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Abstract
We prove the uniqueness of 𝐿1 blow-down limit at infinity
for an entire minimizing solution 𝑢 ∶ ℝ2 → ℝ2 of a planar
Allen–Cahn system with a triple-well potential. Conse-
quently, 𝑢 can be approximated by a triple junction map
at infinity. The proof exploits a careful analysis of energy
upper and lower bounds, ensuring that the diffuse interface
remains within a small neighborhood of the approximated
triple junction at all scales.

1 INTRODUCTION

1.1 The problem and main result

This paper is concerned with the uniqueness of the blow-down limit at infinity for an entire,
bounded minimizing solution of the system

Δ𝑢 −𝑊𝑢(𝑢) = 0, 𝑢 ∶ ℝ2 → ℝ2, (1.1)

where𝑊 is a potential with three global minima. Specifically for𝑊 we assume

(H1). 𝑊 ∈ 𝐶2(ℝ2; [0, +∞)), {𝑧 ∶ 𝑊(𝑧) = 0} = {𝑎1, 𝑎2, 𝑎3},𝑊𝑢(𝑢) ⋅ 𝑢 > 0 if |𝑢| > 𝑀 and

𝑐2|𝜉|2 ≥ 𝜉𝑇𝑊𝑢𝑢(𝑎𝑖)𝜉 ≥ 𝑐1|𝜉|2, 𝑖 = 1, 2, 3.

for some positive constants 𝑐1 < 𝑐2 depending on𝑊.
(H2). For 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1, 2, 3}, let 𝑈𝑖𝑗 ∈ 𝑊1,2(ℝ,ℝ2) be an 1D minimizer of the action

𝜎𝑖𝑗 ∶= min∫ℝ
(
1
2
|𝑈′

𝑖𝑗|2 +𝑊(𝑈𝑖𝑗)

)
𝑑𝜂, lim

𝜂→−∞
𝑈𝑖𝑗(𝜂) = 𝑎𝑖, lim

𝜂→+∞
𝑈𝑖𝑗(𝜂) = 𝑎𝑗.
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2 GENG

𝜎𝑖𝑗 satisfies

𝜎𝑖𝑗 ≡ 𝜎 > 0 for 𝑖 ≠ 𝑗 ∈ {1, 2, 3} and some constant 𝜎. (1.2)

Note that (1.1) is the Euler–Lagrange equation associated with the energy

𝐸(𝑢,Ω) ∶= ∫Ω
(
1
2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑥. (1.3)

An entireminimizing solution 𝑢 ∶ ℝ2 → ℝ2 is defined in the following local sense.

Definition 1.1. A function 𝑢 ∶ ℝ2 → ℝ2 is aminimizing solution of (1.1) in the sense of De Giorgi
if

𝐸(𝑢,Ω) ≤ 𝐸(𝑢 + 𝑣,Ω), ∀ bounded open sets Ω ⊂ ℝ2, ∀𝑣 ∈ 𝐶1
0(Ω). (1.4)

The solution we seek can be regarded as the diffuse analogue of the minimal 3-partition of the
plane. Specifically, we define

 ∶= {1,2,3},

which is a partition of the plane into three sectors centered at the origin with opening angles of
120 degrees. Let 𝜕 denote the union of three rays that separate {𝑖}

3
𝑖=1, that is,

𝜕 ∶= 𝜕1 ∪ 𝜕2 ∪ 𝜕3.

We call 𝜕 a triod. The triple junction map is defined by

𝑈 ∶= 𝑎1𝜒1
+ 𝑎2𝜒2

+ 𝑎3𝜒3
, (1.5)

where 𝜒Ω represents the characteristic function of domain Ω.
It is well-known that  is a minimizing partition of ℝ2 into three phases and 𝜕 is a minimal

cone.  is minimizing in the sense that for any Ω ⊂ ℝ2, is a solution of the
following variational problem

The minimality stated above is related to Steiner’s classical result which states that given three
points𝐴, 𝐵, 𝐶 on the plane such that the corresponding triangle has no angle greater than or equal
to 120 degrees, then if 𝑃 is a point that minimizes the sum of the distances |𝑃 − 𝐴| + |𝑃 − 𝐵| +|𝑃 − 𝐶|, the line segments 𝑃𝐴, 𝑃𝐵, 𝑃𝐶 form three 120-degree angles.
In 1996, Bronsard et al. [6] established the existence of an entire solution to (1.1) in the

equivariant class of the reflection group  of the symmetries of the equilateral triangle. The
triple-well potential is also assumed invariant under . The solution is obtained as a minimizer
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UNIQUENESS OF THE BLOW-DOWN LIMIT 3

in the equivariant class 𝑢(𝑔𝑥) = 𝑔𝑢(𝑥), 𝑔 ∈ , hence is not necessarily stable under general
perturbations. Their results were extended to the three dimensional case in 2008 by Gui and
Schatzman [10]. We refer to the book [2] and to the references therein.
In 2021, Fusco [8] succeeded in establishing essentially the result of [6] in the equivariant

class of the rotation subgroup of  (by 2

3
𝜋), thus eliminating the two reflections. The symmetry

hypothesis fixes the center of the junction at the origin, which simplifies the analysis.
On bounded domains, there are some constructions of triple junction solutions without

imposing symmetry assumptions, see for example, the paper by Sternberg and Ziemer [13] for
clover-shaped domains in ℝ2 via Γ–convergence, and for more general domains by Flores et al.
[7] by a mountain pass argument. These Γ-convergence results are not sufficient for establishing
the existence of a triple junction solution on ℝ2.
The existence of an entire minimizing solution in the sense of Definition 1.1, characterized by

a triple junction structure at infinity, has been independently established in two recent papers: by
Alikakos and the author [3] and by Sandier and Sternberg [11]. Under slightly different hypotheses
and employing distinct methods, these two studies have yielded comparable results saying that
along a subsequence 𝑟𝑘 → ∞, the rescaled function 𝑢𝑟𝑘 (𝑧) ∶= 𝑢(𝑟𝑘𝑧) converges in 𝐿1

𝑙𝑜𝑐
(ℝ2) to a

triple junction map 𝑢0 of the form (1.5). However, it remains unclear a priori if there could exist
two different sequences of rescalings {𝑟𝑘} and {𝑠𝑘}, leading to distinct blow-down limits 𝑢1 and 𝑢2,
corresponding to distinct minimal 3-partitions 1 and 2, respectively. The primary objective of
the present paper is to rule out this possibility and demonstrate the uniqueness of the blow-down
limit. We now state our main result.

Theorem 1.2. There exists a bounded, minimizing solution 𝑢 ∶ ℝ2 → ℝ2 of (1.1) such that for any
compact 𝐾 ⊂ ℝ2,

lim
𝑟→∞

‖𝑢𝑟(𝑥) − 𝑢0‖𝐿1(𝐾) = 0,

where 𝑢0 =
3∑
𝑖=1

𝑎𝑖∯𝑖
for  = {𝑖}

3
𝑖=1 providing a minimal partition of ℝ

2 into three sectors with

angle of 120 degrees and 𝜕 is a triod centered at 0.

Remark 1.1. The result above also holds for the case when 𝜎𝑖𝑗 are not all equal but still satisfy
𝜎𝑖𝑗 + 𝜎𝑗𝑘 > 𝜎𝑖𝑘. In this scenario, the corresponding minimal partition  consists of three sectors
𝑖 with opening angles 𝜃𝑖 satisfying

∑3
𝑖=1 𝜃𝑖 = 2𝜋 and sin 𝜃1

𝜎23
=

sin 𝜃2

𝜎13
=

sin 𝜃3

𝜎12
. The proof for the

general 𝜎𝑖𝑗 case follows the same argument as the proof of Theorem 1.2. In this paper, we will
adhere to the equal 𝜎𝑖𝑗 case for the sake of clarity and simplicity in presentation.

Uniqueness of blow-up or blow-down limits is one of the central questions in the study of sin-
gular structures in geometric PDEs. Following the prominent early works by Allard and Almgren
[4] and Simon [12], uniqueness questions have been investigated extensively for free boundary
problems, harmonic maps, minimal surfaces and geometric flows. Most of these results rely on
some type of the Simon–Łojasiewicz inequality or epiperimetric inequalities, showing the decay
of certain monotone quantities at a definite rate. In our proof, the uniqueness of the blow-down
limit is obtained from a delicate estimate on the localization of the diffuse interface, derived from
a purely variational argument, thus avoiding the use of those classical methods.

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22230 by C

ochrane G
reece, W

iley O
nline L

ibrary on [21/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 GENG

1.2 An overview of the proof

We now list some key steps and ideas in the proof of our results. As mentioned earlier, we can
start with a minimizing solution 𝑢 of (1.1) as constructed in [3] and [11], which converges to a
triple junctionmap of the form (1.5) along some subsequence 𝑟𝑘 → ∞. In particular, for arbitrarily
small 𝜀, there exists a sufficiently large 𝑅0 such that

3𝜎 − 𝜀 ≤ ∫𝜕𝐵𝑅0
(
1
2
|∇𝑇𝑢|2 +𝑊(𝑢)

)
𝑑1 ≤ 3𝜎 + 𝜀,

where ∇𝑇 denotes the tangential derivative.
Starting from this estimate, which basicallymeans there are three phase transitions along 𝜕𝐵𝑅0 ,

we can derive that 𝑢(𝑧) should “behave nicely” on 𝜕𝐵𝑅0 . To be more specific, 𝑢 is close to phases
𝑎1, 𝑎2, 𝑎3 on three arcs 𝐼1, 𝐼2, 𝐼3, respectively. Between these phases, there will be three small arcs
𝐼𝑖𝑗 (𝑖 ≠ 𝑗 ∈ {1, 2, 3}) separating them, which can be regarded as the place where phase transition
happens. We pick points 𝐴 ∈ 𝐼12, 𝐵 ∈ 𝐼13, 𝐶 ∈ 𝐼23 and determine the point 𝐷 such that |𝐷𝐴| +|𝐷𝐵| + |𝐷𝐶| is minimized. Thenwe let 𝑇𝐴𝐵𝐶 ∶= 𝐷𝐴 ∪ 𝐷𝐵 ∪ 𝐷𝐶 be the approximate triod on 𝐵𝑅0 .
With such a nicely behaved boundary data on 𝜕𝐵𝑅0 , we obtain the following energy upper

bound and lower bound in 𝐵𝑅0 .

𝜎(|𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶|) − 𝐶𝑅𝛼0 ≤ ∫𝐵𝑅0
(
1
2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑧 ≤ 𝜎(|𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶|) + 𝐶𝑅𝛼0 ,

(1.6)

for some constants 𝐶 = 𝐶(𝑊) and 𝛼 ∈ (0, 1). For the upper bound, we utilize the construction of
an energy competitor outlined in [11, Proposition 3.3], while for the lower bound we mimic the
proof of [3, Proposition 3.1].
We define the diffuse interface as

𝐼𝛾 ∶= {𝑧 ∶ |𝑢(𝑧) − 𝑎𝑖| ≥ 𝛾, ∀𝑖 = 1, 2, 3}.

The energy bound (1.6) implies that 𝐼𝛾 ∩ 𝐵𝑅0 is located in an 𝑂(𝑅
𝛽
0 ) (for some 𝛽 < 1) neigh-

borhood of the approximate triod 𝑇𝐴𝐵𝐶 . Moreover, away from 𝑇𝐴𝐵𝐶 , the distance of 𝑢(𝑧) to 𝑎𝑖
will decay exponentially with respect to dist(𝑧, 𝑇𝐴𝐵𝐶) thanks to Hypothesis (H1) and standard
elliptic theories.
We proceed by rescaling 𝐵𝑅0 to the unit disk 𝐵1 through the function 𝑢𝑅0 ∶= 𝑢(𝑅0𝑧). The expo-

nential decay above implies that 𝑢𝑅0 is closely approximated in 𝐿
1 norm by a minimal partition

{𝑖
𝑅0
}3𝑖=1 of 𝐵1 determined by the rescaled version of 𝑇𝐴𝐵𝐶 . Specifically, we have

‖𝑢𝑅0 − 𝑈𝑅0‖𝐿1 ≤ 𝐶𝑅
𝛽−1
0 , (1.7)

where 𝑈𝑅0 =
∑
𝑎𝑖𝜒𝑖

𝑅0
. We point out that (1.7) holds for any larger scaling 𝑅𝑖 ∼ 2𝑖𝑅0, where 𝑈𝑅𝑖

is the corresponding approximate triple junction map at the scale 𝑅𝑖 .
A key observation is that approximate triple junction maps at two consecutive scales are close

to each other, that is,

‖𝑈𝑅𝑖 − 𝑈𝑅𝑖+1‖ ≤ 𝐶𝑅
𝛽−1
𝑖 . (1.8)
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UNIQUENESS OF THE BLOW-DOWN LIMIT 5

This is established by (1.7) and the fact that 𝑢𝑅𝑖 and 𝑢𝑅𝑖+1 are obtained by rescaling the same func-
tion 𝑢. Finally, we can iterate (1.8) and deduce that 𝑈𝑅𝑖 will converge to a unique triple junction
map, and thereby concluding the proof.
The article is organized as follows. In Section 2, we present some preliminary results from

[1] and [2]. In Sections 3 and 4, we establish the existence of a minimizing solution 𝑢 and fix a
well behaved boundary data on 𝜕𝐵𝑅0 . Next, we establish the energy bound (1.6) in Section 5. The
localization of the diffuse interface within an 𝑂(𝑅𝛽0 ) neighborhood of the triod 𝑇𝐴𝐵𝐶 is proved in
Section 6. Then in Section 7 we rescale 𝐵𝑅0 to 𝐵1 and prove (1.7). Lastly, we conclude the proof of
the main theorem utilizing the estimate (1.8) in Section 8.

2 PRELIMINARIES

Throughout the paper we denote by 𝑧 = (𝑥, 𝑦) a 2D point and by 𝐵𝑟(𝑧) the 2D ball centered at the
point 𝑧 with radius 𝑟. In addition, we let 𝐵𝑟 denote the 2D ball centered at the origin. We recall
the following basic results which play a crucial part in our analysis.

Lemma 2.1 (Lemma 2.1 in [1]). The hypotheses on𝑊 imply the existence of 𝛿𝑊 > 0, and constants
𝑐𝑊, 𝐶𝑊 > 0 such that

|𝑢 − 𝑎𝑖| = 𝛿

⇒
1
2
𝑐𝑊𝛿

2 ≤ 𝑊(𝑢) ≤ 1
2
𝐶𝑊𝛿

2, ∀𝛿 < 𝛿𝑊, 𝑖 = 1, 2, 3.

Moreover if min
𝑖=1,2,3

|𝑢 − 𝑎𝑖| ≥ 𝛿 for some 𝛿 < 𝛿𝑊 , then𝑊(𝑢) ≥ 1

2
𝑐𝑊𝛿

2.

Lemma 2.2 (Lemma 2.3 in [1]). Take 𝑖 ≠ 𝑗 ∈ {1, 2, 3}, 𝛿 < 𝛿𝑊 and let 𝑠+ > 𝑠− be two real numbers.
Let 𝑣 ∶ (𝑠−, 𝑠+) → ℝ2 be a smooth map that minimizes the energy functional

𝐽(𝑠−,𝑠+)(𝑣) ∶= ∫
𝑠+

𝑠−

(
1
2
|∇𝑣|2 +𝑊(𝑣)

)
𝑑𝑥

subject to the boundary condition

|𝑣(𝑠−) − 𝑎𝑖| = |𝑣(𝑠+) − 𝑎𝑗| = 𝛿.

Then

𝐽(𝑠−,𝑠+)(𝑣) ≥ 𝜎 − 𝐶𝑊𝛿
2,

where 𝐶𝑊 is the constant in Lemma 2.1.

Lemma 2.3 (Variational maximum principle, Theorem 4.1 in [2]). There exists a positive con-
stant 𝑟0 = 𝑟0(𝑊) such that for any 𝑢 ∈ 𝑊1,2(Ω,ℝ2) ∩ 𝐿∞(Ω,ℝ2) being a minimizer of 𝐸(⋅, Ω), if
𝑢 satisfies

|𝑢(𝑥) − 𝑎𝑖| ≤ 𝑟 on 𝜕Ω, for some 𝑟 < 𝑟0, 𝑖 ∈ {1, 2, 3},
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6 GENG

then

|𝑢(𝑥) − 𝑎𝑖| ≤ 𝑟 ∀𝑥 ∈ Ω.

3 EXISTENCE OF AN ENTIREMINIMIZING SOLUTION

By the constructions in [3] and [11], there exists a minimizing solution 𝑢 ∶ ℝ2 → ℝ2 of (1.1) such
that the following hold:

(1) There exists𝑀 > 0 such that

|𝑢(𝑧)| + |∇𝑢(𝑧)| ≤ 𝑀, ∀𝑧 ∈ ℝ2. (3.9)

(2) [11, Theorem 1.1] For any sequence 𝑟𝑘 → ∞, there is a subsequence, still denoted by {𝑟𝑘}, such
that

𝑢(𝑟𝑘𝑧) → 𝑢0(𝑧) in 𝐿1𝑙𝑜𝑐(ℝ
2), (3.10)

where 𝑢0(𝑧) =
3∑
𝑖=1

𝑎𝑖∯𝑖
. for  = {1,2,3} providing a minimal partition of ℝ2 into three

sectors of the angle 2

3
𝜋 and 𝜕 is a triod centered at 0. Moreover, along the same subsequence

we have the following energy estimate

lim
𝑟𝑘→∞

1
𝑟𝑘
𝐸(𝑢, 𝐵𝑟𝑘 (0)) = 3𝜎.

This energy estimate follows from the Γ–convergence result in Baldo [5] that holds also
without the mass constraint (see Gazoulis [9]).

(3) By [11, Lemma 3.4&Lemma3.5],𝑢 is asymptotically homogeneous and satisfies an asymptotic
energy equipartition property at large scale,

lim
𝑅→∞

1
𝑅 ∫𝐵𝑅

𝑊(𝑢) 𝑑𝑧 = lim
𝑅→∞

1
𝑅 ∫𝐵𝑅

1
2
|∇𝑢|2 𝑑𝑧 = lim

𝑅→∞

1
𝑅 ∫𝐵𝑅

1
2
|∇𝑇𝑢|2 𝑑𝑧 = 3𝜎

2
. (3.11)

Here ∇𝑇 denotes the tangential derivative.

Utilizing (3.11), for any 𝜀 > 0, there exists a large 𝑅(𝜀) such that for any 𝑅 > 𝑅(𝜀),

3𝜎 − 𝜀 ≤ 1
𝑅 ∫𝐵𝑅

(
1
2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑧 ≤ 3𝜎 + 𝜀,

3𝜎 − 𝜀
2

≤ 1
𝑅 ∫𝐴2𝑅,𝑅

𝑊(𝑢) 𝑑𝑧 ≤ 3𝜎 + 𝜀
2

,

3𝜎 − 𝜀
2

≤ 1
𝑅 ∫𝐴2𝑅,𝑅

1
2
|∇𝑇𝑢|2 𝑑𝑧 ≤ 3𝜎 + 𝜀

2
,
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UNIQUENESS OF THE BLOW-DOWN LIMIT 7

where 𝐴2𝑅,𝑅 represents the annulus {𝑧 ∈ ℝ2 ∶ 𝑅 < |𝑧| < 2𝑅}. Fixing 𝜀 as a small parameter to be
determined later, by Fubini’s theorem we can find 𝑅0(𝜀) ∈ (𝑅(𝜀), 2𝑅(𝜀)) such that

3𝜎 − 𝜀 ≤ ∫𝜕𝐵𝑅0
(
1
2
|∇𝑇𝑢|2 +𝑊(𝑢)

)
𝑑1 ≤ 3𝜎 + 𝜀. (3.12)

3𝜎 − 𝜀 ≤ 1
𝑅0 ∫𝐵𝑅0

(
1
2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑧 ≤ 3𝜎 + 𝜀. (3.13)

As our analysis progresses, we will gradually determine the conditions on the smallness of 𝜀.

4 “WELL-BEHAVED” PROFILE OF 𝒖(𝒛) ON 𝝏𝑩𝑹𝟎

Firstly, we take a fixed small constant 𝛿 = 𝛿(𝑊)which is independent of 𝜀, to be determined later.
We keep in mind that in certain places of our analysis, 𝜀 is considered to be significantly smaller
than 𝛿. From the energy bound (3.12) and Lemma 2.1 we conclude that

1({𝑧 ∶ min
𝑖=1,2,3

|𝑢(𝑧) − 𝑎𝑖| > 𝛿} ∩ 𝜕𝐵𝑅0) ≤ 𝐶

𝛿2
, (4.14)

for some 𝐶 = 𝐶(𝑊). In other words, most of points on 𝜕𝐵𝑅0 are close to one of the phases 𝑎𝑖 . We
set

𝑌𝑖 ∶= {𝑧 ∶ |𝑢(𝑧) − 𝑎𝑖| ≤ 𝛿} ∩ 𝜕𝐵𝑅0 , 𝑖 = 1, 2, 3.

Then (4.14) implies

3∑
𝑖=1

1(𝑌𝑖) ≥ 2𝜋𝑅0 −
𝐶

𝛿2
. (4.15)

Lemma 4.1. For any 𝑖 ∈ {1, 2, 3}, 𝑌𝑖 ≠ ∅.

Proof. We need to rule out the following two cases.

Case 1. Two of 𝑌𝑖 ’s are empty sets. Without loss of generality, assume

𝑌2 = 𝑌3 = ∅.

We construct the following energy competitor in 𝐵𝑅0 by writing in polar system 𝑧 = (𝑥, 𝑦) = 𝑟𝑒𝑖𝜃:

�̃�(𝑟, 𝜃) =

⎧⎪⎨⎪⎩
𝑢(𝑅0, 𝜃), 𝑟 = 𝑅0

(1 + 𝑟 − 𝑅0)𝑢(𝑅0, 𝜃) + (𝑅0 − 𝑟)𝑎1, 𝑟 ∈ (𝑅0 − 1, 𝑅0),

𝑎1, 𝑟 ∈ [0, 𝑅0 − 1].

In view of Lemma 2.1, we have that
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8 GENG

∫𝐴𝑅0,𝑅0−1

|𝜕𝑟�̃�|2 𝑑𝑧
=∫

𝑅0

𝑅0−1
∫

2𝜋

0
|𝑢(𝑅0, 𝜃) − 𝑎1|2𝑟 𝑑𝑟 𝑑𝜃

≤∫𝑌1
|𝑢 − 𝑎1|2 𝑑1 + ∫𝜕𝐵𝑅0∖𝑌1

|𝑢 − 𝑎1|2 𝑑1

≤∫𝑌1
𝐶𝑊(𝑢) 𝑑1 +

𝐶

𝛿2
𝑀2

≤𝐶(𝛿,𝑊).

(4.16)

∫𝐴𝑅0,𝑅0−1

𝑊(𝑢) 𝑑𝑧 ≤ ∫𝐴𝑅0,𝑅0−1

𝐶|𝑢 − 𝑎1|2 𝑑𝑧 ≤ 𝐶(𝛿,𝑊). (4.17)

∫𝐴𝑅0,𝑅0−1

|𝜕𝑇�̃�|2 𝑑𝑧 ≤ ∫𝜕𝐵𝑅0
|𝜕𝑇�̃�|2 𝑑1 ≤ 3𝜎. (4.18)

Adding (4.16), (4.17) and (4.18) together gives

∫𝐵𝑅0
(
1
2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑧 ≤ 𝐶(𝛿,𝑊), (4.19)

which yields a contradiction with (3.13) given that 𝑅0 can be arranged to be much larger than
𝐶(𝛿,𝑊). As a result, we eliminate Case 1.

Case 2. One of 𝑌𝑖 ’s is empty. Assume without loss of generality that 𝑌3 = ∅. Then on 𝜕𝐵𝑅0 ,
essentially there are only two phases appearing, namely 𝑎1 and 𝑎2. There exist 𝑧1, 𝑧2 ∈ 𝜕𝐵𝑅0 such
that

|𝑢(𝑧1) − 𝑎1| ≤ 𝛿, |𝑢(𝑧2) − 𝑎2| ≤ 𝛿, for 𝑧𝑖 ∶= 𝑅0𝑒
𝑖𝜃𝑖 , 𝑖 = 1, 2. (4.20)

where 𝜃𝑖 denotes the polar angle of 𝑧𝑖 (𝑖 = 1, 2). Then 𝑧1 and 𝑧2 split the circle 𝜕𝐵𝑅0 into two arcs,
denoted by 𝐴 and 𝐵, respectively. Then we define

𝐴1 ∶= {𝑧 ∈ 𝐴 ∶ |𝑢(𝑧) − 𝑎1| ≤ 𝛿},

𝐴2 ∶= {𝑧 ∈ 𝐴 ∶ |𝑢(𝑧) − 𝑎2| ≤ 𝛿}.

By (4.20) and the continuity of 𝑢 we know that 𝐴1 and 𝐴2 are two disjoint non-empty closed sets
in 𝐴. Set

𝑧1𝐴 ∶= the point from 𝐴1 that is closest to 𝐴2,

𝑧2𝐴 ∶= the point from 𝐴2 that is closest to 𝐴1.
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UNIQUENESS OF THE BLOW-DOWN LIMIT 9

Here “closest” refers to the distance along 𝜕𝐵𝑅0 . Now we have the key observation that on 𝐴 the

arcs and do not overlap. Suppose by contradiction this is not the case, we have

If we start from 𝑧1 and traverse along the clockwise direction of 𝜕𝐵𝑅0 for a complete circle, we will
encounter at least four phase transitions occurring between the two phases 𝑎1 and 𝑎2, namely

𝑧1 → 𝑧2 → 𝑧1𝐴 → 𝑧2𝐴 → 𝑧1.

Then we have

∫𝜕𝐵𝑅0
(
1
2
|∇𝑇𝑢|2 +𝑊(𝑢)

)
𝑑1 ≥ 4𝜎 − 𝐶𝛿2,

which contradicts (3.12). Therefore and cannot overlap. Moreover, appealing to (3.9)
we have that

for some positive constant 𝐶 depending on |𝑎1 − 𝑎2| and the uniform bound of |∇𝑢|.
Now for any , it holds

|𝑢(𝑧) − 𝑎𝑖| > 𝛿, ∀𝑖 ∈ {1, 2, 3}.

Utilizing the energy bound (3.12) and the hypothesis (H1), we obtain

for some constant 𝐶 depending only on𝑊.
In the same manner, on 𝐵 we can define

𝐵1 ∶= {𝑧 ∈ 𝐵 ∶ |𝑢(𝑧) − 𝑎1| ≤ 𝛿},

𝐵2 ∶= {𝑧 ∈ 𝐵 ∶ |𝑢(𝑧) − 𝑎2| ≤ 𝛿}.

and

𝑧1𝐵 ∶= the point from 𝐵1 that is closest to 𝐵2,

𝑧2𝐵 ∶= the point from 𝐵2 that is closest to 𝐵1.

By the same argument we have and do not overlap and
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10 GENG

for some positive constants 𝐶1, 𝐶2. Denote the polar angles for 𝑧1𝐴, 𝑧
2
𝐴, 𝑧

1
𝐵, 𝑧

2
𝐵 by 𝜃

1
𝐴, 𝜃

2
𝐴, 𝜃

1
𝐵, 𝜃

2
𝐵,

respectively. Set

Here Θ𝑖 (𝑖 = 1, 2) approximately represents the set of polar angles for 𝑎𝑖 phase points on 𝜕𝐵𝑅0 ,
whereΘ0 represents the set of polar angles for the transition layer. The size ofΘ0 can be controlled
by

𝐶1
𝑅0

≤ |Θ0| ≤ 𝐶2
𝑅0𝛿2

. (4.21)

Now we first define the following function on 𝜕𝐵𝑅0−1:

�̃�(𝑅0 − 1, 𝜃) =

⎧⎪⎨⎪⎩
𝑎1, 𝜃 ∈ Θ1,

𝑎2, 𝜃 ∈ Θ2,

smooth connection of 𝑎1, 𝑎2 𝜃 ∈ Θ0.

(4.22)

Then we extend the energy competitor �̃� to 𝐵𝑅0 ,

�̃�(𝑟, 𝜃) ∶=

⎧⎪⎪⎨⎪⎪⎩

𝑢(𝑅0, 𝜃), 𝑟 = 𝑅0

(𝑟 − 𝑅0 + 1)𝑢(𝑅0, 𝜃) + (𝑅0 − 𝑟)�̃�(𝑅0 − 1, 𝜃), 𝑟 ∈ (𝑅0 − 1, 𝑅0)

�̃�(𝑅0 − 1, 𝜃), 𝑟 = 𝑅0 − 1

energy minimizer, 𝑟 ∈ [0, 𝑅0 − 1)

(4.23)

where we require that �̃� minimizes the energy 𝐸(⋅, 𝐵𝑅0−1) with respect to the Dirichlet boundary
constraint �̃�|𝐵𝑅0−1 .
We first estimate the energy in the annulus 𝐴𝑅0,𝑅0−1.

∫𝐴𝑅0,𝑅0−1

(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧

=

(
∫𝐴𝑅0,𝑅0−1∩{𝜃∈Θ1}

+∫𝐴𝑅0,𝑅0−1∩{𝜃∈Θ2}
+∫𝐴𝑅0,𝑅0−1∩{𝜃∈Θ0}

)(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧.

From (4.21) and (3.9) it follows that

∫𝐴𝑅0,𝑅0−1∩{𝜃∈Θ0}

(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≤ 𝐶(𝛿,𝑊).

For any 𝜃0 ∈ Θ1, if |𝑢(𝑅0, 𝜃0) − 𝑎1| < 𝛿, then

|�̃�(𝑟, 𝜃0) − 𝑎1| ≤ |𝑢(𝑅0, 𝜃0) − 𝑎1| < 𝛿, ∀𝑟 ∈ (𝑅0 − 1, 𝑅0),

which implies

𝑐1|�̃�(𝑟, 𝜃0) − 𝑎1|2 ≤ 𝑊(�̃�(𝑟, 𝜃0)) ≤ 𝐶𝑊(𝑢(𝑅0, 𝜃0)), for some 𝐶 = 𝐶(𝑊), ∀𝑟 ∈ (𝑅0 − 1, 𝑅0).
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UNIQUENESS OF THE BLOW-DOWN LIMIT 11

On the other hand if |𝑢(𝑅0, 𝜃0) − 𝑎1| ≥ 𝛿, together with the definition of Θ1 it holds that

|𝑢(𝑅0, 𝜃0) − 𝑎𝑖| ≥ 𝛿, ∀𝑖 ∈ {1, 2, 3},

and

max{|�̃�(𝑟, 𝜃0) − 𝑎1|2, 𝑊(�̃�(𝑟, 𝜃0))} ≤ 𝐶

𝛿2
𝑊(𝑢(𝑅0, 𝜃0)), ∀𝑟 ∈ (𝑅0 − 1, 𝑅0).

Following the similar computation as in (4.16), (4.18), and (4.17), we obtain

∫𝐴𝑅0,𝑅0−1∩{𝜃∈Θ1}
|𝜕𝑟�̃�|2 𝑑𝑧

=∫
𝑅0

𝑅0−1
∫Θ1

|𝑢(𝑅0, 𝜃) − 𝑎1|2𝑟 𝑑𝑟 𝑑𝜃
≤𝐶(𝛿,𝑊)𝑅0 ∫Θ1

𝑊(𝑢(𝑅0, 𝜃)) 𝑑𝜃

≤𝐶(𝛿,𝑊).

∫𝐴𝑅0,𝑅0−1∩{𝜃∈Θ1}
|𝜕𝑇�̃�|2 𝑑𝑧 ≤ ∫𝜕𝐵𝑅0

|𝜕𝑇�̃�|2 𝑑1 ≤ 3𝜎.

∫𝐴𝑅0,𝑅0−1∩{𝜃∈Θ1}
𝑊(�̃�) 𝑑𝑧

≤𝐶(𝛿,𝑊)∫
𝑅0

𝑅0−1
𝑑𝑟 ∫Θ1

𝑊(𝑢(𝑅0, 𝜃))𝑟 𝑑𝜃 ≤ 𝐶(𝛿,𝑊).

Summing up the inequalities above implies

∫𝐴𝑅0,𝑅0−1∩{𝜃∈Θ1}

(
1
2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑧 ≤ 𝐶(𝛿,𝑊).

This estimate also applies to the energy on 𝐴𝑅0,𝑅0−1 ∩ {𝜃 ∈ Θ2}. Consequently we have

∫𝐴𝑅0,𝑅0−1

(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≤ 𝐶(𝛿,𝑊), (4.24)

We are left with the the estimation of 𝐸(�̃�, 𝐵𝑅0−1). Set

𝑃1 ∶= (𝑅0 − 1)𝑒
𝑖
𝜃1
𝐴
+𝜃2

𝐴
2 , 𝑃2 ∶= (𝑅0 − 1)𝑒

𝑖
𝜃1𝐵+𝜃

2
𝐵

2 .

Then 𝑃1𝑃2 intersects with 𝜕𝐵𝑅0−2 at two points 𝑃
′
1 and 𝑃

′
2, respectively. Up to a possible rotation,

we can assume 𝑃1𝑃2 is parallel to the 𝑥-axis and their shared 𝑦 coordinates is denoted by 𝑦0.
Without loss of generality, we suppose 𝑦0 ≤ 0, with the 𝑎2 phase part of 𝜕𝐵𝑅0−1 positioned above
{𝑦 = 𝑦0}, while the 𝑎1 phase part is positioned below {𝑦 = 𝑦0} (see Figure 1).
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12 GENG

F IGURE 1 Energy upper bound in 𝐵𝑅0−1 for Case 2. Red: 𝑎1; Green: 𝑎2.

We pick an 1Dminimizing connection𝑈12 defined in the Hypothesis (H2). Moreover, it is well-
known that 𝑈𝑖𝑗 will converge to 𝑎1 or 𝑎2 exponentially (see e.g., [2, Proposition 2.4]),

|𝑈12(𝜂) − 𝑎2| ≤ 𝐾𝑒−𝑘𝜂, |𝑈12(𝜂) − 𝑎1| ≤ 𝐾𝑒𝑘𝜂,

for some constants 𝐾, 𝑘 > 0. Let ℎ = 𝑅
1

3
0 . If 𝑦0 ≤ −𝑅0 + 3ℎ, elementary geometry implies that

, whichmeans the 𝑎1 phase on 𝜕𝐵𝑅0−1 hasmuch smaller measure compared to
that of the 𝑎2 phase. Hence we can invoke similar analysis as in Case 1 to show that 𝐸(�̃�, 𝐵𝑅0−1) ≤
𝐶𝑅

2

3
0 ≪ 𝑂(𝑅0). This, together with (4.24), yields a contradiction with (3.13). Therefore, we only

consider the case 𝑦0 > −𝑅0 + 3ℎ. Set

𝑣(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
𝑈12(𝑦 − 𝑦0), (𝑥, 𝑦) ∈ 𝐵𝑅0−2 ∩ {𝑦0 − ℎ ≤ 𝑦 ≤ 𝑦0 + ℎ},

𝑎2, (𝑥, 𝑦) ∈ 𝐵𝑅0−1 ∩ {𝑦 ≥ 𝑦0 + 2ℎ},

𝑎1, (𝑥, 𝑦) ∈ 𝐵𝑅0−1 ∩ {𝑦 ≤ 𝑦0 − 2ℎ}.

On 𝐵𝑅0−2 ∩ {𝑦 = 𝑦0 − ℎ} (or 𝐵𝑅0−2 ∩ {𝑦 = 𝑦0 + ℎ}), by the exponential decay of 𝑈12 we have

|𝑣(𝑥, 𝑦) − 𝑎1 ( or 𝑎2)| ≤ 𝐾𝑒−𝑘𝑅
1
3
0 .

And for (𝑥, 𝑦) ∈ 𝐷0 ∶= 𝐴𝑅0−1,𝑅0−2 ∩ {𝑦0 − ℎ ≤ 𝑦 ≤ 𝑦0 + ℎ}, we take 𝑣(𝑥, 𝑦) to linearly interpolate
in 𝑥 between 𝑣|𝜕𝐵𝑅0−1 and 𝑣|𝜕𝐵𝑅0−2 for each 𝑦. Note that𝐷0 consists of two small regions withmea-

sure controlled by 𝑂(𝑅
1

3
0 ). For (𝑥, 𝑦) ∈ 𝐷+ ∶= 𝐵𝑅0−1 ∩ {𝑦0 + ℎ ≤ 𝑦 ≤ 𝑦0 + 2ℎ} and (𝑥, 𝑦) ∈ 𝐷− ∶=

𝐵𝑅0−1 ∩ {𝑦0 − 2ℎ ≤ 𝑦 ≤ 𝑦0 − ℎ}, let 𝑣(𝑥, 𝑦) linearly interpolate in 𝑦 between 𝑣(𝑥, 𝑦0 ± 2ℎ) and
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UNIQUENESS OF THE BLOW-DOWN LIMIT 13

𝑣(𝑥, 𝑦0 ± ℎ). See Figure 1 for an illustration for all these subdomains. We estimate energy of 𝑣:

𝐸(𝑣, 𝐵𝑅0−2 ∩ {𝑦0 − ℎ ≤ 𝑦 ≤ 𝑦0 + ℎ}) ≤ 𝜎 ∗ 1(𝑃1𝑃2) ≤ 2𝑅0𝜎,

𝐸(𝑣, 𝐵𝑅0−1 ∩ {𝑦 ≥ 𝑦0 + 2ℎ} ∩ {𝑦 ≤ 𝑦0 − 2ℎ}) = 0,

𝐸(𝑣, 𝐷0) ≤ 𝐶2(𝐷0) ≤ 𝐶𝑅
1

3
0 ,

𝐸(𝑣, 𝐷±) ≤ 𝐶ℎ ⋅1(𝑃1𝑃2) ⋅ 𝐾
2𝑒−2𝑘𝑅

1
3
0 = 𝑜(𝑅0),

given 𝑅0 chosen to be sufficiently large. Altogether,

𝐸(𝑣, 𝐵𝑅0−1) ≤ 2𝑅0𝜎 + 𝑜(𝑅0).

Utilizing the minimality of �̃� in 𝐵𝑅0−1 and (4.24), we obtain

∫𝐵𝑅0
(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≤ 2𝑅0𝜎 + 𝑜(𝑅0),

which yields a contradiction with (3.12) when we select 𝑅0 to be large enough. Therefore Case 2
is also eliminated and we get

𝑌𝑖 ≠ ∅, ∀𝑖 ∈ {1, 2, 3}.

The proof of Lemma 4.1 is complete. □

From Lemma 4.1, there are 𝑧1, 𝑧2, 𝑧3 ∈ 𝜕𝐵𝑅0 such that|𝑢(𝑧𝑖) − 𝑎𝑖| ≤ 𝛿, ∀𝑖 ∈ {1, 2, 3}.

Next we apply the same analysis for the two-phase scenario to obtain the existence of three arcs
, that satisfy the following properties,

(1) , for 𝑖 = 1, 2, 3.
(2) |𝑢(𝑧𝑖

𝑙
) − 𝑎𝑖| ≤ 𝛿, |𝑢(𝑧𝑖𝑟) − 𝑎𝑖| ≤ 𝛿, for 𝑖 = 1, 2, 3.

(3) , , are disjoint. For each 𝑖 ∈ {1, 2, 3}, we have

(4) Suppose , , are the three small arcs that separate the arcs , and . It
holds that

And consequently,

(4.25)
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14 GENG

We introduce the following notations for convenience.

Then (4.25) implies

𝐶1
3

≤ 𝑑1 ≤ 𝑑2 ≤ 𝐶2
𝛿2
. (4.26)

By Property (2), there will be an approximate “phase transition” inside each of the separating arcs
𝐼12, 𝐼23, 𝐼31, and the energy on these arcs is estimated by

∫𝐼12∪𝐼23∪𝐼31
(
1
2
|𝜕𝑇𝑢|2 +𝑊(𝑢)

)
𝑑1 ≥ 3𝜎 − 𝐶𝛿2, (4.27)

for some constant 𝐶 = 𝐶(𝑊). Next we show that on each arc 𝐼𝑖 , 𝑢(𝑧)will be uniformly close to 𝑎𝑖 ,
with the distance controlled by 𝐶𝛿.

Lemma 4.2. There exists a constant 𝐶 which only depends on𝑊, such that for any 𝑖 ∈ {1, 2, 3} and
𝑧 ∈ 𝐼𝑖 , it holds that

|𝑢(𝑧) − 𝑎𝑖| < 𝐶𝛿.

Proof. Let 𝐶 be a large constant to be determined later. Without loss of generality, we suppose by
contradiction there exists 𝑧1 ∈ 𝐼1 such that |𝑢(𝑧1) − 𝑎1| = 𝐶𝛿 and

|𝑢(𝑧1) − 𝑎1| = max{|𝑢(𝑧) − 𝑎1|, 𝑧 ∈ 𝐼1}.

We can choose suitable constants 𝛿 and 𝐶 satisfying

𝐶𝛿 < 𝛿𝑊, (4.28)

where 𝛿𝑊 is the constant in Lemma 2.1. As a result, for any , it holds that

𝑊(𝑢(𝑧)) ≥ 1
2
𝑐𝑊|𝑢(𝑧) − 𝑎1|2.
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UNIQUENESS OF THE BLOW-DOWN LIMIT 15

We compute

Combining this with (4.27), we can select a sufficiently large 𝐶 (which does not affect (4.28) as we
still have the freedom to choose 𝛿) to obtain

which yields a contradiction with (3.12), as 𝜀 can be chosen arbitrarily small in the beginning. This
completes the proof of Lemma 4.2. □

5 REFINED ENERGY UPPER/LOWER BOUND IN 𝑩𝑹𝟎

We take 𝐴, 𝐵, 𝐶 to be the midpoints of the arcs 𝐼12, 𝐼13 and 𝐼23, respectively. There exists a point
𝐷 ∈ �̄�𝑅0 such that |𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶| is minimized. It is well-known that if the triangle 𝐴𝐵𝐶
possesses internal angles that are all less than 2𝜋

3
, then 𝐷 is the point in the interior of 𝐴𝐵𝐶 such

that

∠𝐴𝐷𝐵 = ∠𝐵𝐷𝐶 = ∠𝐴𝐷𝐶 =
2𝜋
3
.

However, if one angle, say ∠𝐵𝐴𝐶 is greater than or equal to 2𝜋

3
, then 𝐷 coincide with the vertex

𝐴 of this triangle.
We define the triod

𝑇𝐴𝐵𝐶 = 𝐷𝐴 ∪ 𝐷𝐵 ∪ 𝐷𝐶.

Thenwe invoke the energy upper bound established in [11, formula (3.19)], which is written in the
following proposition within our specific context.
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16 GENG

Proposition 5.1 (Energy upper bound). There exist 𝐶 > 0 and 𝛼 ∈ (0, 1), both of which are inde-
pendent of 𝜀 and 𝑅0, such that when𝑅0 is sufficiently large, the following energy upper bound holds:

∫𝐵𝑅0
(
1
2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑧 ≤ 𝜎(|𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶|) + 𝐶𝑅𝛼0 . (5.29)

Proof. The proof follows essentially the proof of [11, Proposition 3.3] (Upper bound construction
part), and therefore, it is omitted herein. We only briefly outline the core idea.
To construct an energy competitor �̃�, we first define a well-behaved boundary data on 𝜕𝐵𝑅1

such that �̃� equals to 𝑎𝑖 on the rescaled arc
𝑅1

𝑅0
𝐼𝑖 for any 𝑖 = 1, 2, 3, where 𝑅1 = 𝑅0 − 𝑅𝛼0 . On the

annulus 𝐴𝑅0,𝑅1 , let �̃� linearly interpolate between �̃�|𝜕𝐵𝑅0 and �̃�|𝜕𝐵𝑅1 with the energy 𝐸(�̃�, 𝐴𝑅0,𝑅1)

controlled by 𝐶(𝑅𝛼0 + 𝑅1−𝛼0 ). For the construction inside 𝐵𝑅1 , near the interface, say 𝐷𝐴, we set
�̃�(𝑧) = 𝑈12(𝑑(𝑧, 𝐷𝐴)) within a thin rectangle with a width of 𝑅𝛼0 and the long side parallel to
𝐷𝐴. Here 𝑑(⋅) is the signed distance function. The energy within these rectangles will be approxi-
mately 𝜎(|𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶|). These three thin rectangles partition𝐵𝑅−1 into three subdomains,
within which we simply take �̃� equal to phase 𝑎𝑖 corresponding to the boundary data. Again,
interpolations are required in a 𝑅𝛼-outer layer of the rectangles, with the energy being proved to
be negligible. This construction parallels that of 𝑣(𝑥, 𝑦) in 𝐵𝑅0−1 for the upper bound estimate of
Case 2 in the proof of Lemma 4.1.
We also mention that a similar approach to construct the energy competitor also appears in [3,

Appendix A], for the special case when 𝐷 coincides with the origin. □

Corollary 5.2. By selecting sufficiently small 𝜀 and sufficiently large 𝑅0 in Section 3, we can guar-
antee that the point 𝐷 is located in a small neighborhood of the origin, that is, 𝐷 ∈ 𝐵𝜏𝑅0 , where
𝜏 = min{

1

100
,
𝐶1

20
} for the constant 𝐶1 in (4.25). Furthermore, it follows that 𝐷 locates in the interior

of the triangle 𝐴𝐵𝐶 and ∠𝐴𝐷𝐵 = ∠𝐵𝐷𝐶 = ∠𝐴𝐷𝐶 =
2𝜋

3
.

Remark 5.1. We will explain the choice of 𝜏 in the proof of Proposition 5.3.

Proof. Assume by contradiction 𝐷 ∉ 𝐵𝜏𝑅0 , then an elementary calculation implies there exists a
positive constant 𝜇 ∼ 𝑂(𝜏2) such that

|𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶| < (3 − 𝜇)𝑅0.

This estimate, together with (5.29). yields a contradiction with the lower bound in (3.13) provided
𝑅0 is sufficiently large. □

Next we establish the lower bound for 𝐸(𝑢, 𝐵𝑅0).

Proposition 5.3. There exists a constant 𝐶(𝑊) such that

∫𝐵𝑅0
(
1
2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑧 ≥ 𝜎(|𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶|) − 𝐶𝑅

2

3
0 . (5.30)
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UNIQUENESS OF THE BLOW-DOWN LIMIT 17

F IGURE 2 Triod 𝑇𝐴𝐵𝐶 with the center 𝐷 close to origin, and its extension to 𝑇𝐴′𝐵′𝐶′ ∈ 𝐵𝑅0+1.

Proof. Up to a possible rotation, we assume ⃖⃖⃗𝐷𝐴 is parallel to the positive 𝑦–axis, ⃖⃖⃗𝐷𝐵 is parallel to
the vector (−

√
3, −1) and ⃖⃖⃗𝐷𝐶 is parallel to the vector (

√
3, −1), as shown in Figure 2. We set

𝐴 = (𝑥𝐴, 𝑦𝐴), 𝐵 = (𝑥𝐵, 𝑦𝐵), 𝐶 = (𝑥𝐶, 𝑦𝐶), 𝐷 = (𝑥𝐷, 𝑦𝐷).

By Corollary 5.2,

|𝑂𝐷| = √
𝑥2𝐷 + 𝑦2𝐷 < 𝜏𝑅0, for 𝜏 = min{

1
100

,
𝐶1
20

}.

Without loss of generality we assume that

𝑥𝐷 = 𝑥𝐴 ≥ 0,

and therefore by simple geometry it holds that

𝑦𝐶 ≥ 𝑦𝐵.

Nowwe define an extension �̃� of 𝑢|𝐵𝑅0 to a larger ball 𝐵𝑅0+1, which satisfies a simpler boundary
condition on 𝜕𝐵𝑅0+1. We set 𝐼𝑖 , 𝐼𝑖𝑗 as the image of arcs 𝐼𝑖 , 𝐼𝑖𝑗 under the homothetic transformation:
𝑧 →

𝑅0+1

𝑅0
𝑧, that is,

𝐼𝑖 ∶= {𝑧 ∈ 𝜕𝐵𝑅0+1 ∶
𝑅0

𝑅0 + 1
𝑧 ∈ 𝐼𝑖}, ∀𝑖 ∈ {1, 2, 3},

𝐼𝑖𝑗 ∶= {𝑧 ∈ 𝜕𝐵𝑅0+1 ∶
𝑅0

𝑅0 + 1
𝑧 ∈ 𝐼𝑖𝑗}, ∀𝑖 ≠ 𝑗 ∈ {1, 2, 3}.
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18 GENG

F IGURE 3 𝐴′ locates within 𝐼12.

The boundary value for �̃� on 𝜕𝐵𝑅0+1 is given by

�̃�(𝑧) =

{
𝑎𝑖, 𝑧 ∈ 𝐼𝑖,

smooth connection of 𝑎𝑖, 𝑎𝑗, 𝑧 ∈ 𝐼𝑖𝑗.
(5.31)

We define �̃� in the annulus 𝐴𝑅0+1,𝑅0 by linearly interpolating between �̃�|𝜕𝐵𝑅0+1 and 𝑢|𝜕𝐵𝑅0 ,
�̃�(𝑟, 𝜃) = (𝑟 − 𝑅0)�̃�(𝑅0 + 1, 𝜃) + (𝑅0 + 1 − 𝑟)𝑢(𝑅0, 𝜃), 𝑟 ∈ (𝑅0, 𝑅0 + 1).

Following the same computation as in the previous estimate of energy for the two-phase boundary
data (see Case 2 in the proof of Lemma 4.1), we can obtain the following upper bound for the
energy in 𝐴𝑅0+1,𝑅0 :

∫𝐴𝑅0+1,𝑅0

(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≤ 𝐶(𝛿,𝑊).

Consequently, in order to get (5.30), it suffices to prove

∫𝐵𝑅0+1
(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≥ 𝜎(|𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶|) − 𝐶𝑅

2

3
0 , (5.32)

with the boundary value (5.31). It follows fromCorollary 5.2 that �̃� equals to 𝑎1, 𝑎2, 𝑎3, respectively
on three arcs of 𝜕𝐵𝑅0+1 with the arc angle close to

2𝜋

3
. Moreover, these arcs are separated by small

arcs of size 𝐶

𝛿2
due to the estimate (4.25).

Next we prove the lower bound (5.32). The argument essentially follows the proof of [3, Propo-
sition 3.1], with necessary adjustments tailored to accommodate the scenario where 𝐷 is not the
origin. Firstly, we extend 𝐷𝐴 to intersect with 𝜕𝐵𝑅0+1 at 𝐴

′. We claim that 𝐴′ ∈ 𝐼12. Take �̃� to be
the midpoint of 𝐼12 (�̃� is the intersection of the ray ⃖⃖⃗𝑂𝐴 and 𝜕𝐵𝑅0+1). As illustrated in Figure 3, it
follows from Corollary 5.2 and (4.26) that

|𝐴′�̃�| ≤ |𝑂𝐷| ⋅ 2
𝑅0

≤ 2𝜏 ≤ 𝐶1
10

≤ 3𝑑1
10

.
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UNIQUENESS OF THE BLOW-DOWN LIMIT 19

which implies that 𝐴′ ∈ 𝐼12 since 1(𝐼12) ≥ 𝑑1. Similarly, we extend 𝐷𝐵, 𝐷𝐶 to intersect with
𝜕𝐵𝑅0+1 at 𝐵

′ ∈ 𝐼13 and 𝐶′ ∈ 𝐼23, respectively.
The coordinates for 𝐴′, 𝐵′, 𝐶′ are denoted as

𝐴′ = (𝑥′𝐴, 𝑦
′
𝐴), 𝐵′ = (𝑥′𝐵, 𝑦

′
𝐵), 𝐶′ = (𝑥′𝐶, 𝑦

′
𝐶),

and satisfy

𝑥′𝐴 = 𝑥𝐷 = 𝑥𝐴, 𝑦′𝐶 ≥ 𝑦′𝐵,

𝑦′𝐵 − 𝑦𝐷

𝑥′𝐵 − 𝑥𝐷
=

1√
3
,

𝑦′𝐶 − 𝑦𝐷

𝑥′𝐶 − 𝑥𝐷
= −

1√
3
.

For any 𝑦 ∈ (𝑦′𝐶, 𝑅0 + 1), we define the horizontal line segment 𝛾𝑦 and functions 𝜆1(𝑦), 𝜆2(𝑦)
and 𝜆3(𝑦) as follows.

𝛾𝑦 ∶= {(𝑥, 𝑦) ∶ 𝑥 ∈ ℝ} ∩ 𝐵𝑅0+1,

𝜆𝑖(𝑦) ∶= 1(𝛾𝑦 ∩ {|�̃�(𝑥, 𝑦) − 𝑎𝑖| ≤ 𝑅
−
1

6
0 }), 𝑖 ∈ {1, 2, 3}.

By the boundary condition on 𝜕𝐵𝑅0+1 we know for any 𝑦 ∈ [𝑦′𝐶 + 𝑑2, 𝑦
′
𝐴 − 𝑑2], it holds that

𝜆1(𝑦) > 0 and 𝜆2(𝑦) > 0.
We set

𝑦∗ ∶= min{𝑦 ∈ [𝑦′𝐶 + 𝑑2, 𝑅0 + 1] ∶ 𝜆1(𝑦) + 𝜆2(𝑦) ≥ 1(𝛾𝑦) − 𝑅
2

3
0 }, (5.33)

𝜁(𝑥) ∶= min{𝑦∗,
√
(𝑅0 + 1)2 − 𝑥2},

𝐾 ∶= {𝑥 ∈ [𝑥′𝐵 + 𝑑2, 𝑥
′
𝐶 − 𝑑2] ∶ |�̃�(𝑥, 𝜁(𝑥)) − 𝑎𝑖| < 𝑅

−
1

6
0 , 𝑖 = 1 or 2},

𝐿 ∶= {𝑦 ∈ [𝑦′𝐶 + 𝑑2, 𝑦
∗] ∶ 𝜆3(𝑦) > 0},

Ω1 ∶= {𝑧 = (𝑥, 𝑦) ∈ 𝐵𝑅0+1 ∶ 𝑦 ≥ 𝑦∗},

Ω2 ∶= {𝑧 = (𝑥, 𝑦) ∈ 𝐵𝑅0+1 ∶ 𝑦 < 𝑦∗}.

Note that when (𝑅0 + 1)2 − 𝑦2 <
𝑅
4
3
0

4
,1(𝛾𝑦) − 𝑅

2

3
0 < 0, and therefore the set on which wemin-

imize to get 𝑦∗ is not empty.Wewill examine two scenarios based on the value of 𝑦∗. Additionally,
we can bound the measure of 𝐾 from below by the definition of 𝑦∗ and the boundary constraint
�̃�|𝜕𝐵𝑅0+1 :

1(𝐾) ≥ 𝑥′𝐶 − 𝑥′𝐵 − 2𝑑2 − 𝑅
2

3
0 . (5.34)

Case 1. 𝑦 ∗< 𝑦′𝐴 − 𝑑2.
For any 𝑦 ∈ [𝑦∗, 𝑦′𝐴 − 𝑑2), the horizontal line 𝛾𝑦 intersects 𝜕𝐵𝑅0+1 at two points, where �̃� takes

the value 𝑎1 and 𝑎2, respectively. The one dimensional energy estimate Lemma 2.2 yields

∫𝛾𝑦
(
1
2
|𝜕𝑥�̃�|2 +𝑊(�̃�)

)
𝑑𝑥 ≥ 𝜎.
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20 GENG

Integrating along the vertical direction implies

∫Ω1

(
1
2
|𝜕𝑥�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≥ 𝜎(𝑦′𝐴 − 𝑦∗ − 𝑑2) ≥ 𝜎(𝑦′𝐴 − 𝑦∗) − 𝐶(𝛿). (5.35)

On the domain Ω2, we claim that there exists a constant 𝐶 such that

1([𝑦′𝐶 + 𝑑2, 𝑦
∗] ⧵ 𝐿) < 𝐶𝑅

2

3
0 .

Indeed, we set

𝑆 ∶= {𝑦 ∈ [𝑦′𝐶 + 𝑑2, 𝑦
∗] ∶ 𝜆3(𝑦) = 0} = [𝑦′𝐶 + 𝑑2, 𝑦

∗] ⧵ 𝐿.

For 𝑦 ∈ 𝑆, the definitions of 𝑦∗ and 𝑆 imply that 𝜆1(𝑦) + 𝜆2(𝑦) + 𝜆3(𝑦) < 1(𝛾𝑦) − 𝑅
2

3
0 , or

equivalently

1({𝑥 ∈ [−
√
(𝑅0 + 1)2 − 𝑦2,

√
(𝑅0 + 1)2 − 𝑦2] ∶ |�̃�(𝑥, 𝑦) − 𝑎𝑖| > 𝑅

−
1

6
0 , ∀𝑖}) > 𝑅

2

3
0 .

From the energy upper bound (5.29) and Lemma 2.1 we have that

4𝑅0 ≥ ∫𝑆 ∫𝛾𝑦
𝑊(�̃�) 𝑑𝑥𝑑𝑦 ≥ 1(𝑆) ⋅ (

1
2
𝑐𝑊𝑅

−
1

3
0 ) ⋅ 𝑅

2

3
0

⇒ 1(𝑆) ≤ 𝐶𝑅
2

3
0 ,

for some constant 𝐶 depending on𝑊. The claim is established.
Next we want to estimate the energy in Ω2 in both vertical and horizontal directions. We split

the potential𝑊(�̃�) as

𝑊(�̃�) = sin2 𝜃 𝑊(�̃�) + cos2 𝜃 𝑊(�̃�),

for some 𝜃 ∈ [0,
𝜋

2
] to be determined.

For 𝑥 ∈ 𝐾, 𝐴(𝑥) = (𝑥, 𝜁(𝑥)) and 𝐵(𝑥) = (𝑥, −
√
(𝑅0 + 1)2 − 𝑥2) are the two intersection points

of the vertical line {(𝑥, 𝑦) ∶ 𝑦 ∈ ℝ} with 𝜕Ω2. We have �̃�(𝐵(𝑥)) = 𝑎3 by the boundary condition

and |�̃�(𝐴(𝑥)) − 𝑎𝑖| ≤ 𝑅
−
1

6
0 for 𝑖 = 1 or 2 by the definition of 𝐾. Applying Lemma 2.2 and then

integrating with respect to 𝑥 yields

∫Ω2

(
1
2
|𝜕𝑦�̃�|2 + sin2 𝜃 𝑊(�̃�)

)
𝑑𝑧

≥ sin 𝜃 ∫𝑥∈𝐾 ∫
𝜁(𝑥)

−
√
(𝑅0+1)2−𝑥2

(
1

2 sin 𝜃
|𝜕𝑦�̃�|2 + sin 𝜃𝑊(�̃�)

)
𝑑𝑦𝑑𝑥

≥ sin 𝜃(𝑥′𝐶 − 𝑥′𝐵 − 2𝑑2 − 𝑅
2

3
0 )(𝜎 − 𝐶𝑅

−
1

3
0 )

≥ sin 𝜃

[
(𝑥′𝐶 − 𝑥′𝐵)𝜎 − 𝐶𝑅

2

3
0

]
.

(5.36)
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UNIQUENESS OF THE BLOW-DOWN LIMIT 21

Here we utilize 𝑥′𝐶 − 𝑥′𝐵 ∼
√
3𝑅0 and 𝑑2 ≤ 𝐶

𝛿2
≪ 𝑅

2

3
0 to derive the last inequality.

By definition, for any 𝑦 ∈ 𝐿,

�̃�(−
√
(𝑅0 + 1)2 − 𝑦2, 𝑦) = 𝑎1, �̃�(

√
(𝑅0 + 1)2 − 𝑦2, 𝑦) = 𝑎2,

∃ (𝑥0, 𝑦) ∈ 𝛾𝑦, such that |�̃�(𝑥0, 𝑦) − 𝑎3| ≤ 𝑅
−
1

6
0 ,

which implies that there are approximately two phase transitions along 𝛾𝑦 . Thuswe can estimate

∫Ω2∩{𝑦∈𝐿}

(
1
2
|𝜕𝑥�̃�|2 + cos2 𝜃𝑊(�̃�)

)
𝑑𝑧

≥ cos 𝜃 ∫𝑦∈𝐿 ∫𝛾𝑦
(

1

2 cos 𝜃
|𝜕𝑥�̃�|2 + cos 𝜃𝑊(�̃�)

)
𝑑𝑥𝑑𝑦

= cos 𝜃 ∫𝑦∈𝐿
⎧⎪⎨⎪⎩∫

𝑥0

−
√
(𝑅0+1)2−𝑦2

+∫
√
(𝑅0+1)2−𝑦2

𝑥0

⎫⎪⎬⎪⎭
(

1

2 cos 𝜃2
|𝜕𝑥�̃�|2 + cos 𝜃𝑊(𝑢)

)
𝑑𝑥

≥ cos 𝜃 ⋅ (𝑦∗ − 𝑦′𝐶 − 𝑑2 − 𝐶𝑅
2

3
0 ) ⋅ (2𝜎 − 𝐶𝑅

−
1

3
0 )

≥2 cos 𝜃(𝑦∗ − 𝑦′𝐶)𝜎 − 𝐶𝑅
2

3
0 ,

(5.37)

where the last inequality follows from 𝑦∗ − 𝑦′𝐶 < 2𝑅0 and 𝑑2 ≪ 𝑅
2

3
0 .

In case 𝑦′𝐵 + 𝑑2 ≥ 𝑦′𝐶 − 𝑑2, we directly proceed with the above estimate (5.37) to derive (5.39).
Otherwise, if 𝑦′𝐵 + 𝑑2 < 𝑦′𝐶 − 𝑑2, for any 𝑦 ∈ (𝑦′𝐵 + 𝑑2, 𝑦

′
𝐶 − 𝑑2), 𝛾𝑦 will intersect with 𝜕𝐵𝑅0+1 at

two points where �̃� equals to 𝑎1, 𝑎3, respectively. We have that

∫Ω2⧵{𝑦∈𝐿}

(
1
2
|𝜕𝑥�̃�|2 + cos2 𝜃𝑊(�̃�)

)
𝑑𝑥𝑑𝑦

≥ cos 𝜃 ∫
𝑦′𝐶−𝑑2

𝑦′𝐵+𝑑2
∫𝛾𝑦

(
1

2 cos 𝜃
|𝜕𝑥�̃�|2 + cos 𝜃𝑊(�̃�)

)
𝑑𝑥𝑑𝑦

= cos 𝜃 (𝑦′𝐶 − 𝑦′𝐵 − 2𝑑2)𝜎

≥ cos 𝜃 (𝑦′𝐶 − 𝑦′𝐵)𝜎 − 𝐶.

(5.38)

Adding (5.37) and (5.38) gives

∫Ω2

(
1
2
|𝜕𝑥�̃�|2 + cos2 𝜃𝑊(�̃�)

)
𝑑𝑧 ≥ cos 𝜃 (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶) − 𝐶𝑅

2

3
0 . (5.39)

This, together with (5.36), implies that

∫Ω2

(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≥ [

sin 𝜃 (𝑥′𝐶 − 𝑥′𝐵) + cos 𝜃(2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
]
𝜎 − 𝐶𝑅

2

3
0 ,
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22 GENG

holds for any 𝜃 ∈ [0,
𝜋

2
]. Taking 𝜃 = arctan

𝑥′𝐶−𝑥
′
𝐵

2𝑦∗−𝑦′𝐵−𝑦
′
𝐶

tomaximize the right-hand side, we obtain

∫Ω2

(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≥ 𝜎 ⋅

√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2 − 𝐶𝑅

2

3
0 . (5.40)

Combining (5.35) and (5.40) gives that

∫𝐵𝑅0+1
(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧

≥𝜎
[
(𝑦′𝐴 − 𝑦∗) +

√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2

]
− 𝐶𝑅

2

3
0 .

(5.41)

We are left with solving the following minimization problem

min (𝑦′𝐴 − 𝑦∗) +
√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2,

subject to 𝑦∗ ∈ (𝑦′𝐶 + 𝑑2, 𝑦
′
𝐴 − 𝑑2).

(5.42)

Direct calculation shows that

min

{
(𝑦′𝐴 − 𝑦∗) +

√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2

}
= |𝐷𝐴′| + |𝐷𝐵′| + |𝐷𝐶′|,

and the minimum is reached at

𝑦∗ = 𝑦𝐷.

The calculation is elementary and provided in Appendix A. Therefore (5.30) holds for the case
𝑦∗ < 𝑦′𝐴 − 𝑑2.

Case 2. 𝑦∗ ≥ 𝑦′𝐴 − 𝑑2.We show that in this case the energy is strictly larger than𝜎(|𝐷𝐴′| + |𝐷𝐵′| +|𝐷𝐶′|). Split
𝑊(�̃�) = sin2 𝜃𝑊(�̃�) + cos2 𝜃𝑊(�̃�), for some 𝜃 ∈ (0,

𝜋
2
).

By the boundary data we have

�̃�(𝑥,
√
(𝑅0 + 1)2 − 𝑥2) = 𝑎1, �̃�(𝑥, −

√
(𝑅0 + 1)2 − 𝑥2) = 𝑎3, ∀𝑥 ∈ [𝑥𝐵′ + 𝑑2, 𝑥

′
𝐴 − 𝑑2],

�̃�(𝑥,
√
(𝑅0 + 1)2 − 𝑥2) = 𝑎2, �̃�(𝑥, −

√
(𝑅0 + 1)2 − 𝑥2) = 𝑎3, ∀𝑥 ∈ [𝑥′𝐴 + 𝑑2, 𝑥

′
𝐶 − 𝑑2],
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UNIQUENESS OF THE BLOW-DOWN LIMIT 23

which allows us to estimate the energy in the vertical direction,

∫𝐵𝑅0+1
(
1
2
|𝜕𝑦�̃�|2 + sin2 𝜃𝑊(�̃�)

)
𝑑𝑧

≥∫
𝑥′𝐴−𝑑2

𝑥𝐵′+𝑑2

𝜎 sin 𝜃 𝑑𝑥 + ∫
𝑥′𝐶−𝑑2

𝑥𝐴′+𝑑2

𝜎 sin 𝜃 𝑑𝑥

≥𝜎 sin 𝜃 (𝑥′𝐶 − 𝑥′𝐵) − 𝐶.

(5.43)

Applying the same argument as in the claim of Case 1, we have that most of 𝑦 ∈ [𝑦′𝐶 + 𝑑2, 𝑦
′
𝐴 −

𝑑2] belong to 𝐿, more precisely,

1([𝑦′𝐶 + 𝑑2, 𝑦
′
𝐴 − 𝑑2] ⧵ 𝐿) < 𝐶𝑅

2

3
0 .

For 𝑦 ∈ 𝐿 ∩ [𝑦′𝐶 + 𝑑2, 𝑦
′
𝐴 − 𝑑2], by definition there are two phase transitions: from 𝑎1 to 𝑎3 and

from 𝑎3 to 𝑎2. We perform a similar computation as in (5.37) to obtain

∫𝐵𝑅0+1∩{𝑦∈𝐿}
(
1
2
|𝜕𝑥�̃�|2 + cos2 𝜃𝑊(�̃�)

)
𝑑𝑥𝑑𝑦

≥ cos 𝜃 ∫𝑦∈𝐿∩[𝑦′𝐶+𝑑2,𝑦′𝐴−𝑑2] ∫𝛾𝑦
(

1

2 cos 𝜃
|𝜕𝑥�̃�|2 + cos 𝜃𝑊(�̃�)

)
𝑑𝑥𝑑𝑦

≥2 cos 𝜃(𝑦′𝐴 − 𝑦′𝐶)𝜎 − 𝐶𝑅
2

3
0 .

(5.44)

Adding (5.43) and (5.44) and maximizing with respect to 𝜃 yield

∫𝐵𝑅0+1
(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≥ 𝜎

√
(𝑥′𝐶 − 𝑥′𝐵)

2 + 4(𝑦′𝐴 − 𝑦′𝐶)
2 − 𝐶𝑅

2

3
0

≥ 49
50
2
√
3𝑅0𝜎.

(5.45)

where the last line follows from Corollary 5.2 which implies that 𝑥′𝐶 − 𝑥′𝐵 ≥ (1 − 2𝜏)
√
3𝑅0 and

𝑦′𝐴 − 𝑦′𝐶 ≥ (1 − 2𝜏)
3𝑅0

2
. Note that

|𝐷𝐴′| + |𝐷𝐵′| + |𝐷𝐶′| ≤ 3𝑅0 + 3,

which together with (5.45) leads to

∫𝐵𝑅0+1
(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 > 𝜎(|𝐷𝐴′| + |𝐷𝐵′| + |𝐷𝐶′|).

This completes the proof of Proposition 5.3. □

At the end of this section, we will derive that 𝑦∗ is not far from 𝑦𝐷 . Set

𝛽 ∶= 1 −min

{
1
6
,
1 − 𝛼
2

}
∈ (0, 1), (5.46)

where 𝛼 ∈ (0, 1) is the constant in Proposition 5.1. Then we have the following lemma:
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24 GENG

Lemma 5.4. There is a constant 𝐶 depending on𝑊, such that

|𝑦∗ − 𝑦𝐷| ≤ 𝐶𝑅
𝛽
0 ,

where 𝑦∗ is defined in (5.33).

Proof. By examining the proof of Proposition 5.3, we have

∫𝐵𝑅0+1
(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 ≤ ∫𝐵𝑅0

(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧 + 𝐶(𝛿,𝑊).

This together with the upper bound (5.29) and (5.41) implies

𝜎

[
(𝑦′𝐴 − 𝑦∗)+

√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2

]
≤ 𝜎(|𝐷𝐴| + |𝐷𝐵| + |𝐷𝐶|) + 𝐶𝑅𝛼0 + 𝐶𝑅

2

3
0 .

(5.47)

From Appendix A, the left-hand side attains its minimum value 𝜎(|𝐷𝐴′| + |𝐷𝐵′| + |𝐷𝐶′|)
when 𝑦∗ = 𝑦𝐷 . When the functional is perturbed by a small quantity 𝑅𝛼0 + 𝑅

2

3
0 , it is straightfor-

ward to show that 𝑦∗ can be perturbed away from 𝑦𝐷 by an amount no greater than 𝐶𝑅
𝛽
0 , where

𝛽 is defined by (5.46). □

6 LOCALIZATION OF THE DIFFUSE INTERFACE

We insist on the choice of 𝐴, 𝐵, 𝐶, 𝐷 at the beginning of Section 5, and assume without loss of
generality that ⃖⃖⃗𝐷𝐴 is parallel to the positive 𝑦-axis. Then the triod defined by

𝑇𝐴𝐵𝐶 = 𝐷𝐴 ∪ 𝐷𝐵 ∪ 𝐷𝐶

divides 𝐵𝑅0 into three regions:

1 ∶= the region enclosed by 𝐷𝐴, 𝐷𝐵, 𝜕𝐵𝑅0 ;

2 ∶= the region enclosed by 𝐷𝐴, 𝐷𝐶, 𝜕𝐵𝑅0 ;

3 ∶= the region enclosed by 𝐷𝐵, 𝐷𝐶, 𝜕𝐵𝑅0 .

For any 𝛾 > 0, we define the diffuse interface 𝛾 by
𝛾 ∶= {𝑧 ∶ |𝑢(𝑧) − 𝑎𝑖| ≥ 𝛾, ∀ 𝑖 = 1, 2, 3}.

From now on we fix 𝛾 = 2𝐶𝛿, where 𝐶 = 𝐶(𝑊) is the constant in Lemma 4.2 which measures
the closeness of 𝑢 to 𝑎𝑖 on arc 𝐼𝑖 . Note that 𝐶 is independent of 𝛿, which allows 𝛾 to be arbitrarily
small by choosing suitably small 𝛿. The main result of this section is the following proposition
which states that 𝛾 is contained in a 𝑂(𝑅𝛽0 ) neighborhood of 𝑇𝐴𝐵𝐶 .
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UNIQUENESS OF THE BLOW-DOWN LIMIT 25

F IGURE 4 Definition of 𝑙𝑡1, 𝑙
𝑡
2. In the red shaded region, |𝑢(𝑧) − 𝑎1| ≤ 𝛾.

Proposition 6.1. There exists a constant 𝐶 = 𝐶(𝛾,𝑊), such that for sufficiently small 𝜀 and
associated 𝑅0, it holds that

𝛾 ∩ 𝐵𝑅0 ⊂ 𝑁
𝐶𝑅

𝛽
0
(𝑇𝐴𝐵𝐶) ∶= {𝑧 ∈ 𝐵𝑅0 ∶ dist(𝑧, 𝑇𝐴𝐵𝐶) ≤ 𝐶𝑅

𝛽
0 }. (6.48)

Moreover, there are positive constants 𝐾 = 𝐾(𝑀,𝑊) and 𝑘 = 𝑘(𝑊) such that

|𝑢(𝑧) − 𝑎𝑖| ≤ 𝐾𝑒−𝑘(dist(𝑧,𝜕𝑖 )−𝐶𝑅
𝛽
0 )

+
, 𝑧 ∈ 𝑖 , 𝑖 = 1, 2, 3, (6.49)

where (𝑎)+ = max{𝑎, 0}.

Proof. Let 𝐶0 be the constant in Lemma 5.4 and �̃� be defined as the extension of 𝑢|𝐵𝑅0 onto 𝐵𝑅0+1
in the proof of Proposition 5.3.
For any 𝑡 ∈ [0,

1

2
𝑅0], we define the line segments (see Figure 4)

𝑙𝑡1 ∶= {(𝑥𝐷 − 𝑡, 𝑦) ∶
𝑦 − 𝑦𝐷

𝑡
≥

√
3

3
} ∩ 𝐵𝑅0+1,

𝑙𝑡2 ∶= {(𝑥, 𝑦) ∶
𝑦 − (𝑦𝐷 +

√
3

3
𝑡)

𝑥 − (𝑥𝐷 − 𝑡)
=

√
3

3
, 𝑥 ≤ 𝑥𝐷 − 𝑡} ∩ 𝐵𝑅0+1.

(6.50)

From Lemma (5.4), when 𝑡 ≥ √
3𝐶0𝑅

𝛽
0 , we have that 𝑙

𝑡
1 ⊂ Ω1, for Ω1 defined by 𝐵𝑅0+1 ∩ {𝑦 ≥ 𝑦∗}.
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26 GENG

We set

 ∶= {𝑡 ∶ 𝑡 ∈ [
√
3𝐶0𝑅

𝛽
0 ,
1
2
𝑅0], max

𝑧∈𝑙𝑡1

|�̃�(𝑧) − 𝑎1| > 𝛾}.

If = ∅ thenwe trivially get (6.53). Now suppose ≠ ∅, we show themeasure of is𝑂(𝑅𝛽0 ). The
proof relies on the part of the lower bound overΩ1 derived in (5.35) only considers the horizontal
gradient, thereby allowing for the addition of vertical displacement to provide improvement. See
[1, Lemma 4.3] for a similar idea.
For any 𝑡 ∈ , there exists a point 𝑧𝑡 ∈ 𝑙𝑡1 such that

|�̃�(𝑧𝑡) − 𝑎1| > 𝛾.

By the boundary data on 𝜕𝐵𝑅0+1,

�̃�(𝑥𝐷 − 𝑡,
√
(𝑅0 + 1)2 − (𝑥𝐷 − 𝑡)2) = 𝑎1.

Thus there exists a constant 𝐶1 ∶= 𝐶1(𝛾,𝑊) such that

∫
√
(𝑅0+1)2−(𝑥𝐷−𝑡)2

𝑦𝐷+

√
3𝑡

3

(
𝜆
2
|𝜕𝑦�̃�(𝑥𝐷 − 𝑡, 𝑦)|2 + 1

𝜆
𝑊(�̃�(𝑥𝐷 − 𝑡, 𝑦))

)
𝑑𝑦 ≥ 𝐶1, ∀𝜆 > 0. (6.51)

Set

𝜅 ∶=
1()𝐶1
𝜎(𝑦′𝐴 − 𝑦∗)

.

We compute the energy on Ω1:

∫Ω1

(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑥𝑑𝑦

= ∫Ω1

(
1
2
|𝜕𝑥�̃�|2 + 1

1 + 𝜅2
𝑊(�̃�)

)
𝑑𝑥𝑑𝑦

+∫Ω1

(
1
2
|𝜕𝑦�̃�|2 + 𝜅2

1 + 𝜅2
𝑊(�̃�)

)
𝑑𝑦𝑑𝑥

≥ 1√
1 + 𝜅2 ∫Ω1

(√
1 + 𝜅2

2
|𝜕𝑥�̃�|2 + 1√

1 + 𝜅2
𝑊(�̃�)

)
𝑑𝑥𝑑𝑦

+
𝜅√

1 + 𝜅2 ∫Ω1

(√
1 + 𝜅2

2𝜅
|𝜕𝑦�̃�|2 + 𝜅√

1 + 𝜅2
𝑊(�̃�)

)
𝑑𝑦𝑑𝑥

≥ 1√
1 + 𝜅2

𝜎(𝑦′𝐴 − 𝑦∗ − 𝑑2)

+
𝜅√

1 + 𝜅2 ∫ ∫𝑙𝑡1

(√
1 + 𝜅2

2𝜅
|𝜕𝑦�̃�|2 + 𝜅√

1 + 𝜅2
𝑊(�̃�)

)
𝑑𝑦𝑑𝑥
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UNIQUENESS OF THE BLOW-DOWN LIMIT 27

≥ 1√
1 + 𝜅2

𝜎(𝑦′𝐴 − 𝑦∗) +
𝜅√

1 + 𝜅2
1()𝐶1 − 𝐶(𝛿)

=
√
𝜎2(𝑦′𝐴 − 𝑦∗)2 + (𝐶11())2 − 𝐶(𝛿). (6.52)

This, together with (5.40), updates the total energy in 𝐵𝑅0+1:

∫𝐵𝑅0+1
(
1
2
|∇�̃�|2 +𝑊(�̃�)

)
𝑑𝑧

≥
√
𝜎2(𝑦′𝐴 − 𝑦∗)2 + (𝐶11())2 + 𝜎

√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2 − 𝐶𝑅

2

3
0

≥𝜎
[
(𝑦′𝐴 − 𝑦∗) +

√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2

]
− 𝐶𝑅

2

3
0 +

(𝐶11())2

2𝜎(𝑦′𝐴 − 𝑦∗)

≥𝜎(|𝐷𝐴′| + |𝐷𝐵′| + |𝐷𝐶′|) − 𝐶𝑅
2

3
0 +

(𝐶11())2

2𝜎(𝑦′𝐴 − 𝑦∗)
.

Here−𝐶(𝛿) in (6.52) is absorbed by−𝐶𝑅
2

3
0 as 𝑅0 can be chosen arbitrarily large and 𝛿 is a constant

only depending on𝑊. Combining this with the upper bound (5.29) implies

(𝐶11())2

2𝜎(𝑦′𝐴 − 𝑦∗)
≤ 𝐶(𝑅

2

3
0 + 𝑅𝛼0 ) ⇒ 1() ≤ 𝐶2(𝛾,𝑊)𝑅

𝛽
0 . (6.53)

We define

 ∶= {𝑡 ∶ 𝑡 ∈ [
√
3𝐶0𝑅

𝛽
0 ,
1
2
𝑅0], max

𝑧∈𝑙𝑡2

|�̃�(𝑧) − 𝑎1| > 𝛾}. (6.54)

An analogous computation implies

1() ≤ 𝐶2(𝛾,𝑊)𝑅
𝛽
0 . (6.55)

Set

𝐶3(𝛾,𝑊) ∶=
√
3𝐶0 + 3𝐶2.

From (6.53) and (6.55) it follows that there exists 𝑡0 ∈ [
√
3𝐶0𝑅

𝛽
0 , 𝐶3𝑅

𝛽
0 ] (note that 𝑅0 is chosen to

be large enough so that 𝐶3𝑅
𝛽
0 <

1

2
𝑅0) such that

|�̃�(𝑧) − 𝑎1| ≤ 𝛾, ∀𝑧 ∈ 𝑙
𝑡0
1 ∪ 𝑙

𝑡0
2 .

Let1,𝛾 ⊂ 1 denote the region enclosed by 𝑙
𝑡0
1 , 𝑙

𝑡0
2 and 𝜕𝐵𝑅0 . By Lemma 4.2, we have

|𝑢(𝑧) − 𝑎1| ≤ 𝛾, ∀𝑧 ∈ 𝜕1,𝛾.

Here we write 𝑢 instead of �̃� because 𝑢 = �̃� on 𝐵𝑅0 .
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28 GENG

By the variational maximum principle (see Lemma 2.3), given 𝛾 (or equivalently, 𝛿) small
enough, we conclude that

|𝑢(𝑧) − 𝑎1| ≤ 𝛾 on1,𝛾. (6.56)

This further implies that the diffuse interface 𝛾 ∩1 is contained in a 𝐶3𝑅
𝛽
0 neighborhood of

𝑇. The same argument works for 𝛾 ∩𝑗 for 𝑗 = 2, 3 and we conclude the proof of the first part
(6.48).
Utilizing (6.56), hypothesis (H1) and the comparison principle for elliptic equations, the

exponential decay estimate (6.49) follows (cf. [2, Proposition 6.4]), which completes the proof. □

7 RESCALING TO THE UNIT DISK 𝑩𝟏

In the following two sections, we initially choose a small 𝛿, ensuring that the specified smallness
criteria for 𝛿 in the proofs of Lemma 4.2 and Proposition 6.1 are met. The choice of 𝛿 depends
only on the potential𝑊. Subsequently we determine a possibly even smaller 𝜀 and the associated
𝑅0(𝜀) ∈ (𝑅(𝜀), 2𝑅(𝜀)) (see Section 3 for the selection of 𝑅0(𝜀)), ensuring all energy bounds estab-
lished in Sections 3, 5, and 6 are satisfied, and also fulfilling the requirements on the largeness of
𝑅0 in the proofs of Lemma 4.1 and Lemma 4.2. Also it is noteworthy that for any 𝑅 > 𝑅(𝜀), there
exists 𝑅0 ∈ (𝑅, 2𝑅) such that all the results remain valid. Then we consider the rescalings

𝑢𝑅0(𝑧) ∶= 𝑢(𝑅0𝑧), for 𝑧 ∈ 𝐵1,

�̃� ∶= (
𝑥𝐴
𝑅0

,
𝑦𝐴
𝑅0

),

�̃� ∶= (
𝑥𝐵
𝑅0

,
𝑦𝐵
𝑅0

),

�̃� ∶= (
𝑥𝐶
𝑅0

,
𝑦𝐶
𝑅0

),

�̃� ∶= (
𝑥𝐷
𝑅0

,
𝑦𝐷
𝑅0

),

𝐼𝑖𝑅0 ∶= {𝑧 ∈ 𝜕𝐵1 ∶ 𝑅0𝑧 ∈ 𝐼𝑖}, 𝑖 = 1, 2, 3,

𝑖
𝑅0
∶= {𝑧 ∈ 𝐵1 ∶ 𝑅0𝑧 ∈ 𝑖}, 𝑖 = 1, 2, 3,

𝑇𝑅0 ∶= �̃��̃� ∩ �̃��̃� ∩ �̃��̃�.

From Section 4 and Proposition 6.1 we have the following properties:

(1) On 𝜕𝐵1,

|𝑢𝑅0(𝑧) − 𝑎1| ≤ 𝐶𝛿, ∀𝑧 ∈ 𝐼𝑖𝑅0 , 𝑖 = 1, 2, 3,

where the constant 𝐶 only depends on𝑊.
(2) The diffuse interface is contained in an 𝑂(𝑅𝛽−10 ) neighborhood of 𝑇𝑅0 , that is,

{𝑧 ∈ 𝐵1 ∶ |𝑢𝑅0 − 𝑎𝑖| ≥ 2𝐶𝛿, ∀𝑖 = 1, 2, 3} ⊂ {𝑧 ∈ 𝐵1 ∶ dist(𝑧, 𝑇𝑅0) ≤ 𝐶(𝛿,𝑊)𝑅
𝛽−1
0 }.
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UNIQUENESS OF THE BLOW-DOWN LIMIT 29

(3) For 𝑖 = 1, 2, 3, within𝑖
𝑅0
,

|𝑢𝑅0(𝑧) − 𝑎𝑖| ≤ 𝐾𝑒
−𝑘𝑅0(dist(𝑧,𝜕𝑖

𝑅0
)−𝐶𝑅

𝛽−1
0 )+

.

Denote the approximated triple junction map associated with 𝑇𝑅0 by

𝑈𝑅0(𝑧) ∶= 𝑎1𝜒1
𝑅0
(𝑧) + 𝑎2𝜒2

𝑅0
(𝑧) + 𝑎3𝜒3

𝑅0
(𝑧), 𝑧 ∈ 𝐵1, (7.57)

The aforementioned properties imply the following estimate on the 𝐿1-closeness of 𝑢𝑅0 and 𝑈𝑅0 .

Proposition 7.1. There is a constant 𝐶1 = 𝐶1(𝑊) that satisfies

‖𝑢𝑅0 − 𝑈𝑅0‖𝐿1(𝐵1) ≤ 𝐶1𝑅
𝛽−1
0 . (7.58)

Proof. Let 𝐶 = 𝐶(𝑊) be the constant in Proposition 6.1. Note that this constant initially depends
on 𝛿 and 𝑊. However, since we have fixed a 𝛿 that depends on 𝑊, it now becomes a constant
solely dependent on𝑊. We have

∫1
𝑅0

|𝑢𝑅0(𝑧) − 𝑈𝑅0(𝑧)| 𝑑𝑧 = ∫1
𝑅0

|𝑢𝑅0(𝑧) − 𝑎1| 𝑑𝑧
= ∫

dist(𝑧,𝜕1
𝑅0
)<𝐶𝑅

𝛽−1
0

|𝑢𝑅0(𝑧) − 𝑎1| 𝑑𝑧 + ∫
dist(𝑧,𝜕1

𝑅0
)≥𝐶𝑅𝛽−10

|𝑢𝑅0(𝑧) − 𝑎1| 𝑑𝑧
=∶ Λ1 + Λ2.

Using2(1
𝑅0
∩ {dist(𝑧, 𝜕1

𝑅0
) < 𝐶𝑅

𝛽−1
0 }) ≤ 𝐶𝑅

𝛽−1
0 , and |𝑢| ≤ 𝑀 by (3.9), we get that

Λ1 ≤ 𝐶(𝑀)𝑅
𝛽−1
0 . (7.59)

We observe that 𝜕𝐷1
𝑅0

consists of a circular arc 𝐼1𝑅0 and two line segments �̃��̃�, �̃��̃�. When

dist(𝑧, 𝜕1
𝑅0
) ≥ 𝐶𝑅

𝛽−1
0 ,

dist(𝑧, 𝜕1
𝑅0
) = min

{
dist(𝑧, �̃��̃�), dist(𝑧, �̃��̃�), dist(𝑧, 𝐼1𝑅0)

}
.

We compute

∫dist(𝑧,𝜕1
𝑅0
)≥𝐶𝑅𝛽−10

𝑒−𝑘𝑅0(dist(𝑧,�̃��̃�)−𝐶𝑅
𝛽−1
0 ) 𝑑𝑧 ≤ 2∫

1

0
𝑒−𝑘𝑅0𝑟 𝑑𝑟 ≤ 2

𝑘𝑅0
.

Similarly, we have

∫dist(𝑧,𝜕1
𝑅0
)≥𝐶𝑅𝛽−10

𝑒−𝑘𝑅0(dist(𝑧,�̃��̃�)−𝐶𝑅
𝛽−1
0 ) 𝑑𝑧 ≤ 2∫

1

0
𝑒−𝑘𝑅0𝑟 𝑑𝑟 ≤ 2

𝑘𝑅0
.

∫dist(𝑧,𝜕1
𝑅0
)≥𝐶𝑅𝛽−10

𝑒−𝑘𝑅0(dist(𝑧,𝜕𝐵1)−𝐶𝑅
𝛽−1
0 ) 𝑑𝑧 ≤ 2𝜋 ∫

1

0
(1 − 𝑟)𝑒−𝑘𝑅0𝑟 𝑑𝑟 ≤ 2𝜋

𝑘𝑅0
.
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30 GENG

Summing the inequalities above, we get

Λ2 ≤ 𝐶(𝑘)𝑅−10 . (7.60)

Combining (7.59) and (7.60) yields

∫1
𝑅0

|𝑢𝑅0(𝑧) − 𝑈𝑅0(𝑧)|𝑑𝑧 ≤ 𝐶𝑅
𝛽−1
0 . (7.61)

The same estimate also applies for2
𝑅0
and3

𝑅0
and (7.58) immediately follows. □

8 PROOF OF THEOREM 1.2

In this final section we will conclude the proof of the main theorem. It suffices to show that the
sequential limit 𝑢0 in (3.10) is unique, or equivalently, independent of the sequence {𝑟𝑘}.
We argue by contradiction. Suppose there are two sequences of radii {𝑟𝑘}∞𝑘=1 and {𝑠𝑘}

∞
𝑘=1

that
converge to two distinct triple junction maps, that is

𝑢𝑟𝑘 (𝑧) ∶= 𝑢(𝑟𝑘𝑧) → 𝑢1(𝑧) in 𝐿1𝑙𝑜𝑐(ℝ
2), 𝑟𝑘 → ∞ as 𝑘 → ∞, (8.62)

𝑢𝑠𝑘 (𝑥) ∶= 𝑢(𝑠𝑘𝑧) → 𝑢2(𝑧) in 𝐿1𝑙𝑜𝑐(ℝ
2), 𝑠𝑘 → ∞ as 𝑘 → ∞, (8.63)

where 𝑢1 =
3∑

𝑗=1
𝑎𝑗𝜒𝑗

𝐼
, for 𝐼 ∶= {1

𝐼 ,2
𝐼 ,3

𝐼 } is a minimal 3-partition of ℝ
2, with 𝜕 =

3⋃
𝑗=1

𝜕𝑗
𝐼

consists of three rays emanating from the origin and form 120-degree angles pairwise. Similarly,𝑢2

can be represented as𝑢2 =
3∑

𝑗=1
𝑎𝑘𝜒𝑗

𝐼𝐼
where𝐼𝐼 ∶= {1

𝐼𝐼 ,2
𝐼𝐼 ,3

𝐼𝐼} is anotherminimal 3-partition,

which is centered at the origin.
For 𝜀 ≪ 1, by Sections 3 and 7 we can find a 𝑅(𝜀) such that for any 𝑅 ≥ 𝑅(𝜀), there exists 𝑅0 ∈

(𝑅, 2𝑅) such that the rescaled function 𝑢𝑅0(𝑥) = 𝑢(𝑅0𝑥) is close to the approximate triple junction
map 𝑈𝑅0 which is defined through Sections 4, 6, 7. The 𝐿

1 closeness is controlled by 𝑂(𝑅𝛽−10 ) for
some 𝛽 ∈ (0, 1). Now we fix the choice of 𝑅0 ∈ (𝑅(𝜀), 2𝑅(𝜀)), and then find a sequence of radii
{𝑅𝑖}

∞
𝑖=1 such that 𝑅𝑖 ∈ (2𝑖(𝑅(𝜀)), 2𝑖+1𝑅(𝜀)) and 𝑢𝑅𝑖 satisfies

‖𝑢𝑅𝑖 − 𝑈𝑅𝑖‖𝐿1(𝐵1) ≤ 𝐶𝑅
𝛽−1
𝑖

for some 𝑈𝑅𝑖 ∶=
3∑

𝑗=1
𝑎𝑗𝜒𝑗

𝑖
with {𝑗

𝑖 } is a partition of 𝐵1 by three rays forming 120-degree angles

pairwise (not necessarily centered at the origin). For each 𝑖 ∈ ℕ+, we denote

�̃�𝑖 ∶=
3⋂

𝑗=1

𝜕𝑗
𝑖 is the junction point for three phases of 𝑈𝑅𝑖 ,

�̃�𝑖 ∶= 𝜕𝐵1 ∩ 𝜕1
𝑖 ∩ 𝜕2

𝑖 ,

�̃�𝑖 ∶= 𝜕𝐵1 ∩ 𝜕1
𝑖 ∩ 𝜕3

𝑖 ,
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UNIQUENESS OF THE BLOW-DOWN LIMIT 31

�̃�𝑖 ∶= 𝜕𝐵1 ∩ 𝜕2
𝑖 ∩ 𝜕3

𝑖 ,

𝑇𝑖 ∶= �̃�𝑖�̃�𝑖 ∩ �̃�𝑖�̃�𝑖 ∩ �̃�𝑖�̃�𝑖 is the triod at the scale 𝑅𝑖.

The construction of this𝑈𝑅𝑖 proceeds in the samemanner as in the beginning of Section 5.We first
choose 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 as the midpoints of the three transitional arcs between different phases on 𝜕𝐵𝑅𝑖 ,
followed by the selection of 𝐷𝑖 such that |𝐷𝑖𝐴𝑖| + |𝐷𝑖𝐵𝑖| + |𝐷𝑖𝐶𝑖| is minimized. Then we divide
the coordinates by 𝑅𝑖 to rescale all the points (𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖) to (�̃�𝑖, �̃�𝑖 , �̃�𝑖 , �̃�𝑖) ∈ 𝐵1. All the earlier
results presented in Sections 4–7 remain valid upon substituting (𝐴, 𝐵, 𝐶, 𝐷) with (𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖),
respectively, and replacing 𝑅0 by 𝑅𝑖 .
For each 𝑖, we denote by 𝜃𝑖 ∈ (0, 2𝜋] the angle of the vector ⃖⃖⃖⃗𝐷𝑖𝐴𝑖 , which represents the direction

of the 𝑎1-𝑎2 interface for the approximate triple junction map at scale 𝑅𝑖 . Given that the angles
between each pair of interfaces are all 120 degrees, 𝑈𝑅𝑖 is completely determined by 𝜃𝑖 and the
coordinates of𝐷𝑖 . The following lemma says that in two consecutive scales, 𝜃𝑖 will not change too
much.

Lemma 8.1. There is a constant 𝐶 = 𝐶(𝑊) such that for any 𝑖 ∈ ℕ+,

|𝜃𝑖 − 𝜃𝑖+1| ≤ 𝐶𝑅
𝛽−1
𝑖 . (8.64)

Proof. Without loss of generality, we assume �̃�𝑖+1 = (0, 0) and �̃�𝑖+1 = (0, 1), which means the
approximated 𝑎1-𝑎2 interface at scale 𝑅𝑖+1 aligns with 𝑦-axis. Set the coordinates

𝐷𝑖 = (𝑥𝑖𝐷, 𝑦
𝑖
𝐷), 𝐴𝑖 = (𝑥𝑖𝐴, 𝑦

𝑖
𝐴).

According to Corollary 5.2 we have

√
(𝑥𝑖𝐷)

2 + (𝑦𝑖𝐷)
2 ≤ 𝜏𝑅𝑖, for some 𝜏 ≤ 1

100
.

We consider the original minimizer 𝑢 on 𝐵𝑅𝑖+1 . By Proposition 6.1,

|𝑢(𝑥, 𝑦) − 𝑎1| ≤ 2𝐶𝛿, if 𝑥 ≤ −𝐶0𝑅
𝛽
𝑖+1, 𝑦 ≥ 𝐶0𝑅

𝛽
𝑖+1, (𝑥, 𝑦) ∈ 𝐵𝑅𝑖+1 ,

|𝑢(𝑥, 𝑦) − 𝑎2| ≤ 2𝐶𝛿, if 𝑥 ≥ 𝐶0𝑅
𝛽
𝑖+1, 𝑦 ≥ 𝐶0𝑅

𝛽
𝑖+1, (𝑥, 𝑦) ∈ 𝐵𝑅𝑖+1 ,

(8.65)

for some constant 𝐶0(𝑊).
Since 𝑅𝑖 ∈ (2𝑖𝑅(𝜀), 2𝑖+1𝑅(𝜀)), we have

1
4
<

𝑅𝑖
𝑅𝑖+1

< 1.

Note that rescaling does not affect the direction of straight lines. Thus in order to show (8.64), it
suffices to prove that three exists a constant 𝐶 such that

|𝑥𝑖𝐴 − 𝑥𝑖𝐷| ≤ 𝐶𝑅
𝛽
𝑖 . (8.66)
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32 GENG

F IGURE 5 Grey region: 𝑂(𝑅𝛽𝑖 ) transition layer between 𝑎1 and 𝑎2. A significant difference between 𝜃𝑖 and
𝜃𝑖+1 leads to a contradiction that 𝐸 belongs to both the 𝑎1 phase and the 𝑎2 phase.

Nowwe take 𝐶 = 48𝐶0 and show that violation of (8.66) will yield a contradiction. Suppose |𝑥𝑖𝐴 −

𝑥𝑖𝐷| > 48𝐶0𝑅
𝛽
𝑖 . Then it holds that

|2𝑥𝑖𝐴 + 𝑥𝑖𝐷
3

−
𝑥𝑖𝐴 + 2𝑥𝑖𝐷

3
| > 16𝐶0𝑅

𝛽
𝑖 ,

which further implies that the distance of either (
2𝑥𝑖𝐴+𝑥

𝑖
𝐷

3
,
2𝑦𝑖𝐴+𝑦

𝑖
𝐷

3
) or (

𝑥𝑖𝐴+2𝑥
𝑖
𝐷

3
,
𝑦𝑖𝐴+2𝑦

𝑖
𝐷

3
) (which are

two trisection points of the line segment 𝐷𝑖𝐴𝑖) from the 𝑦-axis exceeds 8𝐶0𝑅
𝛽
𝑖 .

Suppose
2𝑥𝑖𝐴+𝑥

𝑖
𝐷

3
> 8𝐶0𝑅

𝛽
𝑖 (the case

2𝑥𝑖𝐴+𝑥
𝑖
𝐷

3
< −8𝐶0𝑅

𝛽
𝑖 or |𝑥𝑖𝐴+2𝑥𝑖𝐷

3
| > 8𝐶0𝑅

𝛽
𝑖 can be analyzed

similarly). We set

𝐸 ∶= (5𝐶0𝑅
𝛽
𝑖 ,
2𝑦𝑖𝐴 + 𝑦𝑖𝐷

3
).

According to (8.65), we have |𝑢(𝐸) − 𝑎2| ≤ 2𝐶(𝑊)𝛿 because 5𝐶0𝑅
𝛽
𝑖 > 𝐶0𝑅

𝛽
𝑖+1. On the other hand,

we also have

5𝐶0𝑅
𝛽
𝑖 −

2𝑥𝑖𝐴 + 𝑥𝑖𝐷
3

≤ −3𝐶0𝑅
𝛽
𝑖 ,

which implies that |𝑢(𝐸) − 𝑎1| ≤ 2𝐶(𝑊)𝛿 through a similar estimate as in (8.65) at scale 𝑅𝑖 .
Consequently, we arrive at a contradiction (as illustrated in Figure 5), thereby concluding
the proof. □
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UNIQUENESS OF THE BLOW-DOWN LIMIT 33

Since𝐼 and𝐼𝐼 are two distinct triple junctions centered at the origin, their directions of 𝑎1-𝑎2
interface should be different, that is,

𝜑1 − 𝜑2 = 𝛼, for some angle 𝛼 ≠ 0.

Here 𝜑1 denotes the angle of 𝜕1
𝐼 ∩ 𝜕2

𝐼 and 𝜑2 denotes the angle of 𝜕1
𝐼𝐼 ∩ 𝜕2

𝐼𝐼 .
For each sufficiently large 𝑘, there exist 𝑖(𝑘), 𝑗(𝑘) ∈ ℕ+ such that

𝑟𝑘 ∈ [𝑅𝑖(𝑘), 𝑅𝑖(𝑘)+1], 𝑠𝑘 ∈ [𝑅𝑗(𝑘), 𝑅𝑗(𝑘)+1],

with 𝑖(𝑘) and 𝑗(𝑘) tend to infinity as 𝑘 increases.
On 𝐵1, 𝑢𝑟𝑘 is converging to a triple junction map 𝑢1 thanks to (8.62); while for the comparable

scaling 𝑢𝑅𝑖(𝑘) is close to another triple junction map 𝑈𝑅𝑖(𝑘) . By the same argument as in the proof
of Lemma 8.1 we can conclude that

lim
𝑘→∞

‖𝑈𝑅𝑖(𝑘) − 𝑢1‖𝐿1(𝐵1) = 0,

lim
𝑘→∞

|𝜃𝑖(𝑘) − 𝜑1| = 0.

Similarly, we have

lim
𝑘→∞

‖𝑈𝑅𝑗(𝑘) − 𝑢2‖𝐿1(𝐵1) = 0,

lim
𝑘→∞

|𝜃𝑗(𝑘) − 𝜑2| = 0.

Therefore we obtain two subsequences of 𝜃𝑖 that converge to distinct angles. However, by
Lemma 8.1, we have for any 𝑖 < 𝑗,

|𝜃𝑖 − 𝜃𝑗| ≤ 𝑗−1∑
𝑙=𝑖

𝐶𝑅
𝛽−1
𝑙

≤
𝑗−1∑
𝑙=𝑖

𝐶
(
2𝑙𝑅(𝜀)

)𝛽−1
= 𝐶2𝑖(𝛽−1)𝑅(𝜀)𝛽−1

𝑗−𝑖−1∑
𝑙=0

2𝑙(𝛽−1)

≤ 𝐶2𝑖(𝛽−1)𝑅(𝜀)𝛽−1

1 − 2𝛽−1
→ 0 as 𝑖 → ∞,

indicating that {𝜃𝑖} is a Cauchy sequence, which yields a contradiction. The proof of Theorem 1.2
is complete.
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APPENDIX A: MINIMIZATION PROBLEMABOUT 𝒚∗

Recall the minimization problem (5.42):

min 𝑓(𝑦∗) = (𝑦′𝐴 − 𝑦∗) +
√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2,

subject to 𝑦∗ ∈ (𝑦′𝐶 + 𝑑2, 𝑦
′
𝐴 − 𝑑2). Taking derivatives with respect to 𝑦∗,

𝜕𝑓

𝜕𝑦∗
= −1 +

2(2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)√
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)
2
,

𝜕2𝑓

𝜕𝑦∗2
=

4(𝑥′𝐶 − 𝑥′𝐵)
2

((𝑥′𝐶 − 𝑥′𝐵)
2 + (2𝑦∗ − 𝑦′𝐵 − 𝑦′𝐶)

2)
3

2

> 0.

From the expression above we have that when 𝑦 ∼ 𝑦′𝐶 ,
𝜕𝑓

𝜕𝑦∗
< 0, whereas when 𝑦 ∼ 𝑦′𝐴,

𝜕𝑓

𝜕𝑦∗
> 0.

Therefore there is only one critical point for 𝑓(𝑦∗) on the interval (𝑦′𝐶 + 𝑑2, 𝑦
′
𝐴 − 𝑑2), which is a

minimum point. Moreover, the minimum 𝑦∗𝑚𝑖𝑛 satisfies

3(2𝑦∗𝑚𝑖𝑛 − 𝑦′𝐵 − 𝑦′𝐶)
2 = (𝑥′𝐶 − 𝑥′𝐵)

2

Since ⃖⃖⃗𝐷𝐵′ parallels (−
√
3, −1) and ⃖⃖⃖⃗𝐷𝐶′ parallels (

√
3, −1),

2𝑦𝐷 − 𝑦′𝐵 − 𝑦′𝐶
𝑥′𝐶 − 𝑥′𝐵

=
1√
3
,

which immediately implies 𝑦∗𝑚𝑖𝑛 = 𝑦𝐷 .
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UNIQUENESS OF THE BLOW-DOWN LIMIT 35

Finally we compute

|𝐷𝐴′| = 𝑦′𝐴 − 𝑦𝐷,

|𝐷𝐵′| + |𝐷𝐶′| = 2|𝑦𝐷 − 𝑦′𝐵| + 2|𝑦𝐷 − 𝑦′𝐶| = √
(𝑥′𝐶 − 𝑥′𝐵)

2 + (2𝑦𝐷 − 𝑦′𝐵 − 𝑦′𝐶)
2.

Hence,

min 𝑓(𝑦∗) = 𝑓(𝑦𝐷) = |𝐷𝐴′| + |𝐷𝐵′| + |𝐷𝐶′|.
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