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Introduction and Unit Root Testing

I Introduction: modeling approaches

I Basic concepts: Autocorrelation and stationarity

I Properties of stationary and non-stationary processes

I Unit root testing: Augmented Dickey-Fuller test
I Illustration of unit root testing using Matlab to economic and

financial data sets
I Example 1: unit root testing to financial time series, e.g.

stocks and indices (application and useful conclusions)
I Example 2: Unit root testing to exchange rate series

(application and useful conclusions)
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Introduction: Data

I Types of data
I Time series data, yt , t = 1, . . . ,T , is a sequence of random

variables taking values at specific time periods (daily, weekly,
monthly, etc.)

I Cross-sectional data, yi , i = 1, . . . ,N refer to one or more
characteristics (variables) being observed at the same point in
time

I Pooled data/panel data/longitudinal data, yit , i = 1, . . . ,N
and t = 1, . . . ,T refer to measurements on one or more
characteristics collected at specific time periods (weekly,
monthly, yearly, etc.)

Loukia Meligkotsidou, UoA Applied Econometrics



Introduction and Unit Root Testing

Introduction - Modeling Approaches
Basic concepts
Characteristics of stationary/non-stationary processes
Unit Root Testing

Introduction: Aims of Time Series Analysis

I Construct appropriate models that are able to capture the
characteristics of the observed data.

I Describe the relationship between different variables in time or
between subsequent/lagged values of the time series.

I Use historical data and advanced statistical techniques in
order to confirm the assertions of economic/financial theory.

I Obtain predictions of future values/forecasts.

Time Series Analysis aims to unreveal the data generating process
(DGP) that governs the dynamics of observed time series of
interest.
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Introduction: Modeling Approaches

I Regression-type models: models that use explanatory
variables, based on the economic/financial theory, or the
problem at hand.

I Time series models: models that use the behavior -
characteristics of the series under consideration at previous
time periods.

I Regression models with time series components.

Further, we may consider:

I Univariate models

I Multivariate models

In this course we will focus on constructing and estimating
univariate models for time series data.
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Introduction: Regression Models

Use explanatory variables, based on the economic - financial
theory, or the problem at hand.

Explanatory Models - Asset Pricing: built models with the aim to
identify important explanatory variables (risk factors) that explain
financial series.

yt = α + β1x1,t + β2x2,t + . . .+ βkxk,t + εt

Forecasting Models - Return Predictability: built models with the
aim to identify important predictive variables that have the ability
to forecast financial returns.

yt = α + β1x1,t−1 + β2x2,t−1 + . . .+ βkxk,t−1 + εt

Assuming (a) uncorrelated errors, (b) constant variance -
homoscedastic errors, (c) normal errors.Loukia Meligkotsidou, UoA Applied Econometrics
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Introduction: Regression Models

If the standard assumptions on the error terms are violated:
I Point estimation of model parameters is valid [e.g. least

squares, maximum likelihood].
I Statistical inference, which is theoretically based on the above

assumptions is not valid [e.g. hypothesis testing, CIs].

Consequences:
I We can not identify accurately which risk factors are really

important to explain financial returns and to predict future
returns [model selection problem].

I We can not accurately infer the constant α in the regression
model (test its statistical significance), which is a measure of
the performance or skill of a manager, and the regression
coefficients, which quantify the relationship between yt and
the risk factors or predictors.
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Introduction: Time Series models

Use lagged values of the series or/and lagged error terms.

Autoregressive models [AR(p)]

yt = δ + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

Moving Average models [MA(q)]

yt = µ+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt

Autoregressive Moving Average models [ARMA(p,q)]

yt = δ + φ1yt−1 + . . .+ φpyt−p + θ1εt−1 + . . .+ θqεt−q + εt

Assuming (a) uncorrelated errors, (b) constant variance -
homoscedastic errors, (c) normal errors.
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Introduction: Regression - Time Series Models

Models that use both explanatory variables and time series
components [due to autocorrelated regression errors].

yt = α + β1x1,t + β2x2,t + . . .+ βkxk,t + ut

ut = δ + φ1ut−1 + θ1εt−1 + εt

εt ∼ N(0, σ2)

These models are able to account for autocorrelation, assuming
homoscedastic and normally distributed error terms.
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Introduction: Regression - Time Series - Volatility Models

Models that use explanatory variables, time series components [due
to autocorrelated regression errors] and volatility models [due to
heteroscedastic errors].

yt = α + β1x1,t + β2x2,t + . . .+ βkxk,t + ut

ut = δ + φ1ut−1 + θ1εt−1 + εt

εt ∼ N(0, σ2
t )

σ2
t = α0 + α1ε

2
t−1 + α2σ

2
t−1

Assuming (a)autocorrelated errors, (b) heteroscedasticity (e.g.
volatility clustering, fat tails, excess kurtosis).
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Basic concepts: Stationarity

I Strictly Stationary process: the joint distribution of
(yi , yi+1, . . . , yi+k) and (yi+m, yi+m+1, . . . , yi+m+k) are the
same for all i , k ,m.

I Weakly Stationary process: the mean, the variance and the
autocovariance do not depend on time t.

More rigorously, a process is said to be weakly stationary if:

E (yt) = µ , for all t,

V (yt) = E (yt − µ)2 = σ2 , for all t,

γk = Cov(yt , yt−k) = E [(yt − µ)(yt−k − µ)] , for all t and any k .
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Basic concepts: Autocorrelation

Autocorrelation shows the interdependence - correlation between
the values of the series at different time periods.

ρk = Corr(yt , yt−k) =
Cov(yt ,yt−k )
σytσyt−k

= γk
γ0

ρk =
E [(yt−µ)(yt−k−µ)]√

E(yt−µ)2
√

E(yt−k−µ)2

Properties of autocorrelation:

ρk = ρ−k

−1 ≤ ρk ≤ 1

Sample estimate of autocorrelation:

ρ̂k =
∑T−k

t=1 (yt−ȳ)(yt−k−ȳ)∑T
t=1(yt−ȳ)2
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Significance Test for the Autocorrelation

Bartlett’s test (for a particular lag k):
H0 : ρk = 0
H1 : ρk 6= 0

If the time series is random (white noise), then the sampling
distribution of ρ̂k is approximately normal, i.e. ρ̂k ∼ N(0, 1

T ).

test statistic: Z = ρ̂k−0√
1/T
∼ N(0, 1)

Reject H0, at level of significance α, if the observed value of the
test statistic Z < −Z1−α/2 or Z > Z1−α/2 .

100(1− α)% Confidence interval for ρk :
(ρ̂k − Z1−α/2

√
1/T , ρ̂k + Z1−α/2

√
1/T ) .
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Significance Test for all Autocorrelations

H0 : ρ1 = ρ2 = . . . = ρm = 0 , for a fixed value of m
H1 : ρi 6= 0 , for at least one i ≤ m

Box-Pierce test statistic: Q = T
∑m

k=1 ρ̂k
2 ∼ χ2

m

Ljung-Box test statistic: LB = T (T + 2)
∑m

k=1
ρ̂k

2

T−k ∼ χ
2
m

The Ljung-Box test has better small sample properties.

Reject H0, at level of significance α, if the observed value of the
test statistic Q > χ2

m,1−α (LB > χ2
m,1−α).
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Understanding stationarity

Consider a time series yt , and assume an AR(1) model of the form:
yt = µ+ ρyt−1 + εt , where εt are uncorrelated with mean zero and
variance σ2.

t = 1: y1 = µ+ ρy0 + ε1

t = 2:
y2 = µ+ρy1+ε2 = µ+ρ(µ+ρy0+ε1)+ε2 = µ+ρµ+ρ2y0+ρε1+ε2

t = 3: y3 = µ+ ρµ+ ρ2µ+ ρ3y0 + ρ2ε1 + ρε2 + ε3

. . .
t = t:
yt = µ+ρµ+ρ2µ+ . . .+ρt−1µ+ρty0 +ρt−1ε1 +ρt−2ε2 + . . .+ εt

yt = ρty0 + µ
∑t−1

s=0 ρ
s +

∑t
s=1 ρ

t−sεs
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Understanding stationarity

The εt ’s are the shocks at time t. The parameter ρ shows if the
shocks are permanent or temporary. Assume that at time t = 1
the shock is ε1. Which is the effect of ε1 on the value of the time
series at time t, yt?

The effect is given by: ∂yt
∂ε1

= ρt−1

t = 1: ∂y1
∂ε1

= ρ1−1 = ρ0 = 1

t = 2: ∂y2
∂ε1

= ρ2−1 = ρ

t = 3: ∂y3
∂ε1

= ρ3−1 = ρ2 . . .

If |ρ| < 1, then ∂yt
∂ε1
→ 0, as t →∞ : not permanent shocks, i.e.

the effect of ε1 vanishes after some period of time.

If ρ = 1, then ∂yt
∂ε1

= 1 : permanent shocks, i.e. the random term
at time t = 1, ε1, affects the series yt permanently.
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Non-stationary process I: Random walk with drift

For ρ = 1 i.e. when the shocks are permanent, the model takes the
form: yt = µ+ yt−1 + εt [Random walk with drift].

We will write down the model in an equivalent form:

t = 1: y1 = µ+ y0 + ε1

t = 2:
y2 = µ+ y1 + ε2 = µ+ (µ+ y0 + ε1) + ε2 = µ+ µ+ y0 + ε1 + ε2

t = 3: y3 = µ+ y2 + ε3 = µ+ µ+ µ+ y0 + ε1 + ε2 + ε3

. . .

t = t: yt = tµ+ y0 +
∑t

s=1 εs

Loukia Meligkotsidou, UoA Applied Econometrics
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Non-stationary process I: Random walk with drift

Random walk with drift: yt = µ+ yt−1 + εt = tµ+ y0 +
∑t

s=1 εs

We will prove that in this case, the series yt is a non-stationary
process. For simplicity assume that y0 = 0 (in general, we take y0

fixed).

E (yt) = E (tµ+y0 +
∑t

s=1 εs) = E (tµ)+E (y0)+E (
∑t

s=1 εs) = tµ

V (yt) = V (tµ+ y0 +
∑t

s=1 εs) = V (tµ) + V (y0) + V (
∑t

s=1 εs) =
tσ2

γk = Cov(yt , yt−k) = E [(yt − E (yt))(yt−k − E (yt−k))]

= E [(yt− tµ)(yt−k − (t−k)µ)] = E [(y0 +
∑t

s=1 εs)(y0 +
∑t−k

s=1 εs)]

= E [(
∑t

s=1 εs)(
∑t−k

s=1 εs)] = (t − k)σ2
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Non-stationary process I: Random walk with drift

Therefore, the Random walk with drift model: yt = µ+ yt−1 + εt

I is a non-stationary process

I has permanent shocks

I its mean is not constant over time, E (Yt) = tµ, i.e. it has a
linear trend

I its variance is not constant over time, V (yt) = tσ2, i.e. it
increases over time

I its covariance, i.e. the way the lagged values affect future
values, changes over time
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Non-stationary process II: Random walk without drift

Consider a time series yt and assume a model of the form:
yt = ρyt−1 + εt , where εt are uncorrelated with mean zero and
variance σ2.

For ρ = 1 i.e. when the shocks are permanent, the model takes the
form: yt = yt−1 + εt [Random walk without drift]

We will write the model in an equivalent form:

t = 1: y1 = y0 + ε1

t = 2: y2 = y1 + ε2 = (y0 + ε1) + ε2 = y0 + ε1 + ε2

t = 3: y3 = y2 + ε3 = y0 + ε1 + ε2 + ε3

. . .

t = t: yt = y0 +
∑t

s=1 εs
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Non-stationary process II: Random walk without drift

Random walk without drift: yt = yt−1 + εt = y0 +
∑t

s=1 εs

We will prove that the series yt is a non-stationary process. For
simplicity assume that y0 = 0.

E (yt) = E (y0 +
∑t

s=1 εs) = E (y0) + E (
∑t

s=1 εs) = 0

V (yt) = V (y0 +
∑t

s=1 εs) = V (y0) + V (
∑t

s=1 εs) = tσ2

γk = Cov(yt , yt−k) = E [(yt − E (yt))(yt−k − E (yt−k))]

= E [ytyt−k ] = E [(y0 +
∑t

s=1 εs)(y0 +
∑t−k

s=1 εs)]

= E [(
∑t

s=1 εs)(
∑t−k

s=1 εs)] = (t − k)σ2
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s=1 εs) = tσ2

γk = Cov(yt , yt−k) = E [(yt − E (yt))(yt−k − E (yt−k))]

= E [ytyt−k ] = E [(y0 +
∑t

s=1 εs)(y0 +
∑t−k

s=1 εs)]

= E [(
∑t

s=1 εs)(
∑t−k

s=1 εs)] = (t − k)σ2
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Non-stationary process II: Random walk without drift
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Non-stationary process II: Random walk without drift

Therefore, the Random walk without drift model: yt = yt−1 + εt

I is a non-stationary process

I has permanent shocks

I its mean is constant through time, E (Yt) = 0, i.e. yt moves
around zero

I its variance is not constant over time, V (yt) = tσ2, i.e. it
increases over time

I its covariance, i.e. the way the lagged values affect future
values, changes over time
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Stationarity through Differencing I

Consider a non-stationary process yt which follows a Random walk
model with drift, i.e. yt = µ+ yt−1 + εt

By subtracting yt−1 we obtain:

yt = µ+ yt−1 + εt ⇒ yt − yt−1 = µ+ yt−1 + εt − yt−1 ⇒

Zt = ∆yt = µ+ εt

E (Zt) = E (∆yt) = E (µ+ εt) = E (µ) + E (εt) = µ

V (Zt) = V (∆yt) = V (µ+ εt) = V (µ) + V (εt) = σ2

γk = Cov(Zt ,Zt−k) = E [(Zt − E (Zt))(Zt−k − E (Zt−k))]

= E [(Zt − µ)(Zt−k − µ)] = E [εtεt−k ] = 0

That is Zt = ∆yt is a stationary process.
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Stationarity through Differencing II

Consider a non-stationary process yt which follows a Random walk
model without drift, i.e. yt = yt−1 + εt

By subtracting yt−1 we obtain:

yt = yt−1 + εt ⇒ yt − yt−1 = εt ⇒ Zt = ∆yt = εt

E (Zt) = E (∆yt) = E (εt) = 0

V (Zt) = V (∆yt) = V (εt) = σ2

γk = Cov(Zt ,Zt−k) = E [(Zt − E (Zt))(Zt−k − E (Zt−k))]

= E [ZtZt−k ] = E [εtεt−k ] = 0

That is Zt = ∆yt is a stationary process
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Stationarity through Differencing: Definitions

Consider a non-stationary process yt

If ∆yt = yt − yt−1 is a stationary process, then yt is called
Integrated of order one [I (1)].

Generally, if yt is non-stationary and by taking iteratively d
differences yt becomes stationary, then yt is called Integrated of
order d, I (d).

If yt is stationary, then it is an I (0) process.
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Stationary process: The AR(1) model

Consider a time series yt and assume an AR(1) model of the form:
yt = µ+ ρyt−1 + εt , where εt are uncorrelated with mean zero and
variance σ2. Recall that for |ρ| < 1, the shocks are not permanent
and the effect of ε1, or generally of εt , vanishes after some period
of time. Furthermore, recall that yt can be written as
yt = ρty0 + µ

∑t−1
s=0 ρ

s +
∑t

s=1 ρ
t−sεs

Assuming that y0 = 0, the mean, variance and autocovariance at
lag k of yt are given by

E (yt) = µ
1−ρ

V (yt) = σ2

1−ρ2

γk = Cov(yt , yt−k) = ρkγ0 = ρk σ2

1−ρ2
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Stationary process: The AR(1) model without constant

Consider a time series yt and assume an AR(1) model of the form:
yt = ρyt−1 + εt , where εt are uncorrelated with mean zero and
variance σ2.

Again, for |ρ| < 1, the shocks are not permanent and the the effect
of ε1, or generally of εt , vanishes after some period of time. This is
a special case of the AR(1) model, with µ = 0.

Assuming that y0 = 0, the mean, variance and autocovariance at
lag k of ytare given by

E (yt) = 0

V (yt) = σ2

1−ρ2

γk = Cov(yt , yt−k) = ρkγ0 = ρk σ2

1−ρ2
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Unit-Root test of Stationarity: Different tests

The hypothesis test of interest (test for stationarity) is:
H0 : ρ = 1
H1 : |ρ| < 1 usually H1 : ρ < 1

Under H0, the process is non-stationary, the variance of the process
increases over time, therefore a standard t-test is not valid.

Different testing approaches have been proposed in the literature:

I Dickey - Fuller test (Augmented Dickey-Fuller)

I Phillips - Perron test

I Kwiatkowski - Phillips - Schmidt - Shin test

I Ng - Perron test

The main problem of the tests for stationarity is that the power of
the tests is not large.
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Unit-Root test of Stationarity: Different models

The stationary test of interest is:
H0 : ρ = 1
H1 : |ρ| < 1 usually H1 : ρ < 1

Different modeling approaches have been proposed in the
literature:

I AR(1) model with constant: yt = µ+ ρyt−1 + εt
I AR(1) model without constant: yt = ρyt−1 + εt
I AR(1) model with constant and linear trend:

yt = µ+ ρyt−1 + γt + εt
I AR(p) model with/without constant/trend
I AR(p) models with structural breaks , etc.

The idea is that in order to test if a process is stationary or not,
one needs to use a model that fits the data well.
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Dickey-Fuller test - Model with constant

Model under consideration: yt = µ+ ρyt−1 + εt
H0 : ρ = 1 [Non-stationary process: Random walk with drift]
H1 : ρ < 1 [Stationary process: AR(1) with constant]

The model can be reparametrized as follows:

yt = µ+ ρyt−1 + εt ⇒ yt − yt−1 = µ+ ρyt−1 + εt − yt−1 ⇒

∆yt = µ+ (ρ− 1)yt−1 + εt ⇒

∆yt = µ+ βyt−1 + εt , where β = ρ− 1

H0 : β = 0 [Non-stationary process]
H1 : β < 0 [Stationary process]

The reparametrized model is used, but the test examines
stationarity of the yt process, not of the ∆yt process!!!
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Dickey-Fuller test - Model with constant

I Similar in spirit with an one-tailed regression-type test

I The test statistic is of the form: β̂

s.e.(β̂)

I Due to non-stationarity under H0, the distribution of the test
statistic is not Student-t

I Dickey - Fuller have provided ’corrected’ critical values

I Reject H0 if the test statistic is smaller than the critical value
in the left tail of the distribution

I Reject H0 if the significance level α is larger than the
corresponding p-value
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Dickey-Fuller test - Model without constant

Model under consideration: yt = ρyt−1 + εt
H0 : ρ = 1 [Non-stationary process: Random walk without drift]
H1 : ρ < 1 [Stationary process: AR(1) without constant]

The model can be reparametrized as follows:

yt = ρyt−1 + εt ⇒ yt − yt−1 = ρyt−1 + εt − yt−1 ⇒

∆yt = (ρ− 1)yt−1 + εt ⇒

∆yt = βyt−1 + εt , where β = ρ− 1

H0 : β = 0 [Non-stationary process]
H1 : β < 0 [Stationary process]

The reparametrized model is used, but the test examines
stationarity of the yt process, not of the ∆yt process!!!
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Dickey-Fuller test - Model without constant

I Similar in spirit with an one-tailed regression-type test.

I The test statistic is of the form: β̂

s.e.(β̂)
.

I Due to non-stationarity under H0, the distribution of the test
statistic is not Student-t.

I Dickey - Fuller have provided ’corrected’ critical values.

I Reject H0 if the test statistic is smaller than the critical value
in the left tail of the distribution.

I Reject H0 if the significance level α is larger than the
corresponding p-value.
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Dickey-Fuller test - Model with constant and trend

Model under consideration: yt = µ+ ρyt−1 + γt + εt
H0 : ρ = 1(γ = 0) [Non-stationary process: Stochastic trend]
H1 : ρ < 1(γ 6= 0) [Stationary process: Deterministic trend]

The model can be reparametrized as follows:

yt = µ+ρyt−1 +γt+εt ⇒ yt−yt−1 = µ+ρyt−1 +γt+εt−yt−1 ⇒

∆yt = µ+ (ρ− 1)yt−1 + γt + εt ⇒

∆yt = µ+ βyt−1 + γt + εt , where β = ρ− 1

H0 : β = 0(γ = 0) [Non-stationary process]
H1 : β < 0(γ 6= 0) [Stationary process]

The reparametrized model is used, but the test examines
stationarity of the yt process, not of the ∆yt process!!!
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Dickey-Fuller test - Model with constant and trend

Model under consideration: yt = µ+ ρyt−1 + γt + εt
H0 : ρ = 1(γ = 0) [Non-stationary process: Stochastic trend]
H1 : ρ < 1(γ 6= 0) [Stationary process: Deterministic trend]

The model can be reparametrized as follows:

yt = µ+ρyt−1 +γt+εt ⇒ yt−yt−1 = µ+ρyt−1 +γt+εt−yt−1 ⇒

∆yt = µ+ (ρ− 1)yt−1 + γt + εt ⇒
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H0 : β = 0(γ = 0) [Non-stationary process]
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Dickey-Fuller test - Model without constant and trend

I Similar in spirit with an one-tailed regression-type test.

I The test statistic is of the form: β̂

s.e.(β̂)
.

I Due to non-stationarity under H0, the distribution of the test
statistic is not Student-t.

I Dickey - Fuller have provided ’corrected’ critical values.

I Reject H0 if the test statistic is smaller than the critical value
in the left tail of the distribution.

I Reject H0 if the significance level α is larger than the
corresponding p-value.
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Augmented Dickey-Fuller test

H0 : β = 0 [Non-stationary process]
H1 : β < 0 [Stationary process]

If the errors ε̂t in the model under consideration are correlated, we
use the Augmented Dickey-Fuller test (ADF) to examine
stationarity. That is, the model takes the form:

∆yt = µ+ βyt−1 +
∑p

j=1 λj∆yt−j + εt

∆yt = βyt−1 +
∑p

j=1 λj∆yt−j + εt

∆yt = µ+ βyt−1 + γt +
∑p

j=1 λj∆yt−j + εt
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