Daygn 15 Deupufa Loja stewicz , E:1R ->1R Traft. avafutika (*) x'=-VE(X) *10 = x0 Danputo tho | x(4) | < +00 EGTW X (+1 abeltan ? TOTE IOXUE lim X(+)==, VE(=)=0 Ixogio: To basico regajero enas u Avisorura Lojasiewicz: FORW DE(x*)=0.=>= 470, De[{1/2}], car C>0 (E(x)-E(x*) | < C | VE(x) |, x (E Treploxultino Tape Typicsus - Exogra 1) H (1) 10 XUEL XIA N=1, XUPIS UTIDDEEN auguTICOTUTAL -> () (Constantative) 2) H (1) der jokuer die Cao (alla exi Ca) anapricas (Armandagha Palis-De Melo 5.13) 3) Propares Topisha Tur (2) OTI av 3 = [==] VE=0 BEW, TOTE E(5)=E(x*), Py. 5, X GTO 1910 made e regione (was gen lathor for Co embrages) 4) torw of angurra fres prosperse, FG+) am fo f(2) = an 2 + aux 2 4. 7 (2) = man 8 + x=0, 1f(z) | = < (| f(z) | Designa To (2): Mayer fretalignes.

$$\begin{aligned}
& 2(+) := E(x|+1) \\
& (6), (5) = 7 \\
& (7) \quad 2'(+) \le - C(2(+1)^{2}) \\
& = 7 \quad 2(+) \le ||X_{1}|| + ||X_{2}|| + ||X_{2}|| + ||X_{1}|| + ||X_{1}|| + ||X_{2}|| + ||X_{1}|| + |$$

(5) |E(xH)) | &C | PE(xH) |

Figure 6

 $\varphi(\Delta_{\bar{c}}) = \varphi(\bigcup_{c \in C} \Delta_c)$ is dense in T^2 . To show that C is dense in \mathbb{R} it is enough to prove that $G = \{m\alpha + n; m, n \in \mathbb{Z}\}$ is dense in \mathbb{R} , because $c \in C$ if and only if $c - \bar{c} \in G$. As G is a subgroup of the additive group \mathbb{R} we know that G is either dense or discrete. It remains, therefore, to show that G is not discrete. But for each $m \in \mathbb{Z}$, there exists $n \in \mathbb{Z}$ such that $u_m = m\alpha + n$ belongs to the interval [0, 1]. The sequence u_m has a cluster point and, as α is irrational, its terms are distinct. Thus G is dense.

The vector field Y^{α} above is called the rational or irrational field on T^2 according as to whether α is rational or not. If α is rational the ω -limit of any orbit is itself. If α is irrational, the ω -limit of any orbit is the whole torus T^2 .

Example 3 (Gradient Vector Fields). Consider a manifold $M^m \subset \mathbb{R}^k$. At each point $p \in M$ we take in TM_p the inner product \langle , \rangle_p induced by \mathbb{R}^k . We denote the norm induced by this inner product by || ||, or, simply, by || ||. If X and Y are C^{∞} vector fields on M then the function $g: M \to \mathbb{R}$, g(p) = $\langle X(p), Y(p) \rangle_p$ is of class C^{∞} . Let $f: M \to \mathbb{R}$ be a C^{r+1} map. For each $p \in M$ there exists a unique vector $X(p) \in TM_p$ such that $df_p v = \langle X(p), v \rangle_p$ for all $v \in TM_p$. This defines a vector field X which is of class C'. It is called the gradient of f and written as X = grad f. We shall now indicate some basic properties of gradient fields. Firstly, grad f(p) = 0 if and only if $df_p = 0$. Along nonsingular orbits of $X = \operatorname{grad} f$ we have f strictly increasing because $df_p X(p) = ||X(p)||^2$. In particular grad f does not have closed orbits. Moreover, the ω -limit of any orbit consists of singularities. For let us suppose that $X(q) \neq 0$ and $q \in \omega(p)$ for some $p \in M$. Let S be the intersection of $f^{-1}(f(q))$ with a small neighbourhood of q. We see that S is a submanifold of dimension $\sqrt{m-1}$ orthogonal to $X = \operatorname{grad} f$ and, by the continuity of the flow, the orbit through any point near q intersects S. As $q \in \omega(p)$ there exists a sequence p_n $\sqrt{\text{in the orbit of } p \text{ converging to } q}$. Thus the orbit of p intersects S in more than one point (in fact, in infinitely many points) which is absurd since f is increasing along orbits. On the other hand, it is clear that, if the ω -limit of an orbit V of a gradient vector field contains more than one singularity, it must contain infinitely many. We are going to show that this can in fact occur.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f: \mathbb{R}^2 \to \mathbb{R} \text{ be defined by}$$

$$f(r\cos\theta, r\sin\theta) = \begin{cases} e^{1/(r^2-1)}, & \text{if } r < 1; \\ 0, & \text{if } r = 1; \\ e^{-1/(r^2-1)}\sin(1/(r-1) - \theta), & \text{if } r > 1. \end{cases}$$

$$X = \text{grad } f. \text{ We have } X(r\cos\theta, r\sin\theta) = 0 \text{ if and only if } r = 0$$

Let X = grad f. We have $X(r \cos \theta, r \sin \theta) = 0$ if and only if r = 0 or r = 1. We are going to show that there exists an orbit of X whose ω -limit is the circle C with centre at the origin and radius 1. Note that $f^{-1}(0) = C \cup E_1 \cup E_2$, where E_1 and E_2 are the spirals (Figure 7) defined by

$$E_1 = \{(r\cos\theta, r\sin\theta); r = 1 + 1/(\pi + \theta), -\pi < \theta < \infty\},\$$

$$E_2 = \{ (r\cos\theta, r\sin\theta); r = 1 + 1/(2\pi + \theta), -2\pi < \theta < \infty \}.$$

Let us consider the region $U = \{(r \cos \theta, r \sin \theta); 1 + 1/(2\pi + \theta) < \theta\}$ $r < 1 + 1/(\pi + \theta)$, $\theta \ge 0$ and let I be the interval $\{(x, 0); 1 + 1/2\pi \le x \le x \le \theta\}$ $1 + 1/\pi$. We shall show the existence of a point $p_0 \in I$ whose positive orbit remains in the region U. Hence the ω -limit of p_0 will be the circle C. In Figure 8 we draw some level curves of the function f on U.

The intersection of the level curve through a point $p \in I$ with U is a compact segment whose ends are in I. The length of this segment tends to infinity as p approaches the ends of I.

Let $q \in E_1$. As X(q) is orthogonal to E_1 and points out of U (becay negative in U), we see that the negative orbit of q intersects one of Ucurves through a point in the interior of I. So the negative orbit of q in I. Therefore, the set $J = \{ p \in I; X_s(p) \in U \text{ for } 0 \le t < s \text{ and } X_s(p) \in I \}$ nonempty. Moreover, given $q \in E_1$, there exists $p \in J$ such that the potential potential f(x) is a such that the potential f(x) is a such that f(x) is a such that the potential f(x) is a such that f(x) is a such orbit of p contains q and the segment of the orbit between p and q is in U. the other hand, given $q \in E_2$, the negative orbit of q also intersects I so the $J \neq I$.

Let p_0 be the infimum of J. We claim that the positive orbit of p_0 remains in U. For if this is not the case there exists a point q in the positive orbit of p_0 such that the segment of the orbit between p_0 and q is contained in U and $X_t(q) \notin U$ for sufficiently small t > 0. Thus $q \in E_1$ or $q \in E_2$ or $q \in I$. If $q \in E_1$ then each positive orbit through a point of J intersects E_1 in a point of the same point of J intersects E_1 in a point of the segment between (1 + 1/2 0) and a This is about d because the negative

15

orbit through any point of each point page a_1 and therefore a_2 . If $a_1 \in E_2$ or $a_2 \in I$ then the positive orbit of each point near p_0 leaves U without meeting E_1 which is absurd since p_0 is the infimum of J. Thus the positive orbit of p_0 is contained in U, which proves our claim.

We remark that the vector field on S^2 in Example 1 is the gradient of the height function that measures height above the plane tangent to the sphere S^2 at p_S . Other simple examples can be obtained by considering the function on a surface in \mathbb{R}^3 which measures the distance from its points to a plane. Some of these examples will be considered later.

Next we shall discuss some general properties of ω -limit sets.

1.4 Proposition. Let $X \in \mathfrak{X}^r(M)$ where M is a compact manifold and let $p \in M$. Then

- (a) $\omega(p) \neq \emptyset$,
- (b) $\omega(p)$ is closed,
- (c) $\omega(p)$ is invariant by the flow of X, that is $\omega(p)$ is a union of orbits of X, and
- (d) $\omega(p)$ is connected.

PROOF. Let $t_n \to \infty$ and $p_n = X_{t_n}(p)$. As M is compact p_n has a convergent subsequence whose limit belongs to $\omega(p)$. Thus $\omega(p) \neq \emptyset$. Suppose now that $q \notin \omega(p)$. Then it has a neighbourhood V(q) disjoint from $\{X_t(p); t \geq T\}$ for some T > 0. This implies that the points of V(q) do not belong to $\omega(p)$ and so $\omega(p)$ is closed. Next suppose that $q \in \omega(p)$ and $\tilde{q} = X_s(q)$. Take $t_n \to \infty$ with $X_{t_n}(p) \to q$. Then $X_{t_n+s}(p) = X_s X_{t_n}(p)$ converges to $X_s(q) = \tilde{q}$ and so $\tilde{q} \in \omega(p)$. This shows that $\omega(p)$ is invariant by the flow. Suppose that $\omega(p)$ is not connected. Then we can choose open sets V_1 and V_2 such that $\omega(p) \subset$ $V_1 \cup V_2$, $\omega(p) \cap V_1 \neq \emptyset$, $\omega(p) \cap V_2 \neq \emptyset$ and $\overline{V}_1 \cap \overline{V}_2 = \emptyset$. The orbit of p accumulates on points of both V_1 and V_2 so, given T > 0, there exists t > Tsuch that $X_i(p) \in M - (V_1 \cup V_2) = K$, say. Thus there exists a sequence $t_n \to \infty$ with $X_{t_n}(p) \in K$. Passing to a subsequence, if necessary, we have $X_{t_n}(p) \to q$ for some $q \in K$. But this implies that $q \in \omega(p) \subset V_1 \cup V_2$ which is

Remark. Clearly the properties above are also true for the α-limit set. On the other hand, if the manifold were not compact we should have to restrict attention to an orbit contained in a compact set for positive time (or for negative time). Figure 9 shows an orbit of a vector field on \mathbb{R}^2 whose ω -limit is not connected.

