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quently, u can be approximated by a triple junction map

upper and lower bounds, ensuring that the diffuse interface
remains within a small neighborhood of the approximated

triple junction at all scales.

1 | INTRODUCTION
1.1 | The problem and main result

This paper is concerned with the uniqueness of the blow-down limit at infinity for an entire,
bounded minimizing solution of the system

Au—W,(u)=0, u:R?>- R2? 1.1
where W is a potential with three global minima. Specifically for W we assume
(H1). W € C*(R?;[0,4c0)),{z : W(z) =0} ={a;,ay,a3}, W,(u) - u > 0if |u| > M and

QI 2 EMWy(@)€ > cilé)?, i=1,2,3.

for some positive constants ¢; < ¢, depending on W.
(H2). Fori# j,i,j €{1,2,3},let U;; € W*(R,R?) be an 1D minimizer of the action

. 1 . .
ojj 1= mln/R <§|Ui’j|2 + W(Ul-j)> dn, nl_l)r_noo Uii(m) = a;, 7]1—1>r-ll:loo Uii(n) = aj.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2024 The Author(s). Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.

Comm. Pure Appl. Math. 2024;1-35. wileyonlinelibrary.com/journal/cpa 1


mailto:geng42@purdue.edu
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/cpa
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpa.22230&domain=pdf&date_stamp=2024-10-09

2 GENG

o;; satisfies
ojj=0>0 fori# je€{l,2,3}andsome constanto. 1.2)

Note that (1.1) is the Euler-Lagrange equation associated with the energy
B, Q) := / <%|Vu|2 + W(u)> dx. (13)
Q

An entire minimizing solution u : R? — R? is defined in the following local sense.

Definition 1.1. A functionu : R? — R? is a minimizing solution of (1.1) in the sense of De Giorgi
if

E(u,Q) <E(u+0v,0Q), Vboundedopensets Q C R?, Vv € Cy(Q). 1.4)

The solution we seek can be regarded as the diffuse analogue of the minimal 3-partition of the
plane. Specifically, we define

P = {Dla DZ’ D3}7

which is a partition of the plane into three sectors centered at the origin with opening angles of
120 degrees. Let 0P denote the union of three rays that separate {D; }l.3=1, that is,

673 = 51)1 U aDz U 61)3
We call P a triod. The triple junction map is defined by

Up = ai1xp, + &2 Xp, + @3 XD,> .5)

where y represents the characteristic function of domain Q.

It is well-known that P is a minimizing partition of R? into three phases and 7 is a minimal
cone. P is minimizing in the sense that for any Q ¢ R?, PL Q = {D,; n Q}}_ is a solution of the
following variational problem

min ) H(3(A; N Q) N 6(A; N Q)),
i<j

A ={A;}}_ isa 3-partition of R and PL (R?\ Q) = AL (R*\ Q).

The minimality stated above is related to Steiner’s classical result which states that given three
points A, B, C on the plane such that the corresponding triangle has no angle greater than or equal
to 120 degrees, then if P is a point that minimizes the sum of the distances |[P — A| + |P — B| +
|P — C|, the line segments PA, PB, PC form three 120-degree angles.

In 1996, Bronsard et al. [6] established the existence of an entire solution to (1.1) in the
equivariant class of the reflection group G of the symmetries of the equilateral triangle. The
triple-well potential is also assumed invariant under G. The solution is obtained as a minimizer
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UNIQUENESS OF THE BLOW-DOWN LIMIT | 3

in the equivariant class u(gx) = gu(x),g € G, hence is not necessarily stable under general
perturbations. Their results were extended to the three dimensional case in 2008 by Gui and
Schatzman [10]. We refer to the book [2] and to the references therein.

In 2021, Fusco [8] succeeded in establishing essentially the result of [6] in the equivariant
class of the rotation subgroup of G (by %7‘[), thus eliminating the two reflections. The symmetry
hypothesis fixes the center of the junction at the origin, which simplifies the analysis.

On bounded domains, there are some constructions of triple junction solutions without
imposing symmetry assumptions, see for example, the paper by Sternberg and Ziemer [13] for
clover-shaped domains in R? via I'-convergence, and for more general domains by Flores et al.
[7] by a mountain pass argument. These I'-convergence results are not sufficient for establishing
the existence of a triple junction solution on R?.

The existence of an entire minimizing solution in the sense of Definition 1.1, characterized by
a triple junction structure at infinity, has been independently established in two recent papers: by
Alikakos and the author [3] and by Sandier and Sternberg [11]. Under slightly different hypotheses
and employing distinct methods, these two studies have yielded comparable results saying that
along a subsequence r;, — oo, the rescaled function u,, (z) := u(ryz) converges in L}OC(RZ) toa
triple junction map u, of the form (1.5). However, it remains unclear a priori if there could exist
two different sequences of rescalings {r;.} and {s; }, leading to distinct blow-down limits u; and u,,
corresponding to distinct minimal 3-partitions P; and P,, respectively. The primary objective of
the present paper is to rule out this possibility and demonstrate the uniqueness of the blow-down
limit. We now state our main result.

Theorem 1.2. There exists a bounded, minimizing solution u : R?> — R? of (1.1) such that for any
compact K C R?,

lim 1,00 = w1 = O,

3
where uy = Y, a;ffp, for P = {Di}?zl providing a minimal partition of R? into three sectors with

i=1
angle of 120 degrees and 0P is a triod centered at 0.

Remark 1.1. The result above also holds for the case when o;; are not all equal but still satisfy

0j + 0jk > oji. In this scenario, the corresponding minimal partition 7 consists of three sectors

D; with opening angles 6; satisfying 25—1 6; = 2x and Snfy _ s _ N6 he proof for the
- 023 913 012

general 0;; case follows the same argument as the proof of Theorem 1.2. In this paper, we will

adhere to the equal 0;; case for the sake of clarity and simplicity in presentation.

Uniqueness of blow-up or blow-down limits is one of the central questions in the study of sin-
gular structures in geometric PDEs. Following the prominent early works by Allard and Almgren
[4] and Simon [12], uniqueness questions have been investigated extensively for free boundary
problems, harmonic maps, minimal surfaces and geometric flows. Most of these results rely on
some type of the Simon-Yt.ojasiewicz inequality or epiperimetric inequalities, showing the decay
of certain monotone quantities at a definite rate. In our proof, the uniqueness of the blow-down
limit is obtained from a delicate estimate on the localization of the diffuse interface, derived from
a purely variational argument, thus avoiding the use of those classical methods.
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1.2 | An overview of the proof

We now list some key steps and ideas in the proof of our results. As mentioned earlier, we can
start with a minimizing solution u of (1.1) as constructed in [3] and [11], which converges to a
triple junction map of the form (1.5) along some subsequence r;, — oo0. In particular, for arbitrarily
small ¢, there exists a sufficiently large R, such that

3a—s§/
8

BRO

<%|VTu|2 + W(u)> dH' <30 +¢,

where V; denotes the tangential derivative.

Starting from this estimate, which basically means there are three phase transitions along B, ,
we can derive that u(z) should “behave nicely” on dBg, . To be more specific, u is close to phases
ay, a,, a; on three arcs I, I,, I3, respectively. Between these phases, there will be three small arcs
I;; (i # j € {1,2,3}) separating them, which can be regarded as the place where phase transition
happens. We pick points A € I,, B € I3, C € I,; and determine the point D such that |[DA| +
|DB| + |DC| is minimized. Then we let T ypc := DA U DB U DC be the approximate triod on By, .

With such a nicely behaved boundary data on 0By, we obtain the following energy upper
bound and lower bound in By, .

o(|DA| + |DB| + |DC|) — CRj < /

<%|Vu|2 + W(u)> dz < o(|DA| + |DB| + |DC|) + CRZ,
BRO

1.6)

for some constants C = C(W) and a € (0, 1). For the upper bound, we utilize the construction of
an energy competitor outlined in [11, Proposition 3.3], while for the lower bound we mimic the
proof of [3, Proposition 3.1].

We define the diffuse interface as

1

V4 ::{Z . |u(z)_ai| ZV, Vl=1’253}

The energy bound (1.6) implies that I, N By, is located in an O(Rf)g ) (for some f < 1) neigh-
borhood of the approximate triod T 45c. Moreover, away from T 45, the distance of u(z) to g;
will decay exponentially with respect to dist(z, T 4pc) thanks to Hypothesis (H1) and standard
elliptic theories.

We proceed by rescaling By, to the unit disk B; through the function ug := u(R,z). The expo-
nential decay above implies that up is closely approximated in L' norm by a minimal partition
{D§QO ?:1 of B; determined by the rescaled version of T 4p¢. Specifically, we have

-1
llug, — Ug, Il < CRE ™, (1.7)

where Ug, = X q; Xpi, . We point out that (1.7) holds for any larger scaling R; ~ 2'R,, where Uy,

is the corresponding approximate triple junction map at the scale R;.
A key observation is that approximate triple junction maps at two consecutive scales are close
to each other, that is,

-1
IUR, = Ug,,, Il < CRY ™. (1.8)
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This is established by (1.7) and the fact that up, and ug,, | are obtained by rescaling the same func-
tion u. Finally, we can iterate (1.8) and deduce that Uy, will converge to a unique triple junction
map, and thereby concluding the proof.

The article is organized as follows. In Section 2, we present some preliminary results from
[1] and [2]. In Sections 3 and 4, we establish the existence of a minimizing solution u and fix a
well behaved boundary data on 0Bg . Next, we establish the energy bound (1.6) in Section 5. The

localization of the diffuse interface within an O(Rg ) neighborhood of the triod T 43¢ is proved in
Section 6. Then in Section 7 we rescale By, to B; and prove (1.7). Lastly, we conclude the proof of
the main theorem utilizing the estimate (1.8) in Section 8.

2 | PRELIMINARIES
Throughout the paper we denote by z = (x, y) a 2D point and by B,(z) the 2D ball centered at the

point z with radius r. In addition, we let B, denote the 2D ball centered at the origin. We recall
the following basic results which play a crucial part in our analysis.

Lemma 2.1 (Lemma 2.1 in [1]). The hypotheses on W imply the existence of &y, > 0, and constants
cw, Cw > 0 such that

lu—a;| =46

1 1
= ECWaz < W(u) < ECW52, Vé < 5w, i=1,2,3.

L 1
Moreoverlf_rr}lzn3 |lu — a;| > 6 for some & < 8y, then W(u) > Ecwéz.
1=1,2,

Lemma 2.2 (Lemma 2.3 in [1]). Takei # j € {1,2,3}, § < 8y and let s, > s_ be two real numbers.
Letv : (s_,s;) — R? be a smooth map that minimizes the energy functional

S+
1
J(s_’S+)(U) = / <§|VU|2 + W(U)) dx
s

subject to the boundary condition
[o(s) — a;] = u(sy) — aj| =é.
Then
Jis_s)(©) 2 0 = Cy 82,

where Cyy is the constant in Lemma 2.1.

Lemma 2.3 (Variational maximum principle, Theorem 4.1 in [2]). There exists a positive con-
stant roy = ro(W) such that for any u € W2(Q, R?) 0 L®(Q, R?) being a minimizer of E(-, Q), if
u satisfies

|u(x) — a;| <rondQ, forsomer <ry, i €{1,2,3},
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then

|lu(x) —aq;| <r ¥vx € Q.

3 | EXISTENCE OF AN ENTIRE MINIMIZING SOLUTION

By the constructions in [3] and [11], there exists a minimizing solution u : R? — R? of (1.1) such
that the following hold:

(1) There exists M > 0 such that
[u(z)| + |Vu(z)| <M, Vze R (3.9)

(2) [11, Theorem 1.1] For any sequence 7, — oo, there is a subsequence, still denoted by {r; }, such
that

u(riz) = up(z) in L, (R?), (3.10)

3

where uy(z) = Y, a;ffp,. for P = {D;, D,, D3} providing a minimal partition of R? into three
i=1

sectors of the angle 27 and 6P is a triod centered at 0. Moreover, along the same subsequence

we have the following energy estimate

hm —E(u B,,(0)) = 3c.

k=

This energy estimate follows from the I'-convergence result in Baldo [5] that holds also
without the mass constraint (see Gazoulis [9]).

(3) By[l1, Lemma 3.4 & Lemma 3.5], u is asymptotically homogeneous and satisfies an asymptotic
energy equipartition property at large scale,

_ 1 24, — 1 2 __U
lgrgoR/ W(u)dz = h—>n<;loR/ [Vul|dz = IEEOR/ |Vrul=dz . (3.11)

Here Vr denotes the tangential derivative.

Utilizing (3.11), for any € > 0, there exists a large R(¢) such that for any R > R(¢),

30’—831/ 1|Vu|2+W(u) dz <30 +¢,
R Jy, \2

30 —¢ 30’+E

1
) E/ W(U) dz <
ZR R

30 — 1 1 3
o—c¢ _/ LVouldz < O’+E’
A 2

A

2 7R

2R.R
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UNIQUENESS OF THE BLOW-DOWN LIMIT | 7

where A, g represents the annulus {z € R? : R < |z| < 2R}. Fixing ¢ as a small parameter to be
determined later, by Fubini’s theorem we can find Ry(¢) € (R(¢), 2R(¢)) such that

30 —e< / <1|VTu|2 + W(u)) dH! <30 +¢. (3.12)
0Bg, 2
1 1o o

30—e< — =|Vul*+W(u) ) dz <30 +=. (3.13)
Ro Jp,, \2

As our analysis progresses, we will gradually determine the conditions on the smallness of €.

4 | “WELL-BEHAVED” PROFILE OF u(z) ON 6By,

Firstly, we take a fixed small constant § = §(W) which is independent of ¢, to be determined later.
We keep in mind that in certain places of our analysis, ¢ is considered to be significantly smaller
than 8. From the energy bound (3.12) and Lemma 2.1 we conclude that

%0

H(z : ,rr%izn3 lu(z) — a;| > 8} N dBg,) < (4.14)
i=12,

for some C = C(W). In other words, most of points on dBg are close to one of the phases a;. We
set

Y i={z ! |u(z2)—q| £8}noBg, i=1,23.

Then (4.14) implies
: C
HY(Y;) > 27R, — - (4.15)
i=1 0
Lemma4.1. Foranyi € {1,2,3},Y; # 0.
Proof. We need to rule out the following two cases.

Case 1. Two of Y;’s are empty sets. Without loss of generality, assume

Y2=Y3=®.

We construct the following energy competitor in B, by writing in polar system z = (x,y) = rei:

U(Ro, 6)’ r= RO
t(r,0) =31 +r—Ryu(Ry,0) + Ry —r)a;, r € Ry—1,Ry),
a]’ rE[O,RO—l]

In view of Lemma 2.1, we have that
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/ 0,1i|% dz
A

Ro.Rp—1

R() 27
=/ / |u(Ry,0) — a;|*r dr dO
Ro-1J0

S/ |u—a1|2dH1+/ lu—ay|? dH? (4.16)
Y, 9Bg,\Y1
1, Con
5/ CWwdH' + M
Y, §
<C(8,W).
/ W) dz < / Clu—a;|>dz < C(8,W). (4.17)
ARg,Ry—1 ARg,Ry-1
/ |071i|% dz 5/ |0rii|? dH! < 30. (4.18)
AR(),R()—I aBR()
Adding (4.16), (4.17) and (4.18) together gives
/ <%|Vu|2 + W(u)> dz < C(6,W), (4.19)
BRO

which yields a contradiction with (3.13) given that R, can be arranged to be much larger than
C(8,W). As a result, we eliminate Case 1.

Case 2. One of Y;’s is empty. Assume without loss of generality that Y3 = @. Then on 0By,

essentially there are only two phases appearing, namely a; and a,. There exist z;, z, € 0B, such
that

u(zy)—ay| <6, |u(z,)—a,| <68, forz; :=Rye, i=1,2. (4.20)
1 1 2 2 i 0

where 6; denotes the polar angle of z; (i = 1,2). Then z; and z, split the circle 0B, into two arcs,
denoted by A and B, respectively. Then we define

A ={z€ A |u(z)—ay| L8},

A, ={z€ A |lu(z)—a,| <5}

By (4.20) and the continuity of u we know that A; and A, are two disjoint non-empty closed sets
in A. Set

:= the point from A; that is closest to A,,

=

:= the point from A, that is closest to A;.

NV
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Here “closest” refers to the distance along dBg . Now we have the key observation that on A the

—_—

arcs lei; and zzzi do not overlap. Suppose by contradiction this is not the case, we have
2 -~ 1 1. 2
z, €212, NA, 2z, €z,z;, NA.
If we start from z; and traverse along the clockwise direction of 0B, for a complete circle, we will

encounter at least four phase transitions occurring between the two phases a; and a,, namely

I

2
A A—)Zl.

Then we have
/ <1|VTu|2+W(u)> dH' > 40 — C&?,
BBRO 2

—_—

which contradicts (3.12). Therefore Z1Zi, and zzzf4 cannot overlap. Moreover, appealing to (3.9)
we have that

HY(z\z2) > C,

for some positive constant C depending on |a; — a,| and the uniform bound of |Vu]|.

—

Now forany z € z}z% = A\ (lei, U 2,25 ), it holds
lu(z) —q;| >98, Vie{l,2,3}

Utilizing the energy bound (3.12) and the hypothesis (H1), we obtain

=P C
Hl(z‘,{lz‘i) S ﬁa

for some constant C depending only on W.
In the same manner, on B we can define

B, :={z€B: |u(z)—a;| <8},

B, :={z€B: |u(z) —a,| <8}

and

the point from B, that is closest to B,,

N e

:= the point from B, that is closest to B;.

—_—

By the same argument we have zlz}5 and zzzlz3 do not overlap and

- (&
C, < Hl(z}gzé < 5—;,
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for some positive constants C;, C,. Denote the polar angles for 2114, Zi, zy, z by 0%, Gi, 65, 63,
respectively. Set

—

@1 = 6;91 U 919[14, @2 = eiez U 629123, @0 = 91149124 U 9;9123.

Here ©; (i = 1,2) approximately represents the set of polar angles for a; phase points on 9By,
where @ represents the set of polar angles for the transition layer. The size of ©, can be controlled
by

o} C,
L <10 £ —2. 421
R, <190 = pos2 (4-21)

Now we first define the following function on dBg _;:

ai, 0 €0,
ti(Ry —1,6) =4 a,, 0 € 0,, (4.22)
smooth connection of a;, a, 6 € Q.

Then we extend the energy competitor i to B,

u(RO’ 6)1 r= RO
—R Du(R Ry—r)i(Ry—1 Ry—1,R
a(r,0) ;= (r o + Du(Ry,0) + (Ry — (R ,0), re(® ,Ro) (4.23)
ﬂ(RO—l,e), r=R0—1
energy minimizer, rel0,Ry—1)

where we require that 7 minimizes the energy E(-, Bg,_;) with respect to the Dirichlet boundary
constraint | By 1°
We first estimate the energy in the annulus Ag g 1.

/

<%|Vﬁ|2 +W(a)> dz

Rg.Ro—1

1
= (/ +/ +/ >(§|Va|2+W(ﬁ)> dz.
ARg,Ry-1MEEO } ARy Ry-1NM{EEB,} ARy Rg-1NOEB}

From (4.21) and (3.9) it follows that

/ (%IWIZ + W(a)) dz < C(5,W).
ARy Ry—1MEEB,}

For any 6, € O, if [u(Ry, 6y) — a;| < &, then
[a(r,6p) — a;| < [u(Rop,6p) —a;| <8, Vr e (Ry—1,Ry),
which implies

c1|ii(r, 6) — a1 |> < W(a(r, 6y)) < CW(u(Ry,6,)), forsome C = C(W), Vr € (Ry — 1, Ry).
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UNIQUENESS OF THE BLOW-DOWN LIMIT

On the other hand if |u(Ry, 6,) — a;| > §, together with the definition of @, it holds that
|u(Ry, 6p) — a;| > 8,Vi €41,2,3},
and
max{|i(r, 6y) — a;|*, W(a(r, 6p))} < %W(M(Ro’eo)), Vr € (Ry — 1, Ry).

Following the similar computation as in (4.16), (4.18), and (4.17), we obtain

/ |,1i|% dz
ARy Ry-1M{6€O}

Ro
=/ / |u(Ry,8) — ay|*rdrdo
Rp—1 40,

<C(8,W)R, / W(u(Ry,0))doé
0,

<C(s,W).

/ |07it|? dz 5/ |07t dH! < 30.
ARy Ry-1M6€O } 0

/ W(ii)dz
ARy .Ry-1N{6€O}

Ro
<C(6,W) dr / W(u(Ry,0))rdé < C(8,W).
(€]

Ro—1 1

Summing up the inequalities above implies

/ <%|VU|Z+W(u)> dz < C(,W).
ARy Ry-1NOEO }

This estimate also applies to the energy on Ag g, —1 N {0 € ©,}. Consequently we have

/

We are left with the the estimation of E(d, Bg,_;). Set

<%|va|2 + W(a)> dz <C(, W),

Rp.Rp—1

1 2 1,02
~9A+6A -63+93

P1:=(R0—1)el 2, P2:=(R0—1)el 2

(4.24)

Then P, P, intersects with dBg _, at two points P{ and P;, respectively. Up to a possible rotation,
we can assume P; P, is parallel to the x-axis and their shared y coordinates is denoted by y,.
Without loss of generality, we suppose y, < 0, with the a, phase part of By _; positioned above

{¥ = ¥o}, while the a; phase part is positioned below {y = y,} (see Figure 1).
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FIGURE 1 Energy upper bound in By _; for Case 2. Red: a; Green: a,.

We pick an 1D minimizing connection U, defined in the Hypothesis (H2). Moreover, it is well-
known that U;; will converge to a; or a, exponentially (see e.g., [2, Proposition 2.4]),

|U1,(n) — ay] <Ke ™, |U,(m) —ay| < Kekn,

1
for some constants K, k > 0. Let h = R;. If yo < =R, + 3h, elementary geometry implies that

2

—

Hl(zzz}g) ~ O(Ré ), which means the a; phase on B _; has much smaller measure compared to

that of the a, phase. Hence we can invoke similar analysis as in Case 1 to show that E(#, Bg,—;) <
2

CRg < O(Ry). This, together with (4.24), yields a contradiction with (3.13). Therefore, we only
consider the case y, > —R, + 3h. Set

Uy = y0), (X,9) €Bg, s N{yg—h <y <y, +h},
U(xay) =144y, (xyy) GBRO—l n{y 2yO +2h’}5
a, (x,y) € Bgy—1 N{y < yo — 2h}.

On Bg,_, N{y = yo — h} (or Bg,_> N{y = y, + h}), by the exponential decay of U,, we have

S Wl

[u(x,y) — a; (or a)| < Ke o .

And for (x,y) € Dy := Ag,—1,ry)—2 N{Yo — h <y < yo + h}, we take v(x, y) to linearly interpolate

in x between v/, Bry-1 and v, Bry—2 for each y. Note that D, consists of two small regions with mea-
1

sure controlled by O(Rg ). For(x,y) € D, :=Bp,_1N{yo+h <y <y, +2htand(x,y) €D_ :=
Bgy—1 N{yo —2h <y < yo — h}, let v(x,y) linearly interpolate in y between v(x,y, + 2h) and
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UNIQUENESS OF THE BLOW-DOWN LIMIT | 13

v(x,yo £ h). See Figure 1 for an illustration for all these subdomains. We estimate energy of v:
E(,Br,—2 N{¥o —h <y <y +h}) < o H'(P1P,) < 2Ry0,
E(v, Br,—1 N{y 2 yo + 2h;n{y <y, —2h}) =0,
1
E(v,Dy) < CH*(Dy) < CR;,

1

E(v,D,) < Ch-H'(P,P,) - K2 %5 = o(Ry),
given R, chosen to be sufficiently large. Altogether,
E(v, Bg,—1) < 2Ry0 + 0o(Ry).

Utilizing the minimality of 7 in B _; and (4.24), we obtain

/,

which yields a contradiction with (3.12) when we select R, to be large enough. Therefore Case 2
is also eliminated and we get

<%|va|2 + W(ﬁ)) dz < 2Ryo + o(Ry),

Ro

Y, #@, Vie{l,2,3}

The proof of Lemma 4.1 is complete. [l

From Lemma 4.1, there are z,, z,, z3 € dBg such that
lu(z) —a;| <6, Vie{l, 2,3}

Next we apply the same analysis for the two-phase scenario to obtain the existence of three arcs

1
l

2

Z !

2y, 2,2}, 2, z; that satisfy the following properties,

(1) z €zlz, fori=1,2,3.
) |u(z;) —q; <6, lu(zl) —q;| <8, fori=1,2,3.

3) zllz}, zfzf, z?zf are disjoint. For each i € {1, 2, 3}, we have

—

z€zz, = |u(@)—a;| >6, Vj#i.

(4) Suppose z,z}, z;z;, z; z| are the three small arcs that separate the arcs z,z;, z;z; and z;z;. It

holds that

—

lu(z) — ;| > 8, Vie{l,2,3},Vz € zz uzlz] Uzz],

And consequently,

—

— J— C
C, <H\(z;z} U zz] UZzZ) < =2

<5 (4.25)
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We introduce the following notations for convenience.

I; := z/z} denotes the set of phase a; on 8By ,i=1,2,3;
0

I, = z;27}, Iy = 27z}, Iy, = z;z] denote transitional arcs between phases,
d, :=min{H'(I;)), i # j €{1,2,3}}, d, :=max{H'(J;)), i # j €{1,2,3}}.

Then (4.25) implies
“lcd, <d, < 2. (4.26)

By Property (2), there will be an approximate “phase transition” inside each of the separating arcs
I,, I3, I31, and the energy on these arcs is estimated by

/ <%|5Tu|2 + W(u)> dHL > 30— €82, (427)
112UD3U13,

for some constant C = C(W). Next we show that on each arc I;, u(z) will be uniformly close to a;,
with the distance controlled by C§6.

Lemma 4.2. There exists a constant C which only depends on W, such that for any i € {1, 2,3} and
z € I, it holds that

|lu(z) — q;| < C8.

Proof. Let C be a large constant to be determined later. Without loss of generality, we suppose by
contradiction there exists z! € I, such that |u(z!) — a;| = C§ and

luz") — a;| = max{|u(z) — a\|, z € I}.
We can choose suitable constants § and C satisfying

CS < Sy, (4.28)

where Jyy is the constant in Lemma 2.1. As a result, for any z € zllzl, it holds that

Wu(z) > sewlu(z) - o,
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UNIQUENESS OF THE BLOW-DOWN LIMIT 15

We compute

NI»—A

D~

|orul® + W(u)) dH!

zz1

g
-/
(=

l\.)lr—*

6rlu(2) = a2 + 3 lu(z) - a1|2) an'
Jortu@ - aip ) are

[(C8)* - %]
Va1
2

Combining this with (4.27), we can select a sufficiently large C (which does not affect (4.28) as we
still have the freedom to choose §) to obtain

/ (%|6Tu|2 + W(u)> dH!

3By,

> / <%|5Tu|2 + W(u)> dH!

I,,Ul,3Ul5,Uz) 2!

>30 + C(W)52,

which yields a contradiction with (3.12), as € can be chosen arbitrarily small in the beginning. This
completes the proof of Lemma 4.2. O

5 | REFINED ENERGY UPPER/LOWER BOUND IN B

We take A, B, C to be the midpoints of the arcs I,, I3 and I,3, respectively. There exists a point
D € Bg, such that [DA| + |DB| + |DC| is minimized. It is well-known that if the triangle ABC
possesses internal angles that are all less than 2?” then D is the point in the interior of ABC such
that

£ADB = «BDC = ZADC = n

However, if one angle, say £BAC is greater than or equal to 2?” then D coincide with the vertex
A of this triangle.
We define the triod

TABC = DA UDB UDC

Then we invoke the energy upper bound established in [11, formula (3.19)], which is written in the
following proposition within our specific context.
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Proposition 5.1 (Energy upper bound). There exist C > 0 and a € (0, 1), both of which are inde-
pendent of € and R, such that when R, is sufficiently large, the following energy upper bound holds:

/ <%|Vu|2 + W(u)> dz < 5(IDA| + |DB| + |DC|) + CRE. (5.29)
B

Ro

Proof. The proof follows essentially the proof of [11, Proposition 3.3] (Upper bound construction
part), and therefore, it is omitted herein. We only briefly outline the core idea.

To construct an energy competitor i, we first define a well-behaved boundary data on dBg;
such that @i equals to a; on the rescaled arc %Ii for any i = 1,2,3, where R; = Ry — R. On the
annulus ARy R, > let @ linearly interpolate betw%en ﬁl@BRO and 12|aBR1 with the energy E(a,ARO,Rl)
controlled by C(R{ + R(l)_“). For the construction inside By, near the interface, say DA, we set
ii(z) = Uy,(d(z,DA)) within a thin rectangle with a width of RS‘ and the long side parallel to
DA. Here d(+) is the signed distance function. The energy within these rectangles will be approxi-
mately o(|DA| + |DB| + |DC|). These three thin rectangles partition Bz_; into three subdomains,
within which we simply take @ equal to phase a; corresponding to the boundary data. Again,
interpolations are required in a R*-outer layer of the rectangles, with the energy being proved to
be negligible. This construction parallels that of v(x, y) in Bg,_; for the upper bound estimate of
Case 2 in the proof of Lemma 4.1.

We also mention that a similar approach to construct the energy competitor also appears in [3,
Appendix A}, for the special case when D coincides with the origin. O

Corollary 5.2. By selecting sufficiently small € and sufficiently large R, in Section 3, we can guar-
antee that the point D is located in a small neighborhood of the origin, that is, D € B,y , where
1 a
100” 20 5
of the triangle ABC and ZADB = «BDC = £ADC = ?”

7 = min{ } for the constant Cy in (4.25). Furthermore, it follows that D locates in the interior

Remark 5.1. We will explain the choice of 7 in the proof of Proposition 5.3.

Proof. Assume by contradiction D & B, , then an elementary calculation implies there exists a
positive constant 4 ~ O(z?) such that

IDA| + |DB| + |DC| < (3 — wR,.

This estimate, together with (5.29). yields a contradiction with the lower bound in (3.13) provided
R, is sufficiently large. Ol

Next we establish the lower bound for E(u, Bg,).
Proposition 5.3. There exists a constant C(W) such that

2
1 =
/ <§|Vu|2 + W(u)) dz > o(|DA| + |DB| + |[DC|) — CRS. (5.30)
B

Ro
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UNIQUENESS OF THE BLOW-DOWN LIMIT 17

FIGURE 2 Triod T4p¢ with the center D close to origin, and its extension to T g ¢ € Bg 41-

Proof. Up to a possible rotation, we assume DAis parallel to the positive y-axis, DBis parallel to
the vector (—\/5, —1) and DC is parallel to the vector (\/5, —1), as shown in Figure 2. We set

A =(x4,y4), B=(xp,¥p), C = (x¢,yc), D = (xp,yp)

By Corollary 5.2,

C
— [y2 2 1
|OD| = x5 +¥5 < 7Ry, fort = mln{ 100’ 20}

Without loss of generality we assume that
Xp=X4 20,
and therefore by simple geometry it holds that
Yc 2 ¥p-

Now we define an extension i of u| Br, to a larger ball By, which satisfies a simpler boundary
cond1t10n on dBg, 4. We set I, I as the i image of arcs I, I;; under the homothetic transformation:

z, that is,
Ro

= {Z S aBR0+1 .

0 .
I; v 1,2,3
R0+1Z€ l}’ le{ss}’

={z €0Bgyy1 * 5—/=z€I;}, Vi#je{l,23}

R0+1
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FIGURE 3 A’ locates within I},.

The boundary value for @ on 0Bg ., is given by

i(z) = {ai’ zel; (5.31)

smooth connection of a;, a;, z € I -
We define # in the annulus Ag 4 g, by linearly interpolating between ii| 3By 11 and u| 3Bg,
t(r,0) = (r —Rp)ii(Ry + 1,6) + (Ry + 1 — r)u(Ry,6), r € (Ry,Ry + 1).

Following the same computation as in the previous estimate of energy for the two-phase boundary
data (see Case 2 in the proof of Lemma 4.1), we can obtain the following upper bound for the

energy in Ag 11 g,
/A

Consequently, in order to get (5.30), it suffices to prove

<%|Va|2 + W(a)> dz < C(,W).

Rp+1,Ry

2

/ <%|Vﬂ|2 + W(a)) dz > o(|DA| + |DB| + |DC|) - CR?, (5.32)
Bry+1

with the boundary value (5.31). It follows from Corollary 5.2 that i equals to a;, a,, as, respectively
on three arcs of 0By, with the arc angle close to 2?” Moreover, these arcs are separated by small

arcs of size 5—C2 due to the estimate (4.25).

Next we prove the lower bound (5.32). The argument essentially follows the proof of [3, Propo-
sition 3.1], with necessary adjustments tailored to accommodate the scenario where D is not the
origin. Firstly, we extend DA to intersect with dBg .1 at A’. We claim that A’ € I,. Take A to be
the midpoint of I}, (A is the intersection of the ray OA and 0Bg,+1)- As illustrated in Figure 3, it
follows from Corollary 5.2 and (4.26) that

AA|<|OD|- = <21 < — < —,
[AAl < [0DI- g~ <2t < 35 = 75
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UNIQUENESS OF THE BLOW-DOWN LIMIT | 19

which implies that A’ € I, since H'(I},) > d,. Similarly, we extend DB, DC to intersect with
0Bg, +1 at B’ € I3 and C’ € I3, respectively.
The coordinates for A’, B’, C’ are denoted as
A=Y, B =(xpyp), € =Xy,
and satisfy

[ — / /
XA—XD = Xa yCZyB,

Ye=Yp 1  Ye—Yp 1

x! —

7 xD_ﬁ’ xXl—xp V3

Foranyy € (y’C, Ry + 1), we define the horizontal line segment y, and functions 4,(y), 1,(y)
and 4;(y) as follows.

Yy i={(x,y) : x €ER}NBg 41,

L) 1= My n{latx,y) —ail <R, °D, i€{1,2,3}

By the boundary condition on By 4, we know for any y € [y[. + d5,’, — d,], it holds that
A1(y) > 0and 4,(y) > 0.
We set

2

y* 1= minfy € [y, +dp, Ry + 11 110) + L,0) = H'(r,) = R} (5.33)
¢(x) 1= min{y*, v/(Ro + 17 — x2},

K i={x € [x} +dyxl. —dy] : |a(x,¢(x)) —a| <R,°, i=1or2}
L:={yely;+dy,y]: 2:3() >0},
Q, :={z=(x,y) €EBgyy1 : y2¥'}
Q, :={z=(x,y) €Bgy1 : Yy <y}

2

wis

R
Note that when (R, + 1)* — y? < TO’ H'(y,) — R; < 0,and therefore the set on which we min-
imize to get y* is not empty. We will examine two scenarios based on the value of y*. Additionally,
we can bound the measure of K from below by the definition of y* and the boundary constraint

alaBROJrl :

2
HY(K) > x[. — x, —2d, — R; . (5.34)

Casel. y <y, —d,.
For any y € [y*, yil — d,), the horizontal line y,, intersects 0By, at two points, where # takes
the value a; and a,, respectively. The one dimensional energy estimate Lemma 2.2 yields

/ <%|axa|2 + W(ﬂ)) dx > o.
4

y
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Integrating along the vertical direction implies

/ (§|axa|2 + W(ﬁ)) dz > o(y, —y* — dy) 2 oy, — y*) = C(8). (535)
Q

1
On the domain Q,, we claim that there exists a constant C such that
2
HY [y} + ds,y* 1\ L) < CR;.

Indeed, we set

={y €lyp +dp,y*] : 43(») = 0} = [y +da, ¥\ L.

2
For y € S, the definitions of y* and S imply that 4,(y) + 1,(y) + 43(y) < Hl()/y) —R3, or
equivalently

1 2

H'({x € [-VRo + 1 — y2, V(Ro + D2 —32] : |a(x,y) — ;] > R, °, ViD) > R;.

From the energy upper bound (5.29) and Lemma 2.1 we have that

1 2
4R, > /S/ W (i) dxdy > H'(S) - (%CWRO *)-R;
Yy

2
= H'(S) < CR?,

for some constant C depending on W. The claim is established.
Next we want to estimate the energy in Q, in both vertical and horizontal directions. We split
the potential W (1) as

W (i) = sin” 6 W (i) + cos® 6 W (i),

for some 6 € [0, %] to be determined.

For x € K, A(x) = (x,¢(x)) and B(x) = (x, —/(Ry + 1)2 — x2) are the two intersection points
of the vertical line {(x,y) : y € R} with Q,. We have @(B(x)) = a; by the boundary condition
1

and |i(A(x)) — ;| < R(; S fori=1or2 by the definition of K. Applying Lemma 2.2 and then
integrating with respect to x yields

/ <%|aya|2 +5in%0 W(ﬁ)) dz
Q

2

{(x)
>sm6/ / < |6, | +s1n9W(u)> dydx
xek J—/Ror1i—xz \ 2810

1

2s1n6(xc - B —2d, —RO Yo — CR(;S)

(5.36)

2
>sin® l(x’c —Xp)T — CRS] .
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2
Here we utilize x[. — x}, ~ V3R, and d, < 5—(:2 < R to derive the last inequality.
By definition, for any y € L,

a(_V(R0+1)2_y2’y)=a1! a(V(RO+1)2_y2’y)=a29

3(x0,y) €7y, such that |[a(xy,y) —as| < R;g,

which implies that there are approximately two phase transitions along y,,. Thus we can estimate

/ <l|5xﬁ|2 + cos’ 0 W(ﬁ)) dz
Q,n{yeL} 2

1
Zcose/ / < |d a|2+cos6W(ﬁ)> dxdy
veL Jy, \2c0s6 "

X0 V(Ry+1)2—y? 1 (5 37)
=cosf / / +/ < 10,4i|? +coseW(u)> dx '
yeL | 4 —v/(Ro+1)2—y2 X 2cos 6,

2 1

>cosf - (y* —y.—d,—CR;)- (20 —CR;*
2
>2cos 6(y* — y.)o — CR;,

2
where the last inequality follows from y* — y’C <2Rjpandd, < R;.
In case yl’g +d, > y’C — d,, we directly proceed with the above estimate (5.37) to derive (5.39).
Otherwise, if y + d, < y. —d,, for any y € (v, + d,, y. — d,), 7, will intersect with dBg ,; at
two points where @ equals to a;, a3, respectively. We have that

/ (% 1,.41|2 + cos? 8 W(a)> dxdy
QL \yeL}

ye—dz 1 5
>cosb // / <20056 [0,41]° + cos@W(u)) dxdy (5.38)
yptda Jyy

=cos0 (yi. — yp — 2d>)0

>cos 6 (y; — yp)o —C.

Adding (5.37) and (5.38) gives
1 2
/ <§|6xﬁ|2 + cos’0 W(ﬁ)) dz > cos6 (2y* —y, —y..) — CR;. (5.39)
Q,

This, together with (5.36), implies that

2

/Q (%|va|2 + W(a)) dz > [sin@(x’c — Xx},) + cos 6(2y* — yj, — y’c)]o —CR?,

2
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’
holds forany 6 € [0, %]. Taking 6 = arctan zxc% to maximize the right-hand side, we obtain
y* -y

B Vc

2

/ (%Wﬂlz + W(ﬂ)) dz>o- \/(x’c —Xxp)? 4+ y* —yp — y)? — CRg. (5.40)
Q

Combining (5.35) and (5.40) gives that

/

Rp+1

<%|va|2 +W(a)> dz

(5.41)
2
20 [(yﬁ1 -y + \/(X’C — xp)2 + (2y* —yp —ye)?| —CR;.
We are left with solving the following minimization problem
min (v, = %) + /(L — X2 + 2y =V — YR,
(5.42)

subjectto  y* € (¥ +dp, ¥/, — ).

Direct calculation shows that

min {(y;, =)+ (=X + @yt - —y’c)Z} = [DA'| +|DB'| + |DC'],

and the minimum is reached at

*

Y =JYp.

The calculation is elementary and provided in Appendix A. Therefore (5.30) holds for the case
yE<y, —d,.

Case2. y* > y', — d,. We show that in this case the energy is strictly larger than o(|DA’| + |[DB’| +
IDC'). Split

W (@) = sin® 6 W(i1) + cos? 6 W(ii), for some 8 € (0, %).

By the boundary data we have

a(x, V(Ry + 12 — x2) = ay, a(x, —V(Ry + 1)? — x2) = a3, Vx € [xp + dy, X/, — d;],
a(x, V(Ry + 1)? — x2) = a,, (X, —V/(Ry + 1)? — x2) = a3, Vx € [X), + dy, X[, — d,],
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which allows us to estimate the energy in the vertical direction,

/ <%|aya|2 +sin’ @ W(ﬁ)) dz
B

Ro+1
X;‘—dz ) X(l:,—dz ) (543)
2/ asm@dx+/ osinBdx
Xpr+dy Xqr+dy

>0 sinf (x. — x) — C.

Applying the same argument as in the claim of Case 1, we have that most of y € [y’c +d,, yf4 -
d,] belong to L, more precisely,

2

H'([y). + da, ), — do] \ L) < CR;.

ForyeLn [y’c +d,, yl’4 — d,], by definition there are two phase transitions: from a; to a; and
from a; to a,. We perform a similar computation as in (5.37) to obtain

/ (% 1,.41|2 + cos? 0 W(a)) dxdy
Bry+1n{y€L}

Zcose/ /< 1 elaxﬁ|2+coseW(a)> dxdy (5.44)
yeLnlyp+dy.y,—dal /v, 2cos

2

>2c080(y); — y)o — CRg.

Adding (5.43) and (5.44) and maximizing with respect to 0 yield

2

1 =

/ <§|Va|2 + W(ﬁ)) dz>o \/(x’c —Xp)? + 40y, —y.)? —CR;
Bro+1 (5.45)

49
> — )
> 502\/§R00

where the last line follows from Corollary 5.2 which implies that x’c - xg >(1-21) \/E R, and
Y —yh>1- 21)%. Note that

|DA’| + |DB’| + |IDC’| < 3Ry + 3,

which together with (5.45) leads to
/ <%|va|2 + W(ﬁ)) dz > o(|DA| + |DB'| + |DC']).
Bry+1

This completes the proof of Proposition 5.3. [

At the end of this section, we will derive that y* is not far from yp,. Set

a

,8:=1—min{%,1; }e(o,l), (5.46)

where a € (0, 1) is the constant in Proposition 5.1. Then we have the following lemma:
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Lemma 5.4. There is a constant C depending on W, such that
ly* = ypl < CR,
where y* is defined in (5.33).

Proof. By examining the proof of Proposition 5.3, we have

/B <%|Vﬁ|2 + W(ﬂ)) dz < /B (%sz + W(ﬁ)> dz +C(,W).

Ro+1 Ro

This together with the upper bound (5.29) and (5.41) implies

U[(yi1 - y*)+\/ (xl —xp)? + 2y* =y, — y’c)z]
(5.47)

2

< o(IDA| + [DB| + |DC|) + CRZ + CR; .

From Appendix A, the left-hand side attains its minimum value o(|DA’| + |DB’| + |DC’|)
2

when y* = yp. When the functional is perturbed by a small quantity R} + Rg , it is straightfor-

ward to show that y* can be perturbed away from y, by an amount no greater than CR? , Where
B is defined by (5.46). O

6 | LOCALIZATION OF THE DIFFUSE INTERFACE

We insist on the choice of A, B,C, D at the beginning of Section 5, and assume without loss of
generality that DA is parallel to the positive y-axis. Then the triod defined by

TABC = DA UDB UDC

divides Bg, into three regions:

S
I

the region enclosed by DA, DB, 6BR0;

D, := theregion enclosed by DA, DC, 6BRD;

D; := the region enclosed by DB, DC, aBRO.
For any y > 0, we define the diffuse interface 7, by

L, :={z: |u(z)—aql 2y, Vi=1,2,3}

From now on we fix y = 2C8, where C = C(W) is the constant in Lemma 4.2 which measures
the closeness of u to a; on arc I;. Note that C is independent of §, which allows y to be arbitrarily
small by choosing suitably small §. The main result of this section is the following proposition

which states that Z,, is contained in a O(Rg ) neighborhood of T 45¢.
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8BR()—H

FIGURE 4 Definition of I!, I}. In the red shaded region, |u(z) — a,| < y.

Proposition 6.1. There exists a constant C = C(y, W), such that for sufficiently small ¢ and
associated Ry, it holds that

T, 0By, © Ny (Tage) = {z € By, © dist(z, Tapc) < CRS}. (6.48)
Moreover, there are positive constants K = K(M, W) and k = k(W) such that
) B
lu(z) — a;| < Ke KUst@D)-CROT - 2 e j=1,2,3, (6.49)

where (a)t = max{a, 0}.

Proof. Let C, be the constant in Lemma 5.4 and i be defined as the extension of u| Bg, onto Bg 11
in the proof of Proposition 5.3.
For any ¢t € [0, %RO], we define the line segments (see Figure 4)

Y=y _ V3, =
I i={(xp—t,y): TD > T}OBRO+1:

(6.50)

3
y=0p+ %t) V3 -
= x < xp —t}N B y1-

b STy T

From Lemma (5.4), when ¢ > \/ECORg, we have that li C 51, for Q; defined by Bg 1 N{y > y*}.
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We set

1
A:={t:te [\/ECORg, ERO]’ max li(z) —a;] > v}
z€l

If A = @ then we trivially get (6.53). Now suppose A # &, we show the measure of A is O(Rg ). The
proof relies on the part of the lower bound over Q, derived in (5.35) only considers the horizontal
gradient, thereby allowing for the addition of vertical displacement to provide improvement. See

[1, Lemma 4.3] for a similar idea.
For any t € A, there exists a point z; € I} such that

la(z) — a1 > 7.

By the boundary data on dBg 41,

a(xp — £, V(Ro + 1)> = (xp — )?) = ay.
Thus there exists a constant C; := C;(y, W) such that
VRy+1)2~(ep—1)
Set
_ HNAG
)
We compute the energy on Q;:

/ (1|va|2 + W(a)) dxdy
a 2

1

1

=/ (—|axa|2+
(971 2
1, ., x° 3

+/Q <§|ayu| s >dydx

1
L1 / <_v1+ PR
V1+x2 /o 2 V1+x?

i > dxdy

1+7<2 5 x
10,8 + ——
\/1+7c2 V1+x2

1 .
> ———a(y), —y* —dy)
1+ %2

2
//( Lk a|Z+LW(a))dydx
\/1+K2 I V1+x?

<§|6yﬁ(xD —tLy)I*+ %W(ﬁ(xD - t,y))> dy >C;, Vi>0.

W(ﬁ)) dxdy

W(ﬁ)) dydx

(6.51)

85UB017 SUOWILIOD) BAIER.ID 3|ed!|dde sy Aq pausenof afe sajoilie O ‘8sn JO SenJ Joj Areiqiaulu 8|1 UO (SUONIPUOD-pUe-SWBI/WOY 8| 1M AReIqRUIUO//SdNY) SUONIPUCD PUe SWiS | 81 89S *[720Z/0T/TZ] uo AfigiTauluo 3|1 ‘908919 suUeIy0D Aq 0£22Z2dd/200T OT/I0p/W0D A | 1M Areiq 1Bul|uoy/Sdny Wwouy papeojumoqd ‘0 ‘ZTE0L60T



UNIQUENESS OF THE BLOW-DOWN LIMIT 27

1 . K
——0(y, - y") + ——=H"(A)C; - C(5)
1+ %2 1+ %2

v

= \/Gz(y;, —¥*)?* + (C1HI(A))* — C(). (6.52)

This, together with (5.40), updates the total energy in Bg ,;:

/,

2
>\ /020, = Y2 + (CLHWA? + 0/ (). = Xf )2 + 2" = ¥ = Y2 = CR;

<%|va|2 +W(a)) dz

Rp+1

2 CHI A 2
200 =)+ yflse a0 + vy | - e + 2L
A

2

S (CHY(AW))?
>6(IDA'| + [DB'| + [DC')) = CR; + /A

200y, —y*)
2

Here —C(8) in (6.52) is absorbed by —CRg as Ry can be chosen arbitrarily large and ¢ is a constant
only depending on W. Combining this with the upper bound (5.29) implies

2

C Hl A 2 z
@GR 7 W) C(R; +RY) = H'(A) < Co(y, W)R,. (6.53)
ZO'(yA - Y*)
We define
1 i
B:i={t:te[V3CR, 3Rol, max |a(2) — au > 7} (6.54)
ze )

An analogous computation implies
HY(B) < Cy(y, WRE. (6.55)
Set
C3(r, W) 1= V/3C, + 3C,.

From (6.53) and (6.55) it follows that there exists t, € [\/§C0R0ﬁ , C3R§ ] (note that Ry, is chosen to
be large enough so that C3R§ < %RO) such that

li(z) —aq| <y, Vze€ l;" U l;".

Let D, ,, C D, denote the region enclosed by li(’, l;o and 0Bg . By Lemma 4.2, we have
lu(z) —a;| <y, Vz€dD,,.

Here we write u instead of 7 because u = 7 on Bg, .
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By the variational maximum principle (see Lemma 2.3), given y (or equivalently, §) small
enough, we conclude that

|u(z) —a;| <y onDy,. (6.56)

This further implies that the diffuse interface 7, N D, is contained in a C3Rf)g neighborhood of
T. The same argument works for 7, N D; for j = 2,3 and we conclude the proof of the first part
(6.48).

Utilizing (6.56), hypothesis (H1) and the comparison principle for elliptic equations, the
exponential decay estimate (6.49) follows (cf. [2, Proposition 6.4]), which completes the proof. []

7 | RESCALING TO THE UNIT DISK B,

In the following two sections, we initially choose a small §, ensuring that the specified smallness
criteria for § in the proofs of Lemma 4.2 and Proposition 6.1 are met. The choice of § depends
only on the potential W. Subsequently we determine a possibly even smaller € and the associated
Ry(€) € (R(€), 2R(¢)) (see Section 3 for the selection of Ry(¢)), ensuring all energy bounds estab-
lished in Sections 3, 5, and 6 are satisfied, and also fulfilling the requirements on the largeness of
R, in the proofs of Lemma 4.1 and Lemma 4.2. Also it is noteworthy that for any R > R(¢), there
exists Ry € (R, 2R) such that all the results remain valid. Then we consider the rescalings

ug,(z) 1= u(Ryz), forz € B,

XA YA

A:z(R_O’R_O),

@::(;—z,;}z—‘;),

D::(};—’j,i—’;),

I, i={z€0B, : Rz €I}, i=123,
D;'QO :={z€By: RyzeD}}, i=1,2,3,

Tg. :=DAnDBNDC.

0

From Section 4 and Proposition 6.1 we have the following properties:
(1) On 5Bl,
lug,(2) —a;| < C8, Vz € Iio, i=1,2,3,

where the constant C only depends on W'.
2) The diffuse interface is contained in an O(Rﬁ _1) neighborhood of Ty, , that is,
0 g Ro

{zE€B, : |ug, — | > 2C68, Vi=1,2,3}C{z € By : dist(z,Tg,) < C(6, W)RE '},
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(3) Fori =1, 2,3, within D! ¥

|uR (z) - Clil < Ke_kRO(diSt(z’aDj?o)_CRg_l)+
0 < .

Denote the approximated triple junction map associated with Ty by
URO(z) = al)(Dllzo (z) + aZXDlzzo (z) + a3)(D}320 (z), z€By, (7.57)
The aforementioned properties imply the following estimate on the L!-closeness of ug, and Ug, .
Proposition 7.1. There is a constant C; = C;(W) that satisfies
g-1
||uR0 — URO”Ll(Bl) < CIRO . (758)
Proof. Let C = C(W) be the constant in Proposition 6.1. Note that this constant initially depends

on § and W. However, since we have fixed a § that depends on W, it now becomes a constant
solely dependent on W. We have

/'myrﬂwmw=/|%@—mw
D! D!

Ro Ro

/ ux (@) -l dz + [ g, (2) — @ dz
dist(z,9D} )<CR; ' dist(z,0Dy )2CR; !

DAL+ A

Using 7—[2(1)11eo N {dist(z, 62)1130) < CRg_l}) < CRg_l, and |u| < M by (3.9), we get that

Ay <COMDRE™. (7.59)
We observe that aDlgO consists of a circular arc I 11e0 and two line segments DA, DB. When
dist(z,6D} ) > CR) ",
dist(z, 9D}, ) = min { dist(z, DA), dist(z, DB), dist(z, I}, ) }.

We compute

1
o—KRo(dist(z DA-CRE™) 5 <2 / kR g < 2
; kR

'/dist(z,dD}eo)ZCRg_l 0

Similarly, we have

1
_ ist(z DB —CRF ! 2
e kRy(dist(z,DB) CRO )dz < 2/ e—kROV dr <
0

/dist(z,aDllzo)ZCRg_l kR,

1
e—kRO(dist(z,aBl)—CRg_l) dz < 27.[/ a1- r)e—kROr dr < 2_7T
0

~/dist(z,0D}zo)2CR§1 kR
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Summing the inequalities above, we get

A, < C(R;. (7.60)
Combining (7.59) and (7.60) yields
/ |ug, (2) — Uy, (2)| dz < CRE . (7.61)
Dl
Ro
The same estimate also applies for DIZeo and D1320 and (7.58) immediately follows. 1

8 | PROOF OF THEOREM 1.2

In this final section we will conclude the proof of the main theorem. It suffices to show that the
sequential limit u in (3.10) is unique, or equivalently, independent of the sequence {r;}.

We argue by contradiction. Suppose there are two sequences of radii {r;};? ; and {s;}; , that
converge to two distinct triple junction maps, that is

u, (2) = u(rez) - wy(2) in L, (R?), ry > o0 ask - oo, (8.62)
ug, (x) 1= u(skz) > upy(z) in L), (R?), s > oo ask — oo, (8.63)

3

3 .
where u;, = 121 @ X pis for P :={D;}, D7, Df} is a minimal 3-partition of R?, with P = L_J dD;

Jj=1
consists of three rays emanating from the origin and form 120-degree angles pairwise. Similarly, u,
3
canberepresentedasu, = Y, ayx,; where Py, := {Dy;, D7}, D;;}is another minimal 3-partition,
j:1 17
which is centered at the origin.

For ¢ <« 1, by Sections 3 and 7 we can find a R(g) such that for any R > R(¢), there exists R, €
(R, 2R) such that the rescaled function ug (x) = u(Ryx) is close to the approximate triple junction

map U, which is defined through Sections 4, 6, 7. The L' closeness is controlled by O(Rg_l) for
some 3 € (0,1). Now we fix the choice of R, € (R(¢),2R(¢)), and then find a sequence of radii
{R;}%2, such that R; € (2'(R(¢)), 2"*'R(¢)) and up, satisfies

—1
llug, — U, ll1s,) < CRY

3 )
for some Uy, := Y a; Xy with {D{ } is a partition of B; by three rays forming 120-degree angles
j=1 i

pairwise (not necessarily centered at the origin). For each i € N*, we denote

3
D, := ﬂ GD{ is the junction point for three phases of Uy,
j=1
A; 1= 08B, NdD; ndD;,
B; := 9B, ndD] ndD;,
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Il
W)

C; :=08B, NdD; n4dD;,
T, :

.A; N D;B; nD;C; is the triod at the scale R;.

The construction of this U, proceeds in the same manner as in the beginning of Section 5. We first
choose A;, B;, C; as the midpoints of the three transitional arcs between different phases on 0By,
followed by the selection of D; such that |D;A;| + |D;B;| + |D;C;| is minimized. Then we divide
the coordinates by R; to rescale all the points (4;, B;, C;, D;) to (4;, B;, C;, D;) € B;. All the earlier
results presented in Sections 4-7 remain valid upon substituting (A, B, C, D) with (A4;, B;, C;, D;),
respectively, and replacing R, by R;.

For each i, we denote by 6; € (0, 27] the angle of the vector m , which represents the direction
of the a;-a, interface for the approximate triple junction map at scale R;. Given that the angles
between each pair of interfaces are all 120 degrees, Uy, is completely determined by 6; and the
coordinates of D;. The following lemma says that in two consecutive scales, 8; will not change too
much.

Lemma 8.1. There is a constant C = C(W) such that for any i € N7,
B-1
16; — 01l < CR; . (8.64)

Proof. Without loss of generality, we assume D;,; = (0,0) and 4;,, = (0,1), which means the
approximated a;-a, interface at scale R;; aligns with y-axis. Set the coordinates

Di = (xiDsyli))’ Ai = (xi‘syg)

According to Corollary 5.2 we have

, ; 1
\/(xp)? +(yp)?* < TR;, forsomert < 100"

We consider the original minimizer u on By, . By Proposition 6.1,

lu(x,y) —a;| £2C6, ifx< —COR?H, y> CORﬁrl, (x,y) € Bg,,,» 569
8.65

u(x,y) — a,l <2C8, ifx > CoR’ , y > CoR, |, (x,) € Bg,,,,

for some constant Cy(W).
Since R; € (2'R(¢), 2'"'R(¢)), we have

<R
Ripa ’

FNy-

Note that rescaling does not affect the direction of straight lines. Thus in order to show (8.64), it
suffices to prove that three exists a constant C such that

[x!, — x| <CR. (8.66)
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Aip1= (0, Ri1)

/

Dby = (0,0

FIGURE 5 Grey region: O(Rf) transition layer between a, and a,. A significant difference between 6; and
6,1 leads to a contradiction that E belongs to both the a; phase and the a, phase.

Now we take C = 48C, and show that violation of (8.66) will yield a contradiction. Suppose |xi1 -
xiDl > 48C0Rfg . Then it holds that

2xt + xt xt +2xi
A3 D _ A3 2| > 16C0RY,

X!, + 2L + +2
which further implies that the distance of either ( A3 % , Vi yD) (xA i

two trisection points of the line segment D-A~) from the y-axis exceeds 8C0Rﬁ

+
b Y 3 yD) (which are

Suppose - 3+ B > SCORﬁ (the case - 3+ B < SCORﬁ or | Xt D| > 8C0Rﬁ can be analyzed
similarly). We set

2yt
1= (5C,R, “—)
3
According to (8.65), we have |u(E) — a,| < 2C(W)d because SCORﬁ > CORB . On the other hand,
we also have
LT X)

2x D
3

5CoR! — < —3CoR’,

which implies that |u(E) — a;| < 2C(W)S through a similar estimate as in (8.65) at scale R;.
Consequently, we arrive at a contradiction (as illustrated in Figure 5), thereby concluding
the proof. O
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Since P; and P;; are two distinct triple junctions centered at the origin, their directions of a;-a,
interface should be different, that is,

¢ — @, =a, forsome angle a # 0.

Here @; denotes the angle of D; N dD; and @, denotes the angle of dD;, N D7,

For each sufficiently large k, there exist i(k), j(k) € N* such that

rr € [Rigy, Rigoy+11s sk € [Rjay» Rjcioy1ls

with i(k) and j(k) tend to infinity as k increases.

On By, u,, is converging to a triple junction map u, thanks to (8.62); while for the comparable
scaling URy is close to another triple junction map URy- BY the same argument as in the proof
of Lemma 8.1 we can conclude that

Jim [|Ug; = tillaes,) =0,

Jim 80y — ¢1] = 0.
Similarly, we have

Jim |[Ug;q, = t2llzra,) =0,

klg{.lo 16 — p2| = 0.

Therefore we obtain two subsequences of 8; that converge to distinct angles. However, by
Lemma 8.1, we have for anyi < j,

j—1
B-1
16— 6;1 < ) CR|

I=i

j-1 i1
< Y C(2'R()
=i

j—i-1
= C2F-DR(e)F-1 Y 216D
=0

i(B-1) B-1
< C2 R(¢)

< T — 0 asi — oo,

indicating that {0;} is a Cauchy sequence, which yields a contradiction. The proof of Theorem 1.2
is complete.
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APPENDIX A: MINIMIZATION PROBLEM ABOUT y*
Recall the minimization problem (5.42):

min - f7) = O, = )+ /(8 — xp 2 + @y — v — VLR,

subject to y* € (y. + d,, ¥, — d,). Taking derivatives with respect to y*,

From the expression above we have that when y ~ y’C, s < 0, whereas when y ~ y:4,

of 22y =y = ye)

oy* = ’ ’\2 ’ ’ 2’
\/(XC—XB) +(2y*_y3_yc)

az 4(x/ _ x/ )2
f_ c ™% S 0.

6y*2 ’ ’'\2 . ’ ’\2 2
((xC_xB) +(2y>'\_y3_yc) )2

of 2
v oy*

Therefore there is only one critical point for f(y*) on the interval (y’c +d,, y;‘ —d,), which is a
minimum point. Moreover, the minimum y:u. n satisfies

3y}, — Vg — Yo = (X[ — xp)?

Since DB’ parallels (— \/_ ,—1)and DC’ parallels (\/_ ,—1),

2yp =Yg = Yo

1
x’c—xj’3 \/5’

* —

which immediately implies y, . = yp.
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-V

— X2+ Qyp — v

/
c

—Yp»
sl +2lyp =il = \/(x

/
A
min f(y*) = f(yp) = IDA’| + |DB'| + |DC’|.

=Yy

|IDA’|
|IDB'| + |DC’| = 2|yp — y

Finally we compute

UNIQUENESS OF THE BLOW-DOWN LIMIT

Hence,
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