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Figure 6

o(A) = &(Ucec A is dense in T2.To show that C is dense in R it is enough
to prove that G = {ma + n;m,n € Z} isdense in R, because ¢ € C if and only
if c — ¢ € G. As G is a subgroup of the additive group R we know that G 1s
either dense or discrete. It remains, therefore, to show that G is not discrete.
But for each m € Z, there exists n € Z such that u,, = ma + n belongs to t!le
interval [0, 1]. The sequence u,, has a cluster point and, as a is irrational, its
terms are distinct. Thus G is dense.

The vector field Y* above is called the rational or irrational ﬁel(:‘l on T?
according as to whether a is rational or not. If a is rational the w-limit of any
orbit is itself. If « is irrational, the w-limit of any orbit is the whole torus i

ExampLE 3 (Gradient Vector Fields). Consider a manifold M™ < R*. At each
point p € M we take in TM,, the inner product { , ), induced by R*. We
denote the norm induced by this inner product by || ||, or, simply, by || |-
If X and Y are C® vector fields on M then the function g: M — R, g(p) =
(X(p), Y(p)),is of class C*. Letf: M — Rbea C'*' map. Foreachpe M
there exists a unique vector X(p) € TM , such that df,v = (X(p), v), for all
ve TM,. This defines a vector field X which is of class C". It is called the
gradient of f and written as X = grad f. We shall now indicate some basic
properties of gradient fields. Firstly, grad f(p) = 0 if and only if df, = 0.
Along nonsingular orbits of X = grad f we have fstrictly increasing because
df,X(p) = | X(p)|i>. In particular grad f does not have closed orbits. More-
over, the w-limit of any orbit consists of singularities. For let us suppose that |
X(g) # 0and q € w(p) for some p € M. Let § be the intersection of f ~ '(f(@)
with a small neighbourhood of g. We see that S is a submanifold of dimension
vm — 1 orthogonal to X = grad f and, by the continuity of the flow, the orbit
\/?hrough any point near q intersects S. As g € @(p) there exists a sequence p,
in the orbit of p converging to ¢. Thus the orbit of p intersects S in more than
One point (in fact, in infinitely many points) which is absurd since fis increas-
‘/ Ing along orbits. On the other hand, it is clear that, if the w-limit of an orbit
?1: gn gradient vector field contains more than one singularity, it must contain
itely many. We are going to show that this can in fact occur.

\
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Letf: R* > R be defined by
e/t -1 ifF< 1:
f(rcos @, rsinf) =40, ifr=1;

e” Y- Vgin(1/r — -8, ifr>1.
Let X = grad f. We have X(r cos 8, rsin ) =0 if and only if r =
€ are going to show that there exists an orbit of X whose w-limit i

C with centre at the origin and radius 1. Note that £ ~1(0) =
where E, and E, are the spirals (Figure 7) defined by

Ei={(rcosb,rsin0);r=1+ 1/n+6), —n<8 < @},

E; = {(rcos 6, r sin Oir=1+1/Q2r+80), -2r <6 < 00}.

Let us consider the region U = {(rcosf, rsinf); 1+ 1/2r + 6) <
r<1+ 1)z + 6),0 > 0} and let I be the interval {(x,0;1+12n < x <
1 + 1/x}. We shall show the existence of a point p, € I whose positive orbit
remains in the region U. Hence the w-limit of po will be the circle C. In
Figure 8 we draw some level curves of the function fon U.

The intersection of the level curve through a point pef with U is a”
compact segment whose ends are in I. The length of this segment tends to
infinity as p approaches the ends of /. ‘(

Letge E\. As X(q)is orthogonal-to £, and points out of U (bcicaL
Degative in U), we see that the negative orbit of g intersects one of {

Oorr=1.
s the circle
CUE,VE,,

curves through a point in the interior of /. So the negative orbit of ¢ i
/ Therefore, theset J = {pel; X(p)eUfor0 <t <sand X (p)€
fonempty, Moreover, given g € E,, there exists p € J such that the pot

orbit of p contains g and the segment of the orbit between P and q is in.U.
the other hand, given g € E,, the negative orbit of ¢ also intersects [ so 6.
J#1

; E‘et Po be the infimum of J. We claim that the positive orbit of p, remains
InU. For

if this is not the case there exists a point q in the positive o_rblt 0;;3
Such that the Ségment of the orbit between p, and g is contained in U
Xd9) ¢ U for sufficiently small t > 0. Thus qe E, or g€ E; or g €l If
g€ E, the s

N each positive orbit through a point b1 J IMedecs E-in 2 point

g lent betweel'l (1 v B ! fqr [ 2 Ty RO L, L LI e [ P L e T L.
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. it through any point of E, intersects I and there
B he positive orbit of each point near p, leave
lhc-nr: is absurd since pq 18 the infimum of J. Thys
i ined in U, which proves our claim.
cot;:?; remark that the vector field on S? in Exam
height function that measures height above_the p
§2 at ps. Other simple f:xamples can be ob-tamed
on a surface in R® which measures the distance
Some of these examples will be considered later.

Next we shall discuss some general properties of w-limit sets.

I't::ure.l.lchelii2 orge]
s U without meeting E, k
the positive orbit of Po is
ple 1 is the gradient of the
lane tangent to the sphere
by considering the function
from its points to a plane.

1.4 Proposition. Let X € X" (M) where M is q com
Then A

(a) o(p) # &,
(b) eXp) is closed,

(c) oXp) is invariant by the flow of X, that is «(p) is a union of orbits of X, and
(d) o(p) is connected.

pact manifold and let p e M.

PROOF. Let t, - o0 and p, = X t(P)- As M is compact P» has a convergent

subsequence whose limit belongs to w(p). Thus (p) # . Suppose now

that g ¢ w(p). Then it has a neighbourhood V(q) disjoint from {X (p):t > T}

for some T > 0. This implies that the points of V(q) do not belong to (p)
and so wx(p) is closed. Next suppose thatg € w(p)and §j = X {q). Taker, - o
with X, (p) = g. Then X kD) = XX .(P) converges to X {(9) = §and so
g € w(p). This shows that w(p) is invariant by the flow. Suppose that w(p) is
not connected. Then we can choose open sets V) and ¥, such that w(p) =
WUl wp)ny « g, a(p) "V, # & and V, A ¥, = &. The orbit of
P accumulates on points of both Viand V; so, given T > 0, there existst > T
Such that X (p)e M — (Vi u V) = K, say. Thus there exists a sequence

= 0 with X, (p)eKk. Passing to a subsequence, if necessary, we 'ha\fe
fl;;(P) = g for some g € K. But this implies that q€ w(p) = V, u V, which is
urd,

a
Remark, Clearly the properties above are also true for the x-limit set. On the
Other hang, i

B the manifold were not compact we should have to restrict
tem.mn t0 an orbit contained in a compact set for positive time (or for
Degative time), Fj

- 71gure 9 shows an orbit of a vector field on R? whose @-limit
S not Connected,
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