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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, had led to the establishment of the series: Tezts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with
and reinforce the traditional methods of applied mathematics. Thus, the
purpose of this textbook series is to meet the current and future needs of
these advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Math-
ematical Sciences (AMS) series, which will focus on advanced textbooks
and research level monographs.



Preface

As in Part I, this book concentrates on understanding the behavior of dif-
ferential equations, rather than on solving the equations. Part I focused on
differential equations in one dimension; this volume attempts to understand
differential equations in n dimensions.

The existence and uniqueness theory carries over with almost no changes.
But the behavior of solutions is not nearly so easy to understand; solutions
can be thought of as parametrized curves in R™, which can knot and link
in the most complicated ways and usually do.

We begin in Chapter 6 with a number of examples, often of great histori-
cal interest, like the two-body problem, which exhibit some of the questions
that will occupy the remainder of the book.

Chapter 7 focuses on linear differential equations with constant coeffi-
cients, with the usual paraphernalia of eigenvectors and eigenvalues. This
material is the main staple of elementary courses on differential equations,
and we also study the material at considerable length. But we put more
emphasis on how the signs of the eigenvalues determine the stability of so-
lutions and on the relation between existence of bases of eigenvectors and
decoupling.

Associated with this chapter are the linear algebra Appendices L1-L8. An
attempt to summarize the relevant material grew and grew, until it reached
an absurd length and became practically a textbook on the subject. Most
of the material is quite standard, but the treatment of the QR method
cannot be found in any textbooks that we know of.

Chapters 8 and 8* represent a serious attempt to understand nonlinear
autonomous systems in the plane. Logically they should be one chapter
(and were one chapter at one time), but pedagogically this did not work
very well. There is a body of material that can be understood without
entering into too many technical considerations, and this has been collected
in Chapter 8. There we stress linearization and the fact that by qualitative
analysis with computer graphics, nonlinear differential equations become
essentially as easy to study as linear ones.

Chapter 8* represents a considerably deeper understanding of the same
material, eventually leading to the Poincaré-Bendixson Theorem and a
complete proof of the Pontryagin—Peixoto results, which are the central
topics for planar vector fields. Whether it is really wise to include such
hard results in a book that hopes to be elementary is something the au-
thors still wonder about.

Chapter 9 is about bifurcations of differential equations in the plane.
When modeling a real system, the engineer always imagines he or she has



viii Preface

knobs with which to tune and adjust the system and its models. These
knobs represent the parameters of the system, and as one twiddles them,
sometimes the behavior of the system changes gradually and sometimes
abruptly. These abrupt changes occur at the bifurcating values of the pa-
rameters; they are quite well understood for differential equations in the
plane. The theoretical underpinnings are built in Chapter 8*, but you can
read Chapter 9 at a more superficial but still highly instructive level with
only Chapter 8 behind you. We have found that students respond quite
well indeed to the material.

Originally, this book was supposed to have four more chapters, cover-
ing electrical circuits, classical mechanics, linear differential equations with
non-constant coefficients, and iteration in higher dimensions. Because the
current volume has become quite lengthy, that material has been relegated
to a new Part III.

How to navigate Chapters 8, 8%, and 9

A course can reasonably end with Chapter 8, but Chapter 9 in bifurcation is
a topic now easy to approach even in an introductory differential equations
course.

Ithaca, New York John H. Hubbard
Beverly H. West
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6

Systems of Differential
Equations

In many (in fact, most) cases, differential equations of the form z’ = f(t, z)
are inadequate for the description of a physical system; more variables are
needed to specify its state at any time ¢. Usually a state of the physical
system will be specified by the values of several functions, z;(t), for i =
1,2,...,n. If we know “forces” giving for each of them the derivative z}(t)
with respect to time, in terms of the values of all the variables (at that
particular time) and perhaps also of time, then the evolution of the physical
system can be described by a system of n first order differential equations,

z, = f(t,z1,%2,...,Tpn), for i=1,2,...,n, (1)

or as a single first order differential equation in R™, where the vectors are
usually written in print as boldface, or by hand with arrows; i.e.,

x'(t) =f(t,x) or Z'= f(t,%). (2)
(1)
L z2(t) | :
In form (2), x(t) or Z(t) is a vector ) in R™, with each component
zn(t)

z;(t) a real-valued function of ¢. If f depends explicitly on ¢, the equation is
called time-dependent or nonautonomous; if f has no explicit dependence
on t , the equation is called autonomous. Most of our differential equations
will be first order, so unless a different order is explicitly stated, this is
what we mean.

In previous courses, you may have heard a great deal about higher order
differential equations; in fact, we will cover those here in the subject of
systems of differential equations because of the following fact:

Any higher order differential equation can be erpressed as a
system of first order equations.

That is, an nth order differential equation in R can be consid-
ered as a first order differential equation in R™.

Example 6.0.1. The second order differential equation z” = —z can also
be expressed as a system in R?:
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as you can confirm by differentiating the first equation and substituting
the result in the second. A

We shall follow this example further in succeeding sections, and we shall
show in Section 6.4 how any higher order differential equation can actually
be expressed as a system of first order equations.

Except for linear equations with constant coefficients, which we shall
study at length in Chapter 7,

there are very few systems of differential equations that can be
solved explicitly.

We shall study in this chapter three systems of differential equations that
can nevertheless be analyzed very profitably:

in 6.3, the sharks and sardines equation;
in 6.5, the equation of motion of a particle with one degree of freedom;
in 6.7, the central force problem.

Still, each of these examples is a particular equation, and the methods
used do not generalize to any substantial class.

The qualitative behavior of solutions of differential equations in R", for
n > 1, is enormously more complicated than the behavior that we examined
in Part I, as we shall see in Section 6.1.

In higher dimensions, solutions have ever so much more space in which
to get tangled up, and they definitely take advantage of this opportunity.
For example, in R? a curve can separate the plane into two parts; not so
in R3! Even a closed curve in R3 encloses nothing—other curves can sneak
through and around it.

In Part I of this text we examined a single differential equation in R!,
with graphs of solutions in R2, the tz-plane. The next simplest system is in
R2?, where we seek functions z and y both dependent on ¢; this will require
graphs in R3, or tzy-space . We shall explore those in Section 6.1, and most
of our examples will be of systems in R? throughout this chapter.

But when we consider systems in R3, there is virtually no theory any-
more, and our understanding of differential equations of dimension n greater
than 3 is practically nil (except, we repeat, for the special case of linear
equations with constant coefficients, Chapter 7).

So it may come as a pleasant surprise that the numerical methods of
Chapter 3 and the theory of Chapter 4 (including the Fundamental In-
equality, existence, and uniqueness theorems) remain virtually unchanged
when generalized to systems of differential equations, regardless of the di-
mension n: the statements, the proofs, and all the formulas require nothing
more than an arrow over all the vector quantities to become correct. We
shall revisit all of these in Section 6.2.

Throughout this chapter the general theory is in R", although most of
the specific examples are in R2.
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6.1 Graphical Representation of Systems

What kind of drawings can we get for systems of differential equations? For
an equation z’ = f(¢,z) in R!, the direction field is in R?; in general, for
a differential equation in R™, the direction field will be in R™*!, which is
considerably more difficult to draw and to visualize solutions within, even
for n = 2. Let us begin with the simplest case beyond a differential equation
in R!.

DIFFERENTIAL EQUATIONS IN RZ;
REPRESENTATION IN R?

Suppose
dz/dt = f(t,z,y) (3)
dy/dt = g(t, z,y),

with solutions )
z=u(t

y = v(t). (@)

A system (3) of differential equations in R? gives a direction field in R3.

Example 6.1.1. Consider the nonlinear, nonautonomous system

=y
yl=m2—t,

A drawing of some solutions in tzy-space looks like Figure 6.1.1:

N

txy space

ﬁ y versus t X versus t

FIGURE 6.1.1. Some solutions to ' =y, y' = 2% —¢.

As you can see on the left of Figure 6.1.1, the solutions in txy-space
appear to form a tangle of curves in R3, especially, for example, when
projected onto the plane of a paper or computer screen. It is a real problem
to interpret which parts of the picture are in the foreground and which are
in the background. A
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An individual coordinate function in the tz- or ty-plane can be graphed
(simultaneously, with the MacMath software) at the right of Figure 6.1.1;
these too are tangled. Since the coordinate functions intersect all over the
place, these right-hand graphs are quite different (and less helpful) than
those produced by MacMath for equations in R!. With sufficient effort you
may be able to sort out which curves correspond (e.g., two of them are
marked 1 and 2 respectively on all three graphs). But visualizing how in
general z(t) and y(t) synthesize to produce the spatial motion of solutions
in R3 is extremely difficult.

To begin to sort out some of these difficulties, to the extent that it is
possible, we shall return to the important but overly simple Example 6.0.1
of the system in R? resulting from z” = —z: here the result is familiar
enough to aid in visualization, and we can discuss the various possible
representations of the solutions. Then we shall return to the problem of
Example 6.1.1 and give some indication of why it is particularly difficult
to represent solutions in a meaningful way.

Example 6.1.2. Consider the system

z =
;v o

which produces Figure 6.1.2 from a few solutions. This picture is more
organized than Figure 6.1.1, but still somewhat jumbled:

\ p .,‘,':“'-,;,l;, 11

<

txy space

y versus t X versus t
FIGURE 6.1.2. Some solutions to 2’ = y, ¥ = —=z.

For the purpose of untangling the jumbled first impression of Figure 6.1.2,
let us jump ahead to the fact (which you might guess from the second order
equation " = —z, or from the coordinate function graphs on the right of
Figure 6.1.2, or else can confirm by substitution) that some of the solutions
to the system (5) are

z =u(t) = Csint ()
y =v(t) = C cost.
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For each choice of the constant C, the equations (6) represent in tzy-
space a circular spiral, moving forward in time, as shown in Figures 6.1.3
and 6.1.4 for several different values of C; each solution starts at ¢t = 0,
with o = 0, yo = C. (To show the coordinate functions most clearly, the
time axis in Figure 6.1.3 goes only to 10 in each direction; to show the
spirals most clearly, the time axis in Figure 6.1.4 (and 6.1.2) runs to 100
in each direction.)

xt

FIGURE 6.1.3. Selected solutions to ' =y, ¥’ = —z, with 2o =0, yo = C.

FIGURE 6.1.4. Selected solutions to z’' =y , ¥y = —=x, with zo = 0, yo = C, but
with time axis running to 100 rather than 10. A
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DIFFERENTIAL EQUATIONS IN R?;
PHASE PLANE REPRESENTATION

The two-dimensional solution graphs for z(t) and y(t) are far more con-
fusing than the two-dimensional drawings for one-dimensional differential
equations we have used in Part I of this text, because these solutions can
cross. Even in the comparatively well-organized pictures of Example 6.1.2,
solutions are crossing in the tz- and ty-planes, and those pictures are ex-
tremely limited, to solutions with initial conditions t =0, zo =0, yo = C.

But there is another two-dimensional picture possible, in the zy-plane,
called the phase plane (or sometimes the state space or dynamical plane)
for a system in R2. In Examples 6.1.2 and 6.1.3 we shall see that the phase
plane drawing consists of curves that do not cross, an important attribute
for analyzing the behavior of the system.

Example 6.1.3. Consider again =’ = y, y' = —z. Figure 6.1.5 shows the
phase plane portrait (drawn by MacMath) of the solutions corresponding
to those shown in Figures 6.1.3 and 6.1.4.

FIGURE 6.1.5. Trajectories of selected solutions to ' = y, y' = —x, with o = 0,
Yo = C A

A solution in tzy-space (as in the left of Figures 6.1.2, 6.1.3, and 6.1.4) is
projected onto the xy-phase plane. It is what you would see if you stood high
on the t-axis looking down at the zy-plane. This projected curve does not
correspond to the actual motion of a solution to the system, but rather it
is a “track” or trajectory of the solution in the phase plane. If you compare
Figures 6.1.3 and 6.1.5, you should see that the trajectories in the phase
plane are indeed the “tracks” left by the solutions for z and y as functions
of t, but

the trajectories alone give no information about how a point
moves along a trajectory as a function of time.
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Nevertheless, the trajectories in the phase plane provide a very useful way
to analyze the system, as we shall demonstrate in the examples of Sections
6.3, 6.5, and 6.7.

As you may have noticed, something especially simple about Examples
6.1.2 and 6.1.3 is the fact that this system of differential equations is au-
tonomous, with no explicit dependence on ¢ in the functions for the deriva-
tives. In fact,

it is only an autonomous system that will give a meaningful
phase plane portrait,

because then the solutions at different values of ¢ are just time translates
of one another, so their projections pile up on the same trajectories.

Look back at Figure 6.1.5 and imagine an ant walking along a solution
trajectory. He is always at some point (z(t),y(t)), and at t = 0 he is at
(z(0),y(0)). Suppose a second ant starts half an hour later at the same
point (z(0),y(0)); if the system is autonomous, she will follow the same
solution curve, and her later position will always be at (z(t— 30), y(t — 30)).
If, on the other hand, the system were nonautonomous, an ant starting
at (z(0),y(0)) half an hour later than the first ant would feel completely
different and would be “blown” along a different trajectory.

For a nonautonomous system, phase plane trajectories cross over each
other and project into an indecipherable mess.

Example 6.1.4. Return to the nonautonomous or time-dependent system

z' =y, y = z? —t of Example 6.1.1. Some solutions were shown in Figure
6.1.1; the corresponding phase portrait is as follows:

e

FIGURE 6.1.6. Phase plane projection for the nonautonomous system =’ = y,
y=z>-t A

We shall see in Section 6.2 that for autonomous systems, drawings in the
zy-phase plane will not only be less of a jumble than Figure 6.1.6, but will
not cross. As a result, the study of autonomous systems in R? reduces to
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the geometry of nonintersecting curves in the plane, and we can study such
systems by phase plane analysis.

In the remainder of this chapter, we shall strictly limit our study of
differential equations in R? to autonomous systems, those with phase plane
drawings that can be analyzed.

SKETCHING THE PHASE PLANE

An important tool in analyzing an autonomous differential equation in R?
(especially if you do not have your computer at your fingertips) is to be
able to make a quick hand sketch of the phase plane trajectories.

Recall that in Chapter 1 with a differential equation in R!, the key to
hand sketching the solutions is to use isoclines. Likewise, for a differential
equation in R2, the first key to hand sketching phase plane trajectories is
to use isoclines, particularly those of horizontal slope (where y' = 0) and
those of vertical slope (where ' = 0). These isoclines of horizontal and
vertical slopes are sometimes called nuliclines. Points where these isoclines
cross are called singular points or zeroes, and there “anything” can happen,
as we shall discuss in Chapter 8; in particular, it is possible for any number
of trajectories to meet at a singular point.

The second key to hand sketching phase plane trajectories is to use the
signs of ' and y' to tell where trajectories are moving left or right, up or
down.

The following set of steps will lead you through the process:

(i) Write the equation as
dy dy/dt

dz ~ dz/dt’

and sketch isoclines of

(a) horizontal slope (where y' = dy/dt = 0), marking the isocline
with little horizontal slope marks. Mark the regions on either
side of this isocline with vertical arrows up or down where y' > 0
and y’ < 0, respectively.

(b) wvertical slope (where z’ = dz/dt = 0), marking the isocline with
little vertical slope marks. Mark the regions on either side of this
isocline with horizontal arrows right or left where z’ > 0 and
z’ < 0, respectively.

(ii) In each region determined by these isoclines, put together the hori-
zontal and vertical arrows. Then, sketch the resultant direction field
using these components.

(iii) Trace some sample trajectories through the direction field, following
all arrows and slope marks. Remember that at a singular point where
both z’ = 0 and 3’ = 0, trajectories may meet or behave in other
“bizarre” ways.
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Example 6.1.5.
=y—z—2 =>d_y= z2 -y
y=z2-y dr y—-z-2
isocline of isocline of
Step i y hoﬁzomoal slope N vertical ;Iope
y'= X=
y'<0 i <0
A (v > %) y'T>o {y>x+2) 5 —
l d (v <)
- «
T Vil T N J<o
T T N (y<x+2)
X
ol s
Step i y TNE 2
Tse
N N

E\J)E

A Wy

Step iii

hand sketch
To hand sketch, start on some isocline, in general

direction of arrow, But look where you're going in
order to figure out the curvature! E.g.,

v N

X

versus

FIGURE 6.1.7. Constructing phase plane trajectories.

combdte?&raWng, showing that hand
sketch has all the essential features
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DIFFERENTIAL EQUATIONS IN R3;
PHASE SPACE REPRESENTATION

For differential equations in R™ where n > 2, it is not so easy to represent
results graphically. For a differential equation in R3, however, the MacMath
software can show the three-dimensional phase space, with trajectories in an
zyz-coordinate system. These pictures are more difficult to interpret than
those we have discussed in tzy-space, because the behavior with respect to
the independent variable ¢ is hidden. Usually the best aid to understanding
such a drawing in three dimensions is being able to watch the trajectories
actively being drawn on the screen and/or to rotate the resulting three-
dimensional graph.

A popular use of the program for a system in z, y, and z is the famous
Lorenz strange attractor, which will be further studied in some detail in
Section 8.7.

Example 6.1.6. The following system of equations was used by Edward
Lorenz at M.I.T. in the early 1960s for an extremely simplified model of
the weather:

' =10(y — z)

Y =28t —y—z=z

2 = —2.66z + xy.

The trajectories are immediately attracted to a three-dimensional surface

not too hard to imagine from the computer drawings. Figure 6.1.8 shows a
single trajectory.

Xyz

FIGURE 6.1.8. ' = 10(y — z), ¥y = 28z — y — z2, 2’ = —2.662 + zy.

For Figure 6.1.8, each axis runs to 120 in both directions; this picture
was begun with stepsize 0.01 at initial condition z = 10 and small z, y. It
is really fun to watch this evolve on the computer screen, regardless of the
orientation of the axes; it is also a good example for experimenting with
rotation of axes.
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Further understanding can be gained by also studying the various pos-
sible two-dimensional graphs: zy, zz, yz, =t, yt, 2t. Figure 6.1.9 shows a
MacMath printout, from DiffEq, 8D Views for another single trajectory
specified by the Lorenz equations.

-25.000 < x < 35.000 dx/dt = 10*(y-x)
-30.000 < y < 35.000 dy/dt = 28*x-y-x‘z
-10.000 < z < 70.000 dz/dt = -(8/3)*z+x*y
Xyz
y
y Xy ¢ XZ
_— ) /
y X
x tx y ty z tz

il i I
wontf] [ o]

FIGURE 6.1.9. All the possible views for ' = 10(y — z), ¥’ = 28z — y — zz,
7z = —2.66z + zy. Note: we see the 3D view from below the zy-plane. A
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6.2 Theorems for Systems of Differential
Equations

We review in this section the major results of Chapters 3 and 4 as they
extend to differential equations in R"™. For reference, we have listed in Ap-
pendix T the important definitions and theorems from Part I of this text.

The vectors used in describing systems of differential equations are not
restricted to R?; the results hold for any n > 1. Note carefully which
quantities become vectors (in boldface) and which remain as scalars (in
plain italic type).

NUMERICAL APPROXIMATION

The formulas for numerical solutions to n-dimensional differential equations
are as follows, using a stepsize h, so that t;41 =t; + h:

Euler Xit+1 = X; + h (¢, x;):
midpoint Euler x;+1 = x; + hm, where
m = f(t; + & x; + & f(t;, x;)):
Runge-Kutta X;+1 = X; + hm, where
m = }(m; + 2m; + 2m; + my)
m; = f(t;, x;)
m, = f(¢; + %,xi + %ml)
m; = f(t; + %,xi + %mz)
my = f(¢t; + h,x; + hmyg).
Notice that the “slopes” m have all become vector quantities, as well as
the dependent variables x and the functions f. The independent variable ¢

and its stepsize h both remain as scalars.

Example 6.2.1. An Euler’s method approximation for
' =y
y, = 132 - t’

with initial condition ¢ty = 0, o = 0, yo = 2 and stepsize h = 0.1 would
begin as shown in Table 6.2.1. A
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Table 6.2.1. Setting up a calculation for Euler’s method.

13

G| X Yi xi' yi'= Xi4] Yi+1
=Y =xf-4; =x; + hx;’ =i +hyy
H l
[ I )
0o |o 2 2 0+0=0 0+0.2 = 0.2 240=0
0.1{0.2 2 2 0.04-0.1 0.2402 = 0.4 2-0.006
=-0.06 l = 1.994
Lo
0.2 0.4 1.994 1994  0.16-0.2 0.4+0.1994 1.994-0.004
=-0.04 =0.5994 =1.990
0.3 |0.5994 1.990 — continue in this manner —

The order k of the error, Ch*, of the approximation scheme remains
precisely the same in R™ as in R. Exercise 6.2#5 asks you to show, by
partial derivatives and the mean value theorem, that the integration error
for the Euler method is in fact bounded by Ch.

The question of finite accuracy error, however, gets complicated for a
differential equation in R™ if n > 1. In R! you will recall from Volume I,
Section 3.4 that systematically rounding down or up simplifies the analysis
of error (though it makes the magnitude of the error worse). In R™ this does
not work—rounding errors do not necessarily accumulate, since solution
curves may turn and twist— so there is no ordering giving a direction in
which to be pushed. Rounding error is probably very equation dependent
in R™, if you round up or down; we suspect that rounding round is okay
with the same sort of random walk analysis given in Section 3.4.

The preceding two paragraphs have dealt with what happens as the step-
size h decreases, over a fized time interval. An entirely different question
is what happens in the long run, as ¢ — oo, for a fized stepsize h, and
the answer is rather complicated, even aside from the introduction of “jag-
gies” and other spurious stuff discussed in Section 5.4. In Exercise 6.2#7a,
you can compare for "/ = —z, the simple system of Examples 6.0.1, 6.1.2,
and 6.1.3, the graphical results of the Euler, the midpoint Euler, and the
Runge-Kutta methods of numerical approximation; each behaves dramat-
ically differently in the long term, using a fixed small stepsize.
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THE BASIC THEORETICAL RESULTS

Theorems 6.2.2 and 6.2.3 come straight out of the Fundamental Inequal-
ity (Theorem 4.4.1), the Uniqueness Theorem (4.5.1), and the Existence
Theorem (4.5.6) for one-dimensional differential equations. (See Appendix
T.) The proofs are left as Exercises 6.2#2 and 6.2#3, following exactly the
one-dimensional proofs, except in the following ways:

the quantities ¢ and derivatives of £ have now become vector
quantities, so £ becomes x;

the length of a vector |x| = +/z?+22+.- 422,
S0 |z1 — z2| becomes [|x; — Xal|;

the region U of definition is now a parallelepiped in R x R",
with t € [ta,tb] and z; € [ai,b,;].

Otherwise the only “trick” in carrying over the proofs is to keep straight
which quantities will become vectors and which remain scalars. For ex-
ample, v = ||u; — uz|| remains a scalar, so the center of the proof of the
Fundamental Inequality remains a one-dimensional problem.

Theorem 6.2.2 (Fundamental Inequality). If x’' = f(t,x) is defined
on a set U in R x R™ with Lipschitz condition

I£(t, 1) — £(2, x2)|| < K[lx1 — %]

for all (t,x;) and (t,x2) on U, and if, for €;,6 € R, u;(t) and uz(t) are
continuous, piecewise differentiable functions on U into R™ with

lui(¢) — £, wi(®))|l < e

and
lui(to) — uz(to)|l <6,

then 4+ e
lua(8) — ua()l] < eKlt=tol 4 L2 (eKlemtol _ 1),

Theorem 6.2.3 (Existence and Uniqueness). If x’ = f(t, x) is defined
on a set U in R x R™ with Lipschitz condition

102, 1) — £(¢, x2)|| < Kl|x1 — x2]|

for all (t,x;) and (t,x2) on U, then there exists a unique solution x = u(t)
for a given set of initial conditions x(to).

The geometric meaning of Theorem 6.2.3, that unique solutions do not
cross, is given by the following:
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Corollary 6.2.4. For a differential equation in R™ satisfying a Lipschitz
condition in X, solutions x = u(t) to an initial value problem

(a) do not cross in R™*! where they are graphed with respect to time,

and

(b) do not cross in phase space, R™, if the system is autonomous.

Note: Corollary 6.2.4 makes no promises about the individual coordinate
functions, z = u(t), y = v(t), ..., which can indeed cross as you have seen
in Figures 6.1.1-6.1.4 . But Corollary 6.2.4 does assure us that for an initial
value problem in R? (satisfying a Lipschitz condition)

(a) we are not seeing actual three-dimensional crossings of solutions in
the projections of R3,

and

(b) if the system is autonomous, trajectories of solutions will not cross
in the phase plane.

Now that we are dealing with systems of differential equations, we must
say more about uniqueness. If you have a “general” solution to such a
system (that is, a solution with arbitrary constants that does not miss
any solutions to the differential equation), this “general” solution, for an
equation in R™, will in general depend on n constants.

Specifying just any old n numbers associated to a solution will not nec-
essarily specify a unique solution. Sometimes these numbers will work, and
sometimes they will not.

A crucial element to Theorem 6.2.3 and its Corollary 6.2.4 is the require-
ment that the initial conditions, the n values of z;(to), be specified. We can
give a glimpse of the potential difficulties associated with trying to specify
boundary values instead by returning to the equation of Examples 6.1.2
and 6.1.3:

Example 6.2.5. For the simple system z’ = y, ¥y = —z, recall from
Example 6.0.1 that this system in R? actually represents the second order
differential equation z” = —z, with ; = z and 7, = y = z'. Figure 6.2.1

shows just some of the solutions, as one of the coordinate functions of the
system, and you can see that these solutions cross each other all over the
place.
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x

-

FIGURE 6.2.1. Selected solutions to '/ = —z.

The “general” solution to z”/ = —z is z = Asint + Bcost, with two
arbitrary constants, A and B. A natural idea might be to specify bound-
ary values z(t,) and z(tp), rather than initial values z(to) and y(to). But
sometimes such boundary values will not specify a unique solution (case
(i)) ; other times they will (case (ii)). For instance, the following summary
will be the result of Exercise 6.2#9, using the fact that all solutions are
periodic with period 27:

(i) If (tp—tq) = km, where k can be any integer, negative or nonnegative,
then specifying z(t,) and z(t;) will result in either

(a) an infinite number of solutions,

. _ Jz(ty)  for k even
if 2(ta) = { —z(tp) for k odd ;

(b) or no solutions,

if 2(ta) # |z(ts)|

. _ [ —=z(ty) for k even
if 2(ta) = {:z:(tb) for k odd.

(ii) If (tp —ts) # km, any pair of boundary values gives a unique solution.

Specifying n parameters by boundary conditions is equivalent to choosing
two points, (tq,z(t,)) and (tp,z(ty)), in the tz-plane. If in Example 6.2.5
(ty—ts) # km, there will indeed be a unique solution between the two points;
otherwise there will be no possible solution through those two points, or
an infinite number of solutions.
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Theorem 6.2.3, on the other hand, promises that if the n parameters
are initial conditions, they always specify a unique solution. In Example
6.2.5, initial conditions are z(¢o) and z'(t9) = y(to), corresponding in the
tz-plane to a point and the slope at that point.

Example 6.2.5 illustrates that it is important to recognize that

an initial value problem is entirely different from a boundary
value problem.

Only in the initial value problem is uniqueness assured, with solutions guar-
anteed not to cross. In boundary value problems, specifying n conditions
may produce one, zero, or infinitely many solutions.

Boundary value problems are in fact very complicated, and we shall
postpone further discussion of them until Part III of this text.

6.3 Example: Sharks and Sardines

In this section we will study a famous example of a differential equation in
R?, first written down and analyzed by Vito Volterra in the early 1920s;
his book, A Mathematical Theory of the Struggle for Life, probably started
mathematical ecology.

Volterra developed his theory when approached by Umberto d’Ancona,
who was an official in the Italian bureau of fisheries employed in Trieste
during the First World War. D’Ancona was puzzled by statistics he kept.
Specifically, he observed that during the war, the proportion of the catch
that consisted of sharks, skate, and other such predating and unappetizing
fish increased markedly over what it had been before, and what it became
later. The data are listed in Table 6.3.1, in the midst of many years of
approximately 11% of catches consisting of predators:

TABLE 6.3.1. Proportion of predators in Italian fishing statistics.

Year % of catch consisting of predators

1914 11.9%
1915 21.4%
1916 22.1%
1917 21.2%
1918 36.4%
1919 27.3%
1920 16.0%
1921 15.9%
1922 14.8%

1923 10.7%
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He presented these data to Volterra, who came up with the following
explanation (which we first considered in the Introduction to Part I of our
text, but we shall repeat the arguments in this context):

Let z(t) be the number of food fish (known generically as sardines) as a
function of time, and y(t) be the number of predators (known generically
as sharks). We will write down a system of differential equations for = and
y reflecting the following assumptions:

(a) The population of sardines is kept down exclusively by the sharks,
i.e., is not close to the limits of its food supply.

(b) The population of sharks is at the limit of its food supply, and is kept
in check by the lack of sardines.

Thus, if there were no sharks, x would obey the equation of exponential

growth
, _dr

r=—=
dt
Volterra argued that in the absence of sardines, y would similarly obey
the equation of exponential decay

ax, for some fertility rate a > 0.

y = dy _ —by, for some b > 0.
dt

[Actually, this is questionable. It seems more reasonable to think that in
the absence of sardines or other food fish, y would obey something like the
leaky bucket equation, since it would become zero in finite time. In fact,
even that is perhaps optimistic (from the point of view of the sharks), since
in fact they would presumably become extinct in one generation whatever
their initial number, and a leaky bucket can take an arbitrarily long time
to empty if it is big enough to begin with.]

In any case, the product z(¢)y(t) is proportional to the number of meet-
ings of food fish with sharks, which are bad for food fish and good for
sharks. This leads to the system of equations:

' =ar —czy

yl =-by+ fxy’ (7)

where a, b, ¢, f are > 0.

Innocent though this system may appear, no one seems to know how to
solve it for z(t) and y(t). However, we still can analyze it fairly completely
by its trajectories in the zy phase plane.

Dividing the second equation of (7) by the first, we see that

dy _ —by+ fxy
dr  ar—cry
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This equation (8) is separable, leading to

)

a—cydy = _b+fzda:
y x

which can be integrated to yield
|z|® |y|?e~ =) = C. 9)

Note that the right-hand sides of equation (7) are continuously differen-
tiable functions, which means that on any bounded region they satisfy a
Lipschitz condition, so the solution to the equation through any point will
be unique by Theorem 6.2.3. Therefore the set of trajectories defined by
(9) forms a system of nonintersecting curves filling up the zy phase plane,
and we can hope to draw them.

What we have shown in equation (9) is that these trajectories are level
curves of the function

F(z,y) = |z|* [y|*e”=+ev). (10)

The fact that the differential equation (7) restricts the function F' expressed
in (10) to a constant value on a given trajectory represents some sort of a
conservation law (to be discussed at greater length in Section 6.6), saying
that you cannot have too many sharks without some number of sardines,
and vice versa.

That is, every solution of the differential equation (7) in R?
has a trajectory in the phase plane that lies on a level curve
of this function F. So to understand the trajectories (but not
how a point moves along a trajectory as a function of time),
all we need to do is understand the function that represents the
conservation law.

This is an important point to which we shall return in other examples
and in Section 6.6.

For the model of sharks and sardines, we are only interested in the func-
tion F in the first quadrant where both populations are positive. We leave
it as Exercise 6.3#2a to show that there the function F' has a unique
maximum at z = b/f, y = a/c, and that it decreases to zero when (,y)
approaches the axes or goes to infinity in any direction in the first quad-
rant. Note that in any case, it is clear from the differential equation (7)
that (b/f,a/c) is an equilibriumm of the equation, since z’' = y' = 0 there.
Now level curves on a mountain are easy to imagine; we can expect our
set of trajectories to be closed curves, which indeed the computer drawing
confirms (see Figure 6.3.1).
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isocline of horizontal slope

- isocline of vertical slope

~f e
|

FIGURE 6.3.1. Phase plane trajectories for sharks (y) and sardines (z).

The placement of the arrowheads in Figure 6.3.1 can be made by obser-
vations on the original equation (7), as in the previous discussion in Section
6.1 about drawing phase portraits. For instance,

ifz =0, 2’ =0 and ¥’ is negative, y is decreasing;
ify=0,y’" =0 and 2’ is positive, z is increasing.

All the first quadrant solutions to the differential equation (7) are peri-
odic, because the trajectories cycle round and round, describing populations
that oscillate (out of phase with each other). This is the key observation,
because it allowed Volterra to speak of the average populations, T and 7,
defined by the usual integral formulas

1 (T
t)dt
T /0 y(t)

=—/ z(t)dt ]

if the populations move on a trajectory of period T'. Of course, you would
expect the averages to depend on the trajectory, but from the second equa-
tion of (7), the computation

gives

=—/ ydt+ / Fdt = 7 (1ny(T) - Iny(0 m+2=2
f f
The result (11) shows that T does not depend on the trajectory and is
in fact, in this particular case, the z-coordinate of the equilibrium. You
can confirm the steps of this computation in Exercise 6.3#1b. An identical
computation shows that ¥ = a/c.
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If you find all this far too clever, do not forget that Volterra was working
before computers, and therefore was forced to look for such tricks. No doubt
the mathematical model he arrived at was chosen partially because he had
a trick up his sleeve that worked for it, and not only because the biology
imposed it. As soon as we change the model slightly, no such tricks will
work, and averages will have to be found numerically (and they will not be
just constants). So in fact, in the battle between the genius Volterra without
a computer and the ordinary student with one, the student probably comes
out ahead.

WHAT DOES ALL THIS HAVE To DO WITH THE FISHING?

It is fairly clear that the result of fishing is to replace in the differential
equation a by a — € and b by b+ 6 for some € > 0 and § > 0, since fishing
simply subtracts from both populations a proportion of what is there. The
difference in sign occurs because a is a rate of increase and b is a rate of
decrease. Equation (7) now becomes

' =(a—¢€)x—cxy
Y =—(b+8)y+ foy. (%)

The new equilibrium occurs at

b+ 6 a—¢

f ) y c )

=

and is presented in Figure 6.3.2.

A
a y i
=T S, @ old equilibrium
[} .
ac' LS EO N - new equilibrium
L
b b+d
f f

FIGURE 6.3.2. Revised phase plane for sharks and sardines with fishing.

As a result of the € and 6, the equilibrium is moved down and to the
right and yields the following amazing conclusion:

Fishing increases the number of food fish!
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This is so remarkable that without corroboration one might be tempted to
think it might mean that the model is worthless. The following example is
offered as corroboration:

Example 6.3.1. Scale insects and ladybugs. In 1868, some acacia trees
were imported from Australia and planted in California. Some insects of
the species Icerya purchasi, better known as scale insects, were on them
and promptly infested the orange trees. Scale insects suck the sap from the
trees and, as they grow, they split their skins, which harden on the leaves
and leave a white cottony cushion, hence the name. In any case, the damage
they did to the trees was such as to nearly wipe out the citrus industry in
California.

In Australia, the scale insect has a predator, Rodolia cardinalis, the la-
dybird beetle. An entomologist from the Department of Agriculture, Dr.
Riley, imported some of these beetles, which promptly brought the popu-
lation of scale insects under control (this was in 1889). Amazingly enough,
it took only 18 months from the time 514 beetles were imported until they
had all but wiped out the scale insects and were themselves starving in
large numbers. Of course, they did not eliminate the scale insect, but just
created a particularly large swing of an oscillation.

Shortly before World War II, DDT was discovered. The orange growers
thought: “we almost got them with the beetle, now we will really get them
with DDT,” so they applied it to the orchards.

As a result, the scale insects became more numerous. In terms of Volterra’s
analysis, it is clear that this should happen: the scale insects are like food
fish (the prey), the ladybird beetles are like the sharks (the predators), and
the DDT is like the fishing, which destroys a proportion of both. Fishing
increases the number of food fish, and DDT increases the number of scale
insects. A

CRITICISM OF THE MODEL

It is easy to pick holes in Volterra’s model. For one thing, it cannot be valid
for large values of z, since exponential increase of a species cannot continue
without limit. Also, without food, the population of sharks would in fact
go to zero, not just decline exponentially (more probably, in reality, they
would switch to an alternate food source).

A more serious question is whether perturbing terms change the qualita-
tive description of the evolution of the system. Clearly they should; it seems
highly unlikely that every initial condition will be on a periodic orbit, and
far more likely that whatever the initial state, the system will settle down
to some cycle (perhaps the equilibrium) independent of where it started.

In fact, we have a hint as to what the period ought to be. Such real eco-
logical systems are forced by the seasons: almost all species have a fertility
rate [the number a in equation (7)] that is not constant but varies with the
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time of year. So we might expect the population to settle down to a yearly
cycle, or perhaps a cycle of several years.

Many numerical experiments have been run under these various assump-
tions, showing that even such simple mathematical models can have amaz-
ingly complicated behavior. There is still no coherent theory.

6.4 Higher Order Equations

Many differential equations encountered in applications involve higher or-
der derivatives of the unknown function (or functions). For example, the
differential equations of physics that involve accelerations are second order
differential equations. We will see in this section that such a higher order
equation is “equivalent,” in a sense to be made precise, to a system of first
order equations. There is a catch, of course; namely, that we need more
unknown functions. Still, the theory for systems of first order equations is
so simple, and the intuitive idea of what a differential equation means is so
clear, that it is usually a good idea to replace a higher order equation by a
system of first order equations.

This is especially true of the numerical theory: it is quite clear what
it means to be blown around by a wind, even in several dimensions, and
the idea of Euler’s method is immediate. Consider, on the other hand, a
differential equation such as

' =z — 2%+t

As we shall see, an appropriate initial condition for such an equation is
the specification of both z and z’ at the initial time to. But what should
you do from there? You do not have a wind to be blown by, and you do
not know your velocity, only your acceleration (i.e., z”’). Most people have
little intuitive feel for acceleration, and much less yet for higher derivatives.
Thus, replacing them by first derivatives is desirable.

Physicists have long known this; they speak of the configuration space of a
system—its set of positions, on which motions are described by a system of
second order differential equations (because of Newton’s law F = ma, which
expresses the accelerations in terms of the positions and the velocities).
However, they soon replace the configuration space by the phase space—
the set of states of the system. A state of the system is specified when you
know both a position and a velocity for each component of the system.
On the phase space, the motions are described by a system of first order
equations. Of course, you have paid the price: there are now twice as many
variables as before, both a position and a velocity where there was just a
position. But what you have gained with phase space is that it gives the
only "nice” picture, where the trajectories do not cross.

Not only does the replacement of a higher order equation by a system of
first order equations give a better intuitive feel for the differential equation,
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and the possibility of clear phase space pictures of trajectories, but, as we
shall see in Chapters 7-9, it allows the solution of a linear system (or the
linearization of a nonlinear system) to proceed by simply manipulating a
matrix of coefficients.

A differential equation of order n in one variable is an equation of the

form
™ = f(t,z,2’,...,c*V),

where z(*) means the ith derivative of the function z, and f is a function
defined in some region of R x R™. Of course, the case n = 1 is precisely
what we considered in Volume I, Chapters 1-4.

The key idea to solution of an nth order differential equation is to intro-
duce new variables representing successive derivatives, generalizing what
we did in Example 6.0.1 when we changed 2/ +z=0to =’ = y,y = —z.

Theorem 6.4.1. The differential equation
™ = f(t,z,2,...,z"Y) (13)

18 equivalent, if we set xo = x, to the first order differential equation in R™

T Slté) T
" ) T2
’ " x! _
x =z = 2 | = z3 = f(t,x) (14)
z(™ zh_, ft,zo,z1,...,Tn—1)

in the sense that a function z = u(t) is a solution of the first equation (13)
if and only if the n-dimensional vector function

u(t)
w'(t)
u(t) = ) is a solution of the system (14).

un-—.l (t)

In other words, for an nth order differential equation, we set up n vari-
ables: o = z,z; = Z,_;,...,Tn—1 = T,_5 ; then we solve the differential
equation for z(™ = z! _, to obtain the nth first order differential equation
of the system.

Proof. Just plug in the formulas. 0O

Example 6.4.2. The third order differential equation

" 3" +tr' —z+t2=0
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is equivalent to the following system, with = = zq:

o =z5=x nonautonomous system
' =z) =z of three first order
g = zly = 3z — tzy + 70 — 2 equations. A

We hope that after all the buildup, reduction of a higher order differ-
ential equation to a system looks like a cheap trick. It is a cheap trick,
but nevertheless important. For instance, we now have a uniqueness and
existence theory for higher order differential equations, as well as various
approximation algorithms (Euler, midpoint Euler, Runge-Kutta).

Theorem 6.4.3. Let f(t,x) be a function defined on some region U in
R x R™ and satisfying a Lipschitz condition with respect to x. Given any
to € R and a vector v € R™, there erists a unique solution u(t) of

™ = f(t,z,2,..., 2" )

such that u(to) = v; that is,

u(to) Vo

u'(to) v

u(tp) = . = .
u(=D(to) Un—1

Proof. Combine Theorem 6.4.1 with Theorems 6.2.2 and 6.2.3. O

MovVING IN THE OTHER DIRECTION: TRADING
DIMENSIONS FOR HIGHER ORDER

This is more delicate than the reverse process: let us see how to go from a
first order equation in R? to a second order equation in one variable.
Suppose

' = f(za y)
¥ =g(z,y)

is a first order system in R2. Use the first equation to express y implicitly
as a function of z and z’, say y = F(z,z’), for some function F(u,v) of
two variables. Now differentiate this equation, to find

OF
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Substitute this expression for 3’ in the second equation and set the right-
hand side equal to g(z,y) = g(z, F(z,z’)). This results in a second order
equation solely in terms of x and its derivatives:

, 1 (ap

= BFa ) \ou @)% 9@ Fla x’)> :

T

Example 6.4.4. Consider the system of equations

z' =y +sinz
y' = cos(z + y).

The first equation gives y = z’ — sinz, with
y' = 2" — (cosz)z’ = cos(z + z’ — sinz).

Substitution for ¥ and g’ in the second equation yields the rather fearsome
differential equation

z" = (cosz)z’ + cos(x + =’ — sinz). A

The reader should appreciate that the process can be considerably more
difficult: expressing the implicit function may be difficult or impossible in
elementary terms; in higher dimensions, it requires the notorious Implicit
Function Theorem from Chapter 13 (See Appendix T). The conditions for
an implicit function to exist may be violated. Exercise 6.4#3 will allow you
to explore this a bit further.

6.5 Mechanical Systems with One Degree of
Freedom

Physics provides many beautiful examples of second order differential equa-
tions in a single variable, which we shall study as systems of two first order
equations. We shall use the simple pendulum as an example to discuss
several aspects of general theory.

Example 6.5.1. Consider the pendulum with motion restricted to the
plane, with a bob on a string of length ¢, as illustrated in Figure 6.5.1.
The arclength of the “sweep” of the pendulum is £6; the velocity of the
bob is £0’, and the tangential component of its acceleration is £6”. The
force on the pendulum bob in the direction of motion is a component (in
the direction of sweep) of the gravitational force mg. From Newton’s Law
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FIGURE 6.5.1. A pendulum in motion.

F = ma we can write an equation that describes (in terms of ) the behavior
of the pendulum as moving opposite to:

melf"’ = —mgsin 6
or
n_ (9
0" = (l) sin, (15a)

which we call the equation of motion of the pendulum. Solving the equation
of motion for # as a function of ¢ describes exactly how the pendulum bob
moves.

Equation (15a) can be replaced by the system

0=y, = (%) sinf. A (15b)

In Example 6.5.1 there is only one variable, 6, that describes the motion
of the pendulum, so we say it has only one degree of freedom.

POTENTIAL AND ENERGY

For a physical particle moving without friction in a manner involving only
one variable (z, in general), a general theory of physics introduces a useful
concept called potential. The potential V(z) is defined by the following
force equation:
w_ _dV(z)

The potential function V(z) may be a purely mathematical construction
obtainable from integration with respect to z, but in physical systems it
can represent potential energy.
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In many mechanical systems we can calculate the potential energy V(z)
from physics: if the particle is under the influence of “constant” gravity, as
on the surface of the earth, then

V(x) = mgh, where h is height above any arbitrary fixed level.

The differential equation (16a) for a one-parameter mechanical system
can be replaced by the following system of first-order differential equations:

r_ 1 r_ _fi_K
' =mTy, y=—a (16b)

Note that, up to a constant multiple, y represents the velocity of the
particle. Also note that equations (16a) and (16b) equate a derivative with
respect to  with a second derivative with respect to ¢. Furthermore, since
equations (16) depend only on the derivative of V(z), not on V (z) itself, the
equations of motion do not change if a constant is added to V; consequently,
the potential V' is determined only up to an additive constant.

In order to form some intuitive idea of motion under a potential, you
might think of a bead of mass m sliding without friction on a wire shaped
to give the graph of V(z), as shown in Figure 6.5.2. The bead has only one
degree of freedom—it can only move back and forth along the wire. You
can imagine letting the bead start from any point on the wire and then try
to visualize how it will slosh up and down and back and forth according to
the shape of the potential function V(z).

FIGURE 6.5.2. Bead arid wire model for £’ = —dV (z)/dz.

This model of a bead on a wire is not quite accurate—at the end of
this section in Example 6.5.6, we will properly analyze the bead-on-wire
analogy for the pendulum—but it does give the proper qualitative features.
In particular, you can see oscillations of z near the minima of V', exceptional
solutions that tend (infinitely slowly) toward the maxima of V', and even
more exceptional solutions that just sit at the maxima of V.
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Although equation (16a) cannot generally be solved for z(t) in terms of
elementary functions, the mechanical system can nevertheless usually be
understood. The key to this understanding is the following theorem:

Theorem 6.5.2. For the differential equation mz"” = —dV/dz, the total
energy function

E(z,2')= im()> + V(z)

= kinetic energy + potential energy (172)

is constant along the trajectories of solutions in the xy phase plane; conse-
quently, the mechanical system corresponding to this differential equation
is called conservative.

Proof. This is a straightforward computation from (17a) of
d Y — ottt Y
th(z(t),a: (t)) =ma'z" + e
which is zero by equation (15a). O

In terms of the alternative form (16b) of the mechanical system with one
degree of freedom,

=m"ly o =-dV/dz, (16b, again)

Theorem 6.5.2 can be stated in terms of conserving
B(z,y) = 5m'y* + V(2). (17b)

In the zy-phase plane, the point [z(t),y(t)] of the system moves along a
trajectory; Theorem 6.5.2 shows that these trajectories are level curves of
the function E.

Example 6.5.3. Let us go back to the pendulum of Example 6.5.1, de-
scribed by the second order differential equation, for K = (g/¢),

0" = —Ksin6 (15a, again)
and equivalent to the system

0=y

y' = —Ksiné. (15b, again)

Equations (15) are of the proper mathematical form (16) for a mechanical
system with one degree of freedom, so there exists a potential function V'(6).
Combining equations (15a) and (16a) implies that

v (6)

20 = K siné,
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which can be integrated; so we know that V(6) = — K cos#.
By Theorem 6.5.2, the trajectories of the solutions are level curves of the
function

y?
E6,y) = Chn K cos 6. (18)

This function E is a mathematical total energy function, which is up
to a constant multiple of the physical total energy, as you can confirm in
Exercise 6.5#11.

The function E(6,y) has a graph that looks like Figure 6.5.3.

FIGURE 6.5.3. Graph of E = y?/2 — K cos®.

The level curves of E, along which the trajectories of the system lie, look
like Figure 6.5.4 . The minima of E are at the points (8,y) = (2kn, 0), for
integer k; the saddle points of the surface E are at the points ((2k+ 1), 0).

Arrows on the curves in Figure 6.5.4 indicate in which direction the
pendulum follows them:

positive y implies increasing 6

o
y = 6" decrees that {negative y implies decreasing 6.

This fact is confirmed by watching computer drawings evolve, using a pro-
gram like DiffEq, Phase Plane in the MacMath package.

FIGURE 6.5.4. Trajectories for §' =y, y' = —K sin#.
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Look carefully at the different kinds of phase plane trajectories exhibited
in Figure 6.5.4:

The closed level curves (|E| < K) correspond to back and forth os-
cillations of the pendulum.

The points at the centers of these closed level curves (E = —K)
correspond to the stable equilibrium of the pendulum at rest at the
bottom of its motion.

The level curves above and beneath the closed curves (E > K) corre-
spond to motions in which the pendulum has enough energy to simply
go full circle, round and round over the top.

The level curves joining the saddles (E = K) are those exceptional
motions in which for ¢ — oo and for ¢ = —oo the pendulum tends to
the unstable equilibrium at the very top of the swing. Note that the
time required to go from one saddle to the next is infinite. A

The solutions coming from or going to saddles are called separatrices,
because they have exceptional behavior and separate the regions of generic
behavior from each other. (You should be reminded of the exceptional
solutions in antifunnels for equations in R!.) We will have much to say
about saddles and separatrices in Chapter 8.

EFFECTS OF ADDING FRICTION

When we add to the system of the pendulum a perturbation term to repre-
sent friction, a physically more realistic situation, analysis changes. There
will no longer be any potential or conservation of energy. Nevertheless, we
can analyze the behavior in a similar manner.

Example 6.5.4. Consider the same pendulum of Example 6.5.3, but add a
bit of friction. The motion of the pendulum bob will now obey an equation
such as

0=y

y' = —Ksinf — ey, (19)

where ¢ is a friction coefficient and we have assumed that the friction is
proportional to the velocity. This system with friction is not of the form
required by Theorem 6.5.2, because the equation in y’ depends on y as well
as on 0. In fact, the system with friction does not conserve total energy.

The function F is no longer constant on solutions, but we can easily see
that it decreases. This corresponds to the intuitive idea that in a system
in which energy is dissipated by friction, the global energy decreases. This
fact is easy to compute from equation (17b):

dE_d {y(t)2 — K cosf(2)

dt  dt| 2
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=y(t)y'(t) — (—Ksin6(t)) ¢'(¢)
=y(t) [-K sinf(t) — ey(t)] + K sinb(t)y(t) = —ey(t)? < 0.

The regions {(t,6) | E(t,0) < C} are now trapping regions: if a solution
enters one of them, it can never get out again. (You should be reminded of
funnels.) The phase plane will look like Figure 6.5.5 when ¢ is sufficiently
small.

FIGURE 6.5.5. Four trajectories for §' = y, y’ = —sinf — 0.2y. Those starting
at A and B begin with the pendulum bob to the left of center; those from C and
D begin with the bob to the right.

We will see in Exercise 8.1#11 that the spiraling behavior disappears
when the friction coefficient € becomes large. When £ becomes zero, the
picture becomes that of Figure 6.5.4. A

We will see other examples of mechanical systems in Section 6.7.
Meanwhile, let us return to the intuitive visualization of behavior under
the influence of a potential function, as suggested earlier in this section.

A BEAD SLIDING ON A WIRE: PRECISE ANALYSIS
At the beginning of this section, we claimed that a solution of

mz’ = —% (16a, again)
behaves roughly like the z-coordinate of a bead of mass m sliding on a
wire whose shape is the graph of V, in a constant gravitational field with
g = 1. Note that we introduced this analogy only to give the reader an
intuitive feel for the differential equation (16a): we think that most readers
will know without any mathematics or physics how such a bead will move.
But it is not a good method of analysis, as the detailed behavior of the
bead is quite a bit more complicated than the original problem.
The differential equation describing the motion of the bead is as usual
F = ma, but it is quite unpleasant to write the acceleration in terms of
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the z-coordinate of the bead. Instead, we will use the arclength s along the
wire; in other words, we will record the position of the bead by recording
how far along the wire it is (measuring from the point with z-coordinate 0,
for instance). Clearly, if the motion is described by the function s(¢), then
the acceleration is s”(t). A force analysis (Exercise 6.5#12a) shows that at
the point distance s along the wire, with z-coordinate z(s), the force is

dV/dzx )
e ——————— N [ (O SN
V1+ (dV/dz)?

Keep in mind that since x = z(s) , dV/dz will be expressed in terms of s.

(20)

Example 6.5.5. Suppose V(z) = —v/£2 — z2; i.e., that the bead is con-
strained to remain on a wire of semi-circular shape, as shown in Figure
6.5.6.

Then, since z = ¢sin(f) and 0 = s/¢,

z(s) = £sin(s/¥).

Furthermore, from the definition of V(z) for this example,

av _ z _ £sin(0) — tan (f)
dr ~ /P2 _z2 fcos(d) 14

FIGURE 6.5.6. Bead on semi-circular wire.

Therefore, the expression (20) for the force becomes

ms" — —m dV/dz —m tan(s/¢)
1+ (dV/dz)?  \/1+ tan?(s/0)

Thus, the equation describing the motion of the bead is simply

= —msin(s/f).

s" = —sin(s/f). A
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Example 6.5.6. Note that if you set § = s/¢ (a very reasonable definition),
the equation s” = —sin(s/£) of Example 6.5.5, describing the motion of a
bead on a circular wire, becomes

9" = —(1/£)sin6,

the differential equation describing the pendulum of Examples 6.5.1 and
6.5.3. This should not be surprising: there is no physical difference in con-
straining the bead to a circular path by attaching it to a lever arm or by
putting it on a circular wire. All we have done is rederived the equation of
the pendulum in a far more complicated way.

To go back to the analogy, we are saying that the motion of the bob on
a pendulum is ezactly the same thing as motion of a bead constrained to
move on a circular wire. This is shown in Figure 6.5.7 where the top half
of the circular motion has been reflected to the sides (which allows us to
think of the bead on its nth trip around the circle as running along the nth
pattern).

The motion of the bob on the pendulum that we derived in Example
6.5.1 from V(0) = K cos@ is approrimately the same as the motion of a
bead on a wire with the shape of the graph of —fcos(s/£), as shown in
Figure 6.5.8.

-1.0
FIGURE 6.5.8. Approximate bead-on-wire model.

Notice that close to the minimum of potential, Figure 6.5.8 for approx-
imate motion is very “similar” to Figure 6.5.7 for exact motion, but they
are not identical.



6.5. Mechanical Systems with One Degree of Freedom 35

Some motions are oscillations in the wells, others travel along th= wires,
and so forth. These statements should be intuitively clear; it should also
be intuitively clear that the details of the motions will be different. A

The conclusion of Example 6.5.6 is also all that can be said in general.
The differential equation describing the motion of the bead on the semi-
circular wire is

" _ dV/dx

§ =
V1+ (dV/dzx)?
which looks quite a bit like the differential equation describing the pendu-
lum,
" = -V’ ( z),
in the sense that both have equilibria at corresponding points and of the
same type.
For the function s(z) that measures arclength along the wire from the
point above zero to the point above x, we have

s(x) = / V14 (f'(uw))?du.
0
We want V (s) to be “f measured with respect to s,” i.e.,
V(s(z)) = f(=).
Then these last two equations can be combined to give

dV  dV/dz f'(z)
b A, = . (21)
ds ds/dz /14 (f'(z))?

So, if you know V(s), can you use equation (21) to find f(z)? It is not
easy! But since the right-hand side of equation (21) is less than 1, the
answer may be yes if |[dV/ds| < 1.

In Exercises 6.5#12c, you can confirm that equation (21) works if s = £6
with £ fixed; that is, that

av f'(6) impli = - - ™
T e e f0) = —KV1- 08/

Remark. One may wonder whether, given a function V(z), there is some
other function W (x) such that the motion on the wire with the shape of
the graph of W, that is, with equation

o Wals)
V1+(W'(z(s)))?
is precisely the same as motion under z"” = —dV/dz. Clearly, one require-

ment is |dV/dz| < 1. It turns out that this is the only requirement, as
shown in Exercise 6.5#13.
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6.6 Essential Size, Conservation Laws

We have seen in Section 6.4 that the order of a differential equation is sort
of phony: it can be diminished at the expense of increasing the number of
unknown variables.

Vice versa, the dimension is phony since it can usually be traded for
higher order, as in Example 6.4.4.

Definition 6.6.1 (Essential size). We will call the essential size of a dif-
ferential equation the smallest number n such that the differential equation
can be transformed into an autonomous, first order equation in R™.

Example 6.6.2. The system
z" = 1132 -y
yV'=y-z

has essential size four, because four equations are necessary to achieve a
system of first order equations:

=w

y=v

w'=x2—y

vV=y—zx.
A

Essential size as a measure of how hard it is to understand a differential
equation is sometimes misleading.

Example 6.6.3. The system

’=z+y
y =y-2?
2 =1

looks, and is, three dimensional in zyz-space, but is really two independent
systems—one of size two (in z’ and y'), the other (in 2’) of size one. This
system is no harder to understand than its parts. A

On the other hand, a nonautonomous system can be turned into an
autonomous system in one higher dimension; so a system may have larger
essential size than it might first appear.



6.6. Essential Size, Conservation Laws 37

Example 6.6.4. The equation 2’ = f(¢,z) is nonautonomous but can be
written as an autonomous system

z' = f(tv .’B)
t' =dt/dt = 1,

so the essential size of the original single first order equation is two. This
essential size of two is why DiffEq draws in the plane, not the line. A

Example 6.6.5. Consider the system

Z=z+y
y =y —a?
Z=2+z.

The first two equations form a system of essential size two. Then once the
solution z(t) has been found to this first system, the third equation becomes
a new system, also of essential size two, because this third equation, with
z(t), is not autonomous. A

The complexity of solutions to a differential equation is a function of
the essential size: the greater the essential size, the greater the opportu-
nity for the solutions to tangle. (Compare the examples of Section 6.1 for
autonomous differential equations in R? with those in earlier chapters for
nonautonomous differential equations in R!.)

The name of the game in solving systems of differential equations is to
reduce the essential size. This is done by finding conservation laws.

Definition 6.6.6 (Conservation Law). If a differential equation in R
implies for some function F(x) that F'(x) = 0, then

F(x) = a constant (22)

along the trajectories of the solutions, and equation (22) is called a conser-
vation law.

The reason conservation laws are so important is that each one
decreases the essential size. This is because

F(zy,z2,...,2,) =C

will usually allow you to express some variable, say z,, implic-
itly as a function of the others, z;,z2,...,Tn_1.
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Example 6.6.7. In the mechanical system with one degree of freedom, as

explored in Section 6.5,

av
n_ _2r
mx = dz

is an equation in R? that we want to solve for z = u(t). Theorem 6.5.2
states as a conservation law that

(23)

2
m
E Yy

+V(z) (24)

is constant on the trajectories of the solutions. It is possible to solve equa-

tion (24) for y = z':
z' = /2(E - V(z))/m, (25)

which reduces the problem to an autonomous first order equation in R!.
Thus, the conservation law (24) has reduced the essential size from two in
equation (23) to one in equation (25).

Remark. You can observe that equation (25) can be reduced to computing
integrals, but they tend to be unpleasant or impossible to integrate in
elementary terms; furthermore, it can still be an unpleasant problem to
solve for z(t). Therefore, we did not explore this option in Section 6.5 but
instead used the conservation law to get at the trajectories by the back
door. That is, we used equation (24) to plot the trajectories instead of
solving (25)! A

Example 6.6.8. A central force is some function f(r), depending only on
distance from the origin, that acts in the radial direction r = zi + yj + zk,
with 7 = ||r||. (Such a force will be explored in detail in Section 6.7. You
might look at Figure 6.7.1.) A central force combined with Newton’s law
in R? produces the following second order equation:

r
ma=mr" = ||f(r)], (26)

of essential size six, because it represents a second order equation for each
of the three components of r: z, y, and z.

Differentiating the cross product r x r’ gives [by several steps, including
the use of equation (26), in Exercise 6.6#2a]

i(rxr'):rxr":O.

dt
Consequently, we find as a conservation law the following fact:

rxr' =M, a constant vector. (27)

This vector M should be called the angular momentum vector, because
its magnitude gives the angular momentum, as will be explained in Example
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6.6.9. However, it is the direction of M that concerns us here. The constant
direction of M ensures that r will never leave the plane spanned by r(tp)
and r'(tp) at any particular time ¢o. (In Exercise 6.6#2b, you can work
through this derivation.) This means that the central force law (26) actually
operates only in R?, so the second order equation now has essential size
four. A

If the physical or mathematical system under consideration has symme-
tries, then it is possible to choose suitable coordinates so that the equa-
tions of motion will be independent of some of the coordinates, which will
lead to conservation laws and reduce essential size. This correspondence
between symmetries and conservation laws is one of the guiding principles
of physics.

Example 6.6.9. We have shown in Example 6.6.8 that a central force law,
" =f (r); , (26, again)

operates in a plane. The obvious symmetries of a central force law will be
most nicely described by polar coordinates, so we first describe the position

vector
0= 50

in terms of two scalar functions r(t) and 6(t), and we shall then find the
differential equation that they will satisfy. This is a typical unpleasant
change of variables and goes as follows:

[m] [rcosO]
r= = .

Y rsin @

, [z]"_ [r' cos8 —ré sind
=1yl T |r'sin0+r6 cosd

o [:c]” _ [(r” —7(6")2) cos@ — (2r'6' +r6") sine]

y (r" —7(6')?)sin @ + (2r'¢’ + r0") cos b
(28)
_ o can2y | cos® ‘o | —sin@
= (r r(0))[sin0]+(2r0 +r0)[coso].
From the central force field (26), we know
z]” cos
2] =r e ] (29)

that is, that the force points in the direction of the origin. Since the vectors

cos 0 dl= sin @
sing | 2" cosf



40 6. Systems of Differential Equations

are orthogonal, combining equations (28) and (29) leads to the system of

equations
" —r(0)? = f(r) (30a)

8" +2r'¢' =0, (30b)

which describes in polar coordinates the motion in a central force field.
Now we can observe that (r26')’ = r(r8” + 2r'6') = 0 by equation (30b),
so that 726’ as a function of time is constant. This quantity 726’ = M is
the magnitude of the angular momentum of the body around the z-axis,
and the derivation above shows that in any central force field, the angular
momentum is preserved. We have thus found another conservation law.

Remark. In Exercise 6.6#2c, you will show an alternate way to derive
(30b) directly from
rxr' =M, (27, again)

so that
IM|| = |r?¢'| = M;

hence the angular momentum M is in fact the magnitude of M. In fact,
the conservation of angular momentum could have been derived directly
from equation (27), but we needed the explicit derivatives of r to get equa-
tion (30a). That route also emphasizes the role that taking advantage of
symmetry can play in finding a conservation law.

The conservation of angular momentum further reduces the essential size
of the system. Since 6’ can be expressed as a function of r,

M
0’ = ;2—, (31)
equation (30a) becomes a second order equation in r alone (for which we
have developed methods of analysis and will demonstrate them in Section
6.7). Once we know r, the conservation of angular momentum gives a first
order equation (31) in 6, so the total essential size of the system has been
reduced from four (at the end of Example 6.6.8) to three. That is, system
(30) can now be replaced by

" M2

r ——1‘3—=f(r) and 0'=TM2. A (32)
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6.7 The Two-Body Problem

This section is devoted to showing that Newton’s law of gravitation implies
Kepler’s laws.

Johannes Kepler (1571-1630) was a German astronomer. He was not
born to wealth and was employed, first as an assistant and later as a part-
ner, by the Danish nobleman Tycho Brahe, who was rich and fascinated by
astronomy. Kepler’s job in Tycho’s observatory was to observe the planet
Mars. As a result of 14 years of observation, he came up with the following
laws:

1. The planets move on ellipses with the sun at one focus.

2. The radial segment from the sun to a planet sweeps out equal areas
in equal time intervals.

3. The periods of rotation are proportional to the % power of the semi-
magor azes of the ellipses.

Even knowing that these laws are true, and using a calculator and a
telescope, it is not clear what you should observe in order to confirm them.
One cannot be but struck at the amazing genius it must have taken for a
person, without a telescope or any accurate means of measurement, before
the invention of analytic geometry, and without any way to determine the
distances of any celestial bodies, to take the results of 14 years of observa-
tions and come up with such laws. If you consider that Tycho’s observatory
was on an island between Denmark and Sweden, which must be, next to
Ithaca, the cloudiest place in the world, the records must have been spotty
in the extreme.

By the time of Newton (1642-1724), these laws had been examined and
largely accepted (although Galileo was tried by the church and convicted
in 1633 for teaching the Copernican view that the earth turned around the
sun).

We now come to another extraordinary display of genius. In a period of a
year, Newton postulated the universal law of gravitation, saw that it gave
a differential equation for the motions of the planets (inventing calculus in
the process, not to mention the theory of differential equations), and solved
the equation to the extent of showing that the postulate implied Kepler’s
laws. Nowadays, we hesitate to teach his solution in third year calculus
because it is too difficult, even though it appeared as the focus of the first
book on calculus.

All of this is intended to explain why we are including the solution here,
even though it does not quite fit. Some might say (we are among them)
that the work of Newton was one of the most important events in the
history of humanity, the one that ushered in the scientific age. Considering
that this work was largely the solution of a differential equation, it would
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be outrageous not to include it in a book on the subject, and at an early
stage.

Given two bodies with masses m; and m, and positions x; and xs,
Newton’s universal law of gravitation together with F = ma gives the
system

"_ GM2(X2 - xl)
P ke — a3
(33)
" __ Gml(xl - x2)
flx1 — x2|3

This is a priori a differential equation in R2: there are three dimensions
for each x;, for a total of six dimensions; but the differential equation for
each of these is second order, so the system (33) is equivalent to a system
of twelve first order equations. However, it is easy to reduce the dimension
from R!2? by taking advantage of conservation laws, which we shall proceed
to do.

The center of mass is

_ X1 + meXy
my + me

and it satisfies the differential equation X" = 0, so X(t) moves at constant
velocity X’ on some straight line, as you will prove in Exercise 6.7#1b. This
is overall conservation of linear momentum, with X = a +tb and X’ = b.

Remark. Simple though this observation may be, it is a typical application
of the main method of solution for equations in mechanics:

You find some preserved quantity (in this case linear momen-
tum); then setting it equal to a constant allows ezpression of
some unknown functions in terms of others (in this case the
position of one body in terms of the position of the other).

In this manner we can now reduce the number of actual unknown quanti-
ties from twelve to six, so the problem is reduced from R!2 to R6. One way
to express this problem in RS is as a second order equation for one position
vector in R3. We shall use r = x; — X to describe the position of the first
body; the position of the second is then determined by the conservation of
linear momentum described above.

In Exercise 6.7#1c you are asked to show that the vector r satisfies the
differential equation

" Gm3 r 1 r

o (matma)? 2 el el
where ]I%H is the unit vector in the r direction and K = Gm3/(m; + my)?
gathers together the constants. In this form (34), the system clearly satisfies
an inverse square law.

(34)
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Notice that if m; is very small in comparison with mg, then equation
(34) is nearly what you would get with the mass my at rest at the origin.
For instance, you could consider m; a planet and mg the sun, although in
any case equation (34) is exact.

Equation (34) means that r, the measurement of position with respect to
the center of gravity, behaves as a point in a central force field. That is, the
direction of the force is in the direction of the r vector, and the magnitude
of the force depends only on r = ||r||, so

r’ = f(r) ';) (267 aga'in)

as in Examples 6.6.7 and 6.6.8.

The crucial thing is that in a central force field the force depends only
on the magnitude r, and a picture of the force vectors will look like Figure
6.7.1.

vV vy
N 4

> \l[ «
RN « €
> A *\:
> f]"\ &

A N
7‘7\T,V’Y

FIGURE 6.7.1. A particular central force field.

In Example 6.6.8, we analyzed motion in a central force field. Let us
summarize what we found. First, the position vector r remains in the plane
spanned by the initial position and the initial velocity. This followed from
considering the angular momentum vector

r xr' =M, a constant vector, (27, again)

and saying that its direction is constant. A second order equation in a plane
is a first order equation in R* rather than R®, so we have now reduced the
essential size of the problem from six to four, which is a great improvement
but not enough yet to solve the problem.

To further decrease the essential size, change variables so that the plane
of the motion is the horizontal plane R? C R? and use polar coordinates in
R? to take advantage of the symmetries of the problem. Then the angular
momentum vector points in the direction of the z-axis and has magnitude
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20 = M| =M

as was shown in equation (30b) of Example 6.6.8.

Kepler’s Second Law. Conservation of angular momentum is equivalent
to Kepler’s second law, because r26’/2 is the rate at which the vector r
sweeps out area (Exercise 6.7#5a). So Kepler’s second law is a way of
stating conservation of angular momentum without mentioning derivatives.
Note that Kepler’s second law is valid in any central force field (26) and
does not require the inverse square law (34).

As we saw in equation (32) of Example 6.6.8, the formula

o = % (35)
gives
' —r(0')? = f(r) (36)

for any central force field. Finally, using the inverse square law (34), we
find K M2
"o - il

r=- + 5 (37)

which is a second order equation in r alone. We have brought the essential

size down to two, and this we will be able to solve. Of course, when we

have done so, we will have to go back to the angular momentum equation

(35) to find 6, and finally use the polar coordinate formulas to find z and

y.

Equation (37) is an equation for a mass moving in a one-dimensional

force field: it can be written "’ = —dW(r)/dr, where

W) =" +33 (38)

which is the equation of motion of a particle with one degree of freedom
moving under a “potential.” However, this potential W is fictitious rather
than real (just a figment of the mathematics).

Equation (37) is equivalent, as we showed in Sections 6.4 and 6.5, to the
system

r=v (39a)
K M?
vl=—’l‘_2+ﬁ-. (39b)
We have seen in Theorem 6.5.2 that the energy function
v? v? K M?
E(’I‘,U)——2—+W(T‘)——2——7+§7-'-2' (40)

is constant along trajectories of motions in the rv-plane.
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From equation (38), we can graph W(r), as in Figure 6.7.2.
Then the level curves of E look like Figure 6.7.3, as you are asked to
show in Exercise 6.7#3.

W(r) [Bo

5.0

FIGURE 6.7.2. Mathematical “potential” W (r).

energy curves like this lead
to bounded solutions (elliptic)

parabolic solution (E =0)

/r hyperbolic solutions

FIGURE 6.7.3. Level curves of E = 3v* + W(r).

\\x\

We see in Figure 6.7.3 that orbits with £ < 0 are bounded (and we shall
show that they correspond to elliptical orbits in the zy-plane of configura-
tion space), and that orbits with £ > 0 are unbounded.

We are not able actually to solve these equations for r and v as functions
of time, but here we will be able to solve for r as a function of §. (This is as in
Section 6.3, where we could not solve the Volterra equations '’ = az —czy;
y = —by + fxy for z(t) or y(t), but dy/dz = y’/x’ did happen to be
integrable, so we were able to solve for trajectories in the zy-phase plane.)

Kepler’s First Law. Suppose the motion considered has energy E and
angular momentum M. Then putting together
d M

priadey (35, again)
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and

dr K M2
a—’l)—\/Z(E-F?—W), from (40)
we get
df df ;dr M

(41)

dr ~ dt/ d&t 2 2(E+ K/r - M?2r?)’

as you can confirm in Exercise 6.7#6a.
Equation (41) can actually be integrated (and Newton did it, in the very
first book on calculus!), yielding (Exercise 6.7#6b)

6 = arc cos (M/r — K/M)
V2E + K2/M?’

You can confirm the solution (42) by differentiating. Furthermore, now you

can solve for 7.
If youset M?/K = p and /1 + (2EM?/K?) = e, equation (42) becomes

(42)

D
=P 4
r 1+ecosf (43)

which is the equation of an ellipse with a focus at the origin, eccentricity
e, and parameter p, as shown in Figure 6.7.4. (See Exercise 6.7#7.)

FIGURE 6.7 4. Ellipse.

Kepler’s Third Law. From analytic geometry, recall that the area of
the ellipse is wab, where a is the semi-major axis and b is the semi-minor
axis. (Intuitively, you can see this as stretching a disk.) But we saw in the
discussion of Kepler’s Second Law, combined with equation (35), that M /2
is the speed at which area is swept out by the vector r, so that if an orbit
has period T, then

2mab = MT.
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Now some elementary geometry on Figure 6.7.4 shows that

p p
= — d b= ——
1—ez vi=e?’

a

so that

3/2@ _ 277013/2
M VK

T = 27a % = 27ma
Thus Kepler’s Third Law is proved.

Summary. Having said so much in this section, we pause for an overview
because many of the ideas are by no means limited to the example of the
two-body problem:

1. The original problem concerns second order equations for two vectors
with three components each, so there are 2 X 2 x 3 = 12 dimensions.

2. A change of variable in terms of the center of mass of the physical
system will allow us to use conservation of linear momentum to reduce
the number of dimensions to six.

3. By another conservation law for the direction of the angular momen-
tum, we can further notice that the actual motion would be in a plane
rather than in a larger space, which further reduces the number of
dimensions to four.

4. Next, conservation of the magnitude of the angular momentum allows
us to once more reduce the number of actual dimensions to two.

5. Finally, conservation of energy allows us to solve the problem (but
only for trajectories in the phase plane, not for the actual motion as
a function of time).

6.8 Flows

We have been emphasizing solutions of differential equations as functions
of time. Flows provide a language to emphasize the dependence on initial
conditions. For instance, the value of a bank account depends on time, but
we should remember that it also depends on the initial deposit.

Let x' = f(x) be a differential equation in R?, and imagine drawing
some shape in the plane (a rectangle, for instance, or a cat) and solving
the differential equation for a fized amount of time, starting at each point
of this shape. The shape will move, and probably become distorted, as the
following examples illustrate.
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Example 6.8.1. For instance, the trajectories of the system of equations

’
z| | =z
HE
are hyperbolas, and if you let the “normal” cat (in Figure 6.8.1) flow for-
ward for time 1, you will find a cat like the “horizontally flattened” cat in

the lower right, whereas if you let it flow backward, for time —1, you will
get something like the ”vertically squeezed” cat in the upper left.

Vi

\L: 24

X

FIGURE 6.8.1. The flow of a region under ¢’ = z,9' = —y . A

Examples 6.8.2.

dr dr dr

dy dy dy o

a a7 a ¥ T
5o'y 50 y
"ﬂ\:,% x X x
5.0 A ~soj B -850 C

FIGURE 6.8.2. Flow in the zy-plane of the same rectangle for three different
differential equations.
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The pictures in Figure 6.8.2 were made simply by drawing 30 steps of an
approximate solution with Euler’s method from each of the four corners of
the rectangle bounded by z =1,z =2,y =1/2, and y = 1.

Notice that for equations A, the rectangle simply rotates in the plane; for
equations B, the rectangle stretches vertically as it moves to the right; for
equations C, this particular rectangle moves to the lower right but becomes
considerably distorted. A

Of course, Examples 6.8.2 show only what is happening locally for a
small rectangle in the phase plane. You should play around with Exercises
6.8#1-6.8#3 in order to explore what happens globally—what changes are
caused by the flows of different rectangles for these same equations.

Now that you have begun to visualize a flow, we shall state a formal
definition:

Definition 6.8.3. Let f be a vector field on a subset of R™. The flow
of the autonomous differential equation x’ = f(x) is the function ¢¢(t,x)
satisfying the conditions

1. t — ¢¢(t,x) is a solution of the differential equation, as a function of
t for each fixed x,

2. ¢¢(0,x) = x.

In other words, ¢¢(t,x) is the position at time ¢ of the solution with
initial position x at time O.

As we have defined it, the flow of a differential equation exists even if
the equation is not autonomous, but the definition is not natural if the
equation is time dependent. It only describes the solutions that start at
time 0. For a time-dependent differential equation, we would have to let
the “Alow” depend on two “times,” an initial and a final time. If you start
an autonomous equation at the same point later, the solution describes the
same trajectory later; the motion depends only on the “flowing time,” not
on the particular initial and final times.

The procedure to write a closed formula for a flow, when it is possible,
is to

1. Solve the differential equation.
2. Evaluate the constant of integration at ¢t = 0.

3. Set ¢¢(t,x) equal to the solution with that value of the constant.

The flow ¢¢(t,x) of a vector field f(x) will usually not be defined for all
(t,x), because the solution starting at time 0 at x will not always be defined
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at time ¢. This occurs for equations C of Example 6.8.2, for instance, but
it is quite difficult to visualize the domain of ¢¢ in R3. Here is a simpler
example.

Example 6.8.4. For the differential equation z’ = z2, the flow is given by

z
= — h 1.
o¢(t,x) T3 Vhen fte| <

In this case, the domain of the flow is the region between the two branches
of the hyperbola (Figure 6.8.3).

You are asked in Exercise 6.8#5 to verify the assertions of Example 6.8.4,
and in Exercises 6.8#6 and 6.8#7 to consider several more examples.

Examples 6.8.5. For equation A of Example 6.8.2,
oe (1. 1%]) = cos(t)x + sin(t)y
f\"|y|) = | —sin(t)z +cos(t)y |
For equations B of Example 6.8.2,

()= [5]

For equations C of Example 6.8.2, there is no closed formula for the flow,
because the equation &' = z2 —t cannot be solved in closed form (the main
example of Part I of this text). A

The following properties of flows follow immediately from the definition.

Proposition 6.8.6. The flow of an autonomous differential equation x' =
f(x) satisfies the following whenever the indicated flows are defined:

og(t1, o (o, x) = dg(to + t1,%).
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Theorem 6.8.7 (Continuity of Flows). If f(x) is a Lipschitz vector
field, then ¢¢(t,x) is a continuous function of both variables, i.e., as a
function of the pair (t,x), wherever it is defined.

Proof. The fundamental inequality gives a slightly more precise result
than the statement above. Choose x¢ and ty such that the flow is defined at
(to, Xo); suppose that K is a Lipschitz constant for the differential equation
x/ = f(x) valid in a neighborhood U of the set

{¢g(t,%0),0 < t < to}.

Further, suppose that, on U, ||f(x)|| < M for some M € R, which will be
possible if U is chosen sufficiently small.
Then, by the Fundamental Inequality 6.2.2,

|| g (t1, %1) — Pg(to, Xo)|| < Mty — to| + Ix0 — x1 [|€FI%! (44)

so long as (t1,x;) is sufficiently close to (to,Xo) that ¢(t,x;) stays in U
for t between 0 and t;. Clearly, the right-hand side of equation (44) can
be made arbitrarily small by choosing (¢1,x;) sufficiently close to (to,Xo)-
]

In Chapters 8 and 8*, it will be useful to have this formal notation for
flows.

Chapter 6 Exercises

Exercises 6.1 Graphical Representation

6.1#1. Hand sketch phase plane trajectories for the following systems
by finding the isoclines of horizontal and vertical slope, then finding the
general direction of trajectories in the regions between (left or right, up or
down). Use one color for the information from dx/dt = 0 , and another for
the information from dy/dt = 0. Use a third color to mark the resultant
directions NE, NW, SE, or SW; draw sample trajectories in a fourth color.

Some of the pitfalls encountered in first attempts at sketching phase
planes are highlighted by the following:

(i) An isocline of horizontal slope usually separates vertical behaviors,
i.e., regions where trajectories have positive slopes from regions where
slopes are negative. [There are exceptions, for instance, see part (c).]
Similarly, an isocline of vertical slope usually separates horizontal
behaviors.
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(ii) Equilibria occur where an isocline of horizontal slopes meets an iso-
cline of vertical slopes. Where two isoclines of horizontal (resp. ver-
tical) slope meet, nothing happens except that you are doubly sure
the slope is horizontal (resp. vertical).

(iii) Solutions cannot actually cross or meet, except at a point where the
Existence and Uniqueness Theorem (which you will meet as Theorem
6.2.3) fails. You will observe solutions approaching or coming from
an equilibrium, but they will not actually start or end there because
if they were at the equilibrium, they would just stay there!

Try the following exercises to illustrate these points:

dz/dt = da/dt =
(a) d:/dt Za v (d) d;/dt T y?
da/dt = da/dt =
) yat =~z —y) @ dyjat =2 -y
dz/dt = x dz/dt =y+2% -1
© " dyjdt = (z - yp? O Gya=z2 2

6.1#2. As in the previous exercise, hand sketch phase plane trajectories
for the following systems:

de/dt=1-x dz/dt = 3z — 2zy

(2) dy/dt =z% —y (f) dy/dt = 2y — y?
(b)° dz/dt=z+2-y ©)° dz/dt =z — (1/4)z? — zy
dy/dt =2% —y g dy/dt =2y — y* —zy

© dz/dt =y —sinz (h) dz/dt = 2z — 2% — xy
dy/dt =z/4—y dy/dt =y —y* — (1/4)zy

() dz/dt =y —sinz Q) dz/dt =z — 42% — zy
dy/dt =z/4+y dy/dt = 2y — y? — 3zy

dz/dt = y(z + 1)
©  ayjat=(3-y)

Compare the results of part (b) with Example 6.1.5. Parts (g), (h), and (i)
are three of the four cases you will find in Exercise 6.3#3.

6.1#3. Express the equation =" = cost as a system of first order equations.
Then use DiffEq, 3D Views from MacMath or a similar computer graphics
program to draw the following sample solutions in zyt, zt, yt, and zy views:
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Start solutions at o = 0, yo = 0, 1, 2, 3, 7, n/2, 37/2, 2w, etc. You can
solve this particular second order equation just by integrating; compare
with your pictorial results.

6.1#4. Find phase portraits with a computer program, such as DiffFq,
Phase Plane from MacMath, for the following systems. Print them and
draw on your graphs (by hand if necessary) the isoclines of horizontal and
vertical slopes, to verify that the trajectories indeed cross these isoclines
with the proper slopes.

(a) dz/dt = y% -1
dy/dt = 2% + 2z

(b) dz/dt = y'(y -1)(y+1)
dy/dt = sin(z + y)

o dz/dt =[(z—2)%+y* - 1][z® +y* - 9]
©° gy/dt = (z — 1) +42 - 4

6.1#5. Experiment in R® with the Lorenz strange attractor of Example
6.1.6. As in Figure 6.1.9, make a printout from DiffEq, 3D Views in Mac-
Math showing seven views: zyt, zy, Tz, yz, zt, yt, and zt. Experiment with
what changes in the graphs when you make a slight change in the initial
conditions. Make observations and at least one conjecture. Proving a con-
jecture may be too much to ask at this point, but see how far you can
get.

6.1#6. Another strange attractor in R3, attributed to O.E. Rossler (1979;
see References), is derived from a physical situation of a dripping faucet. It
is similar to the Lorenz attractor, but simpler. The following set of equa-
tions provides an example for computer experimentation.

dz/dt = —(y + 2)
dy/dt =z + 02y
dz/dt =0.2 + z(x — 5.7).

Exercises 6.2 Theorems

6.2#£1°. Prove Theorem 6.2.2. Notice that if u; () and uz(t) are continuous
piecewise linear functions, then |lu;(t) — uz(t)|| is not a piecewise linear
function (give an example). Why is the proof still correct?

6.2#2. Prove Theorem 6.2.3.
6.2+#3. Prove Corollary 6.2.4.

6.2#4. Justify the formulas in Section 6.2 for the various numerical meth-
ods.
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6.2#5. Let f(t,x) be defined in the region I x S, where I is the interval
to <t<t and § = {x|a; < z; <b;}. Suppose the solution u(t) with
u(tp) = Xo is a mapping u : I — S and that the Euler approximations
up(t) also map I to S for h < hg. Then find a bound for |[uy(t) — u(t)|| of
the function ||ux(t) —u(t)|| < Ch for all t € I, where C should be expressed

in terms of |f], ,%f’, 'g;f‘,' fori=1,...,n.
Hint: Look at Theorem 4.5.2.
6.2#6.

(a) For Euler’s method, find stepsize h such that a solution of z’ = y, 3y’ =
—z starting at (0,1) is guaranteed to be accurate to three decimal
places at t = 7.

(b) For Euler’s method, find A such that a solution of z” = 22 —t starting
at (0,0) is guaranteed to be accurate to three decimal places at t = 1.

6.24£7. For the following differential equations with z(0) = 1,y(0) = 0,
and stepsize 0.1, approximate by hand the first two steps by (i) the Eu-
ler method, (ii) the midpoint Euler method, and (iii) the Runge-Kutta
method:

(a) 2" +z=0

dz/dt =y

(b) dy/dt = —2z (You’ll meet this in Section 6.3.)

do/dt =y

(c) dy/dt = —k sin @ (You’ll meet this in Section 6.5.)

What differences does the method make in the drawings of trajectories?
6.24£8°.

(a) Show that along the solution of dz/dt = y, dy/dt = —x, the func-
tion F(z,y) = 2% + y? is constant. What are the trajectories of the
solutions in the phase plane?

(b) Show by hand calculation that if you solve the same system of differ-
ential equations using Euler’s method, the approximate solution will
spiral out to infinity. Using a moderately large stepsize, hand sketch
the approximate trajectory in the phase plane. Confirm with a com-
puter printout, checking especially that your hand sketch goes in the
proper direction.

(c) What happens if you use Runge-Kutta? (It depends on the stepsize
h, and to see how requires quite a bit of computation, as in Chapter
5.4 of Part I. We do not ask for an analytic treatment here, but rather
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to see how far you can get with what is more easily available.) Since
the trajectories in MacMath’s DiffEq, Phase Plane are by default
calculated by Runge-Kutta, you can experiment with the computer
to see what happens, using different stepsizes, trying both small and
large h values.

(d) What happens if you use midpoint Euler? Again, you can experi-
ment with the computer, then write a theoretical support for your
observations.

6.2#9. For Example 6.2.5, with dz/dt = y, dy/dt = —z, show exactly

(a) when a pair of boundary conditions z(t,) and z(t,) will not specify
a unique solution (resulting in either an infinite number of solutions,
or no solution at all);

(b) when a pair of boundary conditions will specify a unique solution.

Hint: Use the fact that all the solutions are periodic with period 27.

Exercises 6.3 Sharks and Sardines

6.3#1. Complete the steps of the following calculations in Section 6.3:

(a) from (7) to (9) to show that F(z,y) in (10) is constant along a solu-
tion,

(b) to verify equation (11).

6.3#2°. Referring back to the sharks and sardines example of Section 6.3,
consider the function F' described by equation (10):

F(z,y) = |z|° |y|* e~ =+e0).

(a) Show that this function F' has a unique maximum at z = b/f, y =
a/c, and that it decreases to zero when (z,y) approaches the axes or
goes to infinity in either direction.

(b) What might this mean ecologically?

6.3#3. Let z(t) and y(t) represent the populations of two species, both
competing for the same food supply.

(a) Explain (interpret) how the following model represents such a system,
for positive constants a;, az, b1, ba, c1, c2; that is, by factoring out a
common factor, consider each population rate of change as a multiple
of the population size, e.g., (a1 — bjz — ¢1y)z. Then identify which
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(b)

(c)

(d)

(e)

6. Systems of Differential Equations

terms are caused by crowding, which by competition, and which rates
are independent of both.

dz/dt = a1z — biz? — 1y
dy/dt = agy — bay® — coxy.

Show that in the first quadrant of the zy phase plane the isocline
of horizontal slope is a straight line, the isocline of vertical slope
is another straight line, and that both of these lines have negative
slope. Argue why the following sketches show the four possible cases
for relative position of these isoclines:

I Iy III;REX IV%&\\
h\‘ X (R

If you consider dy/dz as (dy/dt)/(dz/dt), you have a first order dif-
ferential equation in x and y. The lines (isoclines) of horizontal and
vertical slopes act as fences in the zy-plane. For each case, I-IV,
mark each region determined by the isoclines with the general direc-
tion (right or left, up or down) of the zy slope, as determined by
whether dz/dt and dy/dt, respectively, are positive or negative. Then
draw trajectories that match these directions and those of the iso-
clines. Identify and label “funnels” and “antifunnels” in the direction
of increasing t.

This is a matching exercise: tell which of the above cases in (b) and
(c) represents each of the following possibilities:
A. The two species tend to an equilibrium where both survive.
. Species z surely becomes extinct.
. Species y surely becomes extinct.

Oaw

. In almost all cases, one of the two species will become extinct,
but which one depends on the initial condition. Which initial
conditions provide an exception?

Make computer examples for each of the four cases; three of them
occurred in Exercise 6.1#2(g), (h), (i). Find values (nonzero) of the
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parameters (a;, b;,c;) that will satisfy the axes intercepts for each
of the four possibilities; for each, provide a computer printout from
MacMath’s DiffEq, Phase Plane showing trajectories in the zy phase
plane. Draw arrows to indicate the direction of increasing ¢ on the
trajectories for both of these graphs. (Remember that trajectories in
the phase plane do not necessarily move from left to right.)

If possible, make a printout from DiffEq, 8D Views. Use the zyt
view to clarify your choice of trajectory directions in the phase plane;
explain exactly how the zt and yt views relate to the phase plane
trajectories.

6.3#4. For the system of differential equations,

(a)

(b)

()

dx dy
— =0.2-0. — = —-0.04
7 0.2 —0.09y, 7 0.04 zy

Sketch the zy phase plane with isoclines for horizontal and vertical
slopes. Add an arrow in each region bounded by these isoclines and
the axes to show the general direction (up or down, left or right) for
the trajectories.

Then, with the aid of the drawing below, showing the separatrices
of the saddle, make a clean sketch with these isoclines and a repre-
sentative set of trajectories, adding arrows to show the direction of
increasing t . Add arrowheads also for the separatrices.

This model represents warfare between conventional troops z (in
thousands) and guerilla troops y (in hundreds), with ¢ measured in
days. The conventional force sends in reinforcements and suffers sig-
nificant losses only at the hands of the guerillas. The guerillas are
confined to a single forest area and remain essentially invisible, so
the chances of hitting one decreases as their number decreases; fur-
thermore, the guerillas are cut off from reinforcements.

(i) Show how the equations account for reinforcements and combat
losses by labeling each term.



58 6. Systems of Differential Equations

(ii) Tell how many men per day are sent as reinforcements to the
conventional force.

(iii) If at the beginning of the campaign the conventional force num-
bers 2000 and the guerilla force 600, use the graph to tell which
side wins and why (mathematically!).

Exercises 6.4 Higher Order Equations

6.4#1. Express each of the following differential equations as a system of
first order differential equations:

(a) 2"+ 32" +52=0

(b) "+ 3tz’ =t

(c) 2" —tz" +3' — 5z +t2 =0
(d) " —zz' =0.

6.4#2°. A classical method for solving second order differential equations
with either the dependent or independent variable missing [i.e., either = or
t is missing from f(z”,z’',x,t) = 0] is to make a substitution y = dz/dt
which results in the original equation being expressable as a first order
equation in either

y and ¢, if f(:l:",:L",t) = f(y,y,t) =0,
or
y and z, if f(z”,z’,z) = 0, using
dy dz dy
n_oyar 4y
T a Y
so you end up with f(dy/dz,y,z) =0 .

In either case, this new equation is a first order equation in y; once it is
solved for y (as a function of ¢ in the first case, of z in the second), you can
get to = u(t) by solving another first order equation, dz/dt = y, which
comes from the original substitution.

You can apply this method to actually solve parts (a), (b), and (d) of
Exercise 6.4#1. Take note of the difference in character for each equation.
That of part (a) is autonomous (no explicit dependence on t) and lin-
ear, with constant coefficients, and will be solved by the general algebraic
methods of Chapter 7. If you make the substitution y = dz/dt, you find a
first order equation that can be separated in the variables (z,v) if you set
y = zv, so that dy/dz = zdv/dz + v (see Part I, Exercise 2 misc#2 about
“homogeneous” first order equations).
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The equation of part (b) is a second order nonhomogeneous linear equa-
tion, with nonconstant coefficients. The methods of Chapter 7 do not quite
apply, but the substitution y = dz/dt makes it a first order nonhomo-
geneous linear equation that is solvable (by the methods of Chapter 2,
Sections 3 and 4).

The equation of part (d) is not linear, so it would not be solvable by
the methods of Chapter 7; thus, this classical substitution can be a helpful
trick.

6.4#3. For the system
dz/dt =3z —y
dy/dt =z + 2y

(a) Replace by a second order equation in z.

(b) Replace by a second order equation in y. Does the result surprise
you?

(c) Prove that for any system of linear first order equations with constant

coefficients,
dz/dt = az + by
dy/dt = cx + dy

the second order equations in x and y are always exactly the same.

(d) Show that, despite the results of (c), the solutions to (a) and (b) are
not exactly the same. Explain. Hint: Show what happens with initial
conditions z(0) = 0,y(0) = 1.

6.4#4. Replace, where possible, the following systems of first order differ-
ential equations by a single equation of higher order.

(a) dz/dt = 3z — y?
a dy/dt = + 2y

(b) dz/dt = 3z — y?
dy/dt = z% + 2y

dz/dt = y + cos(z + y)
dy/dt =z —ysinz

dz/dt ==z
dy/dt = y sinz
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Exercises 6.5 Mechanical Systems with One
Degree of Freedom

6.5#1. Consider a particle with mass 1 moving on a line under the poten-
tial V(z) =z — 1.

(a) Show that the particle obeys the differential equation
" = —42®

and write this second order equation as a system of two first order
differential equations.

(b) Write down the energy function and show that the energy is constant
along solutions.

(c) Sketch some level curves of the energy function. One nice way is to
use MacMath’s Analyzer program to sketch the two y functions (one
positive, one negative) for each value of E.

6.5#t2. Consider a particle of mass m moving on a line under the potential
V(z) = 223 — 322.

(a) Show that the particle obeys the differential equation
mz" = —6z% + 6z,

and write this second order equation as a system of two first order
differential equations.

(b) Sketch the level curves of the energy function in the phase plane; find
and describe the equilibria of the motion.

6.5#3°. Consider a particle with mass m = 1, which moves with one
degree of freedom under the potential

V(z) = z* - 2%

(a) From a sketch of the graph of V(z) [or of 2V (z)], sketch in the phase
plane different level curves for the total energy. Find the equilibria.
Mark at least three different level curves corresponding to E(z,y) =
C, where C is negative, 0, and positive, respectively. Put arrows on
the curves to indicate in which direction the particle follows them.
(To make it clearer, use different colors for different trajectories).
Describe the various types of motion for the particle.

(b) What happens if a small friction term is added on, proportional to
the velocity? Sketch the corresponding drawing in the phase plane
and describe the equilibria and the motions.
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6.5#t4. For a spring with no friction, the potential energy is

U(z) = %k:ﬁ, k> 0.
Find the differential equation describing the motions of a bob of mass m at

the end of such a spring and draw the trajectories in phase space. Explain
why the trajectories look the way they do.

6.5#5. A mass m is suspended from a spring with spring constant k, as
shown.

[///// ]/

equilibrium position

J*__stretched position

Show that if we measure the position of the mass relative to the stretched
equilibrium position, we can rewrite the downward force,

F =mg — kx = mz”,

without the mg term and thus the force is dependent on position alone.

6.5#6. The force exerted by a spring on a frictionless cart at its end is
often modeled by F' = —k x where z is the displacement of the cart.

o

X

AN

Suppose that a better model is F = —k(z) z, where k(z) = e®. Let the
mass of the cart be m.

(a) Sketch the phase portrait of this system.

(b) If the cart is held still at a displacement of ! > 1 and then released,
what will its velocity be the first time its displacement is %?

6.5#7°. Find a function V(z,y) that is constant along solutions for the

system
dz

dz dy _
dt

= —(1 — 22 =
- (1 :B), dt

322 — 22%y.
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(Warning: This is truly an exercise in integration!)

6.5#8. Figures 6.5.3 and 6.5.4 show a saddle point at (m,0). Use an ap-
proximation of sin@ to show that this is indeed a saddle point of E =
y?/2 — kcos 6. Draw the graph of the trajectories near (,0).

6.5#£9. Consider the differential equation

2" = az — z°.

(a) Turn this equation into a system of two first order equations
dz/dt = f(z,y)
dy/dt = g(z,y)
and state precisely what the relation is between the two.
(b) Find a function E(z,y) which is constant on the trajectories.
(c) What do the level curves of E look like for @ > 0, a =0, a < 0?

(d) Classify the solutions of the original second order equation in the
three cases of part (c).

6.5#10°. Consider the dynamical system with one degree of freedom
o — av

ar=x
where V(z) = sinz + az? with o > 0 a parameter.

(a) Turn the equation into a system of first order equations.

(b) Find a conserved quantity for this system. Plot approximately the
level curves of this conserved quantity, for @ = 0.01, @ = 0.1, a = 0.5,
a=1.

(c) Describe the equilibria of the system as functions of a.

6.5#11. Confirm that the mathematical total energy function (18),
y?
E@,y) = 5~ K cos 0, (18)
is within a constant multiple of the physical total energy, kinetic energy

plus potential energy.

6.5#12. Consider the case of a bead constrained to move along a semi-
circular wire.
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(a) Show that if the bead is a distance s along the wire (from the bottom),
with z-coordinate z(s), the force ms” is
V'(z(s))

1+ (V'(2(5)))®

(20)

(b) Confirm all the steps of the derivation in Example 6.5.5 to show that

s" = —sin(s/¥).

(c) Confirm that in this case, with s = £6, that

d’U_ f’(0) : 3 = — — g
& AT GaE el f6)=-Kvi-(@0/m*

6.5#13. Consider the final remark of Section 6.5, that one may wonder
whether, given a function V(z), there is some other function W(z) such
that the motion on the wire with the shape of the graph of W, that is with

equation
o W)
V1+(W'(z(s))?
is precisely the same as motion under z” = —dV/dz. Clearly, one require-

ment is |dV/dz| < 1. Show that this is the only requirement.

Exercises 6.6 Essential Size, Conservation Laws

6.6#1. Find the essential size of the following systems:
(a) o' =z,y =2y + 22
(b) o' =zz,y =2y +22,2 =y

(c) o' =z,y =2y,2' = z?

6.64£2°.

(a) In Example 6.6.8, fill in all the steps (there are several) that lead
from equations (26) to (27).

(b) In Example 6.6.8, verify the statement that r will never leave the
plane spanned by r(tp) and r'(to).

(c) In Example 6.6.9, verify the statement that the magnitude of r xr' =
M, which is conserved, is in fact the angular momentum.
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Exercises 6.7 Two-Body Problem

6.7#1. For two bodies moving under Newton’s Universal Law of Gravita-
tion,
n_ Gma(xz —x;)
t lIx2 — x|
(33)
"_ Gml(xl - X2)
llx1 — %2

(a) Show that linear momentum is a preserved quantity.

(b) Using m; =1 x 105, ma = 2 x 10° and the initial conditions

[ 1 -2
xl(to) = 2 y xll(to) =|-1 y
-3 2
—4] 0
X2(t0) =(-1 ) x2l(t0) = {0 ’ tO = 17
0 0

show that the position vector

mi1Xy + moXo
my + mo

for the center of mass can be written as X(t) = a+tb, hence showing
that the center of mass moves at constant velocity in a straight line.

(c) After translation to the center of mass, X, show that r = x; — X

satisfies r
r=-K—.
[Ix(13

(d) We could set r; = x; — X and r; = x3 — X. Show that then

1 1 2 1
2 1 2 1)-

6.7#2°. For three bodies we would have three second order differential
equations in x;, X2,%3 . The center of mass is defined by

X = m1X; + maeXa + m3x3
my + mg +mg
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(a) Show the conservation of linear momentum for three bodies:

myxy + maxy + maxj = 0.

(b) How does the center of mass move?

6.7#3. Show that in the two-body problem the level curves of the total
energy E look like Figure 6.7.3, using the graph of the “potential” W (r)
given in Figure 6.7.2.

6.7#4.

(a)° Study the motion under a central force

instead of the gravitational force

kr

r2r
of the two-body problem of Section 6.7.

Write down the equations similar to (35) through (39) in Section 6.7.
Make the drawings similar to Figures 6.7.2 and 6.7.3. Explain why
there is no bounded motion.

(b) More generally, if the central force is
kr

re o’

for which a can we have bounded motions?
6.7#5.

(a) Prove that Kepler’s Second Law is equivalent to conservation of an-
gular momentum. Note that both of these statements are valid in any
central force field, not just one with an inverse square law such as the
gravitational field.

(b) Use MacMath’s Planets program to illustrate your examples.

6.746.
(a) Confirm equation (41) in the derivation of Kepler’s First Law by

integration of
g M
dr  r2,/2(E+K/r — M2/2r2)

(41)
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(b) Confirm by integration of (41) that
(M/r — K/M)

V2E + K2/M?’

0 = arc cos (42)

6.7#7. Show that
p

= 1+ ecost

is the equation of an ellipse, as claimed in the proof of Kepler’s First Law.
Recall that an ellipse is the set of points such that the sum of the distances
to the foci is constant (= 2a).

6.7#8. The constant of gravity G is (6.673 £ 0.003) x 10~8cm?3/(g sec?).
Note, incidentally, that it is not known with great precision.

(a) If a body with small mass m; rotates around one with large mass m,
with period T and semi-major axis a, give a formula for ms in terms
of G, T, and a. How sensitive is this formula to the assumption that
one mass is negligible? For instance, how wrong is it if m; = my/4?

(b) Assume that the mass of the earth is negligible with respect to the
mass of the sun. Given that the distance from the earth to the sun
is approximately 1.496 x 10!3cm, and that the earth revolves around
the sun in 1 year (1 year = 3.156 x 107 sec), what is the mass of the
sun?

(c) Assume that the mass of the moon is negligible with respect to that
of the earth. Knowing that the distance of the moon to the earth is
approximately 3.85 x 10!°cm, roughly what is the mass of the earth?

6.7#9. A recent practical application of the two-body problem was cal-
culation of the mass of Pluto, from the 1978 discovery that Pluto has a
moon:

(a) Pluto was discovered in 1930, as a result of perturbations in the orbit
of Neptune. In 1978, astronomers J. Christy and R. Harrington dis-
covered that Pluto has a satellite, which they called Charon. Charon
appears, from the earth, to have an orbit with a radius of about
20,000 kilometers about Pluto, and a period of about 6 days and 10
hours. If the orbit is circular, what is the mass of Pluto?

Remark. We have asked some astronomers why the orbit is assumed
to be circular. They answer that a very eccentric orbit leads to large
tidal effects, which would presumably either break up the satellite,
or at least absorb enough energy to bring it to a more circular orbit.
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(b) The number found in part (a) is about 100 times too small to explain
the irregularities in the orbit of Neptune. Assume rather that the
orbit of Charon is very elliptical, with the long axis pointed toward
the earth. How eccentric would the orbit need to be in order to bring
the mass up to the level required to explain the irregularities?

6.7#10. We are collecting exercises derived from playing with MacMath’s
Planets program and welcome more examples.

Exercises 6.8 Flows

6.8#1. Use a phase portrait program like MacMath’s DiffEq Phase Plane
to explore the flow of different rectangles for equations A of Example 6.8.2.
For example, some possibilities are shown in the following diagram for var-
ious positions of a rectangle like the original one (darkest) of the example:

3.0l

(i) Show the flow for the solid rectangles symmetric to the original rect-
angle.

(ii) Explain the similarities and differences in the results.

(iii) Predict what will happen to the dotted rectangles and verify with the
computer.

(iv) Conjecture and explain what happens geometrically to the flow in
general, globally, for this differential equation. One way to do this is
to imagine the phase plane filled with little squares and think about
what will happen to them all as you take a step in t.

6.8#2. Repeat Exercise 6.8#1 for equations B of Example 6.8.2.

6.8#3. Repeat Exercise 6.8#1 for equations C of Example 6.8.2. Note
that the behavior of this flow is far less obviously predictable than those
of equations A and B; this is because the dependence on initial condition
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really rules this flow! You should find several different behaviors to explain
in this example. This system C is equivalent to the famous one-dimensional
equation dr/dt = x? — t of Part I of this text. Does that help to explain
your results?

6.8#4. For each of the cases A, B,and C of Example 6.8.2, draw or compute
and print the direction field with a number of trajectories. Then explain
what additional information you get from the flow that you do not get from
the direction field.

6.8#£5. Verify that the formula and the domain in Example 6.8.4 are cor-
rect.

6.8#6°. Give a formula and the appropriate domain for the flow of the
following equations:

=1} 2 =z-z
6.84#£7. For the following differential equation, an explicit formula for the
flow cannot be given in elementary terms. Sketch the domain of the flow,
and give a formula for the domain using definite integrals.

7' = z? — sin(zx).

6.8#8. This exercise is quite a bit more challenging than the previous ones.
Try to sketch, in R3, the domain of the flow from equations C of Example
6.8.1. In particular, describe how this domain is related to the exceptional
solution of the equation. How does this domain intersect the plane z = a
for a small (say a = —5), or for a large (say a = 5)?
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Systems of Differential
Equations

The only large and important class of systems of differential equations that
has been extensively analyzed is that of linear differential equations, which
we begin to study in this chapter. We will give examples in Section 7.1 and
the formal (simple) side of the theory in Section 7.2. The more substan-
tive theoretical results (for linear equations with varying coefficients) are
deferred to Chapter 12 in Part III.

The class of linear differential equations for which we can in general
find ezplicit solutions is restricted to those with constant coefficients. The
remainder of this chapter will be devoted to these: how to compute and
analyze their solutions. Chapters 8 and 9 deal with important facts that
extend from linear to nonlinear differential equations; Chapters 10 and 11
(in Part IIT) will work out interesting classes of examples.

As we will see, the theory for constant coefficients is largely linear algebra.
When you need to review basic linear algebra operations, consult Appendix
L, Sections L1-L6. The related computer programs for finding eigenvalues
and eigenvectors are elaborated in Appendices L7 and LS.

7.1 Linear Differential Equations in General

A linear differential equation for a vector function x(t) is one that can be

written as
x' = A(t)x (1)

or, more generally,
x' = A(t)x + g(t), (2

where A is a matrix and g is a vector, both of which can be filled with
functions of ¢. The word “linear” means with respect to the dependent
variable x; the entries of the matrix function A(t) and the vector function
g(t) need not be linear functions of the independent variable ¢.

Example 7.1.1. The system
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which was introduced in Examples 6.1.2, 6.1.3, and 6.2.5 and is one of the
basic linear equation examples that you will see often, can be written

JRER[R

Example 7.1.2. The system

o =tlr—y
y = (Int)z + €

is also linear in z and y and can be written

Hig b R R
X = A x + g().

where the matrix A as well as the vector g depends on ¢, but their entries
are in fact not linear functions of t. A

Example 7.1.3. The system of equations

' =y+azy
‘=z 4P

is not linear. It can be written

HEHIH
HE R

but however you write it, the matrix A must contain entries in the depen-
dent variables x and y. A

or as

The case of linear differential equations where z is one-dimensional has
been extensively treated in Chapter 2. We present here two archetypal
examples in two dimensions:

Example 7.1.4. The damped harmonic oscillator. Suppose a mass m
is suspended from a spring with restoring force F' and damping constant
k, as shown in Figure 7.1.1. If z denotes the displacement of the mass



7.1. Linear Differential Equations in General 71

from equilibrium and y its velocity, then it obeys the system of differential
equations

=y
my = —Fz — ky, (3)

which can be written alternatively as

2= [ ] ] @

M
lx
FIGURE 7.1.1. Mass on spring.

You may be more familiar with the same problem in the form of a single
second order differential equation,

mz" + kz' + Fz =0, (5)

which you can obtain by differentiating the first equation of system (3) and
substituting " = y’ and 2’ = y into the second equation of the system.
A

Exercise 7.1-7.2#5 elaborates on Example 7.1.4 for the case of varying
rather than constant mass (a water bucket that leaks).

Example 7.1.5. The driven RLC circuit. Consider the electrical cir-
cuit of Figure 7.1.2, consisting of a resistor with resistance R, a capacitor
with capacitance C, an inductor with inductance L, and a generator which
furnishes a potential drop f(t).

resistor
AVAVAVAVAY,

@ generator —_—— capacitor
inductor L

B

FIGURE 7.1.2. Electric circuit.




72 7. Systems of Linear Differential Equations

Then, as you have probably seen in physics or engineering courses (and
as we shall show in Chapter 10 of Part III), the voltage drop V() across
the capacitor and the current I(t) through the inductor satisfy the system
of equations

cv' =1
LI' =-V — RI + f(t),

which can be written alternatively as

vl [ o 1/¢]([Vv 0
7T = e el (] L ©
Again, you may be more familiar with the equation in second order form:
LQ" + RQ' +(1/0)Q = £(¢), (7)

where Q = CV is the charge on the capacitor. A

Notice that the two equations (5) and (7) of Examples 7.1.4 and 7.1.5 are
almost the same; in fact the equation describing a forced damped harmonic
oscillator would be precisely the same as the equation describing the driven
RLC circuit. These models will be greatly expanded in Chapters 11 and 10
of Part III, respectively.

Equations like (5) and (7) appear constantly in physics and engineering,
both in their own right and as approximations to other more complicated
equations.

NONLINEAR EQUATIONS

Certainly not all systems of differential equations are linear. Nearly every
example of such a system that was discussed in Chapter 6, such as

¥’ =ar—bzxy

i. the predator-prey model: Y = —cy+duzy,

ii. the simple pendulum: 6" = —K sin#,
iii. the derivation of Kepler’s First Law: 1" = —K/r+ M?/r3,
is not linear, because terms like zy, sin 6, and ™ (for m # 1) are not linear

in the variables
T 0 r
=[] [o] o [7]:

respectively, that underlie each of these examples.
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HIGHER ORDER DIFFERENTIAL EQUATIONS

Very often those systems of differential equations that are linear appear
in the form of higher order linear differential equations [as defined in the
Introduction, equation (5)], like this section’s equations (5) and (7), rather
than as systems of first order differential equations. However, the method
of Section 6.4, translated into the language of matrices, easily changes a
higher order equation into a system of first order equations.

Example 7.1.6. The equation z/” — 3z” + tz’ — z + t2 = 0, of Example
6.1.6 in Section 6.4, can be written as

0 10 0
x=|0 0 1|x+]| 0],
1 -t 3 —2

where the desired solution is £ = u(t) = z;(t). [Recall that z2(t) = v/(¢)
and z3(t) = u’(t).] A

Example 7.1.6 illustrates the following procedure for converting an nth
order linear differential equation to a system of first order linear differential
equations in matrix form:

(1) Solve the original nth order equation for (™.

(2) The bottom line of the matrix A(t) is formed by the coefficients of
z,z’,x",...,2("1) in that order; the bottom entry in the vector g(t)
is the extra function of ¢.

(3) Above the bottom line of the matrix, all entries are zeroes except in
positions just above the main diagonal, where they are ones.

If you have already run into higher order linear differential equations
such as (5) and (7), then you are probably also familiar with the cookbook
method for their solution:

Recipe 7.1.7. To solve the equation
az” + Bz’ + vz =0, (8)

substitute u(t) = e™ into equation (8), giving (am? + fm + v)e™ = 0.
Since e™ does not vanish, we get the characteristic equation

am? + fm+v=0. (9)

There are three cases to consider:



74 7. Systems of Linear Differential Equations

(a) B%? — 4oy > 0, so the quadratic equation (9) has two real roots m;
and my. Then the general solution is

u(t) = C1e™*t + Coe™2t.

(b) B? — 4ay < 0, so the quadratic equation (9) has two complex roots
uxio. Then the general solution is

u(t) = e**(Cj cos ot + Cy sinot).

(¢) B% —4ay =0, so the quadratic equation (9) has a single double root
m. Then the general solution is

u(t) = e™(Cy + Cat).

Most of the remainder of this chapter is devoted to understanding this
recipe and its generalizations beyond two-dimensional systems of linear
differential equations.

7.2 Linearity and Superposition Principles

In exact analogy with the one-dimensional linear differential equations that
we studied in Sections 2.2 and 2.3 in Part I, a linear equation of the form

x' = A(t)x + g(t)

is called homogeneous if g(t) = 0 and nonhomogeneous if g(t) # 0. In the
latter case, the equation x’ = A(t)x is called the associated homogeneous
equation.

There are a certain number of important algebraic properties of linear
differential equations, concerning sums of solutions and so forth. They take
a bit of time to state, but they are very easy (which does not mean they
are not important).

These properties may remind you of similar statements about linear (non-
differential) equations and their associated homogeneous equations. This is
not surprising: they are somehow the essence of linearity. At the end of this
section, we will give the general framework, which includes both.

Let A(t) be an n X n matrix with entries continuous functions of ¢.

Theorem 7.2.1 (Superposition of solutions for homogeneous equa-
tions). If u;(t) and uy(t) are two solutions of the homogeneous linear
differential equation x' = A(t)x, then any linear combination of those so-
lutions

ll(t) =Ciu (t) + Cauz(t),
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for any two numbers C; and Ca, is also a solution.

Proof. Just plug u(t) = Ciu;(t) + Czuz(t) into x’ = A(t)x and rearrange
terms. 0O

Example 7.2.2. Consider ="’ + 3z’ + 2z = 0. You can obtain from Recipe
7.1.7 that two solutions are = u;(t) = e~ and = = u2(t) = e~% and that

u(t) = Cre™t + Che™2 (10)

is also a solution, or, if you prefer to work with a system of first order
equations, by the algorithm of Section 6.4,

HEl ]

—2t
Two solutions are u;(t) = [_ee_t] and uy(t) = [_628_%], as you can

confirm by substitution, and so also is
et =2t
u(t) = Clul(t) + Czllz(t) =C [_e_t] + Csy [—26_2t:| .

Note that the top line of the vector solution matches the expression you
got for z = u(t) in (10). But it is not obvious that this includes all of the
solutions. A

In order to show that indeed we have all solutions for a linear differential
equation like Example 7.2.2, we shall wait until Theorem 7.4.12 when we
will have a formula showing the existence of solutions. You can show in
Exercise 7.2#6 that linear differential equations with constant coefficients
automatically satisfy a Lipschitz condition, so from the Fundamental In-
equality 6.2.2 you will also have uniqueness.

Theorem 7.2.3 (General solution of nonhomogeneous equations).
If uy(t) is any (particular) solution of a nonhomogeneous differential equa-
tion

x' = A(t)x + g(t), (11)
then a vector function u(t) is a solution of (11) if and only if u(t) can be

written
u(t) = up(t) + un(t),

where up(t) is a solution of the associated homogeneous equation

x' = A(t)x.
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Proof. We show that u(t) = up(t) + u,(t) is a solution by plugging in:
(up(t) +un(t))’ = A(t)up(t) + A(t)un(t) .
e e N e
g(t) 0

Then we show that the solution must be of form u(t) = u,(t) + ux(t) by
proving that u(t) — u,(t) satisfies the homogeneous equation A(t)x = 0:

(u(t) — up(t))" = u'(t) — up(2)
= A(t)u(t) + g(t) — (A(t)up(t) +&(t))
= A(t)(u(t) — up(t)). o

As with the linear equations in one dimension discussed in Sections 2.2
and 2.3 in Part I, the usual ways of finding a particular solution u,(t) to
a nonhomogeneous equation are the methods of undetermined coefficients
(an educated guess) and variation of parameters. We shall use the first of
these here and discuss the second for higher dimensional systems of linear
equations later, in Section 7.7.

Example 7.2.4. Consider

=12 <] Bl )

A particular solution to the entire nonhomogeneous equation is

w,(t) = 0.1 sint — 0.3 cost
PA7 7 0.1 cost + 0.3 sint

as you can confirm, and a solution to the associated homogeneous equation
was found in Example 7.2.2. Therefore,

0.1 sint — 0.3 cost et e~ 2t
u(t) = [0.1 cost+ 0.3 sint] +G [—e_‘] +C [—26—2t]

for any C; and C; is a solution to the original equation. A

Example 7.2.4 is the system that represents =’ + 3z’ + 2r = sint, so,
as in Example 7.2.2, you can confirm that a solution to this second order
equation is read from the top line of the vector equation:

u(t) = 0.1 sint — 0.3 cost + Cre”t + Che™ 2.

Theorems 7.2.1 and 7.2.3 are both special cases of a more inclusive the-
orem:
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Theorem 7.2.5 (Superposition of solutions for nonhomogeneous
equations). If u;(t) and uy(t) are solutions of two nonhomogeneous linear
differential equations

x' = A(t)x+gi1(t) and x' = A(t)x +ga(t),

respectively, with the same associated homogeneous equation x’' = A(t)x,

then
u(t) = uy () + ua(t)

is a solution of the equation x’ = A(t)x + g1 (t) + g2(t).
Proof. Just plugin. 0O

Example 7.2.6. Consider

H i | Y

A particular solution to the nonhomogeneous equation

!
T 0 1] |z 0
[yJ - [—2 —3] [y] " [e‘]
l et
is, as you can confirm, uz(t) = [g e‘]; in Example 7.2.4, we found that
6

the solution to the nonhomogeneous equation

SR | H P

0.1 sint — 0.3 cost]

is
u,(t) = [O.l cost + 0.3 sint

Therefore,

_[0.1sint —0.3 cost + (1/6)et et e 2
u(t) = [0.1 cost+ 0.3 sint + (1/6)e O t| +Co —2e72%

is, for any C; and Cs, a solution to the whole thing. A

In the language of linear algebra, the above results may be restated as
follows:

Theorem 7.2.1 says that the set of solutions of a homogeneous
linear differential equation forms a vector space.
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Theorem 7.2.3 says that the set of solutions of a nonhomo-
geneous linear differential equation is an affine space, i.e., the
translate of the vector space of solutions of the associated ho-
mogeneous equation by any solution of the nonhomogeneous
one.

Now we will relate these statements to the more standard statements
from linear algebraic equations. Even if you have never seen these state-
ments exactly, they should be clear.

Let M be a matrix (not necessarily square).

Statement A. Any linear combination of solutions of Mx = 0 is a solution.

Statement B. If x, is a solution of Mx = a, then a vector x is another
solution if and only if x = x, + x. with x. a solution of the associated
homogeneous equation Mx = 0.

Statement C. If x; is a solution of Mx = a; and x; is a solution of
Mx = ag, then x; + X5 is a solution of Mx = a; + as.

Clearly these statements are parallel to Theorems 7.2.1, 7.2.3, and 7.2.5.
The explanation of this fact is linearity.

Let V and W be vector spaces and T:V — W a linear transformation.
Then we have the following three linearity statements:

Statement 1. Any linear combination of solutions of T'v = 0 is a solution.

Statement 2. If v, is a solution of T'v = a, then a vector v is another
solution if and only if v = v, + v, with v, a solution of the associated
homogeneous equation Tv = 0.

Statement 3. If v; is a solution of Tv = a; and vy is a solution of
Tv = ay, then vy + v3 is a solution of T'v = a; + as.

Statements A, B, and C about systems of linear algebraic equations are
the special case of the linearity statements 1, 2, and 3, where T is the linear
transformation R™ — R™ represented by the matrix M.

How about the differential equations of Theorems 7.2.1, 7.2.3, and 7.2.5?
What are the vector spaces and the linear transformation in that case?
Well, the answer is a bit more unpleasant.

The space V' is the vector space of continuously differentiable
vector functions f(t) defined for t € I, where I is the interval
on which A(t) and all the g(t) are defined.

W is the space of continuous vector functions on the same in-
terval I.
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The transformation T f — f'(t) — Af.

Of course, the spaces V and W are infinite dimensional, and so are a bit
unfamiliar, but all the results above are so formal that the nature of the
vector space involved is irrelevant.

Such a linear transformation T:f — f'(t) — Af is called a differential
operator (more accurately, a vector first order differential operator). Of
course, the granddaddy of all differential operators is the derivative D, and
it has close relatives D2, D3, ... (the second, third, ... derivatives). Another
way of writing the differential equation

az’ +bz' +cx =0

is
(@aD?+bD +c)x = 0.
Following this method of notation, all of the theory of linear differential

equations can be rewritten in terms of differential operators. We will not
do this, although we will use the language when it seems convenient.

7.3 Linear Differential Equations with Constant
Coefficients; Eigenvectors and Decoupling

There is no formula for solving linear differential equations if the coeffi-
cients are not constant. In fact, it can be proved that the innocent looking
equation '’ —tz = 0 has no solutions, other than the zero solution, that can
be written in terms of the elementary functions, or their indefinite integrals
ad infinitum. (Reference: Theorem 6.6, p. 43 of Kaplansky’s sixty-seven
page book on Differential Algebra.)

In fact, the only substantial class of systems of equations that can be
solved in elementary terms is the class of linear differential equations with
constant coefficients. As a result, and also because of their intrinsic im-
portance, these equations have traditionally been the bread and butter of
differential equation courses. Ours will not be different; they will play a
central part in our development.

The following theorem is really the most important result about linear
differential equations with constant coefficients. It says that the component
of a solution in the direction of an eigenvector evolves independently of
everything else and obeys a linear differential equation in one variable,
about which we know just about everything from Chapter 2 in Part I. This
phenomenon of being able to look at components independently is called
decoupling.

Accordingly, the theory of linear differential equations reduces (almost)
to the algebraic theory of eigenvalues and eigenvectors. This theory is fairly
simple, but when it comes to actually computing eigenvalues, the going
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gets stickier. You can review the essentials of eigenvalues and eigenvectors
in Appendix L6; actually finding them will most conveniently be done by
the computer using the QR method described in Appendix L7 or Jacobi’s
method, described in Appendix L8.

Theorem 7.3.1 (Evolution in the direction of an eigenvector). Let
A be an n X n matriz, and suppose v is an eigenvector of A, with Av = Av.
Then

u(t) = ae*t-tly (12)

i3 the solution of x' = Ax with initial condition u(ty) = av.

Proof. As always, when an explicit solution of a differential equation is
proposed, it is a straightforward matter of differentiating it and plugging
the derivative into the equation to check whether or not it is correct. Let
us compute

%(u(t)) = da ettty = g ert-t) (\y) = ae?t~t) Ay
= A(aert—t)y) = Au(t).
It is easy to verify that the initial condition is satisfied. O

Do not be fooled by the extreme simplicity of the above derivation. It
does not have to be hard to be important. That easy computation is an
important service of mathematics to applied science.

Theorem 7.3.2. Let A be an n X n matriz of constants, and suppose
V1,...,Vm are eigenvectors of A, with Av; = A\;v;. Then for the differential
equation x' = Ax, if the initial condition is a linear combination of these
V,"S,

m
u(to) = Zaivia
i=1

the solution is ™
u(t) = E a; ettty (13)
i=1

Proof. This follows from Theorems 7.2.1 and 7.3.1. O

Theorem 7.3.2 is of particular interest when the v;’s form a basis of R™
or C", for in that case formula (13) gives all solutions to x’ = Ax, since
any initial condition can be stated as a linear combination of eigenvectors.
In real life, this is the typical situation: in general, an n x n matrix will
have n distinct eigenvalues and therefore provide an eigenbasis (a basis of
eigenvectors) of R™.
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Theorem 7.3.3. Let A be an n X n matriz, and suppose vi,...,vy, form
an eigenbasis of R™, with Av; = A\;v;. Then for the differential equation
x' = Ax, the initial condition can be written

n
u(to) = Y aivi,
i=1

and the solution is n
u(t) = Z a; ettty (14)
i=1

The proof has been covered in the paragraph preceding the theorem.

CHANGE OF BASIS

Theorem 7.3.3 permits another point of view. Its key point is that
in a basis of eigenvectors, the coordinates evolve independently.

This statement is equivalent, in the language of change of basis, to the
statement that

in a basis of eigenvectors, a system of linear differential equa-
tions with constant coefficients will decouple.

We shall now restate and rederive Theorem 7.3.3 in this language of
change of basis.

Suppose that vy,..., Vv, is a basis of R® (or C™) made up of eigenvectors
of A with corresponding eigenvalues A;,...,\,, as above. Let P be the
change of basis matriz, as described in Appendix L2, so that

1 .
P=|vi,ve,...,Vva|, and P71AP = 0 0,

| | N

the diagonal matrix with the eigenvalues \; along the diagonal. This is
why, when the eigenvectors of A form a basis for R™, the matrix is said to
be diagonalizable.

Theorem 7.3.4 (Decoupling x’ = Ax by change of basis). Consider
the differential equation x' = Ax in R™. If vy,...,v, are eigenvectors of
A forming a basis, with P as the change of basis matriz composed of the
v; as columns, and X = P~1x, then

i. each entry &; of x satisfies the scalar differential equation

~/ ~ .
T; = Aili;
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ii. the solution x = u(t) to the original differential equation can be writ-
ten in terms of the initial condition x(to) as follows:
eri(t—to) 0
x(t) = Px(t) = P - P7'x(to).  (15)

e/\n(t—io)

Proof. If we define X = P~1x, then the entries of X are the coordinates
of x with respect to the basis vy, ..., v, (see Theorem L2.22 in Appendix
L2). Now we are ready to prove the theorem:

i. Multiply the equation X’ = Ax by P! on the left and introduce a
factor of PP~! = I between A and x, giving

P~ x' = (P7'AP)(P~'x),

or
%' = (P 'AP)x.

Since P~! AP is diagonal, this last equation breaks up into
F=ME1, ..., T = Andn, (16)

a completely decoupled set of ordinary first order linear differential equa-
tions.

ii. Each of the set (16) of decoupled equations can be explicitly solved as
in Section 2.2 in Part I, giving

.’i‘,; (t) = 6)“ (t—to)i‘i (to).

Since %(t) = P~!x(t), then X(t9) = P~'x(to), and putting all these solu-
tions together in vector form gives equation (15). O

Remember that Theorem 7.3.4 is simply a restatement of the message of
Theorem 7.3.3. We shall solve a sample linear differential equation using
both theorems.

Example 7.3.5.

T 010 T
y| = 0 01 y
z -5 5 1 z

To solve this equation, we first find eigenvalues and eigenvectors. The char-
acteristic polynomial is

A3+ 224505,
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so the eigenvalues are 1 and ++/5, and corresponding eigenvectors are

1 1 1 1 1 1
11, |v5], | -v5|, with P=1]1 V5 —5
1 5 5 1 5

i. Solution by straight eigenvectors. The general solution, by Theorem
7.3.3, is

1 1 1
aet |1| +beV® | V5| +ce VB [ —v5]. (17)
1 5 5
a
Suppose we know the initial condition as x(0) = | 8 |. Then in order to
y

find a, b, and c in solution (17), we must solve the system of linear algebraic
equations

[ a
gl=pP|b]. (18)
Y C

ii. Solution by change of basis. Theorem 7.3.4 gives the following, in terms
of equation (15):

e 0 0 a
xt)=P|0 e 0o [P']|A], (19)
0 0 e V3 v

which you can confirm (Exercise 7.3#9) gives the same result as equations
(17) and (18). A

It is interesting to compare the amount of work necessary to solve Ex-
ample 7.3.5 by the two theorems. In both cases, almost all the work is the
same—you have to find all the eigenvalues and eigenvectors. But at the
end, the first method, with equation (17), requires solving a (nondifferen-
tial) system of equations (18); the second method given by equation (19)
requires computing the matrix inverse of P.

The first method is easier if you are solving just for a single set of initial
conditions. But if you are going to be solving the problem for a number
of different values of a, 8, and 7, the alternative second method gives an
actual formula which will save a great deal of computation.

CoMPLEX EIGENVALUES AND EIGENVECTORS

Up to this point, we have been working as if everything were in real num-
bers. Actually, there is no difference if the eigenvalues are complex:
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Example 7.3.6. We shall solve the basic equation of Example 7.1.1,

li
[-’”] =9 ‘1] m , with initial condition |~°| at t=0.
y 1 Of |y Yo

First we find the eigenvalues and eigenvectors. The characteristic poly-
nomial is A2 + 1, so the eigenvalues are +i and corresponding eigenvectors

) 4] e 11

The matrices P and P! are

il S| IR e b it

and we can observe that indeed
1 _ (172 /2] [0 -1 1 1 [+ O
P AP‘[1/2 —i2] (1 o) =i i T o i

the diagonal matrix of eigenvalues.
By the change of basis solution (12) of Theorem 7.3.4, we get

ol =l 1o A e 2] )

B [1/2(e“+e—“) i/2(e“—e‘“)] [zo] _ [cost —sintjl [a:o}

T —i/2(et —e) 1/2(e* +e7 %) | |yo sint  cost| |yo
A

Thus, Example 7.3.6 shows that computations with complex eigenvalues
will yield, if painfully, terms with trigonometric functions in them.

FINDING EIGENVALUES AND EIGENVECTORS

The method we have just explained in this section is the most important for
solving x’ = Ax; the main task is to find the eigenvectors and eigenvalues
of A. In principle, you could try to do this by computing the characteristic
polynomial of A, finding the eigenvalues as its roots, and solving for the
eigenvectors by solving linear equations.

It turns out that as soon as the matrix A is at all large, this method is
quite impractical. First, computing the characteristic polynomial is quite
laborious, even if something smarter than the formula for the determinant
is used. Above, we spoke rather glibly about “finding the roots” of the
polynomial, but it is not obvious how to do this (and in fact it is quite
hard).

So we turn to the computer, but if we were to work directly with find-
ing the roots of the characteristic polynomial, we would find that in the
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computation all precision is lost, and the coefficients of the characteris-
tic polynomials are known only approximately. In addition, the errors in
the coefficients may lead to much larger errors in the roots. (See Exercise
7.3#10.)

We have two other computer approaches, the QR method and Jacobi’s
method, that alleviate some of these problems (although finding eigenvec-
tors and eigenvalues really is hard, and nothing will make it quite simple).
Appendices L7 and L8 respectively describe the QR method (and its sim-
pler cousin, the power method), and Jacobi’s method (which only works
for symmetric matrices).

7.4 Linear Differential Equations with Constant
Coefficients; Exponentials of Matrices

The eigenvector method of Section 7.3 has some limitations. If there are
not enough eigenvectors to form a basis of R™ or C", then there is an
alternative approach.
Just as, from Section 2.2 in Part I, the solution of ' = az with u(0) = xo

is

u(t) = ez,
we shall see (in Theorem 7.4.12) that the general solution to x’ = Ax with
u(0) = xo is

u(t) = e*x. (20)

This requires the exponentials of matrices, to which we now proceed. How-
ever, the reader should not think this is a panacea—it just shifts the prob-
lem from solving differential equations to computing exponentials.

Definition 7.4.1 (Exponentials of matrices). If A is a square n x n
matrix, we define

Ar A3 A™
A _ —
e _I+A+§+§_+... E —_ (21)

First let us give a few examples.

Example 7.4.2.

212 813
eu=I+tI+T+T+'“=CtI, (22)
since I = I? = I3 = - ... In particular, if t = 0,

eOf = 1 = 04, A (23)
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Example 7.4.2 is a special case of Example 7.4.3:

Example 7.4.3. If A is a diagonal matrix with diagonal entries Ay, ..., A,,
then et4 is also diagonal, with entries e**, ..., et*~ along the diagonal. A

Example 7.4.3 is important, because it shows the main way in which
exponentials are actually computed, as we shall see in Theorem 7.4.13.

The next example is less familiar but actually easier. It illustrates a phe-
nomenon that occurs for exponentials of matrices but not for exponentials
of numbers; that is, if there exist polynomials in the exponent, then e*4
may have polynomial terms and the series may be finite.

Example 7.4.4.

Fdpaepaeapge-i

01 0 0 00 01

because, as you can confirm 0 ¢ m— 00 for m > 2 A
)85 "o o] T o of =<

When real matrices have complex eigenvalues, sines and cosines make
their way into the exponential. This is hardly surprising, since €*® = cos 8+
isin @, but please observe that complex numbers are never mentioned in the
next example:

Example 7.4.5.

0 -1

1 73]

1 ofl_|10 0 -1 To(-1 0], 15] 01

e ”[o 1]“[1 0]+21t o -1 T3 |1 ot
__|cost —sint
~ |sint  cost

from the power series for sine and cosine. Note that this calculation indeed
gives the solution for the differential equation of Example 7.3.6 that you
could expect from equation (20). A

Remark. Since e*4 is a matrix, the order of multiplication must be
(e!4)(zo), i.e., (matrix) (vector); the opposite order makes no sense. More-
over, since e*4 is a matrix function of t, it can be differentiated with respect
to ¢: the derivative of a matrix function M (t) of ¢ is another matrix M’'(t)
of the same size, where each element M’(t);; is the derivative of the corre-
sponding element M(t);;.
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PROPERTIES OF e4

Formula (21) defining e for an n x n matrix A is exactly the same as
the power series for the exponential of a number; we may hope it will
have similar properties. This is true up to a point, as we shall show in the
following properties:

Property 7.4.6 (Convergence). The series defining e® converges for
every A.

Proof. If sup, ; |Ai,j| < k and the matrix A is n x n, then it is can be
shown by induction that

|(Am)i,j| S nm—lkm,

because from the formula for multiplication of matrices, each multiplication
is the sum of n terms. Therefore,

o0 Am i,‘
Y @

m=0

and we see that the series does converge by the comparison test. O

The fundamental property of the exponential function is e3+® = e%eb. So
we might hope that for any two n x n matrices A and B, we would have
eAtB = e4eB . Unfortunately, this is false in general, and this is the reason
why systems are more difficult than scalar equations. If the two matrices
commute, which means that the order of multiplication does not matter,
then the hoped-for result is true:

Property 7.4.7 (Addition formula). If A and B are two n x n matrices
that commute, so that AB = BA, then

etef = eAtE, (24)

Proof. Let us look at the two series developments, carefully keeping track of
the order of multiplication (not just using the binomial expansion formulas):

i e(A+E) =I+(A+B)+%(A+B)2+%(A+B)3+-~-
=I+(A+B)+%(A2+AB+BA+B2)

+ %(A"’+AzB+ABA+AB2+BA2+BAB+BZA+B3)
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i, edeB = (I+A+%A2+%A3+---) (I+B+%Bz+%B3+---)
=I+(A+B)+%(A2+2AB+32)
+%(A3+3A2B+3A32+B3)+~-- .
Proceed until it is clear that if AB = BA, the series are equal. O

The most important thing to remember about Property 7.4.7 is the ne-
cessity, which you see in the proof, that the matrices commute. In general

(when AB # BA),
eleB £ eAtB,

0 -1 00
Example 7.4.8. LetA—t[O 0 andB—t[1 0

that AB # BA and that A2 = B2 = 0. We shall show here that e4e® #
eAtB:

SR R K B (O A

]. You can confirm

0 o 10
_ 0 -1 2[-1 0] _[1-¢ -t
—I-i-t[1 0}+t [ 0 0]—[ ¢ 1]. (25)
From Example 7.4.5,
t[o —1]
A+B _ 1 0| _ [cost —sint
€ =¢ - [sint cost] ) (26)

Clearly, these results, (25) and (26), do not match (although we do get the
same first terms in the power series!), so e4e? # eA*B in this case, where
AB # BA. A

Property 7.4.9 (Differentiation). We have the following formula for

the derivative of et4:

%(em) = Aetd. (27)

Proof. By the definition of derivative,
d sa_ v (1N t+h)a _ _ta
at® ﬂ%’i’%(h) (e e
Certainly tA and hA commute, so e(ttM)A4 = ¢hAet4 and we see that

d tA __ 1 1 hA tA
at® _;lli%(h)(e Det.
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Now e"4 — I = hA + 1h?A% + - -+, so0 limp_o(1/h)(e" — I) = A and

th_ tA
ae = Ae*“. O

Remarks. For any square matrix A, the matrices A and et4 commute, so
in the previous formula, the factor A can be written on the right or the

left.
In Exercise 7.4#4 you can show that the product and chain rules for
differentiation also hold for expressions involving exponentials of matrices.

Example 7.4.10.

(0 -1 (0 -1
a1 o) _J0 -1] "l1 o
1 0
_ |0 —1| |cost —sint| [—sint —cost
|1 O0f |sint cost| | cost —sint|’
as you might have expected from differentiating both sides of the last line
of Examples 7.4.5 and 7.4.8. A

Property 7.4.11 (Change of basis). If M is an invertible matriz, then

eMTIAM _ pr-1eAp (28)

Proof. This follows from the power series (21),

-1 2 -1 3
eM-lAMEI+M—1AM+(M AM) (M AM)

2! 3!
—1 A2 —1 A3
EI+M_1AM+M 2/,1M+M 3',4 M+--~

term by term, by observing that
(MTPAM)™ = (M 'AM)(M~Y AM)---(M7'AM) = M~'A™M. O
I

all pairs in the middle cancel by MM~ =T

We are now ready to talk about differential equations again; Property
7.4.9 is precisely what it takes to prove the following major theorem:

Theorem 7.4.12 (Solving x’ = Ax by exponentiation). The solution
u(t) of x' = Ax with u(tg) = xo is

u(t) = et"t)4x,, (29)
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Proof. Just differentiate (using Property 7.4.9) and check. O

So, we have a “formula” for the solution to a homogeneous linear differ-
ential equation. Unfortunately, Theorem 7.4.12 suffers from the standard
defect of formulas: it says very little by itself. We want to know the answers
to such questions as whether solutions go to 0 or to oo, and it is unclear
that formula (29) says anything about this. We have just shifted the problem
from solving the differential equation to computing the exponential.

However, if we have a basis of eigenvectors, the exponential reduces to

something familiar. Property 7.4.11 implies that an eigenbasis for A is also
an eigenbasis for e4.
Theorem 7.4.13 (Computing et by eigenvectors). Let A be annxn
matriz and let vy, ..., vV, be an eigenbasis for A with corresponding eigen-
values Ay, ..., \n. Let P be the change of basis matriz (i.e., the v; are the
columns of P); then the exponential e!4 can be computed as follows:

eth 0

Proof. This is just a restatement of Property 7.4.11 and Example 7.3.4, as
you can show in Exercise 7.4#5. O

So, in the diagonalizable case where you do have a basis of eigenvectors,
Theorems 7.4.12 and 7.4.13 give the same result as Theorem 7.3.4, the
eigenvalue/eigenvector method that leads quickly to an easy-to-interpret
answer. Note, however, that the method of exponentiating matrices is in
a different basis and usually does not lead to anything recognizable as the
same thing. (See Exercise 7.4#6.)

Even if there is no basis of eigenvectors, you can fall back on the expo-
nential approach, working directly from the power series using Theorem
7.4.12 and Definition 7.4.1. Only sometimes will this result in anything
you can calculate. Calculating the exponential of a matrix can be quite
complicated, requiring generalized eigenvectors or Jordan Canonical Form
if you want explicit formulas. Although, compared to nonlinear problems,
this is still “simple,” if you try to put this into practice, you will come to
understand the expletive that “hell is undiagonalizable matrices.”

Before leaving this subsection, we will make one more algebraic point.
We go back and note that Example 7.4.5 is also an example of the following
result:

Theorem 7.4.14. If A is an antisymmetric real matriz (or more gener-
ally an anti-Hermitian matriz), then et is orthogonal (or, more generally,
unitary).
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Proof. As defined in Appendix L4, antisymmetric means that AT = —A;
orthogonal means that the column vectors of the matrix are orthonormal,
which in turn means that AT = A~!. We will treat the real case; the
complex case is Exercise 7.4#7. Let us differentiate:

% [(etA)(etA)Tl - (etA)A(etA)T + (etA)AT(etA)T
= () (A+ AT)(e4)T = 0.
=0

Thus, (et4)(e!4)T is constant, and at time t = 0 it is the identity, so it is
always the identity. Hence, e*4 is indeed orthogonal. [

Notice that all of the theory of Section 7.4, as well as that of Section 7.3,
is perfectly true with complex numbers as eigenvalues or entries in eigen-
vectors or the matrix A itself. In particular, the power series of Definition
7.4.1 makes sense for complex-valued matrices; we shall need this fact.

We shall examine in Section 7.5 the case of 2 x 2 matrices, where the
mathematics can, surprisingly enough, be done directly from the power
series of the exponentials.

7.5 Two by Two Matrices and the Bifurcation
Diagram

Garrett Birkhoff says that according to his father, George Birkhoff, the
most famous American scholar of differential equations:

If you understand linear equations,
you almost understand differential equations;

If you understand linear equations of degree 2,
you almost understand all linear equations;

Finally, you almost understand linear equations of degree 2
if you understand those with constant coefficients.

We find the first of these claims overoptimistic; the second and third, on
the other hand, are certainly true. Second order linear differential equations
with constant coefficients are ubiquitous. For that reason, we devote this
section to them.

Second order linear equations with constant coefficients lead to the sim-
plest system of the form x’ = Ax, with 2 x 2 matrices A:

HEEIHEHE
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In this section, we will consider what the trajectories for this differential
equation look like in the zy-plane, when A is a real matrix. In principle, we
already could figure out the answer from Sections 7.3 or 7.4, at least if the
eigenvalues of A are distinct, but we want to look at what those sections
say in more detail in this particular case.

Note that the only equilibrium point is at (0,0). There are three cases
of possible eigenvalues for a, b, ¢, and d real:

(1) real and distinct eigenvalues,

(2) complex eigenvalues (necessarily distinct since they are complex con-
jugate),

(3) a double eigenvalue (necessarily real).

You can confirm in Exercise 7.5#5 that with trA = a + d and det A =
ad — bc the characteristic equation is A2 — (tr A)A + (det A) = 0, with

discriminant
A = (trA)? — 4det A,

and that cases (1), (2), and (3) correspond respectively to A > 0, A < 0,
and A =0.

1. Real (nonzero, distinct) eigenvalues. If A > 0, there are two real distinct
eigenvalues A; and A2 and the corresponding eigenvectors v, and v, form
a basis of R2. The general solution of x’ = Ax can in that case be written,
by Theorem 7.3.4, as

x(t) = C1 eMlvy + Cy eMtvy,

and the behavior depends on the signs of A\; and \2. We discuss here the
results for distinct and nonzero real eigenvalues; those for the case with a
double eigenvalue are discussed below in subsection 3, and those for the
case where an eigenvalue is zero are discussed in subsection 4.

i. Node source. If 0 < A\; < Ag, then all trajectories tend to oo as t — oo
and to 0 as t — —oo. (See Figure 7.5.1.) Moreover, all trajectories leave
(0,0) tangentially to v; except those that are multiples of vo (Exercise
7.5¢#6a).

-
V,

<l

FIGURE 7.5.1. Node source.
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ii. Saddle. If \; < 0 < A2, then the trajectories with C; = 0 go from
0 to oo on the line in the direction of positive and negative multiples of
va, and those with Co = 0 go from oo to 0 on the line in the direction
of multiples of v;; other trajectories are superpositions of these motions
(Exercise 7.5#6b). (See Figure 7.5.2.)

\8

A .
v

FIGURE 7.5.2. Saddle.

iii. Node sink. If \; < A2 < 0, then all trajectories tend to 0 as t — oo and
to 0o as t — —oo. (See Figure 7.5.3.) Moreover, all trajectories approach
(0,0) tangentially to v, except those that are multiples of v; (Exercise

7.5¢#6¢).

FIGURE 7.5.3. Node sink.

Remark. A node sink is exactly the same thing as a node source with time
going backward.

2. Complez eigenvalues. Suppose the two eigenvalues of A are a + i3, with
B > 0. Of course, there exists a basis vy, va of eigenvectors, but the vectors
are in C?, and it is not quite clear how to use them to describe the behavior
of trajectories in the real phase plane. The following trick gives a way:

Observe first that if v is an eigenvector for \; = a + i3, then V is an
eigenvector for Ay = X\; = a — if3. Let us write v = w; — iwy, where w;
and wo are real. Neither w; or wy are eigenvectors, but they are linearly
independent (Exercise 7.5#7) form a basis of R?; it turns out that in that
basis A has a rather pleasant form. Indeed,

Awy + iAw, = A(wy —iwg) = Av = A\ v = (a + if) (w1 — iwg)
= (aw; + Bw2) + i(aws — Bw,),
and identifying real and imaginary parts, we find
Aw; = aw; + fwa
Aws = fw; — aws,
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i.e., in the basis w;, wo, the linear transformation A has the matrix
_|a -8
n=[z 7).

Alternately, let P = [wy, ws], with 4; = P~1AP.
It is easy to compute et41, because

A1=aI+ﬂ[(1) ‘(1)],

and the two matrices in this sum commute since the identity I commutes
with everything. By Property 7.4.7 and a calculation as in Example 7.3.6,

we see that
otA1 _ gta | COS Bt —sin Gt
- sinBt cosft|’

Now it is quite easy to see what the trajectory of a point looks like. It si-
multaneously turns at speed (3 radians per unit time, under the influence of
the rotation matrix above, and approaches or leaves 0, under the influence
of e!*, depending on whether @ < 0 or a > 0. This leads to the following
classification:

i. Spiral sink. If & < 0, the trajectories spiral in to (0,0). (See Figure
7.54.)

FIGURE 7.5.4. Spiral sink.

ii. Center. If a = 0, the trajectories turn periodically on an ellipse and
are called “centers,” because each ellipse is centered at (0,0). (See Figure
7.5.5.)

FIGURE 7.5.5. Center.
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iii. Spiral source. If a > 0, the trajectories spiral out to co. (See Figure
7.5.6.)

FIGURE 7.5.6. Spiral source.

The direction of rotation of the spiral trajectories depends on the sign
of ¢, the lower left entry of the matrix A: if ¢ > 0, the rotation is coun-
terclockwise; if ¢ < 0, the rotation is clockwise. (You will prove this fact in
Exercise 7.5#8.)

Centers are exceptional, but they turn up often in differential equations
describing conservative mechanical systems as discussed in Chapter 6.5.
Exercises 7.5#9, and especially 8.1#12, explain why this will occur.

THE TRACE/DETERMINANT PLANE;
BIFURCATION DIAGRAM

The information we have assembled for the behavior of trajectories under
real or complex eigenvalues leads us to begin Figure 7.5.7, a picture of

the plane determined by tr A and det A.

This plane (which is not an zy phase plane) merely helps us study how
tr A and det A and the relationship between them determines the behavior
of trajectories to x’ = Ax.

The (tr A, det A)-plane is divided by the axes det A = 0 and trA = 0
and by the parabola

(tr A)%/4 = det A,

the dividing locus between the cases A > 0 and A < 0. We shall examine
more closely all of these divisions.

The sketches in each region of the (tr A, det A)-plane of Figure 7.5.7 are
just insets showing a typical drawing (in the zy phase plane) for the tra-
jectories to ©' = Az, for values of A corresponding to that region. The
conventional labels for each type of behavior accompany each of these in-
sets.

We still need to understand the remaining possibilities; i.e., what occurs
along boundaries of the regions already discussed:

3. along the parabola where A =0,



96 7. Systems of Linear Differential Equations

spiral sink \

spirak /

= /?
e
L) sink source  parahi ]
real A &
outside i?\:l:e argbola y /
node sink \Jparabola P algrig parabola on paraboia

;/////,‘ A /a-"is origin trrA
7

on axl§/ saddle ) e source

7% =

FIGURE 7.5.7. Bifurcation diagram in (tr A, det A)-plane for the two-dimensional
equation x’ = Ax.

and the division within the case of real eigenvalues between nodes and
saddles:
4. along the horizontal axis det A = 0.

3. Double eigenvalue. Along the parabola, A = 0. If there is only one

(double) eigenvalue A, let v; = be an eigenvector, and let v, be any

[1
0
vector linearly independent of v;. Then v; and v; form a basis, and in that
basis the linear transformation A has matrix

A «a
a=s 5]

for some appropriate number a. You can see this by noting that the first
column is correct since Av; = Av; and that, regardless of the entries in the
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second column, the matrix A; will be upper triangular. By Theorem L6.8,
A has the eigenvalues (i.e., the two \’s) along the diagonal.
It is easy to compute e*4:, since A; = M + [g (1)], and the two

matrices commute. So by Property 7.4.7 of the exponential and Example

7.4.4, we see that
1 at
tA; _ _tA
eth = ¢ [0 : ]

and there are two quite different cases: a # 0 and a = 0. Note that the
first corresponds to there being only one eigenvector, and the second to
all vectors being eigenvectors. Both of these possibilities are allowed, since
there is one (double) root of the characteristic polynomial. However, the
first possibility is usual, and the second ezceptional. Indeed, the space of 2 x
2 matrices is four-dimensional, and those whose characteristic polynomial
has a double root are defined by the one equation (tr A)? = 4 det A, so they
form a three-dimensional locus. However, if there is a single eigenvalue and
two linearly independent eigenvectors, the matrix is simply a multiple of
the identity, and the set of such is one-dimensional (given by the multiple
in question).

i. In the (exceptional) case of infinitely many eigenvectors, the drawing
in the phase plane looks like Figure 7.5.8, as should be clear.

Y
N

FIGURE 7.5.8. Phase plane behavior with double eigenvalue at zero.

ii. In the (usual) case of only one eigenvector, the motion of a point under
et41 is a superposition of the part due to the exponential, i.e., exponential
attraction or repulsion depending on whether A < 0 or A > 0, and motion
under the matrix, which is simply motion at constant speed a along the
horizontal line through the initial condition. Note that if you go back to
the initial variables, this part becomes motion at constant speed along the
line parallel to the eigenvector v; and through the initial point.

So if A = 0, we find a “shearing” motion, and the drawing in the phase
plane appears as in Figure 7.5.9.
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g

FIGURE 7.5.9. Phase plane behavior with single eigenvector and zero eigenvalue.

If A # 0, then the exponential term superposes its effect on the above
linear motion, leading to Figure 7.5.10.

- DL

FIGURE 7.5.10.Phase plane behavior with single eigenvector and nonzero eigen-
value.

4. A zero eigenvalue. The remaining boundary between regions we have
studied in the (tr A, det A)-plane is along the horizontal axis, where det A =
0; the origin has been included in the preceding discussion of the parabola;
elsewhere along this axis one of the eigenvalues must be zero (as a result of
Theorems L5.2 and L6.8). These are the degenerate cases, because x’ = Ax
vanishes on some line, which becomes a line of equilibria. The trajectories
appear as in Figure 7.5.11.

A,> 0

A, <0 2
%20 ‘%o

FIGURE 7.5.11. Phase plane behavior with zero eigenvalue.

But with the slightest perturbation, this whole line of equilibria disap-
pears, and you get either saddles, sinks, centers, or nodes (depending on
tr A and the perturbation).

We have now described phase plane behavior for every region on the
bifurcation diagram of Figure 7.5.7, in the (tr A, det A)-plane.
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It may be difficult to imagine how to continuously go from the mo-
tions with eigenvectors (nodes) across the parabola to the spiraling mo-
tions; what happens in general is that the eigenvectors make a smaller and
smaller angle, until they coincide and disappear. The sequence of drawings
in Figure 7.5.12 illustrates the change.

A<O A=0 A>0

FIGURE 7.5.12. How a spiral becomes a node as the matrix changes to cross the
parabola in the trace/determinant plane for ' = az —y, ¥y =z + y.

Example 7.5.1. Consider the system

HEESIHE

and observe how the choice of « affects the trajectories. Even before finding
the eigenvalues, we can observe the following:

(0,0) is the only equilibrium;

trA = q;

det A =1,

A=0?>-4=0 for a=—-2o0r2;

c is negative, so spirals are clockwise.

Therefore, we can list how the phase plane behavior depends on a:

a< -2, node sink,
—2 < a <0 spiral sink,
a=0 center,
0<a<?2 spiral source,
a>2 node source.

For a = +2, A is not a multiple of the identity, so the trajectories appear
respectively as in Figure 7.5.13.
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NN

‘
'/,

As a increases from —oo to +00, the trajectories change as you cross the
(tr A, det A)-plane from left to right, along the line det A = 1, as shown in
Figure 7.5.14.

FIGURE 7.5.13.

detA
detA=1
R H trA
a=-2! a=2
FIGURE 7.5.14.

Some insight into the role of o and the way the eigenvectors fit into the
diagram can be gained from solving the characteristic equation

+VaZ—4
A —aA+1=0, ,\1'2=%—.

Because of the fortuitous form of the matrix in this example, we can read
the eigenvectors directly from the definition of eigenvalue and eigenvector:

T e

so the first equation of the multiplication tells us that the eigenvectors have
form y = Az, and we have

y=[(atVa?-4)/2]z.

You can show in Exercise 7.5#12 that this eigenvector equation is equiv-
alent to
v —ozy+2? =0,
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which is the equation of a surface in a zy-space, a third degree equation
in z, y, and a.

This surface is called the Whitney umbrella (after Hassler Whitney, a
contemporary mathematician at the Institute for Advanced Study), and it
looks like Figure 7.5.15.

direction of eigenvectors
for this value of a (> 2)

x - &

o= ‘2 ‘a:.:a.

(single eigenvector'<ia-s’,
I.A -

eigenvectors fora < 2

FIGURE 7.5.15. Whitney umbrella, showing the position of the eigenvectors in
the zy phase plane according to the value of the parameter a. A

7.6 Eigenvalues and Global Behavior

The most important thing to observe about the bifurcation diagram of
Section 7.5, which is perhaps a surprising observation, is that

the behavior of solutions is controlled by the signs of the real
parts of the eigenvalues (in particular, by the eigenvalues them-
selves if they are real).

You can easily check, from looking at the diagram, that the origin is
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a sink if both eigenvalues have negative real part;
a source if both eigenvalues have positive real part;
a saddle if the eigenvalues have opposite sign
(in which case they are necessarily real).

In this section we will generalize this classification to arbitrary dimension.

SINKS AND SOURCES

The following theorem provides a criterion under which all solutions of a
linear differential equation with constant coefficients will tend to 0. Typi-
cally, this is the kind of equation we will meet when describing dynamical
systems with friction, or electrical systems with resistance. In many real
systems, such as the electrical distribution system of a geographical region,
it is essential to make sure that the conditions of this theorem are satisfied,
to guarantee stability of the system.

Theorem 7.6.1. If A is an n X n matriz and all the eigenvalues of A have
negative real parts, then all solutions x(t) of x' = Ax satisfy

lim x(t) — 0.

t—oo

Remarks.
i. The origin is called a sink when Theorem 7.6.1 holds.

ii. There is an exactly analogous statement when all eigenvalues have a
positive real part, turning time backward; then the origin is called a
source, and lim;_, o, x(t) — 0.

iii. The converse of Theorem 7.6.1 is also correct (Exercise 7.6#2).

Proof. The theorem is easy to prove if the matriz A is diagonalizable
over C: just switch to a basis of eigenvectors, and all coefficients decrease
exponentially. The (exceptional) case where A is not diagonalizable is, un-
fortunately, a good deal harder. However, the following argument works in

general:
Look at all the eigenvalues and take —A to be the largest real part of an

eigenvalue; that is, let
A=- sup{Re Ai | Ai is an eigenvalue of A}.

From Appendix L, we know
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Theorem L6.19. For any €, we can find a complex basis vi,...,v, such
that in that basis, the matriz of the linear transformation A is upper-
triangular, with the eigenvalues along the diagonal, and all off-diagonal
terms of absolute value less than €.

That is, let P be the change of basis matrix [vy,...,v,]; then 4; =
P~ AP is upper-triangular as described.

Write A; = B + C, where B is the diagonal part, and C is the strictly
upper-triangular part. Please note that A;, B, and C are usually complex
matrices, and so we must use complex inner products (Appendices L3 and
L4).

Lemma. Fory € R", and the € of Theorem L6.9, we have the inequalities

Re(By -y) < —Allyll> and |Re(Cy -y)| < nelly|®.

Proof of Lemma. For the first inequality, since B is diagonal with the
eigenvalues A; along the diagonal, we see

Re(By -y) =Re (Z /\iyiy,-) = Z:Re(A,-)|y,-|2 < —Allyl>.

For the second, observe that ||C|| < ne, so using Schwarz’s inequality (The-
orem L3.3) and then Exercise 7.1-7.2#7, we find

IRe(Cy -y)| < [Cy -y| < ICyIl Iyl < IICIIyII* < nelly|®. o

Remark. In Exercise 7.6#3 you show the sharper inequality ||C| <
Vvn(n—1)/2¢.
Proof of Theorem, continued. Set y = Px. Then y obeys the differ-

ential equation y' = Ay, so

d

2 (IY®I?) =2Re(y’ - y) = 2Re(A1y - y) = 2(Re(By - y) + Re(Cy - y))

< 2(=A +ne)lyll*.
This means that ||y(t)||? is a lower fence for the differential equation
u’ = 2(—A + ne)uy,

with solution u(t) = e2(-A+n€)ty(0). If ¢ is chosen so small that ne — A is
negative, then since

ly®11? < A%y (),
we see that y(t) - 0ast —oo. O

Theorem 7.6.1 describes solutions of the differential equation x’ = Ax
if all the eigenvalues of A have a negative real part. Two points should be
noted:
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(i) All solutions decrease exponentially, but the basis with respect to
which lengths must be measured in order for this to occur may be
pretty distorted.

(ii) The exponential rate at which solutions decrease may not be exactly
the largest real part of an eigenvalue.

Example 7.6.2. illustrates both (i) and (ii). It shows a distorted basis, and
its solutions decrease like C te~t, although this does go to zero as t — oo
since the decreasing exponential wins over the increasing polynomial; still,
it does not decrease quite as fast as e~*. This explains why the rate of
decrease we will get is only et("e—A),

Example 7.6.2. Consider the differential equation

' =—-z+100y
¥ =-y.

From Section 7.5 we know all about the solutions to this equation; its
solution with z(0) =0, y(0) =1 is

z(t) = 100te™*
y(t) =e".

At time 0, it has length 1 (with respect to the standard basis), and at time
1, it has length /10001 /e = 36.789. ... The length of the solution certainly
does not appear to be decreasing, and it is not if it is measured with respect
to the standard basis. If, however, you measure lengths with respect to a
new basis

vy =ey, vy = e3(e/100),

you will find that all solutions decrease if |¢| < 2 (Exercise 7.6#4).
Such a new basis is quite distorted: one basis vector is at least 50 times
longer than the other. A

SADDLES

What happens if the real parts of eigenvalues are both positive and nega-
tive? Well, if no eigenvalues have a real part 0, then the space R™ breaks
up into two subspaces, V. and V_, with the property that A(V;) = V, and
A(V_) = V_, so that in each of these subspaces Theorem 7.6.1. applies. In
the usual case where A is diagonalizable, just take V. to be the span of the
eigenvectors with eigenvalues having a positive real part, and V_ the span
of the eigenvectors corresponding to eigenvalues with a negative real part.
The general case is, as usual, harder and follows almost immediately from
Theorem L6.12.
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Theorem 7.6.3. Let A be an nxn matriz, with no eigenvalues havirg a real

part 0. Let ps be the characteristic polynomial of A, and write ps = p_p,,

where the roots of p_ are all the roots of pa that have a negative real part,

and the roots of p4 are all the roots of p4 that have a positive real part.
Let Vi = ker(p+(A)). Then for the differential equation x' = Ax ,

(a) Any solution x(t) can be written x(t) = x_(t) + x4 (t) with x_(t) and
x4(t) in V_ and V., respectively;

(b) x_(t) tends to 0 ast — +oo and x4 (t) tends to 0 as t — —co.
Proof. By Theorem L6.12, any vector x € R" can be written uniquely as
X =X_ + X4, withx_ € V_ and x4 € V.

This follows from the fact that p_ and p, are relatively prime since they
have no common roots, hence no common factors.

Suppose that the initial value x(0) = x_(0) + x4 (0) of a solution is
decomposed as above. Since A(Vy) C Vi, the solution x4 (¢) with initial
condition x4 (0) stays in Vi for all ¢, and in this subspace obeys a dif-
ferential equation with constant coefficients and all eigenvalues negative
or positive respectively. This follows from the fact that the characteris-
tic polynomial of A restricted to V. is p.. Finally, we use the fact that
x(t) = x_(t) + x4 (t) is just the superposition of solutions, Theorem 7.2.1.
O

The technique used in the proof of Theorem 7.6.3 can be extended con-
siderably to isolate the behavior coming from any particular eigenvalue or
from other groupings besides the one into roots with positive and negative
real parts.

A ZOOLOGICAL DESCRIPTION OF LINEAR
DIFFERENTIAL EQUATIONS IN R3

According to the development so far, we see that linear differential equa-
tions with constant coefficients in R? will fall into the following main classes:

(i) those where all three eigenvalues a have negative real part (sinks);

(ii) those with two eigenvalues having a negative real part and one posi-
tive eigenvalue (saddles of type 2,1);

(iii) those with one negative eigenvalue and two eigenvalues having a pos-
itive real part (saddles of type 1,2);

(iv) those where all three eigenvalues have a positive real part (sources).
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In the first case, all solutions tend to 0 as ¢ — oo and to infinity as t — —oo;
in the second case, there is a plane of solutions tending to 0 as t — +o0
and a line of solutions tending to 0 as ¢ — —oo, with all other solutions
superpositions of these; the third and fourth cases are like the second and
first, respectively, with time running backward.

There are various exceptional equations that do not fit into the descrip-
tion above, namely,

(v) those with a pair of purely imaginary eigenvalues (centers),

(vi) those with a zero eigenvalue.

7.7 Nonhomogeneous Linear Equations

Very frequently, the linear differential equations to be solved are not simply
x' = Ax,
which correspond to free physical systems, but rather
x' = Ax + g(t),

which correspond to driven physical systems.

The question of finding a particular solution u,(t) for the nonhomoge-
neous equation of the driven system can be attacked again as in the one
dimensional case of Sections 2.2 and 2.3 of Part I.

There is a formula for solving such systems: the variation of parameters
formula, which we will see in the second part of this section. Although
of great importance, variation of parameters generally leads to unpleasant
computations in practical cases. For special cases of the “driving function”
g(t), there is an alternative method for finding a particular solution u,(t)
which is usually much simpler: the method of undetermined coefficients.
This method really comes into its own when the driving function g(t) is
given as an infinite superposition of such special driving functions; this
occurs, in particular, if the function is given as a Fourier series, a Fourier
transform, or a Laplace transform (see the third subsection below, on Lim-
itations and Extensions of the Method of Undetermined Coefficients).

METHOD OF UNDETERMINED COEFFICIENTS

The special cases for which the method of undetermined coefficients is
appropriate occur when the entries of g(t) are linear combinations of func-
tions of the form t* e%*; these include polynomials (the case a = 0), plain
exponentials (the case k = 0), and functions such as t* sinwt and t* cos wt,
because of the formulas

1 ; 1, . .
sinwt = _(ezwt _ e—zwt), coswt = 5(e'l.wt + e—uut).

(24)
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Using the superposition principle, Theorem 7.2.5, we see that we may
consider also the case where g(t) is of the form p(t)e®t, where p(t) is a
vector of polynomial functions. In that case, try setting

x(t) = q(t) e*,

where q(t) is an unknown vector of polynomial functions of the same degree
as p(t). Substituting into the equation and equating like terms, you will be
led to a system of linear (nondifferential) equations for the coefficients of
q that will in fact have the same number of equations as variables. If the
vector g(t) contains terms in sine and cosine, it may be simpler to stick to
sines and cosines rather than passing to complex exponentials.

Example 7.7.1. Solve the differential equation

[.ﬂ B [—g -ﬂ [:] + [egt} : (30)

There are two steps to solving this differential equation:

(i) Solve the associated homogeneous equation

HE el

Using the techniques discussed in Sections 7.2 and 7.3, that solution is

Tl =c e _é +Cze™t _i . (31)
y

(ii) Solve the nonhomogeneous equation (30) with

- (2]-[)

That is, try substituting

[;]=q(t)ezt with q(t):[;:].

By solving the resulting linear equations for the coefficients a and b, you
will find a = 1, b = —%. The final solution is

2] ecner] e[ e 2] o

Example 7.7.2. Solve the differential equation

[2]': [_ff, _ﬂ m + [-l(—)te] (32)
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(i) Solve the associated homogeneous equation as in Example 7.7.1; the
solution is equation (31).
(ii) Using undetermined coefficients, solve the nonhomogeneous equation
(32) with
_ 0 t _ a+ tb t
gt) = [1+t]e and x(t) = [c—{-td}e'

Using this equation for x, you can substitute into the original equation,

which yields a = %, b= i, c=-1,andd = —%. The final solution is

1 —[1 141
x(t)=Cle3t[5]+Cge ‘[1]-4-6‘ [_41_4%t]. A

RESONANCE

Even with the nonhomogeneous term g(t) of the proper form, the method
of undetermined coefficients does not always work. Let us see why, in the
simplest case: assume the driving term g(t) is of the form G e, where G
is a constant vector. Then, if we substitute x(t) = Q e*?, we find

x'(t) = aQe™ = AQe™ + Ge™,

which leads to
(al - A)Q =G.

This is the system of linear equations mentioned above, which can usually
be solved only if the matriz (al — A) is invertible:

Q= (ol — A)"'G. (33)

The inverse (al — A)~! only exists if a is not an eigenvalue of A. In
general, you can expect trouble with undetermined coefficients if the driving
term is an exponential term with the coefficient of the exponent equal to
one of the eigenvalues.

The way around this problem is fairly simple, just as in Part I, Chapter
2: it can be shown that if instead of trying for a solution of the form Q e*?,
you had given yourself a bit more leeway and tried a solution of the form
P(t)e*?, with P a vector of polynomials of degree equal to the multiplicity
of o as a root of the characteristic polynomial of A, then the undetermined
coefficients procedure does work.

Example 7.7.3. Solve the differential equation

I 1 P
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This will not work as well as Examples 7.7.1 and 7.7.2, because —1 is an

-2 _1]. To solve the nonhomogeneous equation (34), try

5 4
z| _|a+bt| _,
y| |c+dt e -
Substitution yieldsa=—c—1,b=1,c=c,d=—3.

Combining these results with the solution (31) to the homogeneous equa-
tion, the final solution to equation (34) is

eigenvalue of [

——c—i-{-%t

Tl _ 3t 1 —t 1 —t
[y] =Cle [_5]+C'26 [_1]+e y

€—1

It looks as if this solution depends on three arbitrary constants, but in fact ¢
and C, play the same role: the freedom in the solution to the inhomogeneous
equation is a solution to the associated homogeneous equation. A

This comment about degrees of freedom is not special to this example:
if undetermined coefficients lead to a family of solutions depending on a
parameter, then this freedom will always correspond to adding a solution of
the associated homogeneous equation, since the difference of two solutions
of the inhomogeneous equation is a solution of the associated homogeneous
equation.

The phenomenon in which the driving term includes e*t for some eigen-
value X\ of the matrix A is called resonance, and it is very important in
applications, either because resonance is wanted (for instance, to amplify
a radio signal at a particular frequency) or to be avoided (for instance, in
a building buffeted by winds or earthquakes).

In many cases of practical importance, such as conservative mechani-
cal systems without friction or electrical systems without resistors, all the
eigenvalues of the corresponding matrices describing the system are purely
imaginary. If the system is driven with a harmonically oscillating term et
(or sinwt) and if iw is not one of the eigenvalues of A, then you can expect
a response that is also harmonically oscillating, i.e., bounded. But if the
frequency w of the driving term is an eigenvalue of A, then the response will
be a polynomial times an oscillating term and will grow without bound.

This makes it sound as if there is a dichotomy: resonance or no resonance.
But if you drive a system near resonance, the response becomes large. For
instance, the equation

" + x =sinwt

with general solution

1 .
z(t) = i_—w;sinwt +asint + bcost
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has no periodic solution when w = %1, and when w is close to 1, the
solutions all exhibit large oscillations. Note that the first order system
associated to this equation is

HEERIHO e

with eigenvalues +i, which corresponds to w = +1. Exploration of the
behavior of this system is the topic of Exercise 7.7#8.

LIMITATIONS AND EXTENSIONS OF THE METHOD OF
UNDETERMINED COEFFICIENTS

A more serious limitation of the method of undetermined coefficients is
that the driving terms are restricted; if the driving term were

. 2
1/(1+t%) or sin(t?) or e*,

the method simply does not seem to work. Actually, it is so convenient
that people have tried really hard to make it work anyway, and they have
succeeded. The key point is that the driving term does not have to be one
term of the form p(t)e®; it can be a sum of such terms. When you start
looking at sums of such terms, it is amazing how many functions you can
approximate.

In fact, if you are willing to allow infinite superpositions, i.e., to consider
driving terms of the form

gt) = Z a, et (Fourier series),
or continuous superpositions, for instance,
g(t) = / a(s) e**'ds (Fourier transforms)

or
gt) = / a(s)e *'ds (Laplace transforms),

you can get practically any function g at all. The first form is suitable
for periodic driving forces, the second for functions that decrease at both
+00 and —o0, and the third for functions that decrease at +oo but are not
controlled near —oo.

Example 7.7.4. Suppose you want to solve

[Zf] B [“§ _}1] [sin(ot)/t] ' (35)
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A priori, this seems like something that cannot be solved by undetermined
coefficients. But observe that

sin(t) _ 1/1 ei%tds

t 2/,

as you can check by computing the integral. If we try to solve this equation
by undetermined coefficients, i.e., if we set

z(t) = /1 a(s) e**tds,

1
1
y(t) = /—1 b(s) e**tds,

and substitute into the equation, we find

1

1 1
/ isa(s)e*tds = / —2a(s) e*ds — / b(s) e**tds,
1

1 1 1
[ issts)enas = [ sayetas+ [ anisyenas+ g [ et
-1 1 _1 1

Combining integrands and factoring out €**¢, you end up with the system
of linear algebraic equations

(is + 2)a(s) + b(s) =0,
—5a(s) + (is — 4)b(s) = 3.

This system of equations can be straightforwardly solved, to yield

a(s) = 1
T 2(s2+2is + 3)’
b(s) = —is — 2

2(s? +2is +3)°

We now know a particular solution in the form

1! 1 :
:II(t) = 5/ ——+€'3td8,

_182+2is+3

1 1 —is-2
t)y=- | ——————€"lds.
y(®) 2/_ls2+2is+3e y

These are not integrals that can be computed in elementary form, but that
they are still easy to evaluate numerically, and their properties are easy to
understand. The final solution is

[I] =C, et [ 1] +Cyet [ 1} f—l si+2lzs;36mds )
y -5 1] T2 | e
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Exercises 7.7#9 and 7.7#10 will give further examples of this kind of
solution.

METHOD OF VARIATION OF PARAMETERS

There is also an explicit formula for solving nonhomogeneous equations:
the formula that goes under the name of wvariation of parameters. The
name comes from one possible derivation, which we do not find particularly
enlightening and will not repeat. Most students are repelled by its apparent
complication, and one must admit that the integrals that it leads to do tend
to be unpleasant.

Theorem 7.7.5. The solution u(t) to x' = Ax + g(t) with u(to) = xo is

t
u(t) = elt"t)4x, +/ e(t=*)4g(s)ds.
to

We have already, in Section 2 of Part I, given an explanation of what the
various terms in this formula mean in one dimension, to which the reader
should return: it makes the formula obvious. A brief statement appears in
Appendix T.

We will come back to Theorem 7.7.5 in Chapter 12 in Part III (it turns
out that the formula is not restricted to the case of constant coefficients).
Here, we will simply prove by an easy but unmotivated computation that
it is correct.

Proof. Clearly, u(tg) = xo. Differentiating u(t), we find
t
%u(t) = Aelt=t) A%, 1 g(t) + A | et~ g(s)ds = Au(t) + g(t),
to

where the g(t) is the derivative of the integral with respect to the upper
limit of integration, and the integral term is the derivative with respect to
the term ¢ which appears in the exponent. [

Example 7.7.6. Solve the differential equation

" [3 -4] [z L2
y| |1 -1] |y 1|
Using variation of parameters, the solution is
¢ 2
u(t) = elt~to)Ax, +/ elt—9)4 [1] ds
to
and you can confirm that

oth _ et +2tet  —4te' |
- tet et — 2tet |’
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et +2tet  —dtet ¢ [2et~2
u(t) = [ tet et —otet [ X0 T /to et~ ds.
The last term is a result of exceedingly good fortune in the matrix multi-

plication, which you can confirm in Exercises 7.7#11. The resulting final
solution, after integrating this last term is

et + 2tet  —Atet 2et—to — 2
u(t) = [ tet et — 2te°] Xo + { et=to 1 |-

SO

The reader is invited to check that this agrees with the solution you could
find by undetermined coefficients. A

Chapter 7 Exercises

Exercises 7.1-7.2 Introduction to Linear Systems

7.1-7.2#1. In order to become more familiar with matrix notation:

(i) Find A(t) and g(t) in order to write each of the following systems in
the form x' = A(t)x + g(t):

T =ty+t+z
o =ty+t o
@° o2, (b)° ¥ =z+y
2 =2z

(ii) Turn the following second order equations into a system of first order
differential equations, by finding A(t) and g(t) as above:

(c)° 2" — 3z’ + 5z = t2 (d)° =" — zcost = €.

7.1-7.2#2°. Solve the following differential equations by the cookbook
method 7.1.7:

(a) 2" — 4z’ +z = 0.

(b) =" — 4z’ + 8z = 0.

(c) " + 122’ + 36z = 0, with 2(0) = —2 and 2'(0) = —3.
(d) " — 2’ — x =0, with z(0) = 2’'(0) = 1.

7.1-7.2#3°. Solve the following differential equations by turning each into
a system of first order differential equations (setting y = z’). Initial condi-
tions are given.
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() 3¢ — 62’ + 4z = 0 with [‘”(0)} - [0].

y(0) 1
(b) 22" — 22 + z = 0 with [‘;ggg] - [;]

7.1-7.2#4°. The following equations are of a class called Euler equations,
which are discussed in detail in Chapter 12 (in Part III) . For now it suffices
to say that there exist solutions of the form x = t*, so you can substitute
that expression in the differential equations, as in the cookbook method,
Recipe 7.1.7, and evaluate the resulting expression in a:

(a) Solve t2z" + 4tz’ +2z = 0.
(b) Determine the domain of definition for the equation in part (a).
(c) Solve t2z" — z = 0.

(d) Discuss the domain of definition for the equation in part (c); give a
basis for the solutions with positive ¢ and a basis for the solutions
with negative t.

7.1-7.2#5. Consider a mass m(t), depending on t, suspended from a spring
as in Example 7.1.1.

(a) Write a system of differential equations describing the motion of the
mass.

(b) Now suppose that the mass is a bucket filled with water and that it is
punctured, leaking at some rate independent of the motion. Verify as
in Example 4.1.1, the leaky bucket, that for a cylindrical bucket with
radius 7, the height h of the water varies as (t —t.)%, for 0 <t < t, =
the time at which the bucket empties, so that

m(t) = prrh + mg = Q(t — te)? + my,

with @ representing an appropriate constant expression and mg rep-
resenting the mass of the empty bucket.

(c) Show that in case (b), the matrix system becomes, for 0 <t < ¢,

[y] N [—F/Omm —k/1m<t>] [y]
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0 1 ] [x]
= —F —k )
Qt—t’+mo  QE—t.)™+mo | LY
which is still a linear differential equation in [z], regardless of the
exceedingly nonlinear appearance of ¢’s within the matrix.

7.1-7.24£6. Consider again the leaky bucket suspended by a spring as
in Exercise 7.1-7.2 #b5, but now assume that the leaking depends on the
velocity y. Show that in this case the matrix equation becomes

[Zﬁ] B [—F/(:n(y) —k/lnw)] [Z] ’

which is not linear in [;]

7.1-7.24£7°. This is an exercise in the use of Schwarz’s inequality, Theorem
L3.3, in order to get uniqueness of solutions to linear equations. Given a

square matrix A, denote
14l = I3 las02.
%]

(a) Show that for any square matrix A and any vector x,

x| < [|All [l

(b) What does it mean to say that x’ = Ax satisfies a Lipschitz condition
on R x R"?

(c) Show that every linear differential equation with constant coefficients
does satisfy a Lipschitz condition on R x R™.

(d) Find a Lipschitz constant for
=19 lx
1 o2]™
Exercises 7.3 Eigenvectors and Decoupling

7.3#1.

(i)° Find the eigenvalues and eigenvectors of the following matrices:

@ |3 23] © é
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- [1 4 0
2 -1
s el
o 1 [ 1 40
() (8) 3 21
7l ‘2] ¢ [-13 -3 2
'100] (020}
d |-1 20 (h) [0 0 3
102 (1 00

(ii) Write the general solution in cases (a) and (c) to the differential
equation x’ = Ax and give the vectors x(0) which tend to 0 as t — oo
(initial condition).

7.3#2. Solve the following differential equations and draw in both cases
the trajectory in the zy plane:

(a) [‘”]I = [f }] [”q with initial condition [z(e)] = [}]

y Y] y(0)
(b) [;], = [f i] [: with initial conditions [:((8;] = [g]

7.3#3°. Solve the differential equation

B ERHE

(a) with initial condition [z(O)] = [(1)] )

y(0)

(b) with initial condition [;gg;] - [(IJ] .

(c) Draw the two trajectories from parts (a) and (b) in the zy phase
plane. Write down the complete solution to the equation.

7.344°.

(a) Solve the differential equation

z]’ 01 0} [z z(0) 3
z 6 7 0| |2 2(0) 14
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A

7.3#5°. For the following differential equations, find a basis for R? such
that vectors expressed with respect to that basis decouple the differential
equations:

(b) Solve the differential equation

Ne s
—_
1l
| — |
|
— N
|
[JURN S, B e)

=y
@52V,
r=2rx—y

7.3#6°. Consider the differential equation x’ = Ax, where

0 2 -2
A=|-2 0 1].
2 -1 0
(a) Find the eigenvalues of A. Find a basis of C* made of eigenvectors of
A.

(b) Write the general solution.

1
(c) What is the solution if x(0) = [1] ?

0
(d) Describe the solutions geometrically.

7.3#7. Find a 2 x 2 matrix with eigenvalues 1 and 3, and corresponding

eigenvectors
1 1
1’ 2|

7.3#8°. For what values of a, b, and c are the following matrices diago-
nalizable?

o
o

@ |9 3] @ |

(b) () |o

1

O =
(=T ]
S = O

[ I—

1

—

N ==
S

J
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7.3#9. Confirm in Example 7.3.5 that equation (19) gives the same result
as equations (17) and (18).

7.3#10. This exercise illustrates how a small error or change in the coeffi-
cients of the characteristic polynomial can lead to surprisingly larger errors
in its roots. In each case, compare the roots of the first polynomial with
the roots of the second:

(a) A2 —2X +1; A2 — 2X +0.99.
(b) A% A% —0.01
(c) A% M — 0.01A - 0.0L.

Exercises 7.4 Exponentials of Matrices

7.4#1. Compute

tr 1 4] t[ 2 10]
0 1 0
«[2 1] t] 0 0 0
) ell 1 (@el=t 41
[2 1]
t
(@ ell 4
7.4#2. Compute the exponentials of the following matrices:
. [ 1.0 0
@ |3 :g} @ -1 2 o
: [ 10 2
i [0 2 0
(b) (2] ‘;] (e) [0 0 3
L |1 0 0
[—2 1
© |77 3

oo
> O -
O

7.4#3. Let A = [ ]

A 0 O
(a) Find a matrix P such that P"!AP=| 0 X, 0 |.
0 0 AXs
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(b) Compute et4.

/
T T
(c) Solve |y | = A |y | with initial condition
z z
z(0) 1
y(0) | = |1
2(0) 1

(d) It is easy to show that x(t) satisfies a third order differential equa-
tion with constant coefficients. Find it, and solve it by the cookbook
Recipe 7.1.7.

7.4#4. Show that the ordinary product and chain rules for differentiation
also hold for expressions involving exponentials of matrices.

7.44#£5. Prove Theorem 7.4.13.

7.4#6°. Apply the method of exponentiating matrices to " +3z'+2z = 0,
the equation of Example 7.2.2. You will observe that, in the standard basis
in which this method operates, the answer will be quite unrecognizable as
being the same as that found in the basis of eigenvectors. The moral should
be obvious: use eigenvectors whenever you can! That is, use eigenvectors
whenever you have a basis of them.

7.44£7. Prove the complex case of Proposition 7.4.14.
7.4#8. Verify Examples 7.4.2,3,4.

7.4#9. Verify Examples 7.4.8 and 7.4.10. For each one, tell what initial
conditions lead to solutions that tend to 0 as t — oo.

7.44£10. For the following second order differential equations:
(i) Translate the problem into a system of equations.
(ii) Write the system in the form x’' = Ax.
(iii) Find the solution of x’ = Ax by calculating e*4.
(iv) State the answer to the original problem.
(a) =" + 12z’ + 36z = 0, with (0) = —2 and z'(0) = -3.

(b) 2" — 42’ +z = 0.
(c) 2" — 42’ + 8z = 0.

You can compare your results with Exercises 7.1-7.2#2a,b,c.

7.4#11°. Let A be a 2 x 2 matrix, with tr A = 0.
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(a) Show that A% = —(det A)I.
(b) Write the power series for et/ as
e = a(t)I + B(t)A,
where a(t) and ((t) are scalar power series.
(c) Express a(t) and B(t) as known functions of ¢.

Remark: You will need to separate the case det A > 0, which leads to
hyperbolic functions, and det A < 0, which leads to trigonometric functions.

7.4#12. Let A be any 2 x 2 matrix, and let B = A — AT,

(a) Show that tr B =0.
(b) Compute det B in terms of det A and tr A.

(c) Using that A= B+ EI;—AI , and that B and I commute, write e*4 in
terms of det B and tr A.

Exercises 7.5 Two by Two Matrices and the
Bifurcation Diagram

7.5#1. Solve each of the following differential equations and, in each case,
draw the track of the solution in the zy-plane.

@ 5] =[ 3] [l [56] - 3
o [3] =3 3] [ =[50 = [3
@[] = 3 )= (56 - )

7.5#2. Consider the linear system of differential equations x’ = Ax given
by

'=z-2 .
Y —oty (i)
(a) Compute e*4 (by Theorem 7.4.13).

(b) Find the solution with initial condition (z, y) = (—6,0). Make a draw-
ing (by hand or computer).
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(c) Consider the related single differential equation

dy x4y
dr ~ z-2y

(ii)

Explain the similarities and differences between studying (i) and (ii).
7.5#3°. Show that if tr A = 0, the equation
dy _ dy/dt

de — dz/dt

is ezact and can be solved analytically.

7.5#t4. Consider the linear system of differential equations

, _|-1 2
x' = Ax, where A—[_3 4].

(a) Determine the eigenvalues and eigenvectors of the matrix A, and
write down the general solution in terms of the eigenvalues and eigen-
vectors. Explain the behavior of the solutions when ¢t — —oo.

(b) Determine the solution with initial condition x(0) = [(1)]

7.5#5. Show that for a 2 x 2 matrix, A = [‘: Z], the characteristic
polynomial can be written A2 — (tr A)A + (det A), with discriminant A =
(tr A)? — 4(det A). Show that A > 0 leads to real, distinct eigenvalues,
A < 0 leads to complex eigenvalues, and that A = 0 means a double
eigenvalue.

7.5#6. Confirm the text statements about the phase plane behavior with
real distinct nonzero eigenvalues as follows:

(a) If both eigenvalues are positive, show that all trajectories leave 0
tangentially to the eigenvector associated with the smaller eigenvalue,
except for those leaving along a multiple of the eigenvector associated
with the larger eigenvalue; hence the phase plane portrait is a node
source.

(b) If the eigenvalues are of opposite sign, show that the trajectories
move away from 0 along the eigenvector associated with the positive
eigenvalue and toward 0 along the eigenvector associated with the
negative eigenvalue; hence the phase plane portrait is a saddle.

(c) If both eigenvalues are negative, show that all trajectories approach
0 tangentially to the eigenvector associated with the smaller (in abso-
lute value) eigenvalue, except for those approaching along a multiple
of the eigenvector associated with the larger (in absolute value) eigen-
value; hence the phase plane portrait is a node sink.
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7.54£7°. If for a real matrix A, )\ is a nonreal eigenvalue, and v = w; +iwp,
where w; and ws are real, is a corresponding eigenvector, then show that
w; and wy are linearly independent.

7.5#-8°. Consider the differential equation x’ = Ax, where A = [z Z] is
a real matrix. Suppose that the trajectories spiral; show that the direction
of spiral trajectories depends on the sign of c¢. Show that if ¢ > 0, the
rotation is counterclockwise; if ¢ < 0, the rotation is clockwise.

7.5#9. Suppose that z(t) describes the position of a particle moving in
one dimension, under the potential V(z). If V(z) = az?, show that the
differential equation that z(t) obeys is linear. If a > 0, show that it has a
center at 0, and if a < 0, show that it has a saddle.

7.5#10. If you look at solutions of the system z’ = 0.2z — 0.04y, y' =
z + 0.2y on the computer, they spiral completely around one or two times
before leaving the screen. Computer drawn solutions of ' = 0.96z — 0.04y,
y' = x + y, on the other hand, seem to twist a little and then travel out
along almost straight lines. Will they ever make one revolution? If not,
what is the boundary between spiral sources whose solutions make one or
more revolutions and those whose solutions do not?

7.5#11. Show with computer and hand drawings how one can move
smoothly from saddles to having one zero eigenvalue [i.e., det(A) = 0]
to node sources. Show how one can move smoothly from saddles to centers
without going through the zero matrix.

7.5#12. In Example 7.5.1 verify the calculations leading from the eigen-
vector equation to the equation of a surface in rya-space. That is, show

that
y= a:l:\/a2—4x
- 2

implies that y? — azy + z2 = 0.
7.5#13. Consider the linear system of differential equations

z]’ . 0 -1{ |z
y| " |10+a o |y|’
where the matrix A, depends on the parameter a.

(a) Each matrix determines a point (tr Ay, det Ay ) in the (tr A)—(det A)-
plane. Draw the curve in the (tr A) — (det A)-plane made up of these
points when « increases from —oo to +oo.

(b) For what values of « (if any) is (0,0) a saddle, a node sink, a spiral
sink, a center, a spiral source, or a node source?
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(c) Make computer drawings of trajectories in the phase plane for a =
-15, -10, -7, -3, 0, 3, 15. Show directions on trajectories by arrows.
Draw directions for real eigenvectors (in color) whenever possible.

(d) Draw in the (z,y, z)-space the set of all real eigenvectors, i.e., in the
plane at height o draw the real eigenvectors of A, (if any).

7.5#14. Consider the system of differential equations

z]’ _ 0 14+af |z
y] [-1 « y
depending on the parameter a.
(a) Classify the differential equation according to values of a.

(b) Draw the phase plane for a = -2, -1, =1, 0, 1, 5.

(c) Draw, in the xyz-space, the set of all eigenvectors (i.e., in the plane
0 1+ a] )

at height a, draw the eigenvectors of [_1 o

7.5#15. Investigate the system

(] - [dea] vetmmt- %]

Draw the phase plane for a = —%, —41, —é, 0, % Can you understand why

the solutions look the way they do?
7.5#16. Show how the variable « affects the trajectories for different values

o)

7.5417. Consider the Euler equation
B

" a / | 0
t t2
defined for 0 < t < 0.

(a) Find the general solution.

(b) For what values of (o, 8) is the space of solutions that tend to 0 as
t — 0 of dimension zero, one, and two, respectively?

(c) For what values of (a, 3) are there any solutions at all that tend to
a limit other than zero or infinity as ¢ — 07
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Exercises 7.6 Eigenvalues and Global Behavior

7.641.
(a) Consider the differential equations x’ = Ax, where A is the matrices
0 10 0 010
(‘)ao_‘l)} 1o 001
a -1 11

and a is a parameter. For what values of a does the type of the eigen-
values change, for instance, from real to complex, or from positive to
negative?

(b) For each of the intervals where the type does not change, describe
the solutions of the differential equation. (You may need Analyzer, or
FEigenfinder, or both.)

7.6#2. Prove the converse of Theorem 7.6.1. That is, prove the following;:

Theorem 7.6.1*. Consider x’ = Ax where A is an n X n matriz. If all
solutions x(t) satisfy

lim x(t) — O,

t—o0
then all the eigenvalues of A have negative real parts.

7.6#3. In the proof of Theorem 7.6.1 we proved a lemma showing that
[IC|| < ne. Prove the sharper limit that ||C|| < y/n(n —1)/2¢.

7.6#£4. Consider the differential equation of Example 7.6.2:
z' = —z + 100y
Y =-y.
Show that if you measure lengths with respect to a new basis
Vi =e, vo = ez(e/100),
then all solutions decrease if |e| < 2.

7.6#5°. Consider the linear system of differential equations

z]’ -1 1 T
y| | o of |y
depending on the parameter a € R.

(a) Explain why' (z,y) = (0,0) is a singular point for the differential
equation for any a. For what values of a (if any) is (0,0) a saddle
point, a node sink, a spiral sink, a center, a spiral source, or a node
source?
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(b) Determine the eigenvalues and eigenvectors of A, for o = 1, and
sketch the trajectories in the phase plane.

7.6#£6. Consider the differential equation

HNEREIG}

(a) Find all values of o where the behavior of the differential equation
bifurcates.

(b) For each of these values of o, and for one value of a in each of the
intervals that they bound, describe and sketch the solutions of the
differential equation.

7.6#7. Consider the differential equation

z]’ 0 1 0 T
y|] =10 0 1 Y.
[z} [1 —(a+1) (a+1)} [z]

(a) Find the characteristic polynomial of the matrix and find its roots
(as functions of a).

(b) At what values of o does the behavior of the trajectories change
completely?

(c) In each of the intervals of the a-line bounded by the bifurcation val-
ues, what is the dimension of the space of initial conditions zo such
that the solution with that initial condition gives a solution that tends
to0ast— +oo and as t — —oo?

(d) Sketch, up to linear change of variables, the solutions of the differen-
tial equation in each of the intervals above.

7.6#8. Consider the system of differential equations

R H

(a) Find the values of o for which the equation above bifurcates and
classify the equation in the intervals bounded by these values.

(b) Solve the equation for a =0, 7/6, 7/2, 3r/2.
7.6#9. Consider the differential equation

z’ 0 1 0 T
R
z af (—a+pB+aB) (a+p+1) z

depending on two parameters, a and (.
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(a) Find the eigenvalues of this matrix. (It is easier than you might think.)

(b) For the four values (+1,+1) of (, (), describe the solutions of the
differential equation.

(c) Describe how the dimensions of the spaces of initial conditions leading
to solutions that tend to 0 as ¢ — +oo depend on (a, §).

(d) For what values of (a,() does the matrix admit a basis of eigen-
vectors? (Try to compute the dimension of the space of eigenvectors
associated to any eigenvalue.)

7.5#17. Consider the Euler equation
B

" a , _

defined for 0 < t < oo.

(a) Find the general solution.

(b) For what values of (a,3) is the space of solutions that tend to 0 as
t — 0 of dimension zero, one, and two, respectively?

(c) For what values of (a,3) are there any solutions at all that tend to
a limit other than zero or infinity as ¢t — 0?7
Exercises 7.7 Nonhomogeneous Linear Equations

7.7#1. Solve the following differential equations by the method of unde-
termined coefficients:

[0 3 5 et
(a) x’=13 0 2|x+ |cost
(2 0 1 0

,_[3 3 cost

(b) x' = 13 4 X+ | sint
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T.T#2°.

(a) Show that trying [ e? as a solution of

a+ct
b+dt
2 1 te!
=[5 ][5

(b) Try setting Q(t) as a quadratic instead of a linear function and solve
the equation.

will not work.

7.7#3. Find the general solutions for the following differential equations.
(a) 2" +2¢' +z=¢€7?
(b) 2"+ 3z’ +2zx =e€?
T.T#4°.
(a) Find the general solutions of the differential equations
" +2' +z =sinwt and z” + 2z = sinwt,
using the method of undetermined coefficients.

(b) Among the solutions for the first equation, which one is the steady-
state solution? What is its amplitude as a function of w?

(c) For the second equation, there should be a value wg of w for which
you could not solve by the method of undetermined coefficients. Solve
the equation by variation of parameters for that value wyp.

7.7#5. Show that u(t) =t + 1 is a solution to " — 42’ + z =t — 3. Find
the complete solution to the equation.

7.7#6. Use variation of parameters to solve the differential equation

HEEBIHE
with z(0) = y(0) = 0.
T.THT.

(a) Write down the general solution to the second order system of differ-
ential equations

2
x" = Ax, where A:[ “1 02].
0 —wj
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coswt

(b) Let g(t) = sinwt

C, such that

] and assume w # w;, @ = 1,2. Determine c;,cy €

h(t) = [clei“‘]

c2eiwt
and Reh(t) = g(?).

(c) Use the method of undetermined coefficients to find a solution
_ {1 eiwt
x(t) = | 250

to the differential equation x” = Ax+h(t). Determine a real solution
to the differential equation x” = Ax + g(t).

7.7#8. Explore with MacMath’s DiffEq Phase Plane or DiffEq 3D Views
the driven harmonic oscillator "/ + z = sinwt. Try values of w near but on
either side of the natural frequency (w = 1). Print or sketch your results.

What aspects of the phase plane behavior change? How do they change?
Describe what these changes imply for a physical pendulum.

7.749°. The square wave g(t), which is periodic of period 2w, and which
on (—m,n] is given by

{41 ift>0
9“)‘{—1 if t <0,

is given by the Fourier series

1/, 1., 1. 1 < sin(2n — 1)t
g(t)=;(smt+§sm3t+gsm5t+---)=;’;T_l—.

This is something you may already know, or can take on faith (if your faith
needs bolstering, try plotting the sum of the first five terms).

Solve the differential equation z” + w2z = g(t) by “undetermined coeffi-
cients”, by setting z(t) = 3 a,, sinnt and considering the a,, as coefficients
to be determined.

For what values of w does this scheme work? Can you solve the equation
in the other cases also.

{o o]
/ e~ttds = 1.
0 t

7.7#10. Observe that
1
t

Find a solution of
' +z=
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by “undetermined coefficients,” by writing

2(t) = /0 ~ f(s)e~*tds,

where f(s) is the undetermined coefficient, and plugging into the equation.

7.74#11. Confirm the calculations of the solution to Example 7.7.6.



8

Systems of Nonlinear
Differential Equations

The general autonomous differential equation on R™ is

fi(x)
X=fx)=| : |, (1)
Jn(x)

where f should be thought of as a vector field on an open subset of R™. It
describes the evolution of innumerable actual systems, and even the two-
dimensional case ,

¥ =9(z,y)
has a great many applications.

In Chapter 7 we studied the case where f is linear; in this chapter, we will
concentrate on nonlinear equations. Of course, even when n = 2, we cannot
expect the sort of detailed description that we found in the linear case. After
all, the linear case depends on only four parameters, whereas the nonlinear
case depends on infinitely many, since f and g are both arbitrary functions,
elements of an infinite-dimensional vector space. [Actually, f and g are not
quite arbitrary; they must satisfy a Lipschitz condition for equation (1) to
have unique solutions through every point and, in practice, will usually be
required to be twice continuously differentiable.]

Still, we will get a surprising amount of information about nonlinear
vector fields from our analysis of the linear case (and also from iteration in
one dimension, in Part I, Chapter 5).

We will see in Sections 8.1-8.3 that near the zeroes of the vector field
[the points xo where f(xo) = 0], the behavior of the differential equation
is usually controlled by the linear approximation to the vector field at that
point. The linearized problem is precisely what we studied in Chapter 7.
Then in Sections 8.4-8.6 we will stand back from the zeroes and see what
we can say about the global behavior of nonlinear systems in dimension
two.

The two-dimensional system (2) in R? is most amenable to analysis.
The functions f and g do not depend explicitly on time, thus making
system (2) autonomous. We know from Section 6.2 that it makes sense
to examine the trajectories of the solutions in the zy phase plane, because
for an autonomous system, these trajectories will usually not cross (except
where the Existence and Uniqueness Theorem 6.2.3 fails).
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Curves in the plane which cannot intersect are so strongly constrained
that “chaos” cannot appear. In dimension three, however, trajectories have
every opportunity to knot, link, and tangle. This is discussed informally
in Sections 8.7 and 8.8, but actual proofs are difficult and are reserved
for Chapter 8*, where we can take sufficient detours to explain the diffi-
cult points. Chapter 8* consists of many discussions extending the topics
introduced here in Chapter 8.

One more topic that belongs here in the introduction to nonlinear differ-
ential equations in R™ is that of symmetries and volume-preserving equa-
tions, which appears as Section 8.6 (but does not have a companion section
in Chapter 8%*).

Chapter 8 can be extended by various alternative routes:

e After reading Sections 8.7 and 8.8, you may go directly to Chapter 9.

e After reading Sections 8.7 and 8.8, you may read Chapter 8* and
then go on to Chapter 9.

e You can alternate sections of Chapters 8 and 8* as follows: 8.1, 8*.1,
8.2, 8*.2, and so on through 8.5, 8*.5, and finally 8*.6. In this case
you will find it enlightening to read 8.7 and 8.8 before 8*.5 and 8*.6.

A flowchart is given in the Preface to clarify these suggestions.

In this chapter, we shall consider mainly nonlinear autonomous systems
in R?, the zy-plane. Occasionally, both statements and proofs are no harder
in R", and there we will do things in more generality.

8.1 Zeroes of Vector Fields and Their
Linearization

LocAL AND GLOBAL BEHAVIOR OF A VECTOR
FIELD IN THE PLANE

Example 8.1.1. Consider the differential equation

=r—-y’+a+bxy 3)
Y =02y —z+28

for the values @ = 1.28 and b = 1.4. The drawing in the phase plane is
shown in Figure 8.1.1. A

We see in Example 8.1.1 that the trajectories just form systems of curves
in the plane, more or less parallel on a small scale, except at the six points
(and there are only six) where both z’ and 3’ are zero. At these points
the vector field vanishes, so they are called the zeroes of the vector field
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(sometimes singular points or singularities). Because the zeroes are the
points where the system is at equilibrium, they are also sometimes called
equilibria, especially for physical systems.

=
=7

e )

Do-E= |
/g s

FIGURE 8.1.1. The phase plane for equation (3). Observe the six points where
the vector field vanishes, all within the indicated rectangle.

Definition 8.1.2. Let x’ = f(x) be a differential equation, defined in some
region U of R™. Then a point xo where f(xo) = 0 is called a zero or
equilibrium point of the differential equation.

In particular, when n = 2, a point (zg,yo) is a zero of the differential
equation
T = f (.'IJ ) y)
¥ =g(z,y)
if f(zo,%0) = 9(zo,%0) = 0.

Near the zeroes, the solutions form patterns that should be familiar: they
look like the drawings we obtained in the linear case.

More precisely, point A looks like a node source, C looks like a spiral
source, F looks like a spiral sink, and B, D, and F look like saddles. We
shall now give a rough idea of why this is true by showing how to construct
a linearized equation at each zero.

LINEARIZATION: LOCAL BEHAVIOR NEAR SINGULARITIES

If f and g are twice continuously differentiable near a zero (xo,yo), it is
natural to expand them in a Taylor polynomial around this point:

(¥ — o) + P(z — o,y — Yo)
(%»yo)

of
(.’l! - .’Eo) + _3
(zo0,y0)

few) =L
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0
(@ — o) + 22
(z0,%0)

(¥ — %) + Q(z — o,y — yo0)

17)
(z0,%0)

where P(z — o,y — ¥0) and Q(z — zo,y — Yo) start with terms that are at
least quadratic in (z — zo) and (y —yo). One may expect that near a zero of
the vector field, P and @ will be negligible compared with the linear terms
of the Taylor series; of course, this cannot be true if the linear terms vanish
identically, and we will see that there are other exceptions.

In order to study the behavior of a system near its zeroes, change the
coordinates to indicate displacement from equilibrium:

=1z — x0, n=1Y— Yo,

and take only the first order terms of the Taylor polynomials. The original
nonlinear differential equation

7
T f(=, y)]
= 2
[y] [g(w, Y) @
is approximated by

of of

[&]' _ [g-’”l(zomo) gu|(zo,yo)] [6] @)
" 8%l zono) 89l oo | L7

which is called the linearization of the system (2) near (zo,yo) -
Example 8.1.3. For the differential equation of the damped pendulum,

=y
y' = —sinz —y, 5)

the points (0,0) and (7,0) are zeroes of the vector field.
The linearization at (0, 0) is

HIERH] ®

with parameters (—1, 1) in the trace-determinant plane. Thus, the lineariza-
tion at (0,0) is a spiral sink, as shown in Figure 8.1.2.
The linearization at (7,0) is

HI &

with parameters (—1,—1) in the trace-determinant plane. Thus, the lin-
earization at (m,0) is a saddle, as also shown in Figure 8.1.2.
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55\

FIGURE 8.1.2. The phase plane for equation (5). The zero at (0,0) is a spiral
sink; the zeroes at (*m,0) are saddles. A

Example 8.1.4. We return to our opening Example 8.1.1.

=z—y>+a+bzy 3)
Yy =02y —z+2°

for the values a = 1.28 and b = 1.4.

For the four zeroes at A, B, C, and E we have numerically computed
the linearization, and Figure 8.1.3 on the next page shows side-by-side
blowups of the phase plane for the nonlinear equation (3) and the associated
linearizations. A

Let us now formalize these notions of what is happening at the zeroes or
equilibria of a nonlinear differential equation.

Definition 8.1.5. Let
fi(x)
fx)=|
fa(x)
be a twice-differentiable vector field on an open subset U of R™, and let xq

be a zero of f. The linearization of the differential equation x’ = f(x) at xo
is the linear differential equation

¢ = A¢, (8)

where
£=x—-x¢
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[

The differential equation
in a neighborhood of
point A

The linearized equation
E=3.6547E —2.90541
ns 2043E+2 1M

il

The differential equation -
in a neighborhood of
point B

The linearized equation
E'=3.1713E -2.6051
n= 6221E+.2

—

©

The differential equation
in a neighborhood of
point C

The linearized equation
£'=1.2326&-1.7548
n'=2.098 £+27

]

¥/

®

The differential equation
in a neighborhood of
point E

FIGURE 8.1.3. Blowups from Figure 8.1.1, with associated linearizations.

The linearized equation
E'=-6910&+2.0532 1
n'=-7988E+ 21
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o ml, .. g
Oz, 1Xe "7 OznlXo

A=| :
8z 1Xo Ozn 1Xo

By Taylor’s Theorem, we can write
f(x) = A(x — x¢) + h(x — x¢),
where h(£) starts with quadratic terms, so £€(t) “should” resemble x(t) —xo.

Principle 8.1.6. In general, near a zero or equilibrium point (xo,yo), the
solutions of a nonlinear system of differential equations x' = f(x) look like
those of its linearization

()i oh
oz, Oy
Xo Xo
¢ = £
Ofa 0fa
oz, O p
L Xo Xo

We call this a principle, rather than a theorem, because the term “look
like” is undefined. It will remain undefined, because it means rather differ-
ent things depending on whether the linearized equation has a saddle or a
source or whatever. What we will do in Sections 8.1 and 8.2 is to pick out
from the linearized equation the properties of particular interest and show
that they go over to the nonlinear setting.

Furthermore, let us elaborate on the caveat “in general”:

Principle 8.1.6 is false when the matriz A has any purely imaginary
eigenvalues or, in particular, if any eigenvalues are 0.

In the plane, this corresponds to the two following cases:

(i) If tr A =0 and det A > 0 (implying “centers” for the linearization),
we shall show by example that almost anything can happen. For differential
equations with the same linearization, we get very different results in the

nonlinear cases.

Example 8.1.7. Consider the differential equation

(-]
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About (0,0) the linearized equation is simply

1-121-0 96T w

so trA = 0, and the trajectories of solutions to the linearized equation
(10) are circles. However, the solutions of the nonlinear system (9) spiral
out if € > 0 and spiral inife < 0. A

We can make far more complicated examples; for instance, see Example
8.4.3, which has infinitely many periodic solutions.

(ii) If det A = 0, the linearization is degenerate and the linearized vector
field vanishes identically on a line (or even all of R?). Adding on an arbitrar-
ily small perturbing term can destroy this feature, so again the appearance
of the perturbed vector field can differ essentially from the appearance of
the linearization.

Example 8.1.8. Consider the system of equations

z =2
11
52e, (1)
Exercise 8.1#4 asks you to find the linearization, to show that an eigenvalue
of the linearized equation is 0, and to show that the equation does not
behave like its linearization. A

Remark. In Chapter 9, we shall examine general cases and show that
Example 8.1.7 leads to “Hopf bifurcation,” and Example 8.1.8 leads to
“saddle-node bifurcation.”

In the plane, if all eigenvalues have a nonzero real part, Principle 8.1.6
means what it says. There is a unified way of making this statement: By
making a smooth (nonlinear) change of variables near the equilibrium point
you can make the equation into its linearization; you can even require that
the derivative of the change of variables be the identity at the zero. A
graphic way of saying this is that if the space of trajectories were drawn on
a piece of rubber paper, then you could stretch and distort the rubber sheet
so that the trajectories of the original equation will fit precisely on those of
the linearization; you can even keep your thumb down on the equilibrium
point, thereby fixing the point and the tangent vectors, and prevent the
rubber sheet from moving or turning around that point.

The proof of the result in that form is quite delicate, so we will take a
different approach. We will try to isolate the salient features of each type
of zero of a vector field and show that these features carry over to the
nonlinear equation near the zero.
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GLOBAL BEHAVIOR OF SOLUTIONS

Look back at Figure 8.1.1. Solutions tend either to the sink E or to oo, ex-
cept for the zeroes and the exceptional solutions which tend to the saddles.
Since such solutions separate generic forms of behavior, they are called sep-
aratrices; their existence and basic properties are covered in Section 8.3. In
R?, it will be true that almost all solutions have a generic form of behavior
and that the classes with a given behavior are separated by ezceptional
solutions. Figure 8.1.4 shows all the zeroes of the vector field, but only
the trajectories that are the separatrices of the saddles; consider how these
separatrices divide Figure 8.1.4 into regions of generic behavior.

FIGURE 8.1.4. The zeroes and separatrices for Examples 8.1.1 and 8.1.4. Point
E is a sink and points A and C are sources.

Figure 8.1.5 shows how the separatrices of the saddles divide the plane
respectively into the basin of the sink (the points that tend to the sink as
t — 00) and the points that tend to co as t — oo. The second picture gives
the “basins,” called cobasins, of the sources (the points that tend to the
sources as t — —00).

FIGURE 8.1.5. Basins and cobasins for Examples 8.1.1 and 8.1.4.



140 8. Systems of Nonlinear Differential Equations

Figures 8.1.1-8.1.5 illustrating sinks, sources, and saddles show the generic
local forms of behavior. For nonlinear differential equations in R2, there is
also a global generic form of behavior: limit cycles, which do not appear in
the linear case. Solutions can be attracted to stable limit cycles as well as
to sinks; classes of solutions can be separated by unstable limit cycles as
well as separatrices.

Example 8.1.9. Consider the differential equation

li
T
2] = we-=-a1,
Y
which will be discussed in more detail in Example 8.4.2.

As is shown in Figure 8.1.6, this example has an attractive and stable
limit cycle, with a node source in the center.

FIGURE 8.1.6. A limit cycle is attracting all solutions except the constant solu-
tion at the origin. A

An unstable limit cycle is repelling, looking like Figure 8.1.6 with all the
arrows reversed and a sink at the center. From the forward point of view,
an unstable limit cycle acts as a separatrix; if time runs backward, it acts
as an attractor.

There is a theorem that allows you to locate limit cycles, whether stable
or unstable, if you can guess where they ought to be. This result is called
the Poincaré-Bendixson Theorem, and will be discussed in Section 8.5. We
will also see in that section how hard it can be to actually prove that there
is only one limit cycle.

SUMMARY

The general strategy for understanding an autonomous system in the plane
will be to

(1) Locate the zeroes of the vector field and analyze them.
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(2) Draw the separatrices with arrows by starting at each saddle in the
direction of the eigenvectors and then “follow your nose” through the
vector field.

(3) Locate the stable and unstable limit cycles if you can. (Using a phase
plane computer program is the best bet; see MacMath.)

(4) Figure out from the separatrices and limit cycles the boundaries of
the basins and cobasins of the sinks, sources, and limit cycles.

If you are able to do all this, you can claim to understand the differential
equation. In reality, locating the zeroes is hard: it involves solving a system
of nonlinear (nondifferential) equations, and there is no very good way to
do that. The DiffEq Phase Plane computer program in MacMath will zoom
in on zeroes (singularities) one at a time if you give it a good enough initial
guess, but it gives no guarantee that you have found them all.

Once you have located a zero, analyzing it is routine. (The computer,
however, had to be taught to differentiate):

(1) Set new coordinates (£,7) to indicate displacement from that partic-
ular equilibrium.

(2) Replace each term in the original nonlinear differential equation by
the linear term in its Taylor polynomial (expanded about the equi-
librium point).

(3) Calculate the trace and determinant of the linearization to determine
the behavior of trajectories at that equilibrium. (See Figure 7.5.7, the
bifurcation diagram.)

Locating limit cycles is even more difficult, and impossible without a
computer. However, with computer graphics phase portraits, you can, in
fact, usually locate and analyze limit cycles.

We shall now proceed to discuss in detail each of the possible types of
zeroes of the vector field (Sections 8.2 and 8.3) and limit cycles (Section
8.4).

8.2 Sources Are Sources and Sinks Are Sinks

The object of this section is well described by the title: we wish to show
that if a differential equation has a singularity, and if the linearization there
is a sink, then the nonlinear differential equation also has a sink. In this
case, it is not much easier to deal with the two-dimensional case than the
general case, so we will begin work in R".

First we need to know what a nonlinear sink is (and its opposite, a
source).
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Definition 8.2.1. Let x’ = f(x) be an autonomous differential equation
in R™ and let x¢ be a zero of the vector field.

Then x¢ is a sink if there is a neighborhood U of xy such that
any solution u(t) with u(¢o) € U remains in U for ¢t > ty, and
lim;—, o u(t) = xo.

The point xo is a source if there is a neighborhood U of x¢ such
that any solution u(t) with u(tp) € U was in U for all ¢ < ¢, and
lim;—, _ oo u(t) = Xo.

Remark. The limit condition is needed to exclude centers.

Theorem 8.2.2. If at a zero of an autonomous differential equation the
linearization is a sink or a source, then the zero is itself a sink or a source.
Furthermore, all solutions sufficiently close to the zero tend to it exponen-
tially fast as t — oo for a sink or ast — —oo for a source.

Proof. We will treat only the case of sinks; the source case is similar. We
may change coordinates so that the zero under consideration is at the origin
and the differential equation can be written

x' = Ax + q(x), (12)

where q starts with at least quadratic terms, so that for some constants C

and R, we have
la@)ll < Clix||?* for ||| < R. (13)

The proof will consist of Lemma 8.2.3 and Lemma 8.2.4. The idea is
straightforward: we already know that the linearization is a sink, and we
need to know that the nonlinear term q is sufficiently small near the zero
of the differential equation and negligible by comparison with the linear
term.

To deal with the linear term, we cannot quite use the argument of The-
orem 7.6.1. In Chapter 7, we used Theorem L6.9, which provided us with
a complez basis with respect to which solutions have decreasing norm. Of
course, a real matrix can always be considered as a complex matrix, so the
use of a complex basis was justified so long as we were only using linear
equations.

In our present case, the function q(x) may not be defined for complex
values of x, and although we could extend it in some way, we prefer to stick
to real bases.

Lemma 8.2.3. Let A be a real n X n matric whose eigenvalues have a
negative real part, so that if

—A = sup{Re \|\ is an eigenvalue of A},
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then A > 0. Then for any C with 0 < C < A, there exists a basis of R™ in
which Ax - x < —C||x||? for every x € R".

Proof. Theorem L6.19 asserts: If A has k pairs of conjugate nonreal eigen-
values, then there exists a basis wy,...,w, of R™ such that for any ¢, in
that basis, A is k-pseudo-upper-triangular with terms of absolute value < &
above the pseudo-diagonal. Exercise 8.2-8.3#3 asks you to prove that

Ax - x < (—=A + ne)||x||?,

where —A is the largest real part of an eigenvalue. Choose € < (A — C)/n,
and the lemma follows. 0O

Im A
_ A
eigenvalues ;
o :
j | ne |
4‘ I Re A

L] - .:A = C1

!

FIGURE 8.2.1. Relative positions of various constants.

Now we can deal with the nonlinear case, referring to Figure 8.2.1.

Lemma 8.2.4. Let A be a real matriz satisfying Ax - x < —C1||x||?, and
let q(x) satisfy lq(x)|l < Callx||? for ||x|| < R. Let p = min(R, C1/2Cy).
Then any solution of x' = Ax + q(x) with ||x(0)|| < p satisfies

Ix(®))1? < [Ix(0)]|%e~
fort > 0.

Proof. This is a “fence” result, as illustrated in Figure 8.2.2: If x(¢) is a
solution to x’ = Ax + q(x), then

d/dt([Ix(®)|?) = 2x'(t) - x(t) = 2(Ax(t)) - x(¢) + 2q(x(t)) : x(¢) (14)
< —2C1|Ix(@®)|1? + 2C:|Ix(8) |
whenever ||x(t)|| < R. Our definition of p then gives, when ||x(t)|| < p <
C1/(2C),
d/dt(llx(t)lI*) < —Culx(®)|I*. (15)
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x()!f

I~ slope lines of u'=- C1u
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M"“
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FIGURE 8.2.2. The fence described in the proof of Lemma 8.2.4.

Equation (15) says that ||x(¢)||? is a lower fence for the differential equa-
tion v’ = —Cu, so
(@)1 < [|%(0)[%e~*
if [|x(0)]| < p.
Hence, ||x|| < p for all ¢t > 0, which justifies the use of (15). O
This completes the proof of Theorem 8.2.2. O

Remark. Unlike the case of linear equations, it is quite possible for a
zero to be a sink without the linearization being a sink, as shown by the
following:

Example 8.2.5. Consider the differential equation

e I H R H

whose linearization at (0, 0) is a center, but whose phase portrait looks like
Figure 8.2.3.

FIGURE 8.2.3. Phase plane for equation (16).
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Let u(t) = z(¢)? + y(¢)?; then

u'(t) = 2z(t)z’ (t) + 2y(t)y' (t) = 2x(—y — ux) + 2y(z — uy)
= —2u(z(t)? + y(t)*) = —2(u(t))?,

and u(t) = 1/(2t — C) is the general solution of this new differential equa-
tion in u, representing distance from the origin of a solution to equation
(16). In particular, this information about u tells us that solutions to the
original system (16) go to (0,0) as ¢ — oo, although much more slowly
than exponentially. A

Sinks like that in Example 8.2.5 will be called weak sinks. They will be
major actors in Chapter 9, under Hopf bifurcations.

LiaApuNOvV FUNCTIONS

There is a way to deal simultaneously with zeroes of vector fields for which
the linearization is a sink, and at least some of those for which the lin-
earization is not a sink but which are nevertheless (weak) sinks.

Observe that in Example 8.2.5, the quantity d/ dt||x(t)||2 is strictly neg-
ative when x(t) # 0. The proof of Theorem 8.2.4 used the same principle:
the equation

4 1o < ~Cullxo)|? (15)

says that with respect to an appropriate basis, the function ||x(t)||? de-
creases with time (and at a particular rate). In both cases, it is handy to
define a Liapunov function. Then the fact that the origin is a sink will
follow from Theorem 8.2.7.

This special type of function is named for Aleksandr Mikhailovich Lia-
punov, a Russian mathematician from the late nineteenth and early twenti-
eth centuries, who specialized in the stability of systems, particularly those
due to rotating heavy fluids.

Definition 8.2.6. A continuously differentiable function F(x) defined in
a neighborhood U of a zero xg of the vector field f is a Liapunov function
for the differential equation x’ = f(x) on U if

(1) F has its unique minimum in U at xo,

(2) VF(x) - f(x) < 0 when x(t) € U and x(t) # xo.

Note that you do not need to solve the differential equation x’ = f(x) to
check that a function is a Liapunov function. The second condition above,
by the chain rule, can be written as % F(x(t)) < 0, which means that F
decreases along solutions.
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In the plane, this condition means that all solutions of the differential
equation cross the level curves of F' from the outside to the inside, as in
Figure 8.2.4.

F(x) - F(xg)=c>0

F(x) - F(xq) = 2¢

QF(X) -F(xg)=0
*(Xo» Yo)

/

vector field crossing level curves of F

FIGURE 8.2.4. Two level curves of a Liapunov function in a direction field for a
differential equation.

Theorem 8.2.7. If a zero of a differential equation admits a Liapunov
function, then the point is a sink.

The proof we will give for Theorem 8.2.7 is rather nonconstructive, and
this cannot be avoided unless we make some assumption about how fast f
is decreasing along solutions. In Exercise 8.2-8.3#8, we will propose some
alternative proofs under stronger hypotheses (of course, the proof of The-
orem 8.2.2 or Lemma 8.2.4 is already such an alternative proof). We will
write the proof in the plane; it is not really harder in higher dimensions, but
the geometric language of “level curves of F” becomes more intimidating,.

Proof of Theorem 8.2.7. Suppose F(xg) = 0. [If not, use F(x) — F(xg)
instead of F' throughout this proof.]

Choose a circle C in U centered at xg; the function F must assume a
minimum M > 0 on this circle C. Let V be the region inside C' where
F < M; this is a new neighborhood of xo, smaller than U, and we will
show that every solution which enters V is attracted to xq.

Suppose that u(tp) € V. Since the function F(u(t)) is decreasing, it can
never increase to M for ¢ > to. Hence, the solution will stay in V for all
t > to.

Remark. What makes this proof unpleasant is that we cannot speak of
lim;_, o (u(t)) without some precautions: u(t) might accumulate on a limit
cycle or some more complicated object and not have a limiting value. We
can say that for any sequence t; — 0o, there is a subsequence ¢;; such that

11m u(t,-j)
i—00
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exists. This is simply the statement “any sequence in a compact set has
a convergent subsequence,” which you should take on faith if you do not
know it already. However, you should also be a little wary—this is where
the nonconstructivity is hidden. The “simple” statement above gives no
hint how to find the subsequence.

Proof, continued. Take any well-spaced sequence of times tending to co, for
instance, the integers. Since the sequence F(u(n)) has a limit, the sequence

of differences
F(u(n + 1)) — F(u(n))

tends to 0. By the Mean Value Theorem, there exists some number s,, €
[n,n + 1] such that

2 F(u(sn)) = Flu(n+1)) ~ Fu(n) a7)

tends to 0.
Extracting a subsequence of s,,, we may suppose that u(s,) converges
to some point uy. But if uy,, # xo,

%F(um) <0.
This contradicts equation (17), so u(s,) tends to xg as n — oo.

This is not quite enough to prove the theorem; it just shows that there
is a sequence of times at which the solution tends to xg. It does show,
however, that lim;_,o, F'(u(t)) = 0, since the function F(u(t)) is decreasing
and certainly has a limit. And this is good enough. If u(t) does not converge
to X, then there is a sequence t; tending to oo such that u(t;) does converge
in V to some point v, # Xo. Then F(u(t;)) tends to F(vs) # 0, and this
is a contradiction. O

Example 8.2.8. Consider the second order equation
g + f(z)z’ + g(x) =0, (18)

with f(z) > 0 and z, g(z) of the same sign for = # 0. This equation is called
Liénard’s equation and should make you think of the damped harmonic
oscillator; the condition f(z) > 0 says that the friction is positive, and
the condition zg(z) > 0 says that the force really restores. Of course, the
ordinary damped harmonic oscillator equation is a special case of Liénard’s
equation, but in general the equation is nonlinear, with the friction and the
restoring force depending on the position.

It is not really surprising, in view of the signs, that the origin should be
a sink, and it is.
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Replace the second order equation (18) by the equivalent system

] Y _
[y] a [—f(w)y —y(w)] = fla).
Set G(z) = [y g(u)du and consider

F(z,y) = %2- + G(z).

Note first that F' does have an absolute minimum at (0, 0), since G has an
absolute minimum at 0 [that is why we assumed zg(z) > 0], and, second,
that

VF(z,y) - f(z,y) = —y*f(z) <0

when (z,y) # (0,0).

If we make the stronger assumption that G(z) — oo as £ — oo, we get
the stronger statement that (0,0) attracts the entire plane. Actually, this
is already proved in the proof of Theorem 8.2.7. In that proof, there is at
the beginning a seemingly fussy argument to get a compact region V' which
the vector field always enters; we then showed that all solutions that enter
such a region are attracted to the minimum of F.

For this example, every point (z;,y;) is in the region F(z,y) < C if
C > F(z1,y1); the hypothesis on G is exactly what is needed to see that
this region is compact.

Exercise 8.2-8.3#7 provides an example to show what can go wrong if
the hypothesis is removed. A

SINKS AND SOURCES IN THE PLANE

We now know that if the linearization of a vector field f at a zero xg of f is
a sink or a source, then the differential equation x’ = f(x) also has a sink or
a source at xg. One might like more precise information, at least for vector
fields in the plane, where the linear equations are completely classified. For
instance, if the linearization spirals, then do the solutions of the nonlinear
differential equation spiral also? This is indeed true, as we will now show.
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The case of spiral sinks. A typical spiral sink is shown in Figure 8.2.5.

FIGURE 8.2.5. The nonlinear sink E from Figure 8.1.1.

Definition 8.2.9. If f is a vector field in R? and xq is a zero of f at which
the linearization of x’ = f(x) is a spiral sink, we will say that xg is a spiral
sink of the differential equation x' = f(x).

This definition is justified by the following result.

Theorem 8.2.10. If xq s a spiral sink for x' = f(x), then the solutions
starting sufficiently close to xq spiral around xg.

Proof. We may change coordinates to put x¢ at the origin, and if we use
the real and imaginary parts of an eigenvector as a basis, then we saw in
Section 7.5 that the differential equation will be of the form

x = [‘; —ab] x + q(x). (19)

We would like to know that the solutions spiral. Let 6(t) be the polar
angle of a solution (z(t), y(t)). Since 8 = arctan(y/z), we have

g - % — 2y _ z(bz+ay+Q(z,y)) —y(az — by + P(z,y))
2 + y2 x2 + y2

(20)

=b+ IEQ(.’B, yg —yf(w’ y)
T4 +y

’

where P and @ are the coordinate functions of q.

We saw in Theorem 8.2.2 that if (z(0),y(0)) is sufficiently small, then
[[(x(t), y(¢))|| will be (exponentially) small as ¢ — oco. Furthermore, since
in expression (20) for 6’ the terms other than b are at least cubic in the
numerator and quadratic in the denominator, they give something arbi-
trarily small for (z,y) near (0,0). We see that for any ¢, if (z(0),y(0))
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is chosen sufficiently small, then #’(t) has constant sign for ¢ > 0 , and
|6’(t)] > |b] — € for t > 0. It immediately follows that the solution turns
infinitely many times around 0. O

In Exercises 8.2-8.3#9 and #10, we will show that Theorem 8.2.10 is in
some sense the best possible: if the linearization of a differential equation at
a zero of the vector field is a sink with equal eigenvalues, then the solutions
do not spiral.

The case of node sinks. A typical node sink is Ehown in Figure 8.2.6.

T

FIGURE 8.2.6. A nonlinear node sink. (This is the opposite of the node source
A in Figure 8.1.1.)

Theorem 8.2.11. A differential equation in R? has a node sink at a sin-
gular point if its linearization at that point has a node sink. This means
that:

(i) All solutions which start sufficiently close to the sink approach the
sink tangentially to an eigendirection as t — oo.

(ii) Precisely two trajectories approach tangentially to the eigendirection
corresponding to the eigenvalue having smaller absolute value, from
opposite sides; all others approach tangentially to the eigendirection
with eigenvalue having larger absolute value.

Proof. We have already seen in Theorem 8.2.2 that the singular point is a
sink if the linearization is a sink, so we only need to show the statements
about directions of trajectories. In the case of node sinks, the linearization
has two linearly independent eigenvectors. The proof of Theorem 8.2.11 is
much easier if we begin our analysis

e using coordinates that place the node equilibrium (z¢, yo) at the ori-
gin, so that { =z and n =y,

e using the eigenvectors as a basis, which places them along the axes.
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In that case the differential equation is, for P and @ starting with
quadratic terms,

T’ = —pz + P(z,y)

y, =-vy+ Q(.’B, y)

where —p and —v are the distinct negative eigenvalues, and we will assume
that —u < —v < 0, so the picture looks like Figure 8.2.8; that is, for every
trajectory not on the z-axis, the z-coordinate approaches 0 faster than the
y-coordinate; thus, such a trajectory ends up tangent to the y-axis.

(21)

eigenvector for
A=-v

eigenvector for
A=- p

FIGURE 8.2.7. Phase portrait for ' = —uz,y’ = —vy with —p < —v < 0.

For the linearized equation, all solutions approach the origin tangentially
to the y-axis except those whose trajectory is on the x-axis. We would like
to know that for the nonlinear equation there is also a single trajectory
tangent to the z-axis and that all the other solutions tend to the sink
tangentially to the y-axis. This kind of statement should remind you of
the funnels and antifunnels of Part I; indeed, the proofs are just clever
choices of fences so that the funnel and antifunnel theorems (with minor
modifications) apply (See Appendix T concerning Chapters 1 and 4 in Part
I).

Funnels and antifunnels apply to differential equations in one variable,
not to systems; however, the trajectories of solutions to the system lie along
graphs of solutions to

4_:‘/_ _ l/y—Q(l',y) _

thinking of y as a function of z, and of
o _ w2 Pow) _ gy (23)

dy vy—Q(z,y)

thinking of z as a function of y.
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You do need to worry about the curves along which the denominators
vanish, as in equations (22) and (23) there is no differential equation there
and, in particular, none of the theorems about funnels or antifunnels are
true.

However, the curve of the equation pux = P(z,y) where equation (22)
fails to be defined is a twice-differentiable curve tangent to the y-axis, and
similarly the curve of the equation vy = Q(z,y) where equation (23) fails
to be defined is a twice-differentiable curve tangent to the z-axis. As we will
see, our choice of antifunnels will always exclude the curves along which
the differential equations fail to be defined.

To prove Theorem 8.2.11, we will define three regions in the zy-plane,
called U, V, and W, bounded by curves as shown in Figure 8.2.8, so that

(a) The differential equation (23) is defined in U , and U is a funnel for
(23), so that all solutions that enter it stay in it as y increases to O;
in particular, they approach (0, 0) tangentially to the y-axis.

(b) The differential equation (22) is defined in V/, and V is an antifun-
nel for (22) with the uniqueness condition, so there exists a unique
trajectory staying in V' as x increases to 0.

(c) W is also an antifunnel for (22), so the unique trajectory specified in
(b) approaches (0,0) tangentially to the z-axis.

FIGURE 8.2.8. Funnels and antifunnels for system (21).

The most delicate part of the proof is the uniqueness in (b), because the
solutions in this antifunnel are in fact converging, but not quite fast enough

to stay between the fences.
It should be clear that similar statements will hold if z and y are positive;
we chose the regions above because it is easier to think of = and y increasing.

Proof of (a). The region U is a funnel, forcing solutions to approach 0
tangentially to the y-axis.
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Choose ¢ with 1 < ¢ < 2 and ¢ < p/v and let z = u(y) = |y|°.

Since ¢ > 1, this curve does indeed approach (0,0) tangentially to the
y-axis. However, since ¢ < 2, it approaches the y-axis more slowly than
any twice-differentiable curve that is tangent to the y-axis. In particular,
equation (22) is defined in the region V. Of course, equation (23) is defined
in U, since ¢ is infinite only on a curve tangent to the r-axis.

Because y is negative in the region considered, we have u'(y) = —c|y|°~!
and |y|/y = —1. This means that by factoring vy out of the denominator
(Reference: Part I, Appendix A on Asymptotic Development), we can write

e oy = Blule = P(yl%y)
o(lyl°,y) = vy — Q(lyl°,v)

= (<5 - P(|.«;|£,y>) (= Q(Iyllz,y)/vy)
(o) (L SR

and the leading term in y is —(u/v)|y|°~!. Note that this used the require-
gy Y, might contain linear terms in y, contributed by

ment ¢ < 2, since

terms in y? of P.
Since ¢ < p/v, we have

u'(y) = —cly|™ > p(u(y),y)

for y < 0 and |y| sufficiently small. Thus, part (a) is proved.

A similar computation with u; (y) = —u(y) shows that U is a funnel and,
at the same time, that V is an antifunnel, which is the first part of the next
step, (b).

Proof of (b). There is a unique trajectory in the antifunnel V.

We first need to find a function K(z) such that in V' we have

g—;’;@,y) > K(2);

i.e., K gives a lower bound for the rate at which solutions can converge in
V.
We compute from (22), using the fact that (0P/dy)(0,0) = 0, that

Z_ﬁ(x’y) N <i’; - 3%/3?1/) (1 - P(;,y)/uw)
(- 200y (1, Pen L),

7% 7% 7%
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Since |y| < |z|/¢ in V, v/uz is the leading term, and we can take

with an arbitrarily small ¢ if we choose || sufficiently small. Note how far
we are from being able to apply the easy uniqueness criterion K(z) > 0;
our K(z) goes to —oo as z increases to 0. However, the harder antifunnel
Theorem 4.7.4 still applies.

Let us repeat the argument: If v; (z) and ;(z) are solutions in the anti-
funnel with y; > 72, let n(z) = 71 (z) — v2(z). Then 7'(z) > K(x)n(z), so
that

(v/u)+e

f::] K(s)ds T

n(z) > n(zo) e = n(zo)

e
How does |z|(*/®*¢ compare to |z|'/¢? Since, from the beginning of (i),
¢ < p/v, then 1/c > v/u, and if € is chosen sufficiently small, we have

1/e>v/u+e.

The smaller the power of |z|, the higher the graph of the function near
0, and we see that the function n(z) is larger than the distance 2|x|'/°
between the top and the bottom of the antifunnel, so only one solution can
pass through the origin. This proves uniqueness.

Proof of (c). The exceptional solution is tangent to the z-azis.

Let v(z) = |z|® for any § with 1 < § < 2. Then, since z is negative,
v'(z) = —6|z|°~!, and

1% 6 - s
oot = 2= Qlmlet)

(__V_Izlci-—l _ Q(l‘, |$|6) 1
Z pr ) (1+ P(z,|z|%)/pz)

(<t I (P, )

The leading term is —(v/u)|z|®~!, and since v/u < 1 < §, we have
o(2) < $(z,9(z)).

A similar argument about v; = —v shows that W is an antifunnel. The
unique solution in the antifunnel V' must also lie in W, which forces it to
be tangent to the z-axis.

The proof of Theorem 8.2.11 is now complete. O

The following example will explain why noninteger exponents were nec-
essary in the proof of the preceding theorem.
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Example 8.2.12. Consider the system

z’ = -2z +y?
Yy =-y.

The associated linear system has solutions whose trajectories lie on para-
bolas z = Cy?; we will see that the nonlinear equation is different in a small
but annoying way.

This particular nonlinear system can easily be solved: the second equa-
tion alone yields

y(t) = Cle"t,

and then the first equation becomes
' = -2z + Cle %,
which can be solved by variation of parameters, giving
t
z(t) = e~ 2 (/ e2*Cle2°ds + Cg)
0

— e (C2+Cy).

To find the trajectories in the zy phase plane, we need to eliminate ¢
from the equations for z(t) and y(t). From the equation for y(t), we get

t=—logly/Cil,
which if inserted in the equation for z(t) gives
z = —y*logly| + Csy?,

where C3 = (Cz/Cf + 10g|Cl|).

The important thing to realize about these trajectories for the nonlinear
system is that they do not approach the y-axis as fast as the parabolas
that we found for the linear equation. Any attempt to fence in the solutions
approaching (0,0) tangentially to the y-axis by parabolas is going to fail,
and we will have to use a funnel with a wider mouth. A

8.3 Saddles

Definition 8.3.1. An autonomous differential equation x’ = f(x) in R2
has a saddle at a zero xg of f if its linearization there has a saddle.

Theorem 8.3.2. If an autonomous differential equation x' = f(x) has a
saddle at xq, then there are precisely
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two trajectories that tend to xo as t — oo, that together with xo form
a smooth curve tangent at xq to the line of eigenvectors with negative
eigenvalue (the stable direction),

and precisely

two trajectories that tend to xg ast — —oo, that together with xo form
a smooth curve tangent at xq to the line of eigenvectors with positive
eigenvalue (the unstable direction).

As we have seen in Figures 8.1.4 and 8.1.5, the trajectories of Theorem
8.3.2, called separatrices, typically separate the regions of generic behavior,
and are, as such, the most important objects to understand about a vector
field in the plane. A typical saddle is shown with its separatrices in Figure
8.3.1.

FIGURE 8.3.1. A saddle with eigenvectors and separatrices.

Proof of Theorem 8.3.2. The proof is similar to that for Theorem 8.2.11.
Here also we

(i) use coordinates that place the saddle equilibrium (zg, yo) at the ori-
gin, so that £ = z and 7 =y,

(ii) use the eigenvectors as a basis, which places them along the axes.

In that case, the nonlinear differential equation is
BRI IHR ]
y 0 vjly Q(z,y)
t’ = —pz + P(z,y)
24

¥ =vy+Q(z,y), (24)
with —p and v the negative and positive eigenvalues, respectively, and P
and @ starting with quadratic terms.

or
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The fact that the separatrices of a saddle divide the vector field into
regions of generic behavior should remind you of antifunnels, and indeed
antifunnels are used in the proof. As before, recall that funnels and an-
tifunnels apply to differential equations in one variable, not to systems;
however, the trajectories of solutions to system (24) follow the graphs of
solutions to the first order differential equation

dy _ vy+Q(z,y)
dz ~ —pz + P(z,y)’ (25)

Equation (25) is less satisfactory than equation (24): it is not a differ-
ential equation wherever yr = P(z,y), so that the denominator vanishes,
and in particular, none of the theorems about funnels and antifunnels are
true when this happens. However, the curve pz = P(z,y) is an (implic-
itly defined) twice-differentiable curve tangent to the y-axis (Exercise 8.2-
8.3#11), and our choice of antifunnels will completely avoid curves tangent
to the y-axis at the origin.

Consider in the left half of the (z, y)-plane the shaded region U, bounded
above and below by curves of equation

2

y = tvyz* for some o <z <0 and vy > 0,

and the lighter region V for which |y| < |z|, as shown in Figure 8.3.2.

FIGURE 8.3.2.

Lemma 8.3.3. For v sufficiently large and x sufficiently small, the regions
U and V' described above are both antifunnels for equation (25); therefore,
these regions contain a unique solution defined for —xo < x < 0, and this
unique solution is tangent to the x-axis.

Proof of Lemma. (i) U is an antifunnel: first we show that y(z) = yz?
is a lower fence. If y(x) = yz2, then y'(z) = 2yx < 0. On the other hand,
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the solutions to the differential equation (25) have slope ¥(z, y(z))

Y@ yle) = LAY (1 - L)

T
2 e

2 2
_ (_ﬂ _ Q(w,y)) (1+ P(,y) | (P(z,w) +)
7% BT 7% 7%

(26)
(Reference: Part I, Appendix A on Asymptotic Development) and we need
to locate the leading terms. If @ has a term in 2, then both terms in the
first parentheses are linear in z. Otherwise, the first term dominates the
second for sufficiently small o when —z¢ < z < 0. But if Q has such a term
in 22, then there are no y’s in that term and its coefficient is independent
of 7. So by taking < sufficiently large and a correspondingly small z,
we can guarantee that the first term dominates and, in particular, that
Y(x,y(x)) > 0. Therefore, y = yz? is a lower fence. Similarly, y = —yz? is
an upper fence, so U is an antifunnel.

(ii) V' is an antifunnel: This proof is left as Exercise 8.2-8.3#12.

(ili) Unique solution in the antifunnel: In order to use the Antifunnel
Theorem 1.4.5 that promises a unique solution in V, we need first that V
is a narrowing antifunnel, which it is as z increases to 0, and second that
0¢/0y > 0 in V. If you differentiate the quotient (25) for ¥(z,y), you get

a«p:( L_a_g_/gg)(l P )_(Vy+Q)(6P/3y).

8y \ pz oz Tt (uz — P)?

As z 1T 0, the only term of (27) that approaches infinity is —v/(uz),
and this leading term is positive in V. [(0Q/8y starts with a linear term,
so (0Q/0y)/(ux) is at most a constant; P starts with a quadratic term,
so P/ux starts with at most a linear term that approaches zero.| So if
(z,y) € V and (z,y) is sufficiently close to the origin, 8v/dy > 0.

Therefore, in this narrowing antifunnel V, as we approach the origin,
there is a unique solution to the differential equation (25). The origin is
the equilibrium point for the nonlinear system whose trajectories lie along
the solutions to that differential equation; therefore, the unique solution is
a separatrix of the nonlinear system.

(27)

(iv) Tangency of separatriz: This separatrix is tangent to the z-axis, the
eigenvector with the negative eigenvalue: The unique solution in V is also
the unique solution in U, by the same arguments given in part (iii), so it
is squeezed in between two parabolas tangent to the axis at the origin.

Thus, the lemma is proved. O

Proof of Theorem 8.3.2, continued. All the statements about saddles
follow from Lemma 8.3.2, applied four times, with the necessary changes
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of variables for the four directions in which the saddle can be approached.
We need the first antifunnel U to control the direction of the separatrix;
we need the second antifunnel V', which is broader, to capture all solutions
approaching the equilibrium point from the left diagonal quadrant, so as to
avoid in the final argument any “no man’s land” between the four rotated
versions of U, shown in Figure 8.3.3, where we would not know how the
solutions behave.

FIGURE 8.3.3. Four versions of U with four approaches to zo, yo.

We have now proved the theorem. 0O

8.4 Limit Cycles

The simplest thing a solution to a differential equation can do is to be
attracted to an equilibrium. In the preceding three sections we have ex-
amined equilibria in some detail. The next simplest is for the system to
undergo periodic motion, or for the phase plane trajectory to be a cycle.
This behavior cannot occur for autonomous systems in R, since a circle
cannot be embedded in a line.

In the plane, cycles exist and are relatively common; for instance, the
solutions of the harmonic oscillator equation

(5] =12] (29
are cycles.

For nonlinear equations, cycles usually behave quite differently from
those associated to linear equations: they are usually isolated and control
the behavior of nearby solutions in the same sense that equilibria control
the behavior of nearby solutions. This is perhaps the main way in which
nonlinear equations differ from linear equations, at least in the plane.
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Example 8.4.1. Consider the system of differential equations

(- [esnf]

In the phase plane, this differential equation produces Figure 8.4.1.
@;\) :

=

2

FIGURE 8.4.1. Trajectories for equation (29) with a = 1.

Certainly it appears that all solutions other than the constant solution
at the origin are attracted to a solution whose trajectory is the unit circle.
This is, in fact, quite easy to prove. This differential equation has been
carefully cooked up to be easy to translate (Exercise 8.4#t1a) into polar
coordinates, as follows:

r? = 2% 492, so  2rr’ =2zz’ + 2yy';
y ,_ oy —yz

0 = arctan =, S0 6 =——7-
T ¢ +y

Now substituting =’ and y’ from (29) gives (Exercise 8.4#1b)

r_ 2
po ®)
It is fairly easy to solve the first equation of (30), but even easier to
analyze it from fields of slopes in the r¢-plane (Exercise 8.4#1b): For a > 0,
all solutions for 7 > 0 are attracted to the constant solutionr = 1; for a < 0,
the solution r =1 is repelling, and if 0 < r(0) < 1, the solution tends to 0,
whereas if 1 < r(0), then the solution tends to infinity. A

Example 8.4.1 shows a stable (or attracting) limit cycle when a > 0 and
an unstable (or repelling) limit cycle when a < 0. Stability means that the
cycle attracts nearby solutions as ¢ — +o00; instability means that the cycle
attracts nearby solutions as t — —oo0.
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In the plane, these are the only kinds of limit cycles that appear “generi-
cally” (there are other “exceptional ones,” which we will examine in Section
9.4). In higher dimensions, there are many other generic possibilities, which
we will consider briefly in Chapter 13 in Part III.

Considering that the existence of limit cycles is a perfectly common form
of behavior for a differential equation in the plane, it is amazing how rarely
they come up when differential equations are entered at random. Limit cy-
cles do come up rather often, however, in differential equations describing
real phenomena. Moreover, as we will see in Chapter 9, limit cycles are es-
sential to understanding how phase plane drawings change their qualitative
appearance as a parameter changes.

Here are a few further examples of limit cycles:

Example 8.4.2. Van der Pol’s equation,
' +(z* - 1)z’ +z=0, (31)

describes a nonlinear electrical circuit that we will study further in Chapter
10 in Part IIIL. It can be turned into a system in the standard way:

=y

y=Q0-2"y-g, (32)

and the associated phase plane drawing appears as in Figure 8.4.2.

2
ZE

FIGURE 8.4.2. Trajectories for Van der Pol’s equation.

There certainly seems to be a limit cycle in Figure 8.4.2, and this phe-
nomenon can be understood as follows. We can think of the differential
equation (31) as describing a damped harmonic oscillator, with friction
z? — 1. But 22 — 1 is only positive for [z| > 1; in other words, the oscil-
lator is being driven if the displacement z is small, and damped or slowed
if it is large. It is not so surprising that it settles down to some particular
oscillation. A
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It is quite possible to produce differential equations with several limit
cycles. The following is an example:

Example 8.4.3. Consider the equation

!
z( 1Y 2 2\2 : ; T
o] =[] e rren s 5]

FIGURE 8.4.3. Several limit cycles for Example 8.4.3.

In Exercises 8.4#3, you can prove that this equation has infinitely many
periodic solutions, with different trajectories. A

There are many open problems about limit cycles. For instance, it is
unknown how many limit cycles a differential equation

z’ = P(z,y)
¥ =Q(z,y)

with quadratic polynomials P and @ can have, or in what configurations
such cycles can lie.

There is one major theorem, the Poincaré-Bendixson theorem, that guar-
antees the existence of limit cycles. This is the subject of the next section.

8.5 The Poincaré-Bendixson Theorem

A major theorem that guarantees the existence of limit cycles is due to
Henri Poincaré (French) and I. Bendixson (Swedish), in the early twentieth
century. To see a statement and a proof, you should read Section 8*.5, which
does not require the previous sections of Chapter 8*. Here we will give a
useful and simpler special case of the Poincaré-Bendixson Theorem that
can be stated as follows:
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Theorem 8.5.1 (Poincaré-Bendixson Theorem, Annulus Form).
Let 0 < a(6) < B(0) be two periodic functions of period 2w, continuous and
piecewise differentiable. Let U be the “annular” region in the plane given
in polar coordinates by

U={(r8)|ad) <r<pB(8)}
and let

f2 (:L‘, y)
be a vector field on U , pointing into U along both components of the bound-
ary. If

£(z,y) = [fl(””'y)] (33)

) | Y] #0 (34)

in U, then U must contain a limit cycle of x' = f(z,y).

S

FIGURE 8.5.1. Annulus for Poincaré—Bendixson Theorem.

The hypothesis (34) means that the vector field curls around the origin,
never pointing in the radial direction. Since the scalar product does not
vanish, it must be positive or negative, according to whether the vector
field turns counterclockwise or clockwise. Without loss of generality, we
will assume that the scalar product (34) is positive.

Proof of Theorem 8.5.1. We will consider U first as a wraparound funnel,
and it is easy to associate to U a genuine funnel: consider the region

V ={(r,0)]ad) <r<B6)}
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in the (6, r)-plane, as shown in Figure 8.5.2.

FIGURE 8.5.2. Unwrapping the annulus in the 6r-plane.

The differential equation can be written in polar coordinates

" = g1(r,6)
o = 02(r,6), (35)

as in Example 8.4.1, by writing

rP=z2+y?% so rr'=zz'+yy

6 =arctan¥, so O = (y'z—yz')z/r%.
Substituting £ = rcos 6§, y = rsin @ leads to

' = cos @ f1(r cos 0, 75sin @) + sin 6 f2(r cos 8, rsin §) = g, (r, )

_ cosffz(rcosf,rsinf) —sinf;(rcos,rsinf)
r

0' 92(r’ 0)
and our hypothesis (34) implies that go(r,8) > 0 in the region V. Then
the trajectories will coincide, in the (6, r)-plane, with the solutions of the
equation

dr _ gqi(r,6) _

B ga(r0) G(r,0). (36)

Our hypothesis imply that V is a funnel for equation (36). Moreover,

the function G is periodic of period 2w with respect to 8, so this sort
of equation is just what was discussed at length in Part I, Section 5.5,
including the period mapping P : J — R, which associates to r € J the
value of the solution to equation (36) which passes through (0,r) at § = 2.
The interval J is the maximal interval on which P is defined; in our case,
J = [a(0), 8(0)] since V is a funnel, and P maps J into itself.
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Any continuous mapping from a closed and bounded interval into itself
must have a fixed point (Exercise 8.5#1). The solution through this fixed
point is, of course, periodic as a function of #, and the solution to x’ =
f(z,y) [as given by Equation (33)] with corresponding trajectory is clearly
acycle. 0O

There is a fairly obvious condition which implies that the cycle in U is
unique: the region V is a funnel for equation (36), but it is also a backward
antifunnel. Suppose now that, in addition, dG/dr < 0, so that since G
is periodic, the derivative dG/dr < —C for some constant C > 0. Then
the region V, viewed as a backward antifunnel, satisfies the uniqueness
condition of Theorem 4.7.5, so that the periodic solution to (36) is unique,
and correspondingly, the equation (33) has a unique cycle in U.

The condition dG/dr < 0 is usually quite difficult to verify, since G is
usually a complicated function, but there is a more natural condition which
leads to the same conclusion: if the divergence

. 0fi | Of2
div f = o + Ey_
is strictly negative throughout U, then there is a unique cycle in U that
attracts every solution in U. This follows from the fact that the divergence
of a vector field f in the plane measures the extent to which its flow ¢¢
contracts or dilates areas. If there were two limit cycles, the region between
them would have an area preserved by the flow, which contradicts negative
divergence. This will be covered in Section 8.6, and the uniqueness criterion
when the divergence is negative is the object of Exercise 8.6#7.

For examples to illustrate the Poincaré-Bendixson Theorem, we go back

to the limit cycles we have just discovered in Section 8.4.

Example 8.5.2. Consider the system of differential equations from Exam-

ple 8.4.1:
[‘;’/’] = [_yz] +a(l - 22— 3?) [ﬂ . (29)

We return to the case when a = 1, where we already know the unit circle is
a limit cycle; we see that an annulus formed by a circle of radius» > 1 and a
circle of radius 7 < 1 will satisfy the conditions of the Poincaré-Bendixson
Theorem 8.5.1, as shown in Figure 8.5.3.
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&

-2

)

N

FIGURE 8.5.3. A Poincaré-Bendixson annulus for the limit cycle of 2’ = y +
z(1-2%-9y?), ¢y =—z+y(l-2*-9%). A

However, the sad fact about the Poincaré-Bendixson Theorem 8.5.1 is
that it does not tell us how to find a suitable annulus in order to know
where to look for a limit cycle. That is often quite difficult, even in a case
where we already can see a limit cycle.

Example 8.5.3. Returning to the Van der Pol equation (31) or (32) of
Example 8.4.2, it is far less clear how to define an annulus around the limit
cycle—give it a try before you read on!

A helpful approach to defining an appropriate annulus is to use a dense
grid of slope marks (an option in the MacMath program DiffEq, Phase
Plane). Figure 8.5.4 shows one graphical effort to successfully wander through
the morass, always crossing the vectors in the proper direction.

Figure 8.5.4 is a more organized annulus for the same problem, for which
actual equations can be written. We leave the writing of the equations as
Exercise 8.5#4, giving the hint that the nonstraight curves drawn on the
figure are the isoclines for zero slope in the vector field.
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8.6 Symmetries and Volume-Preserving Equations

As you can see in Section 8*.6, for a “general” vector field
e the zeroes are isolated;
e the zeroes are sinks, saddles or sources;

e all solutions are attracted forward by sinks and attractive limit cy-
cles, and backwards by sources and repelling limit cycles, except for
separatrices and limit cycles themselves.

However, differential equations that you study will often not be “general”
in this sense and will display quite different behavior. This is usually for
one or both of the two following reasons:

(i) The vector field may have symmetries. See Example 8.6.1.

(ii) The vector field may be area-preserving. See Example 8.6.2.

Example 8.6.1. Consider the system

o =y+zl+azy
vV =-z+zy+9’

The computer shows the picture in Figure 8.6.1 for the phase plane.

FIGURE 8.6.1. Phase plane for ¢’ =y + z® + zy, y' = —x + zy + y°.

It appears in Figure 8.6.1 that there is a continuous family of closed
curves surrounding the origin. Why should they be there? A careful look
at the picture appears to show that the diagram is symmetric around the
line z + y = 0. This is, in fact, true and easy to show, as follows:

The symmetry around the line z + y = 0 is given by (z,y) — (-y, —x).
One way of expressing the symmetry is to say that if (u(t), v(¢)) is a solution
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of the differential equation, then (—v(—t), —u(—t)) is also a solution, as you
can verify. This solution follows the symmetric trajectory, but with time
reversed.

The symmetry explains the observed behavior as follows: if a solution
(z(t),y(t)) crosses the line £ + y = 0 at some time to — h, and again at
some time tg, then between time tg and time to + h we will have

(z(to + ), y(to + 5)) = (—y(to — 8), —z(to — 8)),

since this is a solution of the differential equation with the correct initial
condition. But this solution returns to the point where we started, giv-
ing rise to a periodic solution. Thus, there will be a continuous family of
periodic solutions for this equation. A

Example 8.6.2. Consider the system of differential equations

z' = 2cos(z + 2y) — zsin(zy)
y' = —cos(z + 2y) + ysin(zy).

The computer shows the picture in Figure 8.6.2 for the phase plane.

FIGURE 8.6.2. Phase plane for £’ = 2cos(z + 2y) — zsin(zy), y' = — cos(x +
2y) + ysin(zy).

In Figure 8.6.2, we see lots of things that are not expected: families
of periodic solutions and separatrices of saddles leading to other saddles.
Yet, there does not seem to be any symmetry to explain these unusual
phenomena as in the previous example. A
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The differential equation of Example 8.6.2 is special because it is area-
preserving. This is an important notion in itself, which we now explain,
using the notion of flows from Section 6.8.

Definition 8.6.3. The differential equation x’ = f(x) in R", with flow ¢¢
is volume-preserving (area-preserving if n = 2) if for any subset U of R™
and any t, the n-dimensional volume

n-volume(g¢(t, U)) = n-volume(U).

This is obviously an important property that a differential equation might
have, but it is not obvious that there is any easy way to check whether
the equation has the property or not. As Corollary 8.6.6 will show, nothing
could be simpler. Recall from calculus, or simply define,

. e _ 0N 0fn
divf = e +'“+6zn'

Example 8.6.4. The divergence of the vector field in Example 8.6.1 is

0 0
-(,yz-(y+x2+zy)+—a—y(—m+xy+y2) =2r+y+z+2y=3(z+y).

The divergence of the vector field in Example 8.6.1 is

oz

The role of the divergence is largely explained by the following theorem:

9 (2cos(z + 2y) — zsin(zy)) + ba_y (—cos(z + 2y) + ysin(zy)) =0. A

Theorem 8.6.5. Given a differential equation x' = f(x), the divergence of
f measures the rate of change of volumes under the flow ¢¢, i.e., for any
U c R™, we have

d .
avol(qsf(t,U))L:Q_/.../wafda,,-l...atzn.

Proof. Using the notation of asymptotic expansion (Part I, Appendix A),
we will write
uy (¢, x) uy(t, (Z1,...,Zn))
¢f(t’x) = = ’
un(t,x) Un(t, (T1,...,Tn))
where u;(t,x) = z; + tf;(t,x) + o(|t]) as t — 0, since it is a coordinate of a

solution to the differential equation. Note: The notation o(|t|) means, since
t — 0, terms of strictly higher order than |¢|.
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We start with a formula from Appendix L5:

Ouy/0zy ... Ouy/0z,
vol(¢e(t, U)) = / / det dzy ... don.
U Oun/0z1 ... Oun/Oz,
This gives
d d Ouy [0z ... Ouy/Oz,
Evol(daf(t,U)):/---/ < det dz1 ... don.
v Oun/0z, ... Ou,/0z,

We can also use the fact that
Ouiy )= { tofi/0x;(t, ) +o(lt])  ifi#j

Oz, 1+t0f;/0zi(t,x) + o([t]) ifi=j,
which gives, for the determinant above,
aul/azl N aul/Oa:n
det =1+tdiv f + o(|t]).
Ou,/0z1 ... Oun/0z,

Differentiating this result with respect to ¢t and evaluating at ¢t = 0 yields
the desired result. 0O

Corollary 8.6.6. The differential equation x' = f(x) is volume-preserving
if and only if divf =0.

Proof. This is immediate from Theorem 8.6.5; the only problem is that the
theorem only computes the derivative at ¢ = 0. But the following formula
repairs this difficulty:

D vol(ge(t, V)| _ = 2 (vol(e(t, (s, V)

Since the theorem holds for any domain V/, in particular, V = ¢¢(s, U), this
proves the derivative of the volume is zero, so it is constant if the divergence
of the vector field vanishes. 0O

t=s t=0‘

Of course, a volume-preserving vector field cannot have any sources or
sinks, since a neighborhood of a sink would be mapped strictly inside itself
under the flow, or a neighborhood of a source would be mapped strictly
outside itself—in either case, its volume would not be preserved.

This can also be seen from the linearization: if u’ = Au is the lineariza-
tion of the differential equation x’ = f(x) at a zero xo, then Exercise 8.6#3

asks you to show
div f(xg) = tr A.

If the vector field is volume-preserving, we must have tr A = 0; in dimen-
sion n = 2, this implies that all zeroes must be centers or (rather special)
saddles. In fact, from Theorem 8.6.5 we see that
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e the flow is volume-expanding if tr A > 0;
e the flow is volume-shrinking if tr A < 0.

This goes a long way toward explaining why sources satisfy tr A > 0 and
sinks satisfy tr A < 0.

If all this volume-preserving stuff seems a little mysterious, it may come
as a surprise that in the two-dimensional case, the subject was essentially
covered way back in Part I, Chapter 2.6. More specifically, the system of
equations

z' = f (.’IJ ) y)
37
¥ =9(z,y) (37)
is area-preserving if and only if the associated equation
dy g
de — f (38)

is eract. We saw in Section 2.6 in Part I on exact differential equations how
to construct on any rectangle where both f and g are defined a function
F(z,y) which is constant on the solutions of (38), i.e., on the trajectories of
(37). This means you can get actual equations for the trajectories, relating
z and y (usually implicitly).

Example 8.6.7. In Example 8.6.2, the function F'(z,y) = sin(z + 2y) +
cos(zy) is constant on the trajectories.

This essentially completely explains the observed behavior. Such a func-
tion F' will have maxima, minima, saddle points, and, perhaps, more com-
plicated extrema. In any case, near a maximum or a minimum the trajecto-
ries form families of closed curves, and a trajectory through a saddle point
has no choice but to go to another at the same level, or come back to itself,
or go off to infinity. A

This (almost) completely demystifies area-preserving differential equa-
tions in R?: they are all obtained by taking a function F(r,y) and setting

, OF

S

, _OF
--=.

Such equations are called Hamiltonian; in two dimensions their theory is
simple: the function F is constant on trajectories, which completely deter-
mines them. These Hamiltonian equations are central in physics. In higher
dimensions, one function alone does not determine a curve, and as we will
see in Chapter 11 (in Part IIT), Hamiltonian equations are very elaborate
in higher dimensions.
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For an area-preserving differential equation, we can reduce its solution
to integrating and inverting functions, at least in principle:

t’ = f(z,y)
Y = g(x,y).

(1) First find (as explained in Section 2.6 in Part I on exact differential
equations) the function F such that

oOF . OF _

oy 7’ or
(This function F will be called the Hamiltonian function in Chapter
11 in Part III.)

(2) Next consider the equation F(z,y) = C; as expressing y implicitly
as a function of z, say y = ¢(z). Note: Seeing or understanding the
curve y = ¢(z) may be difficult in practice.

(3) Now the first equation becomes separable, dz/(f(z, #(z)) = dt, and
if it is possible to integrate dz/(f(z, ¢(z)), you can find an expression
G(z) = t+C>. The function G will still need to be inverted to express
z as a function of t.

The “almost” inserted in the sentence about demystification comes from
the fact that if the equation is defined on a domain with holes, the function
F may fail to be defined in the entire domain. This difficulty is important,
but we will not discuss it here.

Example 8.6.8. Consider the differential equation from Section 6.5,

=y
y' = —sinz,

describing the pendulum, or, more generally,

=y
r_ _ oV(z,y)
Oz
These equations often had continuous families of closed trajectories, and
saddle connections. We can now clearly see why:

(i) They are symmetric with respect to the y-axis, which you can see
either directly or from the obvious symmetry of the Hamiltonian function
when V(z) is symmetric.

(ii) They are area-preserving, and, in fact, the Hamiltonian function is

F(:L',y) = y2/2 + V(IL‘),
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also called the total energy. Note the very important fact that conservation
of energy and conservation of area are the same thing in this case! A

You might wonder if just by looking at the phase plane of a differential
equation, you can tell whether the equation is volume-preserving. In the
large (globally), you may get hints that this is so from the phase plane
presence of continuous families of periodic solutions and of centers. In the
small, if you see sinks or sources, you can be sure it is not area-preserving.
But locally, and away from zeroes, you cannot: in the absence of equilibria,
any pattern of trajectories is locally compatible with the property of being
area-preserving. .

More specifically, given any vector field £ on a region of the plane with
no holes, which furthermore does not vanish in that region, then there is a
function f(z,y) > 0 such that the vector field f¢ is area-preserving. This
means that locally (away from zeroes) you can adjust the length of the
vectors forming the vector field to make it area-preserving.

Such a function, which acts as a multiplier on the vectors, is classically
called an integrating factor and is a standard fixture of elementary courses
on differential equations. In most cases, it is just as hard to find an in-
tegrating factor as to solve the equation, so we will not expand on this
topic.

8.7 Chaos in Higher Dimensions

The theory throughout Chapter 8, especially in Sections 8.5 and 8.6, is
quite specific to the plane. Although there are generalizations to higher
dimensions, they are much weaker, either because the hypotheses are sel-
dom satisfied or because the conclusions do not describe the flow with any
precision. In this section, we want to give some examples that bring out
the difficulties.

Example 8.7.1. We already encountered the Lorenz equation in Example
6.1.6. Recall it as the following rather innocent looking autonomous system
in R3:

' =o(y-z)

Y =pz—y—z2 17)

2 =—PBz+zy.

Lorenz produced these equations as a reduction to three dimensions of
a set of partial differential equations describing fluid convection; in this
case, the parameters o, p, and 3 are all positive. We will only consider the
equation in this range.
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Solutions of the Lorenz equation for the “traditional parameter values”
o = 10,3 = 8/3, and p = 28 are represented in Figure 8.7.1. It is much

easier to get a feel for this figure by seeing it move on a computer screen
(or a video) than by looking at static pictures.

-25.000 < x < 35.000 dx/dt

= 10*(y-x)
-30.000 < y < 35.000 dy/dt = 28*x-y-x*z
-10.000 < z < 70.000 dz/dt = -(8/3)*z+x*y

FIGURE 8.7.1. The Lorenz attractor. A
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In Example 8.7.1, the reduction to three dimensions is drastic, and there
does not appear to be any close relation between the solutions of (17) and
the original meteorological problem. Despite this, the literature about the
Lorenz equations is very large, with at least one entire book [C. Sparrow,
The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors| and
many papers devoted to its solutions, but without any complete description
in sight. We will largely follow the description in Guckenheimer and Holmes
[Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector
Fields].

We will now give a way of thinking about these solutions by a geometric
picture of the Lorenz attractor proposed by R. F. Williams in The Structure
of Lorenz Attractors.

Cut out three semi-circles of cardboard, marked as in Figure 8.7.2, and
glue them according to the pattern of Figure 8.7.3.

FIGURE 8.7.2. Pattern for cutouts.

FIGURE 8.7.3. How to glue together cutouts of Figure 8.7.2.

You can now draw curves on this model by following the marked curves
around; they can be followed (forward) forever unless they end at p. They
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turn a certain number of times around hole A, then around hole B, etc.
The details of the behavior depend in a very sensitive way on the lengths
a, b, and c.

The actual behaviors of the solutions to the Lorenz equations (17) behave
much the same way: they turn around the zero A for a while, then around
B, then around A again, etc.

No one has managed to prove that the behavior of this cardboard model
really reflects the differential equation, but extensive computer experimen-
tation backs up the view that this is how the solutions behave.

We will discuss one other phenomenon that appears in three dimensions.
Although it is rather easier to understand than the Lorenz equation, it
has perplexing properties. The discussion will necessarily be a bit vague:
a precise definition of a section mapping is given in Section 8*.4, but we
hope we can convey the idea here without the technicalities.

CYCLES AND THE SECTION MAPPING IDEA

Take a cycle and choose a transversal to the cycle (see Figure 8.7.4): in the
plane, this transversal will be a line segment; in space, it will be a piece of a
plane. If you start in the transversal sufficiently close to the cycle and solve
the differential equation, you will stay close to the cycle and hence will
come around and intersect the transversal again. This defines a mapping
from the transversal to itself, called the section mapping, which has a fixed
point at the intersection of the cycle with the transversal. To be accurate
about things, you need to worry about the domain, etc., but we will leave
all that to Chapter 8*.

X2

-

asection Hin R?

a section Hin R®

FIGURE 8.7.4. Transversals to cycles used for section mapping.

In the plane, cycles are usually attracting or repelling. This means that
the section mapping will usually have an attractive or a repelling fixed
point. This is not surprising; after all, the derivative of the section mapping
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at the fixed point is some number, and it is usually either bigger or smaller
than one.

This sort of fixed point for one-dimensional iteration has been discussed
in Part I, Chapter 5, and will be thoroughly discussed for two dimensions
in Part III, Chapter 13. For now an informal introduction should suffice.

In three dimensions, there is another generic possibility, beyond being
attracting or repelling. The derivative of the section mapping is now a
2 X 2 matrix and will usually have two eigenvalues. It seems intuitively
likely that if they both have absolute values smaller than 1, the fixed point
will be attracting, and if they both have absolute values greaterr than 1,
the fixed point will be repelling. But what if one is bigger than 1 and the
other smaller?

When this happens, we will see in Chapter 13 (Part III) that the mapping
has a saddle: there is a curve through the origin (in the section) that is
attracted to the origin under the section mapping, and another that is
attracted under the inverse of the section mapping as shown in Figure
8.7.5. The situation is very similar to that of Section 8.3. As before, we will
call these curves the stable and unstable separatrices of the origin (for the
section mapping).

FIGURE 8.7.5. Stable and unstable separatrices in section mapping, and the
surfaces they generate.

These “section mapping separatrices” are not solutions of the differential
equation: they are contained in a transverse section. A solution through a
point of the stable separatrix spirals toward the cycle in forward time; a so-
lution through the unstable separatrix spirals toward the cycle in backward
time. The solutions through the stable separatrix form a surface, which de-
serves to be called the stable separatriz of the cycle, and, similarly, the
solutions through the unstable separatrix form a surface called the unsta-
ble separatriz of the cycle. An idea of these surfaces is sketched in Figure
8.7.6.
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FIGURE 8.7.6. If the separatrices are extended, they may intersect.

Exercise 8.7#5 asks you to compute these separatrices explicitly in some
simple cases.

Amazing things happen when the stable and unstable separatrices inter-
sect. You can alternately think of the curves intersecting in the section, or
the solution through such an intersection point, which spirals toward the
cycle both backward and forward. These two ways of seeing the intersection
are pictured in Figure 8.7.7.

FIGURE 8.7.7. Intersections and tangling of stable and unstable separatrices in
the section plane.

As Figure 8.7.7 shows, such a solution is now forced to spiral away from
the cycle, wander around for awhile, and then spiral back toward the solu-
tions. It may sound as if this gives great opportunities for tangling, and it
does. In fact, it is not easy to believe quite how much complication must
occur any time such a homoclinic trajectory exists.

Once one point pg is on both curves, all the forward and backward images

-+yP-2,P-1,P0,P1,P2, - - -
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must be on both curves, so they must intersect infinitely often.

Now think of the piece of the unstable separatrix going through the points
DnyDPn+1, - .- for large n. This sequence of points is approaching the fixed
point along the stable separatrix, and we claim that the unstable mani-
fold must oscillate wildly as it approaches itself (without ever intersecting
itself). Indeed, the section mapping is expanding in the direction of the
unstable separatrix, mapping each oscillation into a bigger one.

For one thing, the oscillations will follow longer and longer parts of the
unstable separatrix, until they start following the oscillations themselves,
forming oscillations on the oscillations, etc.

For another, the stable separatrix has to go into the same kind of oscil-
lations as it approaches itself along the unstable separatrix. This implies a
whole network of new intersections of the stable and unstable separatrix.

One can show that when this happens, there must be infinitely many
different periodic solutions, with periods tending to infinity. These solutions
will mostly be knotted, and linked with each other, forming a remarkable
mess that has come to be called the “homoclinic tangle,” as shown in
Figure 8.7.8. There are many, more complicated things than these in the
homoclinic tangle.

FIGURE 8.7.8. A more complete picture of the homoclinic tangle.

ORDER AND STRUCTURAL STABILITY

We have so far given the impression that structural stability comes only
when order reigns and solutions have simple behavior: they are usually
attracted to sinks or limit cycles, and the others are also easy to understand.

Two extraordinary results from the 1950s showed that this idea, how-
ever plausible, is wrong. It is quite possible for very chaotic systems to be
structurally stable.

Smale, in his study of a class of mappings which have come to be called
“Smale horseshoes,” showed that some mappings (not differential equa-
tions) in the plane could simultaneously have infinitely many periodic
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points, orbits that are dense in a Cantor set, and be structurally stable.
Moreover, he showed that if a mapping of the plane has a periodic point,
the stable and unstable separatrices of which intersect transversally, then
inevitably horseshoe behavior will occur. It is because of his results that
we know that if a differential equation in R3 has a cycle, with stable and
unstable separatrices which intersect transversally, then there must be in-
finitely many cycles and all sorts of other complications. But this does not
contradict structural stability. Neither does it imply it, of course. We will
describe and discuss the Smale horseshoe in Chapter 13 (Part III).

Anosov, in his study of the geodesic flow on closed surfaces of negative
curvature, discovered that these are also structurally stable.

The geodesic flow is the differential equation, whose solutions are the
geodesics on the surface, parametrized by arclength. To specify a solution,
you give a point and a direction, and the point starts out in that direction
and goes as straight as it can, at constant speed. Since we needed an initial
velocity (the direction) as well as an initial position, we see that this is a
second order differential equation on the surface, which can be turned in
the standard way into a first order differential equation on the space of unit
tangent vectors to the surface. This space of unit tangent vectors is three
dimensional: there is a surface’s worth of points at which to attach them,
and a circle’s worth of directions for each point.

A surface of positive curvature focuses geodesics, whereas negative cur-
vature makes them spread out and diverge. It is hard to imagine anything
more chaotic than geodesic flow on manifolds of negative curvature; for
instance, there are infinitely many closed geodesics, each of which is a cy-
cle in the space of unit vectors, which has stable and unstable separatrices
that intersect transversally. In this case, it is fairly easy to imagine what
these stable and unstable separatrices are: they are the geodesics that spiral
toward the closed geodesic forward and backward.

Moreover, these separatrices intersect transversely: there are geodesics
which spiral towards the closed geodesics both forwards and backwards. So
there are infinitely many Smale horseshoes, all interrelated in some compli-
cated way. Somehow, the whole geodesic flow is maximally disordered and
tangled. But precisely this maximal disorder leads to structural stability.
We will discuss geodesics in Chapter 11 (Part III), but will not be able to
approach Anosov’s theorem.

8.8 Structural Stability

A reader who plays with the phase plane program will observe that, in
general, the phase portrait of a differential equation x’ = f(x) in the plane
changes only slightly when the vector field f is slightly modified:



182 8. Systems of Nonlinear Differential Equations

The zeroes of the modified equation are close to the zeroes of the origi-
nal equation; they are still sinks, sources, and saddles as they were for
the original equation; the basins of the sinks are bounded by the same
separatrices, and so forth.

Example 8.8.1.

-/ r 2
T y—x“+3.7
(2) [yj _w—-y2+3.4]

r 2
| _|y—z“+22
(b) [y - _z—y2+4.4]

1/ r 2 .
© [.7: y—z?+5.9 sin z]

Y] i z—1y%+36

FIGURE 8.8.1. Perturbed phase planes, showing how the key structures perse-
vere. A

In Chapter 8*, we will state and give a complete proof of two theo-
rems which make this precise. However, these results are quite difficult and
technical, and the content of the main statements (not the proofs) can be
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conveyed without the heavy apparatus introduced in Section 8*.1. In this
section, we will try to say enough to allow the reader to go directly to Chap-
ter 9, which is considerably easier than Chapter 8*; bypassing Chapter 8*
is probably the right course to follow in a first reading.

Let us pin down more precisely what we expect the reader exploring
phase planes to observe. We claim that, in general, in R2,

(1) all zeroes of f are sinks, sources or saddles;
(2) all cycles are attracting or repelling;

(3) all solutions tend as t — 400 to sinks or to attractive limit cycles,
except the saddles, their stable separatrices, and the unstable limit
cycles;

(4) all solutions tend as t — —oo to sources or to repelling limit cycles,
except the saddles, their unstable separatrices, and the stable limit
cycles.

With some minor technical caveats (linearly attracting, etc.), we will call
a vector field in the plane which satisfies conditions (1)-(4) structurally
stable.

Let us try to see what must happen in order for one of these conditions
to fail. At least one fact is clear: there can be a zero of f at which the
linearization is neither a sink, a source, or a saddle. This can happen in
two rather different ways: one eigenvalue of the linearization can be 0 or
there can be a pair of purely imaginary eigenvalues. We discussed this in
Section 7.5.

There is, of course, something worse that might happen: both eigenval-
ues might be zero. The reader should see that this is “more exceptional”
than the previous two possibilities, as we shall elaborate by considering the
“codimension” of a bifurcation.

THE CODIMENSION OF A BIFURCATION

If you take a 2x 2 matrix “at random” (for instance, the linearization of f at
some zero), you do not expect any eigenvalues to be 0 or purely imaginary.
But if you have a one-parameter family of 2 x 2 matrices, the determinant
is a continuous function of the parameter, and if it takes on both positive
and negative values, it will have to vanish somewhere. Thus, we expect to
see the eigenvalue 0 in one-parameter families. Similarly, the trace will have
to vanish somewhere, which leads to purely imaginary eigenvalues.

Both a zero eigenvalue and a pair of purely imaginary eigenvalues are
accidents which occur generically in one-parameter families: we say
these are bifurcations of codimension 1.
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On the other hand, we would not expect both the determinant and the
trace to vanish for the same value of the parameter. But if we have a matrix
that depends on two parameters, it is hard to see how we could avoid some
point mapping to (0,0) in the trace-determinant plane.

A double zero eigenvalue is an accident that occurs generically in two-
parameter families but not in one-parameter families: we say this is a
codimension 2 bifurcation.

This sort of analysis can be continued: we might look not just at the
linearization at a zero but at higher terms of the Taylor polynomial and
see how many of these vanish, finding more and more degenerate zeroes
of vector fields, which occur generically in higher dimensional families, and
near which the differential equation behaves more and more bizarrely. There
is a small industry of investigating more and more degenerate zeroes of
vector fields, which we will only touch on in Chapter 9.

But the fact that “accidents” can be more or less exceptional, according
to the number of parameters needed to make them occur generically, is
a very important idea. Without some assumption about differential equa-
tions being “general,” or belonging to “general” one-parameter and two-
parameter families, all kinds of exceptional behavior can occur, and there
do not appear to be any straightforward results.

Another accident that might occur is that a limit cycle might fail to be
attracting or repelling: it might, for instance, be attracting on one side and
repelling on the other as shown in Figure 8.8.2.

FIGURE 8.8.2. A semi-stable limit cycle.

There is actually only one other accident that can occur: the unstable
separatrix of a saddle may also be the stable separatrix of another saddle,
or even of the same saddle. The first case is called a heteroclinic saddle
connection, the second a homoclinic saddle connection. See Figure 8.8.3.
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et

FIGURE 8.8.3. A heteroclinic and a homoclinic saddle connection.

Again, one can imagine more complicated things, such as the simultane-
ous saddle connections shown in Figure 8.8.4.

FIGURE 8.4.4. Two simultaneous saddle connections.

The reader should convince herself or himself that both of the accidents
seen in Figure 8.8.3 occur generically in one-parameter families, but that
the accident in Figure 8.8.4 occurs generically only in two-dimensional fam-
ilies; it is “more exceptional.”

Example 8.8.2. Consider a one-parameter family of vector fields f, with a
saddle, such that for two values of the parameters, the separatrices intersect
a line segment I as shown in Figure 8.8.5.

Consider the (signed) distance d(a) from the intersection A, of the stable
separatrix with I to the intersection A, of I with the unstable separatrix.
The distance d(c) is a real-valued continuous function of a, which is positive
for one value of the parameter and negative for another, so it must vanish
somewhere.
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A‘ _>

S

d(a) <O

FIGURE 8.8.5. How separatrices intersect a transverse line segment.

It is hard to see how we could avoid such things in one-parameter families;
on the other hand, near a vector field as shown in Figure 8.8.4, there are two
analogous distances, and in a one-parameter family one would not expect
them to vanish simultaneously. A

There is not any really obvious way to see that this is the end of the list
of accidents, yet it is, and the result can be summarized as follows, to be
proved and elaborated in Chapter 8*:

Proposition 8.8.3. If all zeroes are sinks, sources, or saddles, all cycles
are attracting or repelling, and there are no saddle connections, then the
vector field is structurally stable.

The reader who wants to see a proof will have to look at Section 8*.5
(which can be read without reading the earlier sections of Chapter 8*),
and Section 8*.6 (which requires everything which comes before). But it is
rather hard to imagine how Proposition 8.8.3 could be wrong, and so we
ask you temporarily to take it on faith.

You can move directly to Chapter 9 on bifurcations without loss of any
prerequisites. But we encourage you to at least come back to Chapter 8*
later.
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Chapter 8 Exercises

Exercises 8.1 Zeroes; Linearization

8.1#1. For each of the following differential equations

@ [:]lz [—Sin(z)—3y] © [:]’z [3?2;1!_2;225]

’ 2 ’ .
z| _ y? -1 z| _ |[sin(n(z —y))
(®) [y] - [22+y2—2} (@) [y] - [ zy -1
1 ocate the singularities and write out the linearization about each o
(i) L he singulariti d wri he li izati b h of
them.

(ii) Find the eigenvalues and eigenvectors of the linearization matrix for
each of the singularities. This can be done by hand or with FEigen-
Finder in MacMath.

(iii) With MacMath’s DiffEq, Phase Plane or other phase plane computer
software, make a phase portrait for the equation, locating all the
singularities. Print three copies.

(iv) On the first phase portrait, draw the eigenvectors at each singular-
ity where they are appropriate, marking the direction of motion by
arrows according to the sign of the corresponding eigenvalues. You
should be able to see exactly how the phase portrait trajectories are
related to these eigenvalues and eigenvectors.

(v) On the second phase portrait, shade in all the basins of the sinks.

(vi) On the third phase portrait, shade in all the cobasins of the sources.

8.1#2. For each of the following differential equations

! ’

T ] T y+=z
@) |y| = z ) |y| =[2*-2y
2 z?—yz—1 z z+y

(i) Locate the singularities and write out the linearization about each of
them.

(ii) Find the eigenvalues and eigenvectors of the linearization matrix for
each of the singularities. This can be done very quickly with Eigen-
Finder in MacMath.
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(iii)

(iv)
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Using MacMath’s DiffEq, 3DViews, draw a phase portrait for the
equation, locating all the singularities. The zyz view will look like
spaghetti, but you may find more “order” in the zy, yz, and zz views.
Print out a copy of these graphs.

On each of the two-dimensional graphs printed in (iii), draw the eigen-
vectors at each singularity where they are appropriate, marking the
direction of motion by arrows according to the sign of the corre-
sponding eigenvalues. (That is, draw the appropriate projection of
each eigenvector, which means ignoring the relevant third compo-
nent.) You should gain some insight as to how the phase portrait
trajectories are related to these eigenvalues and eigenvectors.

8.1#3. For each of the following differential equations

(a)

(b)°

(i)
(ii)

(ii*)

(iii)

(iv)

HE R

z]’ _ -y
y| [zt +423 -2 -4z +y)/8
Find the zeroes of the system, and by linearizing, tell what they are.

Make a picture of any saddles with their separatrices and proper
arrows on each. This can be done in MacMath using DiffEq, Phase
Plane, with no slope marks. When a saddle is located, the separatrices
are drawn automatically, the first two pointing out from the saddle
and the last two pointing inwards toward the saddle. Print the picture
and draw arrows on the separatrices.

An alternate way of examining the saddles is to find their eigenvalues
and eigenvectors, by hand or with MacMath’s FEigenFinder. If you
do not have a computer program that draws separatrices, you may
want to locate the other singularities and find their eigenvalues and
eigenvectors.

From this picture of only the saddles and separatrices, with arrows,
locate other zeroes and tell what they are. Sketch in some other tra-
jectories, with arrows, in order to fit with the separatrices and their
arrows. Show how separatrices determine regions of behavior near the
saddle.

Verify your expectations for the phase portrait with another com-
puter drawing, using slope marks and drawing by computer some
trajectories between the separatrices.
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8.1##4. For the differential equation of Example 8.1.8,
-]
y] [y

(b) Show that an eigenvalue of the linearized equation is zero.

(a) Find the linearization.

(c) Show that the equation does not behave like its linearization.

8.1#5. For the pretty complicated differential equation

]’ 2z + siny — 4z(z? + y?)
y| = [siny — 3zsin(z — 2y) — 2y(z? + y?)

(i)° Find the linearization near (0,0) to show that the linearization is far
simpler than the original equation.

(i) Compare phase portraits of the nonlinear and linearized systems and
estimate how far from the origin the linearization will give a good
approximation. (You should not expect the accuracy to be the same
in all directions.)

8.1#86. For the following nonlinear systems of differential equations, make
sketches by hand to answer the questions:

(a) :W _ :gy—_zl] () 'x] _ -cos(.’l:::;-yﬁ)]

(2] [z?2+4%2 -1 (2]’ [sin(z — y)
o [(]-[*57) o 1] - [

L J L

(c)

(2]’ [22+y% -2 (2]’ [z(1-y-2)
yl v -zt ] ® ]_L y(2 - z) ]

LY J L

(i) Sketch in the phase plane the locus where the vector field is vertical
and indicate where it is pointing left and where right. Furthermore,
sketch the locus where the vector field is horizontal and indicate where
it is pointing up and where down. Combine this information in each
region bounded by the isoclines to show the resultant direction of the
vector field.

(ii) Find all the singularities of the system. Write down the linearization
in each case and describe the type of singularity. Find the eigenvector
directions for real eigenvalues of the linearization.
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(iii) Sketch some trajectories in the phase plane, among them the separa-
trices, and color the basins of each sink.

8.1#7. Consider the system of differential equations
/
| _| ax—y
[y] [y -+ w]

(a) On what curves is the vector field horizontal? Vertical?

where a is a parameter.

(b) In each region bounded by these curves, tell whether the vector field
points up or down, left or right. (The description is a bit different
when o > —1 and a < —1, so consider these cases separately).

(c) Find the zeroes of the vector fields and their linearizations. Classify
them.

(d) Sketch the trajectories of the solutions, indicating, in particular, the
basins of the sinks and cobasins of the sources, for a = —2,0, 1.

8.1#8. Find, by hand or computer, the singularities, linearizations, tra-
jectories near the zeroes, and basins of the sinks for

S b Y ] P W
o [ =["arw®] e [ =[]
o [;] =[]

Note: You might get answers in (d) for the type of singularity depending
on where you click the mouse. How can you explain this uncertainty?

8.1#9. Consider the nonlinear system of differential equations

[;]z [—$2+yy2+1}'

(a) Locate the singularities of the system. In each case, write down the
linearization and the type of singularity for the linearized system.
What can you conclude about the singularities for the nonlinear sys-
tem from the linearizations?
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(b) Draw in the phase plane the curves where the vector field is horizontal
and where it is vertical, and indicate where it is pointing up, down,
left, and right. Furthermore, indicate the vector field along the line

T -1 1
1= [o e L)
Why is this line interesting?

(c) Let (x,y) = (u(t),v(t)) be a solution to the nonlinear system. Show
that (z,y) = (u(—t),—v(-t)) is also a solution. What is the geo-
metrical meaning of this? In particular, let the solution be such that
(u(0),v(0)) is a point in the first quadrant on the curve where the
vector field is horizontal. Explain why such a solution has to be pe-
riodic.

(d) Finally, sketch the trajectories for the nonlinear system.

8.1#10. Find the linearization of

-]
Y -y+zy
near all its singularities and in each case identify its type. Confirm with

a phase portrait, drawn by hand or computer, the behavior of trajectories
for the nonlinear system.

8.1#11. For the equations of the pendulum with friction (Example 6.5.4),

m= [—sing_ey]

(a) Use MacMath’s DiffEq Phase Plane to make computer pictures for
different integer values of € > 0 in order to show at what value(s) of
€ the trajectories cease to spiral.

(b) Confirm by algebraic calculation the value of € at which you expect
the spirals to cease.

8.1#12. Suppose that z(t) describes the position of a particle moving in
one dimension, under the potential V(z). Show that the vector field in
the plane corresponding to this system, as described in Section 6.5, has a
zero at (zo,yo) if and only if dV/dz(z¢) = 0 and y = 0. Show that at
such a zero, the linearization is a center if d*V/dz%(xo) > 0, i.e., if the
potential has a nondegenerate minimum. Show that if the potential has a
nondegenerate maximum, the linearization has a saddle.
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Exercises 8.2-8.3 Saddles, Sinks, Sources

8.2-8.3#:1. For

]’ [2®+y>-25

y| 12— zy ’
locate any sinks and sources.

8.2-8.3#2°. Consider the system of differential equations

/
T —r—=z .
[y] - [ y—zzy] (l)
and the related single differential equation
dy y-—=a° .
pi— (ii)

(a) Show that one of three singular points for (i) is a saddle point. Find
the eigenvector directions.

(b) We have shown that the shaded region U in Figure 8.3.2,
U={(zy|-1<z<0,-2s?<y<2?,

defines an antifunnel for (ii) satisfying

0 ( y—a?
5 (5w) 0

Show that the symmetric shaded region W,
W= {(z,y)[0 <z <1,-2* <y <z?},

defines a funnel for (ii) and, when you reverse “time” (z in this case),
W defines an antifunnel satisfying the uniqueness criterion.

(c) What does part (b) tell you about the system (i)?

8.2-8.3#3°. Consider an n x n matrix A with k pairs of conjugate nonreal
eigenvalues, so that for any € > 0, by Theorem L6.18, there exists a basis
wi,...,Wn of R™ such that in that basis A is k-pseudo-upper-triangular
with terms of absolute value < € above the pseudo-diagonal. Let —A equal
the largest real part of an eigenvalue. For the proof of Proposition 8.2.3,
prove that

Ax - x < (A +ne)||x||.

8.2-8.3#4. For the differential equation

i
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(a) Show that at (0, 0) the linearization gives a center, so we need further
analysis to determine the nonlinear behavior.

(b) Show that F(z,y) = =% + y? serves as a Liapunov function and use
it to analyze the singularity at (0,0) of the differential equation.

(c) Describe all solutions of this equation.

8.2—-8.3#5. Consider the differential equation

]

(a) Show that every solution that enters the region |y| < e=*"/2 is at-
tracted to the origin. Hint: use Example 8.2.8 to find an appropriate
Liapunov function.

(b) Show that any solution entering the region z > 0,y > 1/ stays in it
forever (in particular, is defined for all positive time). Hint: Consider
the curve y = 1/z as a fence for the associated equation

dy  _px+y

dz y

(c) Use an antifunnel and the symmetries of the equation to describe the
basin of the origin with precision.

8.2—8.3#6. Repeat Exercise 8.2-8.3#5 for the equation

o] = [atenn)

this time finding the appropriate regions yourself.

8.2-8.3#£7. The equation

i

behaves quite differently from that of Exercise 8.2-8.3#6 (though the pic-
ture looks very similar). How and why?

8.2-8.3#8. Give a proof using fences of the following variant of Liapunov’s
Theorem: If x’ = f(x) is a differential equation, f(zo) = 0 and F is a
function such that F(x¢) = 0, the point x¢ is an isolated minimum of F,
and

VF(x)-f(x) < —CF(x)
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for some constant C > 0, then x is a sink for the differential equation.

8.2-8.3#9°. Consider the differential equation

z' = —az + P(z,y)
y' =-ay+Q(z,y),

where a > 0, and P and @ start with quadratic terms. Show that the
solutions attracted to the sink (0,0) do not spiral around the origin.

Hint: Pass to polar coordinates, and write 6 as in equation (20) in the
proof of Theorem 8.2.10. Use the fact that the solutions are attracted ex-
ponentially fast to the origin to show that

{o o]
/ 0'dt < co.
0

8.2—8.3#10. Consider the differential equation

z' = —az — y + P(z,y)
y' = —ay+ Q(z,y),

where a > 0, and P and @ start with quadratic terms. Show that the
solutions attracted to the sink (0,0) do not spiral around the origin.
Hint: Consider the associated differential equation

dy _ —ay+Q(z,y)

dr —az—y+ P(z,y)

and show that it is well defined in the region —23/2 <y <232 0<z <e¢
for € > 0 sufficiently small. Then show that this region is a backward
antifunnel.

8.2-8.3#11°. If
[m\, ’—pm+P(m,y)l

with P and @ of quadratic or higher order forms, show that the curve
uz = P(z,y) is twice differentiable and tangent to the y-axis.

8.2-8.3#12. In the proof of Lemma 8.2.3, prove that V is an antifunnel.

8.2-8.3#13. For the Lorenz attractor of Example 6.1.6,

z]’ 10(y — )
y| = |28z —y—z=2
z —-2.662 + zy
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find the singularities and draw pictures to show how each works.

8.2-8.3#14. For the following second order equations, express each as a
system of first order equations by setting ' = y. Then, for a = —1,0,1,
use MacMath’s program DiffEq, Phase Plane to find the singularities and
show the behaviors of the trajectories in the xy phase plane. Use arrows to
show the directions of the trajectories in forward time and indicate where
there seem to be stable solutions. In Exercises 9.1#9 for (a) and 9.5#6 for
(b), we shall come back to these particular systems and explore exactly
how and when the behaviors change as a changes.

(a) =" —azx+2%=0.

(b) z"” = —dV/dx, where V = sinz + az?, as in Exercise 6.5#10.

8.2-8.3#15. The system

T —siny
y| = -
z -z

is easy to understand because the z variable and the variables (z,y) evolve
independently of each other.

(a) Locate all the zeroes of the system, and give the linearizations at
each.

(b) Show that the origin is a saddle, with one positive and two negative
eigenvalues.

(c) Use MacMath’s program DiffEq, 3D Views to draw some sample
trajectories, adding arrows, that illustrate the three-dimensional be-
havior around the saddle.

(d) Describe the solutions that are attracted to the origin when ¢ — *oo0.

8.2-8.3#16. For the equation of Exercise 8.1#1(c) and Exercise 8.2

8.34#1,

] _ [22+y*-25

y| zy—12 |’
prove that a separatrix of the upper saddle must enter the basin of the
sink at lower left. That is, find a region surrounding the sink for which the

vector field of the equation everywhere crosses the boundary going into the
region; then show that the separatrix of the saddle must enter this region.
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Exercises 8.4 Limit Cycles

8.4#1.

(a) Confirm equations (30) for transforming Example 8.4.1

- [rn] e

] -z y
into polar coordinates

r_ 2

e ®

(b) Make drawings of the rt-plane to confirm that solutions to equation
(30) follow the conclusions of Example 8.4.1: For a > 0, all solutions
for r > 0 are attracted to the constant solution r = 1; for a < 0, the
solution r = 1 is repelling, and if 0 < r(0) < 1, the solution tends to
0, whereas if 1 < r(0), the solution tends to infinity.

8.4#2. Show that

;] e ff]

gives an example of an unusual limit cycle that is stable on one side, un-
stable on the other.

8.4#3°. For the equation of Example 8.4.3,

!
Tl _| Y 2 2\2 1 T
[y] N [—w]”z tY) s [y]

prove the equation has infinitely many periodic solutions, with different
trajectories.

Exercises 8.5 Poincaré-Bendixson Theorem
8.5#1°. Let I = [a,b] be a closed and bounded interval. Show that any
continuous mapping f : I — I has a fixed point. Hint: Use the intermediate

value theorem, applied to the function f(z) — .

8.5#£2. Consider the equation of Example 8.4.3 and Figure 8.4.3,

Bl =[n]r @[]
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(a) Draw a phase portrait and make a Poincaré-Bendixson annulus around
one of the largest limit cycles.

(b) Find equations for an annulus like you found in part (a).

8.5#3. For the differential equation

' .
z| _ [|sin(z+y)
y| | cos(zy) |’
print a phase portrait and try to draw Poincaré-Bendixson annuli around
each limit cycle.

8.5#t4°. Consider the Van der Pol equation of Examples 8.4.2 and 8.5.3.
Find equations for the annulus as shown in Figure 8.5.5. Hint: It is com-
posed of straight lines plus key portions of the isoclines of zero slope.

8.5#5. Show that the equation

has a limit cycle. (Hint: use appropriate solutions of

H B

as boundaries of an annular region.)

Exercises 8.6 Symmetries; Area-Preserving
Equations

8.6#£1°. Consider the system of differential equations

2]’ [z-y
y| |2 -y’
(a) Sketch (perhaps using an appropriate computer program) some typ-
ical solutions for this equation.

(b) Locate and analyze the singularities.

(c) Inpart (a), you should have found a region apparently filled by cycles.
Show that this is in fact the case.
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(d) The saddle apparently has a homoclinic separatrix (an unstable sep-
aratrix that curves around and reenters the saddle as a stable sep-
aratrix). Show that this is the case, and, for this problem, that you
can find an equation for the separatrix!

8.6#2. Consider the system of differential equations

|

(a) Sketch (perhaps using an appropriate computer program) some typ-
ical solutions for this equation.

(b) Locate and analyze the singularities.

(c) In part (a), you should have found a region apparently filled by cycles.
Show that this is in fact the case.

The remainder of the exercise attempts to locate this region with greater
precision.

(d) Consider the corresponding system of equations for dy/dz. Show that
the region z + 1/2 — 1/z <y <z + 1/2, t > tp, is an antifunnel for
an appropriate tg. Show that this antifunnel satisfies the uniqueness

property.
(e) Sketch the solution in this antifunnel.
(f) Show that all solutions in the part of the plane bounded by this

solution are cycles.

8.6#3°. If u' = Au is the linearization of the differential equation x’ =
f(x) at a zero xg, show that

div f(xg) = tr A,

in order to support the statement that a volume-preserving vector field
cannot have any sources or sinks.

8.6#4. Show that a linear differential equation x’ = Ax is area-preserving
if and only if tr A = 0.

8.6#5. Draw a phase portrait for each of the following differential equa-
tions. Tell (and prove) whether it exhibits properties of symmetries or an
area-preserving map.

(a) "’ +sinzz’ +z =0
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z]’ y 1 1
_ 2, .2\2
o) [2] = [ 2]+ @ +2ein i 1]

© [2] = [t ns]

8.6#£6.Show that if the differential equation

!
[-’c] _ [f(w, y)]
y 9(z,y)
is area-preserving (see Exercise 6.6#3), then its zeroes cannot be sinks or
sources (and therefore must be centers or saddles).

8.6#7. Let f be a vector field defined in a region U C R2. Show that
the differential equation x’ = f(x) cannot have two cycles, which together
bound a region V C U in which div f < 0.

Exercises 8.7 Chaos in Higher Dimensions

8.7#1. Show that the divergence of the vector field

’

z o(y —z)
y| =|pr—y—2zz (iii)
z —Bz+zxy

is —(0 + 1 + (). Why is the Lorenz equation said to be dissipative?

8.7#2°. Consider the function f(z,y,2) = pz? + 0y? + o(z — 2p)%. The
object of this exercise is to show that there is a bounded region (in fact,
an ellipsoid) which solutions to the Lorenz equations (iii) enter and never
leave.

(a) Show that the region f < a is bounded for any a.
(b) Show that the derivative of f along a solution is

—20(pz?® + y* + B2* — 2pB2).

(c) Find a number a such that all solutions to the Lorenz equations (iii)
enter the region f < a and never leave it.

8.7#3.

(a) Show that the origin is a zero of the differential equation (iii) and
that it is a sink when p < 1, but has two real negative eigenvalues
and one positive eigenvalue for p > 1.
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(b) Show that the function z?/0 + y% + 22 is a monotone decreasing
function of time when 0 < p < 1, so that all solutions to the Lorenz
equations (iii) are attracted to 0.

8.7#4.

(a) Show that the origin is the only zero of the vector field for (iii) for
p < 1, but that there are two other zeroes for p > 1, and give their
coordinates.

(b) Show that these new zeroes are sinks for
o(c+B+3)
pE (1, o—B-1 )

and that they have one negative eigenvalue and two complex conju-
gate eigenvalues with positive real parts for

S o(c+B+3)
c—-pf-1"
8.7T#5.
(a) Show that the system of differential equations

’

T y+ (1 - (2 +9?))z
y| =|-z+Q-(®+9?))y
V4 V4

has the circle 22 + y2 = 1, z = 0 as a cycle.

(b) Compute the section mapping P, using the section y = 0,z > 0,
and show that at the fixed point of P corresponding to the cycle, the
derivative of P has two eigenvalues, one greater than 1 and one less
than 1.

(c) Find the separatrices of this fixed point in the section.

(d) Describe the separatrices of the cycle. What behaviors in R? do these
separatrices separate?

Exercises 8.8. Structural Stability

8.8#1°. Consider the system of differential equations

HEE=a]
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(a) With MacMath’s DiffEq Phase Plane make and print phase portraits
for « = 3.5, 0, —3.5, —6, 10. To capture all you need to see, set
bounds as —20 < z < 15, —10 < y < 100.

(b) Describe each phase plane in words, and try to understand what
happens between one and the next. That is, explain the qualitative
differences between these pictures.

(c) Experiment by trial and error on the computer to find intermediate
values of a where the behavior changes.

A generalization of this exercise will be explored a great deal further in
Example 9.6.1.



8*
Structural Stability

In Chapter 8, we mentioned that one of our main goals is to understand
how solutions behave “in general.” Another goal is to understand when the
solutions of two differential equations behave “the same way.” Our main
result in this direction is in Section 8*.6, but preliminary results occur in
Sections 8*.2-8*.5, and they require a bit of terminology. We begin with the
groundwork in Section 8*.1, building up to Definition 8*.1.9 for “structural
stability”.

Section 8*.6 contains two major theorems: the first due to Andronov and
Pontryagin, and the second to Peixoto. These results give a real handle on
structural stability of differential equations in the plane; the whole chapter
builds up to them. Their proofs are an order of magnitude longer and more
difficult than anything else in this book so far. We work up to Section 8*.6
with a series of sections, 8*.1-8*.5, each of which can be considered as a
Structural Stability Appendix at the end of the corresponding section in the
previous Chapter 8. We give preparatory definitions in 8*.1 and prove an
essential preliminary result in each of the next four sections. Each of these
results, Theorems 8*.2.1, 8*.3.1, 8*.4.1, and 8%*.5.6, is important in its own
right; Theorem 8%*.5.6 is a strong form of the famous Poincaré-Bendixson
Theorem 8.5.1.

Finally, Section 8*.7 illustrates why the Poincaré-Bendixson-Pontrya-
gin—Peixoto program fails in dimension three. Some examples will show that
any general analysis of a system in R" is likely to be extremely complicated,
if not impossible. Indeed, as soon as n > 3, “chaos” has a tendency to set in.
There is no universally accepted definition of this term, but some features
that should appear in chaotic systems are:

e the presence of infinitely many periodic cycles, which in R3 will usu-
ally be knotted and linked in complicated ways;

e the appearance of fractal attractors and basin boundaries, with com-
plicated structure at all scales;

o sensitive dependence on the initial point: within a bounded attrac-
tor, the distance separating two solutions that start nearby grows
exponentially with time, until they are uncorrelated.
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8*.1. Preliminaries for Structural Stability

Let us begin with some necessary terminology.

Definition 8*.1.1. (Homeomorphisms). Let X and Y be metric spaces.
If you do not know what this means, it does not matter: just think that
they are two subsets of R™, that is the only case we will use. A mapping
f: X —Y is a homeomorphism if

(1) the mapping f is continuous;
(2) the mapping f is one-to-one and onto, so that f~1 exists;
(3) the mapping f~! is continuous.

Saying that two spaces are homeomorphic is saying that they “look alike
topologically”: to a topologist, they are identical. An old joke says that a
topologist is someone who cannot tell the difference between a doughnut
and a coffee cup: do you see why? See Figure 8*.1.1.

FIGURE 8*.1.1. Topological equivalence of a doughnut and a coffee cup.

Exercise 8*.1#2, with Examples 8*.1.3 and 8*.1.4, give more examples
of homeomorphisms.

Definition 8*.1.2 (Topological equivalence). Suppose that f; and f;
are vector fields defined on regions U; and U; of R" for some n. We will
say that a homeomorphism h : Uy — U, is a topological equivalence of f;
and f; if h sends oriented trajectories of x’ = f;(x) to oriented trajectories
of x' = f(x).

Remark. Imagine drawing both vector fields f; and f2 on rubber sheets.
Then they are topologically equivalent if one rubber sheet can be stretched
and put onto the other so that the trajectories of one equation coincide
with the trajectories of the other, as oriented curves.
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We are not requiring that the parametrization of these curves by time
coincide. We are also not requiring that the homeomorphism be differen-
tiable, so it can perfectly well send curves that intersect tangentially to
curves that intersect transversely, as illustrated by Examples 8*.1.3 and
8*.1.4, illustrated in Figures 8*.1.2 and 8*.1.3.

Example 8*.1.3. Consider the homeomorphism % defined by

h [:] - [yf/a]'

FIGURE 8*.1.2. A homeomorphism h not differentiable at the origin. A

Example 8*.1.4. Another homeomorphism h that is not differentiable at

the origin is
PR A R r
16 0+1|"

Ty

FIGURE 8*.1.3. Another homeomorphism not differentiable at the origin. A
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Algebraic exploration of these examples are provided in Exercise 8*.1#1;
however, we usually do not write actual equations for homeomorphisms.

It is not obvious that topological equivalence is a useful equivalence re-
lation. There are at least two others that should be mentioned: topological
conjugacy and differentiable conjugacy.

Definition 8*.1.5 (Topological conjugacy of flows). The homeomor-
phism h is a topological conjugacy of the flows ¢, (t,x) and ¢y, (t,x) if

h(ds, (t,x)) = ¢g,(t, h(x)). (1)
See Figure 8*.1.4.

Flows ¢¢(t,x) are defined and discussed in Section 6.8.

FIGURE 8*.1.4. Topologically conjugating the flows.

Two vector fields have conjugate flows if, when drawn on rubber sheets,
one sheet can be stretched and superposed on the other so that the trajec-
tories coincide with their time parametrization.

Definition 8*.1.6 (Differentiable conjugacy of vector fields). The
homeomorphism h is a differentiable conjugacy of the vector fields f; (x)
and fp(x) if h and h~! are differentiable, and

dxh(f1(x)) = f2(h(x)). ()

See Figure 8*.1.5.
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— —>

T dh >

vectors at x vectors at h(x)
FIGURE 8*.1.5. Differentiable conjugacy of vector fields.

Condition (2) for differentiable conjugacy may look quite complicated,
but it is actually exactly what is called “change of variables in differen-
tiable equations.” For the authors, it really explains the meaning of such
changes of variables. Let us work out explicitly how this works, in the case
of Bernoulli equations (Chapter 2 of Part I, Exercises 2.2-2.3#9 and 10a,
page 101).

Example 8*.1.7. A Bernoulli equation is one that can be written z’ =
—P(t)z + Q(t)z™ (where the minus sign is there to be consistent with the
notation in Part I). The change of variables suggested in the exercise is
z=z!"", so that

Z'=(1-n)z7"z' = (1-n)z " (=P(t)z+Q(t)z") = (n—1)(P(t)z— Q(t)),
which is indeed linear.

To interpret this change of variables in terms of vector fields, let us turn
the Bernoulli equation into the system

[;T=[-sziQunJ

f() =L ]

Then equation (2) becomes

and let

[3 (1- g)z-n] [—P(t)x + Q(t)m"] B [(n (P Q(t))]

and the differential equation corresponding to the new vector field is
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t] 1
H - [(n —1)(P(t)z - Q(t))] '
In this example, h is not really a homeomorphism, and this comes back to
haunt you when you try to go back from the variable 2 to the variable z.
A

You are asked in Exercise 8*.1#3 to check that condition (2) for differen-
tiable conjugacy implies (1) for topological conjugacy, and that (1) implies
topological equivalence.

Both conditions (2) and (1) are a bit too fine for our purposes: we want
to know that “in general,” when two differential equations are “close,”
they are equivalent. This is not the case for (2), since the eigenvalues at
corresponding zeroes would have to coincide (Exercise 8*.1#4a). Condition
(1) would require that the periods of corresponding cycles should be equal,
which is also unreasonable (Exercise 8*.1#4b).

PERTURBATIONS

This brings us to saying precisely when two differential equations x’ = f; (x)
and x’ = fo(xff) are close or, equivalently, when g = f; — f; is small.
There are serious difficulties if you try to define perturbations on un-

bounded domains; we will stick to bounded domains. Suppose that g is
defined on the closure U of a bounded open subset U C R™. A first guess
is simply to require that

sup [l ()|

xeU

be small, but this is not good enough. Indeed, two vector fields that are
close in this sense can have zeroes that differ radically.

Example 8*.1.8. Compare the following functions and their derivatives,
as shown in Figure 8*.1.6.

filz)==z

fo(z) =z + %e“’z sin 5z.
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Df(x)

T
HVHIV

-1 1

b
>

<
=
-]

-1 -10

functions derivative functions

FIGURE 8*.1.6. Functions that are close may have derivatives and fixed points
that are not. Note the differences in vertical scale between the two graphs! A

The Implicit Function Theorem at the center of multivariable calculus
guarantees that if two vector fields f; and f, are close, and their derivatives
are close, then the zeroes are as well behaved as can be expected. Let
g be continuous on U, continuously differentiable on U, with derivative
extending continuously to U. Then g is small in the C* topology if

sup (|lg(x)| + lldzgl|) ,
xeU

is small.

The Implicit Function Theorem 13.6.4 (Appendix T) says that if the
zeroes of f; have no zero eigenvalues and if g is sufficiently small in the C!
topology, then there is exactly one zero of f; = f; + g close to every zero
of f;. This is one possible correct notion of perturbation for our problem,
and our main theorems are true with this definition.

However, the version of the Implicit Function Theorem we will prove in
Chapter 13 (in Part III) is stronger than the standard statement and corre-
spondingly requires a stronger hypothesis. Because the stronger hypothesis
simplifies some proofs, we will make the following definition. Let

g1
g=|":
gn
be a twice-differentiable vector field on U as above. Define the C2-norm of
this vector field to be
82&'
B:Ej a:l:k )

+ sup
1,5,k

ogi
llgll = sup | sup|gi(x)| + sup B,
xeU \ i i,j |OTj
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In other words, we will require that “close” means not only that the two
functions be close but that their first and second derivatives be close.
We can now state the central definition of Chapter 8*.

Definition 8*.1.9 (Structural stability). We will say that a vector field
f defined on a subset U C R™ is structurally stable if there exists € > 0 such
that any perturbation g of f with ||g — f|| < € is topologically equivalent
to f.

Actually, this definition is a bit loose. We will require that U be a closed
and bounded subset of R™, bounded by a smooth (n — 1)-dimensional sur-
face, and in practice n will be two, so U will be a closed and bounded region
in the plane bounded by smooth curves. Our vector fields will be required
to have all partial derivatives up to order two continuous on U.

THE DIFFERENTIABILITY OF THE FLOW

Let f(x) be a smooth vector field on a subset U C R", and denote by
¢g(t, xff) : R x U — R™ the associated flow, as described in Section 6.8. In
this section, we will see that the flow is a differentiable mapping, and we
will derive some consequences. Just knowing that the flow is differentiable is
nice but not very exciting. What makes the result important is the formula
for the derivative, which is itself a solution of a linear differential equation.
This links up the “wild” theory of nonlinear equations with the “tame”
theory of linear equations, and the link has proved enormously useful.

In fact, we have already seen at least two instances of the usefulness of
this link.

One is the linearization of a differential equation near a zero of the vector
field: in that case, the linearization is a linear differential equation with
constant coefficients, and linear algebra (eigenvectors and eigenvalues) can
be brought to bear; Chapter 8 is filled with the consequences.

The other occurs in Example 5.4.6, where we analyzed the difficulties
that “stiffness” introduces to numerical methods. We first studied linear
equations, and then saw that by linearizing a nonlinear equation near a
given solution, we could transpose the results to an arbitrary equation.

The linearized equation. We first recall the definition of the linearization
of x’ = f(x). Suppose u(t) is a solution of x’ = f(x), defined for 0 <t < ¢
and that v(t) is a small increment to u(t), so that x(t) = u(t) + v(t) is still
a solution. Then

u'(t) +v'(t) = (u+v)'(t) = £(u(t) + v(?)) ~ £(u(?)) + (durD)(v(#)- )

Remembering that u’ = f(u), this says that v approximately satisfies the

linearized equation
w = (d“(t)f) w. (4)
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You should think of u as known, so that this equation is of the form
w’ = A(t)w for some (usually time dependent) matrix A(t).

Example 8*.1.10. Consider the equation 2’ = z? — 1. The constant func-
tions u;(t) = 1 and uy(t) = —1 are solutions, where the linearizations are
respectively

w' =2w and w = —2w,

correctly reflecting that solutions pull away from u; and tend toward us.
The function uz(t) = — tanht is also a solution, where the linearization is

w' = —2(tanht)w.

This time the linearization is time dependent, since the solution is noncon-
stant, and solutions pull away from the zero solution when ¢ < 0, i.e., when
u3(t) ~ uy(t), and are attracted to it when ¢t > 0, i.e., when u3(t) ~ uz(t).
A

Example 8*.1.11. We invite the reader to show that the function

() = |

cost + cos? t
sint

is a solution of the system

] [y-2zy—¢3

y| | z-1+¢® |
The linearized equation along this solution is

' —2sint 1 —2(cost + cos®t) — 3sin®¢
w = . w.
1 2sint

A

Let us interpret u, v, and w above in terms of flows. Suppose that at
time 0, we have

u(0) = xo, v(0) = vo = w(0);

i.e., we start both the equation and the linearized equation with the same
increment from ug.

Then equation (3) says that at time ¢, the increment v(t) to u is approx-
imately w(t), i.e.,

o5(t, %0 + vo) ~ ¢s(t,xo) + w(t).
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This suggests that w is somehow the derivative of ¢, and this is true. To
state it precisely, we want to speak of the flow of the linearized equation.
This is not quite well defined, since (4) is time dependent, but let us call
¢u(t,v) : R® — R™ the linear transformation that associates to v the value
at time t of the solution of (4) with initial condition v at time 0.

Theorem 8%*.1.12. The derivative of the flow of a nonlinear equation is
the flow of its associated linear equation. That is,

(dxo¢f(t)) (V) = ¢uo (t’ V)-

We will actually prove a little more: the error in the linear approximation
is quadratic. More precisely, there exist constants C and § > 0 such that

lldg(t, X0 + V) — ¢e(t, X0) — du(t, V)| < C||v]|?

when ||v|| < 6.

Proof. Note that
2 (Belts 0 +v) = delts o)) = £(r{t,x0 +v)) — £(6(t, x0)),

whereas d
E(bu(t, V) = d¢,f(t,x°)f(V),

and the curves
u (t,V) = ¢f(ta X0 + V) - ¢f(t, xO)

and
uz(t,v) = du(t, v)

are solutions of the differential equations
v/ =F(,v) and w' =G(t,w),
respectively, where
F(t,v) =f(u(t) +v) — f(u(t)) and G(t,w) = (duef) (W).

The vector fields F' and G are close near the origin in R™, so the task
is to say that two solutions of close differential equations are close. This is
just what the Fundamental Inequality 4.4.1 (Appendix T) will do for us.

Once we have seen this, the result is straightforward, but you have to
be careful to choose the constants in the right order. The first thing is to
decide which we will consider as the real solution and which the perturbed
equation. It does not make a lot of difference, but let us say that the
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linearized equation is the “real” equation, so that u; is a real solution, and
u; (¢) is an approximate solution of the linearized equation.

Next, choose T, the time at which we will differentiate the flow. Choose
R, C, and K so that in ||x|| < R, 0 <t < T, both equations are Lipschitz
with Lipschitz constant K, and so that for ||x|| < Rand 0 <t < T, we
have

IF(t, %) — G, x)|| = [f(u(t) +x) - f(u(t)) - (duef) @) < Clx|>.
If ||vo|| < Re~KT, the functions u;(t) [and uy(t)] will satisfy
(@)1 < e|lvoll

for 0 <t < T, by the “6”-term of the Fundamental Inequality bounding
how far they stay from the zero solution. Hence, u; will satisfy

lui () = Gt w @)l < [lvoll?e*¥7.
Now the Fundamental Inequality 4.4.1 says that

[[vo[I®e*X™

lua(T) = w2(T)|| < —— (e¥T -1).

m]
Two USES OF THE IMPLICIT FUNCTION THEOREM

Later in this chapter, we will require two results, both of which are immedi-
ate from the Implicit Function Theorem 13.6.4 (see Appendix T). The first
will be used to assert that the zeroes of a vector field depend continuously
on the vector field under appropriate circumstances, but the statement does
not require you to think of f as a vector field. Let U be an open subset of
R", and f : U — R"™ a twice continuously differentiable function. Suppose
that f(xo) = 0 and that dy,f is invertible. Then by Taylor’s Theorem, there
exists R such that ||[f(x)|| # 0is 0 < ||x — x¢|| < R (the linear term does
not vanish, and the remainder is too small to cancel it).

Proposition 8*.1.13. For all € > 0, there exists 6 > 0 such that if ||g —
f|| < 8, then the equation g(x) = 0 has a unique solution xo(g) satisfying
llzo(g) — Xol| < R.

Proposition 8*.1.5 is essentially the Inverse Function Theorem; a corol-
lary in Appendix T, of the Implicit Function Theorem 13.6.4.

For our second application of the Implicit Function Theorem, suppose
S C R" is a hypersurface, defined implicitly by the equation h(x) = 0,
that x’ = f(x) is a differential equation with flow ¢¢(¢,x), and that x; =
¢(T0s xO) €S.
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Theorem 8*.1.14. If (dx,h)(f(x1)) # 0, then there exists a unique con-
tinuously differentiable function 7(x) defined in a neighborhood of xo such
that ¢g(7(x),x) € S and T(xp) = 7o.

Figure 8*.1.7 illustrates all of this, in particular, the graph of the function
T

FIGURE 8*.1.7. Graph of 7 as a function of (z,y) € U, giving the time at which
the solution starting at (z,y) hits S.

Proof. The equation h(¢¢(t,x) = 0, which represents n differentiable equa-
tions in the n + 1 variables z,,...,z,,t. Proposition 8*.1.14 asserts that
these equations implicitly define ¢ as a function of z1, ..., z,. According to
the Implicit Function Theorem, this will be the case near (7o, xo) if

0
&h(q&f(t’x) l(‘l’o,xoﬁé 0.

The chain rule says that

0 d
ah(qsf(t, X) |(r0,xo)= dxlha¢f |('ro,xo)= (dxl h)(f(xl))a
so the result is true. 0O

An exercise in Chapter 13 (Part III) will pin down the use of the Implicit
Function Theorem.

What Proposition 8*.1.14 says is that the time it takes for a solution to
intersect a hypersurface is a continuously differentiable function of the ini-
tial condition if the solution intersects the hypersurface transversely. Note
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that the condition ¢¢(7(x),x) € S can be rewritten u(¢e(7(x),x)) = 0,
which is one equation in the n+ 1 unknowns ¢, x;, ..., Z,; it is not surpris-
ing that under appropriate conditions, this defines one of the unknowns
(namely, t) implicitly as a function of the others.

8%*.2 Structural Stability of Sinks and Sources

This subsection shows the structural stability of sinks and sources: it is one
building block for the Structural Stability Theorem of Section 8*.6 (besides
being of interest in itself). Theorem 8.2.2 says that if a linear differential
equation with a sink is perturbed by higher order terms, the new equation
still has a sink. In this subsection, we will pin down more accurately the
extent to which the trajectories of a differential equation “do not change”
near a sink when the differential equation is perturbed.

Theorem 8%*.2.1. (Structural Stability of Sinks). Let f be a vector
field on an open subset U of R™, such that f(xo) = 0 and such that the
linearization of £ at x¢ is a sink. Then there exists a basis of R*, p > 0
and 6 > 0 such that if

(i) V is the ball around xo of radius p (with respect to that basis) and
9V is the boundary of V,

(ii) ||g — f|| < é (think of g as a small perturbation of f),
(iii) h: 9V — AV is any homeomorphism,

then the homeomorphism h extends to a homeomorphism h: V — V which
sends trajectories of f to trajectories of g.

Remark. We will actually do better: the map & will conjugate the flows.
However, even if h is very smooth, h will generally not be differentiable,
and the differential equations will not be differentiably conjugate.

To prove Theorem 8*.2.1, we will use a construction popularized by the
physicists under the name scattering theory, which is of central importance
throughout dynamical systems as the basic way to construct conjugacies.

SCATTERING THEORY

We will denote the flow of the differential equation x’ = f(x) by @¢(t, x).
The idea of scattering theory is to choose a small number p and to define

h(x) = ¢g((x), h(ge(~7(x),x)), 3)

where 7(x) is the smallest time so that ||¢¢(—7(x),x)|| = p.
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In other words, as shown in Figure 8*.2.1:

Flow out to 8V, the boundary of V, under the unperturbed
equation x' = f(x) and back in by the perturbed equation.

circle
around

FIGURE 8*.2.1. The idea of scattering theory.

Example 8*.2.2. Let us compute what formula (1) gives when

Bl =[3] = [3]-15)]

are the two differential equations, V' is the unit disc, and h is the identity.
Flowing out from x € V to the unit circle leads to the point x/||x|| at time
—1 = —log||x||, and flowing in from there for time 7 under the second
differential equation leads to

k(z,y) = (z,yvVz2 + ¥?).

This mapping is a homeomorphism of the unit disc to itself, but it is not
differentiable at the origin. You are asked in Exercises 8*.2#1-3 to calculate
several more examples. A

BACK TO THE PROOF OF THE THEOREM

Proof of Theorem 8*.2.1. We have to prove three things to justify the
scattering construction suggested by Figure 8*.2.1:

(i) that 7(x) exists (except when x = xg) and is continuously differen-
tiable (this will be shown by Lemma 8*.2.3);

(ii) that the mapping h(x), constructed by the scattering argument, ex-
tends continuously to xo (but note: there will be no differentiability
here!);

(iii) that the mapping h(x) is bijective (one-to-one and onto).
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Proof of (i). We begin by normalizing our differential equation as in
Theorem 8.2.2; i.e., we will suppose that coordinates on R™ and R can be
chosen so that

(1) xo =0, so that f(x) = Ax + q(x);
(2) dyx,f = A satisfies Ax - x < —C1||x]|? for some constant C; > 0;

(3) llax)|| < Ca||x||? for x < R.

Let C; = C1/2 and Cy = 2Cs; set p = %min{R, 6'1/202) and p = p/2.

In order for formula (3) to make sense, we need to know that the time
7(x) exists; clearly, it does not if x = xo, but that is the only exception.
We saw in Theorem 8.2.2 that the norm of a nonzero solution decreases
faster than an exponential as t increases, or equivalently it increases faster
than an exponential as t decreases until it reaches p, so it must eventually
reach p.

To show that A is continuous, we need to know that 7(x) is a continuous
function of x for x # 0. This follows from Proposition 8*.1.14.

Lemma 8*.2.3. The function 7(x) is a continuously differentiable function
of x for ||x|| < p, x #0.

Proof of Lemma. Let u(x) = x - x. According to Proposition 8*.1.14, all
we need is dyu(f(x)) # 0 when ||x|| = p; this follows from equation (3)
from Section 8.2 in the proof of Proposition 8.2.4. O

So for V the ball of radius p, formula (3) makes sense and is continuous for
x # 0. To prove the theorem, we need to show that the mapping h extends
continuously to x = x¢ and that the extended h is a homeomorphism.

Lemma 8*.2.4. There exists §; so that the vector field g has a unique zero
xo(g) in V, which depends differentiably on g for ||f — g|| < 61.

Proof of Lemma. This follows from Proposition 8*.1.13. We need to check
that dy,f is invertible, but our hypothesis is that x is a sink, so all the
eigenvalues have negative real part, and none are zero. O

Proof of Theorem 8%.2.1, continued.

Proof of (ii). Set y = x — xo(g) and write the differential equation x’ =
g(x) in the new coordinates:

y' = Agy +ag(y) (4)

since the new origin is always a zero of the vector field. Both Az and qg
depend continuously on g.
By continuity, there will exist 8, satisfying 0 < é2 < 6; such that
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(1) lixo(&)ll < p,
(2) Agy -y < -Cillyl?
(3) lag)ll < Callyll? for y < 5

if ||f — g|| < 82. Note that the third condition above would presumably be
false if we had failed to include second derivatives in our norm on pertur-
bations.

Then the proof of Theorem 8.2.2 now carries over to show that if ||y (t)||
is a solution of (11) with ||y(0)|| < 5, then y(t) — 0 as t — oo.

The set V is the ball of radius p around xo and is contained in the balls
of radius p around both x¢ and x¢(g). For x close to xg, 7(x) is very large,
and formula (1) shows that h(x) is obtained by solving x’ = g(x) for a long
time, starting at a point in 8V, so h(x) is very close to xo(g). This shows
that setting h(xo) = Xo(g) provides a continuous extension of h : V — R™.

Proof of (iii). We still need to show that & is a homeomorphism. It is not
difficult to see how to do this: set

’_L_l(x) = ¢f(7'l(x)’h(¢g(_7'l (x)yx)))v (5)

where 71 (x) is the smallest time so that ||¢g(—71(x), x)|| = p. This involves
a slightly subtle point: is 73 continuous? This requires, according to Propo-
sition 8*.1.9, that 9V, the boundary of V, be transverse to g. We know
that g is transverse to spheres of radius smaller than p* centered at xo(g),
but dV is centered at xg. But if a vector field is transverse to a closed
surface, then so is every sufficiently small perturbation. So we must further
restrict g: there exists § with 0 < § < 62 such that if |g — f|| < é, then
g is transverse to 8V, and 71(x) is a continuous function of x for x € V,
x # Xo(g). Then formula (3) extends to xo(g) exactly as above, so that h
is the required homeomorphism. This finishes the proof of Theorem 8*.2.1.
]

8*.3 Time to Pass by a Saddle

In this section we prove a more delicate result that will be essential in
Section 8*.6. It will be the technical result that makes the Pontryagin—
Peixoto scheme work. The proof was contributed by A. Douady.

Let f(x) be a vector field in the plane and xo € R? be a saddle for f. We
would like to work in the “first quadrant,” so we shall orient the saddle as
shown in Figure 8*.3.1, with the stable separatrix on the “horizontal” axis
and the unstable separatrix on the “vertical” axis.
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FIGURE 8*.3.1. Labeling saddle for first quadrant.

Choose sections (or transversals)
m: I - R? and v2 : I —» R?

at x; on the right branch of the stable separatrix and at x; on the up-
per branch of the unstable separatrix, respectively. Also choose a diagonal
section v : J — R? at X, i.e., a parametrized curve with nonvanishing
derivative, with v(0) = xo and +’(0) transverse to both separatrices, as
shown in Figure 8*.3.2. We will require that 4/(0) point into the first quad-
rant. We will call r the parameter on J; it will be the main indedendent
variable throughout this subsection.

trajectory of
X' = f(x)

FIGURE 8*.3.2. Transverse sections 7; and 7;; diagonal section 7.

We will start solutions at the point v(r) on the “diagonal section” and
study the time these solutions take to cross the sections 7;, as a function
of r. More precisely, there exists € > 0 such that the flow times

71(r) = inf{t > 0 | ¢e(—t,¥(r)) € 1 (L1)}
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and
2(r) = inf{t > 0| ¢e(t, ¥(r)) € y2(L2)}
are well defined and continuously differentiable for 0 < r < €.

Remark. After leaving the neighborhood of xy under consideration, a
solution might reenter it and intersect the sections I; again. The infima in
the formulas above specify that the intersection we are describing is the
first.

As r \, 0, the trajectory through ~(r) passes closer and closer to xg, so
it must go more and more slowly, and we expect 7;(r) to tend to infinity
as r \, 0, as shown in Example 8*.3.1 and Figure 8*.3.3.

’
Example 8*.3.1. Consider [;] = [;;] Its solution is

2]’ [Cie t] _ [re
vl = | cae?t | = | re2t |

since at t = 0 we want £ = y = r. For the second section, we want re?™ =1,
so 72 = —(logr)/2.

FIGURE 8*.3.3. How 7 variesas r. A

Theorem 8%*.3.2 makes all of this more precise.

Theorem 8%.3.2. There erist sections v; : I; — R?, a diagonal section
v : J — R?, and € as above such that the functions 7;(r) are monotone
decreasing on (0,¢), tending to co as v \, 0, and their derivatives tend to
—00.

Proof. We can suppose that the differential equation is the system studied

earlier in the proof of Theorem 8.3.2:

z' = —px + P(.’l),y) = F("’: y) (6)
Y= vy+Q(z,y) = G(z,y),
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and we will take as our sections 7; segments of the lines {z = a} and
{y = a} with a > 0 to be chosen below, and a segment of the diagonal as
our “diagonal section,” parametrized by v(r) = (r,r). Also, as in Theorem
8.3.2, we will concentrate on the related equation

dy _ vy+Q(z,y)

dr - —,u:z:+P(a:,y) =H(.’l},y) (7)

in the region {(z,y) | |y| < z} in which (7) is defined. This means we will
be studying 7; the proof for 7 is similar.

For 0 < 7 < a, let u(r, z) be the solution to (7) passing through the point
v(r) = (r,7) on the diagonal. Figure 8*.3.4 shows the picture on which the
proof will be based.

u = solution to
dy/dx in (2)

How long doas
this take?

FIGURE 8*.3.4. Central idea for “how long does it take to pass a saddle along a
solution?”

The following lemma gives the main tool to prove Theorem 8*.3.2; this
is one of Douady’s central ideas.

Theorem 8%*.3.3. Let r < z; < z3 < a. Then the time T(r, x1, T2) required
to flow from u(r,z;) to u(r,z2) is

*2 dz

I(r,21,25) = /m |F(z, u(r, )]’

Remark. The integrand can be thought of as ﬁﬁ = dt, so it is not

surprising that the integral ends up being in units of time.

Proof of Lemma. Differentiating the formula above with respect to 3,
we need to check that

h

T(r,z,z+h) = |F(z, u(r, 2))|

+ o(h).
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Clearly,

[u(r,;+ h)] B [u(zx)”‘ = h\/l + (%(r,x))2+o(h)
=hvh+(%%ﬁgf%)?+dm.

On the other hand, the speed of the flow at (z,u(r, z)) is

VF(z,u(r,2))? + G(z, u(r, ©))?,

and along the graph of u from u(r, z) to u(r,z + h), the speed will vary at
most by terms of order h.

Recall from Part I, Appendix A, Asymptotic Development, that little
o(h) means smaller than h (for instance, h?); big O(h) means terms of
order at most h.

According to the principle that time = distance/speed, this leads to

_h/T+G/F2+o(h) _ 1 (h+oW)\_ h
Tlrz,o+h) = «ﬁﬁzﬁ+om)‘wm( ) Folh),

~|F|
which proves the lemma. O

1+ 0O(h)

Proof of Theorem 8*.3.2, continued. Now let us see that T'(r,a) tends
to oo as r — O for fixed £ = a. The function P(z,y)/z is defined and
bounded in the region |y| < z < a, so that we see (Exercise 8*.3#1a) that

/“ dz _/“ dz
r |F(E?u(r’ .’L‘))l B r /L.’L‘—P(.’l:,u(’r‘,.’l:))

1
= —% + {something bounded as r — 0}

(8)

and does tend to infinity. The dominant term is determined by r, which
measures how close you are passing to the saddle.

To see that the derivative tends to —oo as 7 — 0, we differentiate under
the integral sign to find

oT(r,r,a) 1 /“ O|F(z,u(r,z))|/dr

- [F(z, u(r, 2))|?

or T T F(ru(nr)) dz.

The first term is equivalent to —1/ur; we will show that the absolute value
of the second is bounded by —C'logr for an appropriate constant C so is
negligible before the first term.
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Computing the partial derivative above, still considering x fixed, we find
(Exercise 8*.3#1Db)

/° 3| F|/or
r |F?

9)

_ [ P /o2,
r |ﬂ$ - P(.’E, ’U,(T, x))|2

The first factor in the numerator is bounded above by C;x in the region
|yl < = < a for some constant Cj.

Formula (9) from the proof of Lemma 8.3.3 and the computation follow-
ing it show that the solutions approach each other in the region {|y| < z <
a} for a sufficiently small; i.e., the function u(ry, £) —u(rz, z) is a decreasing
function of x for r; < r; < z < a, so the second factor in the numerator is
a decreasing function of z for any fixed r.

Figure 8*.3.5 may help with the final steps of the proof.

(e ety Moo K=~ -

(1-s) Or

(r.n

- p
negative % -SAr
slope of
tangent /s-% _______ Y

FIGURE 8*.3.5. The final steps of proving Theorem 8*.3.2.

Thus, (Exercise 8*.3#1c) you can see from Figure 8*.3.5 that

G(r,71)

Oug o Bu
F(r,r)’

ded <
0< Br(r’x) = or

(r,r)=1 (10)
which is a continuous function of r for 0 < r < a and tends to the limit
1+ v/p as r — 0; as such, it is bounded, for instance, by 2 + v/u for
a sufficiently small. The denominator is bounded below by u2z?/2 for a
sufficiently small, so the whole integral is bounded by

/ 201(#@% < —C(logr —loga) < —Clogr,

setting C = 2C1(2 + v/u)/u? and assuming a < 1. 0O

Remark. The proof above makes Theorem 8*.3.2 a rather delicate result,
depending on the comparison of the rates at which two functions tend to
infinity. The authors do not know of anything simpler.
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8%*.4 Structural Stability of Limit Cycles

The main business of this section is to prove the Structural Stability Theo-
rem 8%*.4.10, which is the analog of Theorem 8*.2.1 for linearly attracting or
repelling limit cycles: such cycles are structurally stable. For the purposes
of Section 8*.6, we will require a more precise statement. The proofs are
very similar in spirit to that for Theorem 8*.2.1; more precisely, the key
Lemma 8*.4.2 is by itself an analog of Theorem 8*.2.1 for one-dimensional
mappings, as opposed to two-dimensional vector fields.

Before we state and prove the main theorem, however, we must lay some
more groundwork.

THE SECTION MAPPING

In Part I, Chapter 5, we encountered the period mapping of a periodic
differential equation. The section mapping introduced in Figure 8.7.4 and
described below is closely analogous, and the period mapping is a special
case of a section mapping. See Figure 8*.4.1.

Let f(x) be a vector field on a subset of R™, with flow ¢¢(¢, x).

Let I' be a cycle of the differential equation x’ = f(x), xo € I a point,
and H C R" an (n — 1)-dimensional space transverse to I' through xq.

In a first reading, the reader may think that n = 2, so that I is a curve in
the plane as in Examples 8.4.1 and 8.4.2, and that H is a line transverse to
I' at xg. This case does not quite convey the full complexity of the situation,
but very little is lost if we imagine n = 3, so that I is a curve in space and
H is a plane transverse to I' at xg.

FIGURE 8*.4.1. Section mappings in R? and R3.

For a sufficiently small neighborhood N of x¢ in H, we can define a
mapping P : N — H by starting a solution at x € N and setting P(x) to
be the next intersection of this solution with H. Figure 8*.4.2 shows this
construction. The domain of such a mapping is a bit delicate to define,
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as the figure suggests. Sometimes solutions close to I' will return close to
Xo sooner than the “correct” return, and the domain of P must be chosen
sufficiently small that the first return is the correct return.

right return P(x)

wrong return

FIGURE 8%*.4.2. The inner trajectory crosses H too soon, so the domain for P
must be a smaller subset of H, as indicated by the thicker line for N.

Definition 8*.4.1 (Section mapping). P : N — H is defined as follows.
Let T be the period of xg, i.e., the time it takes for a solution to go around
I'. Choose a neighborhood U of xq¢ in H, sufficiently small that the vector
field is transverse to H in U and that U NT' = x¢. Choose ¢ < T'/2; let
W C R"™ be the set of {¢¢(t,x)} for x € U and |t| < e. We will assume
that € is chosen sufficiently small so that if x € U and |t,|, |t2| < €, then
¢f(tl’x) 7é ¢f(t2a x) Only when ¢ = t,.
Now consider the set N C U defined by

N ={xeU|¢T,x) € W)}.

Since ¢¢(T,x0) = xo € W and ¢¢(T, x depends continuously on x, we see

that N contains a neighborhood of x¢ in H. Define P(x) = ¢¢(s(x)+ T, x),

where s(x) is the unique time satisfying |s(x)| < € and ¢¢(s(x)+T,x) € H.
In summary, Figure 8*.4.3 shows for n = 2 and n = 3 the following:

in R 1:
H = section

U = portion of H where trajectories intersect transversely
(are not tangent) to H

N = subset of U in which P is well defined (trajectories always
come back)

in R™:

W = tube of forward and backward trajectories of points in U.
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FIGURE 8*.4.3. Regions used in defining section mapping P : N — H in R?
(above) and R® (below).

Example 8*.4.2. Let us compute explicitly the mapping P for the equa-
tion from Example 8.4.1.

(2t

In polar coordinates, the radial equation can be rewritten (Exercise
8.4#2a) as
dr _
r(l—r)(1+71)
which gives a direction field like Figure 8*.4.4.
Equation (12) can be integrated (Exercise 8*.4#2b) to yield

_ r(0)e>t
0= e D T

adt, (12)

(13)
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7t

negative o 2n ’ positive o on
FIGURE 8*.4.4. Solutions for equation (12); @ = —0.1 (left) and & = 0.1 (right).

Take H to be the z-axis, in which case N can be chosen to be the positive
z-axis. From the equation ' = 1, we deduce that the time required to go
from the positive z-axis back to itself is 27, so the mapping P is given by

erwa
PO = et (4

Graphs of such functions are represented in Figure 8*.4.5 for 2™ = 2 and
e2™ = 0.8. If @ = 0, the P map is the identity.

P(x) P(x)

[ ——

FIGURE 8*.4.5. The section mappings for equation (12) in Example 8*.4.2, with
fixed points at = 1: attracting on the left (o = 0.1) and repelling on the right
(a=-01). A
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Proposition 8*.4.3. The section mapping P is differentiable and one-to-
one. If P(N) = N’ is the image, then P~1 : N’ — N is also differentiable.

Proof. The fact that P is one-to-one comes from the choice of ¢ in the
construction of P above. More precisely, if you flow a time —T from P(x),
you will be in W, and then x is the unique point of N which you can flow
to H in time less than €. This makes it clear that P is one-to-one and that
in fact, P~! is a section mapping for the differential equation x’ = —f(x).

Theorem 8%*.1.14 asserts that there is a differentiable function 7(x), de-
fined in a neighborhood of xg, such that ¢¢(7(x),x) € H and 7(x0) = T.
Then P is simply the restriction of

x > ¢g(7(x),x)

to N, which is a composition of two differentiable maps. [
THE SECTION MAPPING AS A DYNAMICAL SYSTEM

The essential property of P is that iterating P is equivalent to solving the
differential equation. More precisely, define the return time T'(x) = s(x)+T":
this is the function which measures how long it takes for a point of N to
return to N. In particular, T'(x¢) = T

Choose y € N and set y; = P°(y). Of course, this sequence may not
be defined for all ¢ because some y; may not lie in IV, so that y;;; is not
defined.

Proposition 8*.4.4. Iterates of P and solutions of the differential equation
are related by
yi = ¢e(T(yo) + ... + T(yi-1), Yo)-

Proof. By definition, we have ¢¢(y;, T'(y:)) = yi+1. Now the formula fol-
lows from the fundamental property (refer to Section 6.8 on flows):

de(de(ta, (t1,X%)) = Pe(t1 + t2,x). O

In particular, if y; is defined for all ¢ > 0, then the times T'(yo) + ... +
T(y:—1) tend to infinity, and understanding the orbit of y under P allows
us to say something (in fact, a lot) about solutions for arbitrarily large
times.

Proposition 8*.4.4. makes it clear that the mapping P should be viewed
as a dynamical system on N, i.e., that it should be iterated. Unfortunately,
the mapping P depends not only on f and I', but also on the choice of
section. We want to say that it is really independent of the section: more
precisely, we will show that different sections lead to conjugate section
mappings.
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Proposition 8*.4.5. Let xo and x;, be two points on I'; choose subspaces H
and H' transverse to T at xo and xq and construct section maps P : N — H
and P' : N' — H' as above. Then there exist subsets N1 and Nj and a
differentiable mapping h : Ny — Nj with differentiable inverse such that
P' =h"loPoh.

In other words, the section maps for two different H’s are conjugate,
as shown in Figure 8*.4.6, which means that P and P’ are essentially the
same dynamical system.

J_.

FIGURE 8*.4.6. The mapping h which conjugates P to P’.

Proof. Define h by “fowing” from N to N’; all the extra words in the
statement above are just to restrict to a subset on which this is well defined.
The details are very similar to Definition 8*.4.1 and will be left to the
reader. O

DERIVATIVE OF THE SECTION MAPPING

For the remainder of this section, we will assume that we are in the plane,
so that H is a line and N is an interval. The higher-dimensional case is
quite a bit more elaborate, and the plane case will be complicated enough.

In the plane, a section mapping P like the one in Example 8*.4.2 is
completely typical and just the sort of mapping studied in Chapter 5 (Part
I). The mapping P : N — H is always monotone increasing, and in fact
P’ > 0. The point Xxg is a fixed point of P, which is linearly attracting if
P/(x9) < 1 and linearly repelling if P'(xo) > 1.

Note that if xq is linearly attracting, then it really does attract a neigh-
borhood of itself: choose a neighborhood I of x¢ in which P’ < 1 — ¢ for
some ¢ > 0, then by the mean value theorem, |P(x9)—P(x)| = P'(y)|xo—x|
for some y € [xp,x] C I, so that |P(xq) — P(x)| < (1 — €)|x — xg|. Thus,
applying P to a point in I moves you closer to X by a definite amount.
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If P'(x9) < 1, not only is xo an attractive fixed point of P, but I' at-
tracts a neighborhood of itself. The following result further emphasizes the
relation between iterations of P and solutions of the differential equation.

Proposition 8*.4.6. If P'(xo) < 1, there is a neighborhood of T such that
every solution starting in that neighborhood converges to I' as t — oc.

Proof. First assume that the solution starts at yo € I, where I is the
neighborhood proved above to be attracted to xo. Let y; = P°(yo). Note
that since y; exists for all 7, the solution starting at yo is defined for all
t > 0. Moreover, since y; — Xo, the times Ty tend to the period T of x,.
Thus, for large ¢, the solution is always obtained by flowing from a point
near Xg for a time less than 27T, so it stays close to I'.

If yo is close to I" but not on I, then the trajectory through yo will pass
close to x¢ and hence will cross I at some point y;. You now continue as
above. 0O

Definition 8*.4.7 (Linearly attracting or repelling cycles). If P'(z)
< 1, we will say that the cycle I' is linearly attracting; if P'(zo) > 1, we
will say that I is linearly repelling.

The fact that this depends only on the cycle and not on the section
follows from Proposition 8*.4.5. The case where P’(x¢) = 1 will be studied
further in Chapter 9.

CHOOSING A NEIGHBORHOOD OF A LiMIT CYCLE

In this subsection, we will construct a nice neighborhood of a limit cycle in
the plane which is linearly attracting or repelling. A corresponding neigh-
borhood in the case of a linear sink was found by choosing a basis with
respect to which the square length is a Liapunov function, then choosing
the region where this Liapunov function is smaller than some small positive
constant.

There does not seem to be an analogous construction for cycles, and the
result is harder than it appears. We have used a different proof inspired by
the Cornell Ph.D. thesis of Salvador Malo, based on the notion of turning
a vector field. Because this construction is harder to carry over to R™ for
n > 2, we still restrict ourselves to the plane.

TURNING A VECTOR FIELD

To “turn” or “rotate” a vector field f through an angle 6 means to create

a new vector field
P cosf —sinf £
9~ | sinf cos@ )

Examples for positive and negative rotation are shown in Figure 8*.4.7.
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=0.1
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the center; turned vector fields are

is given in

FIGURE 8*.4.7. A vector field

A

—0.1 (below).

shown for a = 0.1 (above), and for a
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Example 8*.4.8. Consider the Van der Pol oscillator of Example 8.4.2:
"+ (-1’ +z=0

or

=y

yl = (1 - zZ)y - Z,

as shown in the center of Figure 8*.4.7. The results of rotating this vector
field through angles of 0.1 and —0.1, are shown on the left and right, re-
spectively. The angle is easy to observe in the long trajectory coming in at
the top of each picture. A

Proposition 8*.4.9. Let I" be a linearly attracting cycle of x' = f(x).
Then there exists a neighborhood W of I bounded by two smooth simple
closed curves, transverse to f, such that every point in W is attracted to
I.

Proof. Consider the one-parameter family fy of vector fields obtained by
turning f by an angle 6.

A turned vector field is transverse to f if 6 is not a multiple of 7. So for
small positive 6, it points into or out of the region bounded by TI'; let us
suppose it points out (if not, turn the vector field in the other direction).
Choose a segment I = [yo, Zo] transverse to I at xo, attracted to xo under
P : I — I, as above, where yj is the endpoint outside the region bounded
by I.

FIGURE 8*.4.8. A suitable neighborhood W of a limit cycle T

The solution to x’ = f(x) through yp next intersects I at a point y;
between yo and X, and for sufficiently small § > 0, the solution to x’' =
fo(x) will next intersect I at a point y; () between yo and y;. This solution
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will be one boundary curve of W; we need to round the two corners, as
suggested in Figure 8*.4.8, to make it smooth.

The other boundary curve is constructed by turning the vector field in
the opposite direction and starting at zg. O

SRUCTURAL STABILITY OF CYCLES

Let f be a vector field on an open subset U of R?, and I' a linearly attracting
cycle of x’ = f(x). Let W, I, and P be as above:

W is an annular neighborhood of I' such that every point of W is
attracted to I', and the vector field f enters W transversely along its
entire boundary; I is a segment transverse to f joining one boundary

curve of W to the other; P : I — I the corresponding section mapping,

with a single linearly attracting fixed point at xq, which attracts all of
I.

Theorem 8%*.4.10 (Structural stability of limit cycles). There exists
6 > 0 such that for any homeomorphism h : OW — OW which maps each
boundary curve to itself, preserving the direction, and any g vector field
on a neighborhood of W with ||f — g|| < 8, there exists a homeomorphism
h:W — W extending h which maps oriented trajectories of x' = f(x) to
oriented trajectories of X' = g(x).

Proof. Call y, and zo the endpoints of I. We ask the reader to believe that
there exists a curve Iy C W transverse to f joining h(yo) to h(zo). Figure
8%*.4.9 suggests how to construct a system of coordinates on W in which I,
can be taken as a segment of straight line, at least if W is so small that its
boundary curves are “close parallels” to I' and f has solution curves that
are also almost parallel to I'. Writing the details would distract from the
main argument.

FIGURE 8*.4.9. How to draw in I.
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Consider the graphs Gy = W UI and Gy = 8W U1, as shown in Figure
8*.4.10. We can extend h to W.

Go Gl

FIGURE 8%*.4.10. The graphs Go and G1.

Since every solution in W is attracted to I' under the flow ¢¢ of the
differential equation x’ = f(x), every solution leaving G will intersect G
again and, more specifically, I. Let us call this mapping Pr: G — I.

The same is true of the graph G;, and, more significantly, it is still true
for the flow ¢ if ||f — g|| is sufficiently small. Let us call the corresponding
mapping Py : G — 1.

The following result is the first step toward the construction of h.

Lemma 8%*.4.11. (a) For any g sufficiently close to f, Py has a unique
linearly attractive fized point on I.

(b) If g is sufficiently close to f for part (a) to hold, then there is a
homeomorphism h : Go — G, extending h and conjugating P to Fg.

Remark. The reader should observe that this statement is not quite ob-
vious even if f = g.

Proof of Lemma. For part (a), observe that f induces a section mapping
P, : I, — I, which is differentiably conjugate to the section mapping
P : Iy — Iy by Proposition 8*.4.5. Thus, the point I; NI is a linearly
attractive fixed point of P;. For g close to f (in the technical sense we
imposed in Section 8*.1), the mapping Py will be close to P; together with
its derivative. In particular, it will have a unique attractive fixed point x;.

For part (b), the key idea is as follows: We will construct h by a scattering
construction, as usual, but we will need to do it in stages. For any point in
Iy, we can solve x' = f(x) backward starting at that point. The solution
will cross Iy some number of times (possibly 0) before it escapes W, and
we will extend h successively to the subsets where this solution intersects
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0,1,2,... times. This will still leave the point xo = I' N Iy, which never
escapes and has to be dealt with separately.

_ For the dedicated reader, we now provide greater detail: On W C G,
h is already defined (in fact, on the boundary, 8W, it is h). On Pg(dW),
define _

h(x) = Pgh(P;(x)).

We invite the reader to think about why this is continuous at the endpoints
of Iy. Now extend h to P?(OW) by

h(x) = Pgh(P; }(x));

this is well defined because Py '(x) is in the locus where h was defined in
the previous step. Proceeding similarly for P3(0W), P#(0W),..., we will
define h on all of Gy except Xo.

Set h(x9) = X;; we must check that this is continuous. A point in Ij
very close to xo will have a backward trajectory under x’ = f(x) which
intersects Iy a great many times. It will be mapped by h to a point whose
backward trajectory under x’ = g(x) intersects I; the same number of
times before leaving W. Such a point must be close to ;. O

Proof of Theorem 8%*.4.10, continued. Again, we first state the key idea:

Now we must extend h to all of W. The idea for this is not difficult,
though the formulas are a little awesome. Every point of p € W — G is on
a unique arc of trajectory of x’ = f(x) going from a point of q; € Gy to a
point qo. The points q; and q are taken by h to the points h(q;), h(q2) €
G, which are two endpoints of a segment of trajectory under x’' = g(x).
We will map p to the point on this trajectory that is proportionally as far
along as p was on its segment of trajectory.

To fill out the proof more precisely:

Define the functions Ty, Sp : W —Go — R, which give the time it takes for
a point to reach G under x’ = f(x) forward and backward, respectively.
Similarly, define T1,S5; : W — G; using x’ = g(x). We extend T; to G
so that it measures the time it takes to reach the next intersection with
G1 (we could have extended Tj too, but it is not necessary). Moreover, to
lighten the notation (which badly needs it), define the origin of p to be

O(p) = ¢¢(—So(P), P),

i.e., the place where the trajectory through p last intersected Gy before
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reaching p. The construction is illustrated in Figure 8*.4.11.

q4=0(p)

h(qy)
S4(h(p))
~/

FIGURE 8*.4.11. The key idea of the proof of Theorem 8*.4.10. For p one-fifth
of the way along the trajectory, h(p) will also be one-fifth of the way along its
trajectory.

Now define h: W — Gy - W — G4

So (P)
So(P) + To(P)

We leave to the reader to check that this ghastly formula really does
reflect the geometric construction defined above; once he or she has done
this, they will have no trouble convincing themselves that h extends h.

That h is a homeomorphism follows from the fact that f and g can be
exchanged. 0O

A(p) = s ( S1:(A(O(®)), Z(O(p») .

Note that in this case the map h is not a conjugacy of the flows and
that in fact there cannot be a conjugacy if the periods of I' = I'r and the
cycle I'g for g, which we have shown to exist, are different. This is why the
equivalence condition requiring topological conjugacy of the flows is too
strong.

8*.5 Why Poincaré-Bendixson Rules Out “Chaos”
in the Plane

Differential equations in the plane do not exhibit “chaos.” You cannot find
in R? the sort of complication associated with infinitely many periodic
orbits, invariant Cantor sets, and other exotic phenomena which are such
a common feature of iteration (even in one dimension) and of differential
equations in three dimensions or more.

The reason for this simplicity is rooted in the Poincaré-Bendixson Theo-
rem, in its more general form (soon to be stated as Theorem 8*.5.5), which
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asserts that away from the singularities the most complicated sort of orbit
a differential equation in the plane can have is a closed orbit.

To prepare for the classical statement of the Poincaré-Bendixson Theo-
rem 8*.5.5, we must first define the concept of “limit set.”

THE LIMIT SETS OF A POINT

A limit set of a point x, under a differential equation is the set of accu-
mulation points, in the forward or backward direction, of a solution u(x,).
More formally, let x’ = f(x) be a differential equation in R", with flow

os(t, x).

Definition 8*.5.1 (Limit set). The w-limit set of a point x is the set of
points to which you come arbitrarily close along the trajectory ¢¢(t,x) as
t — +o00:

L,(x)= {.lim o¢(ti,xp) | t; — oo and the sequence is convergent} .
1—00
There is a corresponding definition of the a-limit set:
Ly(x) = {.lim o¢(ti, x) | t; = —oo and the sequence is convergent} .
1—00

Some limit sets are illustrated in Figure 8*.5.1.

FIGURE 8*.5.1. Some possible limit sets: a point, a simple closed orbit, and a
more complicated cycle, formed by two homoclinic orbits of a single saddle.

Alternate definitions of limit sets are explored in Exercise 8*.5#1.

Remark. The names for these limit sets come from the first and last letters
of the Greek alphabet: a is the beginning, whence solutions come; w is the
last, whither solutions go.

Clearly, the limit sets of points on the same trajectory coincide, so we
can speak of the limit set of a trajectory.
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With this definition, the w-limit set L, (x) is empty if the solution through
x is not defined for all ¢ > 0 or tends to co with ¢. Similarly, the a-limit
set is empty if the solution is not defined for ¢ < 0. Furthermore, the limit
set has odd properties if the solution does not remain bounded.

Example 8%*.5.2. For the differential equation x’ = x and the solution
u(t) = e!, the w-limit set is empty and the a-limit set is 0. In fact, all

solutions of this equation have the same limit sets, except the constant
solution 0 for which both limit sets are the point 0. See Figure 8*.5.2.

/

-7

FIGURE 8*.5.2. Solutions for x’ = x. L, (u) = {0}, La(u) =0. A

Example 8*.5.3. For the equation of Figure 8.4.1,

-[2-0-2-[)

the w-limit set of any solution except the constant solution 0 is the unit

Y.

AU

FIGURE 8*.5.3. For any x # 0, the L, (x) is the unit circle. A
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In proving the strong Poincaré-Bendixson Theorem 8*.5.6, we shall need
to know that both limit sets of a point in a limit set are a subset of the
limit set. This may not be so surprising for L, but it is certainly not so
clear for L,. Thus, we prove the following proposition:

Proposition 8*.5.4. Ify € L, (x), then the trajectory through y is also a
subset of L, (x). In particular, L,(y) C L,(x) and L,(y) C L, (x).

Proof. Let z = ¢¢(7,y). Then for any € > 0 there exists § > 0 so that
for any y; with ||y; — y|| < 8, we have ¢¢(y1,7) is defined and ||z —
¢¢(y1,7)|| < €. By (the second) definition of the limit set, there exists a
sequence t; € R such that t; — oo, and ¢¢(t;,x) — y. For i sufficiently
large, ||@¢(ti, xp) — ¥|| < 8, so we see that

oe(ti + 7,%xp) >z and t;+7 — o0.

Thus, points of the forward trajectory through x will converge to any point
of the orbit of y, whether forward or backward. But L, (x) is closed, so it
will also contain both limit sets. O

STATEMENT OF THE THEOREMS

The classical statement of the Poincaré-Bendixson Theorem is the follow-
ing:

Theorem 8%*.5.5 (Poincaré—Bendixson). Let u(t) be a solution to the
differential equation x' = f(x) in R? as above, defined and bounded for
t > to. Then if L,(u) contains no zero of £, it is a cycle.

Remark. Our original Poincaré-Bendixson Theorem 8.5.1 concerns a vec-
tor field in an annulus, which enters along the entire boundary, and such
that the annulus contains no zeroes of f. Theorem 8%*.5.5 says that the
w-limit set of every point must be a cycle.

We will prove a stronger result.

Theorem 8%*.5.6 Stronger Poincaré-Bendixson). Let x be a point
such that the solution ¢¢(t,x) of the differential equation x’ = f(x) in R?
is defined and bounded for t > 0. Then either L, (x) is a cycle or, for any
y € L, (x), f vanishes identically on L, (y) and Ly(y).

Remark. Of course, one possibility is that y itself is a zero of f. Reasonable
vector fields have isolated zeroes, so that usually L, (y) and L. (y) will be
single points, but it can happen that the limit sets of points y as above are
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actually subsets of the plane which are not single points (but on which the
vector field vanishes identically, as the theorem says).

LABYRINTHS IN THE PLANE

Theorem 8*.5.6. is hard to understand if you cannot imagine what a coun-
terexample might look like. The reader should run the Lorenz equation,
Example 6.1.6, on a computer program such as DiffEq, 3DViews in the
MacMath package, and consider carefully the resulting Lorenz attractor,
pictured for instance in Figure 6.1.8.

It might seem “obvious” that nothing like the Lorenz attractor can exist
in the plane, but this is just a failure of the imagination. We will show
in Example 8*.5.7 that such things, called labyrinths, do exist. Neverthe-
less, the Poincaré-Bendixson Theorem asserts that in R? a solution cannot
wind around such a labyrinth, accumulating on something like the Lorenz
attractor.

Example 8*.5.7 (Labyrinth). Consider the region U C R? bounded by
three semi-circles as represented in Figure 8*.5.4. Fill each semi-circle by
concentric semi-circles, and imagine the “differential equation” whose flow
curves are precisely these arcs. These curves can obviously be continued
forever unless they run into one of the centers of the circles or the point 6.

7

Y

FIGURE 8*.5.4. A labyrinth with an unending orbit, unless you land on a sin-
gularity. Part of a typical orbit is drawn as a thicker path, starting and ending
near the center. A

Example 8*.5.7 becomes especially interesting if 6, the meeting point of
the two semi-circles on one side, is irrational. Consider the following two
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lemmas and their implications.

Lemma 8%*.5.8. If 0 is irrational, then for all but countably many = €
[—1,1], the trajectory through = has limit set equal to U.

Proof. Consider the two mappings uj,up : [—1,1] — [—1,1], which give,
for any z € [—1,1], the other endpoint of the top or bottom semi-circle,
one endpoint of which is . The bottom map is simply u; : £ — —z, and
the top map is

up(z) = {—a;—1+0 ifr<@
—-z+1+0 ifz>0,

so we see that uz o u;(z) = ¢ + 1 + 6 mod 2. Exercise 8*.5.2 asks you to
prove the result from here. 0O

Remark. You can use the MacMath program Analyzer to iterate this func-
tion, even though it is discontinuous. Enter the function

0.5 ((sgn(z —0) +1)*(—z+ 0+ 1)+ (sgn(@ —z) + 1) x (—z + 6 — 1)),

say with # = n/11, and then with § = 3/11, and see the difference, as
shown in Figure 8*.5.5.

L 2.0, 1
FIGURE 8*.5.5. Different iteration behaviors, to illustrate Lemma 8*.5.8; 0 is
irrational on the left, rational on the right.

The labyrinth of Example 8*.5.7 is not quite a counterexample to the
Poincaré-Bendixson Theorem, because U contains singularities. In order
to remove the singularities, try Example 8*.5.9.

Example 8%*.5.9. Start with the idea of Example 8*.5.7, but open up
the exceptional trajectories to a union of tadpole-shaped regions V, with
narrowing infinitely long tails, as indicated in Figure 8*.5.6, and fill in the
opened region, also as indicated. Now a trajectory in U — V has limit set
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U — V and, in particular, contains no singularities. See Exercise 8*.5.3 for
further exploration of this example. A

FIGURE 8*.5.6. A labyrinth without singularities, to illustrate Example 8*.5.9.

Why is the labyrinth of Example 8*.5.9 still not a counterexample to
the Poincaré-Bendixson Theorem 8*.5.67 Because there is no direction to
these flow curves, you cannot put arrows on the curves in a coherent way!
So the Poincaré-Bendixson Theorem has met the labyrinth challenge in
R2. Another labyrinth example is given in Exercise 8*.5#4 which especially
shows how wrong the Poincaré-Bendixson Theorem must be for differential
equations in R3.

Remark. There is a great similarity between this labyrinth “counterexam-
ple” and the cardboard model for the Lorenz equations of Example 8.7.1.
Nothing like Lemma 8%*.5.10, which excludes the labyrinth, holds in R3,
and “chaos” can therefore rear its ugly head in the Lorenz attractor.

PROOF OF THE POINCARE-BENDIXSON THEOREM

The first step in proving the Poincaré-Bendixson Theorem 8*.5.6 is Lemma
8*.5.10, the key result that avoids chaos in the plane.

Lemma 8%*.5.10 (Monotonicity). If I is a segment in R? transverse to
f, which a solution u of x' = f(x) crosses at three points A; = u(t;) with
t, < ta < t3, then Az is between A; and Az on I.

Proof of Lemma. The construction is shown in Figure 8*.5.7. The set
u(ty, t2] U [A1, Ao forms a simple closed curve, which bounds a region U.
The vector field either enters or leaves U. Changing the sign of the vector
field if necessary, we can suppose it enters.

Then u(ty, 00) is contained in the interior of U, but the part of I — Az
containing A; is in the boundary of U or outside. Hence, A3 is in the
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component of I — A, € u(tz,00) belonging to the component of I — A, not
containing A;. O

Remark. As said at the beginning of Chapter 8, we are assuming Lipschitz
vector fields. So even if the boundary of a region is a solution rather than
being crossed by the vector field, it nevertheless prevents any solutions from
escaping.

Proof of Theorem 8%*.5.6. Let x be a point with bounded forward tra-
jectory, y € L,(x), and z € L,(y) or z € L,(y). We shall illustrate the
steps of the proof with Figure 8*.5.8.

If z is not a zero of f, there exists a section I through z. The essential
thing to see is that ¢¢([0,00),y) N I, = {2z}, i.e., the trajectory through y
cannot intersect I in more than one point.

Indeed, suppose ¢¢([0,0),y) N I; has two points y; and y2. By Propo-
sition 8*.5.4, both y; and y2 belong to L,(z), so there exist sequences
t; — oo and s; — oo such that ¢¢(t;,x)) — y; and ¢¢(s;,x) — y2. There
is a neighborhood V of I such that any point in it can be moved onto I,
by flowing a time < ¢; so there exist sequences t; — oo and s — oo with
os(tl,x)), pe(si,x) € I and still uy(t)) — y1 and u,(s;) — y2. If y; and y>
are distinct, this is incompatible with the Monotonicity Lemma 8*.5.10.

Now there exist ¢; and tp such that ¢¢(t1,y) and ¢¢(t2,y) are both in
V and, in fact, on the arc of trajectory through z in V; moreover, we may
assume to — t; > 2e.

Then by modifying ¢; and t2 by less than €, you can find t] and t), such
that ¢¢(t),y) = de(th,y) = 2, and t] # t5. This shows that ¢¢(t; —t],y) =
y, which implies that the trajectory through y is a cycle.

We still need to show that if the trajectory through y is a cycle, then
this cycle is the whole w-limit set of x. Choose a section I at y and let
t; be the times for which ¢¢(t;, x) € I; the ¢¢(t;, x) form a sequence on I
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The trajectory of x\

accumulates on the point y .

4 The trajectory of y accumulates
on the point z .

These lines ar*e part of the traje*ctory of x

og(si x) ot %)

og(s'ix) st %)

R |

these lines are part of the trajectory through y

FIGURE 8*.5.8. Illustration of the proof of Theorem 8*.5.6.
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converging monotonically to y. Since the solution through y is a cycle of
some period 7 > 0, we have ¢¢(7,y) =y, so that ¢¢(t; + 7,x) is close to y
for large 7 and, in particular, ¢, is close to ¢; + 7. But this means that the
trajectory through x is close to the trajectory through y for all sufficiently
large times. O

8*.6 Structurally Stable Equations in the Plane
MORSE-SMALE VECTOR FIELDS IN THE PLANE

In this section we will attempt to pin down the fact that vector fields in
the plane do not exhibit “chaos.” More specifically, we will define the set
of “nice” (Morse-Smale) vector fields by a few negative properties. Then
we will show that these vector fields are structurally stable and dense.

The first of these properties means that

If you perturb a nice vector field a little bit, for instance by adding on a
small vector field, then the essential structure of the phase plane does
not change: the perturbed differential equation is topologically equiva-
lent to the original one.

The second property means that

Any vector field, however nasty, for instance the zero vector field, can
be perturbed an arbitrarily small amount and become nice.

Definition 8*.6.1 (Morse—Smale vector field). A vector field f on a
region U C R? is Morse-Smale (abbreviated M-S) if:

(1) the linearizations of f at the zeroes are sinks, saddles, or sources;
(2) the limit cycles are all linearly attracting or repelling;

(3) there are no saddle connections.

Historical Remark. In the West, after the momumental work of Poincaré
at the turn of the century, the study of differential equations more or less
dried up (with the notable exception of George Birkhoff, and some very
deep work in celestial mechanics by Carl Ludwig Siegel). In the Soviet
Union, work on differential equations never slowed, spearheaded by such
mathematicians as A. A. Andronov and L. Pontryagin.

To the authors of this book, these names are historical. Not so the names
of Marston Morse, Stephen Smale, Raoul Bott, and John Milnor, who have
been at the heart of current developments. Morse’s main contribution is
not in differential equations, but in a topic called the calculus of variations



246 8*. Structural Stability

in the large, now usually called Morse theory. In the 1930s, he proposed
to take something like a surface with a function f and try to understand
the topology of the surface by flowing down the gradient curves of the
function, eventually deforming the surface into the unstable separatrices
of the gradient flow. Even if one is not centrally interested in differential
equations, thinking about surfaces forces one to think about gradient flows.

This program was spectacularly applied by Bott in the early 1950s to
understand the topology of the space of loops on groups like SO(3). This
brought the subject to the forefront of mathematical research. In particular,
Milnor wrote a book called Morse theory, which was extremely influential.
Smale, who had been a student of Bott in the 1950s, used Morse theory to
prove the Poincaré conjecture in dimensions at least five. This earned him
a Fields medal, the mathematical equivalent of the Nobel prize. After this,
his work centered on dynamical systems, and he started a whole school, of
which the authors are in some sense a part. He is still very active in the
subject, and it is clear that he was much influenced by gradient flows in
his more general investigations.

Such gradient flows have very nice properties, and Morse-Smale vector
fields are those that share these properties.

For differential equations in the plane, the long-term behavior of trajec-
tories of x’ = f(x) is quite easy to understand. We have suggested that to
study a differential equation in the plane, the main objective is to locate the
basins of the sinks and attracting limit cycles (usually bounded by stable
separatrices and repelling limit cycles), and the “antibasins” of the sources
and repelling limit cycles (usually bounded by unstable separatrices and
attracting limit cycles). Theorem 8*.6.2 justifies this philosophy when the
vector field is M-S.

Theorem 8*.6.2. Let U be a bounded region of the plane, bounded by
smooth curves, and f be a M-S vector field in U transverse to its boundary,
OU. Then as t — oo, every solution of x' = f(x) either

(1) leave U, or

(2) tends to a sink or an attracting limit cycle, or

(3) is a stable separatriz of a saddle or a repelling limit cycle.
Similarly, as t — —oo, every solution either

(1) leaves U, or

(2) emanates from a source or a repelling limit cycle, or

(3) is an unstable separatriz of a saddle or an attracting limit cycle.
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Proof. This is a corollary of the Poincaré—Bendixson theorem (in its strong
form Theorem 8%*.5.6). Suppose the trajectory ¢¢(t,x) does not leave U as
t — oo, that L, (x) is not a cycle, and let y € L,(x). We wish to show
that y is a zero of f (clearly either a sink or a saddle unless x was itself
a source). Suppose that f(y) # 0. The vector field f vanishes identically
on L,(y) and on L,(y) by Theorem 8*.5.6. But both L,(y) and L, (y)
must be saddles: clearly, L, (y) cannot be a source; if it is a sink, then that
sink is also L, (x). Similarly, L,(y) cannot be a source or a sink. So the
trajectory through y is a saddle connection. A similar argument can be
made for Ly(x). O

Remark. The notion of a Morse-Smale vector field is not restricted to
the plane. However, Theorem 8*.6.2 does not follow from the definition
we have given of Morse-Smale in higher dimensions; and the appropriate
modification of the conclusion of Theorem 8*.6.2 simply becomes part of
the definition of M-S. With this modified definition, structural stability is
still true, and the proof we give almost carries over. On the other hand,
the density result fails drastically, so the notion of M-S is much less useful:
a “general” vector field in R™ is not M-S when n > 2.

THE STRUCTURAL STABILITY THEOREM

Theorem 8*.6.3 is due to Andronov and Pontryagin. It had a deep influ-
ence on the whole theory of dynamical systems, and for quite a while, the
hope was that something similar would be true in higher dimensions: that
structurally stable vector fields would be open and dense in general. Al-
though this hope was dashed [Smale, 1966,Amer. J. Math], the underlying
philosophy is still a central part of the way people think about dynamical
systems.

Theorem 8*.6.3 (Structural Stability Theorem). Let U be a bounded
region of the plane, bounded by smooth curves, and f be a Morse-Smale
vector field on U transverse to the boundary curves. Then f is structurally
stable.

Proof. Without being enormously difficult, the proof is quite long and an
order of magnitude more elaborate than anything encountered in this book
so far. There are four preliminary lemmas, so hang on for a long ride!

For each sink or source x;, choose a small neighborhood Wy, and éx, > 0
as given by Theorem 8*.2.1. For each limit cycle I';, choose a neighborhood
Wr; and ér; as given by Theorem 8*.4.10. We will take all these neigh-
borhoods disjoint. Let V be U with the interiors of these neighborhoods
deleted. Then the boundary dV of V is a finite union of simple closed
curves, and naturally breaks up into 9V = 9V’ U V", where 8V’ is the
part of the boundary where solutions enter and V" is the part where they
leave.
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Lemma 8%*.6.4. Every trajectory enters and leaves V', except the constant
solutions at the saddles and their separatrices. The stable separatrices enter
V transversely to V' and the unstable separatrices leave V' transversely to
ov”.

Proof of Lemma. By Theorem 8*.6.2, any solution that does not leave
is the stable separatrix of a saddle, and any solution that does not enter
is the unstable separatrix of a saddle; all other behaviors were excluded
by removing neighborhoods of the sinks, sources, and cycles. Moreover, no
trajectory can be both a stable and an unstable separatrix, since there are
no saddle connections. [

So we see that we can define the arrival time, departure time, and the
transit time respectively as Arr, Dep, Trans : V — R U 0o by setting

Arr(x) = sup{t | ¢¢([—t,0],x) C V},
Dep(x) = sup{t | ¢¢([0, ], x) C V'},
Trans(x) = Arr(x) + Dep(x).

Let a stable separatrix of a saddle xo intersect 9V’ at x; let I be a
neighborhood of x in @V homeomorphic to an interval; I — {x} will consist
of two intervals I+ and 1.

Lemma 8*.6.5. If I is sufficiently short, the function Trans(y) is a mono-
tone function on each of I and I~, tending to oo as y — x.

Proof of Lemma. Choose a neighborhood of xg, two sections v; : I; —
V and 72 : Iz — V at points of the stable and unstable separatrices,
respectively, and a diagonal segment v; : J — V at xg, all sufficiently
small so that Proposition 8*.3.2 holds. The construction is shown in Figure
8*.6.1. We will call s; and s3 the variables of I; and I, and s the variable
of J, so that the s; live in a neighborhood of 0, whereas 0 < s < . Again,
as in Proposition 8*.3.2, the key to success is to write everything in terms
of s.

If necessary, making the intervals I; short, and the J shorter yet, the
flow ¢¢ defines injective maps «; : J — I; and positive functions 7; : J — R
and o; : I; — R such that

e ((—1)*7:(8),72(8)) = vi(i(s))
and .
#¢((—1)'0(s:),7i(s:)) € OV.

In words, 7; is the time it takes to flow from the diagonal to the transverse
sections v;(I;), and o; is the time it takes to flow from these to the entering
and exiting boundary.
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1 measures the Tz measures the

time it takes to get time it takes to get
from Iy to J from J to I,

aV'

06> measures the

time it takes to get
from I, to V"

o1 measures the I
time it takes to get

aVII
from aV' to |,

FIGURE 8*.6.1.

With this description, clearly

Trans(v,(s)) Z ) + oi(ai(s)).

Proposition 8*.3.2 tells us that 7;(s) tends to infinity as s \, 0, with
derivative tending to —oo, and that a; has a bounded derivative. On the
other hand, o; is defined and differentiable in a neighborhood of 0, so it
certainly has a bounded derivative in a neighborhood of 0. By the chain
rule, p p P P

) - :
G Trans(rs(s) = 32 () + o (eals)) 3 (9)

ey ds ds;

is the sum of a function tending to —oo and of a bounded function, and
hence tends to —oo. Thus, Trans(vy;(s)) is a monotone function tending to
infinity on J if J is chosen sufficiently short.

This proves the lemma, since the flow defines a homeomorphism from J
to a one-sided neighborhood of x in V. O

Choose, for each intersection x of a separatrix of a saddle and 3V, a
neighborhood Iy C 9V of x homeomorphic to an interval, and such that
these neighborhoods are disjoint.

We can now state precisely what perturbations g = f + k of f we will
allow. They will be required to satisfy five conditions:

(1) g is transverse to dV, entering on 0V’ and leaving on oV";

(2) for each sink or source x;, the perturbation is smaller on the neigh-
borhood Wy, than 8x, > 0, so that Theorem 8*.2.1 applies to the
restriction of g to Wy,;
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(3) for each limit cycle I';, the perturbation is smaller on the neighbor-
hood Wr; than ér;, so that Theorem 8*.4.1 applies to the restriction
of g to Wr,;

(4) for each saddle xq of f, there exists a saddle x* of g, with separa-
trices intersecting JV in exactly the same four segments I, as the
separatrices of xg;

(5) there are no other zeroes of g in V.

Let g be a perturbation of f satisfying the conditions above. We will
denote by Transy, etc., the constructions above as applied to f.

Lemma 8*.6.6. There erists a homeomorphism h : V' — OV’ which
i the identity on OV’ — Ul and such that, for each intersection x of a
separatriz with OV, there exist subintervals Ky, K C I, on which transit
times are preserved, i.e.,

Transe(y) = Transg(h(y)) (15)
for ally € K.

h is designed to take points of
Ky to points of K*y with the same transit times

transit time transit time
/ Transg
Transg / h \ H /
\\M ¥ M
N\\\ / -
A
xy x*h(y)

— ) —
K, X and X areon separatrices, Kt
and have infinite transit times
FIGURE 8*.6.2. Choosing h so that corresponding points have equal transit
times.

Proof of Lemma. Lemma 8*.6.5 also applies to x*. So for M sufficiently
large, there exist Ky and K- neighborhoods of x and x* respectively, such
that Transg maps each component of Ky — {x} bijectively to (M, oo), and
similarly for Kx- and g. Taking M larger if necessary, we may assume
Ky, Kx- C Ix. Equation (15) and the fact that h should preserve the ori-
entation of OV now impose h : Ky — Kyx-. It can now easily be extended
to I, for instance as suggested by Figure 8*¥.6.2. O

We can now extend h : 8V’ — 0V’ to a homeomorphism h: V — V. To
make the formula more readable, we define

Entr(x) = ¢x(—Arr(x),x) and Exit(x) = ¢¢(Dep(x),x),
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so that Entr(x) is the point of 8V where the trajectory through x enters
V and Exit(x) is the point where it leaves. The point Entr(x) is defined
except at the saddles and their unstable separatrices, and the point Exit(x)
is defined except at the saddles and their stable separatrices.

Now our extension is given by the following formula:

h(x) = ¢g (%:é—%’l‘ransg(h(Entr(x))), h (Entr(x))) . (16)

This formula is not well defined on the separatrices, since the times Arr(x)
and Trans(x) are not well defined on the separatrices. Let us denote by
S(f) the union of the saddles of f and of their separatrices, and similarly
for S(g).

Lemma 8*.6.7. Formula (16) defines a homeomorphism h : V — S(f) —
V — S(g), which extends continuously to a homeomorphism V. — V.

Proof of Lemma. Clearly, h is defined and continuous on V — S(f) and
maps V — S(f) to V — S(g). The first part of the statement simply comes
from observing that the roles of f and g can be interchanged, leading to an
inverse of h.

For the second part, first choose p € S;(x¢), a point on a stable separatrix
entering V at x. Then for y in a sufficiently small neighborhood of xg, the
point Entr(y) will be in K, so that Trans¢(Entr(y) = Transg(h(Entr(y)).
In this neighborhood, formula (17) becomes

B(y) = ¢8(Arrf(y), h (Entr(y))),

which is a continuous function of y.

To see the result for points on the unstable separatrices, we must write
formula (17) in terms of the leaving point Exit(x) rather than the entering
point. First observe that the homeomorphism h : 8V’ — 8V’ induces a
homeomorphism k : V" — V" of the leaving boundary by the formula

k(y) = Exit(h(Entr(y))).

This is obviously well defined and continuous except at the intersections of
the unstable separatrices with the boundary. There is a unique such point
in each interval I, C 8V" for both f and g; the first must be sent to the
second.

Now we leave to the reader the verification that

R(x) = g (%r)%—-t&ﬂansg(k(Exit(x))), k (Exit(x))) :

with this formula, the proof works as above for points on the unstable
separatrices.
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This leaves the saddles. If a sequence of points x; approaches a saddle
Xo, and these points are not on the separatrices, then the x; have entering
and leaving points that must approach the intersections of the separatrices
with dV; moreover, their arrival and departure times tend to infinity. The
sequence ﬁ(azi) must then have the same property, and this shows that it
also converges to the saddle x* of g corresponding to xq. If the sequence
x; is contained in the separatrices of the saddle x¢ and converges to xg,
then the image sequence is contained in the separatrices of x*, and since
the times tend to infinity, such a sequence must must also converge to x*.
Any sequence converging to Xxg is formed of two subsequences, one of each
of the types above, and since the images of both converge to x*, the image
sequence converges. [

Finally, the homeomorphisms h and k can be extended to the interiors
of the V; and W; by Theorems 8*.2.1 and 8*.4.1. Denote still by h the
homeomorphism U — U obtained in this way; it is a homeomorphism
sending oriented trajectories of f to trajectories of g. This ends the proof
of the Structural Stability Theorem 8*.6.3. O

THE DENSITY THEOREM

We next want to claim that any vector field can be approximated by a
structurally stable one. The next theorem is attributed to M. M. Peixoto,
a contemporary Brazilian mathematician.

Theorem 8%*.6.8 (Peixoto’s Density Theorem). For any twice-differ-
entiable vector field f in a region U of the plane, there exists a M-S vector
field g for ||f — g|| arbitrarily small.

Proof. We will proceed in several steps:

(i) First perturb the vector field so that the zeroes are isolated and are
sinks, sources, and saddles.

(ii) Then destroy the saddle connections.

(iii) Finally, adjust the cycles so that they are linearly attracting or re-
pelling.

Each of these steps is rather delicate, because we must be sure that we
have not undone the steps already accomplished.

Proof of (i). Approximate f by a vector field with isolated zeroes. We will
outline in Exercise 8*.6.#2 a proof that any function defined and k times
continuously differentiable on a closed subset of R™ can be approximated
on that subset together with its first k derivatives by a polynomial function.
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For our purposes, approximate both components f; and f of the vector
field together with their first two derivatives by polynomials p; and p.

Remark. It is not really any easier, but it is more standard to show that
functions can be approximated by trigonometric polynomials. For our pur-
poses, this would do just as well. Exercise 8*.6#3 outlines this proof.

Polynomials vanish on algebraic curves, and algebraic curves, if they do
not have whole components in common, intersect at finitely many points.
If p; and p; have an algebraic curve Z of zeroes in common, take any
polynomial p that does not vanish identically on Z; then p; and p2 + ep
will have finitely many common zeroes for arbitrarily small e.

Essentially the same argument shows that the zeroes can be taken to be
sinks, saddles, or sources. We will take them one at a time, each time taking
a much smaller perturbation than before, so as not to disturb the work
already done. So suppose Xg is a common zero of p; and ps; by translation,
we can assume xg = 0. If we modify p; and ps by adding on an arbitrarily
small linear vector field, for instance choose pj(z,y) = p1(z,y) + €1z and
p3(z,y) = p2(z,y) + €2y, then €1 and €2 can be chosen arbitrarily small so
that neither the trace nor the determinant of the linearization vanish.

Proof of (ii). We next deal with the saddle connections, which are dis-
cussed at length in Section 9.3. Some pictures of saddle connections are
shown in Figures 9.3.1 and 9.3.2 in Figure 8*.6.3; note that a saddle con-
nection may connect a saddle to another saddle (heteroclinic) or to itself
(homoclinic).

FIGURE 8*.6.3. A heteroclinic saddle connection (on the left), slightly perturbed
in the shaded region (as shown on the right).

Note in Figure 8*.6.3 that this break creates a global change in the be-
havior of solutions that were near the saddle connection.

There are only finitely many saddle connections; choose a point x¢ on
one of them, and a neighborhood V of xg, obtained by choosing a section
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v : I, — R, and considering the image of the map I; x I given by (s,t) —
o¢(t,v(s)). We will make infinitely many modifications to f but will keep
the same V’s throughout.

Lemma 8*.6.9. There exists g with ||g—f|| arbitrarily small such that the
vector field g has no saddle connection intersecting V.

It seems obvious that you can break saddle connections by locally mod-
ifying the vector field near a saddle connection as suggested by Figure
8%.6.4.

>

|

FIGURE 8*.6.4. A small perturbation of a vector field breaks a homoclinic saddle
connection. Note that a limit cycle is created in the homoclinic case.

B

Example 8*.6.10. The vector field of Figure 8*.6.5 illustrates the difficul-
ties that may arise in when carrying out this construction: if a separatrix of
a saddle has a saddle connection as w-limit set, as in Figure 8*.6.5, then an
arbitrarily small perturbation of the vector field in V may cut the original
saddle connection, but create a new one at the same time.

A small break of this
saddle connection
might cause this one
and this one

to connect

FIGURE 8%*.6.5. A bad saddle connection where a break creates another saddle
connection. A
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Proof of Lemma. The following argument, suggested by John Gucken-
heimer, will show two statements:

(a) For any integer k and any perturbation fy of f that coincides with
f outside V and such that every saddle connection crossing V' crosses V
at least k times, there exists an arbitrarily small perturbation of fx,; such
that every saddle connection for fi; crossing V crosses V at least k + 1
times.

(b) For any k and any f;, of f that coincides with f outside V' and such
that every saddle connection crossing V crosses V at least k times, there
exists € > 0 such that any perturbation g of fi with ||g — fx|| < €, any
saddle connection for g crossing V crosses at least k times.

Using these two statements, we prove Lemma 8*.6.10 as follows:

Given § > 0, find a sequence of perturbations f; of f; = f, then f5 of f;,
then f3 of f, and so on, and a sequence of numbers 6; = 6, 62, 93, . . ., such
that

(1) |Ifc — fi—1ll < bk-1/2,k=2,3,...,
(2) every saddle connection for fi crosses V' at least k times,

(3) for any g with ||fy — g|| < 6k, all saddle connections for g crossing V'
cross V at least k times,

(4) & < 6k_1/2.

You can choose f}, satisfying (1) and (2) by property (a), and you can
choose &, satisfying (3) and (4) by property (b).

Properties (1) and (4) guarantee that the fi converge to a vector field
g with ||g — f|| < 6, and properties (3) and (4) guarantee that g has no
saddle connections crossing V. This reduces the proof of Lemma 8*.6.10 to
proving (a) and (b).

Remark. In this proof, we made separatrices cross V more and more times.
In the limit, they must cross V' infinitely many times. This implies that their
w-limit sets are cycles.

The proof of (a) goes as follows: Mark on the boundary of V' the points
where separatrices enter and leave V on their first k crossings (if they
occur): this is a finite set of points Z = Z’ LI Z"”, where Z’ is the subset of
Z on saddle connections crossing V in exactly k crosses and Z" = Z — Z'.
Next, choose a neighborhood W C V of all k crossings of all the saddle
connections crossing V' in exactly k segments and intersecting no trajectory
segment through a point of Z”.

Now perturb the vector field in W so little that the trajectories first
entering V at points of Z’ cross V k times in W, but after k crosses they
do not connect points of Z’ to points of Z'.
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This perturbation satisfies our requirement: any saddle connection cross-
ing V must enter at some point of Z; if it entered at a point of Z”, its tra-
jectory has not been modified for the first k crossings of V' (if they occur),
and after k such crossings, it does not connect with another point Z. If it
enters at a point of Z’, then after k crossings it does not connect with a
point of Z, so again it must take more than k crossings to connect to a
saddle. This proves (a).

Part (b) is much easier. Mark on the boundary of V' the points where sta-
ble separatrices depart to go to saddles without reentering V', and the first
k exit points of unstable separatrices. Our hypothesis says that these two
finite sets of points are disjoint, but both move continuously with the vec-
tor field, so they will still be disjoint after a sufficiently small perturbation.
O

Using Lemma 8%*.6.10, it is easy to make an arbitrarily small perturba-
tion of the vector field so that it will have no saddle connections. By the
Poincaré-Bendixson Theorem (in its strong form, Theorem 8*.5.6), we see
that all separatrices must now either go to sinks or sources, accumulate on
cycles, or leave the region U.

Now we need to make the cycles linearly attracting or repelling. There
may well be infinitely many limit cycles, but they can be classified into
finitely many classes as follows:

Declare two cycles to be equivalent (“homotopic in the complement
of the zeroes of f” is the standard expression) if they separate the
same zeroes of f. Then there are only finitely many classes, since the
(finite) set of zeroes of f can be partitioned in only finitely many ways.
Moreover, for each equivalence class I', we can consider Vt the union
of the annular regions bounded by cycles v € T'.

Lemma 8%*.6.11. FEither the class I' contains a single cycle, or Vi is an
annular region bounded by two elements of I' (the innermost and the out-
ermost cycles inT).

Remark. For this to be true, it is essential that we first eliminate the
saddle connections, for otherwise the boundaries of such regions Vr might
well be made up of saddle connections on which cycles in I' accumulate.
That would make the next argument much more delicate.

Proof of Lemma. Suppose x; € <y; are points of v; € I' converging to
x € OVr. Now apply the Poincaré-Bendixson theorem to x: both the L, (x)
and L, (x) must either be cycles or contain a zero of f.

Suppose first that L,(x) is a cycle §, so that there exists a sequence
t; — oo such that ¢¢(t;,x) converges to a point y € 8, so ¢¢(t;, x;) also
converges to y. Call y; = ¢¢(t;, x;).
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Next observe that the periods T; of 7; converge to the the period T of §
(and not to oo, as one might fear). Indeed, take a transversal J to 6, which
we may assume will contain the y;. Note that by monotonicity, a cycle can
intersect J in at most one point. Then ¢¢(Ts,y) =y, so ¢¢(Ts,y:) is close
to y and will intersect J again within a time which goes to 0 as i — o0;
since the next intersection is also y;, this shows that the periods converge.

We may then assume that the ¢; are bounded and in fact a convergent
sequence, converging to some tg. Then

X = 111120 ¢f(~—tia y‘l.) = ¢f(—t0’y) € 61

and this shows that if L, (x) is a cycle, then every point of OVt is on a
cycle. The same argument applies if L, (x) is a cycle.

If neither is a cycle, then both limit sets must contain zeroes of f. In fact,
both limit sets must be just one point, which is a saddle of f. Indeed, by
Theorem 8*.5.6, f will vanish on both limit sets of any nontrivial trajec-
tory contained in L, (x), and that would make such a trajectory a saddle
connection. But this means that the trajectory through x is itself a saddle
connection unless x is itself a saddle of f.

If this is the case, then -; must accumulate not only on x, but also on
at least two of the separatrices emanating from x; we just saw that that
means that these are saddle connections, which contradicts our hypothesis.
O

Proof of (iii). Now we will modify the flow by a small perturbation near
each Vr. Choose a section 7y : I — R? to the flow which goes from inside the
inner boundary to outside the outer boundary of Vr. There is a subinterval
I, C I also crossing Vr such that the Poincaré section mapping P: I; — I
is well defined. Note that the cycles of I', and in particular the boundary
of Vr, intersect I; in fixed points of P. Let us approximate P by a C*®
mapping P* : I — I which agrees with P outside a small neighborhood of
Vr N1I,, with all fixed points transverse and having at least one fixed point.

Remark. This last condition is to avoid creating new saddle connections
when we eliminate cycles; in Section 9.3 we will see that this is a real
possibility.

Lemma 8%*.6.12. There ezists a vector field which agrees with f outside a
small neighborhood of V', which is close to f when P* is close to P, and
with section mapping P*.

Proof of Lemma. Embed the rectangle I; x [0,a] into V by (s,t) —
o¢(t, v(s); we will modify the vector field only in this rectangle. There are
two flows from the right side to the left side of this rectangle: backward
through the inside of the rectangle, and forward through the outside. We
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will use the outside identification to identify the right edge with a subin-
terval of J C I, so that the flow through the rectangle connects s € I to
P(s) e J.

We may think of the trajectory through (0, s) as the graph of a function
as(t). We will replace this trajectory by the graph of the function (1 —
n(t))as(t) + n(t)P*(s), where n(t) > 0 is a C™ function defined on [0, a]
which is identically 0 near 0 and identically 1 near a. We leave it to the
reader that these graphs are indeed trajectories of a vector field £*, which
is an arbitrarily small perturbation of f when P* is sufficiently close to P.
Moreover, the Poincaré map for this new vector field is P*, so all cycles of
f* in Vr are linearly attracting or repelling. 0O

No new saddle connections were created by this construction. The vector
field was not modified outside a small neighborhood of the Vi, so there can
be no saddle connection there. Moreover, each boundary of Vt- is attracting
or repelling, according to whether the graph of P is above or beneath the
diagonal on I; — Vr. We did not modify P near the edges of I;, so even
after modification, a separatrix that enters Vg on one side can never leave
it on the same side. And it can not leave Vg on the other side, since there
is a cycle in Vr separating the two boundary components for the modified
equation. This proves the Density Theorem 8*.6.8. O

Chapter 8* Exercises

Exercises 8*.1 Preliminaries of Structural Stability
8*.1#1.

(a) Find formulas for the inverse of the mappings h4 and hp in Examples
8*.1.3 and 8*.1.4.

(b) Verify that h4 does indeed map the curve of equation y = z3 to the
diagonal. Verify that hg does map a half-line 8 = 6, to a curve which
spirals infinitely many times around the origin.

8*.1#2. Write a formula for a homeomorphism f:R? — R2? which will
map

(a) every ring to a spiral of finite length.

(b) every ring to a spiral of infinite length.

(c) circles centered at the origin to squares.
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8*.1#3. With reference to Definitions 8*.1.2, 5 and 6,

(a) Show that differentiable conjugacy of vector fields implies topological
conjugacy of the flows.

(b) Show that topological conjugacy of flow implies topological equiva-
lence.

8*.1444.

(a) Show that if A is a differentiable conjugacy between the vector fields
f and g, with f(x¢) = 0, then
(i) g(h(x0)) =0, and
(ii) the eigenvalues of the linearizations of f at xo and of g at h(xo)
coincide. Hint: Show that
dxohdzof = dp(xo)8dzoh
by differentiating equation (2) in Definition 8.1.6.

(b) Show that if h is a homeomorphism conjugating the flows of the vector
fields f and g, and if 7 is a cycle for f of period T, then h(y) is a
cycle for g of the same period T

Exercises 8*.2 Structural Stability of Sinks and
Sources

8*.2#1.

(a) Find a homeomorphism h, : R — R that conjugates the flows of
2/ = —z and =’ = —axz for a > 0. That is, flow out the first equation
to some point like z = 1, then flow back in by the second equation.

(b) When is h, differentiable? When is h ! differentiable? When are both
differentiable? How do these results relate to Exercise 8*.1#47?

8*.2#2. Find a homeomorphism h : R — R which conjugates the flows
of 2’ = —z and =’ = —z3 for a > 0. Show that this function is even less
differentiable than the ones found in Exercise 8*.2#1, in the sense that
h(z)/z tends to infinity faster.
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8*.2#43.

(a) Find a homeomorphism h, : I — R, where I is an appropriate neigh-
borhood of the origin, which conjugates the flows of 2’ = —az and
2’ = —sinz for a > 0. You might try flowing out the first equation
to £ = m/3, then flowing back in by the second equation. If you do
this, the formula you obtain will contain an arccos, and you have to
be careful about which branch of the arccos you are using.

(b) Draw graphs of h, for @ = 1/2,1,2. What is the largest interval I on
which h, is defined? What is the image of h,? Why can h, not be
extended to a larger interval?

(c) Are h, and k3! differentiable? How do these results relate to Exercise
8% 1#47

If we set fo(z) = —z and g(z) = —sinz (thought of as vector fields on
the line), we might also try to find such a homeomorphism by computing

tl—lglo ¢fa (_t: d’g(ta .’B))
(d) Say carefully what the difference is between this formula and the hint
in part (a).

(e) Show that the limit above exists only for one value of . Compute it
in that case, and relate your formula to the one found in a.

8*.2#4. In this exercise, we will explore the difference between differen-
tiable conjugacy of vector fields and topological conjugacy of the flows. Let
the reader be warned that this exercise is quite difficult, and that both the
computations and the concepts involved are pretty deep.

(a) Write explicitly the flows ¢¢, ¢g, ¢k, of the differential equations
z]’ | -z z]’ _ -z
y| -] ly] [+’
!
x| -z
[y] N [—2y+z2] '

Note the difference that arises from the fact that undetermined coef-
ficients do not work for the last equation.

(b) Show that the first two vector fields are differentiably conjugate, by
computing
h(x) = Jim ge(~t, dg(x,1)).

Verify that h : R2 — R? is a differentiable homeomorphism with
differentiable inverse, and provides a change of variables which turns
the second equation into the first.
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(c) Try to do the same for the first and the third equation, and show
that the corresponding limit does not exist. Try to explain this as
follows: the trajectories of the first equation are the curves y = Cz?.
What is the equation for the trajectories of the third equation? Can
a differentiable homeomorphism with differentiable inverse map the
first family of curves to the second?

\
(d) Show that the flows of the first and third equation are none the less
conjugate by a homeomorphism, by

i. showing that each trajectory crosses the curve C of equation
z* + y? in a single point;
ii. finding the time T'(x) such that ¢¢ (T'(x),x) € C;
ili. writing the formula for ¢x(—T'(x), ¢¢ (T(x), x)).
iv. showing that this formula is a homeomorphism h : R? — R2.

(e) How differentiable is h at the origin?

Exercises 8%.3 Time to Pass by a Saddle

8*.3#1. In the proof of Theorem 8*.3.2:

8*.3#2. Let D be the unit disc, and f be the linear differential equation
' =azx
y' =—by

for a,b > 0. Find the entering and leaving parts of the boundary, and
compute the arrival, departure and transit time.

8*.3#3. Repeat Exercise 8*.3#2 for the differential equation
' =azx
Y =-by+a?

for a,b > 0. Find the entering and leaving parts of the boundary, and
compute the arrival, departure and transit time.

Exercises 8*%.4 Structural Stability of Limit Cycles

8*.4#1. Consider the system of differential equations

o =yt sin(z2 + y?)
y .'1,'2 + y2
V= o4 sin(z? + ¢?)

2 +y2?
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(a) Show that the positive z-axis is transverse to the flow, and compute
the section mapping P(z). Hint: pass to polar coordinates.

(b) What are the fixed points of P, and what are the derivatives of P at
these fixed points?

(c) Relate the results of (b) to the limit cycles of the differential equation.

8*.4#2. Confirm the calculations for Example 8*.4.2, the radial equation
and its solution.

(a) First confirm the radial equation (12). Hint: to translate into polar
coordinates, see equation (18) in Example 8.4.1.

(b) Second, confirm the solution (13). Hint: use partial fractions.

Exercises 8*.5 Poincaré-Bendixson Rules Out
Chaos in the Plane

8*.5#1. There is another way of defining L, (x,):

L, (xp) = ns—»oo¢f([sv OO)’ xp)a

and similarly
La(u) = Ny —oe ((—00, 8], Xp).

8*.5#42. Complete the proof of Lemma 8*.5.8.

8*.5#3. For Example 8*.5.9, show that the white regions crossing the axis
form a Cantor set.

8*.5#4. For a labyrinth in R3, make a can X out of lined paper, so that
the lines are vertical on the sides and let 2ra be the angle between the
lines on the top and the bottom. The space X is topologically a sphere,
and there are trajectories on it gotten by following the lines. Which four
of these trajectories are exceptional? ==

i

Exercises 8*.6 Structural Stability in the Plane

8*.6#1. The object of this exercise is to prove a strong form of the Weier-
strass approximation theorem, which is an important and rather difficult
result.
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Theorem (Strong Weierstrass). If f is a k-times continuously differ-
entiable function on R™, then given any bound R > 0, the function f can
be approzimated on ||x|| < R by a polynomial, and further, the derivatives
of this polynomial up to order k approzimate the derivatives of f.

(a) Show that given such a function f and R > 0, there exists a k-times

(b)

continuously differentiable function f; such that

f(x) if||x|| < R/2
fl(")={0() if”x”ZR./

Try this first in dimension one, and then think of polar coordinates
in dimension two.
We will assume from here on that f = fi, so that f(x) = 0 when

Ix| > R.

Let f be a continuous function of one variable and p(z) a polynomial.
Show that the function

o o]

9(z) = / p(z —y)f(y)dy
—00

is a polynomial.

Do the same if f is a function of x = (zi,...,z,) vanishing when

x|l > R and p is a polynomial in (z1,...,Zy).

Thus the idea is to find polynomials p.(x) such that

5= [ Z / Zpe(x—wf(y)dyl...dyn

satisfies |ge(x) — f(x). < € for any x with |[x[| < R. One way to
do this is to try to make a polynomial bump function, with graph
something like a tower in the middle of a plain. With polynomials
this is impossible, since polynomials always tend to co at oo; but if
our tower is surrounded by a big enough plain, then the surrounding
mountains will not influence g(x) when x < R.

Let p(z) = 1 — z2. Show that for any € > 0, there exist N, p and C
such that the function

pn(z) = C(p(pz))™

satisfies

2R
/ pn(z)dz =1, |pn(z)| < € when € < |z| < 2R.
—2R
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(e) Show the n-dimensional analog of (d) for the polynomial
aN(T1,...Tn) =pN(T1) - ... PN (Tn).

(f) Show that

0= [ [ antx- )@y

is a polynomial which approximates f for ||x|| < R.

(g) Show that the derivatives of g of order at most K approximate the
derivatives of f for ||x|| < R. by differentiating under the integral

sign.

8*.6#2. The object of this exercise is to outline a proof of the following
theorem.

Theorem. If f is a k times continuously differentiable function on R™, then
for any R > 0 there exists a trigonometric polynomial which approzrimates
f on ||f|l| £ R together with its first k derivatives.

This should remind you of Dirichlet’s theorem giving the convergence of
Fourier series, and the proof is closely related. However, it is a bit fussy
to go directly from Dirichlet’s theorem to this result, and we will sketch
a different method, very similar to the proof above. The first step (a), to
replace f by a function which vanishes when [|x|| > R, is identical.

(b) Show that for any 0 < r < R and & > 0, there exists N and C such
that the function

pn(x)=C (cos (-2%":5”) + 1)”

satisfies
/ PN,p(X)dzy ... dz, =1,
Br
where Bp = {x € R" | ||x|| < R}, and pn,(x) < € when r < ||x|| < R.
Can you compute C exactly when n =17
(c) Show that the function gy defined by

gn(z) = /Rn f&)pn(y — x)dz; .. .dz,

converges to f as N — oo, together with its first k derivatives.
(d) Show that gn(z) is a trigonometric polynomial.
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Bifurcations

Consider an autonomous differential equation in R?, with a parameter o:

dx

E - f(.’l?, Y, a)
dy

E —g(a:,y,a),

or, more generally, several parameters:

dzr

EZ =f(3’5:y,0¢1,a2,---)

%— =g(z,y,a1,a9,...).

In general, the phase portrait changes gradually as the parameters vary.
But there will usually be values of the parameter for which the phase
portrait changes drastically, “revolutionary” values where the entire social
order is changed in an instant. For instance, if a sink becomes a source,
the solutions starting at initial values in the basin of the sink will have to
change their minds and decide to do something else. These abrupt changes
in the phase portrait due to a changing parameter are called bifurcations.

Before going further, we must insist on the distinction between the dy-
namical variables * and y, and the parameters a;,as,.... The number of
dynamic variables is here restricted to two. It makes perfectly good sense
to try to understand bifurcations for differential equations in any number
of dimensions, and we have seen it in one dimension as in the hunting Ex-
ample 2.5.2 in Part I. However, we do not understand bifurcations in more
than two dimensions: there is no classification of the bifurcations in even
three dimensions, and no clear indication that there ever will be such a
classification. The number of parameters is much less critical; essentially
for reasons of convenience, we will consider only one- and two-parameter
families, but similar techniques would go through (with greater effort) for
families depending on more parameters.

In order for a parameter value to be revolutionary, at least one of the
following four exceptional behaviors must occur:

(1) a zero has linearization with a zero eigenvalue;
(2) a zero has linearization with a pair of purely imaginary eigenvalues;

(3) there is a saddle connection;
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(4) there is a cycle that is not linearly attracting or repelling.

In Chapter 8.8 we explained why, when none of these occur, flow of the
vector field is stable, and we proved the results in Chapter 8*.6.

We will see that corresponding to each of the four events listed, there is
a bifurcation that can occur “in general” im one-parameter families. They
are, respectively,

(1) saddle-node bifurcations: Section 9.1
(2) Andronov-Hopf bifurcations: Section 9.2
(3) saddle connection: Section 9.3
(4) semi-stable limit cycles: Section 9.4

The first two local bifurcations were already mentioned as exceptions to
Principle 8.1.6 and studied in Examples 8.1.7 and 8.1.8. Saddle connections
and degenerate limit cycles are harder to study, because they are global bi-
furcations of the equation; they concern the global behavior of the equation,
not just the behavior near a zero of the equation.

Figures 9.0.1 and 9.0.2 illustrate how the presence of a saddle connection
or a degenerate limit cycle can cause revolutionary change in the phase
plane portrait of a differential equation.

A stable separatrix then saddle connects then an unstable sepa-
spirals backward to  (solutions accumulate ratrix accumulates on a
a source, on the saddle connection), newly created attracting

limit cycle

attracting
limit
cycle

source

source source

— varying parameter —
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