
1 E C1 since 01.1 = 011 with 01,011 E C = Co, and 11 E C1 since 0.11 = 011
with 0,011 E C = Co. At the next stage, with n = 2, inspection shows that
there is no w E T+ satisfying uw = v where u E C, v E C1 or vice versa. Thus
C2 =0, so Cn = 0 for all n 2: 2 and hence Coo = C1 = {I ,ll} by (1.4).

From the definition of Coo, it is conceivable that the construction of this set
might take infinitely many steps, requiring a new set Cn to be constructed for
each n 2: 1. Exercise 1.1 shows that one can always construct Coo in finitely
many steps, as in Example 1.9.

Exercise 1.1

Prove that if C has code-words of lengths II, . . . ,Iq, and w E Cn for some
n, then Iwl ~ I = max(h , . . . ,Iq). Deduce that each Cn is finite, and the
sequence of sets Co, C1, . . . is eventually periodic . How does this help in the
construction of Coo ?

Exercise 1.2

Construct the sets Cn and Coo for the ternary code C = {02, 12, 120,20,2I} .
Do the same for C = {02, 12, 120,2I} .

We can now give a necessary and sufficient condition for unique decodability.
The Sardinas-Patterson Theorem [SP53] is as follows.
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Theorem 1.10

A code C is uniquely decodable if and only if the sets C and Coo are disjoint .

Before considering a proof, let us apply this result in some simple cases.

7

Example 1.11

If C = {0,01,01l} as in Examples 1.8 and 1.9, then Coo = {I,ll} which is
disjoint from C. It follows from Theorem 1.10 that C is uniquely decodable, as
we have already seen.

Example 1.12

Let C be the ternary code {01, 1,2, 210}. Using (1.3) we find that C1 = {10},
C2 = {O} and C3 = {I}, so 1 E Cn Coo and thus C is not uniquely decodable
(there is no need to calculate Cn for n > 3). To find an example of non-unique
decodability, note that 10 E C1 since 2 E C and 2.10 = 210 E C, then °E C2

since 1 E C and 1.0 = 10 E Cll and then 1 E C3 since °E C2 and 0.1 = 01 E C.
Putting these equations together we get

210.1 = 2.10.1 = 2.1.0.1 = 2.1.01,

so the code-sequence t = 2101 can be decoded as 210.1 or as 2.1.01.

Exercise 1.3

Determine whether or not the codes C = {02, 12, 120,20,21} and C =
{02, 12, 120,21} considered in Exercise 1.2 are uniquely decodable . If C is
not uniquely decodable, find a code-sequence which can be decoded in at
least two ways.

Since the proof of the Sardinas-Patterson Theorem is rather long, we will
give it in Appendix A; here instead, we will give two typical arguments to
illustrate the ideas involved.

(=» Suppose that Cn Coo f. 0, say w E Cn C2 ; thus uw = v with u E C and
v E C1 or vice versa, and for simplicity let us assume that the first case holds
(see Exercise 1.4 for the second case). Then u'v = v' where u' ,v' E C, so the
sequence t = u'uw E T* could represent a sequence s of three source-symbols
(since u', u, w E C) or one source-symbol (since u'uw = u'v = v' E C) . Thus
decoding is not unique.

({:::) Suppose that we have an instance of non-unique decoding of the form
t = U1U2 = V1V2 , where Ul ,U2,Vl,V2 E C. We cannot have Iud = Ivd, for this
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would give UI = VI and so U2 = V2 . Renumbering if necessary, we may therefore
assume that Iud> lVII, so UI = VIW where Iwi > O. Then wE CI , so U2 E C2

since WU2 = V2. Thus U2 E Cn Coo, so C and Coo are not disjoint .

Exercise 1.4

Suppose that w E Cn C2 , where uw = V with U E CI and V E C. Give an
example of a code-sequence which can be decoded in more than one way.

Exercise 1.5

A code C exhibits non-unique decodability in the form 012120.120
01.212.01.20; find an element of Cn Coo .

Exercise 1.6

Suppose that w E CnC3 • By considering the various reasons why one could
have wE cnC3 , give examples of code-sequences which cannot be decoded
uniquely.

The general arguments in the proof of Theorem 1.10 are similar to those
outlined above, but they are rather more complicated since they have to deal
with infinitely many different cases. Fortunately, there is a simpler necessary
and sufficient condition for another important type of code, which we will
consider in the next section .

We have defined unique decodability to mean that all finite code-sequences
t can be decoded uniquely, but one could also consider the stronger requirement
that this should be true for all code-sequences, finite or infinite. A theorem due
to Even [Ev63], Levenshtein [Le64] and Riley [Ri67] shows that this happens if
and only if Cn Coo =0 and Cn =0 for some n ~ 1. (These are also necessary
and sufficient conditions for C to be uniquely decodable with bounded delay ,
meaning that there is a constant d such that if two code-sequences agree in
their first d symbols , then they have the same first code-word; thus decoding
can begin after a delay of at most d symbols. We will consider a stronger
condition in the next section.)

Example 1.13

In Example 1.9 above, both conditions are satisfied, so all code-sequences are
decoded uniquely. For an example where all finite code-sequences are decoded
uniquely, but some infinite ones are not, see Exercise 1.7.

Exercise 1. 7

For each of the ternary codes C in Exercise 1.2, determine whether or not
all infinite code-sequences can be decoded uniquely. Ifnot, give an example
of such non-unique decoding.
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For the remainder of this book, we will restrict our attention to finite code­
sequences.

1.3 Instantaneous Codes

Before defining instantaneous codes, let us consider a few examples.

Example 1.14

Consider the binary code C given by

81 ~ 0, 82 ~ 01, 83 ~ 11.

Using the notation of §1.2, we have C1 = C2 = ... = {I}, so Coo = {I}; thus
Cn Coo = 0, so C is uniquely decodable by Theorem 1.10. Now suppose that
we receive a finite message beginning t = 0111 . ... Although we know that
this can be decoded uniquely, we cannot start to decode it until we come to
the end of the block of consecutive Is: if the number of Is in this block is even,
the decomposition of t must be 0.11.11.11. . . ., and the decoded message must
begin s = 81838383 ; however, if the number of Is is odd , the decomposition
must be 01.11.11.11. , so S = 8 2838383 . . .. In a practical situation, this delay
in decoding could cause difficulties. We say that C is not instantaneous.

Example 1.15

The Prime Minister 's telex prints RUSSIANS DECLARE WAR . . . ; a quick
decision is made, a button is pressed, and within minutes there are some very
loud explosions. Soon, everyone is dead . Meanwhile, the telex continues printing
... RINGTON VODKA TO BE EXCELLENT.

Exercise 1.8

Show that the binary code C = {a,01, all, 111} is uniquely decodable; how
should the receiver react on receiving a sequence starting 0111 .. . 1 . . . ?

Example 1.16

Consider the binary code V given by

the reverse of the code C in Example 1.14. We can see this is uniquely decodable ,
either by Theorem 1.10, or because C is. It is also instantaneous, in the sense
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that we can decode a received message t as we go along: a 0 indicates WI , which
we decode as 81, and a 1 indicates the start of W2 = 10 or W3 = 11, decoded as
82 or 83 as soon as we know the next symbol. Thus any code-word in t can be
decoded as soon as it arrives, without delay.

Exercise 1.9

Is this also true for the code V = {O, 10, 110, Ill} , the reverse of the code
C in Exercise 1.8?

Now for the formal definition: a code C is instantaneous if, for each se­
quence of code-words W i!, Wi2' . . . , W in' every code-sequence beginning t =
Wi! W i2 . .. Win' .. is decoded uniquely as S = Si ! Si2 ... Sin ' . . , no matter what
the subsequent symbols in t are . Thus the code C in Example 1.14 is not instan­
taneous: a sequence t =WI W3 . .. = 011 . . . might be decoded as S = Sl S3 . . . or
as S2S3 . . . , depending on the subsequent symbols. The code V in Example 1.16
is instantaneous: once Wi! W i2 . .. Win is received, we know that it represents
Si ! Si2 . .. Sin ' regardless of what comes next. By definition , every instantaneous
code is uniquely decodable ; Example 1.14 shows that the converse is false.

A code C is a prefix code if no code-word Wi is a prefix (initial segment)
of any code-word W j (i i' j) j equivalently, Wj i' WiW for any W E T* , that is,
Cl = 0 in the notation of §1.2. Thus C is not a prefix code in Example 1.14
(since 0 is a prefix of 01), but the reversed code V in Example 1.16 is a prefix
code.

Theorem 1.17

A code C is instantaneous if and only if it is a prefix code.

Proof

(=» If C is not a prefix code, say Wi is a prefix of Wj , then a code-sequence
beginning t = Wi . .. might be decoded as S = Si ... or as S = Sj . . . , so C is not
instantaneous.

C~) If C is a prefix code, and t starts with W i .. . , then S must start with Si,

since no code-word Wj (j i' i) is a prefix of Wi or has Wi as a prefix. We can
continue like this, decoding successive code-words in t as we receive them , so
C is instantaneous. 0

Examples 1.14 and 1.16 are illustrations of this result.



1. Source Coding 11

1.4 Constructing Instantaneous Codes

In order to understand the construction of instantaneous codes, it is useful to
regard the set T* of words in T as a graph, that is, a set of points (called
vertices), some pairs of which are joined by edges. In this case, the vertices are
the words W E T* , and each W is joined by an edge to the r words uii, , . .. , uit;

formed by adding a single symbol t, E T to the end of w. One can visualise
this graph as growing upwards , with the empty word e at the bottom, and the
words of length l at levell above e ; in Graph Theory, such a graph is called an
r-ary rooted tree. (A tree is a connected graph with no circuits; here the root
is s.) Figure 1.1 shows the binary tree T*, up to levell =3, with T = Z2.

100 101

\/
10

010000 001 all 110 111

\/ \/ \/
00 01 11

~/ ~/
O~/I

e
Figure 1.1

Exercise 1.10

Draw the ternary tree T*, up to level l =3, with T = Z3.

A code C can be regarded as a finite set of vertices of the tree T* . A word Wi

is a prefix of Wi if and only if the vertex Wi is dominated by the vertex wi, that
is, there is an upward path in T* from Wi to wi' so it follows from Theorem 1.17
that C is instantaneous if and only if no vertex Wi E C is dominated by a
vertex Wi E C (i f; j) . We can use this criterion to construct instantaneous
codes, choosing vertices in T* one at a time so that no vertex dominates (or is
dominated by) any predecessor.

Example 1.18

Let us find an instantaneous binary code C for a source S with five symbols
81 , .. . , 85 . First let us try 81 H WI = 0, so 0 is a vertex in C. If C is to be a prefix
code, then no other vertex in C can dominate 0, so they must all dominate 1
(i.e. the other code-words must begin with 1). If we try 82 t-t W2 = 1 then
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no further code-words can be added , since they would dominate WI or W2 .

Instead, let us try 82 t-t W2 = 10. Then 83 t-t W3 = 11 is impossible, since it
allows no further code-words, so let us try 83 t-t W3 = 110. Continuing, we find
the possibility 84 t-t W4 = 1110, 8S t-t Ws = 1111. This gives an instantaneous
binary code C = {O, 10, 110, 1110, 1111} with word-lengths li = 1,2,3,4 ,4,
shown in Figure 1.2. (This is not the only possibility : for instance, the binary
code {DO, 01, 10, 110, Ill} is also instantaneous.)

1110 1111

10

°
Figure 1.2

Example 1.19

1 1 1 1 1
2+ 22 + 23 + 23 + 24 > 1.

Thus there is no instantaneous binary code for S with word-lengths 1,2,3,3,4.
There is, however, an instantaneous ternary code with these word-lengths: if r =
3 then choices of WI, • . . , Ws eliminate proportions 1/3, 1/32, 1/33, 1/33, 1/34

of the ternary tree T*, where ITI = 3. Since

Is there an instantaneous binary code for this source S with word-lengths
1,2,3,3,4? Again, we use the binary tree T* . Any choice of a code-word WI

of length II = 1, that is, a vertex of height 1, eliminates half of the vertices
in T* as possible code-words W2, . • • , ws , namely all those dominating WI, so a
proportion 1 - ~ = ~ remains. A choice of W2 at height 2 eliminates a further
1/22 = 1/4 of T*, leaving a proportion 1 - ~ - t = t. Any choices of W3 and
W4 at level 3 eliminate 1/23 + 1/23 = 1/4 of T*, so no vertices are left for ws.
The difficulty is that the sum of the proportions of T* above each Wi exceeds
1:

such choices are possible.
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Exercise 1.11

Find an instantaneous ternary code with word-lengths 1,2,3,3,4. Is there
one with word-lengths 1,1,2,2,2,2 ?

This concept of the "proportion" of an infinite tree T* is useful, but im­
precise . By making it more precise, we can use arguments like those above to
give necessary and sufficient conditions for the existence of instantaneous r-ary
codes with given word-lengths.

1.5 Kraft '8 Inequality

Motivated by the examples in §1A, we have the following result , known as
Kraft's inequality [Kr49):

Theorem 1.20

(1.5)
q 1

Lr1i ~1.
i= l

There is an instantaneous r-ary code C with word-lengths h, . . . .lq if and only
if

Proof

({=) Renumbering the word-lengths if necessary, we may assume that h ~ .. . ~
lq. Let l = max(h, .. . , lq), and consider the part T$l = TO UTI U ... UTI
of T* up to height l. This is a finite tree: at each height h = 0,1, ... , l it has
rh vertices, the elements of T h , or words of length h; its "leaves" are the r l

vertices at maximum height l.

r l - 1t heigh t

T <'

e

Figure 1.3
o

Let us assign any vertex WI at height h to 81, giving a code-word of length
li , and then prune (delete) WI and all of T$l above WI , since we cannot use
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such vertices again; in particular, this removes r l - 11 leaves, the words oflength
l beginning with Wl (see Figure 1.3). If q > 1 then

q 1
r l

- 11 < r l "" _ < r l
~rl. - ,
i=l

by (1.5), so at least one leaf of T'Sl remains unpruned. The first l2 symbols of
this leaf give us a code-word W2 of length la , which is not above W l in the tree .
We now prune W2 and all of T'Sl above it, thus removing a further rl - 12 leaves
(no leaf can be above both Wl and W2) . We continue like this, choosing code­
words and then pruning, so that no code-word is above or below any other.
After k code-words Wl, •.. ,Wk have been chosen, where k < q, we have pruned
r l - 11 + .. . + r l - 1k of the rl leaves; since

at least one leaf remains, so it is possible to choose WkH of length lkH as a
prefix of such a leaf. We can therefore continue choosing code-words until wq

has been chosen. Throughout this process, the prefix condition is satisfied, so
the resulting code C = {Wl' . . . , wq } is instantaneous by Theorem 1.17.

(=}) If C is instantaneous then it is a prefix code (by Theorem 1.17), so every
leaf of T~l is above at most one code-word of C. Each code-word Wi of C is
below rl - 1i leaves (where li = IWi!) , so summing over all Wi in C we find that
there are Li r l - l • leaves above code-words. Since there are r l leaves in T'Sl, we
must have

q

L r l - l • ::; r l ,

i = l

so dividing by r l we get (1.5).

For illustrative examples of Kraft's inequality, see §1.4.

1.6 McMillan's Inequality

o

We have seen that the class of uniquely decodable codes is strictly larger than
the class of instantaneous codes, so one might expect a weaker necessary and
sufficient condition than (1.5) for the existence of a uniquely decodable r-ary
code with specified word-lengths . Surprisingly, this is not the case. McMillan '8

inequality [McM56] is as follows :
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Theorem 1.21

There is a uniquely decodable r-ary code C with word-lengths h, . .. ,lq if and
only if

(1.6)

Proof

(¢=) By Theorem 1.20 there is an instantaneous r-ary code with word-lengths
li; being instantaneous, this code is uniquely decodable .

(=?) Let C be a uniquely decodable r-ary code with word-lengths li , . . . , lq;
define

(1.7)

and let
l = max(ll ' ,lq) ,

m = min(h , , lq).

Now consider the expansion of

where n ~ 1. This is a sum of terms

1 1 1 1
-x-x ,,·x-=---,.
rlil rli 2 rlin r J

where
j = l il + ... + lin ' (1.8)

Here mn ~ j ~ In since m ~ li ~ l for all i , so collecting terms together we
can write

In

«» = "" Nj
:
n

.L....t r J
j=mn

The coefficient Nj,n of l/rj is the number of ways of writing j in the form
(1.8) as a sum of n word-lengths (possibly with repetitions) ; equivalently, Nj,n

is the number of sequences Wil , ... , Win of n code-words of C, of total length j .
Each such sequence determines a code-sequence t =Wil . . . Wi n of length i ,and
since C is uniquely decodable , each t arises from at most one such sequence of
code-words. Thus Nj ,n is at most equal to the number of code-sequences t of
length i . that is, Nj ,n ~ r j . Since K" is a sum of In+ 1-mn terms Nj ,n/rj ~ 1,
we have

K" ~ (l - m)n + 1 (1.9)
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for all n ~ 1. Now K, land m are independent of n, so if K > 1 then the
left-hand side in this inequality grows exponentially, while the right-hand side
grows only linearly. This contradicts (1.9) for sufficiently large n, so we must
have K ~ 1. 0

The above proof is due to Karush [Ka61] ; the original proof used complex
functions (see [McM56] or [Re61, pp. 147-8]). Theorems 1.20 and 1.21 imme­
diately imply:

Corollary 1.22

There is an instantaneous r-ary code with word-lengths li ; . .. , lq if and only if
there is a uniquely decodable r-ary code with these word-lengths .

1.7 Comments on Kraft's and McMillan's
Inequalities

Comment 1.23

Theorems 1.20 and 1.21 do not say that an r-ary code with word-lengths
lr, . .. ,lq is instantaneous or uniquely decodable if and only if L:r-1i ~ 1. For
instance, the binary code C = {0,0l ,011} has l; = 1,2,3, so L:r-1; = ~ ~ 1;
however, C is not a prefix code, so it is not instantaneous. Similarly, one can
find a binary code with these word-lengths, which is not uniquely decodable:
{O, 01, 001} is an obvious example. However:

Comment 1.24

Theorems 1.20 and 1.21 assert that if L r- 1i ~ 1, then there exist codes with
these parameters which are instantaneous and uniquely decodable : for instance,
the binary code {O, 10, 110} is a prefix code, and hence satisfies both conditions.

Comment 1.25

If an r-ary code C is uniquely decodable, then it need not be instantaneous,
but by Corollary 1.22 there must be an instantaneous r-ary code with the same
word-lengths. For instance the binary code C = {O, 01,11} in Example 1.14 is
uniquely decodable but not instantaneous; with the same word-lengths we have
the instantaneous code V = {O, 10, 11} in Example 1.16.
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Comment 1.26

The summand r- l i in K = L:r- l i corresponds to the rather imprecise notion
of the "proportion" of the tree T* above a vertex Wi of height Ii, as used in
§1.4. This interpretation helps to explain why we need K ~ 1.

1.8 Supplementary Exercises

Exercise 1.12

Is there an instantaneous code over Z3 with word-lengths Ii =1 , 2, 2, 2, 2,
2, 3, 3, 3, 3? Construct one with Ii = 1,2 ,2 ,2,2,2,3 ,3,3; how many such
codes are there?

Exercise 1.13

The binary code C = {O, 10, ll} is used; how many code-sequences of
length j can be formed from C ? (Hint: find and solve a recurrence relation
for this number Nj .)

Exercise 1.14

Suppose that ITI = r, 1 ~ II ~ . . . ~ lq, and L:r- l i ~ 1. In how
many ways can one choose words WI , . • . , W q E T* so that IWi I = Ii and
{WI , . . • , wq } is an instantaneous code?

Exercise 1.15

A code is exhaustive if every sufficiently long sequence of code-symbols
begins with a code-word (equivalently, every infinite sequence of code­
symbols can be decomposed into code-words). Find an equivalent condition
in terms of the leaves of the tree T9 in the proof of Theorem 1.20. Which
of the codes in the examples in this chapter are exhaustive?

Exercise 1.16

Show that if an r-ary code C with word-lengths h, ... , lq is exhaustive,
then L:r- l i 2: 1, with equality if and only if C is instantaneous .

Exercise 1.17

Let C be an r-ary code with word-lengths II, ' .. , lq. Show that any two of
the following conditions imply the third:
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(a) C is instantaneous;

(b) C is exhaustive;

(c) 2:r-li = l.

Show that no one of these conditions implies any other.



2
Optimal Codes

Men of few words are the best men. (King Henry V)

We saw in Chapter 1 how to encode information so that decoding is unique
or instantaneous. In either case the basic requirement, given by Kraft's or
McMillan's inequality, is that we should use sufficiently long code-words. This
raises the question of efficiency: if the code-words are too long, then storage
may be difficult and transmission may be slow. We therefore need to strike a
balance between using words which are long enough to allow effective decoding,
and short enough for economy. From this point of view, the best codes available
are those called optimal codes, the instantaneous codes with least average word­
length. We will prove that they exist , and we will examine Huffman's algorithm
for constructing them. For simplicity, we will concentrate mainly on the binary
case (r = 2), though we will briefly outline how these ideas extend to non-binary
codes .

2.1 Optimality

Let S be a source, as in Chapter 1. We assume, as before, that the probabilities

are independent of time n and of previous symbols Xl, .. . ,Xn-l' The following
theory can be extended to apply to sources which do not satisfy these condi-
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tions, but we will concentrate on the simplest case, where these conditions hold.
Since the numbers Pi form a probability distribution, we have

a ::; Pi s 1, (2.1)

If a code C for S has word-lengths li, . . . , lq, then its average word-length is

q

L = L(C) = LPili .
i=1

(2.2)

Clearly L(C) > a for all codes C. For economy and efficiency, we try to make
L(C) as small as possible, while retaining instantaneous decoding: given rand
the probability distribution (Pi), we try to find instantaneous r-ary codes C
minimising L(C) . Such codes are called optimal or compact codes.

Example 2.1

Let S be the daily weather (as in Example 1.2), with Pi = ~, ~, ~ for i = 1,2,3.
The binary code C : 81 f-t 00, 82 f-t 01, 83 f-t 1 is instantaneous (because it is a
prefix code), and it has

L(C) = ~ · 2 + ~ ·2+ ~ ·1= 1.75 j

however, the binary code V : 81 f-t 00, 82 f-t 1, 83 f-t 01 (which uses the same
code-words but in a different order) is also instantaneous but has

111
L(V) = 4 .2 + "2 . 1 + 4 .2 = 1.5 .

Thus L(V) < L(C) , and it is not hard to see that V is an optimal binary code
for S, that is, L(V) ::; L(C) for every instantaneous binary code C for S.

This example illustrates the general rule that the average word-length is re­
duced by assigning shorter code-words to more frequent source-symbols (using
W2 = 1 in V, rather than W2 =01 in C); Morse code uses the same idea.

Exercise 2.1

Show that in any optimal code, if Pi > Pj then li ~ lj .

We will use this principle more systematically in later sections, to construct
optimal codes for arbitrary sources. First we show that one cannot reduce
the average word-length further by allowing uniquely decodable (rather than
instantaneous) codes, so there is no loss in restricting to instantaneous codes.
This follows immediately from Corollary 1.22:
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Lemma 2.2

Given a source 5 and an integer r, the set of all average word-lengths L(C)
of uniquely decodable r-ary codes C for 5 is equal to the set of all average
word-lengths L(C) of instantaneous r-ary codes C for 5.

This set of average word-lengths is clearly bounded below (by 0), so let us
write Lm in(5) for its greatest lower bound (the value of r being understood).
An instantaneous r-ary code C is defined to be optimal if L(C) = Lm in(5). It is
not entirely obvious that such codes exist: conceivably, the instantaneous r-ary
codes for 5 might have average word-lengths which approach but do not attain
their greatest lower bound (like the numbers lin for n E N , with greatest lower
bound 0). We therefore need to prove that optimal codes always exist (a point
which is generally overlooked in the literature) .

Theorem 2.3

Each source S has an optimal r-ary code for each integer r 2: 2.

Proof

By renumbering the source-symbols 81 , ... , 8 q if necessary, we can assume that
there is some k such that Pi > 0 for i :::; k, and Pi = 0 for i > k. Let P =
min(PI, . . . ,Pk) , so P > O.

There certainly exists an instantaneous r-ary code C for 5 : for instance, we
can put it = . .. = lq = l for some l such that r l 2: q, and apply Theorem 1.20.
To prove the theorem, it is sufficient to show that among all instantaneous
r-ary codes V for 5, there are only finitely many values L(V) :::; L(C); the least
of these finitely many values is attained by some code V , which must then be
optimal.

To show this, let V be any instantaneous r-ary code with L(V) :::; L(C).
Then the word-lengths it, . .. , lq of V must satisfy

li < L(C) for i = l, . .. ,k,
- P

for otherwise we would have

L(V) = PIll + ... + pqlq 2: pili> PL(C) = L(C) .
P

There are only finitely many words wE T+ with Iwl ::; L(C)lp, so there are only
finitely many choices for the code-words WI, .•. , W k in V. There are infinitely
many choices for each Wi with i > k, but they have no effect on L(V) since
Pi = 0 for such i . Consequently, there are only finitely many possible values of
L(V) :::; L(C). 0
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Exercise 2.2

Interpret the proof of Theorem 2.3 geometrically, the problem being to
minimise the scalar product L = L,Pi1i = p.l, where the vectors p =
(PI , . . . ,Pq) and I = (l1, . . . , lq) in Rq are subject to certain restrictions.
(Hint: it may help to consider the case q = 2 first .)

2.2 Binary Huffman Codes

In 1952, Huffman [Hu52] introduced an algorithm for constructing optimal
codes. For simplicity we will concentrate on the binary case, so let T = Z2 =
{O, I}. Given a source S, we renumber the source-symbols 51, . . . ,5q so that

PI ~ P2 ~ . . . ~ Pq .

We form a reduced source S' by amalgamating the two least-likely symbols
5q-1 and 5q into a single symbol 5' = 5q-1 V 5 q (meaning "5q-1 or 5q") of
probability p' = Pq-1 + Pq (if the pair 5q-1, 5q is not unique, we make an
arbitrary choice of two least-likely symbols). Thus S' is a source having q - 1
symbols 51, . . . , 5q-2, 5 ' with probabilities PI, . . . , Pq-2, p'.

Given any binary code C' for S' , we can form a binary code C for S: if C'
encodes 5i as Wi for i = 1, . . . , q - 2, then so does C; if C' encodes 5' as w', then
C encodes Sq-1 and Sq as w'o and w'!. This process is illustrated as follows:

S : 51,

, Sq-2, S'

PI, ,Pq-2 , Pq -1, Pq

---------PI, ,Pq-2, p'

C: WI , ,Wq-2, w'O, w'1--............-
C' : WI , , W q- 2, W'

Lemma 2.4

If the code C' is instantaneous then so is C.
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Proof
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It is easy to check that if CI is a prefix code then so is C; Theorem 1.17 now
completes the proof. 0

This means that an instantaneous binary code Cfor S (which has q symbols)
can be obtained from an instantaneous binary code CI for S' (which has q - 1
symbols). Similarly, an instantaneous binary code CI for S' can be obtained
from an instantaneous binary code C" for S" (which has q - 2 symbols) , where
S" is the source formed from SI by amalgamating its two least likely symbols.
If we continue to reduce sources in this way, we obtain a sequence of sources
S , SI , .. . , S(q-2), S(q-l) with the number of symbols successively equal to
q, q - 1, .. . , 2, 1:

S -t S' -t . . . -t S(q-2) -t S(q-l) .

Now S(q-l) has a single symbol 81 V . . . V8 q of probability 1, and we use the
empty word e to encode this, giving a code! C(q-l) = {c} for S(q-l) . The above
process of adding 0 and 1 to a code-word Wi then gives us an instantaneous
binary code C(q-2) = {cO = 0, s l = I} for S(q-2), and by repeating this process
q - 1 times we get a sequence of binary codes C(q-l) , C(q-2) , . . . , CI, C for the
sources S(q-l), S(q-2), . . . , S', S:

S -t SI -t -t S(q-2) -t S(q-l)

C +-- CI +-- +-- C(q-2) +-- C(q-l) .

The final code C is known as a Huffman code for S. It is instantaneous by
repeated use of Lemma 2.4, and we will show that it is optimal in §2.4. (Notice
that each C(i) is a Huffman code for S(i), since we can choose to ignore s'»
and C(j) for all j < i.)

Example 2.5

Let Shave q = 5 symbols 81 , .. . ,85, with probabilities Pi = 0.3, 0.2, 0.2,
0.2, 0.1. We first perform the sequence of source-reductions; the successive
probability distributions are as follows:

S: 0.3 0.2 0.2 0.2 0.1
S': 0.3 0.3 0.2 0.2
S" : 0.4 0.3 0.3

SI1I : 0.6 0.4
S(4) : 1

1 Strictly speaking, C(q-l) is not a code, since it contains the empty word; however,
the point is that it allows us to create C (q-2), . . . ,C , which really are codes.
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Given any row, the next row is formed by replacing the two smallest proba­
bilities with their sum (shown in bold type), positioned so that the new set of
probabilities are in non-increasing order. We now reverse this process to con­
struct the codes for these sources, starting at the bottom with 1:: , and working
upwards in the reverse pattern:

C : 00 10 11 010 011
C/: 00 01 10 11
C" : 1 00 01
CIII

: 0 1
C(4) : e

Each row is constructed from the row below it by taking the code-word w' for
the new symbol in that lower row (shown in bold type) , and adding a final 0
or 1 to obtain code-words w'D,w'1 for the two amalgamated symbols; all other
code-words in the lower row are carried forward unchanged . We finish with a
binary code C = {DO, 10, 11, 010, all} for S. It is dearly a prefix code, so it is
instantaneous. It has word-lengths Ii = 2,2 ,2,3,3, so

L(C) = LPiIi = 0.6 + 0.4 + 0.4 + 0.6 + 0.3 = 2.3.

In most cases, the reduction process is unique, and hence the Huffman code
C is unique , apart from an arbitrary decision at each stage whether to assign
code-words w'D,w'1 or w'1, w'D respectively to the two least likely symbols;
by convention, one usually chooses the former option, but this choice has no
effect on the word-lengths . In other cases, however, there may at some stage
be more than one least likely pair, so the reduction process may not be unique,
giving a wider choice of Huffman codes C; this happens at stage one in the
above example, and Exercise 2.3 also illustrates this behaviour. However, the
optimality of Huffman codes (to be proved later) implies that in such cases
L(C) is nevertheless unique.

Exercise 2.3

Construct a binary Huffman code for a source with probabilities

Pi = 0.4, 0.3, 0.1, 0.1, 0.06, 0.04 ,

and find its average word-length . To what extent are the code, the word­
lengths, and the average word-length unique?

The construction of Huffman codes implies that each word-length Ii is equal
to the number of times the corresponding symbol Si of S is amalgamated dur­
ing the reduction process. This is because the construction of Wi starts with
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e, of length 0, and adds a final symbol 0 or 1 precisely when 8i is amalga­
mated. Thus symbols with high probabilities, being amalgamated infrequently,
are assigned short code-words, which helps to explain why Huffman codes are
optimal (though it does not prove it).

To see how the probability distribution affects the construction of Huffman
codes, we now look at another example.

Example 2.6

Let Shave q = 5 symbols 81, .. . ,85 again, but now suppose that they are
equiprobable, that is, P1 = ... =P5 = 0.2. The reduction and encoding pro­
cesses now look like this:

S : 0.2 0.2 0.2 0.2 0.2
5': 0.4 0.2 0.2 0.2
S" : 0.4 0.4 0.2
Sill : 0.6 0.4

S(4) : 1

C: 01 10 11 000 001
C' : 00 01 10 11
C" : 1 00 01
C"' : 0 1

C(4) : e

This gives a Huffman code C = {01, 10, 1l,000,001} for S; it is a prefix code,
and is therefore instantaneous. Its word-lengths are li = 2,2,2,3,3, so its av­
erage word-length is

1
L(C) = 5(2 + 2 + 2 + 3 + 3) = 2.4.

This is slightly greater than the value 2.3 achieved in Example 2.5, where the
symbols s, were not equiprobable.

In general, the greater the variation among the probabilities Pi, the lower
the average word-length of an optimal code, because there is greater scope
for assigning shorter code-words to more frequent symbols. We will study this
phenomenon more systematically in Chapter 3, using a concept called entropy
to measure the amount of variation in a probability distribution.

Exercise 2.4

A source has three symbols, with probabilities P1 ~ P2 ~ P3 ; show that
a binary Huffman code for this source has average word-length 2 - Pl.
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What is the corresponding result for a source with four symbols, with
probabilities PI ~ P2 ~ P3 ~ P4 ?

2.3 Average Word-length of Huffman Codes

Let us go back to the general situation in §2.2, and compare the average word­
lengths of the codes C and C'. In C', the symbol s' = Sq-l V Sq has probability
P' =Pq-l +Pq,and is assigned a code-word w'; let 1denote the word-length Iw'/ .
In C, the symbol s' is replaced with the symbols Sq-l and Sq of probabilities
Pq-l and Pq, and these are assigned the code-words w'O and w'l of length 1+1.
All other symbols SI, . .. ,Sq-2 are assigned the same code-words in C' as they
are in C, so

L(C) - L(C') =Pq-l (1 + 1) + pq(l + 1) - (Pq-l + pq)l

= Pq-l + Pq,
=P, (2.3)

which is the "new" probability created by reducing S to S' . If we iterate this ,
using the fact that L(C(q-l)) = lei =0, we find that

L(C) = (L(C) - L(C')) + (L(C') - L(C")) + ...
.. .+ (L(C(q-2)) - L(C(Q-l))) + L(C(q-l))

= (L(C) - L(C')) + (L(C') - L(C")) + .. .+ (L(C(q-2)) - L(C(q-l)))

= P' + pIt + ... + p(Q-l) , (2.4)

the sum of all the new probabilities p',p", .. . ,p(q-l) created in reducing S to
S(q-l). For instance, in Example 2.5 (in §2.2) we add up the probabilities in
bold type to get

L(C) = 0.3 + 0.4 + 0.6 + 1 = 2.3,

while in Example 2.6 we have

L(C) = 0.4 + 0.4 + 0.6 + 1 = 2.4.

This method is a great labour-saving device, since it allows us to work out
L(C) without having to construct C: for instance, in Example 2.5 it is clear from
the probabilities Pi = 0.3, 0.2, 0.2, 0.2, 0.1 that by successivelymerging smallest
pairs we must have

P' =0.2 + 0.1 =0.3,

pIt =0.2 + 0.2 = 0.4,

pili =0.3 + 0.3 =0.6,

P"" = 0.4 + 0.6 = 1,
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so L(C) = 0.3 + 0.4 + 0.6 + I = 2.3.

Exercise 2.5
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Use this method to verify your values for the average word-lengths of the
codes in Exercises 2.3 and 2.4.

2.4 Optimality of Binary Huffman Codes

In this section we will prove that binary Huffman codes are optimal. First we
need a definition and a lemma. We define two binary words Wl and W2 to be
siblings if they have the form xO, xl (or vice versa) for some word x E T*.

Lemma 2.7

Every source S has an optimal binary code V in which two of the longest
code-words are siblings.

Proof

By Theorem 2.3, there is an optimal binary code for S; among all such codes,
let us choose a code V which minimises a(V) = Li l. , the sum of the word­
lengths for V (this is possible because word-lengths are non-negative integers).
We claim that V has the required property.

Choose a longest code-word in V; this must have the form xt where x E T*
and t E T = Z2 . Let I denote 1 - t, so I = 0 or 1 as t = 1 or 0 respectively. If
xl E V then xt, xl are the required siblings, and we are home, so assume that
xl rt V . Being instantaneous, V is a prefix code. Now the only code-word in V
with prefix x is xt (since Ixtl is maximal and xl rt V) , so if we replace xt in V
with x, we get a new code V' for S which is also a prefix code. Thus Viis an
instantaneous code for S with L('O') :s L('O) and a(V') = a(V) - I < a(V) ,
against our choice of V . Thus xl E V , as required. 0

Theorem 2.8

If C is a binary Huffman code for a source S, then C is an optimal code for S.

Proof

Lemma 2.4 shows that C is instantaneous, so it is sufficient to show that L(C)
is minimal (among the average word-lengths of all instantaneous binary codes
for S). We use induction on the number q of source-symbols. If q = I then
C = {€} with L(C) = 0, so the result is trivially true. (Strictly, {€} is not a
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code, but see the footnote in §2.2.) Hence we may assume that q > 1, and that
the result is proved for all sources with q - 1 symbols.

Let S' be the source obtained by reducing S as in §2.2, so S' has q-l symbols
S I , . .. , Sq-2, S' = Sq-l V Sq. By (2.3) we have L(C) - L (C') =Pq-l + Pq = p' ,

the probability of s' .
Now let V : s, ~ X i be the optimal binary code for S given by Lemma 2.7 ,

so V has a sibling pair of longest code-words Xu = xO, Xv = xl, representing
symbols su, Sv of S; we will show that we can assume that u =q -1 and v = q.

If v :p q then we can transpose the code-words Xv and x q assigned to Sv

and Sq, giving another instantaneous code V* for S; if mi denotes IXil then this
transposition replaces the terms pvmv + pqmq in L(V) with Pvmq + Pqmv in
L(V*). Now

(Pvmv + pqmq) - (Pvmq + pqmv) = (Pv - pq)(mv - m q) ~ 0

since Pv ~ Pq and m v ~ m q , so L(V) ~ L(V*). Since V is optimal, this implies
that L(V) = L(V*) and V* is optimal. Replacing V with V* if necessary, we
may therefore assume that v = q. A similar argument allows us to assume that
u = q - 1, so the siblings xO and xl in V are the code-words for Sq-l and Sq.

We now form a code V' for S', given by s, ~ Xi for i = 1, .. . , q - 2, and
8' ~ x. Thus the relationship of V to V' is the same as the relationship of C
to C'. In particular, the argument in §2.3, applied to V and V', shows that

L(V) - L(V') = Pq-l + Pq = L(C) - L(C') ,

so
L(V') - L(C') = L(V) - L(C).

Now C' is a Huffman code for S', a source with q-l symbols, so by the induction
hypothesis C' is optimal; thus L(C') ~ L(V') and hence L(C) ~ L(V). Since V
is optimal, so is C (with L(C) = L(V)). 0

Exercise 2.6

Comment on the following argument: every source has a Huffman code;
all Huffman codes are optimal; hence every source has an optimal code.

2.5 r-ary Huffman Codes

If we use an alphabet T with ITI = r > 2, then the construction of r-ary
Huffman codes is similar to that in the binary case. Given a source S, we form
a sequence of reduced sources S' ,5", .. ., each time amalgamating the r least
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likely symbols s, into a single symbol s' ; and adding their probabilities to give
the probability p' of s' ,

We want eventually to reduce S to a source with a single symbol (of prob­
ability 1), which is assigned the code-word e. Since each step of the reduction
process reduces the number of symbols by r - 1, this is possible if and only
if q == 1 mod (r - 1). This condition is always satisfied when r = 2, but not
necessarily when r > 2. If q 1:- 1 mod (r - 1), we adjoin enough extra symbols
Si to S, with probabilities Pi = 0, thus increasing q so that the congruence is
satisfied , and then carry out the reduction process.

Example 2.9

Let q = 6 and r = 3. Since r - 1 = 2 we need q == 1 mod (2), so we adjoin an
extra symbol S7 to S, with P7 = O. The reduction process now gives sources
S' , S" and S"' with the number of symbols equal to 5,3 and 1.

The construction of the code C is similar to that in the binary case. Given a
code C(i) for S(i) , we form a code C( i-l) for S(i-l) : this is done by removing the
code-word w' for the new symbol s' of S(i), and replacing it with r code-words
w't (t E T) for the r symbols of S(i-l) which were amalgamated to form s' ,
By iterating this process, we eventually get an r-ary Huffman code C for S,
deleting the code-words for any extra symbols s, which were adjoined at the
beginning .

Example 2.10

Let q =6 and r =3 as in Example 2.9, and suppose that the symbols SI, • • • , S6

of S have probabilities Pi = 0.3, 0.2, 0.2, 0.1, 0.1, 0.1. After adjoining S7 with
P7 = 0, we find that the reduction process is as follows:

S : 0.3 0.2 0.2 0.1 0.1 0.1 0
S': 0.3 0.2 0.2 0.2 0.1
S" : 0.5 0.3 0.2
Sill : 1

If we take T = Z3 = {O, 1, 2}, then one possible encoding process is:

C:
C' :
C" :
C"' : e

o

1
1
1

2
2
2

00 02 010 011 012
00 01 02

Deleting the code-word 012 for the adjoined symbol 87 , we obtain a ternary
Huffman code C ={I, 2, 00, 02, 010, Oll} for S, with L(C) =1.7.
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The proof that r-ary Huffman codes are instantaneous is similar to that for
r = 2; however, the proof of optimality is a little harder than in the binary
case, since Lemma 2.7 does not extend quite so easily to the case r > 2,
so we will omit it. The proof of (2.4), that L(C) is the sum p' + p" + ... of
all the "new" probabilities, also applies in the non-binary case: for instance,
L(C) = 0.2 + 0.5 + 1 = 1.7 in Example 2.10.

Exercise 2.7

Find binary and ternary Huffman codes for a source with probabilities

Pi = 0.3, 0.2, 0.15, 0.1, 0.1, 0.08, 0.05, 0.02.

Find the average word-length in each case.

Exercise 2.8

Extend the proof of (2.4) to r-ary codes for r > 2.

2.6 Extensions of Sources

Instead of encoding source symbols s, one at a time, it can be more efficient to
encode blocks of consecutive symbols, for instance words (or even sentences) of
a text, rather than individual letters. This gives more variation of probabilities,
and hence allows lower average word-lengths (as noted in §2.2).

Let 5 be a source with a source alphabet S of q symbols SI, . .. , Sq, of
probabilities PI , . . . , P q ' The n-th extension S" of 5 is the source with source
alphabet S" consisting of the qn symbols Sit . .. Sin (Si; E S), of probabilities
Pi • • . . Pin' We can think of a symbol Sit ... Sin of S" as a block of n consecutive
symbols from 5, or alternatively as a single output from n independent copies
of 5 emitting symbols simultaneously (imagine tossing several similar coins, or
rolling several similar dice). We can check that the probabilities P i • . • . Pin form
a probability distribution by expanding the left-hand side of the equation

(PI + .. .+Pqt = In =1,

and noting that each Pi• . • . Pin appears once.

Example 2.11

Let 5 have source alphabet S = {SI' S2} with PI = 2/3, P2 = 1/3. Then 52 has
source alphabet S" = {SISI, SIS2 , S2S1, S2S2} with probabilities 4/9, 2/9, 2/9,
1/9.
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In general , let PI and Pq be the greatest and least of the probabilities for S,
so PI and P; are the greatest and least of the probabilities for S" , Assuming
that PI > Pq (that is, that the probabilities Pi are not all equal to l/q), we have

PI = (PIr -+ 00 as n -+ 00 ;
P~ Pq

this means that S" has greater variability of probabilities as n increases, so we
might expect more efficient coding.

Example 2.12

If S is as in Example 2.11, there is a binary Huffman code C : 81 t-+ 0, 82 t-+ 1
with average word-length L(C) = 1. It is hard to believe that one can improve
on this, but nevertheless, let us construct a Huffman code for S2. We use the
algorithm described in §2.2, as follows (we have not bothered to rewrite the
probabilities in decreasing order in each row):

S2 : 4 2 2 1 0 10 110 1119 9 9 9 '

(S2)' : 4 2 3 0 10 119 9 "9

(82)" : 4 5 0 19 "9

(82)11I : 1 e

This gives a Huffman code C2 : 8181 t-+ 0,8182 t-+ 10, 8281 t-+ 110,8282 t-+
111 for S2, with average word-length

2 3 5 17
L2 = L(C ) = 9+ 9+ 1 = 9 .

Now each code-word in C2 represents a block of two symbols from S, so on
average, each symbol of 8 requires 17/18 binary digits . Thus, as an encoding
of 8 , C2 has average word-length

L2 172 = 18 =0.944 .. . .

This is less than the average word-length L(C) = 1 of the Huffman code C for
8, so this encoding is more efficient.

Strictly speaking, what we have described is not a code for S, since indi­
vidual symbols of S are not assigned their own code-words; nevertheless, it
enables us to encode the information coming from S; so we call it an encoding
of S. As such, it is uniquely decodable: as a code for S2, the Huffman code C2 is
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instantaneous and hence uniquely decodable ; this means that we can break any
code-sequence t into code-words in a unique way, thus determining the symbols
Si t Si2 of 8 2 encoded in t, and from this we obtain the individual symbols s,
of 8 encoded in t. However, this decoding is not quite instantaneous: we have
to determine symbols of 8 in consecutive pairs , rather than one at a time, so
there is a bounded delay while we wait for pairs to be completed.

Continuing this principle, one can show that a Huffman code C3 for 8 3 has
average word-length £3 = £(C 3 ) = 76/27 (Exercise 2.9); as an encoding of 8
it has average word-length

L3 76
3" = 81 = 0.938 ... ,

which is even better than using C2•

There is an obvious extension of this idea to S" for any n, and two natural
questions arise: what happens to the average word-length Ln/n as n -t 00,

where L n = £(C n ) , and can we apply the same method to obtain more efficient
encodings of other sources? To answer these questions we need the next major
topic , namely entropy.

Exercise 2.9

Let 8 be the source in Examples 2.11 and 2.12. Find the probability distri­
bution for 8 3 , and show that a binary Huffman code C3 for 8 3 has average
word-length L3 = L(C3 ) = 76/27.

2.7 Supplementary Exercises

Exercise 2.10

Let 8 be a source with probabilities 0.3, 0.3, 0.2, 0.2; how many optimal
binary codes does 8 have? Are they all Huffman codes?

Exercise 2.11

A source 8 has symbols SI, .. . ,Sq with probabilities PI 2 ... 2 P« satis­
fying Pi > Pi+2 + ... + pq for i = 1, . . . , q - 3. Prove that in any binary
Huffman code for 8, the word-lengths are 1,2, . . . , q - 1, q - 1. How many
distinct binary Huffman codes are there for 8 ? For each q 2 1, give an
example of a probability distribution (Pi) satisfying these inequalities.
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Exercise 2.12
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How can r-ary Huffman coding be implemented so as to give a Huffman
code which also minimises the total word-length CT(C) =Ei li ? (Hint: first
try binary Huffman coding, where Pi = 1/3,1/3,1/6,1/6.)

Exercise 2.13

An unknown object 8 is chosen from a known finite set S = {81, . . . , 8 q } ,

each s, having a known probability Pi of being chosen. The object has
to be identified (as in the game Twenty Questions) by asking a sequence
Q1, Q2 , ... of questions , each of which must have the form "Is 8 in T?"
for some subset T of S . Devise a questioning strategy which minimises the
average number of questions required.

Exercise 2.14

Let C be a binary Huffman code for a source S with q equiprobable symbols.
Is it possible that L2/2 < L(C) in the notation of §2.6? Give some values
of q such that Ln/n = L(C) for all n.
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Entropy

Brevity is the soul of wit. (Hamlet)

The aim of this chapter is to introduce the entropy function, which measures
the amount of information emitted by a source. We shall examine the basic
properties of this function, and show how it is related to the average word­
lengths of encodings of the source.

3.1 Information and Entropy

To quantify the information conveyedby the symbols Si of a source S, we define
a number I(si), for each i , which represents how much information is gained
by knowing that S has emitted Si; this also represents our prior uncertainty
as to whether Si will be emitted, and our surprise on learning that it has been
emitted. We therefore require that:

(1) I(s i) is a decreasing function of the probability Pi of Si, with I(s i) = 0 if
Pi = 1;

(2) I(sisj) = I(si) + I(sj).

Condition (1) asserts that the greater the probability of an event, the less
information it conveys, and an inevitable event conveys no information ; news­
paper editors tend to use this principle in selecting what stories to print. Con­
dition (2) asserts that since S emits successive symbols independently (as we
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have been assuming), the amount of information gained by knowing two suc­
cessive symbols is the sum of the two individual amounts of information. (If
successive symbols were not independent, it would be less than the sum , since
knowing s, would tell us something about Sj).

Independence of the symbols in S means that Pr(siSj) = Pr (si)Pr (Sj) =
PiPj for all i and j . It follows that conditions (1) and (2) will be satisfied if we
define

1
I(si) = -logpi =log - ,

Pi
so that

1 1 1
I(sisj) = log - = log - + log - = I(si) + I(sj).

PiPj Pi Pj

Since I(si) -+ +00 as Pi -+ 0, we use the convention that

I(Si) =+00 if Pi =O.

The graph of this function is shown in Fig. 3.1.

(3.1)

1

p

Figure 3.1

The base chosen for the logarithms is not very important. We usually take
log = logr' where r is the number of code-symbols, so in the most frequent
binary case we have log = 19 = 10g2. A change of base of logarithms simply
represents a change of units: since

for all x > 0, taking logarithms to another base s gives

log. x = log. r.Iog, x.

In the binary case, the units of information are called bits (binary digits) . If r
is unimportant or understoood, we will write I(si) = -log(Pd; if we wish to
emphasise the value of r, we will write Ir(sd = -logr(Pi) .
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Example 3.1

Let S be an unbiased coin, with 81 and 82 representing heads and tails . Then
P1 = P2 = ~, so if we take r = 2 then h(8d = 12(82) = 1. Thus the standard
unit of information is how much we learn from a single toss of an unbiased coin.

Since each symbol s, of a source S is emitted with probability Pi, it follows
that the average amount of information conveyed by S (per source-symbol) is
given by the function

called the r-ary entropy of S. As with the function 1, a change in the base r
corresponds to a change of units, given by

When r is understood, or unimportant, we will simply write

q 1 q

H(S) =I>ilog -:- = - LPi logpi .
i=l P, i=l

(3.2)

Since P log(l/p) = -P logp -+ 0 as P -+ 0 (see Fig. 3.2), we adopt the convention
that Plog(l/p) = 0 if P = 0, so that H(S) is a continuous function of the
probabilities Pi.

!
• 1

Figure 3.2

p

Example 3.2

Let Shave q = 2 symbols, with probabilities P and 1 - P; thus S could be
the tossing of a coin, possibly biased. We will use this probability distribution
rather frequently, so for convenience we introduce the notation

p=l-p
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whenever 0 ~ P ~ 1. (There should be no confusion with complex conjugation,
which is not used in this book .) Then

H(S) = -plogp - plogp .

We denote this important function by H(p) , or more precisely Hr(p), so

H(p) = -plogp - plogp. (3.3)

The graph of the function H2(p) is given in Fig. 3.3; for general r we simply
change the vertical scale by a factor of log, 2. This shows that H(p) is greatest
(= 1) when p = ~, and least (= 0) when p = 0 or 1. Thus maximum and mini­
mum uncertainty about S correspond to maximum and minimum information
conveyed by S . Note that the graph is symmetric about the vertical line p = ~ ,

that is,
H(p) = H(P).

1

~ 1 P
Figure 3.3

If we put p = ~ in Example 3.2 (as in §2.6), we find that

2 3 1 2 2
H2(S) = 310g2 2" + 3 10g23 = log23 - 3log2 2 = log23 - 3 :::::; 0.918 ,

where we use the approximation log23 :::::; 1.585; this biased coin is therefore
conveying rather less information than the unbiased coin considered in Exam­
ple 3.1, where H2(S) = 1.

Example 3.3

If S has q = 5 symbols with probabilities Pi = 0.3,0.2,0.2,0.2,0.1, as in §2.2,
Example 2.5, we find that H2(S) :::::; 2.246.

Example 3.4

If S has q equiprobable symbols , then Pi = l/q for each i , so

1
Hr(S) = q. -logr q = log, q .

q
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In particular, if we put q = 5, as in §2.2, Example 2.6, we find that H2(S) =
log25 ~ 2.321 . By comparing this with Example 3.3, we see how a source
with equiprobable symbols conveys more information than one with varied
probabilities.

We can also compare the entropies of these sources S with the average word­
lengths obtained by binary Huffman coding in Chapter 2. In Example 3.2, for
instance, with P = i, we find that for n = 1,2,3 the average word-length
obtained by binary Huffman coding of S" in §2.6 is L ~ 1, 0.944,0.938 respec­
tively, which is approaching the entropy H2(S) ~ 0.918. In Example 3.3, the
average word-length L(C) = 2.3 obtained in Example 2.5 is close to the entropy
H2(S) ~ 2.246. Similarly in Example 3.4, the average word-length L(C) = 2.4
obtained in Example 2.6 is close to the entropy H2(S) ~ 2.321. These close re­
lationships between average word-length and entropy illustrate Shannon's First
Theorem, which we will state and prove in §3.6.

Example 3.5

Putting q = 6 in Example 3.4, we see that an unbiased die has binary entropy
log26 ~ 2.586 .

Example 3.6.

Using the known frequencies of the letters of the alphabet, the entropy of
English text has been computed as approximately 4.03.

This last example, which seems to suggest that reading a book is about
four times as informative as tossing a coin, illustrates the fact that Information
Theory is not concerned with how useful or interesting a message is, since these
depend very much on the individual reading it . Thus a statistician might be
delighted to receive a book of random numbers or letters, whereas a normal
person would probably prefer a novel, even if it had lower entropy.

Exercise 3.1

A source S has probabilities Pi = 0.3,0.2,0.15,0.1,0.1,0.08,0.05,0.02.
Find H2(S) and H3(S), and compare these with the average word-lengths
of binary and ternary Huffman codes for S (see Exercise 2.7).
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3.2 Properties of the Entropy Function

In §3.1 we defined the entropy of a source S with probabilities Pi to be

1
Hr(S) = LPilogr - .

i Pi

Since plogr(l/p) 2: 0, with equality if and only if P =°or 1, we have

Theorem 3.7

Hr(S) 2: 0, with equality if and only if Pi = 1 for some i (so that Pi =°for all
j :f; i).

Thus the entropy is least when there is no uncertainty about the symbols
emitted by S, with one symbol always occurring, so that no information is
conveyed. When is entropy greatest? To answer this question, we need:

Lemma 3.8

For all x >°we have In x :::; x-I, with equality if and only if x = 1.

Proof

Let I(x) = x - l-lnx, so 1(1) = 0. Then j'(x) = 1 - X-I for all x> 0, so 1
has a unique stationary point, at x = 1. Since j"(x) =x-2 >°for all x, this
is the unique global minimum of I, so I(x) 2: 0, with equality if and only if
x = 1. 0

This result is illustrated in Fig. 3.4.

y

%-1
In%

Figure 3.4

%-1
ln x

x

Converting this into logarithms to some other base r, we have log, x :::;
(x - 1) log, e, with equality if and only if x = 1. The next result looks rather
technical, but it has a number of very useful consequences.
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Corollary 3.9

Let Xi ~ 0 and Yi > 0 for i = 1, .. . ,q, and let Li Xi =Li Yi = 1 (so (Xi) and
(Yi) are probability distributions, with Yi =I 0). Then

q 1 q 1
LXi log, - ~ LXi log, - ,
i=1 Xi i=1 Yi

(that is, Li Xi logr(yi!xi) ~ 0), with equality if and only if Xi = Yi for all i.

Proof

If each Xi =I 0 then the difference between the left- and right-hand sides of the
inequality is

q (yo)
LHS - RHS = LXi log, x~

i=1 I

= _1 i: Xi In (Yi )
In r 0 Xi

1=1

1 q (yo )
~ -LXi -!..-1

In r 0 Xi
1=1

1 (q q)
= -1 LYi - LXi

n r i=1 i=1

(since log, X = In x/In r)

(by Lemma 3.8, used q times)

=0,

with equality if and only if each yi!Xi = 1. When some Xi = 0 the argument
is similar, since our convention that Xi 10g(1/xd = 0 allows us to ignore such
terms. [J

Theorem 3.10

If a source S has q symbols then Hr(S) ~ log, q, with equality if and only if
the symbols are equiprobable.

Proof

If we put Xi =Pi (the probabilities of S) and Yi = l/q, then the conditions of
Corollary 3.9 are satisfied. We therefore have

q 1 q q

Hr(S) = LPi log, -:- ~ LPi log, q = log, q LPi = log, q,
i=1 PI i=1 i=1

with equality if and only if each Pi = l/q. [J

Thus the entropy is greatest, and the most information is conveyed, when
there is the greatest uncertainty about the symbols emitted.
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(by Corollary 3.9)

3.3 Entropy and Average Word-length

Near the end of §3.1, we considered several sources and compared their entropies
with the average word-lengths of their Huffman codings. We will now explore
the connection between entropy and average word-length in greater detail.

Theorem 3.11

If C is any uniquely decodable r-ary code for a source S , then L(C) ~ Hr(S ).

Proof

If we define
q

K= Lr-l ; ,

i = l

where C has word-lengths h, . .. , lq, then McMillan 's inequality (Theorem 1.21)
gives K ~ 1. We now use Corollary 3.9, with Xi =Pi and Yi = r - l ; / K , so Yi > 0
and L i Yi = 1. Then

q 1
H r (S) =L Pi log, (~)

i=l Pt

q 1
~ LPilogr(~)

i=l Yt
q

=LPi logr (r l
; K)

i= l
q

=LPi(li + log, K)
i = l

q q

=LPili + log, K LPi
i=l i=l

=L(C) + log, K

~ L(C)

(since K ~ 1 implies that log, K s 0).

(since LPi = 1)

o

The interpretation of this is as follows: each symbol emitted by S carries
Hr(S) units of information, on average ; if S is to be encoded without losing
any of this information, then the code C must be uniquel y decodable; each
code-symbol conveys one unit of information, so on average each code-word
of C must contain at least Hr(S) code-symbols, that is, L(C) ~ Hr(S ). In
particular, sources emitting more information requ ire longer code-words .
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Corollary 3.12

Given a source S with probabilities Pi, there is a uniquely decodable r-ary code
C for S with L(C) = Hr(S) if and only if 10grPi is an integer for each i , that
is, each Pi = rei for some integer e, ~ O.

Proof

(=» If L(C) = Hr(S) in the proof of Theorem 3.11, then both of the inequality
signs there must represent equality. Thus Pi = Yi for each i by Corollary 3.9,
and log, K = 0. This gives K = 1 and Pi = r-l i / K = r-l i , so log, Pi = -Ii , an
integer.

({::) Suppose that -logr Pi is an integer Ii for each i , Since Pi ~ 1 we have
Ii ~ O. Now r l i = I/Pi for each i, so

q 1 q

L~=LPi=1.
i=1 r i=1

Thus McMillan's inequality (Theorem 1.21) is satisfied, so there exists a
uniquely decodable r-ary code C for S with word-lengths Ii' As required, this
has average word-length

o

The condition Pi = rei in Corollary 3.12 is very restrictive; for most sources,
every uniquely decodable code satisfies L(C) > Hr(S) .

Example 3.13

If S has q = 3 symbols 8i , with probabilities Pi = t. t and t (see Examples 1.2
and 2.1), then the binary entropy of Sis

1 1 1 1113
H2(S) = :1log2 4 + 210g22 + :1log2 4 = :1 · 2 + 2 · 1 + :1 · 2 = 2'

The code C : 81 t-t 00, 82 t-t 1, 83 t-t 01 is a binary Huffman code for S, so it is
optimal. It has average word-length

1 1 1 3
L(C) = :1 . 2 + 2 .1 + :1 . 2 = 2'

so in this case L(C) = H2(S) for some uniquely decodable binary code C. The
reason for this is that the probabilities Pi are all powers of 2.



44 Information and Coding Theory

Example 3.14

Let Shave q =5 symbols, with probabilities Pi =0.3,0.2,0.2,0.2,0.1, as in §2.2,
Example 2.5. We saw in Example 3.3 that H 2(S) ~ 2.246, and in Example 2.5
we saw that a binary Huffman code for S has average word-length 2.3, so it
follows from Theorem 2.8 that every uniquely decodable binary code C for S
satisfies L(C) ~ 2.3 > H2(S). Thus no such code satisfies L(C) = H2(S), the
reason being that in this case the probabilities Pi are not all powers of 2.

Exercise 3.2

For each q ~ 2, give an example of a source S with q symbols, and an in­
stantaneous binary code C for S attaining the lower bound L(C) = H2(S) .

By Corollary 3.12, if some Pi = 0 then we must have L(C) > Hr(S). How­
ever, by deleting such symbols s, we may be able to achieve equality here,
reducing L(C) by allowing shorter code-words, without changing the entropy.

Example 3.15

Let S have three symbols s, with probabilities Pi = ~,~,O. Then H2(S) = 1,
but a binary Huffman code C for S has word-lengths 1,2,2 with L(C) = 1.5.
Without 53, however, we have H2(S) = 1 = L(C), since we can now use the code
C = {O, I] : equality is possible here since the remaining non-zero probabilities
Pi are powers of r (= 2).

IT C is an r-ary code for a source S, we define its efficiency to be

(3.4)

so 0 :$ TJ :$ 1 for every uniquely decodable code C for S by Theorem 3.11. The
redundancy of C is defined to be Tj = 1- TJi thus increasing redundancy reduces
efficiency, contrary to the belief of some employers. In Examples 3.13 and 3.14,
we have TJ = 1 and TJ ~ 0.977 respectively.

Exercise 3.3

A source S has probabilities Pi = 0.4,0.3,0.1 ,0 .1,0 .06,0.04 (Exercise 2.3).
Calculate the entropy of S, and hence find the efficiency of a binary Huff­
man code for S.
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3.4 Shannon-Fano Coding

Huffman codes are optimal, but it can be tedious to calculate their average
word-lengths. Shannon-Fane codes are close to optimal, but their average word­
lengths are easier to estimate.

Let us first assume that our source S has no probabilities Pi = O. By Corol­
lary 3.12, if the average word-length L(C) of a uniquely decodable r -ary code
C for S is to attain the lower bound Hr(S), then its word-lengths must satisfy
li =10gr(1/Pi) for all i, This is usually impossible since the numbers 10gr(1/Pi)
are not generally integers. In this case, we do the next best thing and take

(3.5)

(3.6)
1 1

log, - ::; li < 1 + log, - ,
Pi Pi

and so Pi ~ r- l i for each i , Summing this over all i, we find that

where rx1= min {n E Z In ~ x} denotes the least integer n ~ x , (This is the
"ceiling function", which rounds up to the next integer.) Thus li is the unique
integer such that

q q

K =Lr-li
::; LPi = 1,

i=l i=l

so Theorem 1.20 (Kraft's inequality) implies that there is an instantaneous r­

ary code C for S with these word-lengths k We call C a Shannon-Fano code
for S. Note that we have not described how to construct such codes, but have
merely shown that they exist.

If we multiply (3.6) by Pi and then sum over all i , we have

q 1 q q 1 q 1
LPi log; -:- s LPili < LPi (1 + log, -:-) = 1 + LPi log, -:-'
i=l P, i=l i=l P, i=l P,

giving
(3.7)

This argument can be extended to the case where some Pi are 0, by taking
limits as Pi -t 0 (we omit the details). However, taking limits destroys the
"sharpness" of inequalities, so we now have the slightly weaker result

(3.8)

We have therefore proved :
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Theorem 3.16

Every r-ary Shannon-Fano code C for a source S satisfies

Corollary 3.17

Every optimal r-ary code V for a source S satisfies

Proof

Theorem 3.11, optimality and Theorem 3.16 give Hr(S) :::; L(V) :::; L(C) <
1 + Hr(S). 0

This means that, even if the lower bound Hr(S) cannot be attained, we can
find codes which come reasonably close to it.

Example 3.18

Let Shave 5 symbols, with probabilities Pi = 0.3,0.2,0.2,0.2,0.1 as in Ex­
ample 2.5, so I/Pi = 10/3,5,5,5,10. A binary Shannon-Fano code C for S
therefore has word-lengths

li = f!og2(I/Pi)l = min{n E Z 12n
~ l/pd = 2,3,3,3,4

and hence has average word-length L(C) = LPili = 2.8. Compare this with a
Huffman code V for S, which has L(V) = 2.3 (see §2.2). We saw in Example 3.3
that H2(S) ~ 2.246 , so C satisfies Theorem 3.16. The efficiency of C is TJ ~

2.246/2.8 ~ 0.802, whereas V has TJ ~ 2.246/2.3 ~ 0.977.

Example 3.19

If Pl = 1 and Pi = 0 for all i > 1, then Hr(S) = O. An r-ary optimal code V
for S has average word-length L(V) = 1, so here the upper bound 1 + Hr(S)
is attained.

Exercise 3.4

Find the word-lengths, average word-length, and efficiency of a binary
Shannon-Fano code for a source S with probabilities Pi = 0.4, 0.3, 0.1,
0.1,0.06,0.04. Compare this with Exercise 3.3, which concerns an optimal
code for S.

In general, Shannon-Fano codes are not far from optimal. They approach
closer to optimality if we use them to encode extensions of sources (see §2.6).
We will investigate the entropy of extensions in the next section, in preparation
for a proof of this result in §3.6.
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3.5 Entropy of Extensions and Products
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Recall from §2.6 that S" has qn symbols Sit' . . Sin' with probabilities Pit ' .. Pin '
If we think of S" as n independent copies of 8 then we should expect it to
produce n times as much information as 8. This suggests the following:

Theorem 3.20

If 8 is any source then Hr(8
n ) =nHr(8) .

Before proving this, we must first generalise the notion of an extension by
considering products of sources. Let 8 and T be two sources, having symbols
s, and tj with probabilities Pi and qj; we define their product 8 x T to be the
source whose symbols are the pairs (Si,tj), which we will abbreviate to Sitj,
with probabilities Pr(si and tj) . One can think of 8 x T as a pair consisting
of 8 and T emitting symbols s, and tj simultaneously. We say that 8 and T
are independent if Prfs, and tj) = Piqj for all i and i . For instance, 8 and
T could represent the daily weather in two distant locations (but not nearby,
since they would no longer be independent). The extension 8 2 can be regarded
as the product 8 x 8 of two independent copies of a single source 8: a good
example is a pair of identical but independent dice.

Lemma 3.21

If 8 and T are independent sources then Hr(8 x T) = Hr(8 ) + Hr(T) .

Proof

Independence gives Pr(sitj) =Piqj, so

Hr(8 x T) = - L ~:::>iqj 10grPiqj
i j

= - L LPiqj(logrPi + log, qj)
i j

= - L L Piqj Iog, Pi - L L Piqj log, qj
i j i j

= (- L Pi log, Pi) (L qj) + (L Pi) ( - L qj log, qj)
i j i j

since l:Pi = l: qj = 1. o
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We can use induction to extend the definition of a produc t to any finite
number of sources: we define

St x ... X S« = (St X . . . X Sn-t ) X S«.

The sources S, are independent if each symbol Si, . .. Sin has probabili ty
Pi , .. . Pin ' where each Si; has probability P i; .

Corollary 3.22

If St, ... ,Sn are independent sources then

Proof

This is proved by induction on n , using Lemma 3.21 for the inductive step . 0

If we take St , ... ,Sn to be independent copies of S, then St x . . . X Sn =sn,
and Theorem 3.20 follows immediately from Corollary 3.22.

3.6 Shannon's First Theorem

Theorem 3.11 states that every uniquely decodable r-ary code C for a source
S has average word-length L(C) ~ Hr(S) , and Corollary 3.12 implies that this
lower bound is not normally attained. However, we will show that the idea
introduced at the end of §2.6, of using an optimal code for S" as an encoding
of S, allows us to encode S with average word-lengths arbitrarily close to Hr(S)
as n -t 00.

Recall that if a code for S" has average word-length Ln , then as an encoding
of S it has average word-length Ln/n. By Corollary 3.17, an optimal r-ary code
for S" has average word-length Ln satisfying

so Theorem 3.20 gives

Dividing by n we get
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so
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lim Ln = Hr(S) .
n--+oo n

This proves Shannon's First Theorem, or the Noiseless Coding Theorem , pub­
lished by Shannon in his fundamental paper [Sh48] . Its full statement is:

Theorem 3.23

By encoding S" with n sufficiently large, one can find uniquely decodable r­
ary encodings of a source S with average word-lengths arbitrarily close to the
entropy Hr(S) .

We considered a simple example of this in §2.6, for n = 1,2,3; we will return
to this example , for arbitrary n , in the next section.

The "cost" of using this theorem is that, since Ln/n -+ Hr(S) rather slowly
in many cases, we may need quite a large value of n to achieve efficient coding.
Now if S has q symbols then S" has qn, a number which grows rapidly as
n increases. This means that the construction of the code and the encoding
process are both complicated and time-consuming . Also the decoding process
involves delays while we wait for complete blocks of n symbols to be received,
so we may have to compromise with a smaller value of n .

3.7 An Example of Shannon's First Theorem

Let S be a source with two symbols S1 , S2 of probabilities Pi = ~,t, as in
Example 3.2. We saw in §3.1 that H2(S) = log2 3 - ~ ~ 0.918, and in §2.6 we
obtained the average word-lengths Ln/n ~ 1, 0.944 and 0.938 by using binary
Huffman codes for S" with n = 1, 2 and 3. For larger n it is simpler to use
Shannon-Fano codes, rather than Huffman codes; they are a little less efficient,
but they are easier to deal with, and they also give Ln/n -+ Hr(S) as n -+ 00 .

There are 2n symbols s for S"; each consisting of a block of n symbols
s, = 81 or S2 ; if there are k symbols 81 in s (and hence n - k symbols S2) then
s has probability

(2)k(1)n-k 2k
Pr (s) = 3 3 = 3n .

For each k = 0,1, .. .n, the number of such symbols s is (~), the number of
ways of choosing k of the n symbols to be 81' In Shannon-Fano coding (see
§3.4), we assign to each such symbol s a code-word of length

1 3n

lk = rlOg2(pr(s))1 = rlOg2(2k)1 = rnlog23 - kl =an - k,
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where an denotes rn log, 31. Hence the average word-length (for encoding sn)
is

(3.9)

We can use the Binomial Theorem to evaluate the two summations in (3.9).
We have

(3.10)

so

so putting x =2 we get

to (~)2k = 3
n

.

(Alternatively, Lk (~)2k /3n is the sum of the probabilities of the symbols s in
S", and hence equal to 1.) Differentiating (3.10) and then multiplying by x we
have

nx(l +x)n-l = tk(~)xk = »o-
k=l k=O

so putting x = 2 again we get

tk(~)2k = 2n.3n- 1
.

k=O

Substituting in (3.9), we have

L 1 (n n-l) 2nn = 3n an3 - 2n.3 =an - ""'3 '

L n an 2 fnlog231 2
=-- -n n 3 n - 3·

Now n log2 3 ~ fn log2 31 < 1 +n log2 3, so

fn log231 1
log 3 < < - + log 3

2 - n n 2'

giving

and hence
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t; 2
- ~ logz3 --
n 3

as n ~ 00 . This limit is equal to Hz(S) ~ 0.918, so we have confirmed Shan­
non's Theorem for this particular source.

For n = 1, ... ,10, the average word-length L = Ln/n is given in the follow­
ing table, together with the efficiency TJ = H / L . (We use the approximation
logz3 ~ 1.585 to compute an = rn logz31·)

n 1 2 3 4 5 6 7 8 9 10
an 2 4 5 7 8 10 12 13 15 16
L 1.333 1.333 1 1.083 0.933 1 1.048 0.958 1 0.933
TJ 0.689 0.689 0.918 0.848 0.984 0.918 0.876 0.959 0.918 0.984

This shows how TJ ~ 1 (that is, L ~ H) as n ~ 00, though convergence is
rather slow and irregular. If, instead of Shannon-Fano codes, we use Huffman
codes for S", we obtain the following table (restricted to n ~ 5):

n 1 234 5
L 1 0.944 0.938 0.938 0.923
TJ 0.918 0.972 0.979 0.979 0:995

In this case, TJ ~ 1 rather faster, though for certain values of n, such as n =5,
Shannon-Fane coding is almost as efficient as Huffman coding. When n = 5
this is because 3n = 243 ~ 256 = 28 ; thus the reciprocals of probabilities of
the symbols in S5 are only slightly less than powers of 2, so rounding up their
logarithms with the ceiling function has only a small effect.

Exercise 3.5

Find the binary entropy Hz(S), where S has two symbols with probabilities
~,i. Find the average word-length L n of a binary Shannon-Fano code for
S", and verify that ~Ln ~ Hz(S) as n ~ 00.

Exercise 3.6

Let Shave q equiprobable symbols. Find the average word-length L n of an
r-ary Shannon-Fano code for S", and verify that ~Ln ~ Hr(S) as n ~ 00.

3.8 Supplementary Exercises

Exercise 3.7

Let f be a strictly decreasing function (0, 1] ~ R such that f(ab) =
f(a) + f(b) for all a, bE (0,1]. Show that f(x) = -logr x for some r > 1,
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thus justifying the definition of the function I in (3.1). (Hint : consider the
function g(x) = f(e- X

) for x ~ 0.)

Exercise 3.8

A source S consists of the sum of the scores of two independent unbi­
ased dice. Find the probability distribution and the binary entropy of S,
together with the average word-lengths of binary Huffman and Shannon­
Fano codes for S.

Exercise 3.9

Draw the graphs of the functions -plogp, -plogp and H(p) = -plogp­
plogp (which is the entropy of a source S with probabilities p and p),
for 0 ~ p ~ 1, where log = log2' Draw the graphs of the functions
pr-logpl,pr-logpl and pr-logpl + pr-logpl (which is the average
word-length L(C) of a binary Shannon-Fane code C for S). Draw the
graphs of H(p), L(C) and H(P) + 1 on the same diagram, and check that
this source satisfies Theorem 3.16.

Exercise 3.10

Show that if q ~ 2 then there is a source S with q symbols, and an
instantaneous r-ary code C satisfying L(C) = Hr(S) , if and only if q == 1
mod (r -1).

Exercise 3.11

Find the ternary entropy H3(S), where S has two symbols with proba­
bilities ~'~' Find the average word-length Ln of a ternary Shannon-Fane
code for sn, and verify that ~Ln -+ H3(S) as n -+ 00 . Would a similar
calculation work for binary Shannon-Fane codes for S" ?

Exercise 3.12

Show that if q ~ 2, r ~ 2 and e > 0 then there is a source S, with
all probabilities Pi > 0, for which every instantaneous code C satisfies
L(C) > 1 + Hr(S) - c.

Exercise 3.13

How would you define the r-ary entropy Hr(S) of a source S having in­
finitely many symbols of probabilities Pk (k = 1,2,3, . . .) ? Calculate
H2(S) where Pk = 2- k , and find an instantaneous binary code for this
source with average word-length equal to H2(S) .
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Exercise 3.14
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A source S, emitting a sequence X l ,X 2 , • . • of symbols s, E S, is a Markov
source with a I-symbol memory, meaning that we are given constant con­
ditional probabilities Pij = Pr(Xn+l = Sj I X n = s.), independent of
n. If we assume that each Pij > 0 then it can be shown that, over a
long period , the symbols Si have constant frequencies Pi > O. Explain the
definition H(S) = - Ei E j PiPij logpij of the entropy of S. Prove that
H(S) ~ H(T), where T is a memoryless source with symbols s, and prob­
abilities Pi, and determine when equality is attained. What is the inter­
pretation of this result? Find (Pi), H(S) and H(T) when the probabilities
Pij are the entries in the matrix

1(3 2
(Pij) = - 1 4

6 1 2



4
Information Channels

The equivocation of the fiend that lies like truth. (Macbeth)

In this chapter we consider a source sending messages through an unreliable
(or noisy) channel to a receiver. The "noise" in the channel could represent me­
chanical or human errors , or interference from another source. A good example
is a space-probe, with a weak power-supply, sending back a message which has
to be extracted from many other stronger competing signals. Because of noise,
the symbols received may not be the same as those sent. Our aim here is to
measure how much information is transmitted, and how much is lost in this
process, using several different variations of the entropy function, and then to
relate this to the average word-length of the code used.

4.1 Notation and Definitions

We will take the input of an information channel T to be a source A, with a
finite alphabet A of symbols a = aI, . .. ,a r , having probabilities

Pi = Pr (a = ai) '

As usual, we require that

o~ Pi ~ 1 and
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LPi = 1.
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Here, A could be a source S, with ai = s, (the source-symbols), or alternatively
A could represent a source S together with a code C for S, in which case the
symbols ai could represent code-symbols tj or code-words Wi. To allow for all
these interpretations, we have changed the notation to A, A and ai.

We will assume that whenever a symbol ai E A is sent into the channel r ,
some symbol emerges from r . The output of r will be regarded as a source B,
with a finite alphabet B of symbols b = b1, . .. , bs , having probabilities

where

and

Fig. 4.1 illustrates this situation.

noise

!
A~ r ~B

Figure 4.1

Example 4.1

In the binary symmetric channel (which we will abbreviate to BSC) we have
A = B = Z2 = {a, I}. Each input symbol a =°or 1 is correctly transmitted
with probability P , and is incorrectly transmitted (as a= I-a) with probability
P = 1 - P, for some constant P (0 S; P S; 1). This is illustrated in Fig. 4.2

p

° )°

X
1 ) 1p

Figure 4.2

Example 4.2

In the binary erasure channel (BEC) we have A = Z:l = {O, I} and B =
{a, 1, ?}. Each input symbol a = °or 1 is correctly transmitted with probability
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P, and is erased (or made illegible) with probability P, indicated by an output
symbol b =? (see Fig . 4.3).

Figure 4.3

In general, we will assume that the behaviour of T is completely determined
by its forward probabilities

Pij = Pr (b = bj I a = ai) = Pr (bj Iai) .

Thus Pij is the conditional probability that the output symbol b is bj , given
that the corresponding input symbol is ai . We assume that Pij is independent
of time, and of any previous symbols transmitted or received. If a = ai , then b
must be exactly one of the output symbols bj , so

s

'LPij = 1
j=l

for each i = 1, ... , r. These rs numbers Pij form the channel matrix

which has r rows, indexed by the input symbols al, .. . , ar , and s columns,
indexed by the output symbols b1, ... ,bs ; the entry in the i-th row and j-th
column is Pij. For instance, if T is the BSC or BEC we have

M = (; ;) or (~ ~ ;) .

The precise form of the channel matrix M depends on the ordering of the
input symbols ai and the output symbols b{ a different ordering gives rise
to a permutation of the rows or columns of M respectively. Thus the above
matrix for the BEC uses the ordering 0, 1,? of the output symbols, whereas the
ordering 0, ?, 1 would give

(
p P 0)

M= °P P .
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There are several ways of combining two channels rand I" to form a third
channel. If rand I" have disjoint input alphabets A and A', and disjoint output
alphabets Band B', then the sum r+r' has input and output alphabets AUA'
and B U B'; each input symbol is transmitted through r or I" as it lies in A
or A', so the channel matrix is a block matrix

where M and M' are the channel matrices for rand I" , There is an obvious
extension to the sum of any finite number of channels.

In the case of the product r x I", we do not need to assume that A and A' or
B and B' are disjoint. The input and output alphabets are A x A' and B x B',
and the sender transmits a pair (a, a') E A x A' by simultaneously sending a
through r and a' through I", so that a pair (b, b') E B X B' is received. Thus
the forward probabilities are

Pr((b,b') I (a,a')) = Pr(b Ia) .Pr(b' Ia'),

so the channel matrix is the Kronecker product M @ M' of the matrices M and
M ' for rand I": if M = (Pij) and M' = (P~I) are r x 8 and r' x s' matrices,
then M @ M' is an rr ' x 58' matrix, with entries Pij P~I' (The ordering of these
entries depends on a choice of orderings for A x A' and B x B'.) Again, one
can extend this definition to the product of any finite number of channels; in
particular, the n-th extension F" of a channel r is the product r x ... x r of
n copies of r.

Example 4.3

If rand I" are binary symmetric channels, with channel matrices

M __ (Pp Pp) (PI PI)and M ' = P' P' ,

then r + r' and r x I" have channel matrices

(

p P 0 0)
P P 0 0
o 0 pI pI
o 0 P' pI

and
(

P P'
rr
PP'
ppl

pp l

pp'
pp'
pp'

pp'
pp'
ppl
pp'

PP')pp'
ppl .
ppl

(For r x I" we have used the ordering (0,0), (1,0), (0, 1), (1, 1) of Ax A' =
B xB' =Zn
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Exercise 4.1

The output of a channel T is used as the input for a channel I" , Find the
channel matrix for the resulting composite channel T 0 I" , in terms of the
matrices for rand I" , Generalise this result to the composition of any
number of channels in series (this is called a cascade of channels).

Returning to the case of a single channel r, if we multiply the equations
L iPi = 1 and L j Pij = 1 we get

r s

LLPiPij = 1 .
i=l j=l

(4.1)

The probability that ai is sent and bj received is PiPij. If bj is received, then
exactly one of the symbols ai must have been sent, so we have the channel
relationships

(4.2)j = 1, . . . ,8.for
r

LPiPij = qj
i=l

If we regard (Pi) as a vector p ERr , and (qj) as a vector q E RS, then (4.2)
can be written in the form

pM=q. (4.2')

If we sum (4.2) over all i , then reverse the order of summation, and use the
fact that Lj qj = 1, we obtain (4.1).

In addition to the forward probabilities Pi j , it is useful to define the back­
ward probabilities

Qij = Pr(a = ai Ib = bj) = Pr Ic, Ibj)

and the joint probabilities

Rij = Pr(a = ai and b = bj) = Pr(ai,bj) .

One can regard the forward probabilities Pij as representing the point of view of
the sender, who knows the input symbols ai and is trying to guess the resulting
output symbols bj. Similarly, the backward probabilities Qij represent the point
of view of the receiver, who knows the output symbols bj and is trying to guess
the corresponding input symbols ai, while the joint probabilities Rij represent
an outside observer, who is trying to guess both ai and bj .

For every i and j we have

PiPij = Pr (ai)Pr (bj Iai) = Pr(ai,bj) = Pr (bj)Pr (c, Ibj) = qjQij,

all equal to R i j , giving Bayes ' Formula
p .

Qij = ~Pij
qj

(4.3)
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(4.4)

provided qj ;j:. O. Combining this with (4.2) we get

Q .. _ PiPij
~J - "r .L.tk=1 PkPkj

We will consider some specific examples of these equations in the next section.

4.2 The Binary Symmetric Channel

One of the simplest and most frequently used information channels T is the
binary symmetric channel (BSC), introduced in Example 4.1. In view of its
importance, we will study it in more detail here. Recall that this channel is
defined by:

(1) A =B = Z2 ={O, I},

(2) the channel matrix has the form

M = (;~~ ;~~) = (; ;)

for some P where 0 ::; P ::; 1. (For notational convenience, we use the subscripts
i, j = 0,1 rather than 1,2 here, so that ai = i and bj = j in the notation of
§4.1.)

Condition (1) states that r is binary, and condition (2) states that r is
symmetric (with respect to the symbols 0 and 1), in the sense that each in­
put symbol a is correctl y or incorrectly transmitted with probability P or P,
irrespective of whether a = 0 or 1.

The input probabilities have the form

Po = Pr(a = 0) =P,

PI =Pr (a =1) =p,

for some P such that 0 ::;P ::; 1. The channel relationships (4.2) then become

qo =Pr (b =0) =pP + pP,

ql =Pr (b=1) =pP + pP;

writing qo = q and ql = q we then have

(q,ij) = (P,p)(;. ;) ,
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as in equation (4.2'). If we substitute these values of qj in Bayes' formula (4.3)
we get:

pP
Qoo = P -p'P +p

pP
Q10 = P -p'P +p

pP
Q01 = P -p'P +p

pP
Q11 = P -pP +p

Example 4.4

Let the input A be defined by putting p = ! .Then p = !' so the input symbols
a = 0 and 1 are equiprobable. We have q = !P + !P = !(P + P) = ! and
similarly q = !' so the output symbols b = 0 and 1 are also equiprobable. The
backward probabilities are given by

!p
Q _Q _2 _p

00- 11--1-- ,

2

!p
Q _Q _ 2 _p

01 - 10 - -1- - .
2

Example 4.5

Suppose that P = 0.8 (so r is fairly reliable, with 8 symbols out of 10 trans­
mitted correctly) , and p = 0.9 (so the input symbol a is almost always 0). Then
we find that

qo = q =pP + pP = 0.74, ql =q =pP +pP = 0.26 .

Thus the ouput symbol b is usually 0, but the bias towards 0 is not as strong
as in the input. This loss of bias is due to noise, or errors , in the channel: these
will cause an input a = 0 to be received as b = 1 more frequently than they
cause 1 to be received as 0, simply because more symbols 0 are transmitted, so
the proportion of Os is reduced . The backward probabilities are

Q _ PoPoo _ 0.9 x 0.8 ,...., 0 973
00 - - ,....,.,

qo 0.74
Q = P1 P1O = 0.1 x 0.2 :::::: 0 027

10 qo 0.74 .

(so if b = 0 then almost invariably a = 0),

Q
_ POP0 1 _ 0.9 x 0.2 ,...., 0 692

01 - - ,...., .,
ql 0.26

Q _ PIP11 _ 0.1 x 0.8 ,...., 0 308
11 - - ,...., .

ql 0.26

(so if b = 1 then usually a = 0 !) .Thus , no matter what symbol is received, the
most likely input symbol was O. The BSC behaves like this whenever both Qoo >
Q10 and Q01 > Q11, that is, pP > pP = (1 - p)P and pP > pP = (1- p)P; we
can write these two inequalities as p = pCP +P) > P and p = pCP +P) > P , or
equivalently p > max (P, P). Similarly, if p > max (P, P) then the most likely
input symbol was 1.
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Exercise 4.2

Let T be the BSC. Find necessary and sufficient conditions (on P and P)
for T to satisfy

(i) Qoo < QlO and Q01 < Qll ;

(ii) Qoo > QlO and Q01 < Qll;

(iii) Qoo < QlO and Q01 > Qll .
What do these conditions mean, from the point of view of the receiver?

4.3 System Entropies

The input A and the output B of a channel T are sources with their own
entropies; these are the input entropy

1
H(A) =I>i log-

i Pi

and the output entropy
1

H(B) = Lqjlog- .
j qj

These represent the average amounts of information going into and coming out
of r, per symbol, or equivalently, our uncertainty about the input and output.

Given that b = bj is received, there is a conditional entropy

this represents the receiver's uncertainty about A , given that bj is received,
or equivalently, how much more information he would gain by knowing A.
Averaging over all bj, and using qjQij = Rij, we get the equivocation (of A
with respect to B)

H(A IB) =~ qjH(A Ibj ) =~ qj(~Qij log Q~j) =~~ Rij log Q1ij .
J J ~ ~ J

This represents the receiver's average uncertainty about A when receiving B, or
equivalently, how much extra information would be gained by also knowing A.
Similarly, if ai is sent then the uncertainty about B is the conditional entropy

1 1
H(B Iai) = LPr(bj Iai)log P (b· I .) =LPijlog~ .

j r J a~ j ~J
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Averaging over all ai, and using PiPij = Rij , we get
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(4.5)

(since LPi = L qj =1)
j

this is the equivocation of B with respect to A , representing the sender's av­
erage uncertainty about B when A is known, or equivalently, how much extra
information would be gained by also knowing B.

An observer trying to guess both the input and the output of r will have
average uncertainty given by the joint entropy

H(A,B) = ~~pr(ai,bj)IOgpr(:i,bj) =L~Rijlog R~j'
t ) t )

If T is such that A and B are statistically independent, that is, if Rij = Piqj
for all i and j (unlikely in real life!), then we have

H(A, B) = L LPiqj (log ~ + log ~)
i j Pt q)

1 1"
= LPilog- + Lqjlog -

i Pi j qj

=H(A) + H(B) .

Thus , in this case, the information conveyed by A and B together is the sum of
the amounts they convey separately (in other cases, we shall see that it is less).
If we think of entropy as measuring an amount of information (or uncertainty) ,
then (4.5) is analogous to the result that IA UBI = IAI + IBI for disjoint finite
sets A and B.

In general, one would expect A and B to be related , rather than indepen­
dent, so in such cases we use Rij =PiPij to give

H(A,B) =LLRijlog~ + LLRijlog ; . ,
i j Pt i j 1)

Now I:j Rij =Pi for each i, so

1 1
H (A, B) = L pdog --:- + L L Rij log p:-:-

i Pt i j t)

= H(A) + H(B IA) . (4.6)

This confirms the interpretation of H(B IA) as the extra information conveyed
by Bwhen A is already known. It is analogous to the rule IAUBI = IAI+IB\AI
for finite sets A and B. By a similar argument, transposing the roles of A and
B, we have

H(A,B) = H(B) + H(A IB) , (4.7)
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with a similar interpretation of H(A IB) ; this corresponds to IA U BI = IBI +
IA \BI ·

We call H(A), H(B), H(A I B), H(B I A) and H(A,B) the system en­
tropies; they depend on both T and A (which, between them, determine B) .

Exercise 4.3

Prove equation (4.7), that H(A, B) = H(B) +H(A IB). What interpreta­
tion of the equivocation H(A IB) does this imply?

Exercise 4.4

Show that the system entropies of a product channel r x I" are obtained
by adding those for rand I", while the system entropies for the n-th
extension T" are n times those for r. (Hint: see §3.5.)

4.4 System Entropies for the Binary Symmetric
Channel

Let T be the BSC, with the notation as in §4.2. The input and output entropies
are

H(A) = -plogp - plogp = H(p) ,

H(B) = -qlogq - qlogq =H(q) ,

where q =pP + pP. To compare these, we use convexity.
A function f : [0,1] -t R is strictly convex if, whenever a, b E [0,1] and

x = 'xa + 'Xb with °:::; ,X :::; 1, then

f(x) ~ 'xf(a) + 'Xf(b),

with equality if and only if x = a or b, that is, a = b or ,X = 0 or 1. Since
'X = 1 - ,x, x ranges from b to a as ,x varies between 0 and 1; the graph of
,Xf(a) + 'Xf(b) is the straight line joining the points (a, f(a)) and (b, f(b)) , so
convexity means that, between any points a and b in the domain, the graph of
f is above this straight line, as shown in Fig. 4.4.1

The graph of the function H(P), shown in Fig. 3.3, suggests that this func­
tion is strictly convex. We need to prove this, in order to deduce some important
inequalities involving entropy. First we need a general result from Calculus.

1 In some areas of mathematics, such as Analysis and Operations Research, the main
inequality in this definition is reversed, so the graph is below the line.
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x

I (x)

bx ='J...a + 'J...b

Figure 4.4

a

I (x) ----- ------------------------- ,- ,'J...I (a) + 'J...I(b) ------------------------

Lemma 4.6

If a function f : [0,1] -t R is continuous on the interval [0,1] and twice
differentiable on (0,1) , with f"(x) < °for all x E (0,1), then f is strictly
convex.

Exercise 4.5

Prove Lemma 4.6, using the Mean Value Theorem. (Hint : this states that
if a function 9 is continuous on [0,1] and differentiable on (0,1) , and if°~ a < b ~ 1, then (g(b) - g(a))j(b - a) = g'(c) for some c between a and
b; see [Fi83] or [La83] , for instance. Assume that the lemma is false, and
obtain a contradiction by applying the Mean Value Theorem three times:
twice to f and then once to 1'.)

Corollary 4.7

The entropy function H(P) is strictly convex on [0,1] .

Proof

We have H(p) = -plogp- (l-p) 10g(1-p) for 0 < P < 1, so H(P) is continuous
and twice differentiable on (0,1); the convention that H(O) = H(1) = 0 means
that it is continuous on [0,1]. Without loss of generality we can assume that
the logarithms are natural logarithms, so H'(p) = -lnp + In (1- p) and hence

H"(P) = _! - _1_ <°
p 1-p

for all p E (0,1). The result now follows from Lemma 4.6. 0

See Exercise 4.14 for an extension of this result to sources with an arbitrary
number of symbols.
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We now return to the BSC. In the definition of strict convexity, if we take
a = p, b=P and A. = P, we see that x =pP +pP = q, so H(q) ~ H(p) with
equality if and only if p = p (that is, p = ~) , or q =p or p (that is, P = 0 or
1). Since H(A) = H(P) and H(B) = H(q), this implies that the BSC satisfies

H(B) ~ H(A) , (4.8)

with equality if and only if the input symbols are equiprobable (p = ~) or
the channel is totally unreliable (P = 0) or reliable (P = 1). The inequality
(4.8), illustrated in Fig. 4.5, shows that transmission through the BSC generally
increases uncertainty; however, there are some channels for which this is not
true (see Exercise 4.6).

P q=PP+PP pIp

Figure 4.5

Exercise 4.6

Give an example of an information channel T and an input A for which
H(B) < H(A), where B is the resulting output.

For the BSC we have

1
H(B IA) = '" '" PiPij log-L..J L..J P...

i j ~

= -pP log P - pP log P - pPlogP - pPlogP

=-(p + p)P log P - (p +p)PlogP

= -PlogP - PlogP

= H(P) .

Thus the sender's uncertainty about the output is equal to the uncertainty as
to whether symbols are transmitted correctly. This is least when P = 0 or 1
iF is totally unreliable or reliable), and greatest when P = ~ iT is useless).
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Equation (4.6) implies that

H(A,8) = H(A) + H(8 IA) = H(P) + H(P) ,

while Equation (4.7) implies that

H(A, 8) = H(8) + H(A 18) = H(q) + H(A 18),

so the equivocation for the BSC is given by

H(A 18) = H(p) + H(P) - H(q).
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Now q = pP + pP, which lies between P and P since 0 ::; p ::; 1, so
H(q) ;::: H(P) by Corollary 4.7. It immediately follows that the BSC satisfies

H(81 A) ::; H(8), (4.9)

with equality if and only if P = ! or p =0, 1. This means that the uncertainty
about 8 generally decreases when A is known. Similarly, H(A 18) = H(P) +
H(P) - H(q) ::; H(p) (since H(q) ;::: H(P)) , so

H(A 18) ::; H(A) , (4.10)

with equality if and only if P = ! or p =0, 1. This means that the uncertainty
about A generally decreases when 8 is known. We shall see later that the
inequalities (4.9) and (4.10) are valid for all channels, not just the BSC.

Exercise 4.7

Calculate the system entropies where T is the binary erasure channel
(BEC), introduced in §4.1, and the input probabilities of 0 and 1 are p
and p. Show that this channel satisfies (4.9) and (4.10).

4.5 Extension of Shannon's First Theorem to
Information Channels

Shannon's First Theorem (for sources, Theorem 3.23) states that the greatest
lower bound of the average word-lengths of uniquely decodable encodings of
a source A is equal to the entropy H(A) . Similarly, Shannon's First Theorem
for channels (which we will prove in this section) states that the greatest lower
bound of the average word-lengths of uniquely decodable encodings of the input
A of a channel, given knowledge of its output 8, is equal to the equivocation
H(A 18). In each of these two cases, least average word-length is an accurate
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measure of information. In the case of a channel r, we interpret this from the
point of view of the receiver, who knows B but is uncertain about A; the extra
information needed to be certain about A is the equivocation H(A I B), and
this is equal to the least average word-length required to supply that extra
information (by some other means, separate from r). In effect, the receiver is
saying "I know B, but I am not sure about A; give me more information, so
that I know A", and we are trying to measure the extra information required .

Suppose that b = bj is received; knowing this, how can this extra informa­
tion about the input symbol a = ai best be encoded? As in Chapter 3, we will
use Shannon-Fano coding of extensions An of A, the only difference being that
we now use the conditional probabilities Q ij = Pr (c, I bj ) for A rather than
the unconditional probabilities Pi = Pr (ad , since we now know bj .

For simplicity, let us first take n =1, so (knowing that b =bj ) we construct
a Shannon-Fano code for A as in §3.4. This is an instantaneous r-ary code Cj

for A with average word-length L(j) satisfying

(4.11)

by Theorem 3.16, where

We now form an encoding C for A, using the code Cj whenever bj is received,
so that C can be regarded as an "average" of the codes Cj . Taking the average
of the terms in (4.11) over all bj E B (with probabilities qj), we see that C has
average word-length L = Lj qjL(j) satisfying

H(A IB) s L ~ 1 + H(A IB) . (4.12)

Now recall from §4.1 that the n-th extension T" of r is a channel with input
and output alphabets Anand B" , Each word ail . .. ain E An is transmitted
through T" by sending its symbols a il" ' " ain in succession through r, or
equivalently by sending them simultaneously through n independent copies of
r , so the forward probabilities of T" have the form

Ifwe use An to define the input probability distribution for T", then the output
distribution is given by B", Theorem 3.20 gives

(4.13)
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and similarly Exercise 4.4 gives

H(An IBn) =nH(A IB),

H(Bn I An) =nH(B IA) ,

H(An ,Bn) = nH(A,B) .
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(4.14)

If we apply the idea of averaging Shannon-Fano codes to An rather than
to A, then by (4.12) we get an encoding of An with average word-length Ln
satisfying

so that (4.14) gives

nH(A IB) ~ i; ~ 1 + nH(A IB) .

As an encoding of A, this is uniquely decodable and has average word-length
Ln/n. If we divide by n we have

H(A IB) s Ln ~ .!. + H(A IB)
n n

for all n, so
Ln
- -t H(A IB) as n -t 00 .
n

This proves Shannon's Theorem (the analogue of Theorem 3.23):

Theorem 4.8

If the output B of a channel is known, then by encoding An with n sufficiently
large, one can find uniquely decodable encodings of the input A with average
word-lengths arbitrarily close to the equivocation H(A IB).

As in the case of source coding, it can be shown that the average word­
length can never be lower than this bound. Theorems 4.8 and 3.23 show that
H(A I B) and H(A) represent the information conveyed by A, when B is
respectively known or not known, as measured in average word-length . One
would therefore expect every channel to satisfy H(A I B) ~ H(A), since one
cannot learn more from A when B is known than when it is unknown. We
proved this inequality for the BSC in statement (4.10), and in the next section
we will prove it in general.
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4.6 Mutual Information
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If r is a channel with input A and output B, then the entropy H(A) of A has
three equivalent interpretations:

(1) it is the uncertainty about A when B is unknown;
(2) it is the information conveyed by A when B is unknown;
(3) it is the average word-length needed to encode A when B is unknown.

Similarly, the equivocation H(A IB) has three equivalent interpretations:
(1) it is the uncertainty about A when B is known;
(2) it is the information conveyed by A when B is known;
(3) it is the average word-length needed to encode A when B is known.

We define the difference between these two numbers to be the mutual in­
formation

I(A, B) = H(A) - H(A IB) .

This also has three equivalent interpretations, analogous to those above:
(1) it is the amount of uncertainty about A resolved by knowing B;
(2) it is the amount of information about A conveyed by B;
(3) it is the average number of symbols, in the code-words for A, which
refer to B.

In their different ways, these interpretations all show that I(A, B) represents
how much information A and B have in common. If we continue the analogy
with finite sets used in §4.3, we can think of I(A,B) as corresponding to the
intersection of sets, since IA n BI = IAI - IA \ BI .

Example 4.9

For a rather frivolous example, let r be a film company, A a book, and B the
resulting film of the book. Then I(A, B) represents how much the film tells you
about the book.

Example 4.10

Let A be a lecture, r a student taking notes, and B the resulting set of lecture­
notes. Then I(A, B) measures how accurately the notes record the lecture.

Interchanging the roles of A and B, we can define

I(B,A) = H(B) - H(B IA) ,
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the amount of information about B conveyed by A (for instance, how much
reading the book tells you about the film). This is analogous to IB n AI =
IBI-IB \ AI. We saw in (4.6) and (4.7) that

H(A, B) =H(A) + H(B IA),

H(A, B) =H(B) + H(A IB).

Eliminating H(A,B) from these two equations , we see that

H(A) - H(A IB) = H(B) - H(B IA) ,

so
1(A,B) =1(B, A). (4.15)

Thus the output tells you exactly as much about the input as the input tells you
about the output. If we use (4.7) to substitute for H(A I B) in the definition
of 1(A, B), we get

1(A, B) = H(A) + H(B) - H(A,B). (4.16)

(This is analogous to IA nBI = IAI + IBI-IA UBI, just as (4.15) corresponds
to IAnBI = IBnAI·)

Theorem 4.11

For every channel T we have 1(A, B) ~ 0, with equality if and only if the input
A and the output B are statistically independent .

Proof

Equation (4.16) gives

1(A, B) = H(A) + H(B) - H(A, B)
1 1 1

= 2:Pilog~ + 2:qjlog~ - 2:2:~jlog-. .
i P, j qJ i j ~J

1 1 1=LLRijlog~ + L2:Rijlog~ - LL~jlog-..
i j P, i j qJ i j ~J

1 1
= LLRijlog-. . - LLRijlog-.. ,

i j p,qJ i i ~J

where we have used the facts that Pi = l:j Rij and qj = l:i ~j. Now
l:i l:j n., = l:i l:j Piqj = 1, so we can apply Corollary 3.9 to the proba­
bility distributions (Rij) and (Piqj). (We may assume that each Piqj > 0, as
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required in Corollary 3.9, by ignoring any input or output symbols with zero
probability, without changing the system entropies.) Corollary 3.9 shows that

as required, with equality if and only if R i j = Piqj for all i and i , that is, if
and only if A and B are statistically independent. 0

Corollary 4.12

For every channel r we have

H(A) ~ H(A IB), H(B) ~ H(B IA) and H(A, B) ::; H(A) + H(B) j

in each case, there is equality if and only if the input A and the output Bare
statistically independent.

Proof

This follows immediately from Theorem 4.11, using the equations

I(A,B) = H(A) - H(A IB)

= H(B) - H(B IA)

= H(A) + H(B) - H(A, B)

proved earlier in this section .

We will give a simple illustration of these results in the next section.

4.7 Mutual Information for the Binary
Symmetric Channel

o

As an example of calculating mutual information, let us take the channel T to
be the BSC, with the usual notation (see §4.2). In §4.6 we saw that the mutual
information of any channel is given by

I(A,B) = H(B) - H(B IA) .

In §4.4 we saw that the BSC has H(B) = H(q) and H(B I A) = H(P), where
q =pP+pP, so

I(A, B) = H(q) - H(P)

= H{pP + ]iP) - H(Pj.
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1 t------::--~

H (q) f---T'------''''<-----,-

I
H (P) I-+--t------\,-----'-

P q =pP + pP PIp

Figure 4.6
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Note that this depends on both P and P, that is, on the channel and its input.
A graph of the function H (see Fig. 4.6) shows that 0 ~ [(A,B) ~ 1 - H(P).

For a fixed P, I(A,B) attains its maximum value 1 - H(P) when p = ~

(that is, q = ~), and its minimum value 0 when p = 0 or 1. These extremes
correspond to the cases where the input symbols are respectively equiprobable
or constant.

Exercise 4.8

Let I = [(A, B) be the mutual information for the BSC; sketch the surface
in R 3 representing I as a function of p and P. Do the same for the BEC.

4.8 Channel Capacity

The mutual information [(A,B) for a channel r represents how much of the
information in the input A is emerging in the output B. This depends on both
T and A, as we saw in §4.7 in the case of the BSC. For a given channel r,
we wish to maximise this by choosing the source A suitably (or by taking the
input to be a suitable encoding of a given source).

We define the capacity C of a channel T to be the maximum value of the
mutual information [(A, B), where A ranges over all possible inputs for r; thus
we keep the forward probabilities Pi j fixed, while the input probabilities Pi are
allowed to vary. This means that C, which depends on r alone, represents the
maximum amount of information which the channel can transmit.
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Example 4.13

We saw at the end of §4.7 that the BSC has channel capacity C = 1 - H(P) ,
attained when the input satisfies p = ~ . Figure 4.7 shows C as a function of P.
Notice that C is greatest when P is 0 or 1, that is, r is completely reliable or
unreliable (and thus completely predictable) ; C is least when P = ~, that is,
when T is most unpredictable.

I
I

: C= l-H(P)

1 -------------------------

1
2

p

Exercise 4.9

Figure 4.7

Find the mutual information of the BEC, using Exercise 4.7, and hence
find the capacity of this channel.

Exercise 4.10

Show that if channels rand I" have capacities C and C' , then their
product T x I" has capacity C + C', and the extension T" has capacity
nCo

For a general channel r , calculating C can be difficult: this is because
one is required to maximise a function I(A,B) which is non-linear, involving
logarithms of probabilities, subject to the constraint LPi = 1 (or equivalently
L qj = 1). See Exercise 4.16 for a simple example of this .

To justify our definition of capacity, we need to show that C always exists ,
that is, that for every channel T the mutual information I(A,B) is bounded
above and attains its least upper bound. (It is conceivable that it could be
unbounded, or bounded above without attaining its least upper bound.) To do
this, we will use some ideas and results from Analysis; readers who are allergic
to this topic, or who are prepared to take the existence of C for granted, can
skip the rest of this section.
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Let us keep r fixed and vary A , so we keep the channel matrix M = (Pij )
constant and let the input probability distribution vector p = (PI, .. . ,Pr) vary,
ranging over the set

-p = {p E R r IPi 2: 0, L Pi = I}
i

of all probability distribution vectors with r components. Geometrically, P is
an (r - 1)-dimensional simplex, the convex set bounded by the r standard basis
vectors in R": when r = 2 or 3 it is respectively a line-segment or a triangle
(see Fig. 4.8) , and when r = 4 it is a tetrahedron in R 4

•

P2

1

r=2
1 P l P l

p a

1

lr--__~l

r=3
Figure 4.8

A subset X ~ R" is closed if X contains the limit limn-too X n of each
convergent sequence of points x., EX; equivalently, if y rf. X then every point
sufficiently close to y is also outside X . We say that X is bounded if there
is some real number M such that [x] ~ M for all x EX. A closed, bounded
subset X ~ R" is said to be compact.2 It is straightforward (see Exercise 4.11)
to show that P is compact for each r .

Exercise 4.11

Prove that the set P of probability distribution vectors p = (PI, ... ,Pr) is
a closed and bounded subset of R" .

We saw in §4.6 that I(A,B) = H(B) - H(B I A). Now

H(B I A) = ~~PiPijlog ~j = ~(~PijlOg ~j)Pi
• J • J

2 In Analysis, the Heine-Borel Theorem, which we do not need here , asserts that
this is equivalent to the more general definition of compactness in terms of open
sets .
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is a linear function of p, since each Fi j is constant, and hence it is a continuous
function of p. Similarly

1
H(B) = L:qj log-

j qj

is a continuous function of q = (qj) , because x logx is a continuous function
of x on [0,1] , and q = pM is a continuous function of p, because M = (Pij)

is a constant matrix, so H(B) is a continuous function of p, since it is the
composition

P I--t pM = q = (qj) I--t L: qj logqj = H(B)
i

of two continuous functions . Since I(A, B) =H(B) - H(B IA), and the differ­
ence of two continuous functions is continuous, we have proved:

Theorem 4.14

The mutual information [(A,B) of each channel r is a continuous function of
the input probability distribution vector p = (Pi) '

Corollary 4.15

The mutual information [(A, B) of each channel r has a maximum value.

Proof

I(A, B) is a continuous function of p , and p ranges over a compact set P. A
theorem in Analysis (see [La83], for instance) states that a continuous real­
valued function on a compact set is bounded above and attains its least upper
bound, so this is its maximum value. 0

This justifies our definition of the capacity C of r as this maximum value.
In Chapter 5 we will show that C is also the least upper bound for the rates
at which information can be transmitted accurately through r.

4.9 Supplementary Exercises

Exercise 4.12

Let n identical copies of a binary symmetric channel r be connected in
series, as in Exercise 4.1. Show that the resulting channel is another bi­
nary symmetric channel, and calculate its capacity. (Hint: consider the
eigenvalues of the channel matrices.) What happens as n -t oo?
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Exercise 4.13
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Show that a channel has capacity C = °if and only if the rows of its
channel matrix are all equal to each other. What is the interpretation of
this, from the receiver's point of view?

Exercise 4.14

One can regard the entropy function H (p) = - Ei Pi logPi as a function
P -t R, where P is the set of all probability distribution vectors p =
(PI, . . . ,Pr) E R". Show that H is strictly convex on P, in the sense that if
p, q E P and>. E [0,1] then H(>'p +"Xq) ~ >'H(p) + "XH(q) , with equality
if and only if p = q or >. =°or 1.

Exercise 4.15

A channel r is uniform if each row of the channel matrix is a permutation
of the entries Pu , . . . , PI s in the first row, and similarly for the columns .
Show that r has capacity

s

log s +L Pi j log Pi j ,

j=1

attained by an equiprobable input distribution. Hence find the capacity
of the r-ary symmetric channel, for which r = s, Pii = P for all i, and
Pi j = P / (r - 1) for all i ¥ j.

Exercise 4.16

The general binary channel r has a 2 x 2 channel matrix (Pi j ) , where
Pi! + Pi2 = 1 for i = 1,2. Show that r has mutual information

I(A, B) = -qilog qi - q2log q2 + qlCI + q2C2,

where ql, q2 are the output probabilities, and CI , C2 are chosen so that
Pi! CI + Pi2C2 = Pi! log Pi! + P i2 log P i2 for i = 1,2. Deduce that r has ca­
pacity C = log(2C1 +2C2

) . (Hint: use the technique of Lagrange multipliers
to maximise I(A , B) , subject to the constraint qi + q2 = 1.) What happens
when Pu = P22? (This exercise is based on work of Muroga [Mu53].)

Exercise 4.17

Show that if channels r l and r2 have capacities CI and C2 , their sum
r l +r2 has capacity log(20 1 +20 2 ) . How do you interpret this result when
Ti = r 2?
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Exercise 4.18

Let T be a cascade r 1 0 r 2 of channels, where n has input A and output
B, and r 2 has input B and output C. Show that

H(A IC) - H(A IB) =
LL(Pr(b,c) LPr(a Ib)(logPr(a Ib) -logPr(a Ic))) ,

b c a

where the summations are over all the symbols a, b and c of A, B and C.
Deduce that H (A IC) ~ H (A IB), and give an intuitive explanation of this
result . Hence prove the Data-processing Theorem I(A, C) :c:; I(A, B), which
shows that mutual information cannot be increased by further transmission
(a similar argument gives I(A,e) :c:; I(B ,C)). Show that if each T; has
capacity Cc, then r has capacity C :c:; min(C1,C2) j give examples where
C = min(C1,C2 ) and where C < min(C1,C2 ) .



5
Using an Unreliable Channel

Let no such man be trusted. (The Merchant of Venice)

In this chapter, we assume that we are given an unreliable channel r, such as
a BSC with P < 1, and that our task is to transmit information through r as
accurately as possible. Shannon's FUndamental Theorem, which is perhaps the
most important result in Information Theory, states that the capacity C of r
is the least upper bound for the rates at which one can transmit information
accurately through r. After first explaining some of the concepts involved,
we will look at a simple example of how this accurate transmission might be
achieved. A full proof of Shannon's Theorem is technically quite difficult, so
for simplicity we will restrict the proof to the case where r is the BSC; we will
give an outline proof for this channel in §5.4, postponing a more detailed proof
to Appendix C.

5.1 Decision Rules

Let r be an information channel, with input A and output B. The receiver,
who sees each output symbol b = bj E B emerging from r, needs an algorithm
to decide which input symbol a = ai E A gave rise to bj . This will take the form
of a decision rule , that is, a function .1 : B -t A . Whenever bj emerges from
r, the receiver applies .1 to bj , determines ai = .1(bj ) , and decides (possibly
incorrectly) that ai was sent ; we call this decoding the output. We will write
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i = j* here, so that .1(bj ) = aj' .

The problem is that, in general , there are many functions .1 : B -t A, and
it may not be immediately clear which is the best one to use.

Exercise 5.1

How many different decision rules are there for a given information chan­
nel?

Example 5.1

Let r be the BSC, so that A = B = Z2. IT the receiver trusts this channel,
then .1 should be the identity function, that is, .1(0) = 0, .1(1) = 1; if not,
another function .1 : Z2 -t Z2 should be used (see Example 4.5 for a situation
where it is reasonable to take .1(0) = .1(1) = 0).

If bj is received, then the receiver decides that aj' was sent . The probability
that this decision is correct is

(Se~ §4.1 for the definitions and the notation for probabilities used here.) Each
bj is received with probability qj , so averaging over all bj E B, we see that the
average probability Prc of correct decoding is given by

Prc =LqjQj'j =LRj• j ,
j j

(5.1)

where ~j = qj Q ij is the joint probability Pr (a i , bj ). It follows that the error­
probability PrE (the average probability of incorrect decoding) is given by

PrE = 1 - Pre = 1 - L R j• j = L L Rij .
j j i -:j=j '

(5.2)

Given r and A, we want to choose a decision rule .1 : B -t A which min­
imises PrE, or equivalently, which maximises Prc; such a rule is sometimes
called an ideal observer rule. For each j, we choose i = j* to maximise the
backward probability Pr (a i I bj ) = Q ij . (If there are several such i , we choose
one of them arbitrarily as j* .) This is equivalent to maximising the joint prob­
ability R ij = qjQij for each i. that is, Rj' j ~ R ij for all i, so R j' j is the largest
entry in column j of the matrix (Ri j). Since R ij = PiPij , this matrix can be
found from the channel matrix M = (Pij) and the input distribution (Pi) as

(
Pi '. pr) M(Rij ) =
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(where the missing off-diagonal entries are all O).

Example 5.2

If r is the BSC then by §4.2 we have

(~j) ~ C:)(: :)
so we take

(
PP PP) ,

pP pP

81

~(O) = Cif pP > pP

if pP < pP,

ifpP > pP

ifpP < pP,

with an arbitrary choice of Ll(b) in case of equality.

Exercise 5.2

Calculate PrE, where the channel r and the input A are as in Example 4.5
(a BSC with P =0.8 and p =0.9), and Ll is the ideal observer rule.

In some situations, the receiver may know how the channel behaves, but not
the input, so that the forward probabilities Pij are known, but not the input
probabilities Pi. This means that the probabilities Qij and R ij are unknown,
and cannot therefore be used to choose the decision rule Ll. When this happens,
the receiver has to base the choice of Ll on the probabilities Pij, which depend
only on r.The obvious method is, for each i , to choose i = j* to maximise Pij,
so that Pr j is the largest entry in column j of the channel matrix M = (Pij ).
(As usual , if there are several such entries we choose one of them arbitrarily.)
Such a rule Ll, defined by Pj. i ~ Pij for all i, is called a maximum likeli­
hood rule; as before, Pre and PrE are given by (5.1) and (5.2). If the r input
symbols ai are equiprobable, then for each j the forward probabilities Pij are
proportional to the joint probabilities Rij = PiPij = Pij/r, so this maximum
likelihood rule coincides with the ideal observer rule, which maximises Pre. For
other input distributions, this rule may not be the best (see Example 5.4 be­
low); however, over all distributions it is the best in the sense that it maximises
the multiple integral

r Predpl .. . dpr,
JpE'P

where P denotes the set of all probability distribution vectors p = (Pl, ... ,Pr) E

R". This result says that one's natural intuition is correct: if nothing is known
about the input then the various possibilities balance out, and the maximum
likelihood rule is the best one can hope for.
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Exercise 5.3

Prove the above claim that, among all the decisionrules for a given channel,
the maximum likelihood rule maximises the integral of Pre over all inputs
pE P.

Example 5.3

Let us apply the maximum likelihood rule .1 to the BSC, where P > ! (so r
is more reliable than unreliable). Then P > P, so choosing the greatest entry
in each column of the channel matrix

M=(;;),
we take .1(0) = 0 and .1(1) = 1. This gives

Pre =pP+pP=P and PrE =pP +pP =P .

If P < !' on the other hand, we have P > P, so .1(0) = 1 and .1(1) = 0, giving

Pre =pP +pP = P and PrE = pP +pP = P .

Example 5.4

For a specific illustration, let us return to Example 4.5, where P = 0.8 and p =
0.9. As wesaw in Example 5.3, the maximum likelihood rule gives .1(0) = 0 and
.1(1) = 1, with Pre = P =0.8. However the ideal observer rule gives .1(0) =
.1(1) = 0, with Pre = 0.9 > 0.8 (see Exercise 5.2), so here the maximum
likelihood rule is not the best choice.

Example 5.5

Let r be the binary erasure channel (BEC) in Example 4.2, with P > O. Then
the maximum likelihood rule gives .1(0) =0, .1(1) =1, and .1(?) =0 or 1, say
.1(?) = O. It follows that if the input probabilities for 0 and 1 are p and p, then

Pre =pP + pP + pP =P + pP and PrE =p.O +p.O +pP =pP .

5.2 An Example of Improved Reliability

Given an unreliable channel, how can we transmit information through it with
greater reliability? Before considering this problem in general, let us look at
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a simple example. We take T to be the BSC with 1 > P > ~ j for notational
simplicity, let us define Q = P = 1 - P , so the channel matrix is

Since P > Q, Example 5.3 shows that the maximum likelihood rule is given by
.1(0) = 0, .1(1) = 1, with PrE = Q. Let us also assume that the input symbols
are equiprobable, that is, p = p = ~j then the mutual information I(A, B)
attains its maximum value, which is the channel capacity C = 1 - H(P) (see
§4.7 and §4.8).

If the error-probability PrE = Q is unacceptably high, let us try to reduce it
by sending each input symbol a =aor 1 three times in succession. This means
that we use the code

C : ai--t 000, 1i--t 111,

so the input Cnow consists of two equiprobable words w = 000 and 111. During
transmission through r, any of the three symbols in w could be changed, so
the output V consists of eight binary words 000, 001,010,100 ,011,101,110,111
of length 3. Now each symbol of w has probability P or Q of being correctly
or incorrectly transmitted, so the forward probabilities for this new input and
output are given by the matrix

(
p3 p2Q p 2Q p2Q PQ2 PQ2 PQ2 Q3 )
Q3 PQ2 PQ2 PQ2 p 2Q p2Q p2Q p3 ,

where the rows and columns correspond to the words in C and V in the stated
order. Since P > Q > awe have p3 > Q3 and p2Q > PQ2, so the maximum
likelihood rule is given by

.1 . { 000, 001, 010,100 i--t 000,
. 011,101,110, 111i--t 111.

By composing this with the decoding function (the inverse of C)

000 i--t 0, 111i--t 1,

we can decode the words of V according to the rule

000,001,010,100 i--t 0,

011,101 ,110 , 111i--t 1.

(This is sometimes called majority decoding: we count the symbols aand 1 in
the received word, and take the most frequent. By using words of odd length,
we can guarantee that one symbol will always have a clear majority over the
other.)
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000
001
010

o 000 100 0
1 ~ 111~ r ~ 011~ 1

101
110
111

Figure 5.1

The whole process of encoding, transmitting and decoding is summarised
in Fig. 5.1. In effect, we have now constructed a new binary symmetric channel
I"; an input symbol a = 0 or 1 is encoded by C as a word w = 000 or 111,
which is transmitted through T; the received word is then decoded as an output
symbol b = 0 or 1 by majority decoding. Now decoding is correct (b = a) if and
only if at most one of the three symbols in w is changed during transmission
through r. Each symbol of w is correctly transmitted with probability P, so
the probability of there being no errors in w is p 3. There are three ways in
which a single error can occur, with one of the three symbols being transmitted
incorrectly and the other two correctly ; each of these three cases has probability
p 2Q, so the probability of a single error is 3p2Q. Similarly, the probabilities
of two and three errors are 3PQ2 and Q3. Thus the channel matrix for I" is

I (P3 + 3p2Q 3PQ2 + Q3)
M = 3PQ2+Q3 p3+3p2Q '

so I" is a BSC with probability pi = p3 + 3p2Q of correct transmission. The
error-probability is therefore

which is significantly less than the original error-probability Q for small Q > O.
(For instance, if Q = 0.01 then PrE = 0.000298.) Thus we have improved the
error-probability, but at the cost of slower transmission: it now takes a code­
word of length 3 to transmit a single input symbol, so we say that the rate of
transmission is R = 1/3 (compared with its original value of 1).

There is an obvious extension of this idea, using code-words 00 . .. 0 and
11 . . . 1 of any length n to transmit the symbols 0 and 1; this is the binary
repetition code R n of length n. If we take n to be odd, then the maximum
likelihood rule is majority decoding, as shown by Exercise 5.10 in §5.7. (If n is
even, the received word might contain the same number of symbols 0 and 1,
giving no majority.) One can show that PrE -t 0 as n -t 00 (see Exercise 5.10
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again); the following table gives the approximat e values of PrE for odd n ::; 11,
on the assumption that Q = 0.01:

1
10-2

3
3 X 10-4

5
10-5

7 9 11
3.5 x 10-7 1.3 X 10- 8 5 X 10-10

However , the transmission rate R = lin -+ 0 also , so we have bought increased
accuracy at the cost of slower transmission.

This idea can be generalised further. If T is a channel with an input A
having an alphabet A of r symbols , then any subs et C ~ An can be used as a
set of code-words which are transmitted through r. For inst ance, the repetition
code nn over A consists of all the words w = aa . . . a of length n such that
a E A ; we will consider some further examples in Chapters 6 and 7. We call C
an r-ary code of length n. If ICI = r k then Ccan encode the k-th extension A k

(since this consists of r k words) ; the n symbols of each code-word in C represent
k symbols emitted by A, so we say that C has rate R = kin . For instance, the
r-ary repetition code nn has Innl = r , so k = 1 and R = lin . More generally,
the rate (or transmission-rate) of any non-empty code C ~ An is defined to be

R = logr ICI ,
n

(5.3)

so that ICI = rRn. Since IAnl = r " , we see that 0::; R::; 1 for every code C.
Shannon's Fundamental Theorem (which we shall consid er in §5.4) states

that, by choosing codes C ~ An for sufficiently large n , and by using suitable
decision rules , we can make the error-probability PrE approach 0, without the
transmission-rate R also approaching 0 (as it does for nn); in fact , we can do
this with the rate R arbitrarily close to the channel capacity C .

5.3 Hamming Distance

The previous section illustrated a simple example of how to transmit infor­
mation with improved accuracy. One important ingredient in the method was
the choice of code-words 00 . .. 0 and 11 . .. 1 which are very different from each
other, so that even if they are received with errors , the receiver is still likely
to be able to distinguish th em. When we try to extend this idea to construct
more effective codes , we will need to choose larger sets of code-words which
are also very unlike each other. To measure how like or unlike each other two
words are, we introduce a notion of distance between words .

Let U = Ul . . . Un and v = Vl .. . Vn be words of length n in some alphabet
A, so u, v E An. (We write these words in bold-face because we will soon need
to regard them as vectors (Ul , . . . , un) in a vector space An, where A is a field.)
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The Hamming distance d(u, v) between u and v is defined to be the number
of subscripts i such that Ui "I Vi.

Example 5.6

Let u = 01101 and v = 01000 in Z~ . Then d(u, v) = 2, since the words u and
v differ in two positions (i = 3 and 5).

Exercise 5.4

If u E An where IAI = r, and a :::; i :::; n, then how many words v E An
have Hamming distance d(u,v) = i ? Check that these numbers, for i =
0,1, . . . ,n, add up to IAnl.

Example 5.7

We can regard the words in Z~ as the eight vertices of a cube, as shown in
Fig. 5.2.

011 111

001~--:-----~.

»----1--..,.110

000 100

Figure 5.2

Then d(u, v) is not the euclidean distance, but rather the least number of edges
in any path along the edges between u and v. (This notion of distance is used
in Graph Theory, where the distance between two vertices in a connected graph
is defined to be the least number of edges in any path from one vertex to the
other.)

Exercise 5.5

How large can a subset C ~ Z~ be, if d(u, v) ~2 for all u "I v in C ?
Describe geometrically all the subsets attaining this bound . What is the
analogous bound for subsets of Z~ ?

Lemma 5.8

Let u, v ,wEAn. Then

(a) d(u ,v) ~ 0, with equality if and only if u = v;
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(b) d(u ,v ) = d(v , u);

(c) d(u ,w) ~ d(u, v) + d(v , w) .

Proof

(a) Obvious. (b) Trivial. (c) Easy (see Exercise 5.6).
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Part (c) is known as the triangle inequality , since it expresses the fact that
one side uw of a triangle uvw cannot have length greater than the sum of th e
lengths of the other two sides uv and vw.

Exercise 5.6

Prove Lemma 5.8(c).

In Topology, a set with a function d satisfying conditions (a) , (b) and (c)
is known as a metric space , though we will not use this fact. The point of this
result is to show that the Hamming distance d behaves very much like th e
euclidean distance-function in R",

To transmit information through r , we choose a code C ~ An for some n ,
and use the maximum likelihood decision rule (§5.1): we decode each received
word as the code-word most likely to have caused it. This is the best decision
rule if the code-words are equiprobable, and it is the best rule in general if th e
probabilities are unknown. Even if, for some particular probability distribution
of code-words , it is not the best decision rule , it is good enough to give PrE -t 0
as n -t 00 in the proof of Shannon's Theorem.

For simplicity, we will assume for the rest of this section and the next that T
is the BSC, with P > ~, so A = B = Z2 and r = 2. Our choice of th e maximum
likelihood decision rule means that, for any output v E Z~ , we decode v as th e
code-word u = ~(v) E C which maximises the forward probability Pr (v Iu) .
Now if d(u , v) = i then

Pr (v Iu) = o'tr:' ,
the probability of errors in th e i places where u and v differ, and of correct
transmission in the remaining n - i places . Thus

which is a decreasing function of i since Q / p < 1, so a code-word u which max­
imises Pr (v Iu) is one which minimises d(u ,v) . Thus the maximum likelihood
rule ~ decodes each received word v E Z~ as the code-word u = ~(v) E C
which is closest to v with respect to the Hamming distance. This rule , which
we will use for the rest of Chapter 5, is called nearest neighbour decoding. As
usual , we make an arb itrary choice of nearest neighbour if there th ere are two
or more of th em.
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5.4 Statement and Outline Proof of Shannon's
Theorem

The following result, often called the Fundamental Theorem of Information
Theory, was proved by Shannon [Sh48] in 1948. Informally, it says that if we
use long enough code-words then we can send information through a channel
r as accurately as we require , at a rate arbitrarily close to the capacity C of
r . This is an improvement on the previous example of the repetition code 'Rn ,

which provides the desired accuracy as n -+ 00 , but which has rate approaching
o rather than C. For simplicity we shall state and prove the theorem for the
BSC, but in fact it is valid for all channels. The precise statement is as follows:

Theorem 5.9

Let T be a binary symmetric channel with P > ~ , so T has capacity C =
1 - H(P) > 0, and let 8, E > O. Then for all sufficiently large n there is a code
C ~ Z2' of rate R satisfying C - E ~ R < C, such that nearest neighbour
decoding gives error-probability PrE < 8.

Thus, by taking 8 and E sufficiently small, we can make PrE and R as close
as required to 0 and C respectively. A complete proof, which is rather long and
involved, is given in Appendix C. Here we simply sketch the main ideas.

Outline Proof

Let R < C (as close as we like), and for large n randomly choose a set C
consisting of 2n R words in Z2' (We will ignore the inconvenient possibility that
2n R may not be an integer! In a rigorous proof, we choose an integer close to
2n R , and show that this small adjustment does not affect the result.) This gives
us a binary code C of length n; by (5.3) it has rate log2(2nR)/n = R.

If a code-word u E C is transmitted through r , then each of the n symbols
in u has probability P = Q of error, so we expect about nQ of the symbols to be
transmitted incorrectly. In fact, the Law of Large Numbers (see Appendix B)
implies that this will happen with probability approaching 1 as n -+ 00 . This
means that we should expect the received word v to satisfy d(u, v) ::::i nQ.
Equivalently, from the receiver's point of view, if a word v is received, then it
probably came from a code-word u E C satisfying d(u, v) ::::i nQ.

The nearest neighbour rule decodes each received word v as the code-word
L1(v) E C closest to v , so if decoding is incorrect then there must be some
u' ¥- u in C with d(u' , v) ~ d(u, v) . It follows that the probability of incorrectly
decoding v is no greater than the probability that such a code-word u' exists,
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so
PrE::; I: Pr (d(u', v) s nQ),

u'#u

89

(5.4)

where we have replaced d(u, v) with its approximate value nQ,and have ignored
the small change in probability resulting from this. Since there are lei - 1 =
2nR - 1 code-words u' =1= u, and they are randomly chosen, the upper bound
on PrE in (5.4) is equal to

(ICI- 1)Pr (d(u', v) ::; nQ) < 2n R Pr (d(u',v) ::;nQ).

Now we chose the code-words u' randomly from Z~, so for any given v,
the probability that d(u', v) ::; nQ is equal to the proportion of the 2n words
u' E Z~ satisfying this inequality. For any given v and i, the number of words
u' E Z~ satisfying d(u' , v) = i is equal to the binomial coefficient G), the
number of ways of choosing i of the n symbols in v to be different in u' .
This implies that the number of words u' E Z~ satisfying d(u' , v) ::; nQ is

Li<nQ (7), so

Pr (d(u',v) ::; nQ) .; 21n .2: (~).
t$nQ

To continue the proof, we need the following result , which is also used in
the complete proof of Shannon's Theorem in Appendix C.

Exercise 5.7

Show that if A+ J-L = 1, where 0 ::; A ::; ~, then

hence show that

(Compare this with the well-known identity L~=o (7) = 2n .)

Continuation of Proof

We now return to the proof of Theorem 5.9. Putting A = Q in Exercise 5.7 we
have

thus (5.4) becomes

PrE < 2nR.~ .2nH(Q) = 2n(R-I+H(Q)) =2n(R-C),
2n
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since T has capacity C = 1 - H(F) = 1 - H(Q) (see §4.8). Now R < C, so
2n (R - C ) -t 0 as n -t 00, and hence PrE -t 0 also. 0

Warning

You will probably have noticed several gaps in this proof, and unless you have
read it very carefully, there may be others you have not noticed: for instance,
in the final sentence we need to ensure that R - C is bounded away from
a as n -t 00, so that n(R - C) -t -00. Nevertheless, it is possible to give
a completely rigorous proof, based on the above outline. Since the remaining
chapters do not depend on this proof, we have placed it in Appendix C to avoid
interrupting the flow of ideas.

5.5 The Converse of Shannon's Theorem

Shannon's Theorem states that one can transmit information through r, as
accurately as required, at rates R < C which are arbitrarily close to the capacity
C. An obvious question is whether one can do better than this, that is, whether
one can replace C here with some constant C' > C. In this section we will show
that this is impossible, so C is the least upper bound of the rates at which
transmission of arbitrary accuracy is possible . We will prove this, not just for
the BSC, but for arbitrary channels. First we need the Fano bound, which gives
a lower bound on the error-probability.

Theorem 5.10

Let T be a channel with input A and output B. Then the error-probability PrE
corresponding to any decision rule Ll for T satisfies

H(A IB) :::; H(PrE) + PrE log(r - 1), (5.5)

where r is the number of symbols in A.

The values of PrE and H(A I B) satisfying this inequality are indicated
by the shaded region in Fig. 5.3. Before proving Theorem 5.10, let us try to
interpret this result. The receiver, knowing the output symbol bj , uses a decision
rule Ll to find aj. = Ll(bj ) , which mayor may not be the actual symbol ai

transmitted. The left-hand side of (5.5) is the equivocation of I', the extra
information the receiver needs (on average) in order to know a i ' This extra
information can be divided into two parts:

(a) whether or not decoding is correct, that is, whether or not aj. = ai ;

(b) if decoding is incorrect, then which ai (i :I j*) was transmitted.
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log (r -l)

Figur e 5.3

H(AIB)
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Now decoding is incorrect or correct , with probabilities PrE and Pre = PrE,
so the information in (a) has value H(PrE), the first term on the right-hand
side of (5.5) . If decoding is correct, the receiver needs no more information, but
if it is incorrect (which happens with probability PrE) then the receiver needs
to know which of the r - 1 symbols ai =I aj* was transmitted. This involves
specifying one symbol out of r -1 , so by putting q = r -1 in Theorem 3.10 we
see that this information is worth at most log(r - 1). Multiplying this by the
probability that (b) is needed, we find that on average the information in (b)
is worth at most PrE log(r - 1), the second term on the right in (5.5).

Proof of Theorem 5.10

Without loss of generality, we can use ent ropies and logarithms with base r . In
§4.3 we saw that

We split the terms in this double summation into two sets, corresponding to
correct and incorrect decoding (i = j* and i =I j* respectively) :

H(A 18) = - LRj*jlogQj*j - L L RijlogQij .
j j i,!-j*

Now

where

Pre =LRj*j and PrE =L L R i j ,
j j i#j*
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H(A IE) - H(PrE) - PrE log(r - 1) =
~ Pre ~~ PrE
~ Rjo j log Q ' 0 ' +~ ~ Rij log (r _ )Q' "

j J J j i#j0 1 aJ

The base r version of Lemma 3.8 gives log x ~ (x - 1) log e for all x > 0, so the
right-hand side of this equation is

=0,

where we have used Rij = qjQij in the second line, and L: j qj =
L: j L:i qj = r in the third.

1 and
o

We can now prove what is sometimes known as the converse of Shannon's
Theorem, namely that if C' > C then it is not true that for every € > 0
there is a sequence of codes C, of lengths n -+ 00 , and of rates R satisfying
C' - e ~ R < C', such that PrE -+ 0 as n -+ 00. To prove this, it is sufficient
to show that for some e > 0 there is no such sequence of codes. Let us take
e = (C' - C) /2, and suppose that such a sequence of codes C exists. Since
C' - e ~ R < C' , each code has rate R ;:::: C + e.

We can regard C as an input for the n-th extension T" of T (as defined in
§4.1), with output V = En. By applying the Fano bound (Theorem 5.10) to
the channel T" we see that

H(C IV) ~ H(PrE) + PrE log(M - 1),

where M = ICI. Alternatively, we can regard Cas defining an input probability
distribution on the input alphabet An of F", each of the M = ICI code-words
in C having probability l/M, and all other words in An having probability O.
By Exercise 4.10, T" has capacity nC, so

H(C) - H(C IV) = I(C,V) ~ nC,

and hence
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Thus

H(C) - nC ~ H(C I 'D)

~ H(PrE) + PrElog(M -1)

~ H(PrE) + PrE log M
=H(PrE) + PrE . nR

since M = r n R . Now Chas M equiprobable code-words, so H(C) = log M =nR
by Theorem 3.10, giving

1 1
0< e ~ R - C ~ -H(PrE) +PrE .R ~ - H (PrE) + PrE

n n
for all n, where e is independent of n. However , if PrE -+ 0 then H(PrE) -+ 0
also, so the right-hand side is less than e for all sufficiently large n . We have
shown that this is false, so PrE f+ 0 as n -+ 00 . (In fact , a more careful argument
shows that PrE -+ 1.)

Example 5.11

Let T be the BSC , and as a rather extreme example of a code let us take
C = An , so R = 1. If 0 < P < 1 we have C = 1 - H(P) < 1, so R > C.
Using the identity function .1(u) = u as a decision rule , we see that decoding
is correct if and only if there are no errors, so PrE = 1 - P" -+ 1 as n -+ 00 .

Example 5.12

In §7.4 we will construct a sequence of binary codes tin (the Hamming codes)
of length n of the form 2c - 1 and rate R = (n - c)/n, so R -+ 1 as n -+ 00 . If
we use a BSC with 0 < P < 1, then C = 1 - H(P) < 1 and hence R > C for
all sufficiently large n. As we shall see in §7.4, nearest neighbour decoding is
correct if and only if there is at most one error, so PrE = 1- P" - npn-lQ -+ 1

as n -+ 00 .

5.6 Comments on Shannon's Theorem

The general form of Shannon's Theorem is as follows:

Theorem 5.13

Let r be an information channel with capacity C > 0, and let 8, c: > O. For all
sufficiently large n there is a code C of length n, of rate R satisfying C - e ~

R < C, together with a decision rule which has error-probability PrE < 8.
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The basic principles of the proof are similar to those for the BSC; see
[As65] for the full details. Although this is a very powerful result, it has several
limitations:

Comment 5.14

In order to achieve values of R close to C and PrE close to 0, one may have
to use a very large value of n. This means that code-words are very long, so
encoding and decoding may become difficult and time-consuming . Moreover, if
n is large then the receiver experiences delays while waiting for complete code­
words to come through; when a received word is decoded, there is a sudden
burst of information, which may be difficult to handle.

Comment 5.15

Shannon's Theorem tells us that good codes exist, but neither the statement
nor the proof give one much help in finding them . The proof shows that the
"average" code is good, but there is no guarantee that any specific code is good:
this has to be proved by examining that code in detail. One might choose a code
at random, as in the proof of the Theorem, and there is a reasonable chance
that it will be good. However, random codes are very difficult to use: ideally,
one wants a code to have plenty of structure, which can then be used to design
effective algorithms for encoding and decoding. We will see examples of this in
Chapters 6 and 7, when we construct specific codes with good transmission­
rates or error-probabilities.

5.7 Supplementary Exercises

Exercise 5.8

Let T be the BEC, with P > 0, and let the input probabilities be p, p
with a < p < 1. Show how to use the binary repetition code R n to send
information through T so that PrE ~ aas n ~ 00.

Exercise 5.9

A binary channel r always transmits a correctly, but transmits 1 as 1 or
a with probabilities P and Q = P, where a < P < 1. Write down the
channel matrix, and describe the maximum likelihood rule. If the input
probabilities of a and 1 are p and p, find PrE. To improve reliability, a
and 1 are encoded as 000 and 111. Describe the resulting maximum like­
lihood rule; is it the same as (i) majority decoding, (ii) nearest neighbour
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decoding? Find the resulting rate and error-probability. What happens if
instead we use the binary repetition code R n , and let n -t 00 ?

Exercise 5.10

The binary repetition code R n , of odd length n = 2t + I, is used to
encode messages transmitted through a BSC T in which each digit has
probabilities P and Q (= P) of correct or incorrect transmission, and
P > ~ . Show that in this case the maximum likelihood rule, majority
decoding and nearest neighbour decoding all give the same decision rule
.1. Show that this rule has error-probability

Pr < (2t + I)! ptQt+l
E_ (t!)2 '

and deduce that PrE -t 0 as n -t 00. Why does this not give a direct proof
of Shannon's Fundamental Theorem?

Exercise 5.11

(This exercise and the next are based on work by Kelley [Ke56].) A gambler
bets on the outcomes of a sequence of tosses of an unbiased coin, placing
his bet after the coin is tossed, but before the outcome is announced . A
correct bet wins back twice the stake, but an incorrect bet loses it. He
decides to cheat by learning the outcome of each toss through a BSC T
with probabilities P, Q of correct and incorrect transmission, then betting
a fixed proportion >. of his capital on the symbol emitted by r, and the
remaining J.L = >: on the other symbol. Show that if his initial capital is
Co, then after n tosses it is Cn = 2n>.mJ.Ln-mCo, where m is the number
of times T gives correct information. Show that , over a long period , the
exponential growth rate

G = lim !. log( C
n

)
n-too n Co

of the gambler's capital is probably given by

G ~ 1 + P log>.+ Q log J.L.

Show that this is maximised by taking>. = P, in which case G ~ C, the
capacity of r. If ~ < P < 1, how could the gambler benefit from reading
this chapter?

Exercise 5.12

How does Exercise 5.11 generalise to the case where the gambler is the
receiver of an arbitrary channel r, betting on the input symbols, and a
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successful bet on a symbol ai of probability Pi regains l/pi times the stake?
What would happen if we changed the odds (but not the probabilities
Pi), so that a successful bet on ai regained l/p~ times the stake, where
L:i P~ = 1, P~ > O? Would the gambler gain or lose from this?



6
Error-correcting Codes

To thine own self be true. (Hamlet)

Our aim now is to construct codes C with good transmission-rates Rand
low error-probabilities PrE, as promised by Shannon's FUndamental Theorem
(§5.4). This part of the subject goes under the name of Coding Theory (or
Error-correcting Codes), as opposed to Information Theory, which covers the
topics considered earlier. The construction of such codes is quite a difficult
task, and we will concentrate on a few simple examples to illustrate some of
the methods used to construct more advanced codes.

6.1 Introductory Concepts

We will assume from now on that we are using a channel T in which the input
and output alphabets A and B are equal, as in the case of the BSC; there is no
loss of generality in doing this, since if not we can always replace A and B with
the common alphabet AUB. We will denote this common finite alphabet by F,
since we will often choose it to be a field, so that we can use techniques from
Algebra. In order to be a field, F must be closed under addition, subtraction,
multiplication and division by non-zero elements, with the usual axioms such as
ab =ba, a(b+c) =ab+ac, etc. Standard examples include the fields Q, Rand
C of rational, real and complex numbers . These are infinite fields, but for our
purposes we need to use finite fields, such as the field Zp of integers mod (p),
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where p is prime . The basic result we need about finite fields is:

Theorem 6.1

(a) There is a finite field of order q if and only if q = pe for some prime p and
integer e 2: 1.

(b) Any two finite fields of the same order are isomorphic.

Many Algebra textbooks (such as [KR83]) prove this result, so we will
assume it without proof. The essentially unique field of order q is known as
the Galois field Fq or GF(q) . If e = 1, so q = p is prime, then Fq = Fp = Zp,
the field of integers mod (p). However, if e > 1, so q is composite, then Zq is not
a field: for instance pe = 0 in Zq, even though p ¥- 0, so p is a zero-divisor. This
means that Fq ¥- Zq for e > 1; instead one can define Fq to be the field obtained
by adjoining to Zp a root a of an irreducible polynomial f (x) of degree e, just as
the complex field C is obtained from R by adjoining the root i = A of f(x) =
x2+ 1. The elements of Fq then have the form ao+al a +...+ae-l a e- l where
ao, al , .. . , ae- l E Zp, with the obvious operations of addition and subtraction;
the product of two such elements can be put into this form by using the equation
f(a) = 0 to reduce powers of a . We need f(x) to be irreducible to avoid zero­
divisors in Fq .

Example 6.2

The quadratic polynomial f(x) = x2 + X + 1 has no roots in the field Z2 (since
f(O) = f(l) = 1), so it has no linear factors and is therefore irreducible over
Z2. If we adjoin a root a of f( x) to Z2, we obtain a field

F4 = {a+ba Ia,b E Z2} = {O, 1, a, 1 +a}

of order q = 4, in which a 2 + a + 1 = 0, so that a 2 = -1 - a = 1 + a . For
instance, a(l + a) = a + a 2 = 1 + 2a = 1, so a and 1 + a are multiplicative
inverses of each other in F4 . See Supplementary Exercises 6.16 and 6.17 for
similar constructions of finite fields.

For our purposes, the precise structure of Fq is usually unimportant, and
it is sufficient simply to know that it exists for each prime-power q. However,
there are more advanced codes, beyond the scope of this book, which depend
on a deeper knowledge of finite fields. Arithmetic in Fq is similar to that in
any other field, except that if q =pe then p =0 in Fq ; also, there is no natural
order relation < in Fq , as there is in Rand Q but not in C. In many cases we
will concentrate on binary codes, so that Fq = Z2 = {O, I}, with 1 + 1 = O.

From now on we will follow Shannon's Fundamental Theorem and use block
codes, those in which all the code-words have the same length . This does not
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conflict with our earlier use of variable-length codes for efficiency: we can use
such a code first, and then break the resulting code-sequence into successive
blocks of the same length k, which we represent as code-words of a fixed length
n . We try to choose these code-words to be as far apart as possible (with respect
to the Hamming distance) , so that the resulting code has good error-correcting
properties.

If we use code-words of length n, then a code e of length n is a subset of
the set V = F" of all n-tuples with coordinates in F . If F is a field then V is an
n-dimensional vector space over F, in which the operations are componentwise
addition and scalar multiplication: if u = UI ... Un, V = VI • .. Vn E V and
a, b E F then au + bv is the word, or vector, with i-th component aUi + bu,
for i = 1, ... , n. We say that e is a linear code (or a group code) if e is a
linear subspace of Vj this means that e is non-empty, and if u, vEe then
au + bv E e for all a, bE F . In particular, every linear code contains the zero
vector 0 = 00 . .. 0, since 0 = Ou+ Ov for any u, v s C.

Exercise 6.1

Prove that if e and C' are linear codes contained in V, then the codes
ene' and e+ C' = {u + u' I u E e, u' E e'} are also linear. Under what
circumstances is the code eu C' linear?

(6.1)

(6.2)

Most codes are non-linear, in the sense that comparitively few subsets of
V are linear subspaces; however, most of the codes currently studied and used
are linear, because these are easier to understand and to use. One can prove
an analogue of Shannon's FUndamental Theorem for linear codes: instead of
choosing a random code C c; V, as in the proof of Theorem 5.9, we choose a
random subset of Vasa basis for a linear code e c; V, and then show that e
has the required properties as n -+ 00 .

We will always denote ICI by M . When e is linear we have M = qk, where
k = dim(e) is the dimension of the subspace C; this is because each element of e
has a unique expression al UI +...+ akUk where aI, . . . ,ak E F and UI , ... , Uk

is a basis for e, and there are IFI = q independent choices for each ai. We then
call e a linear [n, k]-code.

The rate of a code e is
10gqM

R=-­
n

so in the case of a linear [n ,k]-code we have

k
R= - .

n

We can interpret this by regarding k of the n digits in each code-word as infor­
mation digits, carrying the information we wish to transmit, and the remaining
n - k as check digits, confirming or protecting that information.
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From now onwards, we will assume that all code-words in Care equiproba­
ble, and that we use nearest neighbour decoding (with respect to the Hamming
distance on V).

6.2 Examples of Codes

Here we will consider some simple examples of codes. They are easy to under­
stand, but not very effective in terms of their rates or error-probabilities; we
will consider more effective examples in later sections.

Example 6.3

The repetition code R n over F consists of the words u = uu . . .u E V = F" ;
where u E F, so M = IFI = q. If F is a field then R n is a linear code of
dimension k = 1, spanned by the word (or vector) 11 . . . 1. Fig. 6.1 shows the
binary code R 3 as a subset of V = Fi, with the code-words represented by
black vertices.

011 111

001<1---:---<1.

jJ----I---J>110

000 100

Figure 6.1

We saw in Chapter 5 that when q = 2 and n is odd, R n corrects (n - 1)/2
errors; by this we mean that if a code-word U E R n is transmitted, and at most
(n - 1)/2 of its n symbols are transmitted incorrectly, then nearest neighbour
decoding is always correct. A similar argument easily shows that for any q and
n, if we use nearest neighbour decoding then Rn corrects l(n - 1)/2J errors ,
where

lxJ= max{m E Z Im :s; x}

denotes the integer part of a real number z, This is excellent, but unfortunately
(6.2) implies that R n has rate R = lin -t 0 as n -t 00, which is bad.
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Example 6.4

The parity-check code Pn over a field F = Fq consists of all vectors U =
UI U 2 . . . U n E V such that I:i U i = 0; one can regard UI , Un-l as information
digits, and Un as a check digit defined by Un = -UI - - Un-I . For instance,
if n = 3 and q = 2 then P3 = {OOO, 011,101, 110}, as shown in Fig. 6.2.

011 111

001~--:---"

~--·1--";110

000 100

Figure 6.2

Since it is defined by a linear equation, Pn is a linear code. It has dimension
k = n - 1, having basis UI = el - en , , Un-l = en-l - en where the vectors
e, are the standard basis vectors O 010 . . .0 of V. (To see this, note that
each vector U = UI Un E Pn can be written in a unique way as a linear
combination UI UI + + Un-l Un-l of the vectors U i .) Thus M = qn-l and
R = (n - 1)/n, so R -T 1 as n -T 00, which is good.

Unfortunately, this code is almost useless for error-correcting, since it will
detect a single error, but cannot correct it. Suppose that U = UI . . . Un E Pn

is transmitted, and v = VI . . . Vn E V is received. The receiver computes I:i Vi

in F. If there is a single error, then exactly one digit Vi in v differs from the
corresponding digit Ui in u ; since I:i Ui = 0 it follows that L i V i :f. 0, so the
receiver knows that v is not a code-word and that an error must have occurred ;
however, there is no way of determining which digit is incorrect, since it is
possible to obtain a code-word by changing any single digit of v. Even worse,
two or more compensating errors in U may go undetected.

Example 6.5

The binary Hamming code 1-£7 is a linear code of length n = 7 over F2 • It was
one of the first error-correcting codes discovered, having been introduced by the
engineer Hamming in 1947 [Ha48, Ha50, Sh48] in frustration at the frequent
crashes of the computer then being developed at Bell Laboratories (see [Th83]
for a fascinating account of the early history of error-correcting codes).

To construct this code, we use Fig. 6.3, which shows a Venn diagram for
three sets A,Band G. The regions corresponding to the sets An B n G, An
BnG, AnBnG, AnBnG, AnBnG, AnBnG, AnBnG are numbered
1,2, . . . ,7 in that order (we ignore AnBnG)j thus region number i is contained
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B

Figure 6.3

in A, B or C as the binary representation abc of the integer i = 4a + 2b + c
has a, b or c equal to 1. For instance, 5 is written as 101 in binary notation, so
it corresponds to the region An B n C, while II n B n C corresponds to 010,
which represents 2.

We encode a block a = al a2a3a4 of four binary information digits as a code­
word U =Ul •.. U7 oflength 7, by first defining U3 =aI, Us =a 2, U6 = a3, U7 =
a4 ; we write these four digits in the regions numbered 3,5,6,7 respectively in
Fig. 6.3. We define U4 = 0 or 1, and write it in region 4, so that the binary sum
of the four digits within the set A is 0, that is,

U4 + Us + U6 + U7 = 0

in F2 . We define U2 and Ul similarly, using the sets Band C , so that

U2 + U3 + U6 + U7 =0,

Ul + U3 + Us + U7 =0.

(Notice that the subscripts appearing in these three equations are those whose
binary representations contain a 1 in the first, second and third positions a, b
and c.) The code 1£7 consists of all the code-words U E V = FI formed in this
way. Since 1£7 is defined by linear equations between the variables Ui, it is a
linear code. There are 24 = 16 choices for aI , a2 , a3 and a4, and these determine
Ul, . .. , U7 uniquely, so M = /1£71 = 16; this also shows that 1£7 has dimension
k = 4, with basis Ul = 1110000, U2 = 1001100, U3 = 0101010, U4 = 1101001
obtained by taking aI, a2 , a3, a4 = 1 respectively, and the remaining terms
ai = O.

This code corrects any single error in a code-word u. Suppose that u E 1£7
is transmitted, and v E V is received, where v differs from u only in its i-th
digit Vi. The receiver computes

81 = V4 + Vs + V6 + V7 ,

82 = V2 + V3 + V6 + V7,

83 = VI + V3 + Vs + V7
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in F2 ; these should all be 0, by the definition of 1£7, but the incorrect digit
Vi causes at least one of them to be 1. Now Vi appears in the expression for
8j (j = 1,2,3) if and only if the j-th digit in the binary representation of i is
1, so 8j = 0 or 1 as this j-th digit is 0 or 1. This simply says that 8j is this j -th
digit , so the word s = 818283 is the binary representation of i, The receiver,
having computed 81,82 and 83 , can therefore locate the incorrect digit Vi, and
can correct it by defining Ui = Vi + 1 in F 2 .

As an illustration, suppose we want to encode a = 0110. We define the
information digits U3 = 0, Us = U6 = 1 and U7 = 0, and then solve the three
linear equations to obtain the check digits U4 = 0, U2 = 1 and U1 = 1; the
code-word transmitted is therefore u = 1100110 (= U2 + U3). Nowsuppose that
there is an error in the third digit , so that v = 1110110is received. The receiver
computes 81 = 0 + 1+ 1+ 0 = 0, 82 = 1+ 1+ 1+0 = 1, 83 = 1+ 1+ 1+0 = 1,
and obtains s = 818283 = 011, which is the binary representation of i =3. The
third digit of v is therefore changed to give L\(v) = 1100110, which is correct,
and the information digits 0,1 ,1,0 can be extracted from positions 3,5,6,7 of
this word.

This code corrects any single error, but it fails if two or more errors occur.
For instance, in the above example, suppose that there are errors in U3 and U4 ,

so that v' = 1111110 is received. The receiver computes 8~ = 1, 8~ = 1, 83 = 1,
giving s' = 8~8~83 = 111, which suggests an error in position i = 7, so v' is
decoded as L\(v') = 1111111, which is incorrect .

Exercise 6.2

Find the code-word in 1£7 representing the information digits 1101, and
show how an error in its 6th symbol is corrected. What happens if there
are errors in the 4th and 6th symbols?

Although the binary codes 'R3 and 1£7 both correct a single error, the rate
R = 4/7 of 1£7 is significantly better than the rate 1/3 of 'R3. In Chapter 7
we will generalise the construction of 1£7 to give a sequence of binary l-error­
correcting codes H« (n = 2C

- 1), with rate R -t 1 as n -t 00 . You might like
to think in advance how this could be done, replacing the three sets A, B, C
with sets A1 , • . . , Ac .

Example 6.6

Suppose that e is a code of length n over a field F . Then we can form a code
of length n + lover F, called the extended code C, by adjoining an extra digit
Un+! to every code-word u = U1 ... Un E e, chosen so that U1 + ...+ Un+1 = O.
Clearly ICI = lei, and if e is linear then so is C, with the same dimension. For
instance, if e = V = F" then C= p n+1 C Fn+! .
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Example 6.7

If C is a code of length n , we can form a punctured code Co of length n - 1 by
choosing a coordinate position i, and deleting the symbol U i from each code­
word UI . .. Un E C. In general , the structure of Co depends on the choice of i.

6.3 Minimum Distance

Using nearest neighbour decoding, we will keep PrE low if we use code-words
u which are far apart from each other, since then the transmitted code-word
u is more likely to be the nearest code-word Ll(v) to the received word v E V.
We therefore define the minimum distance of a code C to be

d =d(C) =min{d(u, u') Iu , u' E C, u =I u'}, (6.3)

the least Hamming distance between any two distinct code-words. A code of
length n, with M code-words, and with minimum distance d is sometimes
referred to as an (n, M ,d)-code; if it is linear, of dimension k, it is called an
[n, k, d)-code.

Our aim is to choose codes C for which d is large, so that PrE will be
small. If C has M code-words, then finding d by means of (6.3) requires us to
calculate and compare (~) = M(M - 1)/2 distances, which could be quite
tedious . However, this task is much simpler if C is linear, as we shall now show.

First we define the weight of any vector v = VI V2 .• • Vn E V to be

wt(v) =d(v,O), (6.4)

where 0= 00 . . . 0 E V. In other words, wt(v) is simply the number of subscripts
i such that Vi =I O. It is easy to see that

d(u, u') = wt(u - u')

for all u, u' E V.

Lemma 6.8

If C is a linear code, then its minimum distance d is given by

d = min{wt(v) Iv E C,v =I O} .

Proof

We have d(u, u') = wt(v) where v = u - u' . Now C is a linear subspace of V, so
as u and u' range over all distinct pairs in C, their difference v = u - u' ranges
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over all non-zero elements of C. It follows that d(C), which is the minimum
distance between such pairs u, u", is equal to the minimum of these weights
wt(v). 0

The advantage of this result is that it requires us to calculate and compare
only M -1 numbers, rather than M(M - 1)/2 in the case of non-linear codes.
We will see in §7.3 that there are even better ways of calculating the minimum
distance of a linear code.

Exercise 6.3

List all the codewords in the binary Hamming code 11.7 (Example 6.5), and
use Lemma 6.8 to verify that the minimum distance is 3.

Exercise 6.4

Show that if C is a binary linear code of minimum distance d, then the
extended code C has minimum distance d or d + 1 as d is even or odd .
List the elements of the extended binary Hamming code 11.7, and find its
minimum distance.

We now consider how the minimum distance of a code affects its ability to
correct errors. We say that a code C corrects t errors, or is t-error-correcting ,
if, whenever a code-word u E C is transmitted and is then received with errors
in at most t of its symbols, the resulting received word v is decoded correctly
as u ; equivalently, whenever u E C and v E V satisfy d(u, v) :S t , the decision
rule .1 gives .1(v) = u.

Example 6.9

A repetition code R 3 (over any alphabet) corrects one error, but not two (see
§5.2 for the case q = 2). For instance, if u = 111 is transmitted and v =
101 is received (so there is one error), then nearest-neighbour decoding gives
.1(v) =111 =u . However, if v =001 is received (so there are two errors), then
.1(v) = 000 :f u .

If u is sent and v is received, we call the vector e = v - u the error­
pattern, since its non-zero entries indicate where the errors in transmission have
occurred, and what they are . The equation v = u + e shows that v consists
of the transmitted word u plus the errors, represented bye. The number of
incorrect symbols is d(u, v) = wt( e) , so a code corrects t errors if and only if
it can correct all error-patterns e E V of weight wt(e) :S t .
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A code C of minimum distance d corrects t errors if and only if d ~ 2t + 1.
(Equivalently, C corrects up to l d21 J errors.)

Proof

({::) Let C have minimum distance d ~ 2t + 1. Suppose that u E C is sent
and v = u + e E V is received, where the error-pattern e = v - u has weight
wt(e) :::; t, so d(u, v) :::; t . For all u' =I u in C we have

d(u, u') ~ d ~ 2t + 1.

Now the triangle inequality (Lemma 5.8(c)) gives

d(u , u') :::; d(u, v) + d(v , u'),

so
d(v, u') ~ d(u, u') - d(u , v) ~ (2t + 1) - t = t + 1 > d(u, v) .

Thus Ll(v) = u , so decoding is correct , and C corrects terrors .

(=» Suppose that C has minimum distance d < 2t +1, so d :::; 2t. We can choose
u, u' E C so that d(u, u') = d. Then there exists a vector v E V with

d(u , v) :::; t and d(u', v) :::; t.

(For instance, u and u' differ in exactly d symbols, and by changing ld/2J of
those symbols Ui of u into the corresponding symbols u: of u' we get such a
vector v .) Now Ll(v) cannot be both u and u' , so at least one of these two
code-words, when transmitted and received as v, is decoded incorrectly. Thus
C does not correct terrors. 0

Example 6.11

A repetition code R n oflength n has minimum distance d = n, since d(u, u') =
n for all u =I u' in Rn . This code therefore corrects t = l n21 J errors .

Example 6.12

Exercise 6.3 shows that the Hamming code 1-'-7 has minimum distance d = 3,
so it has t =1 (as shown in §6.2). Similarly, 1-£7 has d =4 (by Exercise 6.4), so
this code also has t = 1.

Example 6.13

A parity-check code P« of length n has minimum distance d = 2; for instance ,
the code-words u = 1(-1)0 .. . 0 and u' = 0 = 00 . . . 0 are distance 2 apart, but
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no pair are distance 1 apart. It follows that the number of errors corrected by
P« is t = Ld;l J= 0: for instance, v = 10 ... 0 could be decoded as either u or
u ' (among others), each of which can give rise to v with a single error.

Although P« is no use for correcting an error, it does at least detect one.
More generally, suppose that a code C has minimum distance d, that a code­
word u E C is sent, and that v = u + e is received, where 1 :::; wt(e) :::; d - 1;
then v cannot be a code-word, since 0 < d(u, v) < d, so the receiver knows
that there is at least one error among the symbols in v. If wt(e) = d, however,
it is possible that v is a code-word, in which case the receiver does not know
whether v represents a correctly transmitted v or an incorrectly transmitted u
(or even some other code-word). We therefore say that C detects d - 1 errors.

Example 6.14

The codes R n and Pn have d = nand 2 respectively, so R n detects n-1 errors,
while Pn detects one; 11.7 has d = 3, so it detects two errors .

6.4 Hamming's Sphere-packing Bound

We have seen that a code C with minimum distance d corrects t = Ld;l Jerrors .
The "spheres" 1

St(u) = {v E V Id(u,v):::; t} (u E C) (6.5)

are mutually disjoint , and each St(u) consists entirely of vectors v decoded as
u (though it need not contain all such v). For good error-correction, we want
the common radius t of these spheres to be large. However, to attain a good
transmission-rate

R = logq M
n

we want the number M of these spheres to be large. If q and n are fixed, then
since the spheres are disjoint , these two aims are in conflict with each other:
we can think of V as an n-dimensional "box" , of fixed size q x q x . .. x q, into
which we are trying to pack a large number of non-intersecting large spheres.
Clearly there is a limit to how far we can go in achieving this, and the next
result, Hamming's sphere-packing bound [Ha50], makes this limit precise.

1 Strictly speaking , these are balls, or solid spheres , being defined by d(u, v) :::; t
rather than d(u, v) = t , but we follow the convention in Coding Theory of calling
them spheres .
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Theorem 6.15

Let C be a q-ary t-error-correcting code of length n , with M code-words. Then

Proof

There are M spheres St(u) ~ V, one for each code-word u E C. As in Ex­
ercise 5.4, for each u E C and for each i, the number of vectors v E V with
d(u, v) = i is (7) (q- 1)i : such a vector v must differ from u in exactly i of its n
coordinate positions; these can be chosen in (7) ways, and for each choice, there
are q - 1 ways of choosing each of these i coordinates of v to be different from
the corresponding coordinate of u. Summing this number for i = 0,1, . .. , t, we
see from (6.5) that

ISt(u)1 = 1 + (~) (q - 1) + (~) (q - 1)2 + ...+ (:) (q - l)t (6.6)

for each u E C. Now these M spheres are disjoint since 2t < d, and they are all
contained in a set V with qn elements, so MISt(u)1 ~ q", giving the required
result . 0

Example 6.16

If we take q = 2 and t = 1 then Theorem 6.15 gives M ~ 2n /(1 + n) , so
M ~ L2n /(1 + n)J since M must be an integer. Thus M ~ 1,1 ,2,3,5,9,16, . . .
for n =1,2 ,3,4,5,6,7, .. . .

Corollary 6.17

Every t-error-correcting linear [n ,k]-code Cover Fq satisfies

Proof

Since dim(C) = k we have M = qk; now divide by qk in Theorem 6.15. 0

In a linear [n ,k]-code C, each code-word has n digits, k of which can be
regarded as carrying information, while the remaining n - k are check digits.
Corollary 6.17 therefore gives us a lower bound
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on the number of check digits required to correct terrors .
A code C is perfect if it attains equality in Theorem 6.15 (equivalently in

Corollary 6.17, in the case of a linear code). This is equivalent to requiring that
the disjoint spheres St(u) (u E C) fill V completely, so that every v E V is
within distance at most t of exactly one code-word u. (Such a perfect sphere­
packing is impossible in a euclidean space R " of dimension n > 1, since there
are always unfilled gaps between the spheres ; the best possible packing in the
plane is well-known - and obvious - but the corresponding problem in R 3 was
not solved until 1998, by Thomas Hales: see www.math.lsa.umich.eduj....hales.
See [CS92) and [Th83) for connections between euclidean sphere-packing and
coding theory.)

Exercise 6.5

Show that a code is perfect if and only if, for some t, nearest-neighbour
decoding corrects all error-patterns of weight at most t , and none of weight
greater than t .

Example 6.18

Let C be a binary repetition code R n of odd length n. This is a linear code with
k = 1, q = 2 and t = Ln2"l J= n2"l, so in Corollary 6.17 we have n - k = n-l.
Now q - 1 = 1, and (7) = (n~J for all i , so

Thus the bound in Corollary 6.17 is attained, so this code is perfect. However,
if n is even or if q > 2 then R n is not perfect. Fig. 6.4 illustrates why the
binary code R 3 is perfect, by showing how the eight elements of V = F:j are
partitioned into two sets Sl(U), coloured black and white as U = 000 or 111;
there is a similar partition of Fr into two sets for all odd n.

111

000
Figure 6.4
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Example 6.19

The binary Hamming code 1-l7 is a linear [7,4]-code, that is, n = 7 and k = 4.
It has q = 2 and t = 1, so

and the code is perfect . We will see in Chapter 7 that this is one of a family of
binary Hamming codes 1-ln (n = 2C

- 1), all of which are perfect.

Exercise 6.6

The binary Hamming code 1-l7 is used, where the information channel r
is a BSC with P > ~' and L\ is nearest neighbour decoding; find the error
probability PrE . Show that PrE ~ 21Qz if Q = P is small.

Exercise 6.7

Let C be the extended binary Hamming code 1-l7 (see Exercise 6.4). Find
how many vectors v E V = F~ are covered by the spheres St(u) , where
u E C, and hence show that this code is not perfect.

If C is any binary code then Theorem 6.15 gives

Thus 2n ( l - R ) ~ (~), so taking logarithms gives

1 - R ~ ~ logz (;) .

If we apply Stirling's approximation n! '" (nje)n.../27rn (see [Fi83] or [La83],
for instance) to the three factorials in (7) = n!jt! (n - t)!, we find that the
right-hand side approaches Hz(tjn) as n -t 00 with tjn constant, where Hz is
the binary entropy function , defined in §3.1 (see Exercise 6.8). In the limit we
get

Hz(~) ~ 1- R , (6.7)

which is Hamming's upper bound on the proportion tjn of errors corrected by
binary codes of rate R, as n -t 00. Fig. 6.5 shows the region allowed by this
inequality; notice that we restrict to tin < 1/2, since d ~ n and Theorem 6.10
gives t = L(d - 1)/2J .
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It is a useful exercise to determine which points in this region correspond to
various binary codes, such as the repetition, parity-check and Hamming codes .

Exercise 6.8

Prove that ~ log2 (7) -t H2(t jn) as n -t 00 with tjn constant .

6.5 The Gilbert-Varshamov Bound

In order to maximise the rate R = ~ logq M , while retaining good error­
correcting properties, we are interested in finding codes with the largest pos­
sible value of M = IGI, for given values of q, nand t (or equivalently d). Let
A q (n, d) denote the greatest number of code-words in any q-ary code of length
n and minimum distance d, where d ~ n. Hamming's sphere-packing bound
(Theorem 6.15) gives an upper bound for Aq(n,d) by showing that

Aq(n,d)(I+ (~)(q -l)+ (;)(q_l)2+ ,. .+ (~)(q_l)t) <«,

where t = L(d - l)j2J by Theorem 6.10.

Example 6.20

If q = 2 and d = 3 then t = 1, so as in Example 6.16 we find that A2(n,3) ~

L2n j(n + I)J . Thus for n = 3,4,5,6,7, .. . we have A2(n,3) ~ 2,3,5,9,16, . .. .
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Exercise 6.9

Find upper bounds for A3 (n , 3) corresponding to those given for A2 (n , 3) in
Example 6.20. What does Hamming 's sphere-packing bound imply about
A2(n,4) and A2(n,5)?

A similar argument gives a lower bound for Aq(n, d), showing that for given
q,nand d, there exists a code with at least a given number of code-words. This
is the Gilbert-Varshamov bound [Gi52, Va57] :

Theorem 6.21

If q ~ 2 and n ~ d ~ 1 then

Aq(n,d)(1+ (~)(q-I)+ (~)(q _I)2+ .. . + (d:I)(q-I)d-l) ««.

Proof

Among all the codes with the chosen values of q, nand d, let C have the maxi­
mum number of code-words, so M = ICI = Aq(n , d). The spheres

Sd-l(U) = {v E V Id(u ,v) ~ d -I},

where u E C, must cover V: for if some v E V is not in any Sd-l(U), then
d(u, v) ~ d for all u E C, so the code C' = C u {v} has the same values of
q,n and d, and has IC'I > ICI , contradicting the choice of C. By the argument
used to prove (6.6), each of the M spheres Sd-l (u) contains L:t,:-~ (7) (q - I)i
vectors ; between them, these spheres contain all the qn vectors in V, so the
result follows. 0

Example 6.22

If we take q = 2 and d = 3 again (so that t = 1), then Theorem 6.21 gives

A2(n, 3) (1 + n + n(n2- 1)) ~ 2n

for all n ~ 3, so A2(n, 3) ~ 2n +1/(n2 + n + 2). Since Aq(n ,d) is an integer, we
therefore have

For n = 3,4 ,5,6,7, . .. this gives A2 (n ,3) ~ 2,2,2,3,5, ... . If we compare
these lower bounds with the upper bounds given in Example 6.20, we see that
A2 (3,3) = 2: for example, the binary repetition code n3 attains this bound .
When n = 4 we have 2 ~ A2(4 ,3) ~ 3, so A2(4,3) = 2 or 3.
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Exercise 6.10

Show that A2 (4,3) = 2, and find a code attaining this bound .

Exercise 6.11

Find a lower bound for A3 (n ,3).
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For most values of q, nand d, there is a significant gap between our upper
and lower bounds for Aq(n,d), and it can be a difficult problem to determine
its exact value; indeed, in many cases it is still unknown. In certain cases, the
existence of a specific code tells us its value: thus for q = 2, d = 3 and n = 7 the
Hamming code 117 attains the upper bound M ~ 16 implied by Theorem 6.15,
so A 2 (7,3) = 16. More generally, we will see in §7.4 that if n has the form 2c-1

then A2 (n ,3) attains the upper bound 2n - c .

In the binary case, Theorem 6.21 takes the form

Now Exercise 5.7 gives

for Q < ~, so

log2 A2(n,d) ~ n(1-H2(d: 1))

for d ~ Ln/2J. Since a binary code has rate R = ~log2M, this proves that if
d ~ Ln/2J there exists such a code with length n, minimum distance d, and
rate

(d-1)
R~ 1-H2 -n- .

We can compare this lower bound with Hamming's asymptotic upper bound

R s 1- H2 (~),

proved in §6.4, where t = L(d - 1)/2J by Theorem 6.10. Fig. 6.6 shows the
region defined by these two bounds on R.
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1

R= I _H2(d~1)

Figure 6.6
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1 R

(6.8)

6.6 Hadamard Matrices and Codes

Many mathematical structures can be used to provide codes. An interesting
class of codes can be constructed from a class of matrices called the Hadamard
matrices. First we examine the elementary properties of these matrices (see
[Ha67, MS77] for further details) .

Hadamard was interested in how large the determinant of a real n x n
matrix H = (hi j ) could be, for each given value of n. For this to make sense,
one has to bound the entries of H, and there is no loss of generality in supposing
that Ihijl ~ 1 for all i and j. Under these conditions , Hadamard proved that
Idet HI ~ nn/2, with equality if and only if

(a) each h i j = ±1, and

(b) distinct rows r, of H are orthogonal, that is, ri.rj =a for all i :f. j .

An n x n matrix H satisfying (a) and (b) is called a Hadamard matrix of
order n . Since (a) implies that ri .ri = n for all i, it follows that H H T is the
diagonal matrix

HHT = (H :: ~ )=nIn ;

a 0 .. . n

here H T denotes the transpose of H, and In is the n x n identity matrix. Since
det H T = det H , it follows from (6.8) that

so Idet HI = nn/2 . Thus all Hadamard matrices attain Hadamard's upper
bound; we will omit the converse, which is harder and is not needed here.
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For aesthet ic and typographical reasons, we will follow the convention of
indicat ing an entry -1 in a Hadamard matrix by simply -.

Example 6.23

The matrices H = (1) and G~) are Hadamard matrices of order 1 and 2, with
Idet HI = 1 and 2 respectively.

Exercise 6.12

Find all the Hadamard matrices of orders 1 and 2.

The followingsimple result enables us to construct large Hadamard matrices
from smaller ones.

Lemma 6.24

Let H be a Hadamard matrix of order n, and let

H' = (~ _~).

Then H' is a Hadamard matrix of order 2n .

Exercise 6.13

Prove Lemma 6.24.

Corollary 6.25

There is a Hadamard matrix of order 2m for each integer m 2: O.

Proof

Start with H = (1), and apply Lemma 6.24 m times. o

Example 6.26

The Hadamard matrices of order 2m obtained by this method are called
Sylvester matrices. For instance, taking m = 1 gives G~), and for m = 2
we get

However, Hadamard matrices do not exist for all orders . For example, there
are none of odd order n > 1:
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Lemma 6.27
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If there is a Hadamard matrix H of order n > I, then n is even.

Proof

The orthogonality of distinct rows r, and rj gives hilhj 1 + ... + hinhjn = O.
Each h ikhjk = ±1 , so n must be even. 0

By working a little harder, we obtain the following stronger restriction on
the order of a Hadamard matrix:

Lemma 6.28

If there is a Hadamard matrix H of order n > 2, then n is divisible by 4.

Proof

Multiplying any column of H by -1 preserves the Hadamard property, so we
may assume that the entries in the first row rl are all 1. Each row r i (i f; 1) is
orthogonal to rr , so it has n/2 terms equal to 1, and n/2 equal to -1. Permuting
the columns (which also preserves the Hadamard property) , we may assume
that

1 -1 -1 ... -1) .

Now suppose that the first and last n/2 entries of r3 contain u and v terms
equal to 1 respectively (the other terms being -1) . Then

o= rl·r3 = u - (i -u) + v - (i -v) = 2u + 2v - n

and
0= r2 ·r3 = u - (i -u) - v + (i -v) = 2u - 2v,

so u = v , and hence n = 2u + 2v = 4u is divisible by 4. o

It is conjectured that the converse is true, that there is a Hadamard matrix
of order n for each n divisible by 4. This is still an open problem . The relevance
of Hadamard matrices to Coding Theory rests on the following result .

Theorem 6.29

Each Hadamard matrix H of order n gives rise to a binary code of length n,
with M = 2n code-words and minimum distance d =n/2.
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Proof
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First we form 2n vectors ±rl, .. . , ±rn ERn from the rows r i of H. The
orthogonality of the rows implies that these vectors are all distinct . By changing
each entry -1 into 0 we get 2n vectors with entries 0,1; we can regard these
as elements of V = F;:, so they form a binary code C. By their construction,
these code-words have the form UI, ITI, ... , u.,, ITn , where IT = 1 - u . We have
d(Ui, ITi) = n for all i, since u, and ITi differ in all n coordinates, and condition
(b) easily implies that all other pairs of distinct code-words are distance nj2
apart, so C has minimum distance d =nj2. 0

Exercise 6.14

Find all the code-words obtained in the above way from the Hadamard
matrix H in Example 6.26. Do they form a linear code?

Any code C constructed as in Theorem 6.29 is called a Hadamard code of
length n. Such a code, of length 32, was used to transmit pictures from the
1969 Mariner space-probe.

Exercise 6.15

Construct a Hadamard matrix of order 8, and hence a Hadamard code of
length 8. What is its rate? How many errors does it correct, and how many
does it detect?

If n is not a power of 2 then neither is 2n, so a Hadamard code of such
a length n cannot be linear. The transmission rate of any Hadamard code of
length n is

R = log2(2n) = 1 + log2n ~ 0
n n

The number of errors corrected (if n > 2) is

as n~oo .

t = ld ; 1J = ln ~ 2J= ~ - 1,

by Theorems 6.10 and 6.29 and Lemma 6.28, so the proportion of errors cor­
rected is

tIl 1
-=---~- as n~oo.

n 4 n 4
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6.7 Supplementary Exercises
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Exercise 6.16

Find a cubic polynomial f(x) which is irreducible over Z2, and use it to
construct a field Fa of order q = 8. Show that there are precisely two such
polynomials, and that the corresponding fields are isomorphic.

Exercise 6.17

Show that for each prime p == 3 mod (4), the polynomial f(x) = x2 + 1 is
irreducible over Zp. Use this to construct a field Fq of order q = p2. For
which primes p does the polynomial x2 + x + 1 give rise to a field of order
q = p2?

Exercise 6.18

Prove the Singleton bound: if a code over Fq has length n , minimum
distance d, and M code-words, then logq M :S n - d + 1. (Hint : puncture
the code d - 1 times .) Give some examples of maximum distance separable
(MDS) codes, those which attain this bound.

Exercise 6.19

Calculate and factorise the numbers

and

What do these results suggest about the possible existence of perfect codes?

Exercise 6.20

Show that if Ci is an (n, Mi , di)-code in V =F:: for i = 1,2, then

C1 EB C2 = {(x, y) E V EB V Ix E C1 , Y E C2 }

is a (2n, M1M2,d)-code, where d = min(d1 , d2 ) . Show also that

C1 *C2 = { (x , x + y) E V EB V Ix E C1 , Y E C2 }

is a (2n, M1M2,d')-code, where d' = min(2d1,d2 ) . Show that if each Ci
is linear , of dimension ki , then C1 EB C2 and C1 * C2 are both linear, of
dimension k1 + ka.
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Exercise 6.21

If we ignore the hyphens, then an International Standard Book Num­
ber (ISBN) is a code-word w = al . .. alO of length 10 over Zl1 =
{O, 1, .. . ,9 , X} , with X denoting "ten". The digits al, " " ag are infor­
mation digits , indicating country, publisher, etc ., while alO is a check-digit
defined by al + 2a2 + .. .+ 10alO == 0 mod (11). Show that this code can
detect any single incorrect digit , and also the transposition of two digits
(the two most common human errors). Which of the following are valid
ISBNs?

3-540-76197-7, 3-540-76179-7, 3-541-76197-7 .
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Linear Codes

Report me and my cause aright. (Hamlet)

In Chapter 6 we considered several examples of linear codes, and in Lemma 6.8
we have already seen one advantage of dealing with them, namely that calcu­
lating the minimum distance of a linear code is easier than for general codes.
In this chapter we will study linear codes in greater detail , noting other advan­
tages to be obtained by applying elementary linear algebra and matrix theory,
including an even simpler method for calculating the minimum distance. The
theoretical background required includes such topics as linear independence,
dimension, and row and column operations. These are normally covered in any
first-year university linear algebra course; although such courses often restrict
attention to vector spaces and matrices over the fields of real or complex num­
bers, all the important results and techniques we need extend in the obvious
way to arbitrary fields, including finite fields. Throughout this chapter, we will
assume that the alphabet F is the finite field Fq of order q, for some prime­
power q = p",

7.1 Matrix Description of Linear Codes

One can specify a linear code C ~ V = F" by giving a basis uj , . . . , Uk for C, so
the code-words U E C are the linear combinations al Ul + ... + ak Uk (ai E F)
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of the basis vectors . This requires us to list just k vectors , where k = dim(C),
rather than all M = qk vectors in C. A useful way of specifying a basis is to
give a generator matrix G for C: this has k rows and n columns, each row being
one of the basis vectors for C. (Note that C does not determine G uniquely: a
subspace may have many bases, and the vectors in a given basis may be written
in any order.)

Example 7.1

The repetition code nn over P has a single basis vector UI = 11 . . . 1, so it has
a generator matrix

G = (1 1

with one row and n columns.

Example 7.2

1)

The parity-check code Pn over P has basis UI, .. • , Un-I, where each u, =
e i - en in terms of the standard basis vectors ej , ... ,en of V. It therefore has
a generator matrix

1 =~)
1 -1

with n - 1 rows and n columns, where the missing entries are all o.

Example 7.3

A basis UI = 1110000, U2 = 1001100, U3 = 0101010, U4 = 1101001 for the
binary Hamming code 117 was given in Example 6.5. This code therefore has a
generator matrix

(

1 1 1 0 0 0 0)
100 1 100

G = 010 1 0 1 0 .
110 100 1

If a linear code C has dimension k, then we can regard the k-dimensional
vector space A = pk as a source, encoded by the linear isomorphism A -t C ~

V = F" given by the matrix G. Specifically, each word a = al ... ak E A is
encoded as the code-word U = aG E C, giving an isomorphism a t-+ U between
the vector spaces A and C. Thus encoding is multiplication by a fixed matrix,
which is easy to perform .
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Example 7.4

The repetition code R n has k = 1, so A = F I = F. Each a = a E A is encoded
as u = aG = a . .. a E R n .

Example 7.5

If C = Pn then k = n - 1, so A = Fn-I . Each a = al ... an-I E A is encoded
as u = aG = al . .. an-Ian, where an = -(al + ... + an-I), SO I:i ai = O.

Example 7.6

If C = 117 then n = 7 and k = 4, so A = Fi . Each a = al .. . a4 E A is encoded
as u = aG E 1-£7 c Fl- For instance, in Example 6.5 we encoded a = 0110 as

u = aG = (0 1
(

1 1 1 0 0 0 0)
100 1 100

1 0) 0 1 0 1 0 1 0 =(1 1 0 0 1 1 0) .

110 100 1

Given a generator matrix G for a linear code C, it can be quite tedious to
determine whether a vector v E V is in C, and if not, which element u E C is
closest to it. To make this easier , we look for an alternative matrix description
of C. An effective way of doing this is to give a set of n - k simultaneous linear
equations which define the elements of C, so that a vector v E V lies in C if and
only if its entries Vi satisfy these equations.

Example 7.7

The repetition code R« consists of the vectors v = VI ... V n E V satisfying
VI = . . . = Vn , which can be regarded as a set of n - k = n - 1 simultaneous
linear equations Vi - Vn = 0 (i = 1, .. . , n - 1).

Example 7.8

The parity-check code Pn (which has n - k = 1) is the subspace of V defined
by the single linear equation VI + ... + Vn = O.

Example 7.9

The Hamming code 1-£7 consists of the vectors v E V = FJ satisfying

V4 + Vs + V6 + V7 = 0,

V2 + V3 + V6 + V7 = 0,

VI + V3 + Vs + V7 = O.
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In general, c independent linear equations define a subspace of V of dimen­
sion n - c, so we require c = n - k independent equations to specify C. These
are called parity-check equations, and their matrix H of coefficients, which has
n columns and n - k independent rows, is called a parity-check matrix for C.
The linear equations can be written in the form v HT = 0, where HT denotes
the transpose of the matrix H , so we have the following useful and efficient test
for code-words of C:

Lemma 7.10

Let C be a linear code, contained in V, with parity-check matrix H, and let
v E V. Then v E C if and only if vHT = O.

Example 7.11

Using the equations Vi - Vn = 0 for i = 1, . .. ,n - 1 we see that the matrix

1

1

-1)-1
. ,

-1

with n - 1 rows and n columns, is a parity-check matrix for R n .

Example 7.12

The equation Vi + ... + Vn = 0 shows that we can take

H = (1 1 1) ,

with one row and n columns, as a parity-check matrix for Pn .

Example 7.13

The three linear equations given in Example 7.9 for 117 provide a parity-check
matrix

H = (~ ~ ~ ~ ~ ~ ~1)'
1 010 1 0

Exercise 7.1

If C is a linear code, with generator matrix G and parity-check matrix H ,
find a generator matrix G and a parity-check matrix H for the extended
code C.
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Exercise 7.2
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If C1 , C2 ~ V are linear codes, with generator matrices G1 , G2 and parity­
check matrices HI, Hz, explain how to find a generator matrix for C1 + Cz
and a parity-check matrix for C1 n Cz.

One can view H as the matrix of a linear transformation h : V --+ W =
Fn-k, sending each v E V to h(v) = V H T E W , so Lemma 7.10 asserts that
C is the kernel ker(h) of h, the set of vectors sent to O. The image im(h) of h
is the subspace of W spanned by the columns of H. The dimension theorem
dim (V) = dim(ker(h)) +dim(im(h)) implies that dim(im(h)) =n-k, so h maps
V onto W. The n - k rows of H (representing the linear equations defining C)
are linearly independent, so they form the basis of a linear subspace V ~ V of
dimension n - k; this is a linear code, with generator matrix H, called the dual
code of C.

The codes C and V are related by the concept of orthogonality. Just as in
euclidean space R " , one can define a scalar product on V = F" by

U.V = UIVI + ...+ UnVn E F (7.1)

where U = Ul . .. Un and v = VI .. . Vn are any vectors in V. This is linear in
both variables, meaning that

(aUl + bU2)'V =a(ul.v) + b(U2'V) and u.Icv, + bV2) =a(u.vd + b(u.vz)

for all a, bE F. We define u and v to be orthogonal if u .v = O. Unlike in R",
a non-zero vector can be orthogonal to itself: for instance, if u = el + ez then
u. u = 12 + 1z = 2, so u.u = 0 if q = 2e .

The equation v H T = 0 defining C can be interpreted as stating that C con­
sists of all the vectors orthogonal to the rows of H , or equivalently, orthogonal
to all the vectors in V. Thus C is the orthogonal code V1. = {v E V I v. w =
o for all wE V} of V, and interchanging the roles of C and V we see that

V = C1. = { W E V Iv .w = 0 for all v E C}.

Thus linear codes come in dual pairs: a generator matrix for one is a parity­
check matrix for the other. Note, however , that some linear codes are self-dual ,
that is C = C1. : the binary repetition code R 2 is a simple example. More
generally, we have:

Example 7.14

Let q = 2, let n = 2m, and let C be the linear code with basis vectors u, =
e2i-l + e2i for i = 1, .. . , m. Since u. .uj = 0 for all i and i , we have C ~ C1. .
Comparing dimensions, we see that C = C1. .
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Example 7.15

The repetition code R n is spanned by 1 = 1 . . . 1, so

R* = {w EVILw = O} = {w E V IWI +...+W n = O} = Pn ,

and similarly

P;; = {w E V I (e, - en).w = 0 for i = 1, .. . ,n - I}

= {w E V IWi = W n for i = 1, . . . ,n - I}

=Rn ·

We have seen that

1

1

-1)-1

-1

is a generator matrix for Pn and also a parity-check matrix for R n , while

( 1 1 1)

is a generator matrix for R n and a parity-check matrix for Pn .

Example 7.16

The code 1# is a linear [7,3]-code over F2 ; a generator matrix for this code is
the parity-check matrix

(

0 0 0 1 1 1 1)
o 1 100 1 1
1 0 1 0 101

for 1i7 • By taking linear combinations of the rows, we see that the seven non­
zero elements of this code all have weight 4, so d = 4.

We conclude with a general criterion for determining which matrices are
parity-check matrices for a given code. In the statement, 0 denotes a matrix
with all entries zero.

Lemma 7.17

Let C be a linear [n, k]-code over F with generator matrix G, and let H be a
matrix over F with n columns and n - k rows. Then H is a parity-check matrix
for C if and only if H has rank n - k and satisfies GH T = O.
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Proof

The rows of H form n - k vectors in V, and GHT = 0 if and only if these rows
are orthogonal to those of G, or equivalently lie in C" , Now H has rank n - k
if and only if its rows are linearly independent, or equivalently form a basis for
Cl.. ; thus H satisfies the given conditions if and only if it is a generator matrix
for Cl.. , that is, a parity-check matrix for C. 0

7.2 Equivalence of Linear Codes

A vector space does not , in general , have a unique basis, so the generator matrix
G and the parity-check matrix H of a linear code C are not generally unique.
It is useful to choose them to have as simple a form as possible, for instance to
have many zero entries so that calculations are made easier .

The rows rl, ... , r k of G, regarded as elements of V, form a basis for C.
The elementary row operations consist of permuting rows, multiplying a row
by a non-zero constant, and replacing a row ri with ri + arj where j :f. i and
a :f. O. These may change the basis for C, but they do not change the subspace C
spanned by the rows. We may therefore apply any sequence of these operations
to G, giving a new generator matrix for the same code C.

If we permute the columns of G, however, we may change C, but the new
code will differ from C only in the order of symbols within code-words; the two
codes will have the same parameters such as n, k, d, t, M, R etc ., so they are not
essentially different. This motivates the following definition. Two linear codes
C1 and C2 are equivalent if they have generator matrices G1 and G2 which differ
only by elementary row operations and permutations of columns. (Notice that
we are not allowed to multiply a column by a constant, or to add a multiple
of one column to another.) This means that C2 can be obtained from C1 by
simultaneously re-ordering the symbols in each code-word of C1 . Informally,
one tends to think of C1 and C2 as "being the same code" , even though they
generally consist of different code-words.

By systematically using elementary row operations and column permuta­
tions, one can convert any generator matrix into the form

1
* *
* *

1 * *

*)*. ,

.. . ~

(7.2)
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where h is the k x k identity matrix, and P is a matrix with k rows and
n - k columns, represented by the asterisks. We then say that G (or C) is in
systematic form. In this case, each a = al .. . ak E pk is encoded as

where al, " " ak are information digits and ak+! . . . an = aP is a block of
n - k check digits. The information digits are completely arbitrary, whereas
the check digits are uniquely determined by a and G, and are easily calculated
as the symbols in aP.

Example 7.18

The generator matrices G for the codes R n and Pn in §7.1 are in systematic
form.

Example 7.19.

The generator matrix

(

1 1 1 0 0 0 0)
100 1 100

Gl = 0 1 0 1 0 1 0
1 1 0 1 001

for 1£7, given in §7.1, is not in systematic form. However, by permuting the
columns we obtain a generator matrix G2 for an equivalent code, which is
in systematic form: for instance, the permutation 7r = (1745263), sending
column 1 to position 7, etc ., gives

(

1 0
o 1

G2 = 0 0

o 0
H: H).
o 1 111

Exercise 7.3

The matrices G l and G2 in Example 7.19 generate equivalent codes Cl and
C2 • Are these codes equal or distinct?

If we have a generator matrix

G = o. IP)

in systematic form for a linear code C, then we can find a parity-check matrix

(7.3)
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for C. This is the systematic form for a parity-check matrix. We can justify this
by using Lemma 7.17: the matrix H shown here has n - k rows and n columns,
the presence of the identity matrix I n - k ensures that its rows are independent,
so it has rank n - k, and finally multiplying block matrices gives

GHT = h(-P) +Pln-k = -P+P = O.

If q is a power of 2 then a + a = 2a = 0 for all a E F , so -a = a and we can
omit the minus signs, writing H more simply as

H = (pT I In - k ) .

Example 7.20

In Example 7.1 we found a generator matrix G in systematic form for R n ,

where
P=(l 1 1)

(with n - 1 entries) , so we get a parity-check matrix

(

- 1
-1

H= .

-1

1
1

for R n (with n -1 rows). This is not the same as the parity-check matrix given
in Example 7.11, but it results in an equivalent set of parity-check equations
for R n , namely -VI + Vi = 0 for i = 2, . . . , n.

Example 7.21

The generator matrix given in Example 7.2 for Pn is in systematic form. It has

P=(-l -1 _l)T

(with n - 1 entries), so Pn has a parity-check matrix

H=(l 1 . .. 1 1)

(with n entries).

Example 7.22

The systematic generator matrix given in Example 7.19 for 11.7 has

p ~ (; ~ ~)
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Here q = 2, so ignoring the minus signs we see that 1£7 has a parity-check
matrix

(

0 1 1 1 1 0 0)
H= 1 0 1 1 0 1 0

1 101 001
in systematic form. (Strictly speaking, these are generator and parity-check
matrices for a code which is equivalent to 1£7 , since they have been obtained
from those for 1£7 by permuting columns; however, as remarked earlier, we will
not generally distinguish between equivalent codes.)

Using generator matrices in systematic form, we have an alternative proof
of the Singleton bound (Exercise 6.18) for linear codes:

Theorem 7.23

If C is a linear code of length n, dimension k, and minimum distance d, then

d ~ 1 +n - k.

Proof

By using an equivalent code, we may assume that C has a generator matrix
G = (h I P) in systematic form. Then each row of G is a non-zero code-word
of weight at most 1 + n - k: it has exactly one non-zero information digit (in
h) , and n - k check digits (in P), so at most 1+n - k of its digits are non-zero .
It follows from Lemma 6.8 that d ~ 1 + n - k. 0

Example 7.24

The Singleton bound is attained by nn, with k = 1 and d = n, and by P«,

with k =n - 1 and d =2; however 1£7 , with d =3 and 1 + n - k =4, does not
attain it.

Corollary 7.25

A t-error-correcting linear [n ,k]-code requires at least 2t check digits .

Proof

There are n- k check digits, and Theorems 7.23 and 6.10 give n- k ~ d-l ~ 2t.
o

Example 7.26

The linear codes n3 and 1£7 both have t = 1; the number of check digits is
n - k = 2 or 3 respectively .
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7.3 Minimum Distance of Linear Codes
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In th is section, we will show how the minimum distance of a linear code may
be obtained from a parity-check matrix.

Theorem 7.27

Let C be a linear code of minimum distance d, and let H be a parity-check
matrix for C. Then d is the minimum number of linearly dependent columns of
H .

Proof

By Lemma 7.10, a vector v = VI . .. Vn E V is a code-word if and only if
v H T = 0, or equivalently L:i ViC i = 0 where CI , ... ,Cn are the columns of H.
If v i- 0 then this is a relation of linear dependence between the columns , and
conversely any such relation corresponds to a non-zero code-word v ; the number
of columns appearing in this equation is the number of non-zero terms Vi , which
is the weight of v . Thus the least number of linearly dependent columns of H
is equal to the least weight of any non-zero code-word, and by Lemma 6.8 this
~~ 0

Before looking at some examples, let us see what it means for one or two
columns of H to be linearly dependent. A single column c, is linearly dependent
if Vi Ci = 0 for some non-zero Vi E F ; multiplying through by viI (which exists
since F is a field) we see that this is equivalent to Ci = 0, so Theorem 7.27 tells
us that d = 1 if and only if H has 0 as a column. Two columns c, and Cj (with
i i- j ) are linearly dependent if and only if ViC i + V j Cj = 0 with Vi , Vj not both
0; if Ci , Cj i- 0 we must have both Vi, V j i- 0, so we can write this condition as
Ci = aCj where a = -Vj/Vi E F \ {O}. Thus two non-zero columns are linearly
dependent if and only if each is a multiple of the other. (In particular, if q = 2
then the only possibility for a i- 0 is a = 1, so in the binary case two non-zero
columns are linearly dependent if and only if they are equal.) It follows from
Theorem 7.27 that d ~ 3 if and only if the columns of H are non-zero and none
is a multiple of any other; in the binary case, this simplifies to the condition
that the columns of H are non-zero and distinct from each oth er.

Example 7.28

The parity-check matrix H = (1 1 1) for P« has its columns non-zero
and equal , so Pn has minimum distance d = 2.
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Example 7.29

In the parity-check matrix

1
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=~)
1 -1

for R n , any set of n-1 columns are linearly independent, while Cl + .. ,+c n = 0
(corresponding to the code-word 1 = 11 .. . 1 ERn), so in this case d = n .

Example 7.30

The binary Hamming code 'th has a parity-check matrix

(

0 0 0 1 1 1 1)
H= 0 1 1 0 0 1 1 .

1 0 1 0 1 0 1

The columns are non-zero and distinct, so d ~ 3; equivalently, there are no code­
words of weight 1 or 2. However , Cl + Cz + C3 = 0, so there are three linearly
dependent columns Cl, Cz and C3 , corresponding to the fact that v = 1110000
is a code-word of weight 3. (It is the basis element Ul for 1-£7 in Example 6.5.)
Thus 1-£7 has minimum distance d = 3.

We can use parity-check matrices to give an alternative proof of the Single­
ton bound (Theorem 7.23) for linear codes . If H is a parity-check matrix for
a linear [n, k]-code C, then its n - k rows are linearly independent; now the
row-rank of any matrix is equal to its column-rank, so H has a set of n - k in­
dependent columns, while every set of n - k +1 columns are linearly dependent.
By Theorem 7.27 we therefore have d ~ n - k + 1.

Corollary 7.31

There is a t-error-correcting linear [n, k]-code over F if and only if there is an
(n - k) x n matrix Hover F, ofrank n - k, with every set of 2t columns linearly
independent.

Proof

(=» Given such a code C, let H be a parity-check matrix for C, so H has
n columns and n - k independent rows . By Theorem 6.10, C has minimum
distance d ~ 2t + 1, and by Theorem 7.27, every set of at most d - 1 columns
are linearly independent , so every set of 2t columns are linearly independent.
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(¢::) Given such a matrix H , let V = F" and let C = {v E V I vHT = O},
a linear code over F of length n. Since H has rank n - k, its n - k rows are
linearly independent, so C has dimension k. By hypothesis, every set of linearly
dependent columns of H contains at least 2t + 1 columns, so Theorem 7.27
implies that C has minimum distance d ~ 2t + 1, and hence C corrects terrors
by Theorem 6.10. 0

We will give some illustrations of this in the next two sections, where we
construct the Hamming and Golay codes .

7.4 The Hamming Codes

The Hamming [7,4]-code lir is a l-error-correcting perfect binary code, of rate
R = ~ . It is, in fact, one of an infinite sequence of l-error-correcting perfect
binary codes, which have rate R approaching 1 as their length n increases.
These codes were introduced by Hamming in 1950 [Ha50], though Golay inde­
pendently found them around the same time (see [Th83] for a discussion of the
priority for this discovery).

For a l-error-correcting binary linear code, we put t = 1 and q = 2 in
the sphere-packing bound (Corollary 6.17), so the condition for a perfect code
becomes

2n
-

k = 1 + (~) = 1 + n.

If we put c =n-k (the number of check digits) , then this condition is equivalent
to

(7.4)

Since k = n - c = 2c - 1 - c, the possible values of nand k are as follows:

c=
n=
k=

1
1
o

2
3
1

3
7
4

4
15
11

5
31
26

We now try to construct codes with these parameters. Putting t = 1, we
see from Corollary 7.31 that such a code C exists if and only if there is a c x n

matrix Hover F2 , of rank c, with every pair of columns linearly independent;
since F = F2 = {O, I}, this means that the columns c, of H must be non-zero
and distinct, so H must consist of n = 2C

- 1 distinct non-zero column-vectors
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of length c. Now there are only 2C distinct binary vectors of length c, so there
is no choice about the columns Ci : they must consist of all 2c - 1 non-zero
binary vectors of length c, in some order (see Example 7.13 for the case c = 3) .
These column-vectors include the c standard basis vectors, which are linearly
independent, so such a matrix H has rank c. This proves that C exists, and that
any two linear codes with these parameters are equivalent (under a permutation
of columns); we call C the binary Hamming code 1in of length n = 2C

- 1.
(Strictly speaking, we have contructed a set of codes of length n here, but since
they are all equivalent to each other one tends to refer to them informally as a
single code 1in . )

Example 7.32

We will ignore the trivial case c = 1, since 1i1 consists of the single code-word
oof length 1. When c = 2 we have n = 3 and

(011)H= 1 0 1 ;

thus 1i3 consists of the binary words v =VI V2 V3 satisfying V2 + V3 =VI + V3 = 0,
or equivalently VI = V2 = V3 , so this is the binary repetition code R3 . When
c = 3 we have the Hamming code 1i7 considered earlier. For c ~ 4 we obtain
infinitely many new perfect codes 1in of length n = 2C

- 1. These codes have
rate

k 2C
- 1 - cR=-= .-rl

n 2C-l

as c.-r 00, but they correct only one error, so PrE f+ 0 (see Exercise 7.4) .

Exercise 7.4

The binary Hamming code 1in is used , where r is a BSC with P > ~ , and
.1 is nearest neighbour decoding; find PrE (see Exercise 6.6 for the case
n = 7). What happens to PrE as n .-r oo?

Nearest neighbour decoding with H« is very easy. Since 1in is perfect, with
t = 1, it corrects every error-pattern e of weight at most 1. Suppose that
u E 1in is transmitted, and v = u+e is received, where wt(e) ~ 1; thus either
e = 0, or e is a standard basis vector e, of V. The receiver computes s =vHT ,

called the syndrome I of v. Now vHT = (u + e)HT = uHT + eHT = eHT
(since uHT = 0 by Lemma 7.10), and this is 0 or c; as e = 0 or e.. If s = 0
the receiver decodes v as .1(v) = v (= u), and if s = cT then .1(v) = v - e.,
formed by changing the i-th symbol of v. This method always decodes correctly

1 The terminology is from Medicine, where the syndrome is an indication of what is
wrong with the patient.
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if wt (e) ::; 1, but never if wt (e) > 1: in this case v = u' + e' for some unique
u' E H« with wt (e') ::; 1, where u' =I- u, and the above algorithm decodes v
incorrectly as Ll(v) = u'.

Example 7.33

Let us use 1i7, with parity-check matrix

(

0 1 1 1
H= 1 0 1 1

1 1 0 1

100)
010
o 0 1

in systematic form. Suppose that u = 1101001 E 1i7 is sent, and v = 1101101 E
V is received, so the error-pattern is e = es . The syndrome is 5 = vHT = 100,
which is the transpose cg of the fifth column of H; this indicates an error in
the fifth position, so changing this entry of v we get Ll(v) = 1101001 = u.
On the other hand, suppose that v' = 1001101 is received, with error-pattern
e' = e2 + es; in this case the syndrome is 5' = 001 = c'.f, indicating an error in
the seventh position, so Ll(v') = 1001100 =I- u. Thus, instead of correcting two
errors, the code has actually created a third.

Exercise 7.5

Use the parity-check matrix in Example 7.33 to verify that u = 1100110
is a code-word in 1i7' Suppose that this word u is sent , and v = 1000110
is received. Find the syndrome, and hence find Ll(v). Investigate what
happens if v' = 0000110 is received, and give an explanation.

Decoding with H« is particularly simple if we order the columns Ci of H so
that the row vectors cT, ...,cJ are the binary representations of the integers
i = 1, . .. , n, in that order. Thus for n = 7 we take

(

0 0 0 1 1 1 1)
H= 0 1 1 0 0 1 1 ,

1 0 1 0 1 0 1

as in Example 7.13; this is equivalent under the permutation (1362547) of the
columns to the parity-check matrix used in Example 7.33. A syndrome 5 = 0
is interpreted as e = 0, that is, no error, while a non-zero syndrome 5 is the
binary representation of the position i where a single error e, has appeared.

Example 7.34

Let us use the equivalent version of 1i7 defined by the above parity-check ma­
trix. Applying the permutation (1362547) to the word 1101001 used in Ex­
ample 7.33, we obtain the codeword u = 1010101 E 1i7. If this is transmitted
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(7.5)

and v = 1010001 is received , then the syndrome is s = vHT = 101; this is
the binary representation of the integer 5, so changing the fifth ent ry of v we
obtain L1(v) = 1010101 = u .

Exercise 7.6

Use the equivalent version of 1£7, as in Example 7.34, to investigate what
happens when u =0111100 is sent and v =0011100 is received.

There is a similar construction of perfect l-error-correcting linear codes for
prime-powers q > 2: we take the columns of H to be

qC -1
n = -- = 1 + q + q2 + .. . + «:'

q-l

pairwise linearly independent vectors of length cover Fq (this is the maximum
number possible: see Exercise 7.7). The resulting linear code has length n ,
dimension k = n - c, and minimum distance d = 3, so t = 1 (see Exercise 7.7
again) . As in the binary case, R --t 1 as c --t 00, but PrE -It O.

Exercise 7.7

Show that if W = F~ then the maximum number of vectors in W , such
that no two of them are linearly dependent, is (qC - 1)/(q - 1). Show that
if any such set of vectors form the columns of a parity-check matrix H,
then the resulting linear code over Fq is perfect and l -error corr ecting.

Example 7.35

If q = 3 and c = 2, then n = 4 and k = 2. We can take

(
1 1 1 0)

H= 1 2 0 1 '

giving a perfect l-error-correcting linear [4, 2]-code over F3 •

7.5 The Golay Codes

Golay used Corollary 7.31 to construct th e two perfect codes 9n and 923 which
now carry his name. In a remarkable paper [G049], occupying only half a page,
he described not just these two codes , but also the perfect binary repetition
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codes R n (n odd) , and the perfect codes constructed at the end of §7.4 for all
primes q (the extension to prime-powers q came a little later).

Recall from §6.4 that a perfect linear code is one which attains equality in
the sphere-packing bound, so

t (7) (q - l) i = qn-k .
,=0

(7.6)

Now Exercise 6.19 suggests that there may be a perfect linear code with q =
3, n = 11, k = 6 and t = 2. To const ruct such a code, Golay considered a
pari ty-check matrix

1 1 1 2 2 0 1 0 0 0 OJ
1 1 2 1 020 1 000

H= 1 2 1 0 1 2 0 0 1 0 0
120 1 2 1 000 1 0
1 022 1 100 0 0 1

over F3 , in systematic form, with n = 11 columns and n - k = 5 independent
rows. With considerable patience, one can show that there are no sets of four
or fewer linearly dependent columns, whereas the re is a set of five linearly
dependent columns (for instance C2 - C7 - Cs + Cg + CIO = 0) . It follows from
Theorem 7.27 that the code C defined by H has d = 5, and hence t = 2 by
Theorem 6.10. Since

to (7)(q _ 1)i = 1 + Cl1) · 2 + C21) . 2
2 = 243 = 3

5 =«:',

this code C is perfect . It is the ternary Golay code Qll of length II.
Similarly, taking q= 2, n = 23 and k = 12 (as suggested by Exercise 6.19),

Golay used a binary parity-check matrix H = (pT I Ill) where

1 0 0 1 1 1 0 0 0 1 1 1
1 0 1 0 1 1 0 1 1 0 0 1
1 0 1 1 0 1 1 0 1 0 1 0
1 0 1 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 1 0 1 1 0 0

pT = 1 1 0 1 0 1 1 1 0 0 0 1
1 1 0 1 1 0 0 1 1 0 1 0
1 1 1 0 0 1 0 1 0 1 1 0
1 1 1 0 1 0 1 0 0 0 1 1
1 1 1 1 0 0 0 0 1 1 0 1
0 1 1 1 1 1 1 1 1 1 1 1
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An even more tedious process shows that the minimum number of linearly
dependent columns of H is seven, so the corresponding code, th e binary Golay
code 923 of length 23, has d = 7 and hence t = 3. Again, this code is perfect ,
since

The extended Golay codes 912 = 911 and 924 =923 are linear [12,6]- and
[24, 12]-codes over F3 and F2 . Although they are not perfect, they are very
important examples of codes, having links with many mathematical structures
such as Steiner systems, lattices, sphere-packings and simple groups [CL91,
CS92J . For a fascinating account of the origin of the Golay codes, and of their
connections with some of these topics, see [Th83J . Because of these links, there
are many alternative ways of constructing the Golay codes; most of them are
more enlightening than Golay's original construction, outlined above, though
none are completely straightforward (see Exercises 7.17 and 7.18 for two rela­
tively simple examples, based on results in [CL91]) . Here we will show how the
binary Golay codes may be obtained from combinatorial objects called Steiner
systems.

If S is any set with n elements , then the power set

P(S) = {U IU ~ S}

is an n-dimensional vector space over F2 , in which the sum U +V of two subsets
U and V is their symmetric difference (U U V) \ (U n V), and the zero element
is the empty set 0. If S = {81 ' . . . , 8 n } , then each subset U can be represented
as a vector u = U 1 • .. Un E V = Ff, with Ui = 1 or 0 as s, E U or s, ~ U . We
can therefore regard any non-empty subset C ~ P(S) , that is, any non-empty
set of subsets of S, as a binary code of length n, which is linear if and only
if it is closed under addition. We have wt(u) = lUI and d(u, v) = IU + VI ,
so to achieve a large minimum distance d we choose C so that distinct subsets
U,VEe are sufficiently different from each other.

One systematic way to do this is to use block designs. A t-design on a set S
is a set of subsets of S, called blocks, all of the same size, such that each set of
t elements of S are contained in the same number>' of blocks. These regularity
conditions impose strong restrictions on the resulting codes. The connections
between designs and codes are explained in detail in [CL91], and here we will
restrict attention to some simple examples.

Writing [ in place of the traditional t (which we have already used for the
number of errors corrected), we define a Steiner system to be an [-design with
>. = 1, that is, a set of m-element blocks B in an n-element set S, such that
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each set of l elements of 8 are contained in a unique block. We will denote such
a system by 8(l,m,n) .

Example 7.36

Let 8 be the set of all l-dimensional subspaces of the vector space W = FC,
where c 2:: 2, so 181 = (qC- I)/(q - 1). Each 2-dimensional subspace of W
contains q+ 1 elements of 8 , and we regard these (q+ 1)-element subsets as the
blocks. Each pair of distinct I-dimensional subspaces of W generate a unique
2-dimensional subspace, so each pair of elements of 8 lie in a unique block. We
therefore have a Steiner system with l = 2, m = q+ 1 and n = (rt -I)/(q -1) ;
this is the projective geometry PG(c - 1, q), with the lines of this geometry
as blocks. In Fig. 7.1 we see the seven 3-element blocks of the Fano plane
PG(2 ,2); see Exercise 7.12 for the connection between these geometries and
the Hamming codes.

Figure 7.1

If a Steiner system 8(l, m,n) has b blocks, then

This is because each of the (7) l-element subsets of 8 lies in a unique block, and
each of the b blocks contains (7) such subsets. Thus (7) divides (7) , imposing
a restriction on the possible parameters l, m and n. In fact there are further
restrictions. If s E 8, then it is easy to check that 8' = 8 \ {s} is a Steiner
system 8(l - 1, m - 1, n - 1), in which the blocks are the sets B \ {s} where B
is a block of 8 containing s; the preceding argument then implies that (7~/)

divides (7~;). By iterating this we can obtain further restri ctions .
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Example 7.37

If 8 is a Steiner system 8(2,3, n), then these two conditions state that 3 di­
vides n(n - 1)/2 and 2 divides n - 1, so n =1 or 3 mod (6). In fact, this
necessary condition for the existence of 8 is also known to be sufficient [Ha67,
Theorem 15.4.3], with PG(c - 1,2) providing examples for n = 2C

- 1.

Example 7.38

The triple (5,8,24) satisfies the above necessary conditions , so there could
conceivably be a Steiner system 8(5,8,24), with b = e54) /m= 759 blocks.
Such a system 8 has been shown to exist , and to be essentially unique; its
automorphism group (the set of permutations of 8 taking blocks to blocks) is
the Mathieu group M24 , a simple group of order 244,823,040. Now let C be
the subspace of V = P(8) = F:j4 spanned by the blocks of 8 . Assuming only
the definition of a Steiner system, without needing to know the blocks, one can
use simple counting arguments to show that C consists of:

1 set of size 0, namely 0;
759 sets B of size 8, namely the blocks;
2576 sets B + B' of size 12, where Band B' are blocks with IB n B'I = 2;
759 sets B + B' of size 16, where Band B' are disjoint blocks;
1 set of size 24, namely S, the sum of three disjoint blocks.

(See §7.3 of [An74J for the details .) Now 1+ 759+ 2576+ 759+ 1 = 4096 = 212,

so C is a binary linear [24,12]-code. This is the extended Golay code 924. The
code-words have weights 0,8,12,16 and 24, so 924 has minimum distance d = 8.
By puncturing 924 at any single position (deleting the i-th symbol from all code­
words, for some fixed i), we obtain a binary linear [23,12]-code with d = 7, and
this is the perfect Golay code 923; the choice of i here is unimportant, since all
the resulting codes are equivalent.

Exercise 7.8

Prove that in a Steiner system 8 = 8(5,8,24), every element s E 8 lies in
253 blocks, every two elements lie in 77 blocks, every three elements lie in
21 blocks, and every four elements lie in 5 blocks.

One can reverse the argument, and obtain the Steiner system from the code:
the blocks of 8(5,8,24) are the supports U = {i I Ui "I O} of the code-words
u E 924 of weight 8 (see [CL91J for this approach) . Similarly the supports of the
code-words of weight 7 in 923 form a Steiner system 8(4,7,23), while the words
of weight 5 in 911 and 6 in 912 yield Steiner systems 8(4,5,11) and 8(5,6,12) .
In these last two cases, however, as in most non-binary cases, the derivation of
the code from the design is more complicated.
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7.6 The Standard Array
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For nearest neighbour decoding , given any received word v E V we need to
be able to find the code-word U = Ll(v) E C nearest to v . When C is a linear
code there is an algorithm for doing this based on the standard array , which
is essentially a table in which the elements of V are arranged into cosets of the
subspace C.

Suppose that
C={Ul ,U2, ... , UM}

is a linear code with M = qk elements ; 0 must be a code-word, so we will
choose the numbering so that Ui = O. For i = 1,2,3, . . . we form the i-th row
of the standard array by first choosing vito be an element of V, not in any
previous row, of least possible weight (so, in particular, Vi = 0); we then let
the i-th row consist of the elements of the coset

Vi+ C = {Vi+ u , (= Vi) , Vi + U2, ... , Vi+ UM}

of C in V, written in that order. Thus the first row is Vi + C = 0 + C = C,
distinct rows are disjoint, and the process stops after qn / M = qn-k rows have
been formed , one for each coset. When this happens, every V E V appears
exactly once in the array as

(7.7)

for some i and i . so that V is the j-th term in the i-th row. The elements Vi
are coset representatives for C in V , called coset leaders. By construction, we
have

wt(Vi) $ wt(V2) $ wt(V3) $ . .. ;

we draw a horizontal line across the array, immediately under the last row to
satisfy wt(Vi) ~ t, where t = Ld;i J is the number of errors corrected by C.
Note that the standard array is not generally unique: there are usually several
possible vectors Vi which can be chosen as coset leader for the i-th row.

Example 7.39

Let C be the binary repetition code R4 of length n = 4, so q = 2, k = 1 and the
code-words are u, = 0 = 0000 and U2 = 1 = 11ll. There are qn-k = 8 cosets
of C in V, each consisting of two vectors, so the standard array has eight rows
and two columns. We are forced to choose Vi = 0 as the first coset leader; the
next four are the standard basis vectors (the only words of weight 1) in some
order, and the last three (which are not uniquely determined) have weight 2.
This code has d = 4, so t = 1 and hence we draw the line under the fifth row.
For instance, a possible form for the standard array is:
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0000

1000

0100

0010

0001

1100

1010

1001

1111

0111

1011

1101

1110

0011

0101

0110

Information and Coding Theory

Lemma 7.40

(a) If v is in the j-th column of the standard array (that is, v = Vi + Uj for
some i), then Uj is a nearest code-word to v .

(b) If, in addition, v is above the line in the standard array (that is, wt(Vi) :S t),
then Uj is the unique nearest code-word to v .

Proof

(a) Let v = Vi + Uj, and suppose that Uj is not a nearest code-word to v , so
d(v, uj') < d(v, Uj) for some uj' E C. Since d(v , u) = wt(v-u) and V-Uj = Vi
we have

wt(v - uj') < wt(v - Uj) = wt(Vi);

now
v - uj' = Vi + Uj - uj' E Vi + C

(since Uj - uj' E C), which contradicts the choice of Vi as an element of least
weight in its coset in the construction of the standard array.

(b) In addition to the above, let wt(Vi) :S t , and suppose that d(v, uj') <
d(v, uj ) for some uj' E C. Then

d(Uj, uj.) 2: d

> 2t
2: 2d(v, uj)

2: d(v ,Uj) + d(v, uj.)

2: d(uj , uj')

(by definition of d)

(by Theorem 6.10)

(since wt(Vi) :S t)

(since d(v , uj ) 2: d(v, uj'))

(by the triangle inequality) ,

so d(Uj, Ujl) > d(Uj, Ujl ), which is impossible. o
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This shows that the sphere St (uj ) of radius t about uj, defined in §6.4, is
the part of the j-th column above the line. Thus C is perfect if and only if the
entire standard array is above the line.

We can use Lemma 7.40 for decoding . Suppose that a code-word U E C is
transmitted, and v = U + e E V is received, where e is the error-pattern. The
receiver finds v = Vi + Uj in the standard array, and decides that Ll(v) = Uj

was most likely to have been sent, since this is a nearest neighbour of v in C
(indeed, it is the nearest neighbour if v is above the line). Thus each received
word v is decoded as the code-word Uj heading its column in the standard
array. This decision is correct if and only if U = Uj, that is, if and only if
e = Vi, so this rule gives correct decoding if and only if the error-pattern is a
coset leader.

Example 7.41

Let C =R 4 , with the standard array as in Example 7.39. Suppose that U =1111
is sent, and the error-pattern is e = 0100 (so only the second symbol of U

is transmitted incorrectly) . Then v = 1111 + 0100 = 1011 is received, and
since this is in the column of the array headed by U2 = 1111, the receiver
decides (correctly) that Ll(v) = 1111 was sent. However, if the error-pattern is
e =0110 then v =1111+0110 =1001 is received; this is in the column headed
by Ul = 0000, so the receiver decides (incorrectly) that Ll(1001) = 0000 was
sent. In fact , this choice of array corrects all error-patterns of weight 0 or 1,
but only the patterns e = 1100,1010 and 1001 of weight 2, and none of weight
3 or 4. Any choice of array will correct three error-patterns of weight 2, but
not necessarily these three.

The advantage of this method of decoding is that it is relatively simple to
understand and to implement. The disadvantages are that it requires a great
deal of storage (the standard array contains every word in V), and searching for
received words v in the array could be time-consuming. In the next section , we
therefore consider an equivalent but more efficient method of decoding linear
codes.

7.7 Syndrome Decoding

Syndrome decoding is a more streamlined version of the decoding algorithm
described in §7.6. If H is a parity-check matrix for a linear code C ~ V, then
the syndrome of a vector v E V is the vector

s = vHT E F n - k (7.8)
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(we used this idea in §7.4 in connection with the binary Hamming codes).
Thus 8 = 81 ... 8n-k, where s, = v.r, and r, is the i-th row of H, so s, is
the result of applying the i-th parity-check condition to v . The next result
shows that the syndrome 8 allows us to decide which coset of C contains v, or
equivalently which row of the standard array contains v . Recall first that two
vectors v, v' E V lie in the same coset of the subspace C (that is, v +C =v' +C)
if and only if v - v' E C.

Lemma 7.42

Let C be a linear code, with parity-check matrix H, and let v, v' E V have
syndromes 8 , 8' . Then v and v' lie in the same coset of C if and only if 8 = 8'.

Proof

We have

v + C = v' + C {:::=} v - v' E C

{:::=} (v - v')HT = 0

{:::=} vH T = v' H T

{:::=} 8 = 8'.

(by Lemma 7.10)

o

This shows that a vector v E V lies in the i-th row of the standard array if
and only if it has the same syndrome as Vi, that is, vHT = v iHT. We therefore
form a syndrome table, consisting of two columns: the coset leaders Vi (chosen
as in §7.6) are in the first column, and their syndromes s, =viHT are opposite
them in the second column.

Example 7.43

Let C be the binary repetition code R 4 , with standard array as given in Exam­
ple 7.39, so the coset leaders Vi are the words in its first column. If we use the
parity-check matrix

H= ell =0 c1 ~)
1 1

given in Example 7.11, and apply it to any vector v = VIV2V3V4 E V, then we
find that 8 = vHT = 818283 where s, = Vi + V4 for i = 1,2,3 . Applying this
to the coset leaders v = VI, . .. , vB, we obtain the corresponding syndromes s. .
This gives the following syndrome table:



7. Linear Codes

Vi 8i

0000 000

1000 100

0100 010

0010 001

0001 111

1100 110

1010 101

1001 011
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In general, if we have a parity-check matrix H and a syndrome table for a
linear code C, then decoding proceeds as follows. Given any received word v,
we compute its syndrome 8 = V H T

, and then find 8 in the second column of the
syndrome table, say 8 = 8i, the i-th entry . If Vi is the coset leader corresponding
to s, in the table, then Lemma 7.42 implies that V lies in the same coset of C
as Vi, so V = Vi +Uj for some code-word Uj' As in §7.6, we therefore decode V

as Uj' Thus
d(v) = Uj = V - Vi, where vHT = 8i .

Example 7.44

Let C = R4 again, with parity-check matrix H and syndrome table as in Exam­
ple 7.43. If V = 1101 is received, we first compute its syndrome 8 = V H T = DOL
This is 84 in the syndrome table, so we decode V as

d(v) = V - V4 = 1101 - 0010 = 1111.

The advantage of this method is that , once H is known and the syndrome
table has been constructed, decoding is relatively quick: given v, the syndrome
8 = V H T is easily computed; since the syndrome table is much smaller than
the standard array, 8 can generally be found in it much faster than V can be
found in the standard array, especially if the syndromes are arranged in some
convenient order; finally, subtracting Vi from V to give Uj is easy.

Example 7.45

We can reinterpret the decoding algorithm for Hamming codes, described in
§7.4, in terms of syndrome tables . If C is a binary Hamming code lln , then
the coset leaders Vi are the n + 1 vectors V E V of weight wt(v) :S 1, start­
ing with VI = 0 and followed by the n standard basis vectors of V is some
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(qn _ l)(qn _ q) (qn _ qn-k+1)
(qk _ l)(qk _ q) (qk _ qk-1) .

order. Their syndromes s, consist of 81 = 0, followed by the transposes of the
columns of H in the corresponding order . Let us take these columns to be the
binary representations of the integers 1,2, . . . , n, in that order (as in §7.4), and
let us order the non-zero coset leaders by taking Vi+! = ei for i = 1, ... , n;
then the syndromes 81, . .. , 8 n+! are the binary representations of the integers
0,1, . . . ,n, in that order. If a received vector v produces a syndrome 8 = 0,
this is interpreted as meaning that no error has occurred, so L1(v) = Vj on the
other hand a syndrome 8 =j:. 0 is interpreted as the binary representation of the
position i where a single error has occurred, so L1(v) = v - e. .

Exercise 7.9

Let C be the binary linear code spanned by 011011,101101 and 111000.
Find a generator matrix G for C in systematic form, and hence find a
parity-check matrix H for C. Find the code-word c with information digits
110, and verify that cHT = O. Find the rate R and the minimum distance
d of C. Find a syndrome table for C; which error patterns does it correct?
Find PrE, where the channel T is a BSC with P > ~ '

7.8 Supplementary Exercises

Exercise 7.10

Show that the number of distinct k-dimensional linear codes C~ V = F::
is

Exercise 7.11

Show that if L 1 and L2 are distinct lines in the Fano plane S = PG(2, 2),
then their symmetric difference L 1 + L 2 is the complement of a third line.
Deduce that the subspace C of V = P(S) ~ FJ spanned by the lines
consists of 0, the 7 lines, their 7 complements, and S. Show that this code
is equivalent to the Hamming code 11.7.

Exercise 7.12

Show that if C is any perfect 1-error-correcting binary code of length n,
then the supports in S = {I, .. . , n} of the code-words of weight 3 are the
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blocks of a Steiner system S(2,3,n) on S. Show that if C = 1-£n, where
n = 2C

- 1, the resulting Steiner system is isomorphic to PG(c - 1,2) .

Exercise 7.13

An automorphism of a code C ~ V = F" is a permutation of the n coor­
dinates which maps the set C to itself. Show that these form a subgroup
Aut(C) of the symmetric group Sn. What are Aut(Rn ) and Aut(Pn)? List
the code-words of the binary code R2 EB R2 (see Exercise 6.20) and hence
find IAut(R2 EB R 2)1. Show that the number of distinct codes in V equiva­
lent to C is n!/IAut(C)I, and find all such codes when C = R 2 EB R 2 .

Exercise 7.14

Show that 1-£7 and PG(2,2) both have a group of automorphisms iso­
morphic to the group GL(3 ,2) of 3 x 3 invertible matrices over F2 • How
many automorphisms does 1-£7 have, and how many distinct codes C ~ FI
are equivalent to 1-£7? What are the corresponding results for 1-£n, where
n = 2c -I?

Exercise 7.15

Show that if C is a perfect t-error-correcting binary code of length n, then
the supports in S = {I, .. . ,n} of the code-words of weight d = 2t + 1
are the blocks of a Steiner system S(t + 1, d,n) on S. Deduce that (t~~~J

divides (t~~~ i) for i = 0,1, ... ,t.

Exercise 7.16

What does the factorisation of 1 + 90 + (92°) suggest about the possible
existence of a perfect binary code of length n = 90? Prove that such a
perfect code cannot exist.

Exercise 7.17

Show that if u, v are binary vectors, then wt(u + v) = wt(u) + wt(v) ­
2c(u, v), where c(u, v) is the number of i such that Ui = Vi = 1. Let G
be the block matrix (h2 I P) , where the 12 rows and columns of Pare
indexed by the vertices of an icosahedron, with Pi j = 0 if ij is an edge,
and Pi j = 1 otherwise. Show that G is a generator matrix for a self-dual
binary linear [24,12J-code C, and that G' = (P I h 2) is also a generator
matrix for C. Show that every code-word has weight divisible by 4, but
none has weight 4, and hence C has minimum distance 8. Show that the
punctured code Co is a 3-error-correcting perfect binary [23, 12]-code. (It
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can be shown that C and Co are equivalent to the Golay codes 924 and
923 .)

Exercise 7.18

Let H be the parity-check matrix given in Example 7.35 for the ternary
Hamming [4,2]-code, and let

G=(J+I I I)o H-H

where I and J are the 4 x 4 identity and all-ones matrices. Show that
G is a generator matrix for a ternary [12,6]-code C of minimum distance
6, and that the punctured code Co is a perfect 2-error-correcting ternary
[11,6]-code. (It can be shown that C and Co are equivalent to the Golay
codes 912 and 911.)

Exercise 7.19

The r-th order Reed-Muller code RM(r, m) of length n = 2m can be
defined inductively as follows: RM(O, m) is the binary repetition code of
length n, RM(m,m) = Fr , and if 0< r < m then

RM(r,m) = RM(r, m - 1) *RM(r - 1, m - 1)

(where * is defined in Exercise 6.20). Show that RM(r,m) is a binary
linear code of length n =2m , dimension k = L:~=o c;') and minimum dis­
tance d = 2m - r . List all the code-words in RM(I, 2) and RM(I, 3). Find
a generator matrix G and hence a parity-check matrix H for RM(l, 3);
using H, verify that this code has minimum distance 4.

Exit, pursued by a bear . (The Winter 's Tale)



Suggestions for Further Reading

Shannon's classic 1948 paper [Sh48] has been published , with a non-technical
introduction by Weaver, as a short book [SW63], and is well worth reading.
Ash [As65] gives a precise and detailed mathematical account of Information
Theory, while Reza's approach [Re61] is principally aimed at engineers, as is
McEliece's rather sophisticated treatment of Information and Coding Theory
in [McE77]. Chambers [Ch85] and Jones [Jo79] give concise introductions to
Information Theory from a more applied point of view than we have taken,
while Welsh [We88J emphasises the connections with Cryptography.

In Coding Theory, Hill [Hi86J and Pless [P182J both continue the develop­
ment of the subject somewhat further than we have, but starting at a similar
level. There are rather more advanced texts by Berlekamp [Be68], Blake and
Mullin [BM75, BM76], Pretzel [Pr92J and van Lint [Li82]' while the standard
reference books on Coding Theory are the encyclopeedic works by MacWilliams
and Sloane [MS77] and by Pless and Huffman [PH98] . Thompson [Th83] pro­
vides a very readable account of the early history of coding theory, in particular
the Hamming and Golay codes and their connections with sphere-packings and
simple groups; Anderson [An74J gives a good introduction to the combinatorial
background for these links, including the Steiner system 5(5,8,24), while Con­
way and Sloane [CS92] give a much deeper and more detailed treatment of this
material. Connections between codes, graphs and block designs are explored in
detail by Cameron and van Lint [CL91J . Applications of algebraic geometry to
codes are discussed by Pretzel [Pr92]' Goppa [Go88], and van Lint and van der
Geer [LG88Jj Stichtenoth [St93] gives a sophisticated account of the closely­
related subject of algebraic function fields and their connections with Coding
Theory.

Variable-length codes, as studied in Chapter 1, can be regarded as purely
algebraic objects. The set T* of all words in some alphabet T is a monoid,
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which means that it has a binary operation (concatenation) which satisfies the
associative law u(vw) = (uv)w and has an identity element (the empty word
s). Unique decodability of a code C ~ T* is equivalent to the condition that C
should be a set of free generators for the submonoid of T* which it generates.
These and other similar links between codes and algebra are explored in great
detail by Berstel and Perrin in [BP85).

Trees, which we introduced in Chapter I to describe certain classes of codes,
such as instantaneous codes, are important both in graph theory and (especially
in the case of binary trees) in other areas such as computer science. Huffman's
algorithm is one of a number of tree algorithms discussed in some detail by
Knuth in [Kn73]. For other applications of Huffman's algorithm, see [De74),
[Ev79), [Kn73), [ST81), [Zi59] .

Entropy, introduced in Chapter 3, also plays an important role in thermody­
namics as a measure of the disorganisation of a system, with Pi the probability
that the system is in the i-th state of its phase space. The Second Law of Ther­
modynamics states that entropy cannot decrease, thus providing a direction
for time by showing that systems tend towards disorder . Brillouin discusses
the connections between information theory and thermodynamics in [Br56] .
There are also strong links between entropy and ergodic theory (the theory of
measure-preserving transformations) : see Billingsley [Bi65], for instance.

The basic probability theory required in this book is covered in most text­
books on that subject. The more advanced Law of Large Numbers is used
in Chapter 5 to prove Shannon's Fundamental Theorem, and is explained in
Appendix B; for further discussion, and a proof, we recommend Feller [Fe50) .
Similarly, there are numerous textbooks covering the linear algebra we need in
Chapters 6 and 7, Blyth and Robertson [BR98] being a good example. We also
use a few results from analysis and calculus, such as the Mean Value Theorem
and Stirling's approximation for n! ; Fisher [Fi83] and Lang [La83) are typical
of a number of good undergraduate references for these topics . Finite fields are
used in Chapters 6 and 7; for further background and applications, one could
consult [KR83).

There is a lot to be said for reading original papers , in order to get a feeling
for how the originators of a subject thought and expressed themselves. This is
particularly true in the area of Information and Coding Theory: most of these
papers, being relatively recent, are easily available, and many can be read with­
out a deep mathematical background. The collections of key papers edited by
Berlekamp [Be74) and Slepian [S174) cover most of the important developments
in the first 25 years of the subject. Readers with library access to periodicals
such as Bell System Technical Journal, IEEE Transactions in Information The­
ory, and Information and Control will also find a number of interesting and
important research papers: Shannon's paper [Sh48), for instance, a very influ-
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ential paper on variable-length codes by Gilbert and Moore [GM59], results by
Schwartz [Sc64] and Golomb [Go80] on the non-uniqueness of Huffman codes,
and the paper by Kelley [Ke56] on gambling from which Exercises 5.11 and
5.12 are derived .



Appendix A
Proof of the Sardinas-Patterson Theorem

The Sardinas-Patterson Theorem was stated without a complete proof as The­
orem 1.10 in §1.2. Recall that a code C ~ T* is defined to be uniquely decodable
if, whenever UI • . . U/ = VI .. . Vm with Ui , vi E C, then l = m and Ui = Vi for
each i. Given a code C, we define Co =C,

Cn = {w E T+ Iuw =V where U E C, V E Cn- I or U E Cn-I, V E C}

for each n ~ 1, and Coo = U~=I Cn . Then the Theorem states that C is uniquely
decodable if and only if Cn Coo = 0. The proof we give here is based on those
given by Bandyopadhyay [Ba63] and Seeley [Se67] .

First we need some notation. If u, v E T* and u is a prefix of v, that is,
v = uw for some w E T* , we write u ::; v ; we also write w = u-Iv, meaning
that w is obtained by deleting the prefix u from v. (Note that u- I alone is
not defined.) If, in addition, u :j: v then we write U < v. Now we can start the
proof.

({::) If C is not uniquely decodable, we can choose an ambiguous code-sequence
of least length, say

UI .· . UI = VI" .Vm ,

where Ui, Vi E C, and if l = m then U i :j: Vi for some i. We will work from left to
right through the word represented by (*), using the overlapping code-words Ui

and Vi to define a sequence of words Xn E Cn for n = 1,2, . . . , until eventually
some Xn coincides with either U/ or Vm , giving us the required element of CnCoo '

By minimality we have UI :j: VI (otherwise U2 . • . UI = V2 • .. Vm is a shorter
ambiguous code-sequence) , so (*) implies that either UI < VI or VI < UI ;
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renaming if necessary, we may assume that VI < Ul . Then the non-empty word
Xl == v1lul is in Cl , since Vl Xl == Ul with Ul ,Vl E C == Co. IfVlV2 < Ul, then
since V2 E C and V2(VlV2)-lUl == v1lul == Xl E Cl the word X2 == (VlV2)-lul

is in C2 • We continue like this until we reach the largest integer i l such that
VI" .Vi, < Ul ; note that Xn == (VI . .. Vn)-lUl is in Cn for 1 ::; n ::; i l . This is
illustrated in Fig. A.I, where horizontal segments denote words.

I Ul I
Xi. +i. -,

Xi,+ j,+ I i
,
:,

!U2 1 u31 ----+IUj~·'lh:,.----...:.....---_+--
Xii! Xi1+l :

, I
: Xi,+2:
I i
, I, ,, ,, ,, ,

X2 ! !
Xl I Xit+jd

----..,;~--_11 "-t-'--~~'-=----1
! !

I I r i
Vi, Vi,+1 Vi,+2

Figure A.l
Vi, Vi,+ I Vrn

At the next stage, we must have UI ::; VI . •. Vi, +1 ' If Ul == VI . . . Vi, +1 (so
that l == 1 and m == i l + 1 by minimality), then Vi,+1 == Xi , E CnC i , ~ Cncoo ,
so Cn Coo =F 0. Hence we may assume that Ul < VI ... ViI +1. Then the word
Xil+l == U1l vl" .Vil+l is in Ci l + l ' since XiIXi,+1 == Vil+l E C and Xi, E Cil .

IfUlU2 < Vl,,·Vi,+l , then the word Xil+2 == (UlU2) -1(Vl " ,Vi,+d is in Ci l + 2

since U2Xil +2 == Xi, +1 E Ci, +1 and U2 E C. Again we continue like this until we
reach the largest integer it such that Ul • . . uil < VI . . . ViI +1, giving XiI +jl ==
(Ul " ,Ui,)-l(Vl " .Vil+l) E Ci,+i,'

Now VI" .Vil+l ::; Ul " , u iI +1 , and if we have equality here then (as be­
fore) we have reached the end of our minimal ambiguous code-sequence (*),
with uil +1 == Xi, +i1 E C n Coo . Assuming that VI . .. ViI +1 < UI • . . Uil +1 , we
have xi,+h+l == (VI ... v i,+d-l(UI ... uh+d in Ci l + h +1 since Xil+i IXi,+h+1 ==
uh +1 E C with Xi, +il E Ci l +h ' We continue like this until we reach the
largest integer i 2 such that VI • .• Vi2 < Ul ' " Uil +1. This gives Xi2+i, ==
(VI. " Vi2)-1(UI • . • Uil+d E Ci2+ i l ·

At the next stage, Ul . .. uh +1 ::; VI • . • Vi2+1, and we continue as wedid when
we reached U 1 ::; VI . • . Vit +1 . Eventually, we must reach the end of the code­
sequence (*). Now Iud =F Ivml, for otherwise Ul == Vm and hence Ul .. • Ul-l ==
VI '" Vm-l , contradicting minimality. If Iud> Ivml (as in Fig. A.I) then we
finish with m - 1 == i p for some p, and Vm == xip+ip_l E CnCoo ' If, on the other
hand, Iud < Ivml then we end with 1- 1 == jp for some p, and Ul == Xip+jp E

Cn Coo'
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Example A.I

Suppose that the minimal ambiguous sequence (*) has the form U I U2U3

VI V2V3V4V5, where the words Ui and Vj overlap as in Fig. A.2.

Ua

X6X4

Xa

I ,
, I
I I
I 1
r I

: i X5 ,! -----:-:-----
: I :
: ! :

Xl : I ,
--,-....:..:...;::.....--!----....:..:....::......----ll :

r I r
I 1 I
, 1 ,
I I 1
, 1 I
r I ,
I I I, I

va
Figure A.2

V5

By following the above process we find that i l = 1, it = 1, i 2 = 3, h = 2, i 3 =
4 = m - 1, so p = 3 and Vs = X6 E CnC6 ~ CnCoo '

(=» Suppose that Cn Coo ::f. 0, so Cn Cn ::f. 0 for some n 2: 1; let Vn denote an
element of Cncn . Applying the definition of the sets Cn , . . . ,C2 (in that order) ,
we see that the following statement is true for 2 ~ k ~ n :

(Sk) either Uk-IVk =Vk-I or Vk-IVk =Uk-I, for some Uk-I E C, Vk-I E Ck- I .

Similarly, the definition of CI then gives

(Sd UVI = u' for some u ,u' E C.

Here each Vk :j:. £, so in particular U :j:. u' , a fact we need later. These statements
(Sk) will enable us to construct a word which can be factorised into code-words
in two different ways. To do this, we need to show that for each k = 1, . .. ,n-1 ,
the element Vk E Ck also satisfies the following statement:

(Tk) VkYk = Zk for some Yk, Zk E C*.

Firstly, (Tn-d is true, since (Sn) gives

Vn-IYn-1 = Zn-l

with either Yn-l = £ and Zn-l = Un- lVn , or Yn -l = Vn and Zn-l = Un-I ; in
either case Yn-l, Zn-l E C* since Un-I , Vn E C. Now we will show that (Tk)

implies (Tk- l) for 2 ~ k ~ n - 1. Suppose that (Tk) is true. Statement (Sk)

gives
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so either
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Both of these assertions have the form

where

respectively; in either case, Yk-l and Zk-l are elements of C* (since Yk and Zk

are, with Uk-l E C), so (Tk-d is proved. It follows that each (Tk) is true, so
taking k = 1 gives

VIYI = Zl for some YI , Zl E C* .

Then (3d implies that
U'YI = UVIYI = UZI,

where YI , Zl E C* and u, u' are distinct code-words. Thus the equation U'YI =
UZI gives two distinct ways of factorising the same code-sequence into code­
words, so C is not uniquely decodable. 0

Example A.2

For an illustration of this , we return to Example 1.12 of §1.2, where C =
{01, 1,2, 210}. There we found 1 E C n C3 , so in the above notation we put
n =3 and V3 = 1. Then the statements (3k ) take the form

(33 ) 0.1 = 01, that is, V2V3 = U2 where U2 = 01 E C and V2 = 0 E C2 ;

(32 ) 1.0 = 10, that is, UI V2 = VI where UI = 1 E C and VI = 10 E C1 ;

(3d 2.10 =210, that is, UVI =u' where U =2 E C and u' =210 E C.

Thus (T2), that is, V2Y2 = Z2, becomes 0.1 = 01 where Y2 = 1 E C* and
Z2 = 01 E C*. Similarly (Td , that is, VIYI = ZI, becomes 10.1 = 101 where
YI = 1 E C* and Zl = 101 = 1.01 E C* . Using (3d, (Td and the factorisation
of Zl we have

210.1 =2.10.1 =2.101 =2.1.01.

This gives two factorisations 210.1 and 2.1.01 of the code-sequence 2101 as a
product of code-words, confirming that C is not uniquely decodable.



Appendix B
The Law of Large Numbers

In the proof of Shannon's Fundamental Theorem (Theorem 5.9), one needs
to estimate the number of errors in a transmitted code-word u = Ul . . . Un of
length n , that is, the number of non-zero coordinates e i = Vi - U i of the error­
pattern e =v - u , where v =Vl . . . V n is the received word. In the case of the
BSC, where A = B = Z2, we have ei = 0 or 1 as U i is transmitted correctly or
incorrectly. These two events have probabilities P and Q (= P) , independently
of what happens to the othe r digits of u , so one can regard ei , . .. ,en as the
outcomes of n successive Bernoulli trials (independent, identically distributed
random variables) . If we regard the values 0 and 1 of each e, as real numbers,
rather than as integers mod (2), then the number of errors is I:i e. . The Law
of Large Numbers tells us about the sum (or equivalently the average) of the
values of a large number of Bernoulli trials, so it gives us the required estimate
for the number of errors.

Let X be a random variable, taking finitely many real values xi with prob­
abilities Pi , so that 0 ~ Pi ~ 1 and I:i Pi = 1. The mean , or expected value of
X is

J.L = E (X) = I>iXi'
i

Now let Xl, . . . ,X n be n successive Bernoulli trials of X, that is, n independent
random variables taking the values xi with the same probabilities Pi as X .
(Typical examples are repeatedly tossing the same coin, or rolling the same
die.) If

1 n
y= - LXi

n i = l
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is the average of n outcomes , then our intuition suggests that when n is large,
Y should be close to u, For instance, if X is an unbiased coin, and we score
Xj = 1 or 0 for heads or tails , then J-l = ~ and we expect that Y :::::: ~ also.

Of course, we cannot guarantee that Y :::::: J-l in all cases. If we toss the
coin n = 10 times, then an outcome of 10 heads (Y = 1) is unlikely, but
not impossible: it has probability 2- 10 = 1/1024 :::::: 0.001, which is small but
non-zero. Even an outcome of, say, 6 heads out of 10 (giving Y = 0.6) is not
particularly surprising, since it has probability (16°)/210 :::::: 0.205, compared
with the probability of about 0.246 for the most likely outcome, 5 heads. If we
toss the coin n = 100 times, however, then it is far more likely that Y will be
close to t: for instance, Y = 1 now has probability 2-100 :::::: 10-3°,and Y = 0.6
has probability C6000)/2 100 :::::: 0.010, so both are extremely unlikely (though still
not impossible!).

The Law of Large Numbers confirms this intuition, telling us that as n

increases , it is increasingly likely that Y will be close to u. More precisely, it
states that for any 1] > 0, we have IY - J-li ~ 1] with probability approaching 1
as n -t 00, or equivalently,

This is, in fact , more correctly known as the Weak Law of Large Numbers,
since there are stronger versions of this result . For further details of this and
other limit theorems in Statistics, with proofs, see [Fe50] .



Appendix C
Proof of Shannon's Fundamental

Theorem

In §5.4 we stated Shannon's FUndamental Theorem for the BSC:

Theorem 5.9

Let T be a binary symmetric channel with P > ! 'so r has capacity C =
1- H(P) > 0, and let 8,e > 0. Then for all sufficiently large n there is a code
C ~ Z~ , of rate R satisfying C - e ~ R < C, such that nearest neighbour
decoding gives error-probability PrE < 8.

We will now give a complete proof, filling in the gaps in the outline proof
in §5.4.

Proof

Let V = Z~ . We will regard a code C ~ V as an ordered sequence (ui , . . . ,UM)

of distinct elements of V, so different orderings of the same elements are treated
as different codes. This is just a technical device to help the proof along: hav­
ing shown that an ordered code satisfies the theorem, we can then forget the
ordering.

First we consider decoding. Let us choose a small 'TJ > °(we will specify
later how small) , and put p = n(Q + 'TJ) where Q = P. The motivation for
this is that we expect about nQ incorrect symbols in any word of length n , so
the transmitted and received words U and v probably satisfy d(u, v) ~ nQ; by
taking p to be slightly larger than nQ, we can expect that d(u, v) ~ p with
high probability.
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so

We will use p to find an upper bound for the average error-probability PrE.
Suppose that a code-word u, E C is transmitted, and v = u, +e E V is received,
where e is the random error-pattern. If d(u. , v) :::; p, and d(Uj, v) > p for all
j i- i, then nearest neighbour decoding gives .1(v) = u., which is correct.
Equivalently, if decoding is incorrect then either d(u., v) > p or d(Uj, v) :::; p
for some j i- i. Averaging over all e, we deduce that the conditional probability
Pr (.1(v) i- u, Iu.) of incorrect decoding, given that u, is transmitted, satisfies

Pr(.1(v) i- u, lUi):::; Pr(d(ui, Ui+ e) > p)+ :LPr(d(uj, Ui+e):S; p). (C.1)
#i

Next we show that the first term on the right-hand side can be made arbi­
trarily small. Writing e = (el , . .. , en) with each ei = 0 or 1, we have

n

d(ui,ui +e) = wt(e) = :Lek
k=l

(where the addition is in Z, not Z2). Now p = n(Q + 'T/), so

1 n
Pr (d(ui, u, + e) > p) = Pr (;; :L ek > Q + 'T/)

k=l

1 n

:S;Pr(!;;:Lek-QI >'T/) '
k=l

We can regard el, .' " en as Bernoulli trials, taking the values 0 or 1 with
probabilities P and Q. The mean, or expected value JL = E(ek) of each ek is
therefore PO + Q.1 = Q, so the Weak Law of Large Numbers (Appendix B)
gives

1 n

Pr(I;;L:>k-QI >'T/) -s o as n-too.
k=l

(This simply says that for large n , the average of el, ... , en is probably close
to their mean.) Thus

Pr (I~d(ui'u, + e) - QI > 'T/) -t 0 as n -t 00,

8
Pr (d(ui, u, + e) > p) < '2 (C.2)

for all sufficiently large n. This deals with the first term in (C.1) . Averaging
(C.1) over all code-words u, = uj , . . . , UM of C (assumed to be equiprobable),
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we see that C has error-probability

1 M
PrE = M L Pr (L\(v) # u, lU i)

i=l
1 M

~ - L (Pr (d(Ui, u, + e) > p) + L Pr (d(uj, u, + e) ~ p))
M i=l #i

1 M 8
< M L (2 + L Pr (d(Uj, u, + e) s p))

i=l jj:.i

81 M

= 2+ M LLPr(d(uj ,Ui + e) s p). (0.3)
i=l jj:.i

The double sum in (0.3) is difficult to deal with, since it depends heavily
on the particular code C = (Ul,"" UM) chosen: the probabilities tend to be
large or small as the code-words are close or far apart. Shannon's brilliant idea
was to "even out" this effect by taking an average over all possible choices of
C. If j(C) is a number associated with each code C, then the average of j is

7= (2
n
2~ ;V)! L j(C),

. c

where the summation is over all the 2n !/(2n - M)! distinct M-element ordered
codes C = (Ul' . . . , UM) in V. (There should be no confusion with the notation
7= 1 - j, which we will not use here .) Applying this to (0 .3), we see that the
average of the error-probabilities of our codes satisfies

(0.4)

in the first line we use the fact that 8 and M are independent of C, and in the
second the fact that the average of a sum is the sum of their averages.

To deal with the summation in (0.4), let us choose any pair of subscripts
i # j . Now d(uj, u, + e) = d(uj - u. , e), so d(uj , u, + e) ~ p if and only if
Uj - u, lies in Sp(e) , the sphere of radius p centred at e. Let

{
I ifuj -uiESp(e) ,

je(C) = 0 if Uj - u, rt Sp(e) .
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Pr (d(uj, u, + e) ~ p) = Pr (Uj - u, E Sp(e))

(2n - M)!"= 2n I LJ Pr (u, - u, E Sp(e))
. c

= (2
n
2~ ~)! ~(~pr (e) ie(C))

= ~(pr(e) (2n2~~)! ~ ie(e))

= L: Pr (e) ie(C) , (C.5)
e

where Pr(e) is the probability (= pn-wQw) of a particular error-pattern e of
weight w. (This argument simply says that the operations of averaging over C
and e commute with each other.) Now for each fixed e, ie(C) is the proportion
of codes C such that Uj -Ui E Sp(e). As C = (UI, . . . , UM) ranges over all codes,
u, and Uj range over all distinct pairs in V, each such pair appearing equally
often , so Uj - Ui ranges over V \ {O}, each non-zero element of V appearing
equally often. It follows that for each e E V we have

J, (C) = ISp(e) \ {O}I < ISp(e)1 = _1_" (n)
e IV \ {O} I - IV \ {O}I 2n - 1 LJ r '

r'5.p

since there are (;) words at each distance r from e. This upper bound is
independent of e, so if we average over all e then (C.5) gives

This holds for each pair i -I i, so if we sum over all M (M - 1) such pairs then
(CA) gives

- 8 1 1 L:(n)PrE < - + - .M (M - 1) .--
2 M 2n -1 r

r'5.p

< ~ + M" (n).
- 2 2n LJ r

r'5.p

Now suppose that TJ is chosen sufficiently small that

1
Q+TJ<2

(C.6)
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(possible since Q < ~). Then Exercise 5.7 (with>' = Q + 'T1 , so that p = >.n)
implies that

where H is the binary entropy function H2 , so

PrE < ~ + 2-n M . 2n H (A)
2

= ~ + M . 2n (H (A)- 1) .
2

We need an upper bound on the second term in (C.7). Now

10g2(M. 2n (H (A)- l ») =10g2 M + n(H(>') -1)

=n(R - 1 + H(>.)),

(C.7)

where R = ~ 10g2 M is the rate of C. Suppose there is some constant a < 0
such that

R - 1 + H(>') ~ a

for all n ; then
n(R - 1 + H(>.)) :::; na -t -00

as n -t 00, so M . 2n (H (A)- 1) -t 0 as n -t 00. Hence

M . 2n (H (A) - 1) < ~
2

for all sufficiently large n, so (C.7) gives PrE < 8. Since the average of PrE over
all C is less than 8, it follows that at least one code C must have PrE < 8, as
required .

To complete the proof, it remains for us to justify our choices of constants.
We need to show that , given Q < ~ and e > 0, we can find 'T1 > 0 and a < 0
(independent of n) such that if n is sufficiently large then

(i) Q + 'T1 < !'
(ii) C - e :::; R < C (where C = 1 - H(Q) and R = ~ 10g2 M for some
MEN),

(iii) R - 1 + H(Q + 'T1) :::; a .

Without loss of generality, since C > 0 we can take e sufficiently small that
C - e ~ O. Now C = 1 - H(Q), the function H is continuous, and Q < ~, so
we can choose 'T1 > 0 sufficiently small that both

1
Q+'T1< 2'
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2t:
C - e < R < C - - .- - 3

We put M = 2k ; thus MEN and

t:
I-H(Q+71)~C-3·

For each n ~ 3/t: we can choose a rational number R = kin (k, n E N) such
that

1 k
- logzM = - = R,
n n

so (ii) is satisfied. Since R ~ C - 2; and 1 - H(Q + 71) ~ C - J' we have

R-1 + H(Q + 71) ~ (C - ~) - (C - D= -~ ;

this gives (iii) with a = - J < 0, independent of n.

Figure C.1 illustrates the relationship between the quantities used here.

1

o

R

---~~~~~~~~~I---~~-~-~---------I~
i---f-~-----­

r---t-l---"...---------------------- -

Q

Q+1]

Figure C.l

J
2



Solutions to Exercises

Chapter 1

1.1 Use induction on n . If n = 0 then Cn =C, so Iwl ~ l. If n > 0 then uw = v
with v E Cn - 1 or C, so Iwl ~ Ivl ~ 1 by induction or by definition of 1
respectively. There are only N = r + r 2 + ...+ r1 = r(r1 - 1)/(r - 1) non­
empty r-ary words w with Iwl ~ l , so ICnl ~ N for each n . There are only
2N different sets of such words w, so within the sets Co , ... ,C2N there must
be a repetition, c, = c, with i < j ~ 2N • By Eq. (1.3), each Cn depends
only on C and Cn - l , so Cj+k =Ci+k for all k ~ 0; hence each Cn =Co or Cl

or . . . or Cj - l , so Coo = Co UCl U... UCj - l . Thus we have constructed all
of Coo as soon as we find a repetition among the successive sets Co, Cl , . . . .

1.2 If C = {02,12, 120,20 , 21} then C1 = {O} , Cl = {2}, C3 = {O, I}, C4 =
{2,20},Cs = {0,1}; the repetition C3 = Cs implies that Cn = {0,1} or
{2,20} for odd or even n ~ 3, so Coo = Cl U ... U C4 = {O, 1,2, 20}. If
C = {02,12,120,21} then Cl = {O} , C2 = {2}, C3 = {I}, C4 = {2, 20}, Cs =
{I}; again C3 =Cs implies that Cn ={I} or {2,20} for odd or even n ~ 3,
so Coo =Cl U· ·· U C4 ={O, 1, 2, 20}.

1.3 If C = {02, 12, 120,20,21} then Exercise 1.2 gives Coo = {O, 1,2, 20},
containing the code-word 20, so C is not uniquely decodable by The­
orem 1.10; for instance 1202120 decodes as 120.21.20 or 12.02.120. If
C = {02, 12,120,21} then Exercise 1.2 gives Coo = {O, 1, 2, 20}, disjoint
from C, so C is uniquely decodable.

1.4 Since u E Cl , u'u = v' for some u',v' E C, so t =u'uw decodes as u'v or
v'w .

165
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1.5 Since 01,012120 E C we have 2120 E C1; then 212 E C gives 0 E C2 , so
01 E C gives 1 E C3 , and then 120 E C gives 20 E C4 • Thus 20 E Cn Coo'

1.6 Since W E C3 there exist u E C,v E C2 with either (i) uw = v or (ii)
vw = u. Since v E C2 there exist u' E C, v' E C1 with either (a) u'v = v'
or (b) v'v =u' . Since v' E C1 there exist u",v" E C with u"v' = v" . Now
u,u',u",v",w E C, so in cases (i)(a), (i)(b) , (ii)(a) and (ii)(b) we have the
following examples of non-unique decoding: u"u'uw =u"u'v =u"v' =v" ,
v"uw = u"v'v =u"u', u"u'u = u"u'vw =u"v'w = v"w , v"u =u"v'vw =
u"u'w.

1.7 For either code, C« is non-empty for each n ~ 1, so not all infinite
code-sequences decode uniquely. For instance 120212121 .. . decodes as
120.21.21. . .. or 12.02.12.12. .. ..

1.8 C1 = {I, 11} and C2 = {I , 11}, so Cn = {I, 11} for all n ~ 1; thus Coo =
{I, 11}, disjoint from C, so C is uniquely decodable by Theorem 1.10. Wait
until the sequence of Is ends; if there are k Is, where k == 0,1 or 2 mod (3),
decode (uniquely) as 0.(111)k/3, 01.(111)(k-I)/3 or 011.(111)(k-2)/3.

1.9 Yes. A first symbol 0 indicates WI , while a 1 indicates the start of W2 , W3

or W4; in the latter case a second symbol 0 indicates W 2, while a 1 indicates
W3 or W4 ; in this latter case a third symbol 0 or 1 distinguishes between
W3 and W4.

1.10 Up to level 2 we have

00 01 02 10 11 12 20 21 22

~I/ ~I/ ~I/
0 t 2

e

Now attach three vertices vO, vl , v2 to each of the nine vertices v at level
2.

1.11 C = {O, 10, 110, 111, 2000} is an example. No, since successive choices would
eliminate proportions hht,t, t, t of T*, and these add up to I~ > 1.

1.12 No, by Kraft's inequality, since L:: r-l ; = ~~ > 1. {O, 10, 11, 12, 20, 21, 220,
221, 222} is an example. There are 3 choices (0,1 or 2) for the code-word
of length 1, and then m= 6 choices for the five code-words of length 2,
leaving a unique choice for the three code-words of length 3, so the number
of such codes is 3 x 6 x 1 = 18.
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1.13 If j 2: 2 then t =1'w with last code-word (well-defined since C is uniquely
decodable) W = 0,10 or 11. If W = 0, there are N j - l possibilities for t l

(of length j - 1); if W = 10 or 11, there are Nj - 2 possibilities for l' (of
length j -2) in each case. Hence Nj = Nj- l +2Nj_2 . This 2nd-order linear
recurrence relation has auxiliary equation A2 = A+2, with roots A = 2, -1,
so the general solution is Nj = A.2 j + B .(-I)j . The initial conditions
N l = 1 (t = 0) and N 2 = 3 (t = 00,10,11) give A = 2/3,B = 1/3, so
N, = (2j +l + (-I)j)/3. (See Chapter 4 of [An74] for recurrence relations .)

1.14 In the proof of Theorem 1.20, there are r l l choices for Wl, then (after
pruning) r l2 _rI2-l l = r I2(I_r-ll) choices for W2, then ria _rla-ll_rla-12 =
ria (1- r-lt - r-12) choices for W3, etc., giving r l l +12+ ·+lq (1- r-l l ) . . . (1­
r-l l - . . . - r-lq- l) choices for Wl, ' . . , wq .

1.15 C is exhaustive if and only if every leaf of T$.l is above a code-word. The
codes in Examples 1.16 and 1.18 are exhaustive.

1.16 Imitate the proof of Theorem 1.20: C is exhaustive if and only if every
leaf of T9 lies above a code-word; there are r l leaves, and each code­
word of length li is below r l-l; leaves, so this implies r l :::; Li r l- l;, that
is, Li r-l ; 2: 1. Equality occurs here if and only if each leaf lies above a
unique code-word, that is, C is a prefix code, or equivalently, instantaneous.

1.17 By Exercise 1.16, if (b) is true then (a) is equivalent to (c); thus (a) and
(b) imply (c), and (b) and (c) imply (a). If (a) and (c) are true, then in the
proof of Theorem 1.20 every leaf of T9 is above a code-word, giving (b).
If T = Z2 then the codes {O}, {O, 1, OO} and {O, 00, 01} satisfy (a) , (b) and
(c) alone, so none of (a), (b) or (c) implies any other.

Chapter 2

2.1 Let Pi > Pj with li > lj . Transposing the code-words Wi and Wj in C gives
another instantaneous code C* . The summands Pili and pjlj in L(C) are
replaced with Pilj and Pjli in L(C*). Then (Pili + pjlj) - (Pilj + pjl;) =
(Pi - Pj)(li -lj) > 0 gives L(C) > L(C*), contradicting the optimality of
C. Hence li :::; lj.

2.2 S determines a vector p = (Pl, . . . ,pq) E Rq with Pi 2: 0 and LPi = 1, and
each code C determines a vector 1= (h, ... , lq) E Nq c Rq, so that L(C) =
L Pili = p .I. Given p, the problem is to show that some instantaneous
code minimises p.I. The proof of Theorem 2.3 shows that , since each li E
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N, there are only finitely many possible values of p.l not exceeding some
constant; among the finitely many corresponding to instantaneous codes,
one can choose a least value, corresponding to an optimal code.

2.3 One solution is C = {O, 10, 1100, 1101, 1110, 1111}, with L(C) = LiPili =
2.2. Another possibility is C = {I, 00, 011, 0100, 01010, 01011}, so C and
{ld are not unique. However, L(C) is unique by the optimality of Huffman
codes.

2.4 When q = 3, C = {O, 10, 11} has L(C) = PI + 2P2 + 2P3 = 2 - PI (since
LPi = 1). When q = 4, li = 1,2,3,3 or 2,2,2,2 as P3 + P4 ~ PI or
P3 + P4 ~ Pll giving L(C) = PI + 2P2 + 3P3 + 3P4 = 3 - 2PI - P2 or
2PI + 2P2 + 2P3 + 2P4 = 2 respectively.

2.5 In Exercise 2.3, the merged probabilities p' ,p", ... are 0.1,0.2,0.3,0.6,1
with sum 2.2. In Exercise 2.4, with q =3, they are P' =P2 +P3 and P" =1,
with P' + P" =P2 + P3 + 1 =2 - PI ; when q =4 they are P' =P3 + P4, then
P" =P2 + P3 + P4 or PI + P2 as P3 + P4 ~ PI or P3 + P4 ~ PI, and pili =1,
with P' + plI + pili =1 + P2 + 2P3 + 2P4 =3 - 2PI - P2 or 2 respectively.

2.6 The proof that Huffman codes are optimal is by comparing Huffman codes
with optimal codes. This assumes that every source has an optimal code,
so the argument is circular.

2.7 Binary: C = {00, 10,010, 110, 111,0110,01110,01111} with L(C) = 2.72.
Ternary: C = {O, 10, 11, 12,20,21 ,220, 221} with L(C) = 1.77.

2.8 The argument is the same as in §2.3, except that Sq-r+l, . . . , Sq are amal­
gamated, with L(C) - L(C') = Pq-r+l (l + 1) + . .. + pq(l + 1) - (Pq-r+l +
. .. + pq)l = Pq-r+1 + . .. + Pq = p'. Any extra symbols Si adjoined have no
effect on L(C), since Pi = 0.

2.9 8 3 has 23 = 8 symbols with probabilities 8/27,4/27,4/27,4/27,2/27,2/27,
2/27, 1/27. In Huffman coding, the merged probabilities are 3/27, 4/27,
7/27, 8/27, 11/27, 16/27, 1, with sum L3 = 76/27.

2.10 There are 24 optimal binary codes, the 4! permutations of {00, 01, 10, 11}
(these have L(C) = 2, whereas any other instantaneous code has L(C) ~
2.1). Of these, eight are Huffman codes, namely those in which the last two
code-words (those with lowest probabilities) are siblings: in constructing
the codes C",C' and C there are two possibilities (w'O,w'l or w'l,w'O) at
each of the three stages, giving 23 = 8 possibilities for C.
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2.11 The given inequalities imply that s' = Sq-l V Sq, and then s(k) = Sq-k V

s(k-l) = Sq-k V . . . V Sq for 1 < k :::; q - 1, using induction on k. Thus for
i :::; q -1, s, is amalgamated i times (in S(q-l-i), . .. ,S(q-2»), giving li = i ,

while Sq is amalgamated q - 1 times , giving lq = q - 1. In assigning code­
words there are just two choices at each of the q-1 stages: a code-word w(k)

for s(k) generates code-words w(k)O and w(k)1 for Sq-k and s(k-l) in either
order. Hence there are 2q- 1 binary Huffman codes for S . The probabilities
Pi = 2-i for i = 1, .. . , q - 1 and Pq = 21- q satisfy the given conditions,
since Pi+2 + ... + Pq =2-i-1 < Pi for i =1, ... , q - 3.

2.12 In r-ary Huffman coding, a code-word w' E C' of length l is replaced with r
code-words of length l +1 in C, so u(C) - u(C') = r(l +1) -l = (r -1)l + r .
Since r is fixed, one can minimise u(C) by minimising l at each stage of
the algorithm. This is achieved by placing each amalgamated symbol s' as
early as possible among the ordered symbols of S', whenever its probability
coincides with others. In the given example, s' = S3 V S4 has probability
p' = 1/3; since Pl = P2 = 1/3 also, there are three possible places for s'
in S'; placing it before Pl ensures that l = 1 rather than 2, and this yields
u(C) = 2 + 2 + 2 + 2 =8 rather than u(C) = 1 + 2 + 3 + 3 = 9.

2.13 Construct a binary Huffman code C= {WI, ... ,wq } using the probabilities
Pi for the objects Si. For each k, let Tk be the set of objects whose code­
word has 1 in position k, and let Qk be the question "Is S in Tk?" . Then
asking QJ, Q 2, ' .. identifies Wi and hence s, after li = Iwi! questions, so
the average number of questions needed is Li pili = L(C). Similarly any
other sequence of questions would, by assigning symbols 1 or 0 to successive
answers "yes" or "no", correspond to another binary prefix code for S, so
the Huffman code, being optimal, corresponds to a best possible sequence.

2.14 Yes: if q = 3 then L(C) = 5/3; S2 has nine equiprobable symbols, giving
L2 = 29/9 by (2.4), so L2/2 = 29/18 < L(C). If q = 21 for some integer l,
then in C each li = l and hence L(C) = l ; similarly S" has 21n equiprobable
symbols, so Ln = in and hence Ln/n = L(C) for all n.

Chapter 3

3.1 H2(S ) = LiPi log2(1/Pi) ~ 2.681 and H3 (S ) = LiPi log3(1/Pi) ~ 1.691.
Binary and ternary Huffman codes have average word-lengths L(C) = 2.92
and 1.77 respectively.
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3.2 Let S have probabilities Pi = 2-1,2-2,2-3 , . .. , 22- q , 21- q , 21- q j let C
have code-words 0, 10, 110, . . . , 1 ... 10, 1 . . . 10, 1 . . . 11 of lengths 1, 2,
3, . . . ,q - 2, q -1, q - 1. Then H2(S) = 2-1.1 + 2-2.2 + 2-3.3 + . . . +
22- q.(q - 2) + 2.21

-
q .(q - 1) = L(C).

3.3 H2(S) = L:iPi IOg2(I/Pi) ~ 2.144. A Huffman code C has L(C) = 2.2 by
Exercise 2.3, so 17 = H/ L ~ 2.144/2.2 ~ 0.975.

3.4 A Shannon-Fano code has l, = flog2(I/Pi )1 = 2,2 , 4,4,5,5, so L = 2.7 and
17 ~ 2.144/2 .7 ~ 0.794.

3.5 H2(S) = - ~ log2 ~ - i log2 i = log25 - ~. The extention S" has (~)

symbols of probability (4/5)k(I/5)n-k = 4k/5 n for each k = 0, . .. , n , each
given a code-word of length flOg2(5n /4 k)1 = fn log251-2k, so if an denotes
fn log2 51 then a binary Shannon-Fano code for S" has average word-length

3.6 S" has q" symbols, all of probability 1/n", so each is given an r-ary code­
word of length [log, qn1 = fn log, q1- Thus L n = fn log, q1 and hence
~Ln = fnlogrq1/n -+ logrq = Hr(S) as n -+ 00 .

3.7 Define g(x) = f(e - X
) , a strictly increasing function on [0, +(0) with g(x +

y) = g(x) + g(y) for all x , y ~ 0 (which extends to all finite sums) . Putting
x = y = 0 shows that g(O) = O. Define c = g(I) , so c > g(O) = O. We will
show that g(x) = ex for all x ~ 0, so f(x) = -cln x = -logr x as required,
with r = e1/ c > O. Induction on n gives g(2n ) = c2n for all integers n ~ O.
Also c =g(l) = g(~) +g(~), so g( ~) = c/2 , and induction gives g(2n) = c2n

for all n < O. Each x ~ 0 has a binary expansion x = L::=-oo an 2n

with each an = 0 or 1, so L::=M an2n :S x :S L::=M an2n + 2M for
each M :S N. Applying 9 to these inequalities and using its additive and
increasing properties gives L::=M can2n :S g(x) :S L::=M can2n + c2M.
Dividing by c and then letting M -+ -00 we see that g(x)/c = z , as
required.

3 8 - 2 3 12 ith b biliti - 1 2 3 4 5 6 5 4 3 2. S i - , , . .. , WI pro aonrttes Pi - 36' 36' 36' 36' 36 ' 36 ' 36 ' 36' 36' 36 '

3
16

' giving H2(S) = L:iPilog2(I/p;} = (23 + 3010g23 - 510g25)/18 ~

3.2745. In Huffman coding the successive merged probabilities are pI =
3
26

' 3~ ' 3
56

' 3
76

' 3
86

' ;~ , ;~ , ;~ , ~~, 1, with sum L(C) = 119/36 = 3.30555 .. . .
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In Shannon-Fano coding l, = f!og2(1/Pi)1 = 6,5,4,4 ,3,3,3,4,4,5,6 so
L(C) = 'L.iPili = 136/36 = 3.777 . . . .

3.9

2

L(C)

/~\~

11 1
iii '4 1 P

1 P

The graph ofjif-Iogjil is the mirror-image

3.10 By Corollary 3.12, L(C) = Hr(S) if and only if S has probabilities Pi = rei
for integers el, ... ,eq ~ 0. In this case, 'L.r=l rei = 'L.r=l Pi = 1, so if e =
min e. then "'? rei-e = r - e with e · - e -e > 0' each term rei-e r-e = 1't L.it=l t , _ , ,-

mod (r -1) , so q == 1 mod (r -1). Conversely, if q = 1+ k(r -1) , let Shave
r -1 symbols of probability -:' for each l = 1, .. . , k -1, and r of probability
r:", so 'L.r=l Pi = (r - 1) 'L.~~ll r:' + r.r-k =1; then Corollary 3.12 gives
L(C) = Hr(S) .

3.11 Ha(S) = -~ loga ~ - i log, i = log, 4 - ~. The extention S" has G)
symbols of probability (3/4)k(1/4)n-k = 3k/4 n for each k = 0, . . . , n, each
given a code-word of length floga(4n /3k )1= [n log, 41- k, so if an denotes
fn loga 41 then a ternary Shannon-Fane code for S" has average word­
length

t; ~ ~ (~) :: (an -k) ~ 4~ (On~ (~)3k -~k(~)3k) ~ an _ 3:,
as in §3.7. As n -t 00 , an/n -t loga 4, so ~Ln -t loga 4 - ~ = Ha(S) . In
binary Shannon-Fano coding , a symbol of probability 3k /4 n gets a code-
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There is no simple way of evaluating this last sum; however k log2 3 - 1 <
bk s k log2 3, so

giving

3n 1 ~ (n) k 3n4 log2 3 - 1 < 4n L...J k 3 bk ~ 4 log2 3,
k=O

and hence ~Ln ~ 2 - t log2 3 = H2(S) as n ~ 00.

3.12 Let Pi = 1 - 8 and P2 = ... = Pq = 8/(q - 1), where 0 < 8 < 1. Then
Hr(S) = -(1 - 8)10gr(1 - 8) - 810gr(8/(q - 1)) ~ 0 as 8 ~ 0 (since
x log, x ~ 0 as x ~ 0 or x ~ 1), so Hr(S) < e for sufficiently small 8.
Every instantaneous code C has L(C) ~ 1, so L(C) > 1 + Hr(S) - e.

3.13 Define Hr(S) = L~lPklogr(I/Pk) = - L~lPklogrPk ' If Pk = 2-k

then H2(S) = L~i 2-k log2 2k = L~i 2-kk = 2. (For the last step,
differentiate (1 - X)-i = 1 + x + x2 + " ', multiply by x, then put
x = ~ .) The prefix code C = {O, 10, 110,111O, .. .} is instantaneous, and
L(C) =L~i 2-kk =2 =H2(S).

3.14 If X n = Si, the uncertainty about Xn+l is the conditional entropy H(S I
X n = Si) = - Lj Pij logpij; averaging over s, gives LiPi(- Lj Pij logpij)
= - Li Lj PiPij logpij as the average uncertainty about S. The numbers
PiPij = Pr(Xn = Si, Xn+l = Sj) form a probability distribution (for the
extension S2), as do the numbers PiPj (for '(2), so Corollary 3.9 gives
- Li Lj PiPij10g(PiPij) ~ - Li Lj PiPij10g(PiPj) and hence (by the ad­
ditivity of logarithms) - Li Lj PiPij logpij ~ - Li Lj PiPij logpj. Since
LiPiPij = Pj, this gives H(S) ~ H(T). Corollary 3.9 gives equality if
and only if PiPij = PiPj for all i, j , that is, Xn+l and X n are statisti­
cally independent. The interpretation is that knowing the probabilities Pij
generally decreases our uncertainty about S. Since L iPiPij = Pj, (Pi)
is an eigenvector of the matrix (Pij) with eigenvalue A = 1, satisfying
LiPi = 1. In this case Pi =P3 = 1/4 and P2 = 1/2, so H(T) = 3/2 and
H(S) = (2 + 910g3)/12 ~ 1.355.
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4.1 If r has input symbols ai and output symbols bj , and if I" has input sym­
bols bj and output symbols Ck, then Pr(cklai) = EjPr(bjlai)Pr(cklbj).
This is the rule for matrix multiplication, so if M and M' are the channel
matrices for T and I", then the composite channel Po I" has channel matrix
M M'. More generally, if channels r1 , . . . ,rn have matrices M 1 , • . • , Mn ,

and the output of T; is the input of ri+l for i = 1, ... , n - 1, then induc­
tion on n shows that Ts o > - > 0 r n has channel matrix M1 •• . Mn .

4.2 (i) Qoo = pP/q and Q10 = pP/q, so Qoo < Q10 if and only if pP < pP;
similarly, Q01 = pP /q and Q11 = pP/q, so Q01 < Q11 if and only if
pP < pP. Equivalently, p = p(P + P) < (p+p)P = P and p =p(P + P) <
(p+ p)P = P, that is, p < min(P, P) . Whether 0 or 1 is received, it is most
likely that 1 was transmitted.

(ii) pP > pP and pP < pP, or equivalently P < P < P. If 0 or 1 is received,
that symbol is most likely to have been transmitted.

(iii) pP < pP and pP > pP , or equivalently P < p < P. If 0 or 1 is
received, the other symbol is most likely to have been transmitted.

4.3 Using Rij =qjQij and Ei Rij =qj we have

111
H(A,8) =L L Rij log Rij =~L Rij log qj +~~ Rij log Qij

I J I J I J

1 1=L qj log t: +L L Rij log -Qo0 = H(8) + H(A I8).
i qJ i j IJ

Thus H (A I8) = H (A ,8) - H (8) is the information gained by the receiver
(who already knows 8) if he discovers A . Equivalently, it is his uncertainty
about A, given 8.

4.4 By Lemma 3.21, if S and T are independent sources then H(S x T) =
H (S) + H (T). If r and T' have inputs A, A' and outputs 8, 8', this im­
mediately gives H(A x A') = H(A) + H(A'), and similarly for H(8 x 8')
and H(A x A', 8 X 8'). If bj and bk are typical output symbols of T and
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I", with probabilities qj and q~, then

H(A x A' I B x B') = I: qjq~H(A x A' IbjbU
j,k

=I: qjq~(H(A Ibj) + H(A' IbU)
j,k

= I: qjH(A Ibj) + L q~H(A' I b~)
j k

=H(A IB) + H(A' I B'),

using Lj qj = Lk q~ =1 in the penultimate line. A similar argument shows
that H(BxB' IAxA') = H(B I A)+H(B' I A') . The corresponding results
for T" follow by induction on n.

4.5 Suppose the result is false, so f(c) ::; >'f(a) +>"f(b) for some c = >'a + >"b
where a < band 0 < >. < 1 (so a < c < b) . The Mean Value Theorem
(applied to f on [a, c) and [c, b)) gives 1'(Cl) = (j(c) - f(a))/(c - a) and
1'(C2) = (j(b) - f(c))/(b - c) for some Cl,C2 where a < Cl < C < C2 < b.
Substituting for c and using the inequality for f(c) gives

f'(cd < >'f(a) +>"f(b) - f(a) = f(b) - f(a)
- >'a + >'b - a b - a

= f(b) - >.j(a) - >"f(b) < f'(c )
b - >'a - >'b - 2 ,

so the Mean Value Theorem (applied to l' on [Cl,C2)) gives f"(C3) =
(j'(C2) - f'(cd)/(c2 - cd ~ 0 for some C3 where Cl < C3 < C2. This
contradicts f"(x) < 0 for all x E (0,1) .

4.6 Let r be a binary channel with matrix Gg) , so every input symbol a = 0
or 1 is transmitted as b = O. If the input probabilities are p, p then H(A) =
H(P), while H(B) = H(l) = 0 since the output probabilities are 1, O. Thus
H(A) > H(B) if 0 < p < 1.

4.7 The input symbols 0 and 1 have probabilities p and p, so H(A) = H(P).
The output symbols 0, 1 and ? have probabilities pP, pP and P, so

H(B) = -pPlogpP - pPlogpP - PlogP

= -P(plogp +plogp +10gP) - PlogP = PH(P) + H(P),

H(B I A) = -pP log P - pPlogP - pPlogP - pPlogP

= -PlogP - PlogP = H(P),

H(A,B) = H(A) +H(B I A) = H(p) +H(P) by (4.6),

H(A IB) = H(A,B) - H(B) = H(p) - PH(P) = PH(p) by (4.7) .
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Then P, H(p) ~ 0 gives H(B I A) ~ H(B), and P ~ 1 gives H(A I B) ~
H(A).

4.8
p p

p

4.9 By Exercise 4.7, the BEC has I(A, B) = H(B) - H(B IA) = P H(P). With
P fixed and P varying , I(A, B) is maximised when P = 1/2 (so H(P) = 1),
giving C = I m ax =P.

4.10 If rand I" have inputs A,A' and outputs B,B', then Exercise 4.4 gives
H(BxB') = H(B)+H(B') and H(BxB' IAxA') =H(B IA)+H(B' I A') .
Subtracting gives I(A x A' , B X B') = I(A, B) + I(A' , B') , and taking
maxima over all A and A' shows that T x T' has capacity C + C'. It
follows by induction on n that T" has capacity nCo

4.11 If P = (Pi) E P then 0 ~ Pi ~ 1 for i = 1, ... ,r, so IpI2 = L iP; ~ r; thus
P is bounded. To show that P is closed, let Y = (Yi) E R" \ P, so either
some Yi < 0 or LYi =/: 1. In the first case, all x E R" with [x - yl < IYil
satisfy Xi < 0, since IXi - Yil ~ [x - yl, so x cJ. P. In the second case, Y
is distance d = IL Yi - 11/vir > 0 from the hyperplane L Pi = 1, so all x
with [x - yl < d are outside P.

4.12 T has channel matrix M = (~~) , where Q = P = 1 - P , so T" has
channel matrix M" by Exercise 4.1. By induction on n , M" has the form
(~: j,:) where 0 ~ r; ~ 1 and o; = e; so i» is a BSC. Now M has
eigenvalues A = 1, 2P - 1, so M" has eigenvalues An = 1, (2P - I)" ; thus
2Pn = tr (Mn) = 1 + (2P - I)", giving Pn = (1 + (2P - 1)n)/2, Qn =
(1 - (2P - 1)n)/2 (alternatively, prove these by induction on n) . Thus T"
has capacity Cn = 1 - H(Pn) = 1 - H(l + (2P - l)n)/2). As n -t 00,

(2P - I)" -t 0 (provided 0 < P < 1), so Cn -t 1 - H(~) = O. If P = 0 or
1 then each Pn = 0 or 1 also, so Cn = 1 for all n.

4.13 C = I m ax , so C = 0 if and only if I(A, B) = 0 for all A, i.e. (by
Theorem 4.11) A and B are independent for all A. This means that
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Pij =Pr(bj I ai) =Pr(bj) for all i and i. i.e, the rows of M are all equal.
The interpretation is that the input probability distribution has no effect
on the output distribution, so the receiver gains no information about the
input.

4.14 Multiplying H by a constant if necessary, we can take r = e, so H(x) =
- Lixilnxi and hence {)H/{)Xi = -l-lnxi for Xi> 0. If P :f. q in P
then the function f(>') = H(>'p + Xq) is continuous on [0,1], with f'(>') =
- Li(l + In(>'Pi +Xqi))(Pi - qi) and 1"(>.) = - L i(Pi - qi)2 /(>'Pi +Xqi) for
all >. E (0,1), where we sum over all i with >'Pi+Xqi > 0. Thus 1"(>.) < °on
(0,1), so f is strictly convex on [0,1] by Lemma 4.6. Hence H(>'p +Xq) ~
>'H(p) + XH(q) for all >. E [0,1] , with equality if and only if>' =°or 1.

4.15 I(A,B) = H(B) -H(B IA) with H(B I A) = - LiPi(LjPijlogPij). The
condition on rows implies that Lj Pij log Pij is a constant c, independent
of i, so I(A, B) = H(B) + Csince L i Pi = 1. Now Cis independent of A, so
maximising I(A, B) is equivalent to maximising H(B) . By Theorem 3.10,
H (B) has maximum value log s, so C = Imax = log s + c, attained when
all qj are equal; since qj = Li PiPij, the condition on columns implies that
this happens if all Pi are equal. For the r-ary symmetric channel, we obtain
C =logs + C=log r + PlogP + PlogP - Plog(r - 1). (When r = 2 this
agrees with the value 1 - H(P) for the BSC.)

4.16 I(A, B) = H(B) - H(B I A) = -qllog qi - q210gq2 + PI(Pu log Pu +
P l210g P12)+P2(P2I log P21+P2210g P22). The two linear equations PilCI +
Pi2C2 = Pillog Pil + Pi210g Pi2 for CI, C2 can be solved if det(Pij) :f. 0,
or equivalently Plj :f. P2j for j = 1,2, and when this fails we can still
solve them with Cj = log Plj = log P2j . Then I = -ql log ql - q2 log q2 +
PI(PUCI + P12C2) + P2(P2ICI + P22C2), and since PIPlj + P2P2j = qj for
j = 1,2, we get 1= -qllogql - q21ogq2 + qlCI + q2C2 as a function of ql
and q2. To maximise I subject to ql + q2 = 1, define P =1+ >.(qi+ q2 - 1)
and solve {)p / {)ql = {)p / Oq2 =qi + q2 - 1 =0. The first two equations give

Cj + >. = 1 + logqj, so CI -IOgql =C2 -logq2. Then C =Im ax =ql(CI ­
log qt} + q2(C2 -log q2) = Cj -log qj for j = 1,2, using ql + q2 = 1. Thus
2Cqj = 2Cj

, so 2c = 2C(ql +q2) = 2C1 +2 C2 and hence C =log(2 C1 +2 C2
) . If

Pu =P22 then T is the BSC, with Pu =P22 =P and Pl2 =P21 =P; the
linear equations PCI + PC2 = -H(P) = PCI + PC2 give CI =C2 = -H(P)
and C =log(2 C1 + 2C2

) =1 - H(P) .

4.17 Let r l , r2 and r = r l + r2 have r,r' and r + r' input symbols and s, s'
and s + s' output symbols. Let (PI, . . . ,Pr+r' ) be an input distribution for
r, with the symbols of r l ordered before those of n. If u = PI + ...+
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Pr and v = Pr+l + ... + Pr+r', so u + v = 1, then (Pdu, . .. ,Prlu) and
(Pr+dv, . . . ,Pr+r' Iv) are input distributions for r 1 and r2. If (Pi) gives
output distribution (qj) for r, then by linearity, (pdu, .. . ,Prlu) gives
output distribution (qdu, . . . ,qslu) for r1 ; in particular, ql + .. . + qs =
u. The output l31 of r1 has entropy H(l3d = - E;=1 (qdu) log(qdu) =
logu - (1/u) E;=1 qilogqi, so E;=lqilogqi = ulogu - uH(l31) , with a
similar result for r2, giving H(l3) = -ulogu - vlogv + uH(l31) + vH(l32)
(the information H(u) about which T, is used, plus the weighted average
of the output entropies of Ti and n). Likewise H(l3 I A) = uH(l31 I
A1)+vH(l32\ A2), so I(A,l3) = -ulogu-vlogv+uI(A1,l3d+vI(A2,l32),
with similar interpretations. We maximise I(A, (3) by taking I(Ai , l3i) = C,
(its maximum value) and then choosing u,v to maximise I = -u logu ­
vlogv+uCI +vC2 subject to u+v = 1. This is essentially the problem we
faced in Exercise 4.16, so the method used there gives C = log(2C1 +2C2 ) .

When r 1 = r 2 we get C =C1 + 1, the extra unit of information indicated
by which copy of Ti is used.

4.18 Pr(a I e) = Eb Pr(a I b)Pr(b I e), so multiplying by Pr(e) and using
Pr(e)Pr(b I e) = Pr(b, e) gives Pr(e)Pr(a I e) = E b Pr(a I b)Pr(b, e), and
hence

LL(Pr(b,e) LPr(a Ib)logPr(a Ie))
b c a

= L(Pr(e) LPr(a I e)logPr(a Ie))
c a

= -H(A IC).

Also Ec Pr(b, e) = Pr(b) implies that

LL(Pr(b,e) LPr(a Ib)logPr(a Ib))
b c a

=L (Pr(b) L Pr(a I b) log Pr(a Ib))
b a

= -H(A 1(3),

so

L L (Pr(b,e) L Pr(a I b) (logPr(a Ib)-log Pr(a Ie)))
b c a

= H(A IC) - H(A 1(3) .

Corollary 3.9 shows that Ea Pr(a I b)(log Pr(a I b) - logPr(a I c)) >
o for all b and c, so H(A I C) ~ H(A I (3) and hence I(A,C) =
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H(A) - H(A I C) :S H(A) - H(A I B) = I(A, B). These inequali­
ties show that further transmission (from B to C) never decreases uncer­
tainty about A, and never increases mutual information about A. We have
C = maxI(A,C) :S maxI(A,B) = C l , and similarly I(A,C) :S I(B,C)
gives C :S C2 , so C :S min(Cl , C2 ) . If rl = Tz is a BSC with capacity
Cl = C2 = 1 - H(P), then Exercise 4.12 shows that r is a BSC with
probability P' = (1 + (2P - 1)2)/2 and capacity C = 1 - H(P I

) . If P =°
or 1 then P' = 1 and C = C l = C2 = 1; if P = ~ then P' = ~ and
C =C l =C2 =O. Otherwise, IP' - ~I < IP - ~I giving C < Cl =C2 •

Chapter 5

5.2 We have

5.1 A decision rule is simply a function L\ : B ~ A, so there are IAjlBI = r"
decision rules.

(Rd = (pP PP) = (0.72 0.18)
J ]iP]iP 0.02 0.08 '

and the greatest entry in each column is the first, so L\(O) = L\(1) = 0,
giving PrE =1 - Pre =1 - (0.72 + 0.18) =0.1.

5.3 For any decision rule L\ : B ~ A, bi ~ ai = ai' ,

1 PredP =l (L:Pi,Pi'i)dP=L:(pi'il pi'dp),
pEP pEP i i pEP

since each Pi'i is constant as p varies. Now JpEP Pi' dp takes the same
value for all j and L\, since P is symmetric under all permutations of the
coordinates Pi. Hence L\ maximises JpEP Pre dp if it maximises Pi'i for
each j, and this is the maximum likelihood rule.

5.4 d(u, v) = i if and only if v differs from u in exactly i coordinate positions;
there are (7) ways of choosing these positions , and for each coordinate
position there are r - 1 different coordinates v can have, so there are
(7) (r - l)i possibilities for v . The Binomial Theorem gives L~=o (7) (r ­
l)i = (r - 1 + I)" =r" = IAnl .

5.5 The largest subsets with this property have four elements. They are the
vertex-sets {ODD, 110, 101,011} and {100, 010, 001,111} of the two tetrahe­
dra embedded in the cube Z~ . In Z~ the largest such subsets have 2n - l

elements : there are two such sets, consisting of the words of length n with
an even or an odd number of symbols 1.
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5.6 Let u, v, wEAn. If Ui i- Wi then Ui i- Vi or Vi i- Wi, so d(u, w) = I{i I
Ui i- wdl ~ I{i I Ui i- Vi or Vi i- wi}1 ~ I{i IUi i- vi}1 + I{i IVi i- wi}1 =
d(u, v) + d(v, w).

5.7 Since>' + J.L = 1, the Binomial Theorem gives

the last inequality is because >.f J.L ~ 1 and i ~ >'n imply that

>.iJ.Ln-i = (~) iJ.Ln 2: (~)"n J.Ln =>.>.nJ.Ln->.n = >.>.nJ.Ll.m .

Dividing by >.>.nJ.Llln gives Li9n (7) ~ >.->.nJ.L-lln = (>.->'J.L -Il)n, so

10g2 ,2: (~) s n( ->'log2 >. - J.L log2 J.L) = nH2(>')
t:$>.n

5.8 R n = {O = 00 ... 0, 1 = 11 .. . I} . The received word v consists of n sym­

bols, equal to 0, ? or 1, ? as u =0 or 1 was transmitted, so let Ll(v) =0 or
1 if v contains a letter 0 or 1, and let Ll(v) be undefined if v = ?? .. .? Then
decoding is correct unless v =?? . ..?, so PrE =Pr (v =?? . . .?) =pn -? 0
as n -? 00.

5.9 The channel matrix is (b~). Since 1 > Q and P > 0, the maximum
likelihood rule is Ll(O) =0, Ll(I) =1, with Pre =p+pP, PrE =PQ. If 000
is transmitted, it is received correctly. If 111 is transmitted, it is received
with 0,1,2 or 3 errors, with probabilities t», 3P2Q, 3PQ2 and Q3. Since
1 > Q3 and p3 , 3P2Q, 3PQ2 > 0, the maximum likelihood rule gives
Ll(OOO) = 000 and Ll(v) = 111 for all v i- 000. This differs from majority
and nearest neighbour decoding, since (for example) Ll(100) = 111 and not
000. The maximum likelihood rule gives Pre = p + p(1 - Q3) , PrE = pQ3,
and the rate is R = 1/3. If Rn ={OO . . . 0,11 . .. 1} is used, PrE =pQn and
R = I/n j both approach 0 as n -? 00.

5.10 If d denotes d(u, v) , the forward probability is Pr (v]u) = pn-dQd =
pn(QIP)d j since QIP < 1 this decreases as d increases, so the maxi ­
mum likelihood rule (given v , maximise Pr (vlu» minimises d, and hence
agrees with nearest neighbour decoding Ll. If W denotes d(O,v) then
d(l, v) = n - w, so Ll(v) = 0 or 1 as W < n - W or W > n - Wj now
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v has w symbols Vi = 1 and n - w symbols Vi = 0, so .1 agrees with
majority decoding. Using this rule .1, and putting n = 2t + 1, we have

PrE = Pr (> terrors)

= (2t + 1) ptQt+l (2t + 1) pt-lQt+2 . . . (2t + 1) pOQ2t+l
t + 1 + t + 2 + + 2t + 1

~ (t + 1)t:11) ptQt+l

__ (2t + I)! ptQt+l ( )=at, say(t!)2

since there are t + 1 summands, and the greatest is the first since Q/ p < 1
and the binomial coefficients are decreasing. As t ~ 00,

at+l = (2t + 3)(2t + 2) PQ ~ 4PQ < 1,
at (t+l)2

since PQ = P - p 2 < t for ~ < p ~ 1. Thus at ~ 0 as t ~ 00, so PrE ~ 0
as n ~ 00. The rate R = ~ ~ 0 as n ~ 00, whereas Shannon's Theorem
requires R ~ C > 0, so this does not prove the theorem.

5.11 Each toss multiplies the current capital by 2Aor 2J..L as r transmits the out­
come correctly or incorrectly, so after m correct and n - m incorrect trans­
missions the initial capital is multiplied by (2A)m(2J..L)n-m = 2nAmJ..Ln-m .
Hence Cn = 2nAmJ..Ln- mCO , and so ~log(cn/CO) = 1 + ~logA+ n-;.m 10gJ..L.
By the Law of Large Numbers (Appendix B), we can expect min ~ p
and (n - m)/n ~ Q with probability approaching 1 as n ~ 00, so
G ~ 1 + P log A + Q log J..L . Maximising G is equivalent to choosing A,J..L to
minimise -P log A- Q log J..L, and by Corollary 3.9 this is achieved by taking
A = P (so that J..L =Q), with G ~ 1 + PlogP + QlogQ =1- H(P) =C.
If ~ < P < 1 then using a repetition code (as in §5.2) has the effect of
reducing the error-probability of r, thus increasing C and G.

5.12 If bj is received, the gambler bets a proportion Aij of his capital on
each ai , where Li Aij = i. If the input is ai, this multiplies his cap­
ital by Aij/Pi, so after n bets Cn = ITi ITj (Aij / Pi)mii CO , where m ij is
the number of times ai is transmitted and bj is received. Thus G =
limn-too ~log(cn/CO) = LiLjlimn-too(mij/n)log(Aij/Pi) . The Law of
Large Numbers gives mij /n ~ Rij with probability approaching 1 as
n ~ 00, so G ~ L i Lj Rij 10g(Aij /Pi) = Li Lj ~j log Aij - Li Pi logp, =
Lj(Li ~j log Aij) + H(A) . Given A and r, the gambler can maximise
G by maximising Li Rij log Aij for each j . Since L i R ij = qj for each i,
Corollary 3.9 implies that this is achieved by taking Aij = Rij/qj = Qij,
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so G ::::; E i E j R ij 10gQij + H (A ) = -H(A I B) + H (A ) = I(A,B).
The maximum value this can take (as (Pi) varies) is the capacity C of
r. If a successful bet regains 1/ P~ times the stake, we replace Aij / Pi
with Aij /p~ above, so Aij = Qij again , giving an exponential growth ra te
G'::::; -H(A I B) - EiPilogp~ 2: I (A ,B) by Corollary 3.9; thus the gam­
bler is generally better off (equivalently, the bookmakers choose the odds
1/Pi to minimise their losses).

Chapter 6

6.1 Cn C' and C + C' are non-empty and closed under linear combinations, so
they are linear . If C ~ C' or C' ~ C then CUC' is C' or C and hence is linear;
if C ~ C' and C' ~ C then CUC' is not linear , for if c E C\ C' and c' E C' \ C
then c, c' E CUC' but c + c' ~ CUC'.

6.2 If a = 1101 then u = 1010101. If v = 1010111 is received then s =
110, representing 6 and indicating an incorrect 6th symbol, so .1(v) =
1010101 = u. If v' = 1011111 is received then s' = 010, representing 2, so
.1(v') = 1111111 ;j:. u.

6.3 Taking all linear combinations of the basis vectors u, in Example 6.5, we
get

1£7 ={0000000,1110000, 1001100,0101010, 1101001,0111100,

1011010,0011001,1100110,0100101,1000011,0010110,

1010101,0110011 ,0001111, 1111111}.

By inspection, the minimum weight of a non-zero code-word is 3, so d = 3.

6.4 The elements of Care u = Ul .. . Un+l , where U = Ul . . . Un E C and
Un+l = Ul + . . +un in Z2. Thus wt(u) = wt(u) or wt(u)+l as wt(u) is even
or odd, so by Lemma 6.8 Chas minimum distance d or d + 1 respectively.
Taking C = 11.7 , with d = 3, Exercise 6.3 shows that 1£7 has code-words

00000000,11100001,10011001,01010101,11010010,01111000,

10110100,00110011,11001100,01001011,10000111,00101101,

10101010,01100110,00011110,1111111,

so it has minimum distance 4.

6.5 Both properties are equivalent to the condition that , for some t, every word
is at distance at most t from a unique code-word.
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6.6 1i7 is perfect, with t = 1, so decoding is correct if and only if there is
at most one error. This has probability p7 + 7p6Q = -6p7 + 7p6 , so
PrE = 1 + 6p7 - 7p6. For small Q, the Binomial Theorem gives pi =
(1 - Q)i ~ 1 - iQ + (;)Q2, so PrE ~ 21Q2.

6.7 1i7 has d = 4 by Exercise 6.4, so t = 1 and L:~=o (7)(q _l)i = 1+ (~) = 9.
Thus the 24 = 16 spheres St(u) cover only 16 x 9 = 144 of the 28 = 256
vectors v E V = F~, so 1i7 is not perfect.

6.8 Apply Stirling's approximation m! '" (m/e)mJ21rm (see [Fi83] or [La83])
to the three factorials in (~) = n!/t!(n - t)!, and then take logarithms.

6.9 If d = 3 then t = Ld;l J = 1 by Theorem 6.15, so putting q = 3 in
Theorem 6.15 gives A3(n,3) ~ L3n/(2n+ l)J .lfn = 3,4,5,6,7, . . . then
A 3 (n,3) ~ 3,9,22 ,56,145, . . . . If d = 4 then t = 1, so Theorem 6.15
gives A2(n,4) ~ L2n / (n + l)J as in Example 6.16. If d = 5 then t = 2, so
A2 (n ,5) ~ L2n/(1+n+ (~))J = L2n+l/(n2+n+2)J .

6.10 Example 6.22 gives A2(4,3) = 2 or 3. If C = {u,v,w} is a binary code
with n = 4 and d = 3, then v and w each differ from u in at least three of
their four coordinate positions; at least two of these coordinate positions i
and j must be the same, so Vi i Ui i Wi and Vj i Uj i Wj; since the code
is binary this forces Vi = Wi and Vj = Wj, so d(v , w) ~ 2, contradicting
d = 3. Thus A 2(4, 3) < 3, so A 2(4 ,3) = 2. The code {OOOO, 111O} attains
this bound.

6.11 Theorem 6.15 with q = d = 3 gives A3 (n ,3) ~ r3n/(1 + 2(~) + 22(~))1 =
r3n /(2n2 + 1)1-

6.12 For n = 1, H = (1) or (-). For n = 2, H = ±(i ~),±C i)'±(i ~) or

±(~=).

6.13 The entries of H' are all ±1, since those of H are , and it is easy to check
that distinct rows of H' are orthogonal.

6.14 1111,0000,1010,0101,1100 ,0011 ,1001,0110. These form the binary parity­
check code P4 , which is linear (Example 6.4).
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6.15 Applying Lemma 6.24 to the Hadamard matrix H of order 4 in Exam-
ple 6.26 , we get a Hadamard matrix of order 8

1 1 1 1 1 1 1 1
1 - 1 1 1
1 1 1 1

H'=
1 1 1 1
1 1 1 1 - - - -

1 - 1 1 1
1 1 - - - - 1 1
1 1 1 1

giving 16 code-words 11111111,00000000, 10101010, 01010101, 11001100,
00110011, 10011001, 01100110, 11110000, 00001111, 10100101, 01011010,
11000011,00111100,10010110 and 01101001. The rate is (log, 16)/8 = 1/2.
Since d = 4, Theorem 6.10 gives t = 1; the code detects d - 1 = 3 errors.

6.16 A cubic f(x) is irreducible if and only if it has no linear factors , i.e. no
roots, so f(x) = x3 +x+ 1 and g(x) = x3 +x2 +1 are the only possibilities .
If 0 and {3 are roots of f and g, then F = {a0

2+ ba + c Ia,b,c E Z2} and
F' = {a{32 + b{3 + c I a , b, c E Z2} are fields of order 8, with 0 3 = 0 + 1 and
{33 ={32 + 1. Then ({3 + 1)3 = ({3 + 1) + 1, so a02 + ba + c t--t a({3 + 1)2 +
b({3 + 1) + c = a{32 + b{3 + (a + b+ c) is an isomorphism F -+ F'.

6.17 If f(x) = x2 + 1 has a root 0 E Zp, then 0 2 = -1::j:. 1 but 0 4 = (_1)2 = 1,
so 0 has order 4 in the multiplicative group Z; = Zp \ {O} ; thus 4 divides
IZ;I = p - 1, impossible since p == 3 mod (4). Hence a root 0 of f is not
in Zp, so F = {an + b I a,b E Zp} is a field of order p2, with 0 2 = -1. A
similar argument, using x3 -1 = (x -1)(x2 + X + 1), shows that x2 + x + 1
is irreducible over Zp for p == 2 mod (3) , in which case there is a field
F ={ao + b I a, b E Zp} of order p2 with 0 2 + 0 + 1 =O.

6.18 Since all code-words differ in at least d positions, deleting d - 1 symbols
gives a set of M distinct words of length n - d + lover Fq . There are
at most qn-d+l such words, so M :S qn-d+l . Now take logarithms. A

repetition code R n attains this bound, with M = q and d = n, as does a
parity-check code P« , with M = qn-l and d = 2.

6.19 e;) + e13) + (;a) + e:) = 2048 = 211
, so 212(e;) + e13) + e23) + e33)) = 223;

this gives equality in Hamming 's sphere-packing bound with n = 23, q =
2, t = 3, M= 212. Similarly c~) + cn .2 + c;) .22 = 243 = 35 gives
equality with n = 11, q = 3, t = 2, M = 36 . This suggests the existence
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of 12- and 6-dimensional perfect linear codes with these parameters; these
Golay codes are described in §7.5. (However, see Exercise 7.16.)

6.20 C1 ED C2 and C1 *C2 are subsets of the 2n-dimensional vector space V ED V,
so they are codes of length 2n. The M1,M2 vectors x,y give rise to M1M2

distinct vectors (x, y) or (x, x + y) respectively, so each code contains
M1M2 code-words. Elements (x, y) and (x', y') of C1 EB C2 are distinct if
and only if x i x' or y i s', in which case d((x ,y), (x',y')) = d(x,x') +
d(y, y') ~ min(d l , d2 ) ; this bound is attained by taking x =x' or y =y'
and letting the other (distinct) pair be as close as possible, so d(CI EDC2 ) =
min(dl , d2 ) . In C1 *C2 , if x = x' and y i y' then d((x ,x-t-y) , (x' , x' +y/)) =
d(y ,v') has minimum value d2 , and if x i x' and y = y' then d((x, x +
y), (x', x' + y/)) = 2d(x, x') has minimum value 2dl ; if x i x' and y i y'
then d(x , x') ;::: dl and d(x+y,x' +y');::: Idl -d21, so d((x,x+y) , (x',x' +
y')) ;::: dl +Idl -d2 1 ;::: da ;::: min(2d l , d2 ) , and thus d(CI *C2 ) = min(2d l , d2 ) .

If each C, is linear, then C1 EB C2 and C1 *C2 are linear subspaces of V ED V
(closure is easily checked), so they are linear codes; they have dimension
logq M1M2 =logq M1 + logq M2 =kl + k2 •

6.21 If the j-th digit aj is changed to bj i aj, then I:~~l ia, (== 0 mod (11))
is replaced with 2:i,cj ia, + jbj = 2:iia, + j(b j - aj) == 0 + j(bj - aj) ==
j(b j -aj) , and this t 0 since j , bj -aj to, so the error is detected. Similarly,
if aj and ak are transposed, where aj i ak, then I:i ia; is replaced with
2:i ia, + j(ak - aj) + k(aj - ak) == 0 + (j - k)(ak - aj) to, so the error
is detected. In each case, it is important that 11 is prime, so that x, y t 0
implies xy t 0 (false for composite moduli) . 3-540-76197-7 has al + 2a2 +
. .. + lOalO = 308 == 0 mod (11), so it is a valid ISBN (in fact , of the SUMS
textbook Elementary Number Theory, by Jones and Jones); the second
and third differ from this by a transposition and a single error , so they
cannot be ISBNs.

Chapter 7

7.1 Form G by adding an extra column to G so that each row-sum is O. Form
H from H by adding a column of c = n - k entries 0, and then a row of
n + 1 entries 1.

7.2 Form a generator matrix G for C1 + C2 by adjoining the rows of G2 to G1

and then using elementary row operations to eliminate linearly dependent
rows. A similar process with the rows of HI and H2 gives a parity-check
matrix H for C1 n C2 •
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7.3 Each row of G1 is a linear combination of rows of G2 , so C1 ~ C2 ; since
dim C, = dim Cj, Cl = C2 • Alternatively G2H

T = 0, where H is the
parity-check matrix for Cl = 1i7 in Example 7.13, so C2 ~ Cl ; comparing
dimensions gives equality.

7.4 Since 1in is a 1-error-correcting perfect code, nearest neighbour decod­
ing corrects all error patterns with at most one error , but no others ; the
probability of no errors is P" and the probability of a single error in a
given position is pn-1Q, so Pre = P" + npn-1Q and PrE = 1 - Pre =
1- P" - npn-1Q. If p < 1 then P", npn-l -t 0 as n -t 00 , so PrE -t l.

If P =1 then PrE =0 for all n.

7.5 uHT = 0, so u E 1i7. The syndrome of v is 8 = vHT = 101 = cI,
indicating an error in position 2, so .1(v) = v - e2 = 1100110; this is u,
so decoding is correct . However VI has syndrome 8

1 = VI HT = 110 = cI,
indicating an error in position 3; this gives .1(v/) =V/-e3 =0010110 f. u,
so decoding is incorrect . This is because VI involves two errors , whereas v
involves only one, and 1i7 corrects one error but not two.

7.6 The syndrome 8 =vHT =010 is the binary representation of 2, indicating
an error in position 2; thus .1(v) = v - e2 = 0111100 = u, so decoding is
correct .

7.7 No vector can be a multiple of another, so they must generate distinct 1­
dimensional subspaces. The number of such subspaces in W is n = (qC ­

1)/ (q-1), so this is the maximum number of vectors. If they are the columns
of H, the corresponding code C has length n and dimension k = n - c. No
two columns are linearly dependent, but three are (the sum of any two
is a multiple of a third), so d = 3 by Theorem 7.27, giving t = 1 by
Theorem 6.10. Then 2:~=o (7) (q - l)i = 1 + n(q - 1) = qC= «:". so C is
perfect.

7.8 Each s E S lies in e43) 5-element subsets of S, each of which is contained
in a unique block; conversely, each block containing s has G) 5-element
subsets containing s, so s lies in e:) /G) = 253 blocks. Similarly, the
number of blocks containing each pair , triple and quadruple is e32)/m =
77, e21)/(~) = 21, and elO)/(~) = 5.

7.9 The given generator matrix is

1 1
o 1
1 1
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Adding row 3 to rows 1 and 2, and then adding the new rows 1 and 2 to
row 3, we get

G = (~ ~ ~ ~ ~ ~), so H = (~ ~ ~ ~ ~ ~) .
001110 110001

110 is encoded as c = 110.G = 110110, with c.HT = 000 = O. Since
n = 6 and k = 3, the rate is R = kIn = 1/2. The minimum distance d
is the minimum number of linearly dependent columns of H, and this is 3
(columns 1, 2, 3). The syndrome table

Vi = 000000 100000 010000 001000 000100 000010 000001 100100
s, = 000 all 101 110 100 010 001 111

corrects all single-error patterns, and one double-error pattern 100100, so
if each symbol has probability P, Q of correct/incorrect transmission then
PrE = 1 - (p6 + 6p5Q + P4Q2).

7.10 Each C has an ordered basis U1, . . . , Uk. There are qn-1 choices for U1 E V
(excluding 0), then qn - q for U2 (excluding multiples of uj ), .. • , q" _ qk-1
choices for Uk, hence (qn -1) . . . (qn - qk-1) such bases in V. Similarly each
C has (qk - 1) .. . (qk - qk-1) ordered bases, so the number of codes C is
(qn _ 1) .. . (qn _ qk-1 )/(qk _ 1) . .. (qk _ qk-1) .

7.11 L 1 n L2 is a single point p, which lies on a unique third line L3 ; the three
sets i; \ {p} partition 8 \ {p}, so L 1 + L2 = (L 1 \ {p}) U (L 2 \ {p}) =
(8\ {p}) \ (L3 \ {p}) = 8\L3 , the complement 13 of L3 . Thus the subspace C
spanned by the lines contains the seven lines L and their seven complements
I , together with L + L = 0 and L + I = 8 . This set of sixteen subsets of
8 is closed under addition (for instance L 1 +12 = L3 and 11 +12 = 13 ) ,

so it is the whole of C. Thus C is a binary linear code of length n = 7
and dimension k = log2 16 = 4. The non-zero code-words L, I and 8 have
weight ILl = 3, III = 4 and 181 = 7, so C has minimum distance d = 3
by Lemma 6.8, and hence t = 1 by Theorem 6.10. In §7.4 we showed that
any two binary linear l-error-correcting [7,4]-codes are equivalent, so C is
equivalent to 1-1.7 .

7.12 Any pair of points form the support of a vector v of weight 2; since C is
perfect with t = 1, v is at distance 1 from a unique code-word U of weight
3, whose support is the unique block containing the pair. Thus the code­
words of weight 3 are the blocks of a Steiner system 8(2,3, n) . In 1-I.n , the
coordinate positions i = 1, . .. , n = 2c - 1, written in binary notation to
form the columns of the parity-check matrix H, consist of the non-zero
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vectors in Fi , so they correspond to t he points of PG(c -1,2); code-words
of weight 3 correspond to the relat ions c, + Cj + Ck = 0 between columns
of H (see §7.3), and hence to th e lines {ci ,Cj ,Cd of PG(c -1 ,2) .

7.13 The identity permutation maps C to itself, and if permutations 9 and h
do then so do gh and g-l ; thus Aut(C) is a subgroup of Sn. Both R n
and P« are invariant und er all permutations, so they have automorphism
group S«. The code R 2 ED R 2 = {OOOO, 1100, 0011, 1111} has eight auto­
morphisms (12), (34), (12)(34) , (13)(24) , (14)(23), (1324), (1423) and the
identity (forming a dihedral group). The codes equivalent to C are those
formed by applying a permution to the n coordinates; two permutations
yield the same code if and only if they lie in the same coset of Aut(C)
in Sn, so the number of equivalent codes is the number of cosets, namely
ISnl/IAut(C)1 = n!/IAut(C)I. If C = R 2 ED R 2 there are 4!/8 = 3 equivalent
codes , namely C, {OOOO, 1010,0101 , 1111} and {0000,0110, 1001, 1111}.

7.14 By Exercises 7.11 and 7.12, any automorphism of PG(2 ,2) induces an
automorphism of 1£7 , and vice versa, so their automorphism groups are
isomorphic. The automorphisms of PG(2 ,2) are induced by those of
the corresponding vector space F:t , and these form the general linear
group GL(3 ,2) of invertible 3 x 3 matrices over F2 ; only the identity
matrix induces the identity automorphism of PG(2,2) , so Aut (1£7) ~

Aut(PG(2, 2)) ~ GL(3 ,2). There are 23 - 1 = 7 possibilities for the first
row of a matrix in GL(3 ,2) ; once this is chosen, there are 23 - 2 = 6
possibilities for the second row, and then 23 - 22 = 4 for the third ,
so IAut(1£7)1 = IGL(3,2)1 = 7.6.4 = 168. By Exercise 7.13 there are
7!/168 = 30 codes equivalent to 1£7. Similarl y if n = 2C -1 then Aut(1£n) ~
Aut(PG(c-l, 2)) ~ GL(c, 2), of order (2C -1)(2C-2)(2C-22 ) ... (2C _2C

-
1) ,

giving n!/(2C
- 1)(2C

- 2)(2 C
- 22 ) . . . (2C

- 2C
-

1) equivalent codes.

7.15 Any t + 1 points support a vector of weight t + 1; since C is perfect, this is
at distance t from a unique code-word of weight d = 2t + 1, whose support
is the unique block containing the t + 1 points. Thus we have a Steiner
system S(t + 1, d,n) (see Exercise 7.12 for the case t = 1). The number of

blocks is (t~l) / (t~l) (see §7.5), so (t~l) divides (t~J Deleting i points for
i = 1, ... , t we obtain Steiner systems S(t + 1 - i ,d - i, n - i) , so by the

same argument (t~~~J divides (t~~~i)'

7.16 1+90+ (92°) = 4096 = 212, so the parameters q = 2, n = 90, t = 2, M = 278

give equality in Hamming's sphere-packing bound, suggesting the possible
existence of a perfect 2-error-correcting binary code of length 90. However,
if this exists then putting d = 2t + 1 =5 and taking i = 2 in Exercise 7.15
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we see that 3 divides 88, which is false. (Taking i = 1 also gives a slightly
less obvious contradiction.)

7.17 Each coordinate position i contributes 1 or 0 to each side of the equation
as just one of U i, Vi is 1 or otherwise. The twelve rows of G are of length
24 and are independent, so they generate a binary linear [24, 12)-code C.
Each vertex of the icosahedron is adjacent to five others, so each row r of
G has an even number (1+ (12- 5) =8) of Is , giving r.r =0; similarly, any
two distinct vertices have an even number of common non-neighbours, so
the rows of G are mutually orthogonal and hence C ~ Col; since dim (C) =
dim(Col) we have C = Col . Since P is binary and symmetric, (P I 1) =
(- p T I I) ; this is a parity-check matrix for C, and hence a generator
matrix for Col = C. Each row of G has weight divisible by 4, and by the
first result this property is preserved when elements u, v E C are added ,
since self-duality implies that c(u , v) is always even. If u E C has x and y
Is in its first and last 12 entries, so that x+y = wt(u), then u is a sum of x
rows of G and also of y rows of G'; if wt(u) = 4 then a sum of at most two
rows of G (or equivalently of G') has weight 4, which is false by inspection.
Thus C has minimum distance 8, and so the binary linear [23,12)-code Co
has d = 7 and hence t = 3. Since L:~=o en = 223

- 12 , Co is perfect.

7.18 The six rows of G are independent and of length 12, so they generate a
ternary linear [12, 6)-code. By inspection, the rows are mutually orthogonal,
so C ~ Col; comparing dimensions, we have C = Col. Each u E C satisfies
L: ur = ain F3 and hence has weight divisible by 3; it is therefore sufficient
to show that wt(u) ::j:. 3, and this follows by considering the various linear
combinations of rows of G, so C has minimum distance 6. Then Co is a
ternary linear [11,6)-code of minimum distance 5; it corrects 2 errors , and
since L:;=o en .2i = 311

- 6 it is perfect .

7.19 The basic properties of RM(r, m) follow from Exercise 6.20, using the in­
ductive definition of this code. For instance, RM (0, m) and RM(m ,m)
are binary and linear , properties preserved by *, so every Reed-Muller
code is binary and linear. Since * doubles lengths , RM(r,m) has length
n = 2m . If RM(r, m - 1) and RM(r - 1, m - 1) have minimum dis­
tances d1 = 2m - 1- r and d2 = 2m - r then RM(r,m) has minimum distance
d = min(2d1,d2 ) = 2m - r . If RM(r,m - 1) and RM(r -I ,m -1) have
dimensions k1 = L:~=o (m~1) and k2 = L:~':-~ (m~1) , then RM(r,m) has
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dimension

RM(1,2) =RM(l ,1) *RM(O, 1) ={00,01, 10,11}* {00, 11}

={0000,0011,0101,0110, 1010,1001,1111,1100}.
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RM(1,3) =RM(I ,2) *RM(O,2) =RM(I ,2) * {DODO, 1111}

= {00000000,00110011,01010101,01100110,

10101010,10011Q01,11111111,11001100,

00001111,00111100,01011010,01101001,

10100101,10010110,11110000,11000011}.

Since dim RM(l, 3) = 4, a basis consists of four independent code-words,
such as 10010110,01010101,00110011,00001111,giving a generator matrix

(

1 ° °1 °1 1 0)01010 1 0 1
G= 0 °1 1 °0 1 1 .

o 0 001 111

This is not in systematic form, but interchanging columns 4 and 5 gives a
generator matrix G' = (14 I P) in systematic form, and hence a parity-check
matrix H' = (_pT I [4), for an equivalent code. Interchanging columns 4
and 5 of H' gives a parity-check matrix

(

1 1 1 1 °0 0 0)
H= 1 1 0 0 1 1 0 0

101 0 1 0 1 0
o 1 101 001

for RM(I,3) . No set of one, two or three columns of H is linearly de­
pendent, but Cl + C2 + C7 + Cs = 0, so RM (1,3) has minimum distance
d= 4.
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Index of Symbols and Abbreviations

The symbol 0 is used in the text to mark the end of a proof. The following
symbols, in regular mathematical use, are used without further comment :

C
R
Q
Z
N

Zn
[a,b]
(a, b)
(a,b)

8n

A\B
o

181
n!

(~)

log a
log, a

lgc
Ina

00

-t

H

the set of complex numbers
the set of real numbers
the set of rational numbers
the set of integers
the set of natural numbers {I, 2, ...}
the set of integers mod (n)
the set of all real numbers x satisfying a :S x :S b
the set of all real numbers x satisfying a < x :S b
the set of all real numbers x satisfying a < x < b
the set of ordered n-tuples from a set 8
the set of all elements lying in A but not in B
the empty set
the size of the set 8
factorial n (= 1.2.3 . . .n)
the binomial coefficient (= n!/r! (n - r)!)
is approximately equal to
is congruent to
the logarithm of a (to some unspecified base)
the logarithm of a to the base r
log, a

logea
infinity
tends towards, or approaches
is mapped to
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j'(x ) the derivative of the function f( x)
/\ , V the logical connectives "and" and "or"
n,U intersection and union
L sum
Il product

(ai j) the matrix with entry a i j in the (i ,j) position
det (A) the determinant of a matrix A
tr(A) the trace of a matrix A

AT the transpose of a matrix A
In the n x n ident ity matrix

a.b the scalar or dot product of vectors a and b
Pr(Xn = Si) the probability that a variable X n takes the value si , also written

as Pr(si)
Pr(bla) the probability of b given a

min minimum
max maximum
lxJ the integer part of x , the greatest integer i :::; x
rx1 the "ceiling function" , the least integer i 2: x

The following symbols are defined in the text on the page indicated, and
are then used without comment.

S a source. .. . . . . .. . . 1
S a source alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
S i a source-symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pi the probability of Si . . . . . . . . . . • • . . . . • . . . . . . . • . . . . . • . . . . . . . 2
T a code alphabet 2
t j a code-symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
r the radix of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

W i the code-word for Si • . . . . . . . . • . . . . . . . . . . • . • . . . . . . . • • . . . • . . 3
s a sequence of source-symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
t a sequence of code-symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Iwi the length of a word W . • • . ...... . ........ . . • . . • .. . . .. .. . . 3
T* the set Un~oTn of all words on T . . . . . . . . . . . . . . . . . . . . . . . . . . 3

€ the empty word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
T+ the set un >oTn of all non-empty words on T . . . . . . . . . . . . . . . . 3

C a source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
C* {WilWi2' .. Win E T* I each Wj E C, n 2: O} 4
Ii the length of the code-word W i . ... .. . . . ... .. . . • •.. . . . .. . • • 4

L(C) the average word-length L i Pili of C. . . . . . . . . . . . . . . . . . . . . . . . 4
u.d. uniquely decodable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Cn {w E T+ Iuw = v where u E C, v E Cn- 1 or u E Cn-I> V E C} . 5
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S'
S(i)

C(i)

a(C)
sn
cn
Ln

I(si)
Ir(s i)
Hr(S)
H(S)

p
H(P)

Hr(P)
1]

fj

SxT
r
A
B
Pi
qj

BSC
BEC

P ij

M
r+T'
rxT'

M®M'
r n

r» r
Q ij

Rij

H(A)
H(B)

H(A Ibj)
H(A IB)

U~lCn " " """ " "" " "" " " " " " """" " "" '" 6
TO UTI U T 2 U UTI 13

the greatest lower bound of the average word-lengths of u.d.
r-ary codes on S 21
the reduced source obtained from S . . . . . . . . . . . . . . . . . . . . . . . . 22
the i-th reduction of S 23
a Huffman code for S(i) 23
the sum L:i li of the word-lengths of C . . . . . . . . . . . . . . . . . . . . . . 27
the n-th extension of the source S 30
a Huffman code for S" 31
L(Cn ) 31
the information -logpi conveyed by Si . . . . . • • . . . . . • . . • . . . .. 36
-logrPi 36
the r-ary entropy - L i Pi log, Pi of S . . . . . . . . . . . . . . . . . . . . . . . 37
the entropy - L:i Pi logPi of S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1- p 37
-plogp - plogp 38
-plogrP - plogrP 38
the efficiency Hr(S)/L(C) of an r-ary code C for a source S 44
the redundancy 1 - T} of C 44
product of sources 47
an information channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
the input of r . . . . .. . .. . . .. . .. .. . . .. . .. . .. . . .. .. .. . .. . .. . 55
the output of r ....... ................................... 56
the probability of an input symbol ai . . . . . . . . . . . . . . . . . . . . . .. 55
the probability of an output symbol bj . . . . . . . . . . . . . • . . . • . . • • 56
the binary symmetric channel 56
the binary erasure channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
the forward probability Pr(b j Iai) ' . . . . . . . . . . . . . . . . . . . . . . . . . 57
the channel matrix (Pij) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57
sum of channels 58
product of channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Kronecker product of matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
the nth extension of the channel r . . .. .. . . .. .. .. .. . . .. . . .. . 58
the composition of channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
the backward probability Preai Ibj ) . . . • • . . . . . . . . . . . . • . . • • . . 59
the joint probability Preai and bj ) . . . . . . . . . . . . • • . . • . . . . . • • . . 59
input entropy 62
output entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62
conditional entropy 62
equivocation 62



198 Information and Coding Theory

H(A,B) joint entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
I(A, B) mutual information 70

C the capacity of a channel 73
P the set of probability distribution vectors (Pi) in RT . . . . . . . . . . 75
L1 a decision rule B -t A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79

aj. L1(bj). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Pre the average probability of correct decoding . . . . . . . . . . . . . . . . . . 80
PrE the average probability of incorrect decoding . . . . . . . . . . . . . . . . 80
R n binary (and, in §6.2, general) repetition code of length n. . . . . . 84

R transmission rate 85
d(u, v) the Hamming distance between vectors u and v 86

F a finite alphabet which forms a field . . . . . . . . . . . . . . . . . . . . . . . . 97
p a prime 97
q a power of the prime p 98

Fq the Galois field of order q, also denoted by GF(q) 98
n the length of a block code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

V = Fn a vector space of dimension n over F . . . . . . . . . . . . . . . . . . . . . . . 99
M ICI where C is a code 99

k the dimension dim(C) of a linear code C 99
P« the parity-check code of length n over Fq •• • • ••••• • • • • • •• • • • 101
ti7 the binary Hamming code of length 7 101
tin the binary Hamming code of length n, where n = 2C

- 1 103
C the extended code obtained from C 103

Co a punctured code obtained from C 104
d = d(C) the minimum distance of C 104

wt(v) the weight d(v ,O) of a vector v 104
t the number of errors corrected by a code 105
e an error pattern 105

St(u) the sphere of radius t with centre u 107
Aq (n,d) the greatest size of any code of length n and minimum distance

dover Fq •• • •• • •• •• •• •• •• • • • • •••• •• • ••• • ••• •• ••••••• • • • • 111
{(x,y) E VI $ V21 x E CI , Y E C2 } 118
{(x ,x + y) E VI $ V2 Ix E CI , Y E C2 } 118
a generator matrix for a code C 122

e i the i-th standard basis vector 122
H a parity-check matrix for a code C 124

C.L the orthogonal code or dual code of a code C 125
c the number n - k of check digits of a linear [n, k]-code 133

911 the ternary Golay code of length 11 137
923 the binary Golay code of length 23 138
912 the extended ternary Golay code On of length 12 138
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Q24

P(S)
S(l, m, n)

PG(c-1 ,q)
M24

RM(r,m)

the extended binary Golay code 923 of length 24 138
the power set of a set S 138
a Steiner system 139
the projective geometry of dimension c - lover Fq • •••••• ••• • 139
the Mathieu group of degree 24 140
the r-th order Reed-Muller code of length 2m . • ....•....... • 148



Algorithm, Huffman's
Alphabet
Alphabet, code
Alphabet, source
Approximation, Stirling's
Array, standard
Automorphism
Average word-length

Backward probabilities
Bayes ' formula
Bernoulli trials
Binary channel, general
Binary code
Binary erasure channel
Binary Golay code
Binary Huffman code
Binary Hamming code
Binary repetition code
Binary symmetric channel
Bits
Block
Block code
Block design
Bound, Fano
Bound, Gilbert-Varshamov
Bound, Hamming's sphere-packing
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55, 97
2
2
UO
141
147
4, 42

59
59
157, 160
77
3
56
138
22, 26, 27
93,101,133
84
56, 60, 64, 72
36
138
5, 98
138
90
U1
107
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Bound, Hamming's upper
Bound, Singleton
Bounded

Capacity
Capacity, channel
Cascade
Ceiling function
Channel
Channel, binary erasure
Channel , binary symmetric
Channel capacity
Channel, general binary
Channel, information
Chann el matrix
Channel, r-ary symmetric
Channel relationships
Channels, Shannon 's first theorem for information
Check digit
Closed
Code
Code automorphism
Code alphabet
Code, binary
Code, binary Golay
Code, binary Hamming
Code, binary Huffman
Code, binary repetition
Code, block
Code, compact
Code, dual
Code, equivalent
Code, error-correcting
Code, exhaustive
Code, extended
Code, extended Golay
Code, Golay
Code, group
Code, Hadamard
Code, Huffman
Code, instantaneous
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118, 130, 132
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73
73
59
45
55
56
56, 60, 64, 72
73
77
55
57
77
59
67
99, 101, 103, 108, 128, 130
75
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147
2
3
138
93, 101, 133
22, 26, 27
84
5, 98
20
125
127
97
17, 18
103
138, 140
136
99
117
22,26,28
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Code, linear
Code, linear [n, k]
Code, MDS
Code, [n, k, d]
Code, (n, M, d)
Code of length n, r-ary
Code, optimal
Code, orthogonal
Code , parity-check
Code, prefix
Code, punctured
Code, rate of linear [n ,k]
Code, r-ary
Code, r-ary of length n
Code, Reed-Muller
Code, repetition
Code, r -th order Reed-Muller
Code, Shannon-Fano
Code, source
Code-symbol
Code, ternary
Code, ternary Golay
Code-word
Coding, Shannon-Fano
Coding theorem, noiseless
Coding theory
Compact
Compact code
Convex, strictly
Correcting, t-error­
Corrects terrors
Coset leader

Data processing theorem
Decipherable, uniquely
Decision rule
Decodable, uniquely
Decoding
Decoding, majority
Decoding, nearest neighbour
Decoding, syndrome

99, 121
99
118
104
104
85
20, 21
125
101
10
104
99
3
85
148
84, 100
148
45
3
2
3
137
3
45
49
97
75
20
64
105, 132
105, 106
141

78
4
79
4,5,7
79
83
87
143
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Design, block
Design, t­
Detects terrors
Digit, check
Digit, information
Distance, Hamming
Distance, minimum
Distance separable, maximum
Dual code

Edge
Efficiency
Empty word
Encoding
Entropies, system
Entropy
Entropy, input
Entropy, joint
Entropy, output
Entropy, r-ary
Equations, parity-check
Equivalent codes
Equivocation
Erasure channel, binary
Error-correcting code
Error-correcting, t-
Error pattern
Error-probability
Errors, corrects t
Errors, detects t
Exhaustive code
Extended code
Extended Golay code
Extension, n-th (of a channel)
Extension, n-th (of a source)

Fano bound
Fano plane
Field
Field, finite
First theorem for information channels, Shannon's
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44
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31
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37,40,42,47
124
127
62
56
97
105, 132
105
80
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107
17, 18
103
138, 140
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30, 47
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139
97
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First theorem, Shannon's
Form, systematic
Formula, Bayes'
Forward probabilities
Function, ceiling
Fundamental theorem, Shannon's

Galois field
General binary channel
Generator matrix
Geometry, projective
Gilbert-Varshamov bound
Golay code
Golay code, binary
Golay code, extended
Golay code, ternary
Graph
Group code
Group, Mathieu

Hadamard code
Hadamard matrix
Hamming code, binary
Hamming distance
Hamming's sphere-packing bound
Hamming's upper bound
Height
Huffman's algorithm
Huffman code
Huffman code, binary

Ideal observer rule
Independent
Inequality, Kraft 's
Inequality, McMillan's
Inequality, triangle
Information
Information channel
Information channels, Shannon's first theorem for
Information digit
Information, mutual

48, 49
128, 129
59
57
45
85, 88, 159

98
77
122
139
111
136
138
138, 140
137
11
99
140

117
114
93, 101, 133
86
107
110
12
22
22, 26, 28
22, 26, 27
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87
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55
67
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Information theory
Input
Input entropy
Instantaneous code
Integer part

Joint entropy
Joint probabilities

Kraft's inequality
Kronecker product

Large numbers, law of
Large numbers, weak law of
Law of large numbers
Law of large numbers, weak
Leader , coset
Leaf
Length
Length, average word­
Length n, r-ary code of
Likelihood rule, maximum
Linear code
Linear [n, k]-code
Linear [n,k]-code, rate of

Majority decoding
Markov source
Mathieu group
Matrix, channel
Matrix, generator
Matrix, Hadamard
Matrix, parity-check
Matrix, Sylvester
Maximum distance separable
Maximum likelihood rule
McMillan's inequality
Mean value theorem
Memoryless
Metric space
Minimum distance

Information and Coding Theory

79, 97
55
62
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63
59

13,16
58

88, 157
158, 160
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140
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Mutual information 70

Nearest neighbour decoding 87
Neighbour decoding, nearest 87
[n, k, d]-code 104
(n, M, d)-code 104
Noise 55
Noiseless coding theorem 49
n-th extension (channel) 58
n-th extension (source) 30,47
Numbers, Law of large 88, 157
Numbers, Weak law of large 158, 160

Observer rule, ideal 80
Optimal code 20,21
Orthogonal 125
Orthogonal code 125
Output 56
Output entropy 62

Parity-check code 101
Parity-check equations 124
Parity-check matrix 124, 128
Part, integer 100
Pattern, error 105
Perfect 109
Plane, Fano 139
Prefix 10, 153
Prefix code 10
Probabilities, backward 59
Probabilities, forward 57
Probabilities, joint 59
Probability, error- 80
Processing theorem, data- 78
Product (of channels) 58
Product (of sources) 47
Product, Kronecker 58
Projective geometry 139
Punctured code 104

Radix 3
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r -ary code
r-ary code of length n
r-ary entropy
r-ary rooted tree
r-ary symmetric channel
Rate
Rate of linear [n, k]-code
Rate, transmission
Reduced source
Redundancy
Reed-Muller code
Relationships, channel
Repetition code
Repetition code, binary
Rooted tree
r-th order Reed-Muller code
Rule , decision
Rule, ideal observer
Rule, maximum likelihood

Sardinas-Patterson theorem
Separable, maximum distance
Shannon-Fano coding
Shannon's first theorem
Shannon's first theorem for information channels
Shannon's fundamental theorem
Siblings
Singleton bound
Source
Source alphabet
Source code
Source, reduced
Source-symbol
Space , metric
Sphere
Sphere-packing bound, Hamming's
Standard array
Stationary
Steiner system
Stirling's approximation
Strictly convex
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Sum (of channels)
Sum (of linear codes)
Sylvester matrix
Symbol, code-
Symbol, source­
Symmetric channel, binary
Symmetric channel, r-ary
Syndrome
Syndrome decoding
Syndrome table
System entropies
System, Steiner
Systematic form

Table, syndrome
t-design
Ternary code
Ternary Golay code
t-error-correcting
t errors, corrects
t errors , detects
Theorem, data processing
Theorem, mean value
Theorem, noiseless coding
Theorem, Sardinas-Patterson
Theorem, Shannon's first
Theorem, Shannon's first for information channels
Theorem, Shannon's fundamental
Theory, coding
Theory, information
Transmission rate
Thee
Thee, r-ary rooted
Thee, rooted
Thials, Bernoulli
Triangle inequality

Uniform
Uniquely decipherable
Uniquely decodable
Uniquely decodable with bounded delay

58
99
115
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56
56,60,64,72
77
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143
144
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138, 139, 140
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87
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Upper bound, Hamming's

Value theorem, mean
Vertex

Weak law of large numbers
Weight
Word
Word, code-
Word, empty
Word-length
Word-length, average
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