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Series Preface 

Mathematics is playing an ever more important role in the physical and 
biological sciences, provoking a blurring of boundaries between scientific 
disciplines and a resurgence of interest in the modern as well as the clas­
sical techniques of applied mathematics. This renewal of interest, both in 
research and teaching, had led to the establishment of the series: Texts in 
Applied Mathematics (TAM). 

The development of new courses is a natural consequence of a high level of 
excitement on the research frontier as newer techniques, such as numerical 
and symbolic computer systems, dynamical systems, and chaos, mix with 
and reinforce the traditional methods of applied mathematics. Thus, the 
purpose of this textbook series is to meet the current and future needs of 
these advances and encourage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate 
and beginning graduate courses, and will complement the Applied Math­
ematical Sciences (AMS) series, which will focus on advanced textbooks 
and research level monographs. 



Preface 

As in Part I, this book concentrates on understanding the behavior of dif­
ferential equations, rather than on solving the equations. Part I focused on 
differential equations in one dimension; this volume attempts to understand 
differential equations in n dimensions. 

The existence and uniqueness theory carries over with almost no changes. 
But the behavior of solutions is not nearly so easy to understand; solutions 
can be thought of as parametrized curves in Rn, which can knot and link 
in the most complicated ways and usually do. 

We begin in Chapter 6 with a number of examples, often of great histori­
cal interest, like the two-body problem, which exhibit some of the questions 
that will occupy the remainder of the book. 

Chapter 7 focuses on linear differential equations with constant coeffi­
cients, with the usual paraphernalia of eigenvectors and eigenvalues. This 
material is the main staple of elementary courses on differential equations, 
and we also study the material at considerable length. But we put more 
emphasis on how the signs of the eigenvalues determine the stability of so­
lutions and on the relation between existence of bases of eigenvectors and 
decoupling. 

Associated with this chapter are the linear algebra Appendices L1-L8. An 
attempt to summarize the relevant material grew and grew, until it reached 
an absurd length and became practically a textbook on the subject. Most 
of the material is quite standard, but the treatment of the QR method 
cannot be found in any textbooks that we know of. 

Chapters 8 and 8* represent a serious attempt to understand nonlinear 
autonomous systems in the plane. Logically they should be one chapter 
(and were one chapter at one time), but pedagogically this did not work 
very well. There is a body of material that can be understood without 
entering into too many technical considerations, and this has been collected 
in Chapter 8. There we stress linearization and the fact that by qualitative 
analysis with computer graphics, nonlinear differential equations become 
essentially as easy to study as linear ones. 

Chapter 8* represents a considerably deeper understanding of the same 
material, eventually leading to the Poincare-Bendixson Theorem and a 
complete proof of the Pontryagin-Peixoto results, which are the central 
topics for planar vector fields. Whether it is really wise to include such 
hard results in a book that hopes to be elementary is something the au­
thors still wonder about. 

Chapter 9 is about bifurcations of differential equations in the plane. 
When modeling a real system, the engineer always imagines he or she has 
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knobs with which to tune and adjust the system and its models. These 
knobs represent the parameters of the system, and as one twiddles them, 
sometimes the behavior of the system changes gradually and sometimes 
abruptly. These abrupt changes occur at the bifurcating values of the pa­
rameters; they are quite well understood for differential equations in the 
plane. The theoretical underpinnings are built in Chapter 8*, but you can 
read Chapter 9 at a more superficial but still highly instructive level with 
only Chapter 8 behind you. We have found that students respond quite 
well indeed to the material. 

Originally, this book was supposed to have four more chapters, cover­
ing electrical circuits, classical mechanics, linear differential equations with 
non-constant coefficients, and iteration in higher dimensions. Because the 
current volume has become quite lengthy, that material has been relegated 
to a new Part III. 

How to navigate Chapters 8, 8*, and 9 

A course can reasonably end with Chapter 8, but Chapter 9 in bifurcation is 
a topic now easy to approach even in an introductory differential equations 
course. 

Ithaca, New York 

Chapter 8*.1 

John H. Hubbard 
Beverly H. West 
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6 

Systems of Differential 
Equations 
In many (in fact, most) cases, differential equations of the form x' = f(t, x) 
are inadequate for the description of a physical system; more variables are 
needed to specify its state at any time t. Usually a state of the physical 
system will be specified by the values of several functions, Xi(t), for i = 
1,2, ... ,n. If we know "forces" giving for each of them the derivative x~(t) 
with respect to time, in terms of the values of all the variables (at that 
particular time) and perhaps also of time, then the evolution of the physical 
system can be described by a system of n first order differential equations, 

x~ = f(t,XI,X2, ... ,xn ), for i = 1,2, ... ,n, (1) 

or as a single first order differential equation in an, where the vectors are 
usually written in print as boldface, or by hand with arrows; i.e., 

x'(t) = f(t, x) or x' = i(t, x). (2) 

In form (2), x(t) or x(t) is a vector [:::~gl in an, with each component 

xn(t) 
Xi(t) a real-valued function of t. If f depends explicitly on t, the equation is 
called time-dependent or nonautonomous; if f has no explicit dependence 
on t , the equation is called autonomous. Most of our differential equations 
will be first order, so unless a different order is explicitly stated, this is 
what we mean. 

In previous courses, you may have heard a great deal about higher order 
differential equations; in fact, we will cover those here in the subject of 
systems of differential equations because of the following fact: 

Any higher order differential equation can be expressed as a 
system of first order equations. 

That is, an nth order differential equation in a can be consid­
ered as a first order differential equation in an. 

Example 6.0.1. The second order differential equation x" = -x can also 
be expressed as a system in a2 : 

x' =y 

y' = -x. 
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as you can confirm by differentiating the first equation and substituting 
the result in the second. A 

We shall follow this example further in succeeding sections, and we shall 
show in Section 6.4 how any higher order differential equation can actually 
be expressed as a system of first order equations. 

Except for linear equations with constant coefficients, which we shall 
study at length in Chapter 7, 

there are very few systems of differential equations that can be 
solved explicitly. 

We shall study in this chapter three systems of differential equations that 
can nevertheless be analyzed very profitably: 

in 6.3, the sharks and sardines equation; 
in 6.5, the equation of motion of a particle with one degree of freedom; 
in 6.7, the central force problem. 

Still, each of these examples is a particular equation, and the methods 
used do not generalize to any substantial class. 

The qualitative behavior of solutions of differential equations in IRn , for 
n> 1, is enormously more complicated than the behavior that we examined 
in Part I , as we shall see in Section 6.1. 

In higher dimensions, solutions have ever so much more space in which 
to get tangled up, and they definitely take advantage of this opportunity. 
For example, in 1R2 a curve can separate the plane into two parts; not so 
in 1R3! Even a closed curve in 1R3 encloses nothing--other curves can sneak 
through and around it. 

In Part I of this text we examined a single differential equation in IR 1 , 

with graphs of solutions in 1R2, the tx-plane. The next simplest system is in 
1R2, where we seek functions x and y both dependent on t; this will require 
graphs in 1R3, or txy-space. We shall explore those in Section 6.1, and most 
of our examples will be of systems in 1R2 throughout this chapter. 

But when we consider systems in 1R3 , there is virtually no theory any­
more, and our understanding of differential equations of dimension n greater 
than 3 is practically nil (except, we repeat, for the special case of linear 
equations with constant coefficients, Chapter 7). 

So it may come as a pleasant surprise that the numerical methods of 
Chapter 3 and the theory of Chapter 4 (including the Fundamental In­
equality, existence, and uniqueness theorems) remain virtually unchanged 
when generalized to systems of differential equations, regardless of the di­
mension n: the statements, the proofs, and all the formulas require nothing 
more than an arrow over all the vector quantities to become correct. We 
shall revisit all of these in Section 6.2. 

Throughout this chapter the general theory is in IRn , although most of 
the specific examples are in 1R2. 
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6.1 Graphical Representation of Systems 

What kind of drawings can we get for systems of differential equations? For 
an equation x' = f(t,x) in JR\ the direction field is in JR2; in general, for 
a differential equation in JRn, the direction field will be in JRn+1, which is 
considerably more difficult to draw and to visualize solutions within, even 
for n = 2. Let us begin with the simplest case beyond a differential equation 
in JRI. 

DIFFERENTIAL EQUATIONS IN 1R.2; 
REPRESENTATION IN IR3 

Suppose 

with solutions 

dx/dt = f(t,x,y) 
dy/dt = g(t, x, y), 

x = u(t) 
y = v(t). 

(3) 

(4) 

A system (3) of differential equations in JR2 gives a direction field in JR3. 

Example 6.1.1. Consider the nonlinear, nonautonomous system 

x' = Y 

y' = x 2 - t, 

A drawing of some solutions in txy-space looks like Figure 6.1.1: 

y x 
CD 

x versus t 

FIGURE 6.1.1. Some solutions to x' = y, y' = x 2 - t. 

As you can see on the left of Figure 6.1.1, the solutions in txy-space 
appear to form a tangle of curves in JR3, especially, for example, when 
projected onto the plane of a paper or computer screen. It is a real problem 
to interpret which parts of the picture are in the foreground and which are 
in the background. • 
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An individual coordinate function in the tx- or ty-plane can be graphed 
(simultaneously, with the MacMath software) at the right of Figure 6.1.1; 
these too are tangled. Since the coordinate functions intersect all over the 
place, these right-hand graphs are quite different (and less helpful) than 
those produced by MacMath for equations in ]Ri. With sufficient effort you 
may be able to sort out which curves correspond (e.g., two of them are 
marked 1 and 2 respectively on all three graphs). But visualizing how in 
general x(t) and y(t) synthesize to produce the spatial motion of solutions 
in ]R3 is extremely difficult. 

To begin to sort out some of these difficulties, to the extent that it is 
possible, we shall return to the important but overly simple Example 6.0.1 
of the system in ]R2 resulting from x" = -x: here the result is familiar 
enough to aid in visualization, and we can discuss the various possible 
representations of the solutions. Then we shall return to the problem of 
Example 6.1.1 and give some indication of why it is particularly difficult 
to represent solutions in a meaningful way. 

Example 6.1.2. Consider the system 

x' =y 
y' = -x, (5) 

which produces Figure 6.1.2 from a few solutions. This picture is more 
organized than Figure 6.1.1, but still somewhat jumbled: 

y versus t x versus t 

FIGURE 6.1.2. Some solutions to x' = y, y' = -x. 

For the purpose of untangling the jumbled first impression of Figure 6.1.2, 
let us jump ahead to the fact (which you might guess from the second order 
equation x" = -x, or from the coordinate function graphs on the right of 
Figure 6.1.2, or else can confirm by substitution) that some of the solutions 
to the system (5) are 

x = u(t) = Csint 
y = v(t) = Ccost. 

(6) 
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For each choice of the constant C, the equations (6) represent in txy­
space a circular spiral, moving forward in time, as shown in Figures 6.1.3 
and 6.1.4 for several different values of C; each solution starts at t = 0, 
with Xo = 0, Yo = C. (To show the coordinate functions most clearly, the 
time axis in Figure 6.1.3 goes only to 10 in each direction; to show the 
spirals most clearly, the time axis in Figure 6.1.4 (and 6.1.2) runs to 100 
in each direction.) 

yt xt 

FIGURE 6.1.3. Selected solutions to x' = y, y' = -x, with Xo = 0, yo = C. 

FIGURE 6.1.4. Selected solutions to x' = y , y' = -x, with Xo = 0, yo = C, but 
with time axis running to 100 rather than 10. ~ 
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DIFFERENTIAL EQUATIONS IN lR?; 
PHASE PLANE REPRESENTATION 

The two-dimensional solution graphs for x(t) and y(t) are far more con­
fusing than the two-dimensional drawings for one-dimensional differential 
equations we have used in Part I of this text, because these solutions can 
cross. Even in the comparatively well-organized pictures of Example 6.1.2, 
solutions are crossing in the tx- and ty-planes, and those pictures are ex­
tremely limited, to solutions with initial conditions t = 0, Xo = 0, Yo = C. 

But there is another two-dimensional picture possible, in the xy-plane, 
called the phase plane (or sometimes the state space or dynamical plane) 
for a system in ]R2. In Examples 6.1.2 and 6.1.3 we shall see that the phase 
plane drawing consists of curves that do not cross, an important attribute 
for analyzing the behavior of the system. 

Example 6.1.3. Consider again x' = y, y' = -x. Figure 6.1.5 shows the 
phase plane portrait (drawn by MacMath) of the solutions corresponding 
to those shown in Figures 6.1.3 and 6.1.4. 

-7 

y 
7 

-7 

FIGURE 6.1.5. Trajectories of selected solutions to x' = y, y' = -x, with Xo = 0, 
yo = C. & 

A solution in txy-space (as in the left of Figures 6.1.2,6.1.3, and 6.1.4) is 
projected onto the xy-phase plane. It is what you would see if you stood high 
on the t-axis looking down at the xy-plane. This projected curve does not 
correspond to the actual motion of a solution to the system, but rather it 
is a "track" or trajectory of the solution in the phase plane. If you compare 
Figures 6.1.3 and 6.1.5, you should see that the trajectories in the phase 
plane are indeed the "tracks" left by the solutions for x and y as functions 
of t, but 

the trajectories alone give no information about how a point 
moves along a trajectory as a function of time. 
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Nevertheless, the trajectories in the phase plane provide a very useful way 
to analyze the system, as we shall demonstrate in the examples of Sections 
6.3, 6.5, and 6.7. 

As you may have noticed, something especially simple about Examples 
6.1.2 and 6.1.3 is the fact that this system of differential equations is au­
tonomous, with no explicit dependence on t in the functions for the deriva­
tives. In fact, 

it is only an autonomous system that will give a meaningful 
phase plane portrait, 

because then the solutions at different values of to are just time translates 
of one another, so their projections pile up on the same trajectories. 

Look back at Figure 6.1.5 and imagine an ant walking along a solution 
trajectory. He is always at some point (x(t), y(t)), and at t = 0 he is at 
(x( 0), y( 0)). Suppose a second ant starts half an hour later at the same 
point (x(O), y(O)); if the system is autonomous, she will follow the same 
solution curve, and her later position will always be at (x(t-30), y(t -30)). 
If, on the other hand, the system were nonautonomous, an ant starting 
at (x(O), y(O)) half an hour later than the first ant would feel completely 
different and would be "blown" along a different trajectory. 

For a non autonomous system, phase plane trajectories cross over each 
other and project into an indecipherable mess. 

Example 6.1.4. Return to the nonautonomous or time-dependent system 
x' = y, y' = x 2 - t of Example 6.1.1. Some solutions were shown in Figure 
6.1.1; the corresponding phase portrait is as follows: 

FIGURE 6.1.6. Phase plane projection for the nonautonomous system x' = y, 

y' = x 2 - t. ... 

We shall see in Section 6.2 that for autonomous systems, drawings in the 
xy-phase plane will not only be less of a jumble than Figure 6.1.6, but will 
not cross. As a result, the study of autonomous systems in ]R2 reduces to 
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the geometry of nonintersecting curves in the plane, and we can study such 
systems by phase plane analysis. 

In the remainder of this chapter, we shall strictly limit our study of 
differential equations in ]R2 to autonomous systems, those with phase plane 
drawings that can be analyzed. 

SKETCHING THE PHASE PLANE 

An important tool in analyzing an autonomous differential equation in ]R2 

(especially if you do not have your computer at your fingertips) is to be 
able to make a quick hand sketch of the phase plane trajectories. 

Recall that in Chapter 1 with a differential equation in ]Rl, the key to 
hand sketching the solutions is to use isoclines. Likewise, for a differential 
equation in ]R2, the first key to hand sketching phase plane trajectories is 
to use isoclines, particularly those of horizontal slope (where y' = 0) and 
those of vertical slope (where x' = 0). These isoclines of horizontal and 
vertical slopes are sometimes called nullclines. Points where these isoclines 
cross are called singular points or zeroes, and there "anything" can happen, 
as we shall discuss in Chapter 8; in particular, it is possible for any number 
of trajectories to meet at a singular point. 

The second key to hand sketching phase plane trajectories is to use the 
signs of x' and y' to tell where trajectories are moving left or right, up or 
down. 

The following set of steps will lead you through the process: 

(i) Write the equation as 
dy dy/dt 
dx = dx/dt' 

and sketch isoclines of 

(a) horizontal slope (where y' = dy/dt = 0), marking the isocline 
with little horizontal slope marks. Mark the regions on either 
side of this isocline with vertical arrows up or down where y' > 0 
and y' < 0, respectively. 

(b) vertical slope (where x' = dx/dt = 0), marking the isocline with 
little vertical slope marks. Mark the regions on either side of this 
isocline with horizontal arrows right or left where x' > 0 and 
x' < 0, respectively. 

(ii) In each region determined by these isoclines, put together the hori­
zontal and vertical arrows. Then, sketch the resultant direction field 
using these components. 

(iii) Trace some sample trajectories through the direction field, following 
all arrows and slope marks. Remember that at a singular point where 
both x' = 0 and y' = 0, trajectories may meet or behave in other 
"bizarre" ways. 
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Example 6.1.5. 

x' = y - x - 2 dy x 2 - Y 
y' = x 2 - Y ::::} dx = y - x - 2 

Step iii 

To hand sketch, start on some isocline, in general 
direction of arrow, But look where you're going in 
order to figure out the curvature! E.g., computer drawing, showing that hand 

sketch has all the essential features 

y~,y 
FIGURE 6.1.7. Constructing phase plane trajectories. 

9 

10 
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DIFFERENTIAL EQUATIONS IN R3 j 

PHASE SPACE REPRESENTATION 

For differential equations in IRn where n > 2, it is not so easy to represent 
results graphically. For a differential equation in IR3 , however, the M acM ath 
software can show the three-dimensional phase space, with trajectories in an 
xyz-coordinate system. These pictures are more difficult to interpret than 
those we have discussed in txy-space, because the behavior with respect to 
the independent variable t is hidden. Usually the best aid to understanding 
such a drawing in three dimensions is being able to watch the trajectories 
actively being drawn on the screen and/or to rotate the resulting three­
dimensional graph. 

A popular use of the program for a system in x, y, and z is the famous 
Lorenz strange attractor, which will be further studied in some detail in 
Section 8.7. 

Example 6.1.6. The following system of equations was used by Edward 
Lorenz at M.LT. in the early 1960s for an extremely simplified model of 
the weather: 

x' = lO(y - x) 
y' = 28x - y - xz 
z' = -2.66z + xy. 

The trajectories are immediately attracted to a three-dimensional surface 
not too hard to imagine from the computer drawings. Figure 6.1.8 shows a 
single trajectory. 

xyz 

FIGURE 6.1.8. x' = lO(y - x), y' = 28x - y - xz, z' = -2.66z + xy. 

For Figure 6.1.8, each axis runs to 120 in both directions; this picture 
was begun with stepsize 0.01 at initial condition z = 10 and small x, y. It 
is really fun to watch this evolve on the computer screen, regardless of the 
orientation of the axes; it is also a good example for experimenting with 
rotation of axes. 
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Further understanding can be gained by also studying the various pos­
sible two-dimensional graphs: xy, xz, yz, xt, yt, zt. Figure 6.1.9 shows a 
MacMath printout, from DijJEq, 3D Views for another single trajectory 
specified by the Lorenz equations. 

-25.000 < x < 35.000 dx/dt = 
-30.000 < Y < 35.000 dy/dt = 
-10.000 < z < 70.000 dz/dt = 

tx ty 

10*(y-x) 
2S*x-y-x*z 
-(S/3)*z+x*y 

xyz 

/ 

FIGURE 6.1.9. All the possible views for x' = lO(y - x), y' = 28x - y - xz, 
z' = -2.66z + xy. Note: we see the 3D view from below the xy-plane. A 
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6.2 Theorems for Systems of Differential 
Equations 

We review in this section the major results of Chapters 3 and 4 as they 
extend to differential equations in jRn. For reference, we have listed in Ap­
pendix T the important definitions and theorems from Part I of this text. 

The vectors used in describing systems of differential equations are not 
restricted to jR2j the results hold for any n ~ 1. Note carefully which 
quantities become vectors (in boldface) and which remain as scalars (in 
plain italic type). 

NUMERICAL ApPROXIMATION 

The formulas for numerical solutions to n-dimensional differential equations 
are as follows, using a stepsize h, so that ti+l = ti + h: 

midpoint Euler Xi+! = Xi + h m, where 

Runge-K utta Xi+l = Xi + hm, where 

Notice that the "slopes" m have all become vector quantities, as well as 
the dependent variables X and the functions f. The independent variable t 
and its stepsize h both remain as scalars. 

Example 6.2.1. An Euler's method approximation for 

x'=y 
y' = x 2 - t, 

with initial condition to = 0, Xo = 0, Yo = 2 and stepsize h = 0.1 would 
begin as shown in Table 6.2.1. • 
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Table 6.2.1. Setting up a calculation for Euler's method. 

tj Xj Yj x·' I Y;' = Xj+l Yj+l 

=Yj =xt-tj = Xj + hx;' =Yj + hyj' 

r 1 ~ 
0 0 2 2 0+0=0 0+0.2 = 0.2 2+0=0 

0.1 0.2 2 2 0.04-0.1 0.2+0.2 = 0.4 2-0.006 
= -0.06 I = 1.994 

I I 
J 

0.2 0.4 1.994 1.994 0.16-0.2 0.4+0.1994 1.994-0.004 
=-0.04 = 0.5994 =,1.990 

I I 1 1 
0.3 0.5994 1.990 ~ continue in this manner ~ 

The order k of the error, Chk , of the approximation scheme remains 
precisely the same in IItn as in lit. Exercise 6.2#5 asks you to show, by 
partial derivatives and the mean value theorem, that the integration error 
for the Euler method is in fact bounded by Ch. 

The question of finite accuracy error, however, gets complicated for a 
differential equation in IItn if n > 1. In IItl you will recall from Volume I, 
Section 3.4 that systematically rounding down or up simplifies the analysis 
of error (though it makes the magnitude of the error worse). In IItn this does 
not work-rounding errors do not necessarily accumulate, since solution 
curves may turn and twist- so there is no ordering giving a direction in 
which to be pushed. Rounding error is probably very equation dependent 
in IItn , if you round up or down; we suspect that rounding round is okay 
with the same sort of random walk analysis given in Section 3.4. 

The preceding two paragraphs have dealt with what happens as the step­
size h decreases, over a fixed time interval. An entirely different question 
is what happens in the long run, as t - 00, for a fixed stepsize h, and 
the answer is rather complicated, even aside from the introduction of "jag­
gies" and other spurious stuff discussed in Section 5.4. In Exercise 6.2#7a, 
you can compare for x" = -x, the simple system of Examples 6.0.1, 6.1.2, 
and 6.1.3, the graphical results of the Euler, the midpoint Euler, and the 
Runge-Kutta methods of numerical approximation; each behaves dramat­
ically differently in the long term, using a fixed small stepsize. 
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THE BASIC THEORETICAL RESULTS 

Theorems 6.2.2 and 6.2.3 come straight out of the Fundamental Inequal­
ity (Theorem 4.4.1), the Uniqueness Theorem (4.5.1), and the Existence 
Theorem (4.5.6) for one-dimensional differential equations. (See Appendix 
T.) The proofs are left as Exercises 6.2#2 and 6.2#3, following exactly the 
one-dimensional proofs, except in the following ways: 

the quantities x and derivatives of x have now become vector 
quantities, so x becomes Xj 

the length of a vector Ilxll 
so IXI - x21 becomes IIXI - X211j 

J x~ + x~ + ... + x;, 

the region U of definition is now a parallelepiped in R x Rn, 
with t E [ta , tbJ and Xi E [ai, biJ. 

Otherwise the only "trick" in carrying over the proofs is to keep straight 
which quantities will become vectors and which remain scalars. For ex­
ample, 'Y = IIUI - u211 remains a scalar, so the center of the proof of the 
Fundamental Inequality remains a one-dimensional problem. 

Theorem 6.2.2 (Fundamental Inequality). If x' = f(t, x) is defined 
on a set U in R x Rn with Lipschitz condition 

for all (t,xd and (t,X2) on U, and if, for ci,/i E R, UI(t) and U2(t) are 
continuous, piecewise differentiable functions on U into Rn with 

and 

then 

Theorem 6.2.3 (Existence and Uniqueness). If x' = f(t, x) is defined 
on a set U in R x Rn with Lipschitz condition 

for all (t, xd and (t, X2) on U, then there exists a unique solution x = u(t) 
for a given set of initial conditions x(to). 

The geometric meaning of Theorem 6.2.3, that unique solutions do not 
cross, is given by the following: 
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Corollary 6.2.4. For a differential equation in lR.n satisfying a Lipschitz 
condition in x, solutions x = u( t) to an initial value problem 

(a) do not cross in lR.n+1 where they are graphed with respect to time, 

and 

( b) do not cross in phase space, lR.n , if the system is autonomous. 

Note: Corollary 6.2.4 makes no promises about the individual coordinate 
functions, x = u(t), y = v(t), ... , which can indeed cross as you have seen 
in Figures 6.1.1-6.1.4. But Corollary 6.2.4 does assure us that for an initial 
value problem in lR.2 (satisfying a Lipschitz condition) 

(a) we are not seeing actual three-dimensional crossings of solutions in 
the projections of lR.3 , 

and 

(b) if the system is autonomous, trajectories of solutions will not cross 
in the phase plane. 

Now that we are dealing with systems of differential equations, we must 
say more about uniqueness. If you have a "general" solution to such a 
system (that is, a solution with arbitrary constants that does not miss 
any solutions to the differential equation), this "general" solution, for an 
equation in lR.n , will in general depend on n constants. 

Specifying just any old n numbers associated to a solution will not nec­
essarily specify a unique solution. Sometimes these numbers will work, and 
sometimes they will not. 

A crucial element to Theorem 6.2.3 and its Corollary 6.2.4 is the require­
ment that the initial conditions, the n values of Xi(tO), be specified. We can 
give a glimpse of the potential difficulties associated with trying to specify 
boundary values instead by returning to the equation of Examples 6.1.2 
and 6.1.3: 

Example 6.2.5. For the simple system x' = y, y' = -x, recall from 
Example 6.0.1 that this system in lR.2 actually represents the second order 
differential equation x" = -x, with Xl = x and X2 = Y = x'. Figure 6.2.1 
shows just some of the solutions, as one of the coordinate functions of the 
system, and you can see that these solutions cross each other allover the 
place. 
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x 

FIGURE 6.2.1. Selected solutions to x" = -x. 

The "general" solution to x" = -x is x = A sin t + B cos t, with two 
arbitrary constants, A and B. A natural idea might be to specify bound­
ary values x(ta) and X(tb), rather than initial values x(to) and y(to). But 
sometimes such boundary values will not specify a unique solution (case 
(i)) ; other times they will (case (ii)). For instance, the following summary 
will be the result of Exercise 6.2#9, using the fact that all solutions are 
periodic with period 27r: 

(i) If (tb-ta) = k7r, where k can be any integer, negative or nonnegative, 
then specifying x(ta) and X(tb) will result in either 

(a) an infinite number of solutions, 

'f (t) _ {x(tb) for k even 
1 X a - -X(tb) Eor k odd . l' , 

(b) or no solutions, 
if x(ta) =f IX(tb)1 

if x(t ) = {-x(tb) for k even 
a X(tb) for k odd. 

(ii) If (tb - ta) =f k7r, any pair of boundary values gives a unique solution. 
~ 

Specifying n parameters by boundary conditions is equivalent to choosing 
two points, (ta,x(ta)) and (tb,X(tb)), in the tx-plane. If in Example 6.2.5 
(tb-ta) =f k7r, there will indeed be a unique solution between the two points; 
otherwise there will be no possible solution through those two points, or 
an infinite number of solutions. 
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Theorem 6.2.3, on the other hand, promises that if the n parameters 
are initial conditions, they always specify a unique solution. In Example 
6.2.5, initial conditions are x(to) and x'(to) = y(to), corresponding in the 
tx-plane to a point and the slope at that point. 

Example 6.2.5 illustrates that it is important to recognize that 

an initial value problem is entirely different from a boundary 
value problem. 

Only in the initial value problem is uniqueness assured, with solutions guar­
anteed not to cross. In boundary value problems, specifying n conditions 
may produce one, zero, or infinitely many solutions. 

Boundary value problems are in fact very complicated, and we shall 
postpone further discussion of them until Part III of this text. 

6.3 Example: Sharks and Sardines 

In this section we will study a famous example of a differential equation in 
]R2, first written down and analyzed by Vito Volterra in the early 1920s; 
his book, A Mathematical Theory of the Struggle for Life, probably started 
mathematical ecology. 

Volterra developed his theory when approached by Umberto d'Ancona, 
who was an official in the Italian bureau of fisheries employed in Trieste 
during the First World War. D'Ancona was puzzled by statistics he kept. 
Specifically, he observed that during the war, the proportion of the catch 
that consisted of sharks, skate, and other such predating and unappetizing 
fish increased markedly over what it had been before, and what it became 
later. The data are listed in Table 6.3.1, in the midst of many years of 
approximately 11% of catches consisting of predators: 

TABLE 6.3.1. Proportion of predators in Italian fishing statistics. 

Year % of catch consisting of predators 

1914 11.9% 
1915 21.4% 
1916 22.1% 
1917 21.2% 
1918 36.4% 
J919 27.3% 
1920 16.0% 
1921 15.9% 
1922 14.8% 
1923 10.7% 
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He presented these data to Volterra, who came up with the following 
explanation (which we first considered in the Introduction to Part I of our 
text, but we shall repeat the arguments in this context): 

Let x(t) be the number of food fish (known generically as sardines) as a 
function of time, and y(t) be the number of predators (known generically 
as sharks). We will write down a system of differential equations for x and 
y reflecting the following assumptions: 

(a) The population of sardines is kept down exclusively by the sharks, 
i.e., is not close to the limits of its food supply. 

(b) The population of sharks is at the limit of its food supply, and is kept 
in check by the lack of sardines. 

Thus, if there were no sharks, x would obey the equation of exponential 
growth 

I dx " x = - = ax, for some lertility rate a > O. 
dt 

Volterra argued that in the absence of sardines, y would similarly obey 
the equation of exponential decay 

I dy 
y = dt = -by, for some b> o. 

[Actually, this is questionable. It seems more reasonable to think that in 
the absence of sardines or other food fish, y would obey something like the 
leaky bucket equation, since it would become zero in finite time. In fact, 
even that is perhaps optimistic (from the point of view ofthe sharks), since 
in fact they would presumably become extinct in one generation whatever 
their initial number, and a leaky bucket can take an arbitrarily long time 
to empty if it is big enough to begin with.] 

In any case, the product x(t)y(t) is proportional to the number of meet­
ings of food fish with sharks, which are bad for food fish and good for 
sharks. This leads to the system of equations: 

x' = ax - cxy 
y' = -by + fxy, 

(7) 

where a, b, c, f are > O. 
Innocent though this system may appear, no one seems to know how to 

solve it for x(t) and y(t). However, we still can analyze it fairly completely 
by its trajectories in the xy phase plane. 

Dividing the second equation of (7) by the first, we see that 

dy 

dx 
-by + fxy 
ax - cxy 

(8) 
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This equation (8) is separable, leading to 

a-cy -b+fx 
--dy= dx, 

y x 

which can be integrated to yield 

(9) 

Note that the right-hand sides of equation (7) are continuously differen­
tiable functions, which means that on any bounded region they satisfy a 
Lipschitz condition, so the solution to the equation through any point will 
be unique by Theorem 6.2.3. Therefore the set of trajectories defined by 
(9) forms a system of nonintersecting curves filling up the xy phase plane, 
and we can hope to draw them. 

What we have shown in equation (9) is that these trajectories are level 
curves of the function 

(10) 

The fact that the differential equation (7) restricts the function F expressed 
in (10) to a constant value on a given trajectory represents some sort of a 
conservation law (to be discussed at greater length in Section 6.6), saying 
that you cannot have too many sharks without some number of sardines, 
and vice versa. 

That is, every solution of the differential equation (7) in ]R2 

has a trajectory in the phase plane that lies on a level curve 
of this function F. So to understand the trajectories (but not 
how a point moves along a trajectory as a function of time), 
all we need to do is understand the function that represents the 
conservation law. 

This is an important point to which we shall return in other examples 
and in Section 6.6. 

For the model of sharks and sardines, we are only interested in the func­
tion F in the first quadrant where both populations are positive. We leave 
it as Exercise 6.3#2a to show that there the function F has a unique 
maximum at x = b If, y = a I c, and that it decreases to zero when (x, y) 
approaches the axes or goes to infinity in any direction in the first quad­
rant. Note that in any case, it is clear from the differential equation (7) 
that (blf,alc) is an equilibrium of the equation, since x' = y' = 0 there. 
Now level curves on a mountain are easy to imagine; we can expect our 
set of trajectories to be closed curves, which indeed the computer drawing 
confirms (see Figure 6.3.1). 
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y 
isocline of horizontal slope 

..b. 
f 

x'=ax-cxy 
y' = -by + txy 

isocline of vertical slope 

FIGURE 6.3.l. Phase plane trajectories for sharks (y) and sardines (x). 

The placement of the arrowheads in Figure 6.3.1 can be made by obser­
vations on the original equation (7), as in the previous discussion in Section 
6.1 about drawing phase portraits. For instance, 

if x = 0, x' = 0 and y' is negative, y is decreasing; 
if y = 0, y' = 0 and x' is positive, x is increasing. 

All the first quadrant solutions to the differential equation (7) are peri­
odic, because the trajectories cycle round and round, describing populations 
that oscillate (out of phase with each other). This is the key observation, 
because it allowed Volterra to speak of the average populations, x and 'fl, 
defined by the usual integral formulas 

1 fT 
X = T 10 x(t)dt, 

1 rT 

'fl = T 10 y(t)dt 

if the populations move on a trajectory of period T. Of course, you would 
expect the averages to depend on the trajectory, but from the second equa­
tion of (7), the computation 

gives 

x(t) = y' + fry 
fy 

_ 1 iT y' 1 iT bIb b 
x = - -dt + - -dt = -(lny(T) -lny(O)) + - = -. 

T 0 fy T 0 f Tf f f 
(11) 

The result (11) shows that x does not depend on the trajectory and is 
in fact, in this particular case, the x-coordinate of the equilibrium. You 
can confirm the steps of this computation in Exercise 6.3#lb. An identical 
computation shows that 'fl = a/c. 
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If you find all this far too clever, do not forget that Volterra was working 
before computers, and therefore was forced to look for such tricks. No doubt 
the mathematical model he arrived at was chosen partially because he had 
a trick up his sleeve that worked for it, and not only because the biology 
imposed it. As soon as we change the model slightly, no such tricks will 
work, and averages will have to be found numerically (and they will not be 
just constants). So in fact, in the battle between the genius Volterra without 
a computer and the ordinary student with one, the student probably comes 
out ahead. 

WHAT DOES ALL THIS HAVE To Do WITH THE FISHING? 

It is fairly clear that the result of fishing is to replace in the differential 
equation a by a - c and b by b + 8 for some c > 0 and 8 > 0, since fishing 
simply subtracts from both populations a proportion of what is there. The 
difference in sign occurs because a is a rate of increase and b is a rate of 
decrease. Equation (7) now becomes 

x' = (a - c)x - cxy 
y' = -(b + 8)y + fxy. 

The new equilibrium occurs at 

_ b+8 
x=J' 

and is presented in Figure 6.3.2. 

a-c 
Y=--, 

c 

y 

~ ...... ······················1 old equilibrium 

a·E i Tbri 
-c - ------ ----------------------r--------r - ",,"" "m 

b b + Ii 
f f 

(12) 

FIGURE 6.3.2. Revised phase plane for sharks and sardines with fishing. 

As a result of the e and 8, the equilibrium is moved down and to the 
right and yields the following amazing conclusion: 

Fishing increases the number of food fish! 
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This is so remarkable that without corroboration one might be tempted to 
think it might mean that the model is worthless. The following example is 
offered as corroboration: 

Example 6.3.1. Scale insects and ladybugs. In 1868, some acacia trees 
were imported from Australia and planted in California. Some insects of 
the species Icerya purchasi, better known as scale insects, were on them 
and promptly infested the orange trees. Scale insects suck the sap from the 
trees and, as they grow, they split their skins, which harden on the leaves 
and leave a white cottony cushion, hence the name. In any case, the damage 
they did to the trees was such as to nearly wipe out the citrus industry in 
California. 

In Australia, the scale insect has a predator, Rodolia caroinalis, the la­
dybird beetle. An entomologist from the Department of Agriculture, Dr. 
Riley, imported some of these beetles, which promptly brought the popu­
lation of scale insects under control (this was in 1889). Amazingly enough, 
it took only 18 months from the time 514 beetles were imported until they 
had all but wiped out the scale insects and were themselves starving in 
large numbers. Of course, they did not eliminate the scale insect, but just 
created a particularly large swing of an oscillation. 

Shortly before World War II, DDT was discovered. The orange growers 
thought: "we almost got them with the beetle, now we will really get them 
with DDT," so they applied it to the orchards. 

As a result, the scale insects became more numerous. In terms of Volterra's 
analysis, it is clear that this should happen: the scale insects are like food 
fish (the prey), the ladybird beetles are like the sharks (the predators), and 
the DDT is like the fishing, which destroys a proportion of both. Fishing 
increases the number of food fish, and DDT increases the number of scale 
insects. A 

CRITICISM OF THE MODEL 

It is easy to pick holes in Volterra's model. For one thing, it cannot be valid 
for large values of x, since exponential increase of a species cannot continue 
without limit. Also, without food, the population of sharks would in fact 
go to zero, not just decline exponentially (more probably, in reality, they 
would switch to an alternate food source). 

A more serious question is whether perturbing terms change the qualita­
tive description of the evolution of the system. Clearly they should; it seems 
highly unlikely that every initial condition will be on a periodic orbit, and 
far more likely that whatever the initial state, the system will settle down 
to some cycle (perhaps the equilibrium) independent of where it started. 

In fact, we have a hint as to what the period ought to be. Such real eco­
logical systems are forced by the seasons: almost all species have a fertility 
rate [the number a in equation (7)] that is not constant but varies with the 
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time of year. So we might expect the population to settle down to a yearly 
cycle, or perhaps a cycle of several years. 

Many numerical experiments have been run under these various assump­
tions, showing that even such simple mathematical models can have amaz­
ingly complicated behavior. There is still no coherent theory. 

6.4 Higher Order Equations 

Many differential equations encountered in applications involve higher or­
der derivatives of the unknown function (or functions). For example, the 
differential equations of physics that involve accelerations are second order 
differential equations. We will see in this section that such a higher order 
equation is "equivalent," in a sense to be made precise, to a system of first 
order equations. There is a catch, of course; namely, that we need more 
unknown functions. Still, the theory for systems of first order equations is 
so simple, and the intuitive idea of what a differential equation means is so 
clear, that it is usually a good idea to replace a higher order equation by a 
system of first order equations. 

This is especially true of the numerical theory: it is quite clear what 
it means to be blown around by a wind, even in several dimensions, and 
the idea of Euler's method is immediate. Consider, on the other hand, a 
differential equation such as 

x" = x' - x 2 + t. 
As we shall see, an appropriate initial condition for such an equation is 
the specification of both x and x' at the initial time to. But what should 
you do from there? You do not have a wind to be blown by, and you do 
not know your velocity, only your acceleration (Le., x"). Most people have 
little intuitive feel for acceleration, and much less yet for higher derivatives. 
Thus, replacing them by first derivatives is desirable. 

Physicists have long known this; they speak of the configuration space of a 
system-its set of positions, on which motions are described by a system of 
second order differential equations (because of Newton's law F = rna, which 
expresses the accelerations in terms of the positions and the velocities). 
However, they soon replace the configuration space by the phase space­
the set of states of the system. A state of the system is specified when you 
know both a position and a velocity for each component of the system. 
On the phase space, the motions are described by a system of first order 
equations. Of course, you have paid the price: there are now twice as many 
variables as before, both a position and a velocity where there was just a 
position. But what you have gained with phase space is that it gives the 
only "nice" picture, where the trajectories do not cross. 

Not only does the replacement of a higher order equation by a system of 
first order equations give a better intuitive feel for the differential equation, 
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and the possibility of clear phase space pictures of trajectories, but, as we 
shall see in Chapters 7-9, it allows the solution of a linear system (or the 
linearization of a nonlinear system) to proceed by simply manipulating a 
matrix of coefficients. 

A differential equation of order n in one variable is an equation of the 
form 

(n) f(t I (n-l)} x = ,x,x , ... ,x , 

where xCi) means the ith derivative of the function x, and f is a function 
defined in some region of IR x IRn. Of course, the case n = 1 is precisely 
what we considered in Volume I, Chapters 1-4. 

The key idea to solution of an nth order differential equation is to intro­
duce new variables representing successive derivatives, generalizing what 
we did in Example 6.0.1 when we changed x" + x = 0 to x' = y, y' = -x. 

Theorem 6.4.1. The differential equation 

x(n) = f(t, x, x', ... ,x(n-l)} (13) 

is equivalent, if we set Xo == x, to the first order differential equation in IRn 

in the sense that a function x = u(t} is a solution of the first equation (13) 
if and only if the n-dimensional vector function 

[ 
u(t} 1 u'(t} 

u(t} = . 

un-·1(t} 

is a solution of the system (14). 

In other words, for an nth order differential equation, we set up n vari­
ables: Xo = x, Xi = X~_l' ..• ,Xn-l = x~_2 j then we solve the differential 
equation for x(n) = X~_l to obtain the nth first order differential equation 
of the system. 

Proof. Just plug in the formulas. 0 

Example 6.4.2. The third order differential equation 

XIII - 3x" + tx' - X + t2 = 0 
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is equivalent to the following system, with x = xo: 

x' = x~ = Xl } nonautonomous system 
X" = x~ = X2 of three first order 

XIII = x~ = 3X2 - tXI + Xo - t 2 equations... 

We hope that after all the buildup, reduction of a higher order differ­
ential equation to a system looks like a cheap trick. It is a cheap trick, 
but nevertheless important. For instance, we now have a uniqueness and 
existence theory for higher order differential equations, as well as various 
approximation algorithms (Euler, midpoint Euler, Runge--Kutta). 

Theorem 6.4.3. Let f(t, x) be a function defined on some region U in 
a x an and satisfying a Lipschitz condition with respect to x. Given any 
to E a and a vector v E an, there exists a unique solution u(t) of 

x(n) = f(t, x, x', ... ,x(n-l») 

such that u(to) = v; that is, 

u(to) = 

Proof. Combine Theorem 6.4.1 with Theorems 6.2.2 and 6.2.3. 0 

MOVING IN THE OTHER DIRECTION: TRADING 
DIMENSIONS FOR HIGHER ORDER 

This is more delicate than the reverse process: let us see how to go from a 
first order equation in a2 to a second order equation in one variable. 

Suppose 

X' = f(x,y) 

y' = g(x, y) 

is a first order system in a2 • Use the first equation to express y implicitly 
as a function of X and x', say y = F(x,x'), for some function F(u, v) of 
two variables. Now differentiate this equation, to find 

I of ( ') I of ( ')" y = au x, x x + ov x, x x . 
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Substitute this expression for y' in the second equation and set the right­
hand side equal to g(x, y) = g(x, F(x, x')). This results in a second order 
equation solely in terms of x and its derivatives: 

" 1 (OF ( ')' ( ( ')) x = (OF/8v)(x,x') (}u x,x x - 9 x,F x,x . 

Example 6.4.4. Consider the system of equations 

x' =y+sinx 

y' = cos(x + y). 

The first equation gives y = x' - sin x, with 

y' = x" - (cosx)x' = cos(x + x' - sin x). 

Substitution for y and y' in the second equation yields the rather fearsome 
differential equation 

x" = (cosx)x' + cos(x + x' - sin x). 

The reader should appreciate that the process can be considerably more 
difficult: expressing the implicit function may be difficult or impossible in 
elementary termsj in higher dimensions, it requires the notorious Implicit 
Function Theorem from Chapter 13 (See Appendix T). The conditions for 
an implicit function to exist may be violated. Exercise 6.4#3 will allow you 
to explore this a bit further. 

6.5 Mechanical Systems with One Degree of 
Freedom 

Physics provides many beautiful examples of second order differential equa­
tions in a single variable, which we shall study as systems of two first order 
equations. We shall use the simple pendulum as an example to discuss 
several aspects of general theory. 

Example 6.5.1. Consider the pendulum with motion restricted to the 
plane, with a bob on a string of length l, as illustrated in Figure 6.5.1. 

The arclength of the" sweep" of the pendulum is l(}j the velocity of the 
bob is l(}', and the tangential component of its acceleration is l(}". The 
force on the pendulum bob in the direction of motion is a component (in 
the direction of sweep) of the gravitational force mg. From Newton's Law 
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FIGURE 6.5.1. A pendulum in motion. 
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F = ma we can write an equation that describes (in terms of ()) the behavior 
of the pendulum as moving opposite to: 

m£(}" = -mg sin () 

or 

()" = - (l) sin(}, (15a) 

which we call the equation of motion of the pendulum. Solving the equation 
of motion for () as a function of t describes exactly how the pendulum bob 
moves. 

Equation (15a) can be replaced by the system 

()' = y, y' = - (~) sin(}. & (15b) 

In Example 6.5.1 there is only one variable, (), that describes the motion 
of the pendulum, so we say it has only one degree of freedom. 

POTENTIAL AND ENERGY 

For a physical particle moving without friction in a manner involving only 
one variable (x, in general), a general theory of physics introduces a useful 
concept called potential. The potential V (x) is defined by the following 
force equation: 

" dV(x) 
mx =-~. (16a) 

The potential function V(x) may be a purely mathematical construction 
obtainable from integration with respect to x, but in physical systems it 
can represent potential energy. 
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In many mechanical systems we can calculate the potential energy V (x) 
from physics: if the particle is under the influence of "constant" gravity, as 
on the surface of the earth, then 

V(x) = mgh, where h is height above any arbitrary fixed level. 

The differential equation (16a) for a one-parameter mechanical system 
can be replaced by the following system of first-order differential equations: 

, dV 
y =--. 

dx 
(16b) 

Note that, up to a constant multiple, y represents the velocity of the 
particle. Also note that equations (16a) and (16b) equate a derivative with 
respect to x with a second derivative with respect to t. Furthermore, since 
equations (16) depend only on the derivative of V(x), not on V(x) itself, the 
equations of motion do not change if a constant is added to V; consequently, 
the potential V is determined only up to an additive constant. 

In order to form some intuitive idea of motion under a potential, you 
might think of a bead of mass m sliding without friction on a wire shaped 
to give the graph of V(x), as shown in Figure 6.5.2. The bead has only one 
degree of freedom-it can only move back and forth along the wire. You 
can imagine letting the bead start from any point on the wire and then try 
to visualize how it will slosh up and down and back and forth according to 
the shape of the potential function V(x). 

V(x) 

FIGURE 6.5.2. Bead and wire model for x" = -dV(x)jdx. 

This model of a bead on a wire is not quite accurate-at the end of 
this section in Example 6.5.6, we will properly analyze the bead-on-wire 
analogy for the pendulum-but it does give the proper qualitative features. 
In particular, you can see oscillations of x near the minima of V, exceptional 
solutions that tend (infinitely slowly) toward the maxima of V, and even 
more exceptional solutions that just sit at the maxima of V. 
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Although equation (16a) cannot generally be solved for x(t) in terms of 
elementary functions, the mechanical system can nevertheless usually be 
understood. The key to this understanding is the following theorem: 

Theorem 6.5.2. For the differential equation mx" = -dVjdx, the total 
energy function 

E(x, x') = ~ m(x')2 + V(x) 
= kinetic energy + potential energy 

(17a) 

is constant along the trajectories of solutions in the xy phase plane; conse­
quently, the mechanical system corresponding to this differential equation 
is called conservative. 

Proof. This is a straightforward computation from (17a) of 

d dV 
dtE(x(t),x'(t)) = mx'x" + dx x', 

which is zero by equation (15a). 0 

In terms of the alternative form (16b) of the mechanical system with one 
degree of freedom, 

y' = -dV/dx, (16b, again) 

Theorem 6.5.2 can be stated in terms of conserving 

(17h) 

In the xy-phase plane, the point [x(t), y(t)] of the system moves along a 
trajectory; Theorem 6.5.2 shows that these trajectories are level curves of 
the function E. 

Example 6.5.3. Let us go back to the pendulum of Example 6.5.1, de­
scribed by the second order differential equation, for K = (g/l), 

0" = - K sin 0 (15a, again) 

and equivalent to the system 

0' = y 
y' = -K sinO. 

(15b, again) 

Equations (15) are of the proper mathematical form (16) for a mechanical 
system with one degree of freedom, so there exists a potential function V (0). 
Combining equations (15a) and (16a) implies that 

dV(O) _ K . 0 
dO - sm, 
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which can be integrated; so we know that V (0) = - K cos O. 
By Theorem 6.5.2, the trajectories of the solutions are level curves of the 

function 
y2 

E(O, y) = 2 - K coso. (18) 

This function E is a mathematical total energy function, which is up 
to a constant multiple of the physical total energy, as you can confirm in 
Exercise 6.5#1l. 

The function E(O, y) has a graph that looks like Figure 6.5.3. 

z 

e 
FIGURE 6.5.3. Graph of E = y2/2 - K cosO. 

The level curves of E, along which the trajectories of the system lie, look 
like Figure 6.5.4 . The minima of E are at the points (0, y) = (2krr, 0), for 
integer k; the saddle points of the surface E are at the points ((2k + 1)11", 0). 

Arrows on the curves in Figure 6.5.4 indicate in which direction the 
pendulum follows them: 

_ OJ d th t {Positive y implies increasing () 
y - ecrees a .. I' d . 0 negatIve y Imp les ecreasmg . 

This fact is confirmed by watching computer drawings evolve, using a pro­
gram like DijJEq, Phase Plane in the MacMath package. 

y 

e 

FIGURE 6.5.4. Trajectories for 0' = y, y' = -KsinO. 
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Look carefully at the different kinds of phase plane trajectories exhibited 
in Figure 6.5.4: 

The closed level curves (lEI < K) correspond to back and forth os­
cillations of the pendulum. 

The points at the centers of these closed level curves (E = - K) 
correspond to the stable equilibrium of the pendulum at rest at the 
bottom of its motion. 

The level curves above and beneath the closed curves (E > K) corre­
spond to motions in which the pendulum has enough energy to simply 
go full circle, round and round over the top. 

The level curves joining the saddles (E = K) are those exceptional 
motions in which for t --+ 00 and for t --+ -00 the pendulum tends to 
the unstable equilibrium at the very top of the swing. Note that the 
time required to go from one saddle to the next is infinite. • 

The solutions coming from or going to saddles are called separatrices, 
because they have exceptional behavior and separate the regions of generic 
behavior from each other. (You should be reminded of the exceptional 
solutions in antifunnels for equations in ]Ri.) We will have much to say 
about saddles and separatrices in Chapter 8. 

EFFECTS OF ADDING FRICTION 

When we add to the system of the pendulum a perturbation term to repre­
sent friction, a physically more realistic situation, analysis changes. There 
will no longer be any potential or conservation of energy. Nevertheless, we 
can analyze the behavior in a similar manner. 

Example 6.5.4. Consider the same pendulum of Example 6.5.3, but add a 
bit of friction. The motion of the pendulum bob will now obey an equation 
such as 

()' = y 
y' = -Ksin(} - e:y, (19) 

where e: is a friction coefficient and we have assumed that the friction is 
proportional to the velocity. This system with friction is not of the form 
required by Theorem 6.5.2, because the equation in y' depends on y as well 
as on (). In fact, the system with friction does not conserve total energy. 

The function E is no longer constant on solutions, but we can easily see 
that it decreases. This corresponds to the intuitive idea that in a system 
in which energy is dissipated by friction, the global energy decreases. This 
fact is easy to compute from equation (17b): 

dE = ~ [y(t)2 _ K cos (}(t)] 
dt dt 2 
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= y(t)y' (t) - (-K sin O(t» 0' (t) 

= y(t) [-K sinO(t) - ty(t)] + K sinO(t)y(t) = -ty(t)2 ::; o. 
The regions ((t,O) I E(t,O) ::; C} are now trapping regions: if a solution 

enters one of them, it can never get out again. (You should be reminded of 
funnels.) The phase plane will look like Figure 6.5.5 when t is sufficiently 
small. 

-7 

C 

D 

FIGURE 6.5.5. Four trajectories for (I' = y, y' = - sin (I - 0.2 y. Those starting 
at A and B begin with the pendulum bob to the left of center; those from C and 
D begin with the bob to the right. 

We will see in Exercise 8.1#11 that the spiraling behavior disappears 
when the friction coefficient t becomes large. When t becomes zero, the 
picture becomes that of Figure 6.5.4. A 

We will see other examples of mechanical systems in Section 6.7. 
Meanwhile, let us return to the intuitive visualization of behavior under 

the influence of a potential function, as suggested earlier in this section. 

A BEAD SLIDING ON A WIRE: PRECISE ANALYSIS 

At the beginning of this section, we claimed that a solution of 

" dV mx =--
dx 

(16a, again) 

behaves roughly like the x-coordinate of a bead of mass m sliding on a 
wire whose shape is the graph of V, in a constant gravitational field with 
9 = 1. Note that we introduced this analogy only to give the reader an 
intuitive feel for the differential equation (16a): we think that most readers 
will know without any mathematics or physics how such a bead will move. 
But it is not a good method of analysis, as the detailed behavior of the 
bead is quite a bit more complicated than the original problem. 

The differential equation describing the motion of the bead is as usual 
F = rna, but it is quite unpleasant to write the acceleration in terms of 
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the x-coordinate of the bead. Instead, we will use the arclength s along the 
wire; in other words, we will record the position of the bead by recording 
how far along the wire it is (measuring from the point with x-coordinate 0, 
for instance). Clearly, if the motion is described by the function s(t), then 
the acceleration is s"(t). A force analysis (Exercise 6.5#I2a) shows that at 
the point distance s along the wire, with x-coordinate x(s), the force is 

-m dV/dx = ms". 
VI + (dV/dx)2 

(20) 

Keep in mind that since x = x(s) , dV/dx will be expressed in terms of s. 

Example 6.5.5. Suppose V(x) = -../i2 - x 2; i.e., that the bead is con­
strained to remain on a wire of semi-circular shape, as shown in Figure 
6.5.6. 

Then, since x = isin(O) and 0 = s/i, 

x(s) = isin(s/i). 

Furthermore, from the definition of V(x) for this example, 

dV x isin(O) (s) 
dx = ../i2 _ x2 = icos(O) = tan :e . 

V(x) 
I 
I 
I 

_~ I x >" ~ 
---- ------------~,---------r- ---4 x 

I , 

9' I , I 

" I 
~', I 

, I 
" I , 

d! 
FIGURE 6.5.6. Bead on semi-circular wire. 

Therefore, the expression (20) for the force becomes 

ms" = -m dV/dx = -m tan(s/i) = -msin(s/i). 
VI + (dV/dx)2 VI + tan2(s/i) 

Thus, the equation describing the motion of the bead is simply 

s" = - sin(s/i). A 



34 6. Systems of Differential Equations 

Example 6.5.6. Note that if you set () = slf (a very reasonable definition), 
the equation s" = - sin(slf) of Example 6.5.5, describing the motion of a 
bead on a circular wire, becomes 

()" = -(11 f) sin (), 

the differential equation describing the pendulum of Examples 6.5.1 and 
6.5.3. This should not be surprising: there is no physical difference in con­
stmining the bead to a circular path by attaching it to a lever arm or by 
putting it on a circular wire. All we have done is rederived the equation of 
the pendulum in a far more complicated way. 

To go back to the analogy, we are saying that the motion of the bob on 
a pendulum is exactly the same thing as motion of a bead constrained to 
move on a circular wire. This is shown in Figure 6.5.7 where the top half 
of the circular motion has been reflected to the sides (which allows us to 
think of the bead on its nth trip around the circle as running along the nth 
pattern). 

The motion of the bob on the pendulum that we derived in Example 
6.5.1 from V (()) = K cos () is approximately the same as the motion of a 
bead on a wire with the shape of the graph of -fcos(slf), as shown in 
Figure 6.5.8. 

f(O) 

~ ;7 ~O 
-1.0 

FIGURE 6.5.7. Exact bead-on-wire model. 

V(O) 

FIGURE 6.5.8. Approximate bead-on-wire model. 

Notice that close to the minimum of potential, Figure 6.5.8 for approx­
imate motion is very "similar" to Figure 6.5.7 for exact motion, but they 
are not identical. 
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Some motions are oscillations in the wells, others travel along th~ wires, 
and so forth. These statements should be intuitively clear; it should also 
be intuitively clear that the details of the motions will be different. ~ 

The conclusion of Example 6.5.6 is also all that can be said in general. 
The differential equation describing the motion of the bead on the semi­
circular wire is 

" dV/dx 
s = -v'r:-I=+=:(;:::;dV;:;:/::;:=d:=x~)2 , 

which looks quite a bit like the differential equation describing the pendu-
lum, 

x" = -V'(x), 

in the sense that both have equilibria at corresponding points and of the 
same type. 

For the function sex) that measures arclength along the wire from the 
point above zero to the point above x, we have 

sex) = fox VI + (f'(u))2 duo 

We want Yes) to be "I measured with respect to s," i.e., 

V(s(x)) = I(x). 

Then these last two equations can be combined to give 

dV dV/dx 
ds ds/dx 

!,(x) 
(21) 

VI + (f'(X))2 

So, if you know Yes), can you use equation (21) to find I(x)? It is not 
easy! But since the right-hand side of equation (21) is less than 1, the 
answer may be yes if IdV/dsl < 1. 

In Exercises 6.5#I2c, you can confirm that equation (21) works if s = £0 
with £ fixed; that is, that 

dV 
ds 

!,(O) implies !(O) = -K VI - (20/rr)2. 
VI + (f'{O))2 

Remark. One may wonder whether, given a function Vex), there is some 
other function W{x) such that the motion on the wire with the shape of 
the graph of W, that is, with equation 

" W'(x{s)) 
s = VI + (W'{x{s)))2' 

is precisely the same as motion under x" = -dV/dx. Clearly, one require­
ment is IdV/dxl < 1. It turns out that this is the only requirement, as 
shown in Exercise 6.5#13. 
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6.6 Essential Size, Conservation Laws 

We have seen in Section 6.4 that the order of a differential equation is sort 
of phony: it can be diminished at the expense of increasing the number of 
unknown variables. 

Vice versa, the dimension is phony since it can usually be traded for 
higher order, as in Example 6.4.4. 

Definition 6.6.1 (Essential size). We will call the essential size of a dif­
ferential equation the smallest number n such that the differential equation 
can be transformed into an autonomous, first order equation in lRn. 

Example 6.6.2. The system 

x" = x2 - Y 

y"=y-x 

has essential size four, because four equations are necessary to achieve a 
system of first order equations: 

x'=w 

y'=v 
w'=x2 _y 

v' = Y - x. 

Essential size as a measure of how hard it is to understand a differential 
equation is sometimes misleading. 

Example 6.6.3. The system 

x'=x+y 
y' = Y _ x2 

Z' = 1 

looks, and is, three dimensional in xyz-space, but is really two independent 
systems-one of size two (in x' and y'), the other (in z') of size one. This 
system is no harder to understand than its parts. & 

On the other hand, a nonautonomous system can be turned into an 
autonomous system in one higher dimension; so a system may have larger 
essential size than it might first appear. 
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Example 6.6.4. The equation x' = f(t, x) is nonautonomous but can be 
written as an autonomous system 

x' = f(t, x) 

t' = dtjdt = 1; 

so the essential size of the original single first order equation is two. This 
essential size of two is why DiJJEq draws in the plane, not the line. ~ 

Example 6.6.5. Consider the system 

x' =x+y 
y'=y_x2 

z' = 2+x. 

The first two equations form a system of essential size two. Then once the 
solution x(t) has been found to this first system, the third equation becomes 
a new system, also of essential size two, because this third equation, with 
x( t), is not autonomous. ~ 

The complexity of solutions to a differential equation is a function of 
the essential size: the greater the essential size, the greater the opportu­
nity for the solutions to tangle. (Compare the examples of Section 6.1 for 
autonomous differential equations in R2 with those in earlier chapters for 
nonautonomous differential equations in R 1.) 

The name of the game in solving systems of differential equations is to 
reduce the essential size. This is done by finding conseroation laws. 

Definition 6.6.6 (Conservation Law). If a differential equation in Rn 

implies for some function F(x) that F'(x) = 0, then 

F(x) = a constant (22) 

along the trajectories of the solutions, and equation (22) is called a conser­
vation law. 

The reason conseroation laws are so important is that each one 
decreases the essential size. This is because 

will usually allow you to express some variable, say xn , implic­
itly as a function of the others, xl, X2, • •• , Xn-l. 
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Example 6.6.7. In the mechanical system with one degree of freedom, as 
explored in Section 6.5, 

" dV mx = -- (23) 
dx 

is an equation in ]R2 that we want to solve for x = u(t). Theorem 6.5.2 
states as a conservation law that 

my2 
E=-2-+ V (x) (24) 

is constant on the trajectories of the solutions. It is possible to solve equa­
tion (24) for y = x': 

x' = J2(E - V(x»/m, (25) 

which reduces the problem to an autonomous first order equation in ]RI. 

Thus, the conservation law (24) has reduced the essential size from two in 
equation (23) to one in equation (25). 

Remark. You can observe that equation (25) can be reduced to computing 
integrals, but they tend to be unpleasant or impossible to integrate in 
elementary terms; furthermore, it can still be an unpleasant problem to 
solve for x(t). Therefore, we did not explore this option in Section 6.5 but 
instead used the conservation law to get at the trajectories by the back 
door. That is, we used equation (24) to plot the trajectories instead of 
solving (25)! • 

Example 6.6.B. A central force is some function f(r), depending only on 
distance from the origin, that acts in the radial direction r = xi + yj + zk, 
with r = IIrll. (Such a force will be explored in detail in Section 6.7. You 
might look at Figure 6.7.1.) A central force combined with Newton's law 
in ]R3 produces the following second order equation: 

ma = mr" = IIf(r)II~, 
r 

(26) 

of essential size six, because it represents a second order equation for each 
of the three components of r: x, y, and z. 

Differentiating the cross product r x r' gives [by several steps, including 
the use of equation (26), in Exercise 6.6#2a] 

d 
dt (r x r') = r x r" = O. 

Consequently, we find as a conservation law the following fact: 

r x r' = M, a constant vector. (27) 

This vector M should be called the angular momentum vector, because 
its magnitude gives the angular momentum, as will be explained in Example 
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6.6.9. However, it is the direction of M that concerns us here. The constant 
direction of M ensures that r will never leave the plane spanned by r(to) 
and r'(to) at any particular time to. (In Exercise 6.6#2b, you can work 
through this derivation.) This means that the central force law (26) actually 
operates only in IR2, so the second order equation now has essential size 
four. A 

If the physical or mathematical system under consideration has symme­
tries, then it is possible to choose suitable coordinates so that the equa­
tions of motion will be independent of some of the coordinates, which will 
lead to conservation laws and reduce essential size. This correspondence 
between symmetries and conservation laws is one of the guiding principles 
of physics. 

Example 6.6.9. We have shown in Example 6.6.8 that a central force law, 

r 
r" = f(r)-, 

r 
(26, again) 

operates in a plane. The obvious symmetries of a central force law will be 
most nicely described by polar coordinates, so we first describe the position 
vector 

r(t) = [:m] 
in terms of two scalar functions r(t) and O(t), and we shall then find the 
differential equation that they will satisfy. This is a typical unpleasant 
change of variables and goes as follows: 

[x] [rcosO] r= y = rsinO 

r' = [x]' = [r'cosO-rO'sinO] 
y r' sin 0 + rO' cos 0 

r"= [x]" = [(r"-r(O')2)coSO-(2r'0'+rO")sinO] 
y (r" - r(0')2) sinO + (2r'0' + rO") cosO 

(28) 

= (r" _ r( 0')2) [C?S 0] + (2r'0' + rO") [- sin 0] . 
smO cosO 

From the central force field (26), we know 

[x]" [COSO] 
Y = f(r) sinO ' (29) 

that is, that the force points in the direction of the origin. Since the vectors 

[ C?S 0] and [- sin 0 ] 
smO cosO 
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are orthogonal, combining equations (28) and (29) leads to the system of 
equations 

r" - r«()')2 = f(r) 

r()" + 2r' ()' = 0, 

(30a) 

(30b) 

which describes in polar coordinates the motion in a central force field. 
Now we can observe that (r2()'), = r(r()11 + 2r'()') = 0 by equation (30b), 

so that r2()' as a function of time is constant. This quantity r2()' = M is 
the magnitude of the angular momentum of the body around the z-axis, 
and the derivation above shows that in any central force field, the angular 
momentum is preseroed. We have thus found another conservation law. 

Remark. In Exercise 6.6#2c, you will show an alternate way to derive 
(30b) directly from 

rx r' =M, (27, again) 

so that 
IIMII = Ir2()'1 == Mj 

hence the angular momentum M is in fact the magnitude of M. In fact, 
the conservation of angular momentum could have been derived directly 
from equation (27), but we needed the explicit derivatives of r to get equa­
tion (30a). That route also emphasizes the role that taking advantage of 
symmetry can play in finding a conservation law. 

The conservation of angular momentum further reduces the essential size 
of the system. Since ()' can be expressed as a function of r, 

()' _ M 
- r2' (31) 

equation (30a) becomes a second order equation in r alone (for which we 
have developed methods of analysis and will demonstrate them in Section 
6.7). Once we know r, the conservation of angular momentum gives a first 
order equation (31) in (), so the total essential size of the system has been 
reduced from four (at the end of Example 6.6.8) to three. That is, system 
(30) can now be replaced by 

r" _ M2 = f(r) and ()' _ M • 
r3 - r 2 ' 

(32) 
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6.7 The Two-Body Problem 

This section is devoted to showing that Newton's law of gravitation implies 
Kepler's laws. 

Johannes Kepler (1571-1630) was a German astronomer. He was not 
born to wealth and was employed, first as an assistant and later as a part­
ner, by the Danish nobleman Tycho Brahe, who was rich and fascinated by 
astronomy. Kepler's job in Tycho's observatory was to observe the planet 
Mars. As a result of 14 years of observation, he came up with the following 
laws: 

1. The planets move on ellipses with the sun at one focus. 

2. The radial segment from the sun to a planet sweeps out equal areas 
in equal time intervals. 

3. The periods of rotation are proportional to the ~ power of the semi­
major axes of the ellipses. 

Even knowing that these laws are true, and using a calculator and a 
telescope, it is not clear what you should observe in order to confirm them. 
One cannot be but struck at the amazing genius it must have taken for a 
person, without a telescope or any accurate means of measurement, before 
the invention of analytic geometry, and without any way to determine the 
distances of any celestial bodies, to take the results of 14 years of observa­
tions and come up with such laws. If you consider that Tycho's observatory 
was on an island between Denmark and Sweden, which must be, next to 
Ithaca, the cloudiest place in the world, the records must have been spotty 
in the extreme. 

By the time of Newton (1642-1724), these laws had been examined and 
largely accepted (although Galileo was tried by the church and convicted 
in 1633 for teaching the Copernican view that the earth turned around the 
sun). 

We now come to another extraordinary display of genius. In a period of a 
year, Newton postulated the universal law of gravitation, saw that it gave 
a differential equation for the motions of the planets (inventing calculus in 
the process, not to mention the theory of differential equations), and solved 
the equation to the extent of showing that the postulate implied Kepler's 
laws. Nowadays, we hesitate to teach his solution in third year calculus 
because it is too difficult, even though it appeared as the focus of the first 
book on calculus. 

All of this is intended to explain why we are including the solution here, 
even though it does not quite fit. Some might say (we are among them) 
that the work of Newton was one of the most important events in the 
history of humanity, the one that ushered in the scientific age. Considering 
that this work was largely the solution of a differential equation, it would 
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be outrageous not to include it in a book on the subject, and at an early 
stage. 

Given two bodies with masses ml and m2 and positions Xl and X2, 

Newton's universal law of gravitation together with F = m a gives the 
system 

(33) 
II Gml (Xl - X2) 

X2 = IIXI - x2113 . 

This is a priori a differential equation in ]R12: there are three dimensions 
for each Xi, for a total of six dimensions; but the differential equation for 
each of these is second order, so the system (33) is equivalent to a system 
of twelve first order equations. However, it is easy to reduce the dimension 
from ]R 12 by taking advantage of conservation laws, which we shall proceed 
to do. 

The center of mass is 

x = mixi + m2x 2 

ml+m2 

and it satisfies the differential equation X" = 0, so X(t) moves at constant 
velocity X' on some straight line, as you will prove in Exercise 6.7#lb. This 
is overall conservation of linear momentum, with X = a + tb and X' = b. 

Remark. Simple though this observation may be, it is a typical application 
of the main method of solution for equations in mechanics: 

You find some preserved quantity (in this case linear momen­
tum); then setting it equal to a constant allows expression of 
some unknown functions in terms of others (in this case the 
position of one body in terms of the position of the other). 

In this manner we can now reduce the number of actual unknown quanti­
ties from twelve to six, so the problem is reduced from ]R12 to ]R6. One way 
to express this problem in ]R6 is as a second order equation for one position 
vector in ]R3. We shall use r == Xl - X to describe the position of the first 
body; the position of the second is then determined by the conservation of 
linear momentum described above. 

In Exercise 6.7#lc you are asked to show that the vector r satisfies the 
differential equation 

r" = _ Gm~ _r_ = -K _1_~ 
(ml + m2)2 IIrl13 IIrl12 IIrll' (34) 

where II~II is the unit vector in the r direction and K = GmV(ml + m2)2 
gathers together the constants. In this form (34), the system clearly satisfies 
an inverse square law. 
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Notice that if ml is very small in comparison with m2, then equation 
(34) is nearly what you would get with the mass m2 at rest at the origin. 
For instance, you could consider ml a planet and m2 the sun, although in 
any case equation (34) is exact. 

Equation (34) means that r, the measurement of position with respect to 
the center of gravity, behaves as a point in a central force field. That is, the 
direction of the force is in the direction of the r vector, and the magnitude 
of the force depends only on r = IIrll, so 

r 
r" - f(r)-- r' (26, again) 

as in Examples 6.6.7 and 6.6.8. 
The crucial thing is that in a central force field the force depends only 

on the magnitude r, and a picture of the force vectors will look like Figure 
6.7.1. 
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FIGURE 6.7.1. A particular central force field. 

In Example 6.6.8, we analyzed motion in a central force field. Let us 
summarize what we found. First, the position vector r remains in the plane 
spanned by the initial position and the initial velocity. This followed from 
considering the angular momentum vector 

r x r' = M, a constant vector, (27, again) 

and saying that its direction is constant. A second order equation in a plane 
is a first order equation in JR.4 rather than JR.6, so we have now reduced the 
essential size of the problem from six to four, which is a great improvement 
but not enough yet to solve the problem. 

To further decrease the essential size, change variables so that the plane 
of the motion is the horizontal plane JR.2 C JR.3 and use polar coordinates in 
JR.2 to take advantage of the symmetries of the problem. Then the angular 
momentum vector points in the direction of the z-axis and has magnitude 
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r 28' = IIMII == M 

as was shown in equation (30b) of Example 6.6.8. 

Kepler's Second Law. Conservation of angular momentum is equivalent 
to Kepler's second law, because r28' /2 is the rate at which the vector r 
sweeps out area (Exercise 6.7#5a). So Kepler's second law is a way of 
stating conservation of angular momentum without mentioning derivatives. 
Note that Kepler's second law is valid in any central force field (26) and 
does not require the inverse square law (34). 

As we saw in equation (32) of Example 6.6.8, the formula 

8' = M 
r2 

(35) 

gives 
r" - r(8')2 = f(r) (36) 

for any central force field. Finally, using the inverse square law (34), we 
find 

" K M2 () r =--+-, 37 
r2 r3 

which is a second order equation in r alone. We have brought the essential 
size down to two, and this we will be able to solve. Of course, when we 
have done so, we will have to go back to the angular momentum equation 
(35) to find 8, and finally use the polar coordinate formulas to find x and 
y. 

Equation (37) is an equation for a mass moving in a one-dimensional 
force field: it can be written r" = -dW (r) / dr, where 

K M2 
W(r) = --;:- + 2r2' (38) 

which is the equation of motion of a particle with one degree of freedom 
moving under a "potential." However, this potential W is fictitious rather 
than real (just a figment of the mathematics). 

Equation (37) is equivalent, as we showed in Sections 6.4 and 6.5, to the 
system 

r' = v (39a) 

, K M2 
V = - r2 + 7· (39b) 

We have seen in Theorem 6.5.2 that the energy function 

v2 v2 K M2 
E(r, v) = "2 + W(r) = "2 - -;:- + 2r2 (40) 

is constant along trajectories of motions in the rv-plane. 
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From equation (38), we can graph W(r), as in Figure 6.7.2. 
Then the level curves of E look like Figure 6.7.3, as you are asked to 

show in Exercise 6.7#3. 
W(r) 0 

5.0 

FIGURE 6.7.2. Mathematical "potential" W(J:). 

5.0 

V= r' 

~111!tsolution (E=O) 

f~ wlutions 
FIGURE 6.7.3. Level curves of E = !v2 + W(r). 

We see in Figure 6.7.3 that orbits with E < 0 are bounded (and we shall 
show that they correspond to elliptical orbits in the xy-plane of configura­
tion space), and that orbits with E ~ 0 are unbounded. 

We are not able actually to solve these equations for r and v as functions 
of time, but here we will be able to solve for r as a function of O. (This is as in 
Section 6.3, where we could not solve the Volterra equations x' = ax - c xy; 
y' = -by + f xy for x(t) or y(t), but dyldx = y'lx' did happen to be 
integrable, so we were able to solve for trajectories in the xy-phase plane.) 

Kepler's First Law. Suppose the motion considered has energy E and 
angular momentum M. Then putting together 

dO M 
= dt r2 

(35, again) 
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and 

from (40) 

we get 
d() d()/dr M 
dr = dt dt = r2.j2(E+Kjr-M2j2r2)' (41) 

as you can confirm in Exercise 6.7#6a. 
Equation (41) can actually be integrated (and Newton did it, in the very 

first book on calculus!), yielding (Exercise 6.7#6b) 

() (Mjr - KjM) 
= arc cos .j2E + K2jM2· (42) 

You can confirm the solution (42) by differentiating. Furthermore, now you 
can solve for r. 

If you set M2jK = p and .j1 + (2EM2jK2) = e, equation (42) becomes 

p 
r= , 

1+ecos(} 
(43) 

which is the equation of an ellipse with a focus at the origin, eccentricity 
e, and parameter p, as shown in Figure 6.7.4. (See Exercise 6.7#7.) 

a 

FIGURE 6.7.4. Ellipse. 

Kepler's Third Law. From analytic geometry, recall that the area of 
the ellipse is 1rab, where a is the semi-major axis and b is the semi-minor 
axis. (Intuitively, you can see this as stretching a disk.) But we saw in the 
discussion of Kepler's Second Law, combined with equation (35), that Mj2 
is the speed at which area is swept out by the vector r, so that if an orbit 
has period T, then 

27rab= MT. 
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Now some elementary geometry on Figure 6.7.4 shows that 

so that 

p 
a=---

1- e2 
and b- P 

-~' 

b rp 27ra3/ 2 

T = 27ra M = 27ra3/ 2 ~ = v'K . 

Thus Kepler's Third Law is proved. 

47 

Summary. Having said so much in this section, we pause for an overview 
because many of the ideas are by no means limited to the example of the 
two-body problem: 

1. The original problem concerns second order equations for two vectors 
with three components each, so there are 2 x 2 x 3 = 12 dimensions. 

2. A change of variable in terms of the center of mass of the physical 
system will allow us to use conservation of linear momentum to reduce 
the number of dimensions to six. 

3. By another conservation law for the direction of the angular momen­
tum, we can further notice that the actual motion would be in a plane 
rather than in a larger space, which further reduces the number of 
dimensions to four. 

4. Next, conservation of the magnitude of the angular momentum allows 
us to once more reduce the number of actual dimensions to two. 

5. Finally, conservation of energy allows us to solve the problem (but 
only for trajectories in the phase plane, not for the actual motion as 
a function of time). 

6.8 Flows 

We have been emphasizing solutions of differential equations as functions 
of time. Flows provide a language to emphasize the dependence on initial 
conditions. For instance, the value of a bank account depends on time, but 
we should remember that it also depends on the initial deposit. 

Let x' = f(x) be a differential equation in ]R2, and imagine drawing 
some shape in the plane (a rectangle, for instance, or a cat) and solving 
the differential equation for a fixed amount of time, starting at each point 
of this shape. The shape will move, and probably become distorted, as the 
following examples illustrate. 
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Example 6.8.1. For instance, the trajectories of the system of equations 

are hyperbolas, and if you let the "normal" cat (in Figure 6.8.1) flow for­
ward for time 1, you will find a cat like the "horizontally flattened" cat in 
the lower right, whereas if you let it flow backward, for time -1, you will 
get something like the "vertically squeezed" cat in the upper left. 

FIGURE 6.8.1. The Bow of a region under x' = x, y' = -y. A 

Examples 6.8.2. 
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FIGURE 6.8.2. Flow in the xy-plane of the same rectangle for three different 
differential equations. 
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The pictures in Figure 6.8.2 were made simply by drawing 30 steps of an 
approximate solution with Euler's method from each of the four corners of 
the rectangle bounded by x = 1, x = 2, Y = 1/2, and y = 1. 

Notice that for equations A, the rectangle simply rotates in the plane; for 
equations B, the rectangle stretches vertically as it moves to the right; for 
equations C, this particular rectangle moves to the lower right but becomes 
considerably distorted. & 

Of course, Examples 6.8.2 show only what is happening locally for a 
small rectangle in the phase plane. You should play around with Exercises 
6.8#1-6.8#3 in order to explore what happens globally-what changes are 
caused by the flows of different rectangles for these same equations. 

Now that you have begun to visualize a flow, we shall state a formal 
definition: 

Definition 6.8.3. Let r be a vector field on a subset of RR. The flow 
of the autonomous differential equation x' = f(x) is the function rPf(t, x) 
satisfying the conditions 

1. t 1-+ rPr(t, x) is a solution of the differential equation, as a function of 
t for each fixed x, 

2. rPr(O, x) = x. 

In other words, rPf(t, x) is the position at time t of the solution with 
initial position x at time O. 

As we have defined it, the flow of a differential equation exists even if 
the equation is not autonomous, but the definition is not natural if the 
equation is time dependent. It only describes the solutions that start at 
time O. For a time-dependent differential equation, we would have to let 
the "flow" depend on two "times," an initial and a final time. If you start 
an autonomous equation at the same point later, the solution describes the 
same trajectory later; the motion depends only on the "flowing time," not 
on the particular initial and final times. 

The procedure to write a closed formula for a flow, when it is possible, 
is to 

1. Solve the differential equation. 

2. Evaluate the constant of integration at t = o. 
3. Set rPr(t, x) equal to the solution with that value of the constant. 

The flow rPr(t, x) of a vector field r(x) will usually not be defined for all 
(t, x), because the solution starting at time 0 at x will not always be defined 
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at time t . This occurs for equations C of Example 6.8.2, for instance, but 
it is quite difficult to visualize the domain of tPf in 1R3 . Here is a simpler 
example. 

Example 6.8.4. For the differential equation x' = x 2 , the flow is given by 

x 
tPf(t, x) = -- when Itxl < 1. 

1- tx 

In this case, the domain of the flow is the region between the two branches 
of the hyperbola (Figure 6.8.3) . 

FIGURE 6.8.3. The domain for the flow of x' = x 2 • .. 

You are asked in Exercise 6.8#5 to verify the assertions of Example 6.8.4, 
and in Exercises 6.8#6 and 6.8#7 to consider several more examples. 

Examples 6.8.S. For equation A of Example 6.8.2, 

( t [x]) = [ cos(t)x + sin(t)y ] . 
tPr ' y - sin(t)x + cos(t)y 

For equations B of Example 6.8.2, 

For equations C of Example 6.8.2, there is no closed formula for the flow, 
because the equation x' = x2 - t cannot be solved in closed form (the main 
example of Part I of this text) . .. 

The following properties of flows follow immediately from the definition. 

Proposition 6.8.6. The flow of an autonomous differential equation x' = 
f(x) satisfies the following whenever the indicated flows are defined: 
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Theorem 6.8.7 (Continuity of Flows). If f(x) is a Lipschitz vector 
field, then ¢Jf(t,x) is a continuous function of both variables, i.e., as a 
function of the pair Ct, x), wherever it is defined. 

Proof. The fundamental inequality gives a slightly more precise result 
than the statement above. Choose Xo and to such that the flow is defined at 
(to,xo); suppose that K is a Lipschitz constant for the differential equation 
x' = f(x) valid in a neighborhood U of the set 

{¢Jf(t,xo),° :S t:S to}. 

Further, suppose that, on U, IIf(x)1I :S M for some M E JR, which will be 
possible if U is chosen sufficiently small. 

Then, by the Fundamental Inequality 6.2.2, 

so long as (tb Xl) is sufficiently close to (to, Xo) that ¢J(t, Xl) stays in U 
for t between 0 and t l . Clearly, the right-hand side of equation (44) can 
be made arbitrarily small by choosing (tl,xd sufficiently close to (to,xo). 
o 

In Chapters 8 and 8*, it will be useful to have this formal notation for 
flows. 

Chapter 6 Exercises 

Exercises 6.1 Graphical Representation 

6.1#1. Hand sketch phase plane trajectories for the following systems 
by finding the isoclines of horizontal and vertical slope, then finding the 
general direction of trajectories in the regions between (left or right, up or 
down). Use one color for the information from dx / dt = 0 , and another for 
the information from dy/dt = O. Use a third color to mark the resultant 
directions NE, NW, SE, or SWj draw sample trajectories in a fourth color. 

Some of the pitfalls encountered in first attempts at sketching phase 
planes are highlighted by the following: 

(i) An isocline of horizontal slope usually separates vertical behaviors, 
i.e., regions where trajectories have positive slopes from regions where 
slopes are negative. [There are exceptions, for instance, see part (c).] 
Similarly, an isocline of vertical slope usually separates horizontal 
behaviors. 
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(ii) Equilibria occur where an isocline of horizontal slopes meets an iso­
cline of vertical slopes. Where two isoclines of horizontal (resp. ver­
tical) slope meet, nothing happens except that you are doubly sure 
the slope is horizontal (resp. vertical). 

(iii) Solutions cannot actually cross or meet, except at a point where the 
Existence and Uniqueness Theorem (which you will meet as Theorem 
6.2.3) fails. You will observe solutions approaching or coming from 
an equilibrium, but they will not actually start or end there because 
if they were at the equilibrium, they would just stay there! 

Try the following exercises to illustrate these points: 

(a) 
dx/dt = x 

(d) dx/dt = x 
dy/dt = x - y dy/dt = x 2 _ y2 

(b) dx/dt = x (e) dx/dt = y 
dy/dt = -(x - y) dy/dt = x 2 _ y2 

(c) dx/dt = x (f) dx / dt = y + x 2 - 1 
dy/dt = (x _ y)2 dy/dt = x 2 _ y2 

6.1#2. As in the previous exercise, hand sketch phase plane trajectories 
for the following systems: 

(a) 
dx/dt = 1- x 

(f) 
dx/dt = 3x - 2xy 

dy/dt = x 2 - Y dy/dt = 2y _ y2 

(b)O dx/dt = x + 2 - y (g)O dx/dt = x - (1/4)x2 - xy 
dy/dt = x2 - y dy / dt = 2y - y2 - xy 

(c) 
dx/dt = Y - sin x 

(h) 
dx / dt = 2x - x 2 - xy 

dy/dt = x/4 - y dy/dt = Y - y2 - (1/4)xy 

(d) 
dx/dt = Y - sin x 

(i) 
dx / dt = x - 4x2 - xy 

dy/dt = x/4 + y dy/dt = 2y - y2 - 3xy 

(e) dx/dt = y(x + 1) 
dy/dt = (3 - y)x 

Compare the results of part (b) with Example 6.1.5. Parts (g), (h), and (i) 
are three of the four cases you will find in Exercise 6.3#3. 

6.1#3. Express the equation x" = cos t as a system of first order equations. 
Then use DiJJEq, 3D Views from MacMath or a similar computer graphics 
program to draw the following sample solutions in xyt, xt, yt, and xy views: 
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Start solutions at Xo = 0, Yo = 0, 1, 2, 3, 11", 11"/2, 311"/2, 211", etc. You can 
solve this particular second order equation just by integrating; compare 
with your pictorial results. 

6.1#4. Find phase portraits with a computer program, such as DijJEq, 
Phase Plane from MacMath, for the following systems. Print them and 
draw on your graphs (by hand if necessary) the isoclines of horizontal and 
vertical slopes, to verify that the trajectories indeed cross these isoclines 
with the proper slopes. 

dx/dt = y2_1 
(a) dy/dt = x2 + 2x 

(b) dx/dt = y(y - l)(y + 1) 
dy/dt = sin (x + y) 

( )
0 dx/dt = [(x - 2)2 + y2 - l][x2 + y2 - 91 

c dy/dt = (x _ 1)2 + y2 - 4 

6.1#5. Experiment in ]R3 with the Lorenz strange attractor of Example 
6.1.6. As in Figure 6.1.9, make a printout from DijJEq, 3D Views in Mac­
Math showing seven views: xyt, xy, XZ, yz, xt, yt, and zt. Experiment with 
what changes in the graphs when you make a slight change in the initial 
conditions. Make observations and at least one conjecture. Proving a con­
jecture may be too much to ask at this point, but see how far you can 
get. 

6.1#6. Another strange attractor in ]R3, attributed to O.E. Rossler (1979; 
see References), is derived from a physical situation of a dripping faucet. It 
is similar to the Lorenz attractor, but simpler. The following set of equa­
tions provides an example for computer experimentation. 

dx/dt = -(y + z) 

dy/dt=x+0.2y 

dz/dt = 0.2 + z(x - 5.7). 

Exercises 6.2 Theorems 

6.2#1°. Prove Theorem 6.2.2. Notice that iful(t) and U2(t) are continuous 
piecewise linear functions, then lIul(t) - u2(t)1I is not a piecewise linear 
function (give an example). Why is the proof still correct? 

6.2#2. Prove Theorem 6.2.3. 

6.2#3. Prove Corollary 6.2.4. 

6.2#4. Justify the formulas in Section 6.2 for the various numerical meth­
ods. 
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6.2#5. Let f(t, x) be defined in the region I x S, where I is the interval 
to ::; t ::; hand S = {x I ai ::; Xi ::; bd. Suppose the solution u(t) with 
u(to) = Xo is a mapping u : I ---- S and that the Euler approximations 
Uh(t) also map I to S for h ::; ho. Then find a bound for Iluh(t) - u(t)11 of 
the function II Uh (t) - u( t) II ::; C h for all tEl, where C should be expressed 

in terms of If I, I~~I, It! I for i = 1, ... ,no 

Hint: Look at Theorem 4.5.2. 

6.2#6. 

(a) For Euler's method, find stepsize h such that a solution of x' = y, y' = 
-x starting at (0,1) is guaranteed to be accurate to three decimal 
places at t = 1r. 

(b) For Euler's method, find h such that a solution of x" = x 2 - t starting 
at (0,0) is guaranteed to be accurate to three decimal places att = 1. 

6.2#7. For the following differential equations with x(O) = 1, y(O) = 0, 
and stepsize 0.1, approximate by hand the first two steps by (i) the Eu­
ler method, (ii) the midpoint Euler method, and (iii) the Runge-Kutta 
method: 

(a) x" + x = 0 

dx/dt = y 
(b) dy/dt = -2x (You'll meet this in Section 6.3.) 

(c) d()/dt = y (You'll meet this in Section 6.5.) 
dy/dt = -k sin () 

What differences does the method make in the drawings of trajectories? 

6.2#8°. 

(a) Show that along the solution of dx/dt = y, dy/dt = -x, the func­
tion F(x, y) = x 2 + y2 is constant. What are the trajectories of the 
solutions in the phase plane? 

(b) Show by hand calculation that if you solve the same system of differ­
ential equations using Euler's method, the approximate solution will 
spiral out to infinity. Using a moderately large stepsize, hand sketch 
the approximate trajectory in the phase plane. Confirm with a com­
puter printout, checking especially that your hand sketch goes in the 
proper direction. 

(c) What happens if you use Runge-Kutta? (It depends on the stepsize 
h, and to see how requires quite a bit of computation, as in Chapter 
5.4 of Part I. We do not ask for an analytic treatment here, but rather 
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to see how far you can get with what is more easily available.) Since 
the trajectories in MacMath's Dif/Eq, Phase Plane are by default 
calculated by Runge-Kutta, you can experiment with the computer 
to see what happens, using different stepsizes, trying both small and 
large h values. 

(d) What happens if you use midpoint Euler? Again, you can experi­
ment with the computer, then write a theoretical support for your 
observations. 

6.2#9. For Example 6.2.5, with dx/dt = y, dy/dt = -x, show exactly 

(a) when a pair of boundary conditions x(ta ) and X(tb) will not specify 
a unique solution (resulting in either an infinite number of solutions, 
or no solution at all); 

(b) when a pair of boundary conditions will specify a unique solution. 

Hint: Use the fact that all the solutions are periodic with period 27r. 

Exercises 6.3 Sharks and Sardines 

6.3#1. Complete the steps of the following calculations in Section 6.3: 

(a) from (7) to (9) to show that F(x, y) in (10) is constant along a solu­
tion, 

(b) to verify equation (11). 

6.3#20 • Referring back to the sharks and sardines example of Section 6.3, 
consider the function F described by equation (10): 

F(x, y) = Ixl b Iyla e-(fz+ctI). 

(a) Show that this function F has a unique maximum at x = b/ f, y = 
a/c, and that it decreases to zero when (x, y) approaches the axes or 
goes to infinity in either direction. 

(b) What might this mean ecologically? 

6.3#3. Let x(t) and y(t) represent the populations of two species, both 
competing for the same food supply. 

(a) Explain (interpret) how the following model represents such a system, 
for positive constants ab a2, bb ba, Cb C2i that is, by factoring out a 
common factor, consider each population rate of change as a multiple 
of the population size, e.g., (al - b1x - ClY)X. Then identify which 
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terms are caused by crowding, which by competition, and which rates 
are independent of both. 

dx/dt = alx - b1x 2 - CIXY 

dy/dt = a2Y - b2y2 - C2Xy. 

(b) Show that in the first quadrant of the xy phase plane the isocline 
of horizontal slope is a straight line, the isocline of vertical slope 
is another straight line, and that both of these lines have negative 
slope. Argue why the following sketches show the four possible cases 
for relative position of these isoclines: 

I~ ITA- II~ IV~ 
( c ) If you consider dy / dx as (dy / dt ) / ( dx / dt), you have a first order dif­

ferential equation in x and y. The lines (isoclines) of horizontal and 
vertical slopes act as fences in the xy-plane. For each case, I-IV, 
mark each region determined by the isoclines with the general direc­
tion (right or left, up or down) of the xy slope, as determined by 
whether dx/dt and dy/dt, respectively, are positive or negative. Then 
draw trajectories that match these directions and those of the iso­
clines. Identify and label "funnels" and "antifunnels" in the direction 
of increasing t. 

(d) This is a matching exercise: tell which of the above cases in (b) and 
(c) represents each of the following possibilities: 

A. The two species tend to an equilibrium where both survive. 

B. Species x surely becomes extinct. 

C. Species y surely becomes extinct. 

D. In almost all cases, one of the two species will become extinct, 
but which one depends on the initial condition. Which initial 
conditions provide an exception? 

(e) Make computer examples for each of the four cases; three of them 
occurred in Exercise 6.1#2(g), (h), (i). Find values (nonzero) of the 
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parameters (ai, bi , Ci) that will satisfy the axes intercepts for each 
of the four possibilities; for each, provide a computer printout from 
MacMath's DiffEq, Phase Plane showing trajectories in the xy phase 
plane. Draw arrows to indicate the direction of increasing t on the 
trajectories for both of these graphs. (Remember that trajectories in 
the phase plane do not necessarily move from left to right.) 

If possible, make a printout from DiffEq, 3D Views. Use the xyt 
view to clarify your choice of trajectory directions in the phase plane; 
explain exactly how the xt and yt views relate to the phase plane 
trajectories. 

6.3#4. For the system of differential equations, 

dx dy 
dt = 0.2 - 0.09 y, dt = -0.04 xy 

(a) Sketch the xy phase plane with isoclines for horizontal and vertical 
slopes. Add an arrow in each region bounded by these isoclines and 
the axes to show the general direction (up or down, left or right) for 
the trajectories. 

(b) Then, with the aid of the drawing below, showing the separatrices 
of the saddle, make a clean sketch with these isoclines and a repre­
sentative set of trajectories, adding arrows to show the direction of 
increasing t . Add arrowheads also for the separatrices. 

10 

I. 

r.c10;;----~-=- .-. -----
10 

( c ) This model represents warfare between conventional troops x (in 
thousands) and guerilla troops y (in hundreds), with t measured in 
days. The conventional force sends in reinforcements and suffers sig­
nificant losses only at the hands of the guerillas. The guerillas are 
confined to a single forest area and remain essentially invisible, so 
the chances of hitting one decreases as their number decreases; fur­
thermore, the guerillas are cut off from reinforcements. 

(i) Show how the equations account for reinforcements and combat 
losses by labeling each term. 
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(ii) Tell how many men per day are sent as reinforcements to the 
conventional force. 

(iii) If at the beginning of the campaign the conventional force num­
bers 2000 and the guerilla force 600, use the graph to tell which 
side wins and why (mathematically!). 

Exercises 6.4 Higher Order Equations 

6.4#1. Express each of the following differential equations as a system of 
first order differential equations: 

(a) x" + 3x' + 5x = 0 

(b) x" + 3tx' = t 

(c) XIII - tx" + x' - 5x + t2 = 0 

(d) x" - xx' = o. 
6.4#2°. A classical method for solving second order differential equations 
with either the dependent or independent variable missing [Le., either x or 
t is missing from I(x",x',x,t) = 0] is to make a substitution y = dx/dt 
which results in the original equation being expressable as a first order 
equation in either 

y and t, if I(x",x',t) = I(y',y,t) = 0, 

or 

y and x, if I(x",x',x) = 0, using 

" dy dx dy 
x = dx dt =Ydx' 

so you end up with I(dy/dx,y,x) = o. 
In either case, this new equation is a first order equation in y j once it is 

solved for y (as a function of t in the first case, of x in the second), you can 
get to x = u(t) by solving another first order equation, dx/dt = y, which 
comes from the original substitution. 

You can apply this method to actually solve parts (a), (b), and (d) of 
Exercise 6.4#1. Take note of the difference in character for each equation. 
That of part (a) is autonomous (no explicit dependence on t) and lin­
ear, with constant coefficients, and will be solved by the general algebraic 
methods of Chapter 7. If you make the substitution y = dx/dt, you find a 
first order equation that can be separated in the variables (x, v) if you set 
y = xv, so that dy/dx = xdv/dx + v (see Part I, Exercise 2 misc#2 about 
"homogeneous" first order equations). 
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The equation of part (b) is a second order nonhomogeneous linear equa­
tion, with nonconstant coefficients. The methods of Chapter 7 do not quite 
apply, but the substitution y = dx / dt makes it a first order nonhomo­
geneous linear equation that is solvable (by the methods of Chapter 2, 
Sections 3 and 4). 

The equation of part (d) is not linear, so it would not be solvable by 
the methods of Chapter 7; thus, this classical substitution can be a helpful 
trick. 

6.4#3. For the system 
dx/dt = 3x - Y 
dy/dt = x+ 2y 

(a) Replace by a second order equation in x. 

(b) Replace by a second order equation in y. Does the result surprise 
you? 

(c) Prove that for any system of linear first order equations with constant 
coefficients, 

dx/dt = ax + by 
dy/dt = ex + dy 

the second order equations in x and y are always exactly the same. 

(d) Show that, despite the results of (c), the solutions to (a) and (b) are 
not exactly the same. Explain. Hint: Show what happens with initial 
conditions x(O) = 0, y(O) = 1. 

6.4#4. Replace, where possible, the following systems of first order differ­
ential equations by a single equation of higher order. 

(a) dx/dt = 3x - y2 
dy/dt = x+2y 

(b) dx/dt = 3x - y2 
dy/dt = x 2 + 2y 

(c) dx/dt = y + cos(x + y) 
dy/dt = x - y sinx 

dx/dt = x 
(d) dy/dt = y sinx 
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Exercises 6.5 Mechanical Systems with One 
Degree of Freedom 

6.5#1. Consider a particle with mass 1 moving on a line under the poten­
tial V(x) = x4 - 1. 

(a) Show that the particle obeys the differential equation 

x" = -4x3 , 

and write this second order equation as a system of two first order 
differential equations. 

(b) Write down the energy function and show that the energy is constant 
along solutions. 

(c) Sketch some level curves of the energy function. One nice way is to 
use MacMath's Analyzer program to sketch the two y functions (one 
positive, one negative) for each value of E. 

6.5#2. Consider a particle of mass m moving on a line under the potential 
V(x) = 2x3 - 3x2 • 

(a) Show that the particle obeys the differential equation 

mx" = -6x2 + 6x, 

and write this second order equation as a system of two first order 
differential equations. 

(b) Sketch the level curves of the energy function in the phase plane; find 
and describe the equilibria of the motion. 

6.5#30 • Consider a particle with mass m = 1, which moves with one 
degree of freedom under the potential 

V(x) = X4 - x2 • 

(a) From a sketch of the graph of V(x) [or of 2V(x)], sketch in the phase 
plane different level curves for the total energy. Find the equilibria. 
Mark at least three different level curves corresponding to E(x, y) = 
C, where C is negative, 0, and positive, respectively. Put arrows on 
the curves to indicate in which direction the particle follows them. 
(To make it clearer, use different colors for different trajectories). 
Describe the various types of motion for the particle. 

(b) What happens if a small friction term is added on, proportional to 
the velocity? Sketch the corresponding drawing in the phase plane 
and describe the equilibria and the motions. 
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6.5#4. For a spring with no friction, the potential energy is 

k > o. 

Find the differential equation describing the motions of a bob of mass m at 
the end of such a spring and draw the trajectories in phase space. Explain 
why the trajectories look the way they do. 

6.5#5. A mass m is suspended from a spring with spring constant k, as 
shown. 

IIIIIIII 

I JJ -,"""m_~ 
;:: ~·i J stretched position 

Show that if we measure the position of the mass relative to the stretched 
equilibrium position, we can rewrite the downward force, 

F = mg - kx = mx", 

without the mg term and thus the force is dependent on position alone. 

6.5#6. The force exerted by a spring on a frictionless cart at its end is 
often modeled by F = -k x where x is the displacement of the cart. 

!~ ~ m ;: ....... -....... . .. _-_._- . 

I -~ 

Suppose that a better model is F = -k(x) x, where k(x) = eX'. Let the 
mass of the cart be m. 

(a) Sketch the phase portrait of this system. 

(b) If the cart is held still at a displacement of l > ! and then released, 
what will its velocity be the first time its displacement is !? 

6.5#70 • Find a function V(x, y) that is constant along solutions for the 
system 

dx ( 2 
dt = - 1- x ), 
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(Warning: This is truly an exercise in integration!) 

6.5#8. Figures 6.5.3 and 6.5.4 show a saddle point at (rr,O). Use an ap­
proximation of sin 0 to show that this is indeed a saddle point of E 
y2/2 - k cos O. Draw the graph of the trajectories near (rr, 0). 

6.5#9. Consider the differential equation 

x" = ax - x 3 . 

( a) '!Urn this equation into a system of two first order equations 

dx/dt = I(x, y) 

dy/dt = g(x, y) 

and state precisely what the relation is between the two. 

(b) Find a function E(x, y) which is constant on the trajectories. 

(c) What do the level curves of E look like for a > 0, a = 0, a < O? 

(d) Classify the solutions of the original second order equation in the 
three cases of part (c). 

6.5#10°. Consider the dynamical system with one degree of freedom 

" dV x =--, 
dx 

where Vex) = sin x + ax2 with a > 0 a parameter. 

(a) '!Urn the equation into a system of first order equations. 

(b) Find a conserved quantity for this system. Plot approximately the 
level curves of this conserved quantity, for a = 0.01, a = 0.1, a = 0.5, 
a=l. 

(c) Describe the equilibria of the system as functions of a. 

6.5#11. Confirm that the mathematical total energy function (18), 

y2 
E(O,y) = 2 - K cos 0, (18) 

is within a constant multiple of the physical total energy, kinetic energy 
plus potential energy. 

6.5#12. Consider the case of a bead constrained to move along a semi­
circular wire. 
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(a) Show that if the bead is a distance s along the wire (from the bottom), 
with x-coordinate x{s), the force ms" is 

V'{x(s» 
-m -Vr=l =+=7.:{V~,:;={ x~{ s=:=::) ):::=;0)2 

(20) 

(b) Confirm all the steps of the derivation in Example 6.5.5 to show that 

s" = - sin(sj.e). 

(c) Confirm that in this case, with s = .eO, that 

dv 
ds 

!'(O) implies !(O) = -K \1'1- (20j7r)2. 
\1'1 + U'(O»2 

6.5#13. Consider the final remark of Section 6.5, that one may wonder 
whether, given a function V(x), there is some other function W(x) such 
that the motion on the wire with the shape of the graph of W, that is with 
equation 

" W'(x(s» 
s = , \1'1 + (W'(x(S)))2 

is precisely the same as motion under x" = -dVjdx. Clearly, one require­
ment is I dVjdx I < 1. Show that this is the only requirement. 

Exercises 6.6 Essential Size, Conservation Laws 

6.6#1. Find the essential size of the following systems: 

(a) x' = x, y' = 2y + x 2 

(b) x' = xz,y' = 2y + x2 ,z' = Y 

(c) x' = x,y' = 2y,z' = x2 

6.6#2°. 

(a) In Example 6.6.8, fill in all the steps (there are several) that lead 
from equations (26) to (27). 

(b) In Example 6.6.8, verify the statement that r will never leave the 
plane spanned by r(to) and r'(to). 

(c) In Example 6.6.9, verify the statement that the magnitude of r x r' = 
M, which is conserved, is in fact the angular momentum. 
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Exercises 6.7 Two-Body Problem 

6.7#1. For two bodies moving under Newton's Universal Law of Gravita­
tion, 

" amI (Xl - X2) 

X2 = IlxI - x211 3 

(a) Show that linear momentum is a preserved quantity. 

(b) Using ml = 1 x 105 , m2 = 2 x 105 and the initial conditions 

x,(to) ~ U] , 
x,(to) ~ [=!] , 

show that the position vector 

x(to) ~ [ =~] , 
x,'(to) ~ m ' to ~ 1, 

X = mlXI + m2x 2 

ml+m2 

(33) 

for the center of mass can be written as X(t) = a+t b, hence showing 
that the center of mass moves at constant velocity in a straight line. 

(c) After translation to the center of mass, X, show that r = Xl - X 
satisfies 

" r r = -K IIr1l3 . 

(d) We could set rl = Xl - X and r2 = X2 - X. Show that then 

-m2 
rl = (X2 - Xl) 

ml+m2 
ml 

r2 = (X2 - Xl). 
ml+m2 

6.7#20 • For three bodies we would have three second order differential 
equations in Xl, X2, X3 . The center of mass is defined by 

X = mlXI + m2X 2 + m3x 3 . 

ml +m2+ m3 
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(a) Show the conservation of linear momentum for three bodies: 

(b) How does the center of mass move? 

6.7#3. Show that in the two-body problem the level curves of the total 
energy E look like Figure 6.7.3, using the graph of the "potential" W{r) 
given in Figure 6.7.2. 

6.7#4. 

(a)O Study the motion under a central force 

k r 
- r3 r' 

instead of the gravitational force 

k r 
- r2 r 

of the two-body problem of Section 6.7. 

Write down the equations similar to (35) through (39) in Section 6.7. 
Make the drawings similar to Figures 6.7.2 and 6.7.3. Explain why 
there is no bounded motion. 

(b) More generally, if the central force is 

k r 
- rQ r' 

for which a can we have bounded motions? 

6.7#5. 

(a) Prove that Kepler's Second Law is equivalent to conservation of an­
gular momentum. Note that both of these statements are valid in any 
central force field, not just one with an inverse square law such as the 
gravitational field. 

(b) Use MacMath's Planets program to illustrate your examples. 

6.7#6. 

(a) Confirm equation (41) in the derivation of Kepler's First Law by 
integration of 

dJ) M 
= (41) 
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(b) Confirm by integration of (41) that 

(Mlr-KIM) 
O=arccos . 

J2E + K2/M2 
(42) 

6.7#7. Show that 
r= p 

1+ecost 
is the equation of an ellipse, as claimed in the proof of Kepler's First Law. 
Recall that an ellipse is the set of points such that the sum of the distances 
to the foci is constant (= 2a). 

6.7#8. The constant of gravity G is (6.673 ± 0.003) x 1O-8cm3/(gsec2 ). 

Note, incidentally, that it is not known with great precision. 

(a) If a body with small mass ml rotates around one with large mass m2 

with period T and semi-major axis a, give a formula for m2 in terms 
of G, T, and a. How sensitive is this formula to the assumption that 
one mass is negligible? For instance, how wrong is it if ml = m2/4? 

(b) Assume that the mass of the earth is negligible with respect to the 
mass of the sun. Given that the distance from the earth to the sun 
is approximately 1.496 x 1013cm, and that the earth revolves around 
the sun in 1 year (1 year = 3.156 x 107 sec), what is the mass of the 
sun? 

(c) Assume that the mass of the moon is negligible with respect to that 
of the earth. Knowing that the distance of the moon to the earth is 
approximately 3.85 x 1OlOcm, roughly what is the mass of the earth? 

6.7#9. A recent practical application of the two-body problem was cal­
culation of the mass of Pluto, from the 1978 discovery that Pluto has a 
moon: 

(a) Pluto was discovered in 1930, as a result of perturbations in the orbit 
of Neptune. In 1978, astronomers J. Christy and R. Harrington dis­
covered that Pluto has a satellite, which they called Charon. Charon 
appears, from the earth, to have an orbit with a radius of about 
20,000 kilometers about Pluto, and a period of about 6 days and 10 
hours. If the orbit is circular, what is the mass of Pluto? 

Remark. We have asked some astronomers why the orbit is assumed 
to be circular. They answer that a very eccentric orbit leads to large 
tidal effects, which would presumably either break up the satellite, 
or at least absorb enough energy to bring it to a more circular orbit. 
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(b) The number found in part (a) is about 100 times too small to ~xplain 
the irregularities in the orbit of Neptune. Assume rather that the 
orbit of Charon is very elliptical, with the long axis pointed toward 
the earth. How eccentric would the orbit need to be in order to bring 
the mass up to the level required to explain the irregularities? 

6.7#10. We are collecting exercises derived from playing with MacMath's 
Planets program and welcome more examples. 

Exercises 6.8 Flows 

6.8#1. Use a phase portrait program like MacMath's DiffEq Phase Plane 
to explore the flow of different rectangles for equations A of Example 6.8.2. 
For example, some possibilities are shown in the following diagram for var­
ious positions of a rectangle like the original one (darkest) of the example: 

3.0 

IT] m w 
0 1IIIIIIIIIilmi 

-5.0 5.0 

CO W 

(i) Show the flow for the solid rectangles symmetric to the original rect­
angle. 

(ii) Explain the similarities and differences in the results. 

(iii) Predict what will happen to the dotted rectangles and verify with the 
computer. 

(iv) Conjecture and explain what happens geometrically to the flow in 
general, globally, for this differential equation. One way to do this is 
to imagine the phase plane filled with little squares and think about 
what will happen to them all as you take a step in t. 

6.8#2. Repeat Exercise 6.8#1 for equations B of Example 6.8.2. 

6.8#3. Repeat Exercise 6.8#1 for equations C of Example 6.8.2. Note 
that the behavior of this flow is far less obviously predictable than those 
of equations A and B; this is because the dependence on initial condition 
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really rules this flow! You should find several different behaviors to explain 
in this example. This system C is equivalent to the famous one-dimensional 
equation dx/dt = x 2 - t of Part I of this text. Does that help to explain 
your results? 

6.8#4. For each of the cases A, B,and C of Example 6.8.2, draw or compute 
and print the direction field with a number of trajectories. Then explain 
what additional information you get from the flow that you do not get from 
the direction field. 

6.8#5. Verify that the formula and the domain in Example 6.8.4 are cor­
rect. 

6.8#6°. Give a formula and the appropriate domain for the flow of the 
following equations: 

X' = x3 , x' = x3 - x. 

6.8#7. For the following differential equation, an explicit formula for the 
flow cannot be given in elementary terms. Sketch the domain of the flow, 
and give a formula for the domain using definite integrals. 

x' = x2 - sin(x). 

6.8#8. This exercise is quite a bit more challenging than the previous ones. 
Try to sketch, in 1R3 , the domain of the flow from equations C of Example 
6.8.1. In particular, describe how this domain is related to the exceptional 
solution of the equation. How does this domain intersect the plane x = a 
for a small (say a = -5), or for a large (say a = 5)? 
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Systems of Differential 
Equations 
The only large and important class of systems of differential equations that 
has been extensively analyzed is that of linear differential equations, which 
we begin to study in this chapter. We will give examples in Section 7.1 and 
the formal (simple) side of the theory in Section 7.2. The more substan­
tive theoretical results (for linear equations with varying coefficients) are 
deferred to Chapter 12 in Part III. 

The class of linear differential equations for which we can in general 
find explicit solutions is restricted to those with constant coefficients. The 
remainder of this chapter will be devoted to these: how to compute and 
analyze their solutions. Chapters 8 and 9 deal with important facts that 
extend from linear to nonlinear differential equationsj Chapters 10 and 11 
(in Part III) will work out interesting classes of examples. 

As we will see, the theory for constant coefficients is largely linear algebra. 
When you need to review basic linear algebra operations, consult Appendix 
L, Sections L1-L6. The related computer programs for finding eigenvalues 
and eigenvectors are elaborated in Appendices L7 and L8. 

7.1 Linear Differential Equations in General 

A linear differential equation for a vector function x{t) is one that can be 
written as 

X' = A{t)x (I) 

or, more generally, 
X' = A{t)x + get), (2) 

where A is a matrix and g is a vector, both of which can be filled with 
functions of t. The word "linear" means with respect to the dependent 
variable Xj the entries of the matrix function A{t) and the vector function 
get) need not be linear functions of the independent variable t. 

Example 7.1.1. The system 

X' =y 

y'=-X, 
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which was introduced in Examples 6.1.2, 6.1.3, and 6.2.5 and is one of the 
basic linear equation examples that you will see often, can be written 

X' = A x. 

Example 7.1.2. The system 

x' =t2x-y 

y' = (lnt)x + et 

is also linear in x and y and can be written 

[X]' [t2 
Y = lnt 

x' = A(t) x + get). 

where the matrix A as well as the vector g depends on t, but their entries 
are in fact not linear functions of t. • 

Example 7.1.3. The system of equations 

is not linear. It can be written 

x' = y+xy 

Y'=X+y2 

or as 

[:J' [~ (l;X)] [:] 

[:],=[i !] [:], 
but however you write it, the matrix A must contain entries in the depen-
dent variables x and y. • 

The case of linear differential equations where x is one-dimensional has 
been extensively treated in Chapter 2. We present here two archetypal 
examples in two dimensions: 

Example 7.1.4. The damped harmonic oscillator. Suppose a mass m 
is suspended from a spring with restoring force F and damping constant 
k, as shown in Figure 7.1.1. If x denotes the displacement of the mass 
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from equilibrium and y its velocity, then it obeys the system of differential 
equations 

x' =y 
my' = -Fx - ky, 

(3) 

which can be written alternatively as 

(4) 

FIGURE 7.1.1. Mass on spring. 

You may be more familiar with the same problem in the form of a single 
second order differential equation, 

mx" + kx' + Fx = 0, (5) 

which you can obtain by differentiating the first equation of system (3) and 
substituting x" = y' and x' = y into the second equation of the system . 

• 
Exercise 7.1-7.2#5 elaborates on Example 7.1.4 for the case of varying 

rather than constant mass (a water bucket that leaks). 

Example 7.1.5. The driven RLe circuit. Consider the electrical cir­
cuit of Figure 7.1.2, consisting of a resistor with resistance R, a capacitor 
with capacitance C, an inductor with inductance L, and a generator which 
furnishes a potential drop f ( t). 

resistor 

~ 
capacitor 

FIGURE 7.1.2. Electric circuit. 
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Then, as you have probably seen in physics or engineering courses (and 
as we shall show in Chapter 10 of Part III), the voltage drop V(t) across 
the capacitor and the current I(t) through the inductor satisfy the system 
of equations 

CV'=I 
LI' = -V - RI + f(t), 

which can be written alternatively as 

(6) 

Again, you may be more familiar with the equation in second order form: 

LQ" + RQ' + (l/C)Q = f(t), (7) 

where Q = CV is the charge on the capacitor. A 

Notice that the two equations (5) and (7) of Examples 7.1.4 and 7.1.5 are 
almost the same; in fact the equation describing a forced damped harmonic 
oscillator would be precisely the same as the equation describing the driven 
RLC circuit. These models will be greatly expanded in Chapters 11 and 10 
of Part III, respectively. 

Equations like (5) and (7) appear constantly in physics and engineering, 
both in their own right and as approximations to other more complicated 
equations. 

NONLINEAR EQUATIONS 

Certainly not all systems of differential equations are linear. Nearly every 
example of such a system that was discussed in Chapter 6, such as 

i. the predator-prey model: 

ii. the simple pendulum: 

x' = ax - bxy 
y' = -cy + dxy, 

0" = -K sinO, 

iii. the derivation of Kepler's First Law: r" = - K /r + M2 /r3 , 

is not linear, because terms like xy, sinO, and rm (for m =f:. 1) are not linear 
in the variables 

respectively, that underlie each of these examples. 
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HIGHER ORDER DIFFERENTIAL EQUATIONS 

Very often those systems of differential equations that are linear appear 
in the form of higher order linear differential equations [as defined in the 
Introduction, equation (5)], like this section's equations (5) and (7), rather 
than as systems of first order differential equations. However, the method 
of Section 6.4, translated into the language of matrices, easily changes a 
higher order equation into a system of first order equations. 

Example 7.1.6. The equation x'" - 3x" + tx' - x + t2 = 0, of Example 
6.1.6 in Section 6.4, can be written as 

x' = [~ ~~] x + [ ~ ] , 
1 -t 3 -t2 

where the desired solution is x = u(t) = Xl(t). [Recall that X2(t) = u'(t) 
and X3(t) = u"(t).] .A 

Example 7.1.6 illustrates the following procedure for converting an nth 
order linear differential equation to a system of first order linear differential 
equations in matrix form: 

(1) Solve the original nth order equation for x( n) • 

(2) The bottom line of the matrix A(t) is formed by the coefficients of 
x, x', x", . .. ,x(n-l), in that order, the bottom entry in the vector g(t) 
is the extra function of t. 

(3) Above the bottom line of the matrix, all entries are zeroes except in 
positions just above the main diagonal, where they are ones. 

If you have already run into higher order linear differential equations 
such as (5) and (7), then you are probably also familiar with the cookbook 
method for their solution: 

Recipe 7.1.7. To solve the equation 

ax" + {3x' + '"(x = 0, (8) 

substitute u(t) = emt into equation (8), giving (am2 + 13m + '"()emt = o. 
Since emt does not vanish, we get the characteristic equation 

am2 + 13m + '"( = o. (9) 

There are three cases to consider: 



74 7. Systems of Linear Differential Equations 

(a) (32 - 40:, > 0, so the quadratic equation (9) has two real roots ml 
and m2. Then the general solution is 

(b) (32 - 40:, < 0, so the quadratic equation (9) has two complex roots 
J.L ± ia. Then the general solution is 

(c) (32 - 40:, = 0, so the quadratic equation (9) has a single double root 
m. Then the general solution is 

Most of the remainder of this chapter is devoted to understanding this 
recipe and its generalizations beyond two-dimensional systems of linear 
differential equations. 

7.2 Linearity and Superposition Principles 

In exact analogy with the one-dimensional linear differential equations that 
we studied in Sections 2.2 and 2.3 in Part I, a linear equation of the form 

X' = A(t)x + g(t) 

is called homogeneous if g(t) = 0 and nonhomogeneous if g(t) =1= O. In the 
latter case, the equation x' = A(t)x is called the associated homogeneous 
equation. 

There are a certain number of important algebraic properties of linear 
differential equations, concerning sums of solutions and so forth. They take 
a bit of time to state, but they are very easy (which does not mean they 
are not important). 

These properties may remind you of similar statements about linear (non­
differential) equations and their associated homogeneous equations. This is 
not surprising: they are somehow the essence of linearity. At the end of this 
section, we will give the general framework, which includes both. 

Let A(t) be an n x n matrix with entries continuous functions of t. 

Theorem 7.2.1 (Superposition of solutions for homogeneous equa­
tions). If Ul(t) and U2(t) are two solutions of the homogeneous linear 
differential equation x' = A(t)x, then any linear combination of those so­
lutions 
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for any two numbers 0 1 and O2, is also a solution. 

Proof. Just plug u(t) = 01U1(t) + 02U2(t) into x' = A(t)x and rearrange 
terms. 0 

Example 7.2.2. Consider x" + 3x' + 2x = o. You can obtain from Recipe 
7.1.7 that two solutions are x = U1(t) = e-t and x = U2(t) = e-2t and that 

(10) 

is also a solution, or, if you prefer to work with a system of first order 
equations, by the algorithm of Section 6.4, 

[:r=[-~ -!] [:]. 
Two solutions are U1(t) = [ ::':~t] and U2(t) = [_~:~2t]' as you can 

confirm by substitution, and so also is 

Note that the top line of the vector solution matches the expression you 
got for x = u(t) in (10). But it is not obvious that this includes all of the 
solutions. & 

In order to show that indeed we have all solutions for a linear differential 
equation like Example 7.2.2, we shall wait until Theorem 7.4.12 when we 
will have a formula showing the existence of solutions. You can show in 
Exercise 7.2#6 that linear differential equations with constant coefficients 
automatically satisfy a Lipschitz condition, so from the Fundamental In­
equality 6.2.2 you will also have uniqueness. 

Theorem 7.2.3 (General solution of nonhomogeneous equations). 
If up(t) is any (particular) solution of a nonhomogeneous differential equa­
tion 

x' = A(t)x + g(t), (11) 

then a vector function u(t) is a solution of (11) if and only if u(t) can be 
written 

u(t) = up(t) + Uh(t), 

where Uh(t) is a solution of the associated homogeneous equation 

x' = A(t)x. 
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Proof. We show that u(t) = up(t) + Uh(t) is a solution by plugging in: 

Then we show that the solution must be of form u(t) = up(t) + Uh(t) by 
proving that u(t) - up(t) satisfies the homogeneous equation A(t)x = 0: 

(U(t) - up(t»' = u'(t) - u~(t) 

= A(t)u(t) + g(t) - (A(t)up(t) + g(t» 

= A(t)(u(t) - up(t». 0 

As with the linear equations in one dimension discussed in Sections 2.2 
and 2.3 in Part I, the usual ways of finding a particular solution Up(t) to 
a nonhomogeneous equation are the methods of undetermined coefficients 
(an educated guess) and variation of parameters. We shall use the first of 
these here and discuss the second for higher dimensional systems of linear 
equations later, in Section 7.7. 

Example 7.2.4. Consider 

A particular solution to the entire nonhomogeneous equation is 

(t) _ [0.1 sint - 0.3 cost] 
Up - 0.1 cos t + 0.3 sin t 

as you can confirm, and a solution to the associated homogeneous equation 
was found in Example 7.2.2. Therefore, 

[ 0.1 sint - 0.3 cost] [ e- t ] [ e-2t ] 
u(t) = 0.1 cos t + 0.3 sin t + C1 _e- t + C2 _2e-2t 

for any C1 and C2 is a solution to the original equation. A 

Example 7.2.4 is the system that represents x" + 3x' + 2x = sin t, so, 
as in Example 7.2.2, you can confirm that a solution to this second order 
equation is read from the top line of the vector equation: 

Theorems 7.2.1 and 7.2.3 are both special cases of a more inclusive the­
orem: 
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Theorem 7.2.5 (Superposition of solutions for nonhomogeneous 
equations). Iful(t) andu2(t) are solutions of two nonhomogeneous linear 
differential equations 

X' = A(t)x + gl (t) and x' = A(t)x + g2(t), 

respectively, with the same associated homogeneous equation x' = A(t)x, 
then 

u(t) = Ul(t) + U2(t) 

is a solution of the equation x' = A(t)x + gl(t) + g2(t). 

Proof. Just plug in. 0 

Example 7.2.6. Consider 

A particular solution to the nonhomogeneous equation 

[:r=[-~ -!] [:]+[~] 
is, as you can confirm, U2(t) = [t::] j in Example 7.2.4, we found that 

the solution to the nonhomogeneous equation 

is 
(t) _ [0.1 sin t - 0.3 cos t] 

up - 0.1 cost + 0.3 sint . 

Therefore, 

[ 0.1 sin t - 0.3 cos t + (1/6)et ] [ e-t ] [ e-2t ] 
u(t)= 0.1 cost +0.3 sint+ (1/6)et +C1 -e-t +C2 -2e-2t 

is, for any C1 and C2 , a solution to the whole thing. A 

In the language of linear algebra, the above results may be restated as 
follows: 

Theorem 7.2.1 says that the set of solutions of a homogeneous 
linear differential equation forms a vector space. 
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Theorem 7.2.3 says that the set of solutions of a nonhomo­
geneous linear differential equation is an affine space, i.e., the 
translate of the vector space of solutions of the associated ho­
mogeneous equation by any solution of the nonhomogeneous 
one. 

Now we will relate these statements to the more standard statements 
from linear algebraic equations. Even if you have never seen these state­
ments exactly, they should be clear. 

Let M be a matrix (not necessarily square). 

Statement A. Any linear combination of solutions of M x = 0 is a solution. 

Statement B. If xp is a solution of Mx = a, then a vector x is another 
solution if and only if x = xp + Xc with Xc a solution of the associated 
homogeneous equation Mx = O. 

Statement C. If Xl is a solution of Mx = al and X2 is a solution of 
Mx = a2, then Xl + X2 is a solution of Mx = al + a2' 

Clearly these statements are parallel to Theorems 7.2.1, 7.2.3, and 7.2.5. 
The explanation of this fact is linearity. 

Let V and W be vector spaces and T: V -> W a linear transformation. 
Then we have the following three linearity statements: 

Statement 1. Any linear combination of solutions of Tv = 0 is a solution. 

Statement 2. If vp is a solution of Tv = a, then a vector v is another 
solution if and only if v = vp + Vc with Vc a solution of the associated 
homogeneous equation Tv = O. 

Statement 3. If Vi is a solution of Tv = al and V2 is a solution of 
Tv = a2, then Vi + V2 is a solution of Tv = al + a2' 

Statements A, B, and C about systems of linear algebraic equations are 
the special case of the linearity statements 1, 2, and 3, where T is the linear 
transformation IRn -> IRm represented by the matrix M. 

How about the differential equations of Theorems 7.2.1,7.2.3, and 7.2.5? 
What are the vector spaces and the linear transformation in that case? 
Well, the answer is a bit more unpleasant. 

The space V is the vector space of continuously differentiable 
vector functions f(t) defined for tEl, where I is the interval 
on which A(t) and all the g(t) are defined. 

W is the space of continuous vector functions on the same in­
terval I. 
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The transformation T: f 1---+ f'(t) - Af. 

Of course, the spaces V and W are infinite dimensional, and so are a bit 
unfamiliar, but all the results above are so formal that the nature of the 
vector space involved is irrelevant. 

Such a linear transformation T: f 1---+ f'(t) - Af is called a differential 
operator (more accurately, a vector first order differential operator). Of 
course, the granddaddy of all differential operators is the derivative D, and 
it has close relatives D2, D3, ... (the second, third, ... derivatives). Another 
way of writing the differential equation 

ax" + bx' + ex = 0 

is 
(aD2 + bD + c)x = O. 

Following this method of notation, all of the theory of linear differential 
equations can be rewritten in terms of differential operators. We will not 
do this, although we will use the language when it seems convenient. 

7.3 Linear Differential Equations with Constant 
Coefficients; Eigenvectors and Decoupling 

There is no formula for solving linear differential equations if the coeffi­
cients are not constant. In fact, it can be proved that the innocent looking 
equation x" - tx = 0 has no solutions, other than the zero solution, that can 
be written in terms of the elementary functions, or their indefinite integrals 
ad infinitum. (Reference: Theorem 6.6, p. 43 of Kaplansky's sixty-seven 
page book on Differential Algebra.) 

In fact, the only substantial class of systems of equations that can be 
solved in elementary terms is the class of linear differential equations with 
constant coefficients. As a result, and also because of their intrinsic im­
portance, these equations have traditionally been the bread and butter of 
differential equation courses. Ours will not be different; they will play a 
central part in our development. 

The following theorem is really the most important result about linear 
differential equations with constant coefficients. It says that the component 
of a solution in the direction of an eigenvector evolves independently of 
everything else and obeys a linear differential equation in one variable, 
about which we know just about everything from Chapter 2 in Part I. This 
phenomenon of being able to look at components independently is called 
decoupling. 

Accordingly, the theory of linear differential equations reduces (almost) 
to the algebraic theory of eigenvalues and eigenvectors. This theory is fairly 
simple, but when it comes to actually computing eigenvalues, the going 
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gets stickier. You can review the essentials of eigenvalues and eigenvectors 
in Appendix L6j actually finding them will most conveniently be done by 
the computer using the QR method described in Appendix L7 or Jacobi's 
method, described in Appendix L8. 

Theorem 7.3.1 (Evolution in the direction of an eigenvector). Let 
A be an n x n matrix, and suppose v is an eigenvector 0/ A, with Av = AV. 

Then 
u(t) = ae,X(t-to)v (12) 

is the solution o/x' = Ax with initial condition u(to) = av. 

Proof. As always, when an explicit solution of a differential equation is 
proposed, it is a straightforward matter of differentiating it and plugging 
the derivative into the equation to check whether or not it is correct. Let 
us compute 

d -(u(t)) = Aae,X(t-to)v = a e'x(t-to)(AV) = ae'x(t-to)Av 
dt 

= A(ae,X(t-to)v) = Au(t). 

It is easy to verify that the initial condition is satisfied. 0 

Do not be fooled by the extreme simplicity of the above derivation. It 
does not have to be hard to be important. That easy computation is an 
important service of mathematics to applied science. 

Theorem 7.3.2. Let A be an n x n matrix 0/ constants, and suppose 
v}, ..• , Vm are eigenvectors 0/ A, with AVi = AiVi. Then/or the differential 
equation x' = Ax, i/ the initial condition is a linear combination 0/ these 
Vi'S, 

m 

u(to) = L aiVi, 
i=l 

the solution is 
m 

u(t) = L ai e,X·(t-to)Vi. (13) 
i=l 

Proof. This follows from Theorems 7.2.1 and 7.3.1. 0 

Theorem 7.3.2 is of particular interest when the Vi'S form a basis of Rn 

or en, for in that case formula (13) gives all solutions to x' = Ax, since 
any initial condition can be stated as a linear combination of eigenvectors. 
In real life, this is the typical situation: in general, an n x n matrix will 
have n distinct eigenvalues and therefore provide an eigenbasis (a basis of 
eigenvectors) of Rn. 
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Theorem 7.3.3. Let A be an n x n matrix, and suppose Vb .•• , Vn form 
an eigenbasis of lRn , with AVi = AiVi. Then for the differential elJ.uation 
x' = Ax, the initial condition can be written 

n 

u(to) = L aiVi, 

i=l 

and the solution is 
n 

u(t) = L ai eoX,(t-to)Vi. (14) 
i=l 

The proof has been covered in the paragraph preceding the theorem. 

CHANGE OF BASIS 

Theorem 7.3.3 permits another point of view. Its key point is that 

in a basis of eigenvectors, the coordinates evolve independently. 

This statement is equivalent, in the language of change of basis, to the 
statement that 

in a basis of eigenvectors, a system of linear differential equa­
tions with constant coefficients will decouple. 

We shall now restate and rederive Theorem 7.3.3 in this language of 
change of basis. 

Suppose that Vb .•• , vn is a basis of lRn (or Cn ) made up of eigenvectors 
of A with corresponding eigenvalues Ab ... , An, as above. Let P be the 
change of basis matrix, as described in Appendix L2, so that 

p~ [++···+l· and p-1AP~ [: 0 l' 
An 

the diagonal matrix with the eigenvalues Ai along the diagonal. This is 
why, when the eigenvectors of A form a basis for lRn , the matrix is said to 
be diagonalizable. 

Theorem 7.3.4 (Decoupling x' = Ax by change of basis). Consider 
the differential equation x' = Ax in lRn. If Vb ••. ,Vn are eigenvectors of 
A forming a basis, with P as the change of basis matrix composed of the 
Vi as columns, and x == p-1x, then 

i. each entry Xi of x satisfies the scalar differential equation 
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ii. the solution x = u(t) to the original differential equation can be writ­
ten in terms of the initial condition x(to) as follows: 

[

e>.l(t-tO) 

x(t) = Px(t) = P o (15) 

Proof. If we define x == p-1x, then the entries of x are the coordinates 
of x with respect to the basis VI,"" Vn (see Theorem L2.22 in Appendix 
L2). Now we are ready to prove the theorem: 

i. Multiply the equation x' = Ax by p-l on the left and introduce a 
factor of pp-l = I between A and x, giving 

or 
x' = (p-l AP)x. 

Since p-l AP is diagonal, this last equation breaks up into 

(16) 

a completely decoupled set of ordinary first order linear differential equa­
tions. 

ii. Each of the set (16) of decoupled equations can be explicitly solved as 
in Section 2.2 in Part I, giving 

Xi(t) = e>.·(t-to)Xi(tO)' 

Since x(t) = P-1x(t), then x(to) = P-1x(to), and putting all these solu­
tions together in vector form gives equation (15). 0 

Remember that Theorem 7.3.4 is simply a restatement of the message of 
Theorem 7.3.3. We shall solve a sample linear differential equation using 
both theorems. 

Example 7.3.5. 

To solve this equation, we first find eigenvalues and eigenvectors. The char­
acteristic polynomial is 
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so the eigenvalues are 1 and ±v'5, and corresponding eigenvectors are 

i. Solution by straight eigenvectors. The general solution, by Theorem 
7.3.3, is 

(17) 

SUPP""" we know the initial condition"" x(O) ~ [~]. Then in oroe< to 

find a, b, and c in solution (17), we must solve the system of linear algebraic 
equations 

(18) 

ii. Solution by change of basis. Theorem 7.3.4 gives the following, in terms 
of equation (15): 

r
et 

x(t) = P ~ ~ 1 p-l [~] , 
e-v5t "I 

(19) 

which you can confirm (Exercise 7.3#9) gives the same result as equations 
(17) and (18). • 

It is interesting to compare the amount of work necessary to solve Ex­
ample 7.3.5 by the two theorems. In both cases, almost all the work is the 
same--you have to find all the eigenvalues and eigenvectors. But at the 
end, the first method, with equation (17), requires solving a (nondifferen­
tial) system of equations (18); the second method given by equation (19) 
requires computing the matrix inverse of P. 

The first method is easier if you are solving just for a single set of initial 
conditions. But if you are going to be solving the problem for a number 
of different values of 0:, fl, and "I, the alternative second method gives an 
actual formula which will save a great deal of computation. 

COMPLEX EIGENVALUES AND EIGENVECTORS 

Up to this point, we have been working as if everything were in real num­
bers. Actually, there is no difference if the eigenvalues are complex: 
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Example 7.3.6. We shall solve the basic equation of Example 7.1.1, 

[~r [~-~] [~], with initial condition [~~] at t = o. 

First we find the eigenvalues and eigenvectors. The characteristic poly­
nomial is >.2 + 1, so the eigenvalues are ±i and corresponding eigenvectors 
are 

The matrices P and p-l are 

p = [ ~ ~], -z z 

and we can observe that indeed 

the diagonal matrix of eigenvalues. 

p-l = [1/2 i/2] 
1/2 -i/2 ' 

By the change of basis solution (12) of Theorem 7.3.4, we get 

[x(t)] [1 1] [eit 0] [1/2 i/2] [xo] 
y(t) = -i i 0 e- it 1/2 -i/2 Yo 

Thus, Example 7.3.6 shows that computations with complex eigenvalues 
will yield, if painfully, terms with trigonometric functions in them. 

FINDING EIGENVALUES AND EIGENVECTORS 

The method we have just explained in this section is the most important for 
solving x' = Ax; the main task is to find the eigenvectors and eigenvalues 
of A. In principle, you could try to do this by computing the characteristic 
polynomial of A, finding the eigenvalues as its roots, and solving for the 
eigenvectors by solving linear equations. 

It turns out that as soon as the matrix A is at all large, this method is 
quite impractical. First, computing the characteristic polynomial is quite 
laborious, even if something smarter than the formula for the determinant 
is used. Above, we spoke rather glibly about "finding the roots" of the 
polynomial, but it is not obvious how to do this (and in fact it is quite 
hard). 

So we turn to the computer, but if we were to work directly with find­
ing the roots of the characteristic polynomial, we would find that in the 
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computation all precision is lost, and the coefficients of the characteris­
tic polynomials are known only approximately. In addition, the errors in 
the coefficients may lead to much larger errors in the roots. (See Exercise 
7.3#10.) 

We have two other computer approaches, the QR method and Jacobi's 
method, that alleviate some of these problems (although finding eigenvec­
tors and eigenvalues really is hard, and nothing will make it quite simple). 
Appendices L 7 and L8 respectively describe the QR method (and its sim­
pler cousin, the power method), and Jacobi's method (which only works 
for symmetric matrices). 

7.4 Linear Differential Equations with Constant 
Coefficients; Exponentials of Matrices 

The eigenvector method of Section 7.3 has some limitations. If there are 
not enough eigenvectors to form a basis of an or en, then there is an 
alternative approach. 

Just as, from Section 2.2 in Part I, the solution of x' = ax with u(O) = Xo 
is 

we shall see (in Theorem 7.4.12) that the general solution to x' = Ax with 
u(O) = Xo is 

u(t) = etAXo. (20) 

This requires the exponentials of matrices, to which we now proceed. How­
ever, the reader should not think this is a panacea-it just shifts the prob­
lem from solving differential equations to computing exponentials. 

Definition 7.4.1 (Exponentials of matrices). If A is a square n x n 
matrix, we define 

A2 A3 00 Am 
eA =:1+A+-, +-, + ... = L -,' 

2. 3. m=O m. 
(21) 

First let us give a few examples. 

Example 7.4.2. 

t212 t313 
etI = 1 + tI + -- + -- + ... = et 1, 

2! 3! 
(22) 

since 1 = 12 = 13 = .... In particular, if t = 0, 

e(O)I = 1 = e(O)A. (23) 
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Example 7.4.2 is a special case of Example 7.4.3: 

Example 7.4.3. If A is a diagonal matrix with diagonal entries '\1. ... ,'\n, 
then etA is also diagonal, with entries et~l , ... ,et~n along the diagonal. • 

Example 7.4.3 is important, because it shows the main way in which 
exponentials are actually computed, as we shall see in Theorem 7.4.13. 

The next example is less familiar but actually easier. It illustrates a phe­
nomenon that occurs for exponentials of matrices but not for exponentials 
of numbers; that is, if there exist polynomials in the exponent, then etA 
may have polynomial terms and the series may be finite. 

Example 7.4.4. 

J~ ~L[~ ~]+[~ ~]+H~ ~]+ ... ~[~ :] 
because, as you can confirm, [~ ~ ] m = [~ ~ ] , for m ~ 2. • 

When real matrices have complex eigenvalues, sines and cosines make 
their way into the exponential. This is hardly surprising, since ei9 = cos 9 + 
i sin 9, but please observe that complex numbers are never mentioned in the 
next example: 

Example 7.4.5. 

:[~ -~L[~ ~]+t[~ -~]+:",[-~ -~]+~t"[-~ ~]+ ... 
= [c~st -sint] 

smt cost 

from the power series for sine and cosine. Note that this calculation indeed 
gives the solution for the differential equation of Example 7.3.6 that you 
could expect from equation (20). • 

Remark. Since etA is a matrix, the order of multiplication must be 
(etA)(xo), i.e., (matrix) (vector); the opposite order makes no sense. More­
over, since etA is a matrix function of t, it can be differentiated with respect 
to t: the derivative of a matrix function M(t} of t is another matrix M'(t} 
of the same size, where each element M'(t}ij is the derivative of the corre­
sponding element M(t}ij. 
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PROPERTIES OF eA 

Formula (21) defining eA for an n x n matrix A is exactly the same as 
the power series for the exponential of a number; we may hope it will 
have similar properties. This is true up to a point, as we shall show in the 
following properties: 

Property 7.4.6 (Convergence). The series defining eA converges for 
every A. 

Proof. If SUPi,j IAi, jl :::; k and the matrix A is n x n, then it is can be 
shown by induction that 

because from the formula for multiplication of matrices, each multiplication 
is the sum of n terms. Therefore, 

I 00 (Amkj I <..!:. 00 (nk)m = enk 

L m! -n L m! n' 
m=O m=O 

and we see that the series does converge by the comparison test. 0 

The fundamental property of the exponential function is ea+b = eaeb . So 
we might hope that for any two n x n matrices A and B, we would have 
eA+B = eAeB. Unfortunately, this is false in general, and this is the reason 
why systems are more difficult than scalar equations. If the two matrices 
commute, which means that the order of multiplication does not matter, 
then the hoped-for result is true: 

Property 7.4.7 (Addition formula). If A and B are two n x n matrices 
that commute, so that AB = BA, then 

(24) 

Proof. Let us look at the two series developments, carefully keeping track of 
the order of multiplication (not just using the binomial expansion formulas): 

i. e(A+B) = I + (A + B) + ~(A + B)2 + ~(A + B)3 + ... 
2 6 
1 

= I + (A + B) + 2(A2 + AB + BA + B2) 

1 
+ "6(A3 + A2B + ABA + AB2 + BA2 + BAB+ B2A+ B 3) 

+ ... 
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ii. eAeB = (I + A + ~A2 + ~A3 + .. -) (I + B + ~B2 + ~B3 + .. -) 
1 

= I + (A + B) + 2(A2 + 2AB + B2) 

1 + - (A3 + 3A 2 B + 3AB2 + B 3) + ... 6 . 

Proceed until it is clear that if AB = BA, the series are equal. 0 

The most important thing to remember about Property 7.4.7 is the ne­
cessity, which you see in the proof, that the matrices commute. In general 
(when AB =f:. BA), 

[0 -1] [0 0] Example 7.4.8. Let A = too and B = t 1 0 . You can confirm 

that AB =f:. BA and that A2 = B2 = O. We shall show here that eAeB =f:. 
eA +B : 

,A,B ~:[g ~11:[~ gL (Ht [g -m· (1 +t [~ m 
= I + t [~ - ~] + t2 [ - ~ ~] = [1 ~ t 2 -n. 

From Example 7.4.5, 

[0 -1] 
eA+B = et 1 0 = [C?st -sint]. 

smt cost 

(25) 

(26) 

Clearly, these results, (25) and (26), do not match (although we do get the 
same first terms in the power series!), so eAeB =f:. eA+B in this case, where 
AB=f:.BA. ~ 

Property 7.4.9 (Differentiation). We have the following formula for 
the derivative of etA: 

d 
dt (etA) = AetA . 

Proof. By the definition of derivative, 

!!..etA = lim (!) (e(t+h)A _ etA). 
dt h--+O h 

Certainly tA and hA commute, so e(t+h)A = ehAetA , and we see that 

!!..etA = lim (!) (ehA - I)etA . 
dt h--+O h 

(27) 
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Now ehA - J = hA + !h2 A2 +"', so limh-+o(1jh)(ehA - J) = A and 

!!..etA = A etA. 
dt 

89 

o 

Remarks. For any square matrix A, the matrices A and etA commute, so 
in the previous formula, the factor A can be written on the right or the 
left. 

In Exercise 7.4#4 you can show that the product and chain rules for 
differentiation also hold for expressions involving exponentials of matrices. 

Example 1.4.10. 

t[O 
d 1 -e 
dt 

as you might have expected from differentiating both sides of the last line 
of Examples 7.4.5 and 7.4.8. • 

Property 1.4.11 (Change of basis). If M is an invertible matrix, then 

(28) 

Proof. This follows from the power series (21), 

M- 1 AM _ 1M- l AM (M- 1 AM)2 (M- 1 AM)3 
e = + + + + ... 

2! 3! 
M- 1A2M M- 1A3M 

== I + M- 1 AM + 2! + 3! + ... 

term by term, by observing that 

(M-1AM)ffl = (M-1AM)(M- 1 AM) ... (M-1AM) = M-1AfflM. 0 
'-v--' 

I 

all pairs in the middle cancel by M M- 1 = I 

We are now ready to talk about differential equations again; Property 
7.4.9 is precisely what it takes to prove the following major theorem: 

Theorem 1.4.12 (Solving x' = Ax by exponentiation). The solution 
u(t) of x' = Ax with u(to) = Xo is 

(29) 
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Proof. Just differentiate (using Property 7.4.9) and check. 0 

So, we have a "formula" for the solution to a homogeneous linear differ­
ential equation. Unfortunately, Theorem 7.4.12 suffers from the standard 
defect of formulas: it says very little by itself. We want to know the answers 
to such questions as whether solutions go to 0 or to 00, and it is unclear 
that formula (29) says anything about this. We have just shifted the problem 
from solving the differential equation to computing the exponential. 

However, if we have a basis of eigenvectors, the exponential reduces to 
something familiar. Property 7.4.11 implies that an eigenbasis for A is also 
an eigenbasis for eA. 

Theorem 7.4.13 (Computing etA by eigenvectors). Let A be an n x n 
matrix and let Vb ... , vn be an eigenbasis for A with corresponding eigen­
values AI, ... , An. Let P be the change of basis matrix (i.e., the Vi are the 
columns of P); then the exponential etA can be computed as follows: 

Proof. This is just a restatement of Property 7.4.11 and Example 7.3.4, as 
you can show in Exercise 7.4#5. 0 

So, in the diagonalizable case where you do have a basis of eigenvectors, 
Theorems 7.4.12 and 7.4.13 give the same result as Theorem 7.3.4, the 
eigenvalue/eigenvector method that leads quickly to an easy-to-interpret 
answer. Note, however, that the method of exponentiating matrices is in 
a different basis and usually does not lead to anything recognizable as the 
same thing. (See Exercise 7.4#6.) 

Even if there is no basis of eigenvectors, you can fall back on the expo­
nential approach, working directly from the power series using Theorem 
7.4.12 and Definition 7.4.1. Only sometimes will this result in anything 
you can calculate. Calculating the exponential of a matrix can be quite 
complicated, requiring generalized eigenvectors or Jordan Canonical Form 
if you want explicit formulas. Although, compared to nonlinear problems, 
this is still "simple," if you try to put this into practice, you will come to 
understand the expletive that "hell is undiagonalizable matrices." 

Before leaving this subsection, we will make one more algebraic point. 
We go back and note that Example 7.4.5 is also an example of the following 
result: 

Theorem 7.4.14. If A is an antisymmetric real matrix (or more gener­
ally an anti-Hermitian matrix), then etA is orthogonal (or, more generally, 
unitary). 
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Proof. As defined in Appendix L4, antisymmetric means that AT = -A; 
orthogonal means that the column vectors of the matrix are orthonormal, 
which in turn means that AT = A-I. We will treat the real case; the 
complex case is Exercise 7.4#7. Let us differentiate: 

Thus, (etA)(etA)T is constant, and at time t = 0 it is the identity, so it is 
always the identity. Hence, etA is indeed orthogonal. 0 

Notice that all of the theory of Section 7.4, as well as that of Section 7.3, 
is perfectly true with complex numbers as eigenvalues or entries in eigen­
vectors or the matrix A itself. In particular, the power series of Definition 
7.4.1 makes sense for complex-valued matrices; we shall need this fact. 

We shall examine in Section 7.5 the case of 2 x 2 matrices, where the 
mathematics can, surprisingly enough, be done directly from the power 
series of the exponentials. 

7.5 Two by Two Matrices and the Bifurcation 
Diagram 

Garrett Birkhoff says that according to his father, George Birkhoff, the 
most famous American scholar of differential equations: 

If you understand linear equations, 
you almost understand differential equations; 

If you understand linear equations of degree 2, 
you almost understand all linear equations; 

Finally, you almost understand linear equations of degree 2 
if you understand those with constant coefficients. 

We find the first of these claims overoptimistic; the second and third, on 
the other hand, are certainly true. Second order linear differential equations 
with constant coefficients are ubiquitous. For that reason, we devote this 
section to them. 

Second order linear equations with constant coefficients lead to the sim­
plest system of the form x' = Ax, with 2 x 2 matrices A: 



92 7. Systems of Linear Differential Equations 

In this section, we will consider what the trajectories for this differential 
equation look like in the xy-plane, when A is a real matrix. In principle, we 
already could figure out the answer from Sections 7.3 or 7.4, at least if the 
eigenvalues of A are distinct, but we want to look at what those sections 
say in more detail in this particular case. 

Note that the only equilibrium point is at (0,0). There are three cases 
of possible eigenvalues for a, b, c, and d real: 

(1) real and distinct eigenvalues, 

(2) complex eigenvalues (necessarily distinct since they are complex con­
jugate), 

(3) a double eigenvalue (necessarily real). 

You can confirm in Exercise 7.5#5 that with tr A = a + d and det A = 
ad - be the characteristic equation is A2 - (tr A)A + (det A) = 0, with 
discriminant 

~ = (trA)2 -4detA, 

and that cases (1), (2), and (3) correspond respectively to ~ > 0, ~ < 0, 
and ~ = 0. 

1. Real (nonzero, distinct) eigenvalues. If ~ > 0, there are two real distinct 
eigenvalues Al and A2 and the corresponding eigenvectors Vl and V2 form 
a basis of ]R2. The general solution of x' = Ax can in that case be written, 
by Theorem 7.3.4, as 

and the behavior depends on the signs of Al and A2. We discuss here the 
results for distinct and nonzero real eigenvalues; those for the case with a 
double eigenvalue are discussed below in subsection 3, and those for the 
case where an eigenvalue is zero are discussed in subsection 4. 

i. Node source. If ° < Al < A2, then all trajectories tend to 00 as t --+ 00 

and to ° as t --+ -00. (See Figure 7.5.1.) Moreover, all trajectories leave 
(0,0) tangentially to Vl except those that are multiples of V2 (Exercise 
7.5#6a). 

Y, 

Y, 

FIGURE 7.5.1. Node source. 
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ii. Saddle. IT Al < 0 < A2, then the trajectories with 0 1 = 0 go from 
o to 00 on the line in the direction of positive and negative multiples of 
V2, and those with O2 = 0 go from 00 to 0 on the line in the direction 
of multiples of VI; other trajectories are superpositions of these motions 
(Exercise 7.5#6b). (See Figure 7.5.2.) .... 

v, 

FIGURE 7.5.2. Saddle. 

iii. Node sink. IT Al < A2 < 0, then all trajectories tend to 0 as t -+ 00 and 
to 00 as t -+ -00. (See Figure 7.5.3.) Moreover, all trajectories approach 
(0,0) tangentially to V2 except those that are multiples of VI (Exercise 
7.5#6c). 

FIGURE 7.5.3. Node sink. 

Remark. A node sink is exactly the same thing as a node source with time 
going backward. 

2. Complex eigenvalues. Suppose the two eigenvalues of A are a ± i{3, with 
{3 > o. Of course, there exists a basis VI, V2 of eigenvectors, but the vectors 
are in (:2, and it is not quite clear how to use them to describe the behavior 
of trajectories in the real phase plane. The following trick gives a way: 

Observe first that if V is an eigenvector for Al = a + i{3, then v is an 
eigenvector for A2 = Xl = a - i{3. Let us write V = WI - iW2, where WI 
and W2 are real. Neither WI or W2 are eigenvectors, but they are linearly 
independent (Exercise 7.5#7) form a basis of R2; it turns out that in that 
basis A has a rather pleasant form. Indeed, 

AWl + iAw2 = A(WI - iW2) = Av = AlV = (a + i(3)(Wl - iW2) 

= (awl + (3w2) + i(aw2 - (3w1), 

and identifying real and imaginary parts, we find 

AWl = aWl + {3w2 

AW2 = {3wl - aW2, 
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i.e., in the basis WI, W2, the linear transformation A has the matrix 

[ 0: -j3] Al = j3 0: . 

Alternately, let P = [WI, W2], with Al = p-1 AP. 
It is easy to compute etAl , because 

[0 -1] Al = 0:1 + j3 1 0' 

and the two matrices in this sum commute since the identity I commutes 
with everything. By Property 7.4.7 and a calculation as in Example 7.3.6, 
we see that 

tAl _ tOt [cos j3t - sin j3t] 
e - e sinj3t cosj3t' 

Now it is quite easy to see what the trajectory of a point looks like. It si­
multaneously turns at speed j3 radians per unit time, under the influence of 
the rotation matrix above, and approaches or leaves 0, under the influence 
of etOt , depending on whether 0: < 0 or 0: > O. This leads to the following 
classification: 

i. Spiral sink. If 0: < 0, the trajectories spiral in to (0,0). (See Figure 
7.5.4.) 

FIGURE 7.5.4. Spiral sink. 

ii. Center. If 0: = 0, the trajectories turn periodically on an ellipse and 
are called "centers," because each ellipse is centered at (0,0). (See Figure 
7.5.5.) 

FIGURE 7.5.5. Center. 
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iii. Spiral source. If a > 0, the trajectories spiral out to 00. (See Figure 
7.5.6.) 

FIGURE 7.5.6. Spiral source. 

The direction of rotation of the spiral trajectories depends on the sign 
of c, the lower left entry of the matrix A: if c > 0, the rotation is coun­
terclockwise; if c < 0, the rotation is clockwise. (You will prove this fact in 
Exercise 7.5#8.) 

Centers are exceptional, but they turn up often in differential equations 
describing conservative mechanical systems as discussed in Chapter 6.5. 
Exercises 7.5#9, and especially 8.1#12, explain why this will occur. 

THE TRACE/DETERMINANT PLANE; 
BIFURCATION DIAGRAM 

The information we have assembled for the behavior of trajectories under 
real or complex eigenvalues leads us to begin Figure 7.5.7, a picture of 

the plane determined by tr A and det A. 

This plane (which is not an xy phase plane) merely helps us study how 
tr A and det A and the relationship between them determines the behavior 
of trajectories to x' = Ax. 

The (tr A, det A)-plane is divided by the axes det A = 0 and tr A = 0 
and by the parabola 

(tr A)2 /4 = det A, 

the dividing locus between the cases ~ > 0 and ~ < o. We shall examine 
more closely all of these divisions. 

The sketches in each region of the (tr A, det A)-plane of Figure 7.5.7 are 
just insets showing a typical drawing (in the xy phase plane) for the tra­
jectories to x' = Ax, for values of A corresponding to that region. The 
conventional labels for each type of behavior accompany each of these in­
sets. 

We still need to understand the remaining possibilities; i.e., what occurs 
along boundaries of the regions already discussed: 

3. along the parabola where ~ = 0, 
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FIGURE 7.5.7. Bifurcation diagram in (tr A, det A)-plane for the two-dimensional 
equation x' = Ax. 

and the division within the case of real eigenvalues between nodes and 
saddles: 

4. along the horizontal axis det A = O. 

3. Double eigenvalue. Along the parabola, ~ = O. If there is only one 

(double) eigenvalue A, let VI = [~] be an eigenvector, and let V2 be any 

vector linearly independent of VI. Then VI and V2 form a basis, and in that 
basis the linear transformation A has matrix 

for some appropriate number a. You can see this by noting that the first 
column is correct since AVl = AVl and that, regardless of the entries in the 
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second column, the matrix Al will be upper triangular. By Theorem L6.8, 
A has the eigenvalues (Le., the two A's) along the diagonal. 

It is easy to compute etAI , since Al = >"1 + a [~ ~ ], and the two 

matrices commute. So by Property 7.4.7 of the exponential and Example 
7.4.4, we see that 

tAl _ t~ [1 at] 
e -e 0 1 ' 

and there are two quite different cases: a =f: 0 and a = O. Note that the 
first corresponds to there being only one eigenvector, and the second to 
all vectors being eigenvectors. Both of these possibilities are allowed, since 
there is one (double) root of the characteristic polynomial. However, the 
first possibility is usual, and the second exceptional. Indeed, the space of 2 x 
2 matrices is four-dimensional, and those whose characteristic polynomial 
has a double root are defined by the one equation (tr A)2 = 4 det A, so they 
form a three-dimensional locus. However, if there is a single eigenvalue and 
two linearly independent eigenvectors, the matrix is simply a multiple of 
the identity, and the set of such is one-dimensional (given by the multiple 
in question). 

L In the (exceptional) case of infinitely many eigenvectors, the drawing 
in the phase plane looks like Figure 7.5.8, as should be clear. 

FIGURE 7.5.8. Phase plane behavior with double eigenvalue at zero. 

iL In the (usual) case of only one eigenvector, the motion of a point under 
etAI is a superposition of the part due to the exponential, Le., exponential 
attraction or repulsion depending on whether >.. < 0 or >.. > 0, and motion 
under the matrix, which is simply motion at constant speed a along the 
horizontal line through the initial condition. Note that if you go back to 
the initial variables, this part becomes motion at constant speed along the 
line parallel to the eigenvector VI and through the initial point. 

So if >.. = 0, we find a "shearing" motion, and the drawing in the phase 
plane appears as in Figure 7.5.9. 
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FIGURE 7.5.9. Phase plane behavior with single eigenvector and zero eigenvalue. 

If A =f. 0, then the exponential term superposes its effect on the above 
linear motion, leading to Figure 7.5.10. 

FIGURE 7.5.1O.Phase plane behavior with single eigenvector and nonzero eigen­
value. 

4. A zero eigenvalue. The remaining boundary between regions we have 
studied in the (tr A, det A)-plane is along the horizontal axis, where det A = 
0; the origin has been included in the preceding discussion of the parabola; 
elsewhere along this axis one of the eigenvalues must be zero (as a result of 
Theorems L5.2 and L6.8). These are the degenerate cases, because x, = Ax 
vanishes on some line, which becomes a line of equilibria. The trajectories 
appear as in Figure 7.5.11. 

FIGURE 7.5.11. Phase plane behavior with zero eigenvalue. 

But with the slightest perturbation, this whole line of equilibria disap­
pears, and you get either saddles, sinks, centers, or nodes (depending on 
tr A and the perturbation). 

We have now described phase plane behavior for every region on the 
bifurcation diagram of Figure 7.5.7, in the (tr A,detA)-plane. 
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It may be difficult to imagine how to continuously go from the mo­
tions with eigenvectors (nodes) across the parabola to the spiraling mo­
tions; what happens in general is that the eigenvectors make a smaller and 
smaller angle, until they coincide and disappear. The sequence of drawings 
in Figure 7.5.12 illustrates the change. 

FIGURE 7.5.12. How a spiral becomes a node as the matrix changes to cross the 
parabola in the trace/determinant plane for x' = ax - y, y' = X + y. 

Example 7.5.1. Consider the system 

[: r = [-~ ~] [:]. 
and observe how the choice of a affects the trajectories. Even before finding 
the eigenvalues, we can observe the following: 

(0,0) is the only equilibrium; 
trA = a; 
detA = 1; 
1l. = a 2 - 4 = 0 for a = -2 or 2; 
c is negative, so spirals are clockwise. 

Therefore, we can list how the phase plane behavior depends on a: 

a < -2, node sink, 
- 2 < a < 0 spiral sink, 
a=O 
0<a<2 
a>2 

center, 
spiral source, 
node source. 

For a = ±2, A is not a multiple of the identity, so the trajectories appear 
respectively as in Figure 7.5.13. 
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FIGURE 7.5.13. 

As a increases from -00 to +00, the trajectories change as you cross the 
(tr A, det A)-plane from left to right, along the line det A = 1, as shown in 
Figure 7.5.14. 

detA 

: 
>---+--+----+-+-- trA 

a=-2 a=2 

FIGURE 7.5.14. 

Some insight into the role of a and the way the eigenvectors fit into the 
diagram can be gained from solving the characteristic equation 

,x2 - O',x + 1 = 0, 
O'±v'O'2 -4 

,xl,2 = 2 . 

Because of the fortuitous form of the matrix in this example, we can read 
the eigenvectors directly from the definition of eigenvalue and eigenvector: 
Av = ,xv. 

so the first equation of the multiplication tells us that the eigenvectors have 
form y = AX, and we have 

y = [(a ± J 0'2 - 4)/2]x. 

You can show in Exercise 7.5#12 that this eigenvector equation is equiv­
alent to 
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which is the equation of a surface in a xy-space, a third degree equation 
in x, y, and a. 

This surface is called the Whitney umbrella (after Hassler Whitney, a 
contemporary mathematician at the Institute for Advanced Study), and it 
looks like Figure 7.5.15. 

direction of eigenvectors 
for this value of a (> 2) 

~~~'"'--

a-2 
(single eigenvector) _--_no real eigenvectors 

laI<2 
1-------1 

I 
I •• 
I ..... .. 

u- -2...-!' .. • .... .. 
(single eigenvectoC~ ::: •• 

.r •••• . .. .. 
" .. " eigenvectors for a < 2 

FIGURE 7.5.15. Whitney umbrella, showing the position of the eigenvectors in 
the xy phase plane according to the value of the parameter Q. • 

7.6 Eigenvalues and Global Behavior 

The most important thing to observe about the bifurcation diagram of 
Section 7.5, which is perhaps a surprising observation, is that 

the behavior of solutions is controlled by the signs of the real 
parts of the eigenvalues (in particular, by the eigenvalues them­
selves if they are real). 

You can easily check, from looking at the diagram, that the origin is 
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a sink if both eigenvalues have negative real part; 

a source if both eigenvalues have positive real part; 

a saddle if the eigenvalues have opposite sign 

(in which case they are necessarily real). 

In this section we will generalize this classification to arbitrary dimension. 

SINKS AND SOURCES 

The following theorem provides a criterion under which all solutions of a 
linear differential equation with constant coefficients will tend to O. Typi­
cally, this is the kind of equation we will meet when describing dynamical 
systems with friction, or electrical systems with resistance. In many real 
systems, such as the electrical distribution system of a geographical region, 
it is essential to make sure that the conditions of this theorem are satisfied, 
to guarantee stability of the system. 

Theorem 7.6.1. If A is an n x n matrix and all the eigenvalues of A have 
negative real parts, then all solutions x( t) of X' = Ax satisfy 

lim x(t) -+ O. 
t-+oo 

Remarks. 

i. The origin is called a sink when Theorem 7.6.1 holds. 

ii. There is an exactly analogous statement when all eigenvalues have a 
positive real part, turning time backward; then the origin is called a 
source, and limt-+oo x(t) -+ O. 

iii. The converse of Theorem 7.6.1 is also correct (Exercise 7.6#2). 

Proof. The theorem is easy to prove if the matrix A is diagonalizable 
over C: just switch to a basis of eigenvectors, and all coefficients decrease 
exponentially. The (exceptional) case where A is not diagonalizable is, un­
fortunately, a good deal harder. However, the following argument works in 
general: 

Look at all the eigenvalues and take - A to be the largest real part of an 
eigenvalue; that is, let 

A = - sup{Re Ai I Ai is an eigenvalue of A}. 

From Appendix L, we know 
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Theorem L6.19. For any c, we can find a complex basis Vl, ... , Vn such 
that in that basis, the matrix of the linear transformation A is upper­
triangular, with the eigenvalues along the diagonal, and all off-diagonal 
terms of absolute value less than c. 

That is, let P be the change of basis matrix [Vl, ... , vnl; then Al = 
p- l AP is upper-triangular as described. 

Write Al = B + C, where B is the diagonal part, and C is the strictly 
upper-triangular part. Please note that A l , B, and C are usually complex 
matrices, and so we must use complex inner products (Appendices L3 and 
L4). 

Lemma. For y E IRn , and the c of Theorem L6.9, we have the inequalities 

Re(By· y) :::; _AIIYI12 and IRe(Cy· y)1 :::; nc1iY112. 

Proof of Lemma. For the first inequality, since B is diagonal with the 
eigenvalues Ai along the diagonal, we see 

Re(By· y) = Re (EAiYiY'i) = ERe(Ai)IYiI2 :::; _AIlYI12. 

For the second, observe that IICII :::; nc, so using Schwarz's inequality (The­
orem L3.3) and then Exercise 7.1-7.2#7, we find 

IRe(Cy· y)1 :::; ICy· yl :::; IICylillyll :::; IIClillyl12 :::; nc1lY112. 0 

Remark. In Exercise 7.6#3 you show the sharper inequality IIGlI < 
In(n -1)/2c. 

Proof of Theorem, continued. Set y = Px. Then y obeys the differ­
ential equation y' = Aly, so 

d 
dt (lIy(t)1I2) = 2 Re(y' . y) = 2 Re(A1Y· y) = 2(Re(By· y) + Re(Cy· y)) 

:::; 2(-A+nc)IIYIl2. 

This means that Ily(t)112 is a lower fence for the differential equation 

u' = 2( -A + nc)u, 

with solution u(t) = e2(-A+ne)tu (O). If c is chosen so small that nE: - A is 
negative, then since 

lIy(t)1I2 :::; e2(-A+ne)tlly (O)11 2, 

we see that y(t) ~ 0 as t ~ 00. 0 

Theorem 7.6.1 describes solutions of the differential equation x' = Ax 
if all the eigenvalues of A have a negative real part. Two points should be 
noted: 
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(i) All solutions decrease exponentially, but the basis with respect to 
which lengths must be measured in order for this to occur may be 
pretty distorted. 

(ii) The exponential rate at which solutions decrease may not be exactly 
the largest real part of an eigenvalue. 

Example 7.6.2. illustrates both (i) and (ii). It shows a distorted basis, and 
its solutions decrease like C te-t , although this does go to zero as t -4 00 

since the decreasing exponential wins over the increasing polynomial; still, 
it does not decrease quite as fast as e-t . This explains why the rate of 
decrease we will get is only et(ne-A). 

Example 7.6.2. Consider the differential equation 

X' = -x+ 100y 

y' = -yo 

From Section 7.5 we know all about the solutions to this equation; its 
solution with x(O) = 0, y(O) = 1 is 

x(t) = 100te-t 

y(t) = e-t . 

At time 0, it has length 1 (with respect to the standard basis), and at time 
1, it has length JlOOOl/e = 36.789 .... The length of the solution certainly 
does not appear to be decreasing, and it is not if it is measured with respect 
to the standard basis. If, however, you measure lengths with respect to a 
new basis 

you will find that all solutions decrease if lei ::; 2 (Exercise 7.6#4). 
Such a new basis is quite distorted: one basis vector is at least 50 times 

longer than the other. • 

SADDLES 

What happens if the real parts of eigenvalues are both positive and nega­
tive? Well, if no eigenvalues have a real part 0, then the space ]Rn breaks 
up into two subspaces, V+ and V_, with the property that A(V+) = V+ and 
A(V_) = V_, so that in each of these subspaces Theorem 7.6.1. applies. In 
the usual case where A is diagonalizable, just take V+ to be the span of the 
eigenvectors with eigenvalues having a positive real part, and V_ the span 
of the eigenvectors corresponding to eigenvalues with a negative real part. 
The general case is, as usual, harder and follows almost immediately from 
Theorem L6.12. 
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Theorem 7.6.3. Let A be an nxn matrix, with no eigenvalues havirg a real 
part O. Let PA be the characteristic polynomial of A, and write PA = P-P+, 
where the roots of p_ are all the roots of PA that have a negative real part, 
and the roots of p+ are all the roots of PA that have a positive real part. 

Let V± = ker(p±(A». Then for the differential equation x' = Ax , 

(a) Any solution x(t) can be written x(t) = x_(t)+x+(t) with x_(t) and 
x+(t) in V_ and V+, respectively; 

(b) x_(t) tends to 0 as t -+ +00 and x+(t) tends to 0 as t -+ -00. 

Proof. By Theorem L6.12, any vector x E lR.n can be written uniquely as 

This follows from the fact that p_ and p+ are relatively prime since they 
have no common roots, hence no common factors. 

Suppose that the initial value x(O) = x_(O) + x+(O) of a solution is 
decomposed as above. Since A(V±) c V±, the solution x±(t) with initial 
condition x±(O) stays in V± for all t, and in this subspace obeys a dif­
ferential equation with constant coefficients and all eigenvalues negative 
or positive respectively. This follows from the fact that the characteris­
tic polynomial of A restricted to V± is p±. Finally, we use the fact that 
x(t) = x_(t) + x+(t) is just the superposition of solutions, Theorem 7.2.l. 
D 

The technique used in the proof of Theorem 7.6.3 can be extended con­
siderably to isolate the behavior coming from any particular eigenvalue or 
from other groupings besides the one into roots with positive and negative 
real parts. 

A ZOOLOGICAL DESCRIPTION OF LINEAR 
DIFFERENTIAL EQUATIONS IN ~a 

According to the development so far, we see that linear differential equa­
tions with constant coefficients in lR.3 will fall into the following main classes: 

(i) those where all three eigenvalues a have negative real part (sinks); 

(ii) those with two eigenvalues having a negative real part and one posi­
tive eigenvalue (saddles of type 2,1); 

(iii) those with one negative eigenvalue and two eigenvalues having a pos­
itive real part (saddles of type 1,2); 

(iv) those where all three eigenvalues have a positive real part (sources). 
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In the first case, all solutions tend to 0 as t ~ 00 and to infinity as t ~ -00; 

in the second case, there is a plane of solutions tending to 0 as t ~ +00 

and a line of solutions tending to 0 as t ~ -00, with all other solutions 
superpositions of these; the third and fourth cases are like the second and 
first, respectively, with time running backward. 

There are various exceptional equations that do not fit into the descrip­
tion above, namely, 

(v) those with a pair of purely imaginary eigenvalues (centers), 

(vi) those with a zero eigenvalue. 

7.7 Nonhomogeneous Linear Equations 

Very frequently, the linear differential equations to be solved are not simply 

x' = Ax, 

which correspond to free physical systems, but rather 

x' = Ax + g(t), 

which correspond to driven physical systems. 
The question of finding a particular solution up(t) for the nonhomoge­

neous equation of the driven system can be attacked again as in the one 
dimensional case of Sections 2.2 and 2.3 of Part I. 

There is a formula for solving such systems: the variation of pammeters 
formula, which we will see in the second part of this section. Although 
of great importance, variation of parameters generally leads to unpleasant 
computations in practical cases. For special cases of the "driving function" 
g(t), there is an alternative method for finding a particular solution up(t) 
which is usually much simpler: the method of undetermined coefficients. 
This method really comes into its own when the driving function g( t) is 
given as an infinite superposition of such special driving functions; this 
occurs, in particular, if the function is given as a Fourier series, a Fourier 
transform, or a Laplace transform (see the third subsection below, on Lim­
itations and Extensions of the Method of Undetermined Coefficients). 

METHOD OF UNDETERMINED COEFFICIENTS 

The special cases for which the method of undetermined coefficients is 
appropriate occur when the entries of g(t) are linear combinations of func­
tions of the form t k eat; these include polynomials (the case a = 0), plain 
exponentials (the case k = 0), and functions such as tk sin wt and t k cos wt, 
because of the formulas 

1 "t"t 1 Ott sinwt=--(etw _e- tW ) coswt=-2(etW +e-tW ). (2i) , 
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Using the superposition principle, Theorem 7.2.5, we see that we may 
consider also the case where g(t) is of the form p(t)eat , where p(t) is a 
vector of polynomial functions. In that case, try setting 

x(t) = q(t) eat, 

where q (t) is an unknown vector of polynomial functions of the same degree 
as p(t). Substituting into the equation and equating like terms, you will be 
led to a system of linear (nondifferential) equations for the coefficients of 
q that will in fact have the same number of equations as variables. If the 
vector g(t) contains terms in sine and cosine, it may be simpler to stick to 
sines and cosines rather than passing to complex exponentials. 

Example 7.7.1. Solve the differential equation 

There are two steps to solving this differential equation: 

(i) Solve the associated homogeneous equation 

(30) 

Using the techniques discussed in Sections 7.2 and 7.3, that solution is 

(31) 

(ii) Solve the nonhomogeneous equation (30) with 

That is, try substituting 

[~] = q(t)e2t with q(t) = [~] . 

By solving the resulting linear equations for the coefficients a and b, you 
will find a = k, b = -~. The final solution is 

Example 7.7.2. Solve the differential equation 

(32) 
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(i) Solve the associated homogeneous equation as in Example 7.7.1; the 
solution is equation (31). 

(ii) Using undetermined coefficients, solve the nonhomogeneous equation 
(32) with 

g(t) = [I1t]et and X(t)=[:::~]et. 
Using this equation for x, you can substitute into the original equation, 
which yields a = !. b = !. c = -1, and d = -l The final solution is 

RESONANCE 

Even with the nonhomogeneous term g( t) of the proper form, the method 
of undetermined coefficients does not always work. Let us see why, in the 
simplest case: assume the driving term g( t) is of the form G eat, where G 
is a constant vector. Then, if we substitute x(t) = Q eat, we find 

x'(t) = aQeat = AQeat + Geat, 

which leads to 
(al -A)Q = G. 

This is the system of linear equations mentioned above, which can usually 
be solved only if the matrix (al - A) is invertible: 

(33) 

The inverse (al - A) -1 only exists if a is not an eigenvalue of A. In 
general, you can expect trouble with undetermined coefficients if the driving 
term is an exponential term with the coefficient of the exponent equal to 
one of the eigenvalues. 

The way around this problem is fairly simple, just as in Part I, Chapter 
2: it can be shown that if instead of trying for a solution of the form Q eat, 
you had given yourself a bit more leeway and tried a solution of the form 
P(t)eat , with P a vector of polynomials of degree equal to the multiplicity 
of a as a root of the characteristic polynomial of A, then the undetermined 
coefficients procedure does work. 

Example 7.7.3. Solve the differential equation 

(34) 
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This will not work as well as Examples 7.7.1 and 7.7.2, because -1 is an 

[-2 -1] eigenvalue of 5 4· To solve the nonhomogeneous equation (34), try 

[x] = [a + bt] e-t . 
y c+dt 

Substitution yields a = -c - i, b = i, c = c, d = -i· 
Combining these results with the solution (31) to the homogeneous equa­

tion, the final solution to equation (34) is 

] [] [] [ 
-c - I + Itl 

[; = C1 e3t _~ + C2 e- t _! + e- t c _4 it 4 • 

It looks as if this solution depends on three arbitrary constants, but in fact c 
and C2 play the same role: the freedom in the solution to the inhomogeneous 
equation is a solution to the associated homogeneous equation. ~ 

This comment about degrees of freedom is not special to this example: 
if undetermined coefficients lead to a family of solutions depending on a 
parameter, then this freedom will always correspond to adding a solution of 
the associated homogeneous equation, since the difference of two solutions 
of the inhomogeneous equation is a solution of the associated homogeneous 
equation. 

The phenomenon in which the driving term includes eAt for some eigen­
value >. of the matrix A is called resonance, and it is very important in 
applications, either because resonance is wanted (for instance, to amplify 
a radio signal at a particular frequency) or to be avoided (for instance, in 
a building buffeted by winds or earthquakes). 

In many cases of practical importance, such as conservative mechani­
cal systems without friction or electrical systems without resistors, all the 
eigenvalues of the corresponding matrices describing the system are purely 
imaginary. If the system is driven with a harmonically oscillating term eiwt 

(or sin wt) and if iw is not one of the eigenvalues of A, then you can expect 
a response that is also harmonically oscillating, i.e., bounded. But if the 
frequency w of the driving term is an eigenvalue of A, then the response will 
be a polynomial times an oscillating term and will grow without bound. 

This makes it sound as if there is a dichotomy: resonance or no resonance. 
But if you drive a system near resonance, the response becomes large. For 
instance, the equation 

x" + x = sinwt 

with general solution 

x(t) = _1_2 sinwt + asint + bcost 
1-w 
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has no periodic solution when w = ±1, and when w is close to ±1, the 
solutions all exhibit large oscillations. Note that the first order system 
associated to this equation is 

with eigenvalues ±i, which corresponds to w = ±1. Exploration of the 
behavior of this system is the topic of Exercise 7.7#8. 

LIMITATIONS AND EXTENSIONS OF THE METHOD OF 
UNDETERMINED COEFFICIENTS 

A more serious limitation of the method of undetermined coefficients is 
that the driving terms are restricted; if the driving term were 

the method simply does not seem to work. Actually, it is so convenient 
that people have tried really hard to make it work anyway, and they have 
succeeded. The key point is that the driving term does not have to be one 
term of the form pet) eat; it can be a sum of such terms. When you start 
looking at sums of such terms, it is amazing how many functions you can 
approximate. 

In fact, if you are willing to allow infinite superpositions, i.e., to consider 
driving terms of the form 

(Fourier series), 

or continuous superpositions, for instance, 

get) = J a(s) eistds (Fourier transforms) 

or 

get) = J a(s) e-stds (Laplace transforms), 

you can get practically any function g at all. The first form is suitable 
for periodic driving forces, the second for functions that decrease at both 
+00 and -00, and the third for functions that decrease at +00 but are not 
controlled near -00. 

Example 7.7.4. Suppose you want to solve 

(35) 
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A priori, this seems like something that cannot be solved by undetermined 
coefficients. But observe that 

sin(t) = ! 11 eistds, 
t 2_1 

as you can check by computing the integral. If we try to solve this equation 
by undetermined coefficients, i.e., if we set 

x(t) = 11 a(s)eistds, 
-1 

yet) = 11 b(s) eistds, 
-1 

and substitute into the equation, we find 

11 is a(s) eistds = 11 -2a(s) eistds -11 b(s) eistds, -1 -1 -1 
11 isb(s) eistds = 11 5a(s) eistds + 11 4b(s) eistds + ! 11 eistds. -1 -1 -1 2 -1 

Combining integrands and factoring out eist , you end up with the system 
of linear algebraic equations 

(is + 2)a(s) + b(s) = 0, 
-5a(s) + (is - 4)b(s) = ~. 

This system of equations can be straightforwardly solved, to yield 

1 
a(s) = 2(S2 + 2is + 3)' 

-is -2 
b( s) = -:-:--::-------,:-:-

2(S2 + 2is + 3) 

We now know a particular solution in the form 

() 111 1 istd 
x t = -2 2 2· 3 e s, 

-1 s + zs + 
() 1 11 -is - 2 istd 

y t = -2 2 2· 3e s. 
-1 S + zs + 

These are not integrals that can be computed in elementary form, but that 
they are still easy to evaluate numerically, and their properties are easy to 
understand. The final solution is 
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Exercises 7.7#9 and 7.7#10 will give further examples of this kind of 
solution. 

METHOD OF VARIATION OF PARAMETERS 

There is also an explicit formula for solving nonhomogeneous equations: 
the formula that goes under the name of variation of parameters. The 
name comes from one possible derivation, which we do not find particularly 
enlightening and will not repeat. Most students are repelled by its apparent 
complication, and one must admit that the integrals that it leads to do tend 
to be unpleasant. 

Theorem 7.7.5. The solution u(t) to x' = Ax + g(t) with u(to) = Xo is 

u(t) = e(t-to)Axo + it e(t-8)Ag(s)ds. 
to 

We have already, in Section 2 of Part I, given an explanation of what the 
various terms in this formula mean in one dimension, to which the reader 
should return: it makes the formula obvious. A brief statement appears in 
Appendix T. 

We will come back to Theorem 7.7.5 in Chapter 12 in Part III (it turns 
out that the formula is not restricted to the case of constant coefficients). 
Here, we will simply prove by an easy but unmotivated computation that 
it is correct. 

Proof. Clearly, u(to) = Xo. Differentiating u(t), we find 

d it -u(t) = Ae(t-to)AXo + g(t) + A e(t-s)Ag(s)ds = Au(t) + g(t), 
dt to 

where the g(t) is the derivative of the integral with respect to the upper 
limit of integration, and the integral term is the derivative with respect to 
the term t which appears in the exponent. 0 

Example 7.7.6. Solve the differential equation 

[: r = [~ =~ ] [:] + [i] . 
Using variation of parameters, the solution is 

u(t) = e(t-to)AXo + 1: e(t-8)A [i] ds 

and you can confirm that 
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so 

u(t) = [ et ~e;tet et-!~tet] Xo + 1: [~~~-88] ds. 

The last term is a result of exceedingly good fortune in the matrix multi­
plication, which you can confirm in Exercises 7.7#11. The resulting final 
solution, after integrating this last term is 

_ [et + 2tet -4tet ] [2et- to - 2] u(t) - t t t 2t t Xo + t-to 1 . e e - e e-

The reader is invited to check that this agrees with the solution you could 
find by undetermined coefficients. ~ 

Chapter 7 Exercises 

Exercises 7.1-7.2 Introduction to Linear Systems 

1.1-1.2#1. In order to become more familiar with matrix notation: 

(i) Find A(t) and g(t) in order to write each of the following systems in 
the form x' = A(t)x + g(t): 

(a)O x' = ty + t 
y'=x+y 

x'=ty+t+z 
(b)O y'=x+y 

z' = 2x 

(ii) Turn the following second order equations into a system of first order 
differential equations, by finding A(t) and g(t) as above: 

(c)O x" - 3x' + 5x = t2 

1.1-1.2#20 • Solve the following differential equations by the cookbook 
method 7.1.7: 

(a) x" - 4x' + x = o. 
(b) x" - 4x' + 8x = o. 
(c) x" + 12x' + 36x = 0, with x(O) = -2 and x'(O) = -3. 

(d) x" - x' - x = 0, with x(O) = x'(O) = 1. 

1.1-1.2#30 • Solve the following differential equations by turning each into 
a system of first order differential equations (setting y = x'). Initial condi­
tions are given. 
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(a) 3X" - 6x' + 4x = 0 with [:~~n = [~]. 
(b) 2X" - 2x' + x = 0 with [:?~n = [~l 

7.1-7.2#4°. The following equations are of a class called Euler equations, 
which are discussed in detail in Chapter 12 (in Part III) . For now it suffices 
to say that there exist solutions of the form x = to., so you can substitute 
that expression in the differential equations, as in the cookbook method, 
Recipe 7.1.7, and evaluate the resulting expression in a: 

(a) Solve t 2x" + 4tx' + 2x = O. 

(b) Determine the domain of definition for the equation in part (a). 

(c) Solve t 2x" - x = O. 

(d) Discuss the domain of definition for the equation in part (c); give a 
basis for the solutions with positive t and a basis for the solutions 
with negative t. 

7.1-7.2#5. Consider a mass m(t), depending on t, suspended from a spring 
as in Example 7.1.1. 

(a) Write a system of differential equations describing the motion of the 
mass. 

(b) Now suppose that the mass is a bucket filled with water and that it is 
punctured, leaking at some rate independent of the motion. Verify as 
in Example 4.1.1, the leaky bucket, that for a cylindrical bucket with 
radius r, the height h of the water varies as (t - te) 2, for 0 :::; t :::; te = 
the time at which the bucket empties, so that 

m(t) = prrr2h + mo = Q(t - te)2 + mo, 

with Q representing an appropriate constant expression and mo rep­
resenting the mass of the empty bucket. 

(c) Show that in case (b), the matrix system becomes, for 0 :::; t :::; t e , 
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[ 
0 

= F 
Q(t-te)2+mo 

which is still a linear differential equation in [:], regardless of the 

exceedingly nonlinear appearance of t's within the matrix. 

7.1-7.2#6. Consider again the leaky bucket suspended by a spring as 
in Exercise 7.1-7.2 #5, but now assume that the leaking depends on the 
velocity y. Show that in this case the matrix equation becomes 

which is not linear in [:]. 

7.1-7.2#7°. This is an exercise in the use of Schwarz's inequality, Theorem 
L3.3, in order to get uniqueness of solutions to linear equations. Given a 
square matrix A, denote 

II All = L lai,jI2. 
i,j 

(a) Show that for any square matrix A and any vector x, 

IIAxll:::; IIAllllxll· 

(b) What does it mean to say that x' = Ax satisfies a Lipschitz condition 
on lR x lRn? 

(c) Show that every linear differential equation with constant coefficients 
does satisfy a Lipschitz condition on lR x lRn. 

(d) Find a Lipschitz constant for 

I [0 1] x = 1 2 x. 

Exercises 7.3 Eigenvectors and Decoupling 

7.3#1. 

(i)O Find the eigenvalues and eigenvectors of the following matrices: 

[5 -6] (a) 3 -4 (e) [i j !J 
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[~ -~] U 4 

~] (b) (f) 2 
-3 

[-2 1] LJ 
4 

~] (c) -1 -2 (g) 2 
-3 

H 0 

~] [0 2 ~] (d) 2 (h) 0 0 
0 1 0 

(ii) Write the general solution in cases (a) and (c) to the differential 
equation x' = Ax and give the vectors x(O) which tend to 0 as t ---t 00 

(initial condition). 

7.3#2. Solve the following differential equations and draw in both cases 
the trajectory in the xy plane: 

(a) [: r = [~ n [:] with initial condition [:~~n = [n, 
(b) [: r = [~ !] [:] with initial conditions [:~~n = [~]. 

7.3#3°. Solve the differential equation 

(a) with initial condition [:~~~] = [~] , 

(b) with initial condition [:~~n = [~] . 
(c) Draw the two trajectories from parts (a) and (b) in the xy phase 

plane. Write down the complete solution to the equation. 

( a) Solve the differential equation 

[
X(O)] 

with y(O) 
z(O) 
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(b) Solve the differential equation 

7.3#5°. For the following differential equations, find a basis for R2 such 
that vectors expressed with respect to that basis decouple the differential 
equations: 

x' =y 
(a) y' = X + y 

(b) x' = 2x - Y 
y' = 3y 

7.3#6°. Consider the differential equation x' = Ax, where 

A = [-~ ~ -~l. 
2 -1 0 

(a) Find the eigenvalues of A. Find a basis of C3 made of eigenvectors of 
A. 

(b) Write the general solution. 

(c) Wh .... the solution ifx(O) ~ [~l? 
(d) Describe the solutions geometrically. 

7.3#7. Find a 2 x 2 matrix with eigenvalues 1 and 3, and corresponding 
eigenvectors 

7.3#8°. For what values of a, b, and c are the following matrices diago­
nalizable? 

(b) [~ ~ !] 
(c) [! Hl 
(d) [~ ~ ~ 1 
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7.3#9. Confirm in Example 7.3.5 that equation (19) gives the same result 
as equations (17) and (18). 

7.3#10. This exercise illustrates how a small error or change in the coeffi­
cients of the characteristic polynomial can lead to surprisingly larger errors 
in its roots. In each case, compare the roots of the first polynomial with 
the roots of the second: 

(a) >..2 - 2), + 1; ).2 - 2), + 0.99. 

(b) ).4; ).4 - 0.01 

(c) ).4; ).4 - 0.01>. - 0.01. 

Exercises 7.4 Exponentials of Matrices 

7.4#1. Compute 

t [1 4] 
(a) e -2 3 

t[ 2 
(d) e -1 ~] 

[ 0 1 0] 
t[2 n t 0 o 0 

(b) e 1 (e) e -4 4 1 

t[2 1] 
(c) e 1 4 

7.4#2. Compute the exponentials of the following matrices: 

[5 -6] H 
0 

~] (a) 
3 -4 

(d) 2 
0 

[~ -~] [~ 
2 

~] (b) (e) 0 
0 

(c) [-2 1] 
-1 -2 

U 1 n 7.4#3. Let A = 0 
4 

[~ 
0 

~l (a) Find a matrix P such that p-l AP = ).2 

0 ).3 
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(b) Compute etA. 

(c) Solve [~r d m with IDitiai condition 

[X(O)] [1] 
y(O) = 1 . 
z(O) 1 

(d) It is easy to show that x(t) satisfies a third order differential equa­
tion with constant coefficients. Find it, and solve it by the cookbook 
Recipe 7.1.7. 

7.4#4. Show that the ordinary product and chain rules for differentiation 
also hold for expressions involving exponentials of matrices. 

7.4#5. Prove Theorem 7.4.13. 

7.4#6°. Apply the method of exponentiating matrices to x" +3x' +2x = 0, 
the equation of Example 7.2.2. You will observe that, in the standard basis 
in which this method operates, the answer will be quite unrecognizable as 
being the same as that found in the basis of eigenvectors. The moral should 
be obvious: use eigenvectors whenever you can! That is, use eigenvectors 
whenever you have a basis of them. 

7.4#7. Prove the complex case of Proposition 7.4.14. 

7.4#8. Verify Examples 7.4.2,3,4. 

7.4#9. Verify Examples 7.4.8 and 7.4.10. For each one, tell what initial 
conditions lead to solutions that tend to 0 as t -+ 00. 

7.4#10. For the following second order differential equations: 

(i) Translate the problem into a system of equations. 

(ii) Write the system in the form x' = Ax. 

(iii) Find the solution of x' = Ax by calculating etA. 

(iv) State the answer to the original problem. 

(a) x" + 12x' + 36x = 0, with x(O) = -2 and x'(O) = -3. 

(b) x" - 4x' + x = o. 
(c) x" - 4x' + 8x = o. 

You can compare your results with Exercises 7.1-7.2#2a,b,c. 

7.4#11°. Let A be a 2 x 2 matrix, with tr A = o. 
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(a) Show that A2 = -(detA)I. 

(b) Write the power series for etA as 

etA = a(t)I + .B(t)A, 

where a(t) and .B(t) are scalar power series. 

(c) Express a(t) and .B(t) as known functions of t. 

Remark: You will need to separate the case det A > 0, which leads to 
hyperbolic functions, and det A < 0, which leads to trigonometric functions. 

7.4#12. Let A be any 2 x 2 matrix, and let B = A - t~ A I. 

(a) Show that tr B = o. 
(b) Compute det B in terms of det A and tr A. 

(c) Using that A = B + t~ A I, and that B and I commute, write etA in 
terms of det B and tr A. 

Exercises 7.5 Two by Two Matrices and the 
Bifurcation Diagram 

7.5#1. Solve each of the following differential equations and, in each case, 
draw the track of the solution in the xy-plane. 

(a) [: r = [-~ :] [:] with [:~gn = [n 
(b) [: r = [~ n [:] with [:~g?] = [~] 

(c) [: r = [~ !] [:] with [:~g?] = [~]. 
7.5#2. Consider the linear system of differential equations x' = Ax given 
by 

x'=x-2y 
y'=x+y. 

(a) Compute etA (by Theorem 7.4.13). 

(i) 

(b) Find the solution with initial condition (x, y) = (-6,0). Make a draw­
ing (by hand or computer). 
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( c ) Consider the related single differential equation 

dy x+y 
= 

dx x - 2y 

Explain the similarities and differences between studying (i) and (ii). 

7.5#3°. Show that if tr A = 0, the equation 

dy dy/dt 
= 

dx dx/dt 

is exact and can be solved analytically. 

7.5#4. Consider the linear system of differential equations 

x' = Ax, where A = [=! ~]. 

(ii) 

(a) Determine the eigenvalues and eigenvectors of the matrix A, and 
write down the general solution in terms of the eigenvalues and eigen­
vectors. Explain the behavior of the solutions when t ~ -00. 

(b) Determine the solution with initial condition x(O) = [~]. 

7.5#5. Show that for a 2 x 2 matrix, A = [: ~], the characteristic 

polynomial can be written A2 - (tr A)A + (det A), with discriminant a = 
(tr A)2 - 4(det A). Show that a > 0 leads to real, distinct eigenvalues, 
a < 0 leads to complex eigenvalues, and that a = 0 means a double 
eigenvalue. 

7.5#6. Confirm the text statements about the phase plane behavior with 
real distinct nonzero eigenvalues as follows: 

(a) If both eigenvalues are positive, show that all trajectories leave 0 
tangentially to the eigenvector associated with the smaller eigenvalue, 
except for those leaving along a multiple of the eigenvector associated 
with the larger eigenvalue; hence the phase plane portrait is a node 
source. 

(b) If the eigenvalues are of opposite sign, show that the trajectories 
move away from 0 along the eigenvector associated with the positive 
eigenvalue and toward 0 along the eigenvector associated with the 
negative eigenvalue; hence the phase plane portrait is a saddle. 

(c) If both eigenvalues are negative, show that all trajectories approach 
o tangentially to the eigenvector associated with the smaller (in abso­
lute value) eigenvalue, except for those approaching along a multiple 
of the eigenvector associated with the larger (in absolute value) eigen­
value; hence the phase plane portrait is a node sink. 
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1.5#1°. If for a real matrix A, A is a nonreal eigenvalue, and v = WI +iW2, 

where WI and W2 are real, is a corresponding eigenvector, then show that 
Wl and W2 are linearly independent. 

1.5#8°. Consider the differential equation x' = Ax, where A = [~ ~] is 

a real matrix. Suppose that the trajectories spiral; show that the direction 
of spiral trajectories depends on the sign of c. Show that if c > 0, the 
rotation is counterclockwise; if c < 0, the rotation is clockwise. 

1.5#9. Suppose that x(t) describes the position of a particle moving in 
one dimension, under the potential V(x). If V(x) = ax2, show that the 
differential equation that x(t) obeys is linear. If a > 0, show that it has a 
center at 0, and if a < 0, show that it has a saddle. 

1.5#10. If you look at solutions of the system x' = 0.2x - 0.04y, y' = 
x + 0.2y on the computer, they spiral completely around one or two times 
before leaving the screen. Computer drawn solutions of x' = 0.96x - 0.04y, 
y' = x + y, on the other hand, seem to twist a little and then travel out 
along almost straight lines. Will they ever make one revolution? If not, 
what is the boundary between spiral sources whose solutions make one or 
more revolutions and those whose solutions do not? 

1.5#11. Show with computer and hand drawings how one can move 
smoothly from saddles to having one zero eigenvalue [i.e., det(A) = 0] 
to node sources. Show how one can move smoothly from saddles to centers 
without going through the zero matrix. 

1.5#12. In Example 7.5.1 verify the calculations leading from the eigen­
vector equation to the equation of a surface in xya-space. That is, show 
that 

a±~ 
y= x 

2 

implies that y2 - axy + x2 = O. 

1.5#13. Consider the linear system of differential equations 

where the matrix AQ depends on the parameter a. 

(a) Each matrix determines a point (tr AQ , det AQ ) in the (tr A) - (det A)­
plane. Draw the curve in the (tr A) - (det A)-plane made up of these 
points when a increases from -00 to +00. 

(b) For what values of a (if any) is (0,0) a saddle, a node sink, a spiral 
sink, a center, a spiral source, or a node source? 
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(c) Make computer drawings of trajectories in the phase plane for a = 
-15, -10, -7, -3,0,3,15. Show directions on trajectories by arrows. 
Draw directions for real eigenvectors (in color) whenever possible. 

(d) Draw in the (x, y, z)-space the set of all real eigenvectors, i.e., in the 
plane at height a draw the real eigenvectors of AQ (if any). 

7.5#14. Consider the system of differential equations 

depending on the parameter a. 

(a) Classify the differential equation according to values of a. 

(b) Draw the phase plane for a = -2, -1, -l, 0, l, 5. 

(c) Draw, in the xyz-space, the set of all eigenvectors (i.e., in the plane 

at height a, draw the eigenvectors of [ _ ~ 1! a ] ). 

7.5#15. Investigate the system 

X Y 4 2 4x -2x [ ]' [] [3] y = -4x3 + 2x + (x - x - a) y . 

Draw the phase plane for a = -l, -!, -1,0, l. Can you understand why 
the solutions look the way they do? 

7.5#16. Show how the variable a affects the trajectories for different values 
of a for 

7.5#17. Consider the Euler equation 

a f3 
x" + -x' + -x = 0 

t t 2 

defined for 0 < t < 00. 

(a) Find the general solution. 

(b) For what values of (a, f3) is the space of solutions that tend to 0 as 
t -+ 0 of dimension zero, one, and two, respectively? 

(c) For what values of (a, f3) are there any solutions at all that tend to 
a limit other than zero or infinity as t -+ O? 
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Exercises 7.6 Eigenvalues and Global Behavior 

7.6#1. 

(a) Consider the differential equations x' = Ax, where A is the matrices 

[
0 1 0] (i) 0 0 1 
a -1 1 (li) [! j ~ r] 

and a is a parameter. For what values of a does the type of the eigen­
values change, for instance, from real to complex, or from positive to 
negative? 

(b) For each of the intervals where the type does not change, describe 
the solutions of the differential equation. (You may need Analyzer, or 
Eigenfinder, or both.) 

7.6#2. Prove the converse of Theorem 7.6.1. That is, prove the following: 

Theorem 7.6.1*. Consider x' = Ax where A is an n x n matrix. If all 
solutions x(t) satisfy 

lim x(t) -+ 0, 
t-+oo 

then all the eigenvalues of A have negative real parts. 

7.6#3. In the proof of Theorem 7.6.1 we proved a lemma showing that 
IICII ~ ne. Prove the sharper limit that IICII ~ In(n -1)/2e. 

7.6#4. Consider the differential equation of Example 7.6.2: 

x' = -x+ 100y 
y'=_y. 

Show that if you measure lengths with respect to a new basis 

then all solutions decrease if lei ~ 2. 

7.6#50 • Consider the linear system of differential equations 

[: r = [-~ ~] [:] 

depending on the parameter a E R.. 

(a) Explain why' (x, y) = (0,0) is a singular point for the differential 
equation for any a. For what values of a (if any) is (0,0) a saddle 
point, a node sink, a spiral sink, a center, a spiral source, or a node 
source? 
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(b) Determine the eigenvalues and eigenvectors of A" for a = 1, and 
sketch the trajectories in the phase plane. 

7.6#6. Consider the differential equation 

(a) Find all values of a where the behavior of the differential equation 
bifurcates. 

(b) For each of these values of a, and for one value of a in each of the 
intervals that they bound, describe and sketch the solutions of the 
differential equation. 

7.6#7. Consider the differential equation 

1 
o 

-(a + 1) 

(a) Find the characteristic polynomial of the matrix and find its roots 
(as functions of a). 

(b) At what values of a does the behavior of the trajectories change 
completely? 

(c) In each of the intervals of the a-line bounded by the bifurcation val­
ues, what is the dimension of the space of initial conditions Xo such 
that the solution with that initial condition gives a solution that tends 
to 0 as t -+ +00 and as t -+ -oo? 

(d) Sketch, up to linear change of variables, the solutions of the differen­
tial equation in each of the intervals above. 

7.6#8. Consider the system of differential equations 

[x]' = [v'3cosa sina] [x] 
y -v'3 0 y' 

o ::; a ::; 211'. 

(a) Find the values of a for which the equation above bifurcates and 
classify the equation in the intervals bounded by these values. 

(b) Solve the equation for a = 0, 11'/6, 11'/2, 311'/2. 

7.6#9. Consider the differential equation 

1 
o 

( -a + ,B + a,B) 

depending on two parameters, a and ,B. 
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(a) Find the eigenvalues of this matrix. (It is easier than you might think.) 

(b) For the four values (±1, ±1) of (0:, (3), describe the solutions of the 
differential equation. 

(c) Describe how the dimensions of the spaces of initial conditions leading 
to solutions that tend to 0 as t -. ±oo depend on (0:,{3). 

(d) For what values of (0:, (3) does the matrix admit a basis of eigen­
vectors? (Try to compute the dimension of the space of eigenvectors 
associated to any eigenvalue.) 

7.5#17. Consider the Euler equation 

x" + ~x' + {3 x = 0 
t t2 

defined for 0 < t < 00. 

(a) Find the general solution. 

(b) For what values of (0:, (3) is the space of solutions that tend to 0 as 
t -+ 0 of dimension zero, one, and two, respectively? 

(c) For what values of (0:, (3) are there any solutions at all that tend to 
a limit other than zero or infinity as t -. O? 

Exercises 7.7 Nonhomogeneous Linear Equations 

7.7#1. Solve the following differential equations by the method of unde­
termined coefficients: 

(.)r~[~ ~ ~lx+[~tl 
(b) x' = [~ :] x + [~::] 

(c) x' = [! -~] x+ [et 6e3t ] 

(d) x' = [~ :] x+ [t~t] 
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7.7#2°. 

(a) Show that trying [~::] et as a solution of 

I [2 1] [tet
] x = -5 -4 x+ 0 

will not work. 

(b) Try setting Q(t) as a quadratic instead of a linear function and solve 
the equation. 

7.7#3. Find the general solutions for the following differential equations. 

(a) x" + 2X' + X = e-t 

(b) x" + 3X' + 2x = e-t 

7.7#4°. 

(a) Find the general solutions of the differential equations 

x" + x' + x = sinwt and x" + 2x = sinwt, 

using the method of undetermined coefficients. 

(b) Among the solutions for the first equation, which one is the steady­
state solution? What is its amplitude as a function of w? 

(c) For the second equation, there should be a value Wo of w for which 
you could not solve by the method of undetermined coefficients. Solve 
the equation by variation of parameters for that value woo 

7.7#5. Show that u(t) = t + 1 is a solution to x" - 4X' + X = t - 3. Find 
the complete solution to the equation. 

7.7#6. Use variation of parameters to solve the differential equation 

with x(O) = yeO) = O. 

7.7#7. 

(a) Write down the general solution to the second order system of differ­
ential equations 

X = Ax where A = 1 " [_w 2 

, 0 O2 ]. 
-w2 
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(b) Let (t) = [C?swt] g smwt and assume w =f. Wi, i = 1, 2. Determine Cl, C2 E 

C, such that 

and Reh(t) = g(t). 

(c) Use the method of undetermined coefficients to find a solution 

[ 6 eiwt ] x(t) = 6eiwt 

to the differential equation x" = Ax+h(t). Determine a real solution 
to the differential equation x" = Ax + g(t). 

7.7#8. Explore with MacMath's DiffEq Phase Plane or DiffEq 3D Views 
the driven harmonic oscillator x" + x = sin wt. Try values of w near but on 
either side of the natural frequency (w = 1). Print or sketch your results. 

What aspects of the phase plane behavior change? How do they change? 
Describe what these changes imply for a physical pendulum. 

7.7#9°. The square wave g( t), which is periodic of period 271", and which 
on (-71",71"] is given by 

g(t)={+l 
-1 

if t ~ 0 
if t < 0, 

is given by the Fourier series 

1 ( . 1. 1 . ) 1 ~ sin(2n - l)t 
g( t) =;;: sm t + 3 sm 3t + "5 sm 5t + .. . =;;: ~ 2n _ 1 . 

This is something you may already know, or can take on faith (if your faith 
needs bolstering, try plotting the sum of the first five terms). 

Solve the differential equation x" + w2x = g(t) by "undetermined coeffi­
cients", by setting x(t) = L an sin nt and considering the an as coefficients 
to be determined. 

For what values of w does this scheme work? Can you solve the equation 
in the other cases also. 

7.7#10. Observe that 

Find a solution of 

100 1 
e-stds = -. 

o t 

1 
x"+x=­

t 
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by "undetermined coefficients," by writing 

x(t) = 1000 I(s)e-stds, 

where I(s) is the undetermined coefficient, and plugging into the equation. 

7.7#11. Confirm the calculations of the solution to Example 7.7.6. 
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Systems of Nonlinear 
Differential Equations 
The general autonomous differential equation on IRn is 

X' = f(x) = [ft~X)] , 
fn(x) 

(1) 

where f should be thought of as a vector field on an open subset of IRn. It 
describes the evolution of innumerable actual systems, and even the two­
dimensional case 

has a great many applications. 

X' = f(x,y) 
y' = g(x,y) (2) 

In Chapter 7 we studied the case where fis linear; in this chapter, we will 
concentrate on nonlinear equations. Of course, even when n = 2, we cannot 
expect the sort of detailed description that we found in the linear case. After 
all, the linear case depends on only four parameters, whereas the nonlinear 
case depends on infinitely many, since f and 9 are both arbitrary functions, 
elements of an infinite-dimensional vector space. [Actually, f and 9 are not 
quite arbitrary; they must satisfy a Lipschitz condition for equation (1) to 
have unique solutions through every point and, in practice, will usually be 
required to be twice continuously differentiable.] 

Still, we will get a surprising amount of information about nonlinear 
vector fields from our analysis of the linear case (and also from iteration in 
one dimension, in Part I, Chapter 5). 

We will see in Sections 8.1-8.3 that near the zeroes of the vector field 
[the points Xo where f(xo) = 0], the behavior of the differential equation 
is usually controlled by the linear approximation to the vector field at that 
point. The linearized problem is precisely what we studied in Chapter 7. 
Then in Sections 8.4-8.6 we will stand back from the zeroes and see what 
we can say about the global behavior of nonlinear systems in dimension 
two. 

The two-dimensional system (2) in 1R2 is most amenable to analysis. 
The functions f and 9 do not depend explicitly on time, thus making 
system (2) autonomous. We know from Section 6.2 that it makes sense 
to examine the trajectories of the solutions in the xy phase plane, because 
for an autonomous system, these trajectories will usually not cross (except 
where the Existence and Uniqueness Theorem 6.2.3 fails). 
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Curves in the plane which cannot intersect are so strongly constrained 
that "chaos" cannot appear. In dimension three, however, trajectories have 
every opportunity to knot, link, and tangle. This is discussed informally 
in Sections 8.7 and 8.8, but actual proofs are difficult and are reserved 
for Chapter 8*, where we can take sufficient detours to explain the diffi­
cult points. Chapter 8* consists of many discussions extending the topics 
introduced here in Chapter 8. 

One more topic that belongs here in the introduction to nonlinear differ­
ential equations in ]Rn is that of symmetries and volume-preserving equa­
tions, which appears as Section 8.6 (but does not have a companion section 
in Chapter 8*). 

Chapter 8 can be extended by various alternative routes: 

• After reading Sections 8.7 and 8.8, you may go directly to Chapter 9. 

• After reading Sections 8.7 and 8.8, you may read Chapter 8* and 
then go on to Chapter 9. 

• You can alternate sections of Chapters 8 and 8* as follows: 8.1, 8*.1, 
8.2, 8*.2, and so on through 8.5, 8*.5, and finally 8*.6. In this case 
you will find it enlightening to read 8.7 and 8.8 before 8*.5 and 8*.6. 

A flowchart is given in the Preface to clarify these suggestions. 
In this chapter, we shall consider mainly nonlinear autonomous systems 

in ]R2, the xy-plane. Occasionally, both statements and proofs are no harder 
in ]Rn, and there we will do things in more generality. 

8.1 Zeroes of Vector Fields and Their 
Linearization 

LOCAL AND GLOBAL BEHAVIOR OF A VECTOR 
FIELD IN THE PLANE 

Example 8.1.1. Consider the differential equation 

x'=x- y2+ a +bxy 
y' = O.2y - x + x3 

(3) 

for the values a = 1.28 and b = 1.4. The drawing in the phase plane is 
shown in Figure 8.1.1. ... 

We see in Example 8.1.1 that the trajectories just form systems of curves 
in the plane, more or less parallel on a small scale, except at the six points 
(and there are only six) where both x' and y' are zero. At these points 
the vector field vanishes, so they are called the zeroes of the vector field 
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(sometimes singular points or singularities). Because the zeroes are the 
points where the system is at equilibrium, they are also sometimes called 
equilibria, especially for physical systems. 

FIGURE 8.1.1. The phase plane for equation (3). Observe the six points where 
the vector field vanishes, all within the indicated rectangle. 

Definition 8.1.2. Let x' = f(x) be a differential equation, defined in some 
region U of IRn. Then a point Xo where f(Xo) = 0 is called a zero or 
equilibrium point of the differential equation. 

In particular, when n = 2, a point (xo, Yo) is a zero of the differential 
equation 

if f(xo, Yo) = g(xo, Yo) = O. 

x' = f(x,y) 
y' = g(x,y) 

Near the zeroes, the solutions form patterns that should be familiar: they 
look like the drawings we obtained in the linear case. 

More precisely, point A looks like a node source, C looks like a spiral 
source, E looks like a spiral sink, and B, D, and F look like saddles. We 
shall now give a rough idea of why this is true by showing how to construct 
a linearized equation at each zero. 

LINEARIZATION: LOCAL BEHAVIOR NEAR SINGULARITIES 

If f and g are twice continuously differentiable near a zero (xo, Yo), it is 
natural to expand them in a Taylor polynomial around this point: 

8fl 8fl f(x,y) = 8x (x - xo) + 8y (y - Yo) + P(x - Xo,y - Yo) 
(XO,YO) (xo,Yo) 
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Ogl Ogl g(x, y) = ox (x - xo) + oy (y - Yo) + Q(x - Xo, Y - Yo) 
(XO,YO) (XO,YO) 

where P(x - xo, y - Yo) and Q(x - Xo, Y - Yo) start with terms that are at 
least quadratic in (x-xo) and (y-yo). One may expect that near a zero of 
the vector field, P and Q will be negligible compared with the linear terms 
of the Taylor series; of course, this cannot be true if the linear terms vanish 
identically, and we will see that there are other exceptions. 

In order to study the behavior of a system near its zeroes, change the 
coordinates to indicate displacement from equilibrium: 

e = x - Xo, TJ = y - Yo, 

and take only the first order terms of the Taylor polynomials. The original 
nonlinear differential equation 

[x] I = [f(X, y)] 
y g(x, y) 

(2) 

is approximated by 

[ ~]' = [~II(XO'YO) 
ax (xo,Yo) 

(4) 

which is called the linearization of the system (2) near (xo, Yo) . 

Example 8.1.3. For the differential equation of the damped pendulum, 

x' = Y 
y' = -sinx - y, 

(5) 

the points (0,0) and (11",0) are zeroes of the vector field. 
The linearization at (0,0) is 

(6) 

with parameters ( -1, 1) in the trace-determinant plane. Thus, the lineariza­
tion at (0,0) is a spiral sink, as shown in Figure 8.1.2. 

The linearization at (11", 0) is 

(7) 

with parameters (-1, -1) in the trace-determinant plane. Thus, the lin­
earization at (11",0) is a saddle, as also shown in Figure 8.1.2. 
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FIGURE 8.1.2. The phase plane for equation (5). The zero at (0,0) is a spiral 
sink; the zeroes at (±1I',0) are saddles. • 

Example 8.1.4. We return to our opening Example 8.1.1. 

x'=x- y2+ a +bxy 
y' = O.2y - x + x3 

for the values a = 1.28 and b = 1.4. 

(3) 

For the four zeroes at A, B, C, and E we have numerically computed 
the linearization, and Figure 8.1.3 on the next page shows side-by-side 
blowups of the phase plane for the nonlinear equation (3) and the associated 
linearizations. • 

Let us now formalize these notions of what is happening at the zeroes or 
equilibria of a nonlinear differential equation. 

Definition 8.1.5. Let 

f(x) = [!1 ~X) 1 
fn(x) 

be a twice-differentiable vector field on an open subset U of IRn , and let Xo 
be a zero of f. The linearization of the differential equation x' = f(x) at Xo 
is the linear differential equation 

F.'=AF., (8) 

where 
F.=x-Xo 
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The differential equation 
in a neighborhood of 
point A 

The differential equation. 
in a neighborhood of 
point B 

The differential equation 
in a neighborhood of 
point C 

The differential equation 
in a neighborhood of 
point E 

The linearized equation 

1; '= 3.6547 1; - 2.9054 11 

11 \: .2043 1; + .2 11 

The linearized equation 

1; '= 3.1713 1; - 2.6051 11 

11 '= .6221 1; + .2 11 

The linearized equation 

1; '= 1.2326 1; - 1.7548 11 

11'= 2.098 !; + .2 11 

The linearized equation 

!; '= -.69IO!; +2.053211 

11'= -.7988!; + .211 

FIGURE 8.1.3. Blowups from Figure 8.1.1, with associated linearizations. 
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and 

A= [~:,xo 
~IXo 

By Taylor's Theorem, we can write 

f(x) = A(x - Xo) + h(x - xo), 

where h(E) starts with quadratic terms, so E(t) "should" resemble x(t) -Xo. 

Principle 8.1.6. In general, near a zero or equilibrium point (xo, Yo), the 
solutions 01 a nonlinear system 01 differential equations x' = f(x) look like 
those 01 its linearization 

~I ~L. 8z1 xo 
e' = e· 

~I 8z1 Xo ~I 8z" Xo 

We call this a principle, rather than a theorem, because the term "look 
like" is undefined. It will remain undefined, because it means rather differ­
ent things depending on whether the linearized equation has a saddle or a 
source or whatever. What we will do in Sections 8.1 and 8.2 is to pick out 
from the linearized equation the properties of particular interest and show 
that they go over to the nonlinear setting. 

Furthermore, let us elaborate on the caveat "in general": 

Principle 8.1.6 is lalse when the matrix A has any purely imaginary 
eigenvalues or, in particular, il any eigenvalues are O. 

In the plane, this corresponds to the two following cases: 

(i) II tr A = 0 and det A > 0 (implying "centers" for the linearization), 
we shall show by example that almost anything can happen. For differential 
equations with the same linearization, we get very different results in the 
nonlinear cases. 

Example 8.1.7. Consider the differential equation 

(9) 
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About (0,0) the linearized equation is simply 

(10) 

so tr A = 0 , and the trajectories of solutions to the linearized equation 
(10) are circles. However, the solutions of the nonlinear system (9) spiral 
out if e > 0 and spiral in if e < 0 . • 

We can make far more complicated examples; for instance, see Example 
8.4.3, which has infinitely many periodic solutions. 

(ii) If det A = 0 , the linearization is degenerate and the linearized vector 
field vanishes identically on a line (or even all ofR2). Adding on an arbitrar­
ily small perturbing term can destroy this feature, so again the appearance 
of the perturbed vector field can differ essentially from the appearance of 
the linearization. 

Example 8.1.8. Consider the system of equations 

x' = x2 

y' = -yo 
(11) 

Exercise 8.1#4 asks you to find the linearization, to show that an eigenvalue 
of the linearized equation is 0, and to show that the equation does not 
behave like its linearization. • 

Remark. In Chapter 9, we shall examine general cases and show that 
Example 8.1.7 leads to "Hopf bifurcation," and Example 8.1.8 leads to 
"saddle-node bifurcation." 

In the plane, if all eigenvalues have a nonzero real part, Principle 8.1.6 
means what it says. There is a unified way of making this statement: By 
making a smooth (nonlinear) change of variables near the equilibrium point 
you can make the equation into its linearization; you can even require that 
the derivative of the change of variables be the identity at the zero. A 
graphic way of saying this is that if the space of trajectories were drawn on 
a piece of rubber paper, then you could stretch and distort the rubber sheet 
so that the trajectories of the original equation will fit precisely on those of 
the linearization; you can even keep your thumb down on the equilibrium 
point, thereby fixing the point and the tangent vectors, and prevent the 
rubber sheet from moving or turning around that point. 

The proof of the result in that form is quite delicate, so we will take a 
different approach. We will try to isolate the salient features of each type 
of zero of a vector field and show that these features carry over to the 
nonlinear equation near the zero. 
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GLOBAL BEHAVIOR OF SOLUTIONS 

Look back at Figure 8.1.1. Solutions tend either to the sink E or to 00, ex­
cept for the zeroes and the exceptional solutions which tend to the saddles. 
Since such solutions separate generic forms of behavior, they are called sep­
aratrices; their existence and basic properties are covered in Section 8.3. In 
R.2, it will be true that almost all solutions have a generic form of behavior 
and that the classes with a given behavior are separated by exceptional 
solutions. Figure 8.1.4 shows all the zeroes of the vector field, but only 
the trajectories that are the separatrices of the saddles; consider how these 
separatrices divide Figure 8.1.4 into regions of generic behavior. 

FIGURE 8.1.4. The zeroes and separatrices for Examples 8.1.1 and 8.1.4. Point 
E is a sink and points A and C are sources. 

Figure 8.1.5 shows how the separatrices of the saddles divide the plane 
respectively into the basin of the sink (the points that tend to the sink as 
t -+ 00) and the points that tend to 00 as t -+ 00. The second picture gives 
the "basins," called cobasins, of the sources (the points that tend to the 
sources as t -+ -00) . 

FIGURE 8.1.5. Basins and cobasins for Examples 8.1.1 and 8.1.4. 
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Figures B.1.1-B.1.5 illustrating sinks, sources, and saddles show the generic 
local forms of behavior. For nonlinear differential equations in JR2, there is 
also a global generic form of behavior: limit cycles, which do not appear in 
the linear case. Solutions can be attracted to stable limit cycles as well as 
to sinksj classes of solutions can be separated by unstable limit cycles as 
well as separatrices. 

Example 8.1.9. Consider the differential equation 

[:J' = [y(2-x2)y-x], 

which will be discussed in more detail in Example 8.4.2. 
As is shown in Figure 8.1.6, this example has an attractive and stable 

limit cycle, with a node source in the center. 

FIGURE 8.1.6. A limit cycle is attracting all solutions except the constant solu­
tion at the origin. ~ 

An unstable limit cycle is repelling, looking like Figure 8.1.6 with all the 
arrows reversed and a sink at the center. From the forward point of view, 
an unstable limit cycle acts as a separatrixj if time runs backward, it acts 
as an attractor. 

There is a theorem that allows you to locate limit cycles, whether stable 
or unstable, if you can guess where they ought to be. This result is called 
the Poincare-Bendixson Theorem, and will be discussed in Section 8.5. We 
will also see in that section how hard it can be to actually prove that there 
is only one limit cycle. 

SUMMARY 

The general strategy for understanding an autonomous system in the plane 
will be to 

(1) Locate the zeroes of the vector field and analyze them. 
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(2) Draw the separatrices with arrows by starting at each saddle in the 
direction of the eigenvectors and then "follow your nose" through the 
vector field. 

(3) Locate the stable and unstable limit cycles if you can. (Using a phase 
plane computer program is the best bet; see MacMath.) 

(4) Figure out from the separatrices and limit cycles the boundaries of 
the basins and cobasins of the sinks, sources, and limit cycles. 

If you are able to do all this, you can claim to understand the differential 
equation. In reality, locating the zeroes is hard: it involves solving a system 
of nonlinear (nondifferential) equations, and there is no very good way to 
do that. The DiffEq Phase Plane computer program in MacMath will zoom 
in on zeroes (singularities) one at a time if you give it a good enough initial 
guess, but it gives no guarantee that you have found them all. 

Once you have located a zero, analyzing it is routine. (The computer, 
however, had to be taught to differentiate): 

(1) Set new coordinates (e, 1/) to indicate displacement from that partic­
ular equilibrium. 

(2) Replace each term in the original nonlinear differential equation by 
the linear term in its Taylor polynomial (expanded about the equi­
librium point). 

(3) Calculate the trace and determinant of the linearization to determine 
the behavior of trajectories at that equilibrium. (See Figure 7.5.7, the 
bifurcation diagram.) 

Locating limit cycles is even more difficult, and impossible without a 
computer. However, with computer graphics phase portraits, you can, in 
fact, usually locate and analyze limit cycles. 

We shall now proceed to discuss in detail each of the possible types of 
zeroes of the vector field (Sections 8.2 and 8.3) and limit cycles (Section 
8.4). 

8.2 Sources Are Sources and Sinks Are Sinks 

The object of this section is well described by the title: we wish to show 
that if a differential equation has a singularity, and if the linearization there 
is a sink, then the nonlinear differential equation also has a sink. In this 
case, it is not much easier to deal with the two-dimensional case than the 
general case, so we will begin work in IRn. 

First we need to know what a nonlinear sink is (and its opposite, a 
source). 
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Definition 8.2.1. Let x' = f(x) be an autonomous differential equation 
in Rn and let Xo be a zero of the vector field. 

Then Xo is a sink if there is a neighborhood U of Xo such that 
any solution u(t) with u(to) E U remains in U for t ~ to, and 
limt-+oo u(t) = Xo. 

The point Xo is a source if there is a neighborhood U of Xo such 
that any solution u(t) with u(to) E U was in U for all t ~ to and 
limt-+-oo u(t) = Xo. 

Remark. The limit condition is needed to exclude centers. 

Theorem 8.2.2. II at a zero 01 an autonomous differential equation the 
linearization is a sink or a source, then the zero is itsell a sink or a source. 
Furthermore, all solutions sufficiently close to the zero tend to it exponen­
tially last as t -. 00 lor a sink or as t -. -00 lor a source. 

Proof. We will treat only the case of sinks; the source case is similar. We 
may change coordinates so that the zero under consideration is at the origin 
and the differential equation can be written 

x' = Ax + q(x), (12) 

where q starts with at least quadratic terms, so that for some constants C 
and R, we have 

IIq(x)1I ~ Cllxll 2 for IIxll < R. (13) 

The proof will consist of Lemma 8.2.3 and Lemma 8.2.4. The idea is 
straightforward: we already know that the linearization is a sink, and we 
need to know that the nonlinear term q is sufficiently small near the zero 
of the differential equation and negligible by comparison with the linear 
term. 

To deal with the linear term, we cannot quite use the argument of The­
orem 7.6.1. In Chapter 7, we used Theorem L6.9, which provided us with 
a complex basis with respect to which solutions have decreasing norm. Of 
course, a real matrix can always be considered as a complex matrix, so the 
use of a complex basis was justified so long as we were only using linear 
equations. 

In our present case, the function q(x) may not be defined for complex 
values of x, and although we could extend it in some way, we prefer to stick 
to real bases. 

Lemma 8.2.3. Let A be a real n x n matrix whose eigenvalues have a 
negative real part, so that il 

-A = sup{ReAIA is an eigenvalue of A}, 
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then A > o. Then for any C with 0 < C < A, there exists a basis of Rn in 
which Ax . x < -Cllxll2 for every x E Rn. 

Proof. Theorem L6.19 asserts: If A has k pairs of conjugate nonreal eigen­
values, then there exists a basis wl, ... , Wn of Rn such that for any e, in 
that basis, A is k-pseudo-upper-triangular with terms of absolute value < e 
above the pseudo-diagonal. Exercise 8.2-8.3#3 asks you to prove that 

where -A is the largest real part of an eigenvalue. Choose e < (A - C)/n, 
and the lemma follows. 0 

1m A. 

A 
eigenvalues : 

.~ j i~ 
---_+_-...... ---4----1---- Re A. 

• -A­

t 

FIGURE 8.2.1. Relative positions of various constants. 

Now we can deal with the nonlinear case, referring to Figure 8.2.1. 

Lemma 8.2.4. Let A be a real matrix satisfying Ax· x :5 -C1 I1xIl 2 , and 
let q(x) satisfy IIq(x)1I :5 C2 11xll2 for IIxll :5 R. Let p = min(R,CI/2C2). 

Then any solution of x' = Ax + q(x) with IIx(O)1I :5 p satisfies 

for t ~ o. 

Proof. This is a "fence" result, as illustrated in Figure 8.2.2: If x(t) is a 
solution to x' = Ax + q(x) , then 

d/dt(lIx(t)1I2) = 2X'(t) . x(t) = 2(Ax(t» . x(t) + 2q(x(t» . x(t) 
:5 -2CIIIx(t)1I2 + 2C2 IIx(t)113 

(14) 

whenever IIx(t)1I < R. Our definition of p then gives, when IIx(t)1I :5 p :5 
C1/(2C2 ), 

(15) 
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IIx(t)li 

slope lines of u' = - C1U 

to 

FIGURE 8.2.2. The fence described in the proof of Lemma 8.2.4. 

Equation (15) says that IIx(t)112 is a lower fence for the differential equa­
tion u' = -Cl U, so 

if Ilx{O)1I ~ p. 
Hence, IIxll ~ p for all t > 0, which justifies the use of (15). 0 

This completes the proof of Theorem 8.2.2. 0 

Remark. Unlike the case of linear equations, it is quite possible for a 
zero to be a sink without the linearization being a sink, as shown by the 
following: 

Example 8.2.5. Consider the differential equation 

(16) 

whose linearization at (O,O) is a center, but whose phase portrait looks like 
Figure 8.2.3. 

FIGURE 8,2.3. Phase plane for equation (16). 
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Let u(t) = x(t)2 + y(t)2j then 

u'(t) = 2x(t)x'(t) + 2y(t)y'(t) = 2x( -y - ux) + 2y(x - uy) 
= -2U(X(t)2 + y(t)2) = -2(u(t))2, 
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and u(t) = 1/(2t - C) is the general solution of this new differential equa­
tion in u, representing distance from the origin of a solution to equation 
(16). In particular, this information about u tells us that solutions to the 
original system (16) go to (0,0) as t --+ 00, although much more slowly 
than exponentially. • 

Sinks like that in Example 8.2.5 will be called weak sinks. They will be 
major actors in Chapter 9, under Hopf bifurcations. 

LIAPUNOV FUNCTIONS 

There is a way to deal simultaneously with zeroes of vector fields for which 
the linearization is a sink, and at least some of those for which the lin­
earization is not a sink but which are nevertheless (weak) sinks. 

Observe that in Example 8.2.5, the quantity d/dtllx(t)1I2 is strictly neg­
ative when x(t) =1= O. The proof of Theorem 8.2.4 used the same principle: 
the equation 

(15) 

says that with respect to an appropriate basis, the function IIx(t)1I2 de­
creases with time (and at a particular rate). In both cases, it is handy to 
define a Liapunov function. Then the fact that the origin is a sink will 
follow from Theorem 8.2.7. 

This special type of function is named for Aleksandr Mikhailovich Lia­
punov, a Russian mathematician from the late nineteenth and early twenti­
eth centuries, who specialized in the stability of systems, particularly those 
due to rotating heavy fluids. 

Definition 8.2.6. A continuously differentiable function F(x) defined in 
a neighborhood U of a zero Xo of the vector field f is a Liapunov function 
for the differential equation x' = f(x) on U if 

(1) F has its unique minimum in U at xo, 

(2) V F(x) . f(x) < 0 when x(t) E U and x(t) =1= Xo. 

Note that you do not need to solve the differential equation x' = f(x) to 
check that a function is a Liapunov function. The second condition above, 
by the chain rule, can be written as -9tF(x(t)) < 0, which means that F 
decreases along solutions. 
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In the plane, this condition means that all solutions of the differential 
equation cross the level curves of F from the outside to the inside, as in 
Figure 8.2.4. 

F(x)· F(xo) = c > 0 

F(x) • F(xo) = 2c 

~ I' 
vector field crossing level curves of F 

FIGURE 8.2.4. Two level curves of a Liapunov function in a direction field for a 
differential equation. 

Theorem 8.2.7. If a zero of a differential equation admits a Liapunov 
/unction, then the point is a sink. 

The proof we will give for Theorem 8.2.7 is rather nonconstructive, and 
this cannot be avoided unless we make some assumption about how fast f 
is decreasing along solutions. In Exercise 8.2-8.3#8, we will propose some 
alternative proofs under stronger hypotheses (of course, the proof of The­
orem 8.2.2 or Lemma 8.2.4 is already such an alternative proof). We will 
write the proof in the plane; it is not really harder in higher dimensions, but 
the geometric language of "level curves of F" becomes more intimidating. 

Proof of Theorem 8.2.7. Suppose F(Xo) = O. [If not, use F(x) - F(Xo) 
instead of F throughout this proof.) 

Choose a circle C in U centered at Xo; the function F must assume a 
minimum M > 0 on this circle C. Let V be the region inside C where 
F < M; this is a new neighborhood of xo, smaller than U, and we will 
show that every solution which enters V is attracted to Xo. 

Suppose that u(to) E V. Since the function F(u(t» is decreasing, it can 
never increase to M for t > to. Hence, the solution will stay in V for all 
t > to. 

Remark. What makes this proof unpleasant is that we cannot speak of 
limt-+oo(u(t» without some precautions: u(t) might accumulate on a limit 
cycle or some more complicated object and not have a limiting value. We 
can say that for any sequence ti ..... 00, there is a subsequence tij such that 

.lim u(td 
,&--+(X) 3 
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exists. This is simply the statement "any sequence in a compact set has 
a convergent subsequence," which you should take on faith if you do not 
know it already. However, you should also be a little wary-this is where 
the nonconstructivity is hidden. The "simple" statement above gives no 
hint how to find the subsequence. 

Proof, continued. Take any well-spaced sequence of times tending to 00, for 
instance, the integers. Since the sequence F(u(n)) has a limit, the sequence 
of differences 

F(u(n + 1)) - F(u(n)) 

tends to O. By the Mean Value Theorem, there exists some number Sn E 
[n,n + 1] such that 

d 
dtF(U(Sn)) = F(u(n + 1)) - F(u(n)) (17) 

tends to O. 
Extracting a subsequence of Sn, we may suppose that u(sn) converges 

to some point u oo . But if U oo =J. XQ, 

This contradicts equation (17), so u(sn) tends to Xo as n -+ 00. 

This is not quite enough to prove the theorem; it just shows that there 
is a sequence of times at which the solution tends to Xo. It does show, 
however, that limt-+oo F(u(t)) = 0, since the function F(u(t)) is decreasing 
and certainly has a limit. And this is good enough. If u( t) does not converge 
to XQ, then there is a sequence ti tending to 00 such that U(ti) does converge 
in V to some point Voo =J. XQ. Then F(u(td) tends to F(voo ) =J. 0, and this 
is a contradiction. 0 

Example 8.2.8. Consider the second order equation 

x" + f(x)x' + g(x) = 0, (18) 

with f(x) > 0 and x, g(x) of the same sign for x =J. O. This equation is called 
Lienard's equation and should make you think of the damped harmonic 
oscillator; the condition f(x) > 0 says that the friction is positive, and 
the condition xg(x) > 0 says that the force really restores. Of course, the 
ordinary damped harmonic oscillator equation is a special case of Lienard's 
equation, but in general the equation is nonlinear, with the friction and the 
restoring force depending on the position. 

It is not really surprising, in view of the signs, that the origin should be 
a sink, and it is. 
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Replace the second order equation (18) by the equivalent system 

Set G(x) = J: g(u)du and consider 

y2 
F(x,y) = "2 + G(x). 

Note first that F does have an absolute minimum at (0,0), since G has an 
absolute minimum at 0 [that is why we assumed xg(x) > OJ, and, second, 
that 

VF(x,y) ·f(x,y) = -y2f(x) < 0 

when (x, y) :f: (0,0). 
If we make the stronger assumption that G(x) --+ 00 as x --+ 00, we get 

the stronger statement that (0,0) attracts the entire plane. Actually, this 
is already proved in the proof of Theorem 8.2.7. In that proof, there is at 
the beginning a seemingly fussy argument to get a compact region V which 
the vector field always enters; we then showed that all solutions that enter 
such a region are attracted to the minimum of F. 

For this example, every point (Xl. yd is in the region F(x, y) ::; C if 
C > F(xl, yt}; the hypothesis on G is exactly what is needed to see that 
this region is compact. 

Exercise 8.2-8.3#7 provides an example to show what can go wrong if 
the hypothesis is removed. • 

SINKS AND SOURCES IN THE PLANE 

We now know that if the linearization of a vector field f at a zero Xo of f is 
a sink or a source, then the differential equation x' = f(x) also has a sink or 
a source at Xo. One might like more precise information, at least for vector 
fields in the plane, where the linear equations are completely classified. For 
instance, if the linearization spirals, then do the solutions of the nonlinear 
differential equation spiral also? This is indeed true, as we will now show. 
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The case of spiral sinks. A typical spiral sink is shown in Figure 8.2.5. 

FIGURE 8.2.5. The nonlinear sink E from Figure 8.1.1. 

Definition 8.2.9. If f is a vector field in 1R2 and Xo is a zero of f at which 
the linearization of x' = f(x) is a spiral sink, we will say that Xo is a spiral 
sink of the differential equation x, = f(x). 

This definition is justified by the following result. 

Theorem 8.2.10. If Xo is a spiral sink for x' = f(x), then the solutions 
starting sufficiently close to Xo spiral around Xo· 

Proof. We may change coordinates to put Xo at the origin, and if we use 
the real and imaginary parts of an eigenvector as a basis, then we saw in 
Section 7.5 that the differential equation will be of the form 

[ a -b] x' = b a x+q(x). (19) 

We would like to know that the solutions spiral. Let (}(t) be the polar 
angle of a solution (x(t),y(t)). Since () = arctan(y/x), we have 

()' = xy' - x'y = x(bx + ay + Q(x, y)) - y(ax - by + P(x, y)) 
X 2 +y2 X 2 +y2 

= b + xQ(x, y) - yP(x, y), 
x2 +y2 

where P and Q are the coordinate functions of q. 

(20) 

We saw in Theorem 8.2.2 that if (x(O), y(O)) is sufficiently small, then 
/I(x(t), y(t))/I will be (exponentially) small as t --+ 00. Furthermore, since 
in expression (20) for ()' the terms other than b are at least cubic in the 
numerator and quadratic in the denominator, they give something arbi­
trarily small for (x, y) near (0,0). We see that for any c, if (x(O), y(O)) 
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is chosen sufficiently small, then 0' ( t) has constant sign for t > 0 , and 
IO'(t)1 > Ibl - e: for t > O. It immediately follows that the solution turns 
infinitely many times around O. 0 

In Exercises 8.2-8.3#9 and #10, we will show that Theorem 8.2.10 is in 
some sense the best possible: if the linearization of a differential equation at 
a zero of the vector field is a sink with equal eigenvalues, then the solutions 
do not spiral. 

The case of node sinks. A typical node sink is shown in Figure 8.2.6. 

"-------------~ - --------==~~=== 
FIGURE 8.2.6. A nonlinear node sink. (This is the opposite of the node source 
A in Figure 8.1.1.) 

Theorem 8.2.11. A differential equation in ]R2 has a node sink at a sin­
gular point if its linearization at that point has a node sink. This means 
that: 

(i) All solutions which start sufficiently close to the sink approach the 
sink tangentially to an eigendirection as t -+ 00. 

(ii) Precisely two tmjectories approach tangentially to the eigendirection 
corresponding to the eigenvalue having smaller absolute value, from 
opposite sides; all others approach tangentially to the eigendirection 
with eigenvalue having larger absolute value. 

Proof. We have already seen in Theorem 8.2.2 that the singular point is a 
sink if the linearization is a sink, so we only need to show the statements 
about directions of trajectories. In the case of node sinks, the linearization 
has two linearly independent eigenvectors. The proof of Theorem 8.2.11 is 
much easier if we begin our analysis 

• using coordinates that place the node equilibrium (xo, Yo) at the ori­
gin, so that ~ = x and 1] = y, 

• using the eigenvectors as a basis, which places them along the axes. 
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In that case the differential equation is, for P and Q starting with 
quadratic terms, 

x' = -J.Lx + P(x, y) 
y' = -vy + Q(x, y) 

(21) 

where -J.L and -v are the distinct negative eigenvalues, and we will assume 
that -J.L < -v < 0, so the picture looks like Figure 8.2.8; that is, for every 
trajectory not on the x-axis, the x-coordinate approaches 0 faster than the 
y-coordinate; thus, such a trajectory ends up tangent to the y-axis. 

eigenvector for 
A =-u 

-----f----- eigenvector for 
A =.I-l 

FIGURE 8.2.7. Phase portrait for x' = -JJX,y' = -vy with -JJ < -v < o. 

For the linearized equation, all solutions approach the origin tangentially 
to the y-axis except those whose trajectory is on the x-axis. We would like 
to know that for the nonlinear equation there is also a single trajectory 
tangent to the x-axis and that all the other solutions tend to the sink 
tangentially to the y-axis. This kind of statement should remind you of 
the funnels and anti funnels of Part I; indeed, the proofs are just clever 
choices of fences so that the funnel and antifunnel theorems (with minor 
modifications) apply (See Appendix T concerning Chapters 1 and 4 in Part 
I). 

Funnels and antifunnels apply to differential equations in one variable, 
not to systems; however, the trajectories of solutions to the system lie along 
graphs of solutions to 

dy = vy - Q(x, y) = t/J(x y) 
dx J.Lx - P(x,y) , 

(22) 

thinking of y as a function of x, and of 

dx = J.Lx - P(x,y) = r/>(x, ) 
dy vy - Q(x,y) y 

(23) 

thinking of x as a function of y. 
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You do need to worry about the curves along which the denominators 
vanish, as in equations (22) and (23) there is no differential equation there 
and, in particular, none of the theorems about funnels or antifunnels are 
true. 

However, the curve of the equation /-LX = P(x, y) where equation (22) 
fails to be defined is a twice-differentiable curve tangent to the y-axis, and 
similarly the curve of the equation vy = Q(x, y) where equation (23) fails 
to be defined is a twice-differentiable curve tangent to the x-axis. As we will 
see, our choice of antifunnels will always exclude the curves along which 
the differential equations fail to be defined. 

To prove Theorem 8.2.11, we will define three regions in the xy-plane, 
called U, V, and W, bounded by curves as shown in Figure 8.2.8, so that 

(a) The differential equation (23) is defined in U , and U is a funnel for 
(23), so that all solutions that enter it stay in it as y increases to 0; 
in particular, they approach (0,0) tangentially to the y-axis. 

(b) The differential equation (22) is defined in V, and V is an antifun­
nel for (22) with the uniqueness condition, so there exists a unique 
trajectory staying in V as X increases to o. 

(c) W is also an anti funnel for (22), so the unique trajectory specified in 
(b) approaches (0,0) tangentially to the x-axis. 

y 

x 

FIGURE 8.2.8. Funnels and antifunnels for system (21). 

The most delicate part of the proof is the uniqueness in (b), because the 
solutions in this antifunnel are in fact converging, but not quite fast enough 
to stay between the fences. 

It should be clear that similar statements will hold if x and y are positive; 
we chose the regions above because it is easier to think of x and y increasing. 

Proof of (a). The region U is a funnel, forcing solutions to approach 0 
tangentially to the y-axis. 
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Choose c with 1 < c < 2 and c < J-L/v and let x = u(y) = Iylc. 
Since c > 1, this curve does indeed approach (0,0) tangentially to the 

y-axis. However, since c < 2, it approaches the y-axis more slowly than 
any twice-differentiable curve that is tangent to the y-axis. In particular, 
equation (22) is defined in the region V. Of course, equation (23) is defined 
in U, since </J is infinite only on a curve tangent to the x-axis. 

Because y is negative in the region considered, we have u'(y) = _clyIC-l 
and Iyl/y = -1. This means that by factoring vy out of the denominator 
(Reference: Part I, Appendix A on Asymptotic Development), we can write 

and the leading term in y is -(J-L/v)lyIC-l. Note that this used the require­
ment c < 2, since p(l~r'Y) might contain linear terms in y, contributed by 

terms in y2 of P. 
Since c < J-L/v, we have 

u'(y) = _clyIC-l > </J(u(y),y) 

for y < 0 and Iyl sufficiently small. Thus, part (a) is proved. 

A similar computation with Ul(y) = -u(y) shows that U is a funnel and, 
at the same time, that V is an antifunnel, which is the first part of the next 
step, (b). 

Proof of (b). There is a unique trajectory in the antifunnel V. 

We first need to find a function K (x) such that in V we have 

a1/J 
ay (x,y) ~ K(x); 

i.e., K gives a lower bound for the rate at which solutions can converge in 
V. 

We compute from (22), using the fact that (aP/ay) (0, 0) = 0, that 

a1/J ( v aQ/ay ) ( 1 ) 
ay (x, y) = J-LX - ----;;- 1 - P(x, y)/ J-Lx 

= (~_ aQ/ay ) (1 + P(x,y) + ... ) . 
J-Lx J-Lx MX 
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Since Iyl:::; Ixl 1/ c in V, 1///1X is the leading term, and we can take 

K(x) = 1///1+e 
x 

with an arbitrarily small e if we choose Ixol sufficiently small. Note how far 
we are from being able to apply the easy uniqueness criterion K(x) > OJ 
our K(x) goes to -00 as x increases to O. However, the harder antifunnel 
Theorem 4.7.4 still applies. 

Let us repeat the argument: If 'Y1(x) and 1'2(X) are solutions in the anti­
funnel with 1'1 > 1'2, let 'TJ(x) = 1'1 (x) - 1'2 (x). Then 'TJ'(x) ~ K(x)'TJ(x), so 
that 

1'" K(s)ds / x /(v//-L)+c 
'TJ(x) ~ 'TJ(xo) e "'0 = 'TJ(xo) Xo 

How does Ixl(v//-L)+c compare to IxI 1/ c ? Since, from the beginning of (i), 
c < /1/1/, then l/e > 1///1, and if e is chosen sufficiently small, we have 
l/e> I//J.L + e. 

The smaller the power of lxi, the higher the graph of the function near 
0, and we see that the function 'TJ(x) is larger than the distance 21x1 1/ C 

between the top and the bottom of the antifunnel, so only one solution can 
pass through the origin. This proves uniqueness. 

Proof of (c). The exceptional solution is tangent to the x-axis. 

Let v(x) = Ixl 6 for any 8 with 1 < 8 < 2. Then, since x is negative, 
v'(x) = -8IxI 6- 1, and 

.,p(x,v(x» = I/Ixl6 - Q(x, Ix1 6 ) 

/1X - P(x, Ix1 6 ) 

( 1/ 6-1 Q(x, Ix16) 1 
= -~Ixl - /1X (1 + P(x, IxI6)//1x) 

= (_~lxI6-1 _ Q(x, Ix16) (1- P(x,lxI6 ) + ... ) . 
/1 /1x /1X 

The leading term is -(I///1)lxI6- 1, and since 1///1 < 1 < 8, we have 

v'(x) < .,p(x, v(x». 

A similar argument about V1 = -v shows that W is an antifunnel. The 
unique solution in the antifunnel V must also lie in W, which forces it to 
be tangent to the x-axis. 

The proof of Theorem 8.2.11 is now complete. 0 

The following example will explain why noninteger exponents were nec­
essary in the proof of the preceding theorem. 
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Example 8.2.12. Consider the system 

x' = -2x +y2 
y' = -yo 
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The associated linear system has solutions whose trajectories lie on para­
bolas x = Cy2j we will see that the nonlinear equation is different in a small 
but annoying way. 

This particular nonlinear system can easily be solved: the second equa­
tion alone yields 

y(t) = Cle-t , 

and then the first equation becomes 

which can be solved by variation of parameters, giving 

x(t) = e-2t (It e28C~e-28ds + C2) 

= e-2t (C~t + C2). 

To find the trajectories in the xy phase plane, we need to eliminate t 
from the equations for x(t) and y(t). From the equation for y(t), we get 

t= -logly/CII, 

which if inserted in the equation for x(t) gives 

x = -y2 1og Iyl + Cay2, 

where Ca = (C2/C~ + log ICII). 
The important thing to realize about these trajectories for the nonlinear 

system is that they do not approach the y-axis as fast as the parabolas 
that we found for the linear equation. Any attempt to fence in the solutions 
approaching (0,0) tangentially to the y-axis by parabolas is going to fail, 
and we will have to use a funnel with a wider mouth. ~ 

8.3 Saddles 

Definition 8.3.1. An autonomous differential equation x' = f(x) in ]R2 

has a saddle at a zero Xo of f if its linearization there has a saddle. 

Theorem 8.3.2. If an autonomous differential equation x' = f(x) has a 
saddle at xo, then there are precisely 
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two trajectories that tend to Xo as t -+ 00, that together with Xo form 
a smooth curve tangent at Xo to the line of eigenvectors with negative 
eigenvalue (the stable direction), 

and precisely 

two trajectories that tend to Xo as t -+ -00, that together with Xo form 
a smooth curve tangent at Xo to the line of eigenvectors with positive 
eigenvalue (the unstable direction). 

As we have seen in Figures 8.1.4 and 8.1.5, the trajectories of Theorem 
8.3.2, called separatrices, typically separate the regions of generic behavior, 
and are, as such, the most important objects to understand about a vector 
field in the plane. A typical saddle is shown with its separatrices in Figure 
8.3.1. 

FIGURE 8.3.1. A saddle with eigenvectors and separatrices. 

Proof of Theorem 8.3.2. The proof is similar to that for Theorem 8.2.11. 
Here also we 

(i) use coordinates that place the saddle equilibrium (xo, Yo) at the ori­
gin, so that e = x and 'TJ = y, 

(ii) use the eigenvectors as a basis, which places them along the axes. 

or 

In that case, the nonlinear differential equation is 

[x] = [-JL 0] [x] + [P(X,y)] 
y 0 v y Q(x,y) 

x' = -JLX + P(x, y) 
y' = vy + Q(x, y), 

(24) 

with - JL and v the negative and positive eigenvalues, respectively, and P 
and Q starting with quadratic terms. 
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The fact that the separatrices of a saddle divide the vector field into 
regions of generic behavior should remind you of anti funnels, and indeed 
antifunnels are used in the proof. As before, recall that funnels and an­
tifunnels apply to differential equations in one variable, not to systems; 
however, the trajectories of solutions to system (24) follow the graphs of 
solutions to the first order differential equation 

dy vy+Q(x,y) 
= 

dx -/-LX + P(x, y)' 
(25) 

Equation (25) is less satisfactory than equation (24): it is not a differ­
ential equation wherever /-LX = P(x, y), so that the denominator vanishes, 
and in particular, none of the theorems about funnels and antifunnels are 
true when this happens. However, the curve /-LX = P(x, y) is an (implic­
itly defined) twice-differentiable curve tangent to the y-axis (Exercise 8.2-
8.3#11), and our choice of antifunnels will completely avoid curves tangent 
to the y-axis at the origin. 

Consider in the left half of the (x, y)-plane the shaded region U, bounded 
above and below by curves of equation 

y = ±,x2 for some Xo < X < 0 and , > 0, 

and the lighter region V for which Iyl < lxi, as shown in Figure 8.3.2. 

y 

r&l1B1IJI----+ x 

y = ·Ixl 

FIGURE 8.3.2. 

Lemma 8.3.3. For, sufficiently large and Xo sufficiently small, the regions 
U and V described above are both anti funnels for equation (25); therefore, 
these regions contain a unique solution defined for -Xo < x < 0, and this 
unique solution is tangent to the x-axis. 

Proof of Lemma. (i) U is an anti funnel: first we show that y(x) = ,x2 
is a lower fence. If y(x) = ,x2, then y'(x) = 2,x < O. On the other hand, 
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the solutions to the differential equation (25) have slope 1/J(x,y(x» 

1/J(x,y(x»=vy + Q(x,y) ( 1 ) 
-J.LX 1 _ P(x,y) 

/l-X 

= (_v'Yx2 _ Q(x,y») (1 + P(x,y) + (P(X,y»)2 + ... ) 
J.LX J.LX J.LX J.LX 

(26) 
(Reference: Part I, Appendix A on Asymptotic Development) and we need 
to locate the leading terms. If Q has a term in x 2 , then both terms in the 
first parentheses are linear in x. Otherwise, the first term dominates the 
second for sufficiently small Xo when -Xo < x < O. But if Q has such a term 
in x 2 , then there are no y's in that term and its coefficient is independent 
of 'Y. So by taking 'Y sufficiently large and a correspondingly small xo, 
we can guarantee that the first term dominates and, in particular, that 
1/J(x,y(x» > O. Therefore, y = 'YX2 is a lower fence. Similarly, y = -'Yx2 is 
an upper fence, so U is an antifunnel. 

(ii) V is an antifunnel: This proof is left as Exercise 8.2-8.3#12. 
(iii) Unique solution in the antifunnel: In order to use the Antifunnel 

Theorem 1.4.5 that promises a unique solution in V, we need first that V 
is a narrowing antifunnel, which it is as x increases to 0, and second that 
81/J18y> 0 in V. If you differentiate the quotient (25) for 1/J(x, y), you get 

81/J = (_~ _ 8Q18Y) (1 + ~ + ... ) _ (vy + Q)(8PI8y). (27) 
8y J.LX J.LX J.LX (J.LX - P)2 

As x 1 0, the only term of (27) that approaches infinity is - v I (J.Lx) , 
and this leading term is positive in V. [( 8Q 18y starts with a linear term, 
so (8QI8y)/(J.Lx) is at most a constant; P starts with a quadratic term, 
so PI J.Lx starts with at most a linear term that approaches zero.] So if 
(x, y) E V and (x, y) is sufficiently close to the origin, 81/J 18y > O. 

Therefore, in this narrowing antifunnel V, as we approach the origin, 
there is a unique solution to the differential equation (25). The origin is 
the equilibrium point for the nonlinear system whose trajectories lie along 
the solutions to that differential equation; therefore, the unique solution is 
a separatrix of the nonlinear system. 

(iv) Tangency of sepamtrix: This separatrix is tangent to the x-axis, the 
eigenvector with the negative eigenvalue: The unique solution in V is also 
the unique solution in U, by the same arguments given in part (iii), so it 
is squeezed in between two parabolas tangent to the axis at the origin. 

Thus, the lemma is proved. 0 

Proof of Theorem 8.3.2, continued. All the statements about saddles 
follow from Lemma 8.3.2, applied four times, with the necessary changes 
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of variables for the four directions in which the saddle can be approached. 
We need the first antifunnel U to control the direction of the separatrixj 
we need the second antifunnel V, which is broader, to capture all solutions 
approaching the equilibrium point from the left diagonal quadrant, so as to 
avoid in the final argument any ''no man's land" between the four rotated 
versions of U, shown in Figure 8.3.3, where we would not know how the 
solutions behave. 

FIGURE 8.3.3. Four versions of U with four approaches to Xo, yo. 

We have now proved the theorem. 0 

8.4 Limit Cycles 

The simplest thing a solution to a differential equation can do is to be 
attracted to an equilibrium. In the preceding three sections we have ex­
amined equilibria in some detail. The next simplest is for the system to 
undergo periodic motion, or for the phase plane trajectory to be a cycle. 
This behavior cannot occur for autonomous systems in ]Rl, since a circle 
cannot be embedded in a line. 

In the plane, cycles exist and are relatively commonj for instance, the 
solutions of the harmonic oscillator equation 

(28) 

are cycles. 
For nonlinear equations, cycles usually behave quite differently from 

those associated to linear equations: they are usually isolated and control 
the behavior of nearby solutions in the same sense that equilibria control 
the behavior of nearby solutions. This is perhaps the main way in which 
nonlinear equations differ from linear equations, at least in the plane. 
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Example 8.4.1. Consider the system of differential equations 

(29) 

In the phase plane, this differential equation produces Figure 8.4.1. 

·2 
~--~--~-------

FIGURE 8.4.1. Trajectories for equation (29) with a = 1. 

Certainly it appears that all solutions other than the constant solution 
at the origin are attracted to a solution whose trajectory is the unit circle. 
This is, in fact, quite easy to prove. This differential equation has been 
carefully cooked up to be easy to translate (Exercise 8.4#la) into polar 
coordinates, as follows: 

y o = arctan -, 
x 

so 

so 

2rr' = 2xx' + 2yy'; 

xy' - yx' 
0' - ----=:.,=----=--::­- x2 +y2· 

Now substituting x' and y' from (29) gives (Exercise 8.4#lb) 

r' = 0(1 - r2)r 
0' = -1. (39) 

It is fairly easy to solve the first equation of (30), but even easier to 
analyze it from fields of slopes in the rt-plane (Exercise 8.4#lb): For 0> 0, 
all solutions for r > 0 are attracted to the constant solution r = 1; for 0 < 0, 
the solution r = 1 is repelling, and if 0 ~ r(O) < 1, the solution tends to 0, 
whereas if 1 < r(O), then the solution tends to infinity. • 

Example 8.4.1 shows a stable (or attracting) limit cycle when Q > 0 and 
an unstable (or repelling) limit cycle when 0 < O. Stability means that the 
cycle attracts nearby solutions as t --+ +00; instability means that the cycle 
attracts nearby solutions as t --+ -00. 
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In the plane, these are the only kinds of limit cycles that appear "generi­
cally" (there are other "exceptional ones," which we will examine in Section 
9.4). In higher dimensions, there are many other generic possibilities, which 
we will consider briefly in Chapter 13 in Part III. 

Considering that the existence of limit cycles is a perfectly common form 
of behavior for a differential equation in the plane, it is amazing how rarely 
they come up when differential equations are entered at random. Limit cy­
cles do come up rather often, however, in differential equations describing 
real phenomena. Moreover, as we will see in Chapter 9, limit cycles are es­
sential to understanding how phase plane drawings change their qualitative 
appearance as a parameter changes. 

Here are a few further examples of limit cycles: 

Example 8.4.2. Van der Pol's equation, 

x" + (x2 -1)x' +x = 0, (31) 

describes a nonlinear electrical circuit that we will study further in Chapter 
10 in Part III. It can be turned into a system in the standard way: 

x' =y 
y' = (1 - x2 )y - x, 

(32) 

and the associated phase plane drawing appears as in Figure 8.4.2. 

FIGURE 8.4.2. Trajectories for Van der Pol's equation. 

There certainly seems to be a limit cycle in Figure 8.4.2, and this phe­
nomenon can be understood as follows. We can think of the differential 
equation (31) as describing a damped harmonic oscillator, with friction 
x2 - 1. But x 2 - 1 is only positive for Ixl > 1; in other words, the oscil­
lator is being driven if the displacement x is small, and damped or slowed 
if it is large. It is not so surprising that it settles down to some particular 
oscillation. • 
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It is quite possible to produce differential equations with several limit 
cycles. The following is an example: 

Example 8.4.3. Consider the equation 

[X]'=[Y]+(X2+y2)2Sin 1 [x] 
y -x x2 + y2 Y , 

which yields Figure 8.4.3. 

FIGURE 8.4.3. Several limit cycles for Example 8.4.3. 

In Exercises 8.4#3, you can prove that this equation has infinitely many 
periodic solutions, with different trajectories. A 

There are many open problems about limit cycles. For instance, it is 
unknown how many limit cycles a differential equation 

x' = P(x, y) 

y' = Q(x, y) 

with quadratic polynomials P and Q can have, or in what configurations 
such cycles can lie. 

There is one major theorem, the Poincare-Bendixson theorem, that guar­
antees the existence of limit cycles. This is the subject of the next section. 

8.5 The Poincare-Bendixson Theorem 

A major theorem that guarantees the existence of limit cycles is due to 
Henri Poincare (French) and 1. Bendixson (Swedish), in the early twentieth 
century. To see a statement and a proof, you should read Section 8*.5, which 
does not require the previous sections of Chapter 8*. Here we will give a 
useful and simpler special case of the Poincare-Bendixson Theorem that 
can be stated as follows: 
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Theorem 8.5.1 (Poincare-Bendixson Theorem, Annulus Form). 
Let 0 < a(O) < (3(0) be two periodic functions of period 271", continuous and 
piecewise differentiable. Let U be the "annular" region in the plane given 
in polar coordinates by 

and let 

U = ((r,O) I a(O) ~ r ~ (3(0)} 

f(x,y) = [!I(x,y)] 
h(x,y) 

(33) 

be a vector field on U , pointing into U along both components of the bound­
ary. If 

f(x, y) . [ ~y] ;;t= 0 (34) 

in U, then U must contain a limit cycle of x' = f(x,y). 

FIGURE 8.5.1. Annulus for Poincare-Bendixson Theorem. 

The hypothesis (34) means that the vector field curls around the origin, 
never pointing in the radial direction. Since the scalar product does not 
vanish, it must be positive or negative, according to whether the vector 
field turns counterclockwise or clockwise. Without loss of generality, we 
will assume that the scalar product (34) is positive. 

Proof of Theorem 8.5.1. We will consider U first as a wraparound funnel, 
and it is easy to associate to U a genuine funnel: consider the region 

v = ((r,O) I a(O) ~ r ~ (3(0)} 
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in the (e, r )-plane, as shown in Figure 8.5.2. 

r 1 (e) 

r2 ( e) 

~~~~~~-+~~~~~~~~~~~ e 

1t 
FIGURE 8.5.2. Unwrapping the annulus in the Or-plane. 

The differential equation can be written in polar coordinates 

r' = 91(r, e) 
()' = 92(r, e), 

as in Example 8.4.1, by writing 

r2 = x2 + y2, so rr' = xx' + yy' 

() = arctan~, so ()' = (y'x - yx')x/r2. 

Substituting x = r cos e, y = r sin e leads to 

r' = cos elI (r cos (), r sin (}) + sin (}h(rcos (), r sin(}) = 91(r,(}) 

e' _ cos eh(rcose, r sin e) - sin elI (r cose, r sine) _ ( ()) 
- -~~ 

r 

(35) 

and our hypothesis (34) implies that 92(r, (}) > 0 in the region V. Then 
the trajectories will coincide, in the ((), r )-plane, with the solutions of the 
equation 

dr = 91(r,e) = G(r,(}). 
d(} 92(r,e) 

(36) 

Our hypothesis imply that V is a funnel for equation (36) . Moreover, 
the function G is periodic of period 211" with respect to (), so this sort 
of equation is just what was discussed at length in Part I, Section 5.5, 
including the period mapping P : J -+ JR, which associates to r E J the 
value of the solution to equation (36) which passes through (0, r) at () = 211". 
The interval J is the maximal interval on which P is defined; in our case, 
J = [0(0), ,6(0)] since V is a funnel, and P maps J into itself. 
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Any continuous mapping from a closed and bounded interval into itself 
must have a fixed point (Exercise 8.5#1). The solution through this fixed 
point is, of course, periodic as a function of 0, and the solution to x' = 
f(x, y) [as given by Equation (33)] with corresponding trajectory is clearly 
a cycle. D 

There is a fairly obvious condition which implies that the cycle in U is 
unique: the region V is a funnel for equation (36), but it is also a backward 
antifunnel. Suppose now that, in addition, dG / dr < 0, so that since G 
is periodic, the derivative dG/dr < -C for some constant C > O. Then 
the region V, viewed as a backward antifunnel, satisfies the uniqueness 
condition of Theorem 4.7.5, so that the periodic solution to (36) is unique, 
and correspondingly, the equation (33) has a unique cycle in U. 

The condition dG / dr < 0 is usually quite difficult to verify, since G is 
usually a complicated function, but there is a more natural condition which 
leads to the same conclusion: if the divergence 

div f = 8ft + 8h 
8x 8y 

is strictly negative throughout U, then there is a unique cycle in U that 
attracts every solution in U. This follows from the fact that the divergence 
of a vector field f in the plane measures the extent to which its flow ¢f 
contracts or dilates areas. If there were two limit cycles, the region between 
them would have an area preserved by the flow, which contradicts negative 
divergence. This will be covered in Section 8.6, and the uniqueness criterion 
when the divergence is negative is the object of Exercise 8.6#7. 

For examples to illustrate the Poincare-Bendixson Theorem, we go back 
to the limit cycles we have just discovered in Section 8.4. 

Example 8.5.2. Consider the system of differential equations from Exam­
ple 8.4.1: 

(29) 

We return to the case when Q = 1, where we already know the unit circle is 
a limit cycle; we see that an annulus formed by a circle of radius r ~ 1 and a 
circle of radius r :::; 1 will satisfy the conditions of the Poincare-Bendixson 
Theorem 8.5.1, as shown in Figure 8.5.3. 
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-2 

FIGURE 8.5.3. A PoincRrfr-.Bendixson annulus for the limit cycle of x' = y + 
x{l - x2 - y2), y' = -x + y(l - x2 - y2). A 

However, the sad fact about the Poincare-Bendixson Theorem 8.5.1 is 
that it does not tell us how to find a suitable annulus in order to know 
where to look for a limit cycle. That is often quite difficult, even in a case 
where we already can see a limit cycle. 

Example 8.5.3. Returning to the Van der Pol equation (31) or (32) of 
Example 8.4.2, it is far less clear how to define an annulus around the limit 
cycle-give it a try before you read on! 

A helpful approach to defining an appropriate annulus is to use a dense 
grid of slope marks (an option in the MacMath program DiJJEq, Phase 
Plane). Figure 8.5.4 shows one graphical effort to successfully wander through 
the morass, always crossing the vectors in the proper direction. 

Figure 8.5.4 is a more organized annulus for the same problem, for which 
actual equations can be written. We leave the writing of the equations as 
Exercise 8.5#4, giving the hint that the nonstraight curves drawn on the 
figure are the isoclines for zero slope in the vector field. 
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FIGURE 8.5.4. A sketched Poincare-Bendixson annulus for the limit cycle of 
x" + (x2 - l)x' + x = o. 

7 t 

FIGURE 8.5.5. A well-defined Poincare-Bendixson annulus for the limit cycle of 
x" + (x2 - l)x' + x = o. • 
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8.6 Symmetries and Volume-Preserving Equations 

As you can see in Section 8* .6, for a "general" vector field 

• the zeroes are isolated; 

• the zeroes are sinks, saddles or sources; 

• all solutions are attracted forward by sinks and attractive limit cy­
cles, and backwards by sources and repelling limit cycles, except for 
separatrices and limit cycles themselves. 

However, differential equations that you study will often not be "general" 
in this sense and will display quite different behavior. This is usually for 
one or both of the two following reasons: 

(i) The vector field may have symmetries. See Example 8.6.1. 

(ii) The vector field may be area-preserving. See Example 8.6.2. 

Example 8.6.1. Consider the system 

x' = y+x2 +xy 

y' = -X+xy+y2. 

The computer shows the picture in Figure 8.6.1 for the phase plane. 

FIGURE 8.6.1. Phase plane for x' = y + x 2 + xy, y' = -x + xy + y2. 

It appears in Figure 8.6.1 that there is a continuous family of closed 
curves surrounding the origin. Why should they be there? A careful look 
at the picture appears to show that the diagram is symmetric around the 
line x + y = O. This is, in fact, true and easy to show, as follows: 

The symmetry around the line x + y = 0 is given by (x, y) ...... (-y, -x). 
One way of expressing the symmetry is to say that if (u(t), v(t» is a solution 
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of the differential equation, then (-v{ -t), -u{ -t)) is also a solution, as you 
can verify. This solution follows the symmetric trajectory, but with time 
reversed. 

The symmetry explains the observed behavior as follows: if a solution 
(x{t),y{t)) crosses the line x + y = 0 at some time to - h, and again at 
some time to, then between time to and time to + h we will have 

(x{to + s), y{to + s)) = (-y{to - s), -x{to - s)), 

since this is a solution of the differential equation with the correct initial 
condition. But this solution returns to the point where we started, giv­
ing rise to a periodic solution. Thus, there will be a continuous family of 
periodic solutions for this equation. A 

Example 8.6.2. Consider the system of differential equations 

x' = 2cos{x + 2y) - xsin{xy) 

y' = - cos{x + 2y) + ysin{xy). 

The computer shows the picture in Figure 8.6.2 for the phase plane. 

FIGURE 8.6.2. Phase plane for x' = 2cos(x + 2y) - xsin(xy), y' = -cos(x + 
2y) + ysin(xy). 

In Figure 8.6.2, we see lots of things that are not expected: families 
of periodic solutions and separatrices of saddles leading to other saddles. 
Yet, there does not seem to be any symmetry to explain these unusual 
phenomena as in the previous example. A 
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The differential equation of Example 8.6.2 is special because it is area­
preserving. This is an important notion in itself, which we now explain, 
using the notion of flows from Section 6.8. 

Definition 8.6.3. The differential equation x' = f(x) in ]Rn, with flow ¢r 
is volume-preserving (area-preserving if n = 2) if for any subset U of ]Rn 
and any t, the n-dimensional volume 

n-volume(¢r(t, U» = n-volume(U). 

This is obviously an important property that a differential equation might 
have, but it is not obvious that there is any easy way to check whether 
the equation has the property or not. As Corollary 8.6.6 will show, nothing 
could be simpler. Recall from calculus, or simply define, 

. aft afn 
dlV f = -a + ... + -a . 

Xl Xn 

Example 8.6.4. The divergence of the vector field in Example 8.6.1 is 

a a 
ax (y + x2 + xY) + ay (-X + xy + y2) = 2x + y + x + 2y = 3(x + y). 

The divergence of the vector field in Example 8.6.1 is 

! (2cos(x + 2y) - xsin(xy» + ~ (-cos(x + 2y) + ysin(xy» = O. • 

The role of the divergence is largely explained by the following theorem: 

Theorem 8.6.5. Given a differential equation x' = f(x), the divergence of 
f measures the rate of change of volumes under the flow ¢r; i.e., for any 
U C ]Rn, we have 

ddvol(¢r(t,U»1 =/ ... { divfdxI ... dxn · 
t t=o lu 

Proof. Using the notation of asymptotic expansion (Part I, Appendix A), 
we will write 

[ UI(~'X) 1 [UI(t, (Xl, .... ,Xn» 1 
¢r(t,x) = : = : ' 

un(t,x) un(t,(XI, ... ,Xn» 
where Ui(t, x) = Xi + tfi(t, x) + o(ltl) as t -t 0, since it is a coordinate of a 
solution to the differential equation. Note: The notation o(ltl) means, since 
t -t 0, terms of strictly higher order than Itl. 
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We start with a formula from Appendix L5: 

! r [8Ul/8Xl 
vol(4)r(t, U» = ... ir, det 

u 8un / 8x l 

This gives 

d ! r d [8Ul/8Xl 
dt vol(¢r(t, U» = ... ir, dt det 

u 8un / 8x l 

We can also use the fact that 

8Ui (t x) = {t8fi /8Xj(t,x) + o(ltl) 
8xj' 1 + t8fd8xi(t,x) + o(ltl) 

which gives, for the determinant above, 

ifi=lj 
if i = j, 

... aul/8Xn] 

... = 1 + tdiv f + o(ltl) . 

... 8un /8Xn 
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Differentiating this result with respect to t and evaluating at t = 0 yields 
the desired result. 0 

Corollary 8.6.6. The differential equation x' = f(x) is volume-preserving 
if and only if div f = o. 

Proof. This is immediate from Theorem 8.6.5; the only problem is that the 
theorem only computes the derivative at t = O. But the following formula 
repairs this difficulty: 

! vol(¢r(t, V»lt=s = ! (vol(¢r(t, ¢f(s, V»»lt=o· 
Since the theorem holds for any domain V, in particular, V = ¢r(s, U), this 
proves the derivative of the volume is zero, so it is constant if the divergence 
of the vector field vanishes. 0 

Of course, a volume-preserving vector field cannot have any sources or 
sinks, since a neighborhood of a sink would be mapped strictly inside itself 
under the flow, or a neighborhood of a source would be mapped strictly 
outside itself-in either case, its volume would not be preserved. 

This can also be seen from the linearization: if u ' = Au is the lineariza­
tion of the differential equation x' = f(x) at a zero Xo, then Exercise 8.6#3 
asks you to show 

div f(Xo) = tr A. 

If the vector field is volume-preserving, we must have tr A = 0; in dimen­
sion n = 2, this implies that all zeroes must be centers or (rather special) 
saddles. In fact, from Theorem 8.6.5 we see that 
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• the flow is volume-expanding if tr A > 0; 

• the flow is volume-shrinking if tr A < O. 

This goes a long way toward explaining why sources satisfy tr A > 0 and 
sinks satisfy tr A < O. 

If all this volume-preserving stuff seems a little mysterious, it may come 
as a surprise that in the two-dimensional C8.'3e, the subject was essentially 
covered way back in Part I, Chapter 2.6. More specifically, the system of 
equations 

X' = I(x, y) 
y' = g(x, y) 

is area-preserving if and only if the associated equation 

dy 9 
= 

dx I 

(37) 

(38) 

is exact. We saw in Section 2.6 in Part I on exact differential equations how 
to construct on any rectangle where both I and 9 are defined a function 
F(x, y) which is constant on the solutions of (38), i.e., on the trajectories of 
(37). This means you can get actual equations for the trajectories, relating 
x and y (usually implicitly). 

Example 8.6.7. In Example 8.6.2, the function F{x,y) = sin{x + 2y) + 
cos{xy) is constant on the trajectories. 

This essentially completely explains the observed behavior. Such a func­
tion F will have maxima, minima, saddle points, and, perhaps, more com­
plicated extrema. In any case, near a maximum or a minimum the trajecto­
ries form families of closed curves, and a trajectory through a saddle point 
has no choice but to go to another at the same level, or come back to itself, 
or go off to infinity. & 

This (almost) completely demystifies area-preserving differential equa­
tions in JR2 : they are all obtained by taking a function F{x, y) and setting 

I of 
x =-ay 

I of 
y = - ax' 

Such equations are called Hamiltonian; in two dimensions their theory is 
simple: the function F is constant on trajectories, which completely deter­
mines them. These Hamiltonian equations are central in physics. In higher 
dimensions, one function alone does not determine a curve, and 8.'3 we will 
see in Chapter 11 (in Part III), Hamiltonian equations are very elaborate 
in higher dimensions. 
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For an area-preserving differential equation, we can reduce its solution 
to integrating and inverting functions, at least in principle: 

X' = f(x,y) 

y' = g(X, y). 

(1) First find (as explained in Section 2.6 in Part I on exact differential 
equations) the function F such that 

of 
ox = -g. 

(This function F will be called the Hamiltonian function in Chapter 
11 in Part III.) 

(2) Next consider the equation F(x, y) = C1 as expressing y implicitly 
as a function of x, say y = ¢(x). Note: Seeing or understanding the 
curve y = ¢(x) may be difficult in practice. 

(3) Now the first equation becomes separable, dx/(f(x,¢(x» = dt, and 
if it is possible to integrate dx/(f(x, ¢(x», you can find an expression 
G(x) = t+C2 • The function G will still need to be inverted to express 
x as a function of t. 

The "almost" inserted in the sentence about demystification comes from 
the fact that if the equation is defined on a domain with holes, the function 
F may fail to be defined in the entire domain. This difficulty is important, 
but we will not discuss it here. 

Example 8.6.8. Consider the differential equation from Section 6.5, 

x' =y 

y' = -sinx, 

describing the pendulum, or, more generally, 

x' = Y 

I oV(x,y) 
y =- ax . 

These equations often had continuous families of closed trajectories, and 
saddle connections. We can now clearly see why: 

(i) They are symmetric with respect to the y-axis, which you can see 
either directly or from the obvious symmetry of the Hamiltonian function 
when V(x) is symmetric. 

(ii) They are area-preserving, and, in fact, the Hamiltonian function is 

F(x, y) = y2/2 + V(x), 
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also called the total energy. Note the very important fact that conservation 
of energy and conservation of area are the same thing in this case! • 

You might wonder if just by looking at the phase plane of a differential 
equation, you can tell whether the equation is volume-preserving. In the 
large (globally), you may get hints that this is so from the phase plane 
presence of continuous families of periodic solutions and of centers. In the 
small, if you see sinks or sources, you can be sure it is not area-preserving. 
But locally, and away from zeroes, you cannot: in the absence of equilibria, 
any pattern of trajectories is locally compatible with the property of being 
area-preserving. 

More specifically, given any vector field f on a region of the plane with 
no holes, which furthermore does not vanish in that region, then there is a 
function f(x, y) > 0 such that the vector field ff is area-preserving. This 
means that locally (away from zeroes) you can adjust the length of the 
vectors forming the vector field to make it area-preserving. 

Such a function, which acts as a multiplier on the vectors, is classically 
called an integrating factor and is a standard fixture of elementary courses 
on differential equations. In most cases, it is just as hard to find an in­
tegrating factor as to solve the equation, so we will not expand on this 
topic. 

8.7 Chaos in Higher Dimensions 

The theory throughout Chapter 8, especially in Sections 8.5 and 8.6, is 
quite specific to the plane. Although there are generalizations to higher 
dimensions, they are much weaker, either because the hypotheses are sel­
dom satisfied or because the conclusions do not describe the flow with any 
precision. In this section, we want to give some examples that bring out 
the difficulties. 

Example 8.7.1. We already encountered the Lorenz equation in Example 
6.1.6. Recall it as the following rather innocent looking autonomous system 
in JR3: 

x' = O'(y - x) 
y' =px -y - xz 
z' = -[3z + xy. 

(17) 

Lorenz produced these equations as a reduction to three dimensions of 
a set of partial differential equations describing fluid convection; in this 
case, the parameters 0', p, and [3 are all positive. We will only consider the 
equation in this range. 
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Solutions of the Lorenz equation for the "traditional parameter values" 
(1 = 10,,8 = 8/3, and p = 28 are represented in Figure 8.7.1. It is much 
easier to get a feel for this figure by seeing it move on a computer screen 
(or a video) than by looking at static pictures. 

-25.000 < x < 35.000 
-30.000 < Y < 35.000 
-10.000 < z < 70.000 

dx/dt 
dy/dt 
dz/dt 

= 10*(y-x) 
= 2S*x-y-x*z 
= -(S/3)*z+x*y 

FIGURE 8.7.1. The Lorenz attractor. ~ 
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In Example 8.7.1, the reduction to three dimensions is drastic, and there 
does not appear to be any close relation between the solutions of (17) and 
the original meteorological problem. Despite this, the literature about the 
Lorenz equations is very large, with at least one entire book [C. Sparrow, 
The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors] and 
many papers devoted to its solutions, but without any complete description 
in sight. We will largely follow the description in Guckenheimer and Holmes 
[Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector 
Fields]. 

We will now give a way of thinking about these solutions by a geometric 
picture of the Lorenz attractor proposed by R. F. Williams in The Structure 
of Lorenz Attractors. 

Cut out three semi-circles of cardboard, marked as in Figure 8.7.2, and 
glue them according to the pattern of Figure 8.7.3 . 

. ~ .. ~" a a ~ 

FIGURE 8.7.2. Pattern for cutouts. 

FIGURE 8.7.3. How to glue together cutouts of Figure 8.7.2. 

You can now draw curves on this model by following the marked curves 
around; they can be followed (forward) forever unless they end at p. They 
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turn a certain number of times around hole A, then around hole B, etc. 
The details of the behavior depend in a very sensitive way on the lengths 
a, b, and c. 

The actual behaviors of the solutions to the Lorenz equations (17) behave 
much the same way: they turn around the zero A for a while, then around 
B, then around A again, etc. 

No one has managed to prove that the behavior of this cardboard model 
really reflects the differential equation, but extensive computer experimen­
tation backs up the view that this is how the solutions behave. 

We will discuss one other phenomenon that appears in three dimensions. 
Although it is rather easier to understand than the Lorenz equation, it 
has perplexing properties. The discussion will necessarily be a bit vague: 
a precise definition of a section mapping is given in Section 8*.4, but we 
hope we can convey the idea here without the technicalities. 

CYCLES AND THE SECTION MAPPING IDEA 

Take a cycle and choose a transversal to the cycle (see Figure 8.7.4): in the 
plane, this transversal will be a line segment; in space, it will be a piece of a 
plane. If you start in the transversal sufficiently close to the cycle and solve 
the differential equation, you will stay close to the cycle and hence will 
come around and intersect the transversal again. This defines a mapping 
from the transversal to itself, called the section mapping, which has a fixed 
point at the intersection of the cycle with the transversal. To be accurate 
about things, you need to worry about the domain, etc., but we will leave 
all that to Chapter 8*. 

x, 
H 

--~-----~--------~--~X, 

)-----~x, 

r a section H In IRl 

a section H In 111: 2 

FIGURE 8.7.4. Transversals to cycles used for section mapping. 

In the plane, cycles are usually attracting or repelling. This means that 
the section mapping will usually have an attractive or a repelling fixed 
point. This is not surprising; after all, the derivative of the section mapping 
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at the fixed point is some number, and it is usually either bigger or smaller 
than one. 

This sort of fixed point for one-dimensional iteration has been discussed 
in Part I, Chapter 5, and will be thoroughly discussed for two dimensions 
in Part III, Chapter 13. For now an informal introduction should suffice. 

In three dimensions, there is another generic possibility, beyond being 
attracting or repelling. The derivative of the section mapping is now a 
2 x 2 matrix and will usually have two eigenvalues. It seems intuitively 
likely that if they both have absolute values smaller than 1, the fixed point 
will be attracting, and if they both have absolute values great err than 1, 
the fixed point will be repelling. But what if one is bigger than 1 and the 
other smaller? 

When this happens, we will see in Chapter 13 (Part III) that the mapping 
has a saddle: there is a curve through the origin (in the section) that is 
attracted to the origin under the section mapping, and another that is 
attracted under the inverse of the section mapping as shown in Figure 
8.7.5. The situation is very similar to that of Section 8.3. As before, we will 
call these curves the stable and unstable separatrices of the origin (for the 
section mapping). 

FIGURE 8.7.5. Stable and unstable separatrices in section mapping, and the 
surfaces they generate. 

These "section mapping separatrices" are not solutions of the differential 
equation: they are contained in a transverse section. A solution through a 
point of the stable separatrix spirals toward the cycle in forward time; a so­
lution through the unstable separatrix spirals toward the cycle in backward 
time. The solutions through the stable separatrix form a surface, which de­
serves to be called the stable separatrix of the cycle, and, similarly, the 
solutions through the unstable separatrix form a surface called the unsta­
ble separatrix of the cycle. An idea of these surfaces is sketched in Figure 
8.7.6. 
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FIGURE 8.7.6. If the separatrices are extended, they may intersect. 

Exercise 8.7#5 asks you to compute these separatrices explicitly in some 
simple cases. 

Amazing things happen when the stable and unstable separatrices inter­
sect. You can alternately think of the curves intersecting in the section, or 
the solution through such an intersection point, which spirals toward the 
cycle both backward and forward. These two ways of seeing the intersection 
are pictured in Figure 8.7.7. 

FIGURE 8.7.7. Intersections and tangling of stable and unstable separatrices in 
the section plane. 

As Figure 8.7.7 shows, such a solution is now forced to spiral away from 
the cycle, wander around for awhile, and then spiral back toward the solu­
tions. It may sound as if this gives great opportunities for tangling, and it 
does. In fact, it is not easy to believe quite how much complication must 
occur any time such a homoclinic tmjectory exists. 

Once one point Po is on both curves, all the forward and backward images 
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must be on both curves, so they must intersect infinitely often. 
Now think of the piece of the unstable separatrix going through the points 

Pn,Pn+b ... for large n. This sequence of points is approaching the fixed 
point along the stable separatrix, and we claim that the unstable mani­
fold must oscillate wildly as it approaches itself (without ever intersecting 
itself). Indeed, the section mapping is expanding in the direction of the 
unstable separatrix, mapping each oscillation into a bigger one. 

For one thing, the oscillations will follow longer and longer parts of the 
unstable separatrix, until they start following the oscillations themselves, 
forming oscillations on the oscillations,·etc. 

For another, the stable separatrix has to go into the same kind of oscil­
lations as it approaches itself along the unstable separatrix. This implies a 
whole network of new intersections of the stable and unstable separatrix. 

One can show that when this happens, there must be infinitely many 
different periodic solutions, with periods tending to infinity. These solutions 
will mostly be knotted, and linked with each other, forming a remarkable 
mess that has come to be called the "homoclinic tangle," as shown in 
Figure 8.7.8. There are many, more complicated things than these in the 
homo clinic tangle. 

FIGURE 8.7.8. A more complete picture of the homoclinic tangle. 

ORDER AND STRUCTURAL STABILITY 

We have so far given the impression that structural stability comes only 
when order reigns and solutions have simple behavior: they are usually 
attracted to sinks or limit cycles, and the others are also easy to understand. 

Two extraordinary results from the 1950s showed that this idea, how­
ever plausible, is wrong. It is quite possible for very chaotic systems to be 
structurally stable. 

Smale, in his study of a class of mappings which have come to be called 
"Smale horseshoes," showed that some mappings (not differential equa­
tions) in the plane could simultaneously have infinitely many periodic 
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points, orbits that are dense in a Cantor set, and be structurally stable. 
Moreover, he showed that if a mapping of the plane has a periodic point, 
the stable and unstable separatrices of which intersect transversally, then 
inevitably horseshoe behavior will occur. It is because of his results that 
we know that if a differential equation in R3 has a cycle, with stable and 
unstable separatrices which intersect transversally, then there must be in­
finitely many cycles and all sorts of other complications. But this does not 
contradict structural stability. Neither does it imply it, of course. We will 
describe and discuss the Smale horseshoe in Chapter 13 (Part III). 

Anosov, in his study of the geodesic flow on closed surfaces of negative 
curvature, discovered that these are also structurally stable. 

The geodesic flow is the differential equation, whose solutions are the 
geodesics on the surface, parametrized by arclength. To specify a solution, 
you give a point and a direction, and the point starts out in that direction 
and goes as straight as it can, at constant speed. Since we needed an initial 
velocity (the direction) as well as an initial position, we see that this is a 
second order differential equation on the surface, which can be turned in 
the standard way into a first order differential equation on the space of unit 
tangent vectors to the surface. This space of unit tangent vectors is three 
dimensional: there is a surface's worth of points at which to attach them, 
and a circle's worth of directions for each point. 

A surface of positive curvature focuses geodesics, whereas negative cur­
vature makes them spread out and diverge. It is hard to imagine anything 
more chaotic than geodesic flow on manifolds of negative curvature; for 
instance, there are infinitely many closed geodesics, each of which is a cy­
cle in the space of unit vectors, which has stable and unstable separatrices 
that intersect transversally. In this case, it is fairly easy to imagine what 
these stable and unstable separatrices are: they are the geodesics that spiral 
toward the closed geodesic forward and backward. 

Moreover, these separatrices intersect transversely: there are geodesics 
which spiral towards the closed geodesics both forwards and backwards. So 
there are infinitely many Smale horseshoes, all interrelated in some compli­
cated way. Somehow, the whole geodesic flow is maximally disordered and 
tangled. But precisely this maximal disorder leads to structural stability. 
We will discuss geodesics in Chapter 11 (Part III), but will not be able to 
approach Anosov's theorem. 

8.8 Structural Stability 

A reader who plays with the phase plane program will observe that, in 
general, the phase portrait of a differential equation x' = f(x) in the plane 
changes only slightly when the vector field f is slightly modified: 
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The zeroes of the modified equation are close to the zeroes of the origi­
nal equation; they are still sinks, sources, and saddles as they were for 
the original equation; the basins of the sinks are bounded by the same 
separatrices, and so forth. 

Example 8.8.1. 

(a) [:J' = [;=:::~:!] 

(b) [: J' = [; = :: : ~:~ ] 
(c) [: r = [y -xx~;2 5~93~~n x] 

--- j 

- --------

a) 

-, 

c) 

FIGURE 8.8.1. Perturbed phase planes, showing how the key structures perse­
vere. ... 

In Chapter 8*, we will state and give a complete proof of two theo­
rems which make this precise. However, these results are quite difficult and 
technical, and the content of the main statements (not the proofs) can be 
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conveyed without the heavy apparatus introduced in Section 8*.1. In this 
section, we will try to say enough to allow the reader to go directly to Chap­
ter 9, which is considerably easier than Chapter 8*; bypassing Chapter 8* 
is probably the right course to follow in a first reading. 

Let us pin down more precisely what we expect the reader exploring 
phase planes to observe. We claim that, in general, in 1R.2, 

(1) all zeroes of f are sinks, sources or saddles; 

(2) all cycles are attracting or repelling; 

(3) all solutions tend as t -+ +00 to sinks or to attractive limit cycles, 
except the saddles, their stable separatrices, and the unstable limit 
cycles; 

(4) all solutions tend as t -+ -00 to sources or to repelling limit cycles, 
except the saddles, their unstable separatrices, and the stable limit 
cycles. 

With some minor technical caveats (linearly attracting, etc.), we will call 
a vector field in the plane which satisfies conditions (1)-(4) structurally 
stable. 

Let us try to see what must happen in order for one of these conditions 
to fail. At least one fact is clear: there can be a zero of f at which the 
linearization is neither a sink, a source, or a saddle. This can happen in 
two rather different ways: one eigenvalue of the linearization can be 0 or 
there can be a pair of purely imaginary eigenvalues. We discussed this in 
Section 7.5. 

There is, of course, something worse that might happen: both eigenval­
ues might be zero. The reader should see that this is "more exceptional" 
than the previous two possibilities, as we shall elaborate by considering the 
"co dimension" of a bifurcation. 

THE CODIMENSION OF A BIFURCATION 

If you take a 2 x 2 matrix "at random" (for instance, the linearization of f at 
some zero), you do not expect any eigenvalues to be 0 or purely imaginary. 
But if you have a one-parameter family of 2 x 2 matrices, the determinant 
is a continuous function of the parameter, and if it takes on both positive 
and negative values, it will have to vanish somewhere. Thus, we expect to 
see the eigenvalue 0 in one-parameter families. Similarly, the trace will have 
to vanish somewhere, which leads to purely imaginary eigenvalues. 

Both a zero eigenvalue and a pair of purely imaginary eigenvalues are 
accidents which occur generically in one-parameter families: we say 
these are bifurcations of codimension 1. 
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On the other hand, we would not expect both the determinant and the 
trace to vanish for the same value of the parameter. But if we have a matrix 
that depends on two parameters, it is hard to see how we could avoid some 
point mapping to (0,0) in the trace-determinant plane. 

A double zero eigenvalue is an accident that occurs generically in two­
pammeter families but not in one-parameter families: we say this is a 
codimension 2 bifurcation. 

This sort of analysis can be continued: we might look not just at the 
linearization at a zero but at higher terms of the Taylor polynomial and 
see how many of these vanish, finding more and more degenerate zeroes 
of vector fields, which occur generically in higher dimensional families, and 
near which the differential equation behaves more and more bizarrely. There 
is a small industry of investigating more and more degenerate zeroes of 
vector fields, which we will only touch on in Chapter 9. 

But the fact that "accidents" can be more or less exceptional, according 
to the number of parameters needed to make them occur generically, is 
a very important idea. Without some assumption about differential equa­
tions being "general," or belonging to "general" one-parameter and two­
parameter families, all kinds of exceptional behavior can occur, and there 
do not appear to be any straightforward results. 

Another accident that might occur is that a limit cycle might fail to be 
attracting or repelling: it might, for instance, be attracting on one side and 
repelling on the other as shown in Figure 8.8.2. 

FIGURE 8.8.2. A semi-stable limit cycle. 

There is actually only one other accident that can occur: the unstable 
separatrix of a saddle may also be the stable separatrix of another saddle, 
or even of the same saddle. The first case is called a heteroclinic saddle 
connection, the second a homoclinic saddle connection. See Figure 8.8.3. 
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FIGURE 8.8.3. A heteroclinic and a homoclinic saddle connection. 

Again, one can imagine more complicated things, such as the simultane­
ous saddle connections shown in Figure 8.8.4. 

FIGURE 8.4.4. Two simultaneous saddle connections. 

The reader should convince herself or himself that both of the accidents 
seen in Figure 8.8.3 occur generically in one-parameter families, but that 
the accident in Figure 8.8.4 occurs generically only in two-dimensional fam­
ilies; it is "more exceptional." 

Example 8.8.2. Consider a one-parameter family of vector fields fa with a 
saddle, such that for two values of the parameters, the separatrices intersect 
a line segment I as shown in Figure 8.8.5. 

Consider the (signed) distance d(a) from the intersection As of the stable 
separatrix with I to the intersection Au of I with the unstable separatrix. 
The distance d(a) is a real-valued continuous function of a, which is positive 
for one value of the parameter and negative for another, so it must vanish 
somewhere. 
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FIGURE 8.8.5. How separatrices intersect a transverse line segment. 

It is hard to see how we could avoid such things in one-parameter families; 
on the other hand, near a vector field as shown in Figure 8.8.4, there are two 
analogous distances, and in a one-parameter family one would not expect 
them to vanish simultaneously. A 

There is not any really obvious way to see that this is the end of the list 
of accidents, yet it is, and the result can be summarized as follows, to be 
proved and elaborated in Chapter 8*: 

Proposition 8.8.3. If all zeroes are sinks, sources, or saddles, all cycles 
are attmcting or repelling, and there are no saddle connections, then the 
vector field is structumlly stable. 

The reader who wants to see a proof will have to look at Section 8*.5 
(which can be read without reading the earlier sections of Chapter 8*), 
and Section 8*.6 (which requires everything which comes before). But it is 
rather hard to imagine how Proposition 8.8.3 could be wrong, and so we 
ask you temporarily to take it on faith. 

You can move directly to Chapter 9 on bifurcations without loss of any 
prerequisites. But we encourage you to at least come back to Chapter 8* 
later. 
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Chapter 8 Exercises 

Exercises 8.1 Zeroes; Linearization 

8.1#1. For each of the following differential equations 

(a)O [:]' = [ _ sin(~) _ 3Y] 

(b) [: r = [X2 ~ ~ ~ 2 ] 

(c) [:]' = [X2~~~25] 

(d) [x]' = [sin(1r(X-Y))] 
Y xy-1 
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(i) Locate the singularities and write out the linearization about each of 
them. 

(ii) Find the eigenvalues and eigenvectors of the linearization matrix for 
each of the singularities. This can be done by hand or with Eigen­
Finder in MacMath. 

(iii) With MacMath's DiJJEq, Phase Plane or other phase plane computer 
software, make a phase portrait for the equation, locating all the 
singularities. Print three copies. 

(iv) On the first phase portrait, draw the eigenvectors at each singular­
ity where they are appropriate, marking the direction of motion by 
arrows according to the sign of the corresponding eigenvalues. You 
should be able to see exactly how the phase portrait trajectories are 
related to these eigenvalues and eigenvectors. 

(v) On the second phase portrait, shade in all the basins of the sinks. 

(vi) On the third phase portrait, shade in all the cobasins of the sources. 

8.1#2. For each of the following differential equations 

(i) Locate the singularities and write out the linearization about each of 
them. 

(ii) Find the eigenvalues and eigenvectors of the linearization matrix for 
each of the singularities. This can be done very quickly with Eigen­
Finder in MacMath. 
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(iii) Using MacMath's DiffEq, 3D Views, draw a phase portrait for the 
equation, locating all the singularities. The xyz view will look like 
spaghetti, but you may find more "order" in the xy, yz, and xz views. 
Print out a copy of these graphs. 

(iv) On each of the two-dimensional graphs printed in (iii), draw the eigen­
vectors at each singularity where they are appropriate, marking the 
direction of motion by arrows according to the sign of the corre­
sponding eigenvalues. (That is, draw the appropriate projection of 
each eigenvector, which means ignoring the relevant third compo­
nent.) You should gain some insight as to how the phase portrait 
trajectories are related to these eigenvalues and eigenvectors. 

8.1#3. For each of the following differential equations 

(a) [:]' = [x3/2~!+XY] 

(b)O [:]' = [X4 +4X3 -;;Y-4X+Y)/8] 

(i) Find the zeroes of the system, and by linearizing, tell what they are. 

(ii) Make a picture of any saddles with their separatrices and proper 
arrows on each. This can be done in MacMath using DiffEq, Phase 
Plane, with no slope marks. When a saddle is located, the separatrices 
are drawn automatically, the first two pointing out from the saddle 
and the last two pointing inwards toward the saddle. Print the picture 
and draw arrows on the separatrices. 

(ii*) An alternate way of examining the saddles is to find their eigenvalues 
and eigenvectors, by hand or with MacMath's EigenFinder. If you 
do not have a computer program that draws separatrices, you may 
want to locate the other singularities and find their eigenvalues and 
eigenvectors. 

(iii) From this picture of only the saddles and separatrices, with arrows, 
locate other zeroes and tell what they are. Sketch in some other tra­
jectories, with arrows, in order to fit with the separatrices and their 
arrows. Show how separatrices determine regions of behavior near the 
saddle. 

(iv) Verify your expectations for the phase portrait with another com­
puter drawing, using slope marks and drawing by computer some 
trajectories between the separatrices. 
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8.1#4. For the differential equation of Example 8.1.8, 

(a) Find the linearization. 

(b) Show that an eigenvalue of the linearized equation is zero. 

(c) Show that the equation does not behave like its linearization. 

8.1#5. For the pretty complicated differential equation 

[x]' _ [ 2x+siny-4x(x2+y2) ] 
y - siny - 3xsin(x - 2y) - 2y(x2 + y2) 

189 

(i)O Find the linearization near (0,0) to show that the linearization is far 
simpler than the original equation. 

(ii) Compare phase portraits of the nonlinear and linearized systems and 
estimate how far from the origin the linearization will give a good 
approximation. (You should not expect the accuracy to be the same 
in all directions.) 

8.1#6. For the following nonlinear systems of differential equations, make 
sketches by hand to answer the questions: 

(a) [:]' = [:y-_x1 ] (d) [:]' = [COS(x;y+ y2)] 

(b) [:]' = [x2+::-1] (e) [x]' = [sin(x - y) ] 
y cos(x + y) 

(c) [x]' = [x2+ y2 -2] y y2 _ X4 (f) [x]' = [X(l-y-X)] 
Y y(2 - x) 

(i) Sketch in the phase plane the locus where the vector field is vertical 
and indicate where it is pointing left and where right. Furthermore, 
sketch the locus where the vector field is horizontal and indicate where 
it is pointing up and where down. Combine this information in each 
region bounded by the isoclines to show the resultant direction of the 
vector field. 

(ii) Find all the singularities of the system. Write down the linearization 
in each case and describe the type of singularity. Find the eigenvector 
directions for real eigenvalues of the linearization. 
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(iii) Sketch some trajectories in the phase plane, among them the separa­
trices, and color the basins of each sink. 

8.1#7. Consider the system of differential equations 

x ax-y [ ]' [ ] y = y-x2+x 

where a is a parameter. 

(a) On what curves is the vector field horizontal? Vertical? 

(b) In each region bounded by these curves, tell whether the vector field 
points up or down, left or right. (The description is a bit different 
when a > -1 and a < -1 , so consider these cases separately). 

(c) Find the zeroes of the vector fields and their linearizations. Classify 
them. 

(d) Sketch the trajectories of the solutions, indicating, in particular, the 
basins of the sinks and cobasins of the sources, for a = -2, 0, 1. 

8.1#8. Find, by hand or computer, the singularities, linearizations, tra­
jectories near the zeroes, and basins of the sinks for 

(a) [:r = [~:!] (d) [: r = [(x2 - r)y - x] 

(b) [ x r = [x2 + y2 - 25 ] 
y xy -12 

(e) [: r = [x sin~x_+x~) - x] 

(c) 
x 2xy-x [r [ ] y = _y2 + 2xy2 . 

Note: You might get answers in (d) for the type of singularity depending 
on where you click the mouse. How can you explain this uncertainty? 

8.1#9. Consider the nonlinear system of differential equations 

(a) Locate the singularities of the system. In each case, write down the 
linearization and the type of singularity for the linearized system. 
What can you conclude about the singularities for the nonlinear sys­
tem from the linearizations? 
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(b) Draw in the phase plane the curves where the vector field is horizontal 
and where it is vertical, and indicate where it is pointing up, down, 
left, and right. Furthermore, indicate the vector field along the line 

Why is this line interesting? 

(c) Let (x, y) = (u(t), v(t)) be a solution to the nonlinear system. Show 
that (x,y) = (u(-t),-v(-t)) is also a solution. What is the geo­
metrical meaning of this? In particular, let the solution be such that 
(u(O), v(O)) is a point in the first quadrant on the curve where the 
vector field is horizontal. Explain why such a solution has to be pe­
riodic. 

(d) Finally, sketch the trajectories for the nonlinear system. 

8.1#10. Find the linearization of 

[ x-xy ] 
-y+xy 

near all its singularities and in each case identify its type. Confirm with 
a phase portrait, drawn by hand or computer, the behavior of trajectories 
for the nonlinear system. 

8.1#11. For the equations of the pendulum with friction (Example 6.5.4), 

(a) Use MacMath's DiJJEq Phase Plane to make computer pictures for 
different integer values of c: > 0 in order to show at what value(s) of 
c: the trajectories cease to spiral. 

(b) Confirm by algebraic calculation the value of c: at which you expect 
the spirals to cease. 

8.1#12. Suppose that x(t) describes the position of a particle moving in 
one dimension, under the potential V(x). Show that the vector field in 
the plane corresponding to this system, as described in Section 6.5, has a 
zero at (xo,Yo) if and only if dVjdx(xo) = 0 and Yo = O. Show that at 
such a zero, the linearization is a center if d2Vjdx2 (xo) > 0, i.e., if the 
potential has a nondegenerate minimum. Show that if the potential has a 
nondegenerate maximum, the linearization has a saddle. 
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Exercises 8.2-8.3 Saddles, Sinks, Sources 

8.2-8.3#1. For [ : r = [X2 1~ ~ ~ 25] , 
locate any sinks and sources. 

8.2-8.3#2°. Consider the system of differential equations 

(i) 

and the related single differential equation 

dy y - x2 

dx -x -xy 
(ii) 

(a) Show that one of three singular points for (i) is a saddle point. Find 
the eigenvector directions. 

(b) We have shown that the shaded region U in Figure 8.3.2, 

U = {(x, y)1 - 1 < x < 0, _x2 ~ Y ~ x2 }, 

defines an antifunnel for (ii) satisfying 

~ (!x-_X;y) ~ O. 

Show that the symmetric shaded region W, 

W = {(x,y)IO < x < 1,-x2 ~ Y ~ x 2 }, 

defines a funnel for (ii) and, when you reverse "time" (x in this case), 
W defines an antifunnel satisfying the uniqueness criterion. 

(c) What does part (b) tell you about the system (i)? 

8.2-8.3#3°. Consider an n x n matrix A with k pairs of conjugate nonreal 
eigenvalues, so that for any c > 0, by Theorem L6.18, there exists a basis 
Wl, ... , Wn of IRn such that in that basis A is k-pseudo-upper-triangular 
with terms of absolute value < c above the pseudo-diagonal. Let -A equal 
the largest real part of an eigenvalue. For the proof of Proposition 8.2.3, 
prove that 

8.2-8.3#4. For the differential equation 
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(a) Show that at (0,0) the linearization gives a center, so we need further 
analysis to determine the nonlinear behavior. 

(b) Show that F(x,y) = x2 + y2 serves as a Liapunov function and use 
it to analyze the singularity at (0,0) of the differential equation. 

(c) Describe all solutions of this equation. 

8.2-8.3#5. Consider the differential equation 

X = 2Y • [ ]' [ ] Y -e-x (x+y) 

(a) Show that every solution that enters the region Iyl ~ e-x2 / 2 is at­
tracted to the origin. Hint: use Example 8.2.8 to find an appropriate 
Liapunov function. 

(b) Show that any solution entering the region x > 0, y > l/x stays in it 
forever (in particular, is defined for all positive time). Hint: Consider 
the curve y = l/x as a fence for the associated equation 

dy _x2X +y 
-=-e --. 
dx y 

(c) Use an antifunnel and the symmetries of the equation to describe the 
basin of the origin with precision. 

8.2-8.3#6. Repeat Exercise 8.2-8.3#5 for the equation 

this time finding the appropriate regions yourself. 

8.2-8.3#7. The equation 

behaves quite differently from that of Exercise 8.2-8.3#6 (though the pic­
ture looks very similar). How and why? 

8.2-8.3#8. Give a proof using fences of the following variant of Liapunov's 
Theorem: If x' = f(x) is a differential equation, f(xo) = 0 and F is a 
function such that F(:xo) = 0, the point Xo is an isolated minimum of F, 
and 

VF(x)· f(x) ~ -CF(x) 
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for some constant C > 0, then Xo is a sink for the differential equation. 

8.2-8.3#9°. Consider the differential equation 

x' = -ax + P(x, y) 

y' = -ay + Q(x, y), 

where a > 0, and P and Q start with quadratic terms. Show that the 
solutions attracted to the sink (0,0) do not spiral around the origin. 

Hint: Pass to polar coordinates, and write ()' as in equation (20) in the 
proof of Theorem 8.2.10. Use the fact that the solutions are attracted ex­
ponentially fast to the origin to show that 

100 
()' dt < 00. 

8.2-8.3#10. Consider the differential equation 

x' = -ax - y + P(x,y) 

y' = -ay + Q(x, y), 

where a > 0, and P and Q start with quadratic terms. Show that the 
solutions attracted to the sink (0,0) do not spiral around the origin. 

Hint: Consider the associated differential equation 

dy -ay + Q(x, y) 
dx -ax-y+P{x,y) 

and show that it is well defined in the region _X3/ 2 :::; Y :::; X 3/ 2 , 0 < x < € 

for € > 0 sufficiently small. Then show that this region is a backward 
antifunnel. 

8.2-8.3#11°. If 

[:J' = [-~x++~~~~)] 
with P and Q of quadratic or higher order forms, show that the curve 
ILX = P(x, y) is twice differentiable and tangent to the y-axis. 

8.2-8.3#12. In the proof of Lemma 8.2.3, prove that V is an antifunnel. 

8.2-8.3#13. For the Lorenz attractor of Example 6.1.6, 

[X]' [lO(Y-X)] 
y = 28x -y-xz 
z -2.66z + xy 
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find the singularities and draw pictures to show how each works. 

8.2-8.3#14. For the following second order equations, express each as a 
system of first order equations by setting x' = y. Then, for 0: = -1,0,1, 
use MacMath's program DiJJEq, Phase Plane to find the singularities and 
show the behaviors of the trajectories in the xy phase plane. Use arrows to 
show the directions of the trajectories in forward time and indicate where 
there seem to be stable solutions. In Exercises 9.1#9 for (a) and 9.5#6 for 
(b), we shall come back to these particular systems and explore exactly 
how and when the behaviors change as 0: changes. 

(a) x" - o:x + x3 = o. 
(b) x" = -dVjdx, where V = sin x + o:x2 , as in Exercise 6.5#10. 

8.2-8.3#15. The system 

is easy to understand because the z variable and the variables (x, y) evolve 
independently of each other. 

(a) Locate all the zeroes of the system, and give the linearizations at 
each. 

(b) Show that the origin is a saddle, with one positive and two negative 
eigenvalues. 

(c) Use MacMath's program DiJJEq, 3D Views to draw some sample 
trajectories, adding arrows, that illustrate the three-dimensional be­
havior around the saddle. 

(d) Describe the solutions that are attracted to the origin when t -+ ±oo. 

8.2-8.3#16. For the equation of Exercise 8.1#1(c) and Exercise 8.2-
8.3#1, [: r = [x2 ~ ~ ~ 25] , 

prove that a separatrix of the upper saddle must enter the basin of the 
sink at lower left. That is, find a region surrounding the sink for which the 
vector field of the equation everywhere crosses the boundary going into the 
region; then show that the separatrix of the saddle must enter this region. 
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Exercises 8.4 Limit Cycles 

8.4#1. 

(a) Confirm equations (30) for transforming Example 8.4.1 

into polar coordinates 

r' = a(1 - r2)r 
(J' = -1. 

(29) 

(30) 

(b) Make drawings of the rt-plane to confirm that solutions to equation 
(30) follow the conclusions of Example 8.4.1: For a > 0, all solutions 
for r > 0 are attracted to the constant solution r = 1; for a < 0, the 
solution r = 1 is repelling, and if 0 ~ r(O) < 1, the solution tends to 
0, whereas if 1 < r(O), the solution tends to infinity. 

8.4#2. Show that 

gives an example of an unusual limit cycle that is stable on one side, un­
stable on the other. 

8.4#30 • For the equation of Example 8.4.3, 

[x]' = [ Y ] + (x2 +y2)2sin 1 [x], 
Y -x x2 + y2 Y 

prove the equation has infinitely many periodic solutions, with different 
trajectories. 

Exercises 8.5 Poincare-Bendixson Theorem 

8.5#10 • Let I = [a, b] be a closed and bounded interval. Show that any 
continuous mapping f : I -+ I has a fixed point. Hint: Use the intermediate 
value theorem, applied to the function f(x) - x. 

8.5#2. Consider the equation of Example 8.4.3 and Figure 8.4.3, 

[X]'=[y]+(X2+y2)2Sin 1 [x]. 
y -x x2 + y2 Y 
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(a) Draw a phase portrait and make a Poincare-Bendixson annulus around 
one of the largest limit cycles. 

(b) Find equations for an annulus like you found in part (a). 

8.5#3. For the differential equation 

[X]' = [Sin(X + y)] 
y cos(xy)' 

print a phase portrait and try to draw Poincare-Bendixson annuli around 
each limit cycle. 

8.5#40 • Consider the Van der Pol equation of Examples 8.4.2 and 8.5.3. 
Find equations for the annulus as shown in Figure 8.5.5. Hint: It is com­
posed of straight lines plus key portions of the isoclines of zero slope. 

8.5#5. Show that the equation 

has a limit cycle. (Hint: use appropriate solutions of 

as boundaries of an annular region.) 

Exercises 8.6 Symmetries; Area-Preserving 
Equations 

8.6#10 • Consider the system of differential equations 

(a) Sketch (perhaps using an appropriate computer program) some typ­
ical solutions for this equation. 

(b) Locate and analyze the singularities. 

(c) In part (a), you should have found a region apparently filled by cycles. 
Show that this is in fact the case. 
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(d) The saddle apparently has a homoclinic separatrix (an unstable sep­
aratrix that curves around and reenters the saddle as a stable sep­
aratrix). Show that this is the case, and, for this problem, that you 
can find an equation for the separatrix! 

8.6#2. Consider the system of differential equations 

(a) Sketch (perhaps using an appropriate computer program) some typ­
ical solutions for this equation. 

(b) Locate and analyze the singularities. 

(c) In part (a), you should have found a region apparently filled by cycles. 
Show that this is in fact the case. 

The remainder of the exercise attempts to locate this region with greater 
precision. 

(d) Consider the corresponding system of equations for dy/dx. Show that 
the region x + 1/2 - 1/x ::; Y ::; x + 1/2, t > to, is an antifunnel for 
an appropriate to. Show that this antifunnel satisfies the uniqueness 
property. 

(e) Sketch the solution in this antifunnel. 

(f) Show that all solutions in the part of the plane bounded by this 
solution are cycles. 

8.6#3°. If u' = Au is the linearization of the differential equation x' = 
f(x) at a zero XQ, show that 

div f(:xo) = tr A, 

in order to support the statement that a volume-preserving vector field 
cannot have any sources or sinks. 

8.6#4. Show that a linear differential equation x' = Ax is area-preserving 
if and only if tr A = o. 

8.6#5. Draw a phase portrait for each of the following differential equa­
tions. Tell (and prove) whether it exhibits properties of symmetries or an 
area-preserving map. 

(a) x" + sin xx' + x = 0 
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(b) [x]' = [ y ] + (X2 +y2)2sin 1 [1] 
y -x x 2 + y2 1 

8.6#6.Show that if the differential equation 

[x]' = [!(X,y)] 
y g(x,y) 

is area-preserving (see Exercise 6.6#3), then its zeroes cannot be sinks or 
sources (and therefore must be centers or saddles). 

8.6#7. Let f be a vector field defined in a region U C R2. Show that 
the differential equation x' = f(x) cannot have two cycles, which together 
bound a region V C U in which div f < o. 

Exercises 8.7 Chaos in Higher Dimensions 

8.7#1. Show that the divergence of the vector field 

[=]' = [p:~; ~~z] 
z -{3z +xy 

(iii) 

is -(u + 1 + (3). Why is the Lorenz equation said to be dissipative? 

8.7#2°. Consider the function !(x, y, z) = px2 + uy2 + u(z - 2p)2. The 
object of this exercise is to show that there is a bounded region (in fact, 
an ellipsoid) which solutions to the Lorenz equations (iii) enter and never 
leave. 

(a) Show that the region! < a is bounded for any a. 

(b) Show that the derivative of ! along a solution is 

_2u(px2 + y2 + (3z2 - 2p{3z). 

(c) Find a number a such that all solutions to the Lorenz equations (iii) 
enter the region ! ~ a and never leave it. 

8.7#3. 

(a) Show that the origin is a zero of the differential equation (iii) and 
that it is a sink when p < 1, but has two real negative eigenvalues 
and one positive eigenvalue for p > 1. 
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(b) Show that the function x 2 / u + y2 + z2 is a monotone decreasing 
function of time when 0 < p < 1, so that all solutions to the Lorenz 
equations (iii) are attracted to O. 

8.7#4. 

(a) Show that the origin is the only zero of the vector field for (iii) for 
p ~ 1, but that there are two other zeroes for p > 1, and give their 
coordinates. 

(b) Show that these new zeroes are sinks for 

( 1 U(U+,8+3)) 
pE 'u-,8-1 

and that they have one negative eigenvalue and two complex conju­
gate eigenvalues with positive real parts for 

8.7#5. 

u(u +,8 + 3) 
p> u-,8-1 . 

(a) Show that the system of differential equations 

has the circle x 2 + y2 = 1, z = 0 as a cycle. 

(b) Compute the section mapping P, using the section y = 0, x > 0, 
and show that at the fixed point of P corresponding to the cycle, the 
derivative of P has two eigenvalues, one greater than 1 and one less 
than 1. 

(c) Find the separatrices of this fixed point in the section. 

(d) Describe the separatrices of the cycle. What behaviors in R2 do these 
separatrices separate? 

Exercises 8.8. Structural Stability 

8.8#10 • Consider the system of differential equations 

[x]' [ y-x2 ] 
Y - ax-2-y . 
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(a) With MacMath's DiffEq Phase Plane make and print phase pnrtraits 
for a = 3.5, 0, -3.5, -6, 10. To capture all you need to see, set 
bounds as -20:$ x :$ 15, -10 :$ y :$ 100. 

(b) Describe each phase plane in words, and try to understand what 
happens between one and the next. That is, explain the qualitative 
differences between these pictures. 

(c) Experiment by trial and error on the computer to find intermediate 
values of a where the behavior changes. 

A generalization of this exercise will be explored a great deal further in 
Example 9.6.1. 
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Structural Stability 
In Chapter 8, we mentioned that one of our main goals is to understand 
how solutions behave "in general." Another goal is to understand when the 
solutions of two differential equations behave "the same way." Our main 
result in this direction is in Section 8*.6, but preliminary results occur in 
Sections 8* .2-8* .5, and they require a bit of terminology. We begin with the 
groundwork in Section 8*.1, building up to Definition 8*.1.9 for "structural 
stability" . 

Section 8*.6 contains two major theorems: the first due to Andronov and 
Pontryagin, and the second to Peixoto. These results give a real handle on 
structural stability of differential equations in the plane; the whole chapter 
builds up to them. Their proofs are an order of magnitude longer and more 
difficult than anything else in this book so far. We work up to Section 8*.6 
with a series of sections, 8*.1-8*.5, each of which can be considered as a 
Structural Stability Appendix at the end of the corresponding section in the 
previous Chapter 8. We give preparatory definitions in 8*.1 and prove an 
essential preliminary result in each of the next four sections. Each of these 
results, Theorems 8*.2.1,8*.3.1,8*.4.1, and 8*.5.6, is important in its own 
right; Theorem 8*.5.6 is a strong form of the famous Poincare-Bendixson 
Theorem 8.5.1. 

Finally, Section 8*.7 illustrates why the Poincare-Bendixson-Pontrya­
gin-Peixoto program fails in dimension three. Some examples will show that 
any general analysis of a system in an is likely to be extremely complicated, 
if not impossible. Indeed, as soon as n ~ 3, "chaos" has a tendency to set in. 
There is no universally accepted definition of this term, but some features 
that should appear in chaotic systems are: 

• the presence of infinitely many periodic cycles, which in a3 will usu­
ally be knotted and linked in complicated ways; 

• the appearance of fractal attractors and basin boundaries, with com­
plicated structure at all scales; 

• sensitive dependence on the initial point: within a bounded attrac­
tor, the distance separating two solutions that start nearby grows 
exponentially with time, until they are uncorrelated. 
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8*.1. Preliminaries for Structural Stability 

Let us begin with some necessary terminology. 

Definition 8*.1.1. (Homeomorphisms). Let X and Y be metric spaces. 
If you do not know what this means, it does not matter: just think that 
they are two subsets of IRn , that is the only case we will use. A mapping 
I : X -+ Y is a homeomorphism if 

(1) the mapping I is continuous; 

(2) the mapping I is one-to-one and onto, so that 1-1 exists; 

(3) the mapping 1-1 is continuous. 

Saying that two spaces are homeomorphic is saying that they "look alike 
topologically": to a topologist, they are identical. An old joke says that a 
topologist is someone who cannot tell the difference between a doughnut 
and a coffee cup: do you see why? See Figure 8*.1.1. 

, o 
',,----,," 

FIGURE 8*.1.1. Topological equivalence of a doughnut and a coffee cup. 

Exercise 8*.1#2, with Examples 8*.1.3 and 8*.1.4, give more examples 
of homeomorphisms. 

Definition 8*.1.2 (Topological equivalence). Suppose that fl and f2 
are vector fields defined on regions U1 and U2 of Rn for some n. We will 
say that a homeomorphism h : U1 -+ U2 is a topological equivalence of fl 
and f2 if h sends oriented trajectories of x' = fl (x) to oriented trajectories 
of x' = f2(X). 

Remark. Imagine drawing both vector fields fl and f2 on rubber sheets. 
Then they are topologically equivalent if one rubber sheet can be stretched 
and put onto the other so that the trajectories of one equation coincide 
with the trajectories of the other, as oriented curves. 
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We are not requiring that the parametrization of these curves by time 
coincide. We are also not requiring that the homeomorphism be differen­
tiable, so it can perfectly well send curves that intersect tangentially to 
curves that intersect transversely, as illustrated by Examples 8*.1.3 and 
8*.1.4, illustrated in Figures 8*.1.2 and 8*.1.3. 

Example 8*.1.3. Consider the homeomorphism h defined by 

FIGURE 8*.1.2. A homeomorphism h not differentiable at the origin. • 

Example 8*.1.4. Another homeomorphism h that is not differentiable at 
the origin is 

FIGURE 8*.1.3. Another homeomorphism not differentiable at the origin. • 
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Algebraic exploration of these examples are provided in Exercise 8*.1#1; 
however, we usually do not write actual equations for homeomorphisms. 

It is not obvious that topological equivalence is a useful equivalence re­
lation. There are at least two others that should be mentioned: topological 
conjugacy and differentiable conjugacy. 

Definition 8 .... 1.5 (Topological conjugacy of flows). The homeomor­
phism h is a topological conjugacy of the Hows 4Jfl (t, x) and 4Jf2 (t, x) if 

(I) 

See Figure 8*.1.4. 

Flows 4Jf{t,X) are defined and discussed in Section 6.8. 

FIGURE 8*.1.4. Topologically conjugating the flows. 

Two vector fields have conjugate flows if, when drawn on rubber sheets, 
one sheet can be stretched and superposed on the other so that the trajec­
tories coincide with their time parametrization. 

Deflnition 8 .... 1.6 (Differentiable conjugacy of vector fields). The 
homeomorphism h is a differentiable conjugacy of the vector fields f1{x) 
and f2{x) if hand h-1 are differentiable, and 

(2) 

See Figure 8* .1.5. 
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h 

-
vectors at x vectors at h(x) 

FIGURE 8*.1.5. Differentiable conjugacy of vector fields. 

Condition (2) for differentiable conjugacy may look quite complicated, 
but it is actually exactly what is called "change of variables in differen­
tiable equations." For the authors, it really explains the meaning of such 
changes of variables. Let us work out explicitly how this works, in the case 
of Bernoulli equations (Chapter 2 of Part I, Exercises 2.2-2.3#9 and lOa, 
page 101). 

Example 8*.1.7. A Bernoulli equation is one that can be written x' = 
-P(t)x + Q(t)xn (where the minus sign is there to be consistent with the 
notation in Part I). The change of variables suggested in the exercise is 
z = x 1- n , so that 

z' = (l-n)x-nx' = (l-n)x-n(-P(t)x+Q(t)xn) = (n-l)(P(t)z-Q(t», 

which is indeed linear. 
To interpret this change of variables in terms of vector fields, let us turn 

the Bernoulli equation into the system 

[! r = [ -P(t)x ~ Q(t)xn ] 

and let 

Then equation (2) becomes 

[~ (1 - ~)x-n ] [ -P(t)x ~ Q(t)xn ] = [(n - 1)(P(~)z - Q(t»] 

and the differential equation corresponding to the new vector field is 
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[!] I = [(n _ 1)(P(!)Z _ Q(t))] . 

In this example, h is not really a homeomorphism, and this comes back to 
haunt you when you try to go back from the variable z to the variable x. 
& 

You are asked in Exercise 8*.1#3 to check that condition (2) for differen­
tiable conjugacy implies (1) for topological conjugacy, and that (1) implies 
topological equivalence. 

Both conditions (2) and (1) are a bit too fine for our purposes: we want 
to know that "in general," when two differential equations are "close," 
they are equivalent. This is not the case for (2), since the eigenvalues at 
corresponding zeroes would have to coincide (Exercise 8*.1#4a). Condition 
(1) would require that the periods of corresponding cycles should be equal, 
which is also unreasonable (Exercise 8*.1#4b). 

PERTURBATIONS 

This brings us to saying precisely when two differential equations x' = fl (x) 
and x' = f2(xff) are close or, equivalently, when g = fl - f2 is small. 

There are serious difficulties if you try to define perturbations on un­
bounded domains; we will stick to bounded domains. Suppose that g is 
defined on the closure tJ of a bounded open subset U c an. A first guess 
is simply to require that 

sup IIg(x)1I 
XEU 

be small, but this is not good enough. Indeed, two vector fields that are 
close in this sense can have zeroes that differ radically. 

Example 8*.1.8. Compare the following functions and their derivatives, 
as shown in Figure 8*.1.6. 

h(x) = x 
1 2 

h(x) = x + We-X sin5x. 
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12 

f,(x) 

Df,(x) 

Df,(x) 

-1 
-1 

-1 -10 

functions derivative functions 

FIGURE 8*.1.6. Functions that are close may have derivatives and fixed points 
that are not. Note the differences in vertical scale between the two graphs! A 

The Implicit Function Theorem at the center of multi variable calculus 
guarantees that if two vector fields f1 and f2 are close, and their derivatives 
are close, then the zeroes are as well behaved as can be expected. Let 
g be continuous on U, continuously differentiable on U, with derivative 
extending continuously to U. Then g is small in the C 1 topology if 

is small. 
The Implicit Function Theorem 13.6.4 (Appendix T) says that if the 

zeroes of f1 have no zero eigenvalues and if g is sufficiently small in the C1 
topology, then there is exactly one zero of f2 = f1 + g close to every zero 
of fl. This is one possible correct notion of perturbation for our problem, 
and our main theorems are true with this definition. 

However, the version of the Implicit Function Theorem we will prove in 
Chapter 13 (in Part III) is stronger than the standard statement and corre­
spondingly requires a stronger hypothesis. Because the stronger hypothesis 
simplifies some proofs, we will make the following definition. Let 

be a twice-differentiable vector field on U as above. Define the C2-norm of 
this vector field to be 
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In other words, we will require that "close" means not only that the two 
functions be close but that their first and second derivatives be close. 

We can now state the central definition of Chapter 8*. 

Definition 8*.1.9 (Structural stability). We will say that a vector field 
f defined on a subset U c IRn is structurally stable if there exists c > 0 such 
that any perturbation g of f with Ilg - fll < c is topologically equivalent 
to f. 

Actually, this definition is a bit loose. We will require that U be a closed 
and bounded subset of IRn , bounded by a smooth (n - 1 )-dimensional sur­
face, and in practice n will be two, so U will be a closed and bounded region 
in the plane bounded by smooth curves. Our vector fields will be required 
to have all partial derivatives up to order two continuous on U. 

THE DIFFERENTIABILITY OF THE FLOW 

Let f(x) be a smooth vector field on a subset U c IRn , and denote by 
¢f(t, xff) : IR x U --+ IRn the associated flow, as described in Section 6.8. In 
this section, we will see that the flow is a differentiable mapping, and we 
will derive some consequences. Just knowing that the flow is differentiable is 
nice but not very exciting. What makes the result important is the formula 
for the derivative, which is itself a solution of a linear differential equation. 
This links up the "wild" theory of nonlinear equations with the "tame" 
theory of linear equations, and the link has proved enormously useful. 

In fact, we have already seen at least two instances of the usefulness of 
this link. 

One is the linearization of a differential equation near a zero of the vector 
field: in that case, the linearization is a linear differential equation with 
constant coefficients, and linear algebra (eigenvectors and eigenvalues) can 
be brought to bear; Chapter 8 is filled with the consequences. 

The other occurs in Example 5.4.6, where we analyzed the difficulties 
that "stiffness" introduces to numerical methods. We first studied linear 
equations, and then saw that by linearizing a nonlinear equation near a 
given solution, we could transpose the results to an arbitrary equation. 

The linearized equation. We first recall the definition of the linearization 
of x' = f(x). Suppose u(t) is a solution of x' = f(x), defined for 0 ::; t ::; to 
and that v(t) is a small increment to u(t), so that x(t) = u(t) +v(t) is still 
a solution. Then 

u'(t) + v'(t) = (u + v)'(t) = f(u(t) + v(t» rv f(u(t» + (du(t)f)(v(t». (3) 

Remembering that u' = f(u), this says that v approximately satisfies the 
linearized equation 

W' = (du(t)f) w. (4) 
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You should think of u as known, so that this equation is of the form 
Wi = A(t)w for some (usually time dependent) matrix A(t). 

Example 8*.1.10. Consider the equation x' = x 2 - 1. The constant func­
tions Ul(t) = 1 and U2(t) = -1 are solutions, where the linearizations are 
respectively 

Wi = 2w and Wi = -2w, 

correctly reflecting that solutions pull away from Ul and tend toward U2. 
The function U3 (t) = - tanh t is also a solution, where the linearization is 

Wi = -2(tanh t)w. 

This time the linearization is time dependent, since the solution is noncon­
stant, and solutions pull away from the zero solution when t < 0, i.e., when 
U3(t) rv Ul(t), and are attracted to it when t > 0, i.e., when U3(t) rv U2(t). 
A 

Example 8*.1.11. We invite the reader to show that the function 

u(t) = [cost:-cos2t] 
smt 

is a solution of the system 

[X]' = [y-2xy - y3 ]. 
y x-I + y2 

The linearized equation along this solution is 

,_ [-2sint 1-2(Cost+cos2t)-3Sin3t] 
w - 1 2sint w. 

Let us interpret u, Y, and w above in terms of flows. Suppose that at 
time 0, we have 

u(O) = Xo, yeO) = Yo = w(O); 

i.e., we start both the equation and the linearized equation with the same 
increment from no. 

Then equation (3) says that at time t, the increment vet) to u is approx­
imately wet), i.e., 

<Pf(t, Xo + Yo) rv <Pf(t, Xo) + wet). 
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This suggests that w is somehow the derivative of ¢ f' and this is true. To 
state it precisely, we want to speak of the flow of the linearized equation. 
This is not quite well defined, since (4) is time dependent, but let us call 
¢u(t, v) : IRn ~ IRn the linear transformation that associates to v the value 
at time t of the solution of (4) with initial condition vat time O. 

Theorem 8*.1.12. The derivative of the flow of a nonlinear equation is 
the flow of its associated linear equation. That is, 

We will actually prove a little more: the error in the linear approximation 
is quadratic. More precisely, there exist constants C and 8 > 0 such that 

II¢f(t, Xo + v) - ¢r(t, Xo) - ¢u(t, v)11 ::; Cllvl12 

when IIvll < 8. 

Proof. Note that 

d 
dt (¢r(t, Xo + v) - ¢r(t, xo)) = f(¢r(t, Xo + v)) - f(¢r(t, xo)), 

whereas 

and the curves 
Ul (t, v) = ¢r(t, Xo + v) - ¢r(t, xo) 

and 

are solutions of the differential equations 

v' = F(t, v) and w' = G(t, w), 

respectively, where 

F(t, v) = f(u(t) + v) - f(u(t)) and G(t, w) = (du(t)f) (w). 

The vector fields F and G are close near the origin in IRn , so the task 
is to say that two solutions of close differential equations are close. This is 
just what the Fundamental Inequality 4.4.1 (Appendix T) will do for us. 

Once we have seen this, the result is straightforward, but you have to 
be careful to choose the constants in the right order. The first thing is to 
decide which we will consider as the real solution and which the perturbed 
equation. It does not make a lot of difference, but let us say that the 
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linearized equation is the "real" equation, so that U2 is a real solution, and 
UI(t) is an approximate solution of the linearized equation. 

Next, choose T, the time at which we will differentiate the flow. Choose 
R, C, and K so that in IIxll :5 R, 0 :5 t :5 T, both equations are Lipschitz 
with Lipschitz constant K, and so that for IIxll < Rand 0 :5 t :5 T, we 
have 

IIF(t,x) - G(t, x) II = IIf(u(t) + x) - f(u(t» - (du(t)f) (x) II :5 Cllxll2. 

If IIvoll < Re-KT, the functions UI(t) [and U2(t)] will satisfy 

IluI(t)1I :5 eKtllvoll 

for 0 :5 t :5 T, by the "6"-term of the FUndamental Inequality bounding 
how far they stay from the zero solution. Hence, UI will satisfy 

Now the FUndamental Inequality 4.4.1 says that 

o 

Two USES OF THE IMPLICIT FUNCTION THEOREM 

Later in this chapter, we will require two results, both of which are immedi­
ate from the Implicit FUnction Theorem 13.6.4 (see Appendix T). The first 
will be used to assert that the zeroes of a vector field depend continuously 
on the vector field under appropriate circumstances, but the statement does 
not require you to think of f as a vector field. Let U be an open subset of 
an, and f : U -+ an a twice continuously differentiable function. Suppose 
that f(Xo) = 0 and that dxof is invertible. Then by Taylor's Theorem, there 
exists R such that IIf(x)1I f. 0 is 0 < IIx - Xoll :5 R (the linear term does 
not vanish, and the remainder is too small to cancel it). 

Proposition 8*.1.13. For all e > 0, there exists D > 0 such that if IIg­
fll < 6, then the equation g(x) = 0 has a unique solution Xo(g) satisfying 
IIxo(g) - Xoll < R. 

Proposition 8* .1.5 is essentially the Inverse FUnction Theorem; a corol­
lary in Appendix T, of the Implicit FUnction Theorem 13.6.4. 

For our second application of the Implicit FUnction Theorem, suppose 
Scan is a hypersurface, defined implicitly by the equation h(x) = 0, 
that x! = f(x) is a differential equation with flow f/Jr(t, x), and that Xl = 
f/J(ro,Xo) E S. 
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Theorem 8*.1.14. If (dx1h)(f(XI)) =f 0, then there exists a unique con­
tinuously differentiable function T(X) defined in a neighborhood of Xo such 
that 4>r(T(X) , x) E Sand T(XO) = TO· 

T. 

Figure 8*.1. 7 illustrates all of this, in particular, the graph of the function 

The shaded surface is 
the graph of 1(X) 

~~- - -

the flow is transverse 
to S • expressed by 
the formula 

( dX1h)(f (Xt )) 1= 0 

S=(h=O} 

FIGURE 8*.1.7. Graph of T as a function of (x, y) E U, giving the time at which 
the solution starting at (x,y) hits S. 

Proof. The equation h( 4>r( t, x) = 0, which represents n differentiable equa­
tions in the n + 1 variables Xl> ... ,Xn , t. Proposition 8*.1.14 asserts that 
these equations implicitly define t as a function of Xl, ... , xn . According to 
the Implicit Function Theorem, this will be the case near (TO, Xo) if 

() 
at h(4)r(t,x) I(TO .XO)=f O. 

The chain rule says that 

() d 
at h(4)r(t, x) I(TO,XO)= dx1 h dt 4>r I(TO.XO)= (dx1 h)(f(XI)), 

so the result is true. 0 

An exercise in Chapter 13 (Part III) will pin down the use of the Implicit 
Function Theorem. 

What Proposition 8*.1.14 says is that the time it takes for a solution to 
intersect a hypersurface is a continuously differentiable function of the ini­
tial condition if the solution intersects the hypersurface transversely. Note 
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that the condition <Pf(T(X),X) E S can be rewritten U(<pf(T(X),X)) = 0, 
which is one equation in the n + 1 unknowns t, Xl, ... , Xn; it is not surpris­
ing that under appropriate conditions, this defines one of the unknowns 
(namely, t) implicitly as a function of the others. 

8*.2 Structural Stability of Sinks and Sources 

This subsection shows the structural stability of sinks and sources: it is one 
building block for the Structural Stability Theorem of Section 8*.6 (besides 
being of interest in itself). Theorem 8.2.2 says that if a linear differential 
equation with a sink is perturbed by higher order terms, the new equation 
still has a sink. In this subsection, we will pin down more accurately the 
extent to which the trajectories of a differential equation "do not change" 
near a sink when the differential equation is perturbed. 

Theorem 8*.2.1. (Structural Stability of Sinks). Let f be a vector 
field on an open subset U of ]Rn, such that f(xo) = 0 and such that the 
linearization of f at Xo is a sink. Then there exists a basis of]Rn, p > 0 
and 8 > 0 such that if 

(i) V is the ball around Xo of radius p (with respect to that basis) and 
av is the boundary of V, 

(ii) Ilg - fll < 8 (think of g as a small perturbation of f), 

(iii) h: av ---+ av is any homeomorphism, 

then the homeomorphism h extends to a homeomorphism "it : V ---+ V which 
sends trajectories of f to trajectories of g. 

Remark. We will actually do better: the map "it will conjugate the flows. 
However, even if h is very smooth, "it will generally not be differentiable, 
and the differential equations will not be differentiably conjugate. 

To prove Theorem 8*.2.1, we will use a construction popularized by the 
physicists under the name scattering theory, which is of central importance 
throughout dynamical systems as the basic way to construct conjugacies. 

SCATTERING THEORY 

We will denote the flow of the differential equation x' = f(x) by <Pf(t, x). 
The idea of scattering theory is to choose a small number p and to define 

"it(X) = <pg(T(x),h(<Pf(-T(X),X)), (3) 

where T(X) is the smallest time so that II<pf(-T(X),x)11 = p. 
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In other words, as shown in Figure 8*.2.1: 

Flow out to av, the boundary of V, under the unperturbed 
equation x' = f(x) and back in by the perturbed equation . 

• (T. h (<p '('T • x))) 

FIGURE 8*.2.1. The idea of scattering theory. 

Example 8*.2.2. Let us compute what formula (1) gives when 

are the two differential equations, V is the unit disc, and h is the identity. 
Flowing out from x E V to the unit circle leads to the point x/llxll at time 
-7 = -log Ilxll, and flowing in from there for time 7 under the second 
differential equation leads to 

h(x, y) = (x, yv'x2 + y2). 

This mapping is a homeomorphism of the unit disc to itself, but it is not 
differentiable at the origin. You are asked in Exercises 8 * . 2# 1-3 to calculate 
several more examples. A 

BACK TO THE PROOF OF THE THEOREM 

Proof of Theorem 8*.2.1. We have to prove three things to justify the 
scattering construction suggested by Figure 8*.2.1: 

(i) that 7(X) exists (except when x = :xo) and is continuously differen­
tiable (this will be shown by Lemma 8*.2.3); 

(ii) that the mapping h(x), constructed by the scattering argument, ex­
tends continuously to Xo (but note: there will be no differentiability 
here!); 

(iii) that the mapping h(x) is bijective (one-t~one and onto). 
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Proof of (i). We begin by normalizing our differential equation as in 
Theorem 8.2.2j i.e., we will suppose that coordinates on JRn and R can be 
chosen so that 

(1) Xo = 0, so that f(x) = Ax + q(x)j 

(2) dxof = A satisfies Ax . x ~ -C1 1lx1l2 for some constant C1 > OJ 

(3) Ilq(x)1I ~ C2 11xll2 for x ~ R. 

- - 1 --
Let C1 = CI/2 and C2 = 2C2 j set p = 2" min{R, CI/2C2 ) and p = p/2. 
In order for formula (3) to make sense, we need to know that the time 

T(X) existsj clearly, it does not if x = xo, but that is the only exception. 
We saw in Theorem 8.2.2 that the norm of a nonzero solution decreases 
faster than an exponential as t increases, or equivalently it increases faster 
than an exponential as t decreases until it reaches p, so it must eventually 
reach p. 

To show that h is continuous, we need to know that T(X) is a continuous 
function of x for x =I- O. This follows from Proposition 8*.1.14. 

Lemma 8* .2.3. The function T(X) is a continuously differentiable function 
of x for IIxll ~ p, x =I- o. 

Proof of Lemma. Let u(x) = X· x. According to Proposition 8*.1.14, all 
we need is dxu(f(x» =I- 0 when Ilxll = pj this follows from equation (3) 
from Section 8.2 in the proof of Proposition 8.2.4. 0 

So for V the ball of radius p, formula (3) makes sense and is continuous for 
x =I- O. To prove the theorem, we need to show that the mapping h extends 
continuously to x = Xo and that the extended h is a homeomorphism. 

Lemma 8* .2.4. There exists 01 so that the vector field g has a unique zero 
xo(g) in V, which depends differentiably on g for Ilf - gil < 01. 

Proof of Lemma. This follows from Proposition 8* .1.13. We need to check 
that dxof is invertible, but our hypothesis is that Xo is a sink, so all the 
eigenvalues have negative real part, and none are zero. 0 

Proof of Theorem 8* .2.1, continued. 

Proof of (ii). Set y = x - xo(g) and write the differential equation x' = 
g(x) in the new coordinates: 

y' = Agy + qg(y) (4) 

since the new origin is always a zero of the vector field. Both Ag and qg 
depend continuously on g. 

By continuity, there will exist 02 satisfying 0 < 02 < 01 such that 
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(1) Ilxo(g)11 < p, 

(2) Agy. y ::; -6111Y112 

(3) IIQg(y)ll::; 6211yl12 for y ::; p 

if Ilf - gil < 02· Note that the third condition above would presumably be 
false if we had failed to include second derivatives in our norm on pertur­
bations. 

Then the proof of Theorem 8.2.2 now carries over to show that if Ily(t)11 
is a solution of (11) with lIy(O)1I ::; p, then y(t) -+ 0 as t -+ 00. 

The set V is the ball of radius p around Xo and is contained in the balls 
of radius p around both Xo and XQ(g). For x close to Xo, 7(X) is very large, 
and formula (1) shows that h(x) is obtained by solving x' = g(x) for a long 
time, starting at a point in BV, so h(x) is very close to xo(g). This shows 
that setting h(xo) = xo(g) provides a continuous extension of h : V -+ IRn. 

Proof of (iii). We still need to show that h is a homeomorphism. It is not 
difficult to see how to do this: set 

(5) 

where 71 (x) is the smallest time so that II cpg ( -71 (x), x) II = p. This involves 
a slightly subtle point: is 71 continuous? This requires, according to Propo­
sition 8*.1.9, that BV, the boundary of V, be transverse to g. We know 
that g is transverse to spheres of radius smaller than p* centered at xo(g), 
but BV is centered at XQ. But if a vector field is transverse to a closed 
surface, then so is every sufficiently small perturbation. So we must further 
restrict g: there exists 0 with 0 < 0 ::; 02 such that if IIg - fll < 0, then 
g is transverse to BV, and 71(X) is a continuous function of x for x E V, 
x#- xo(g). Then formula (3) extends to XQ(g) exactly as above, so that h 
is the required homeomorphism. This finishes the proof of Theorem 8* .2.1. 
o 

8*.3 Time to Pass by a Saddle 

In this section we prove a more delicate result that will be essential in 
Section 8*.6. It will be the technical result that makes the Pontryagin­
Peixoto scheme work. The proof was contributed by A. Douady. 

Let f(x) be a vector field in the plane and Xo E 1R2 be a saddle for f. We 
would like to work in the "first quadrant," so we shall orient the saddle as 
shown in Figure 8*.3.1, with the stable separatrix on the "horizontal" axis 
and the unstable separatrix on the "vertical" axis. 
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saddle 

Xo 
................................ 

FIGURE 8*.3.1. Labeling saddle for first quadrant. 

Choose sections (or transversals) 

and 

219 

at Xl on the right branch of the stable separatrix and at X2 on the up­
per branch of the unstable separatrix, respectively. Also choose a diagonal 
section"( : J -+ a2 at XQ, i.e., a parametrized curve with nonvanishing 
derivative, with "(0) = Xo and "('(0) transverse to both separatrices, as 
shown in Figure 8*.3.2. We will require that "('(0) point into the first quad­
rant. We will call r the parameter on J; it will be the main indedendent 
variable throughout this subsection. 

FIGURE 8*.3.2. Transverse sections 11 and ,,(2; diagonal section 'Y. 

We will start solutions at the point "(r) on the "diagonal section" and 
study the time these solutions take to cross the sections "(i, as a function 
of r. More precisely, there exists e > 0 such that the flow times 

Tl(r) = inf{t > 0 I ¢f(-t,"(r» E "(1 (Ii)} 
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and 
T2(r) = inf{t > 0 I ¢Jr(t,'Y(r)) E 'Y2(I2)} 

are well defined and continuously differentiable for 0 < r < e. 

Remark. After leaving the neighborhood of Xo under consideration, a 
solution might reenter it and intersect the sections Ii again. The infima in 
the formulas above specify that the intersection we are describing is the 
first. 

As r '\. 0, the trajectory through 'Y(r) passes closer and closer to Xo, so 
it must go more and more slowly, and we expect Ti(r) to tend to infinity 
as r \. 0, as shown in Example 8*.3.1 and Figure 8*.3.3. 

Example 8*.3.1. Consider [:] I = [ ;: ]. Its solution is 

[x] I [Cle-t ] [re-t] 
y = C2e2t = re2t , 

since at t = 0 we want x = y = r. For the second section, we want re2T2 = 1, 
so T2 = -(1ogr)/2. 

FIGURE 8*.3.3. How T varies as T. A 

Theorem 8* .3.2 makes all of this more precise. 

Theorem 8*.3.2. There exist sections 'Yi : Ii -+ ]R2, a diagonal section 
'Y : J -+ ]R2, and c as above such that the functions Ti (r) are monotone 
decreasing on (O,c), tending to 00 as r \. 0, and their derivatives tend to 
-00. 

Proof. We can suppose that the differential equation is the system studied 
earlier in the proof of Theorem 8.3.2: 

x' = -lLx + P(x,y) = F(x,y) 
y' = vy + Q(x, y) = G(x, y), 

(6) 
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and we will take as our sections 'Yi segments of the lines {x = a} and 
{y = a} with a > 0 to be chosen below, and a segment of the diagonal as 
our "diagonal section," parametrized by 'Y(r) = (r, r). Also, as in Theorem 
8.3.2, we will concentrate on the related equation 

dy = vy + Q(x,y) = H(x y) 
dx -J.Lx + P(x,y) , 

(7) 

in the region {(x,y) Ilyl < x} in which (7) is defined. This means we will 
be studying 71; the proof for 72 is similar. 

For 0 < r < a, let u( r, x) be the solution to (7) passing through the point 
'Y( r) = (r, r) on the diagonal. Figure 8* .3.4 shows the picture on which the 
proof will be based. 

FIGURE 8* .3.4. Central idea for "how long does it take to pass a saddle along a 
solution?" 

The following lemma gives the main tool to prove Theorem 8*.3.2; this 
is one of Douady's central ideas. 

Theorem 8* .3.3. Let r ::; Xl ::; X2 ::; a. Then the time T(r, XI. X2) required 
to flow from u(r,xd to u(r,x2) is 

Remark. The integrand can be thought of as a.:jdt = dt, so it is not 
surprising that the integral ends up being in units of time. 

Proof of Lemma. Differentiating the formula above with respect to X2, 

we need to check that 

h 
T(r,x,x + h) = IF(x,u(r,x))1 + o(h). 
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Clearly, 

1 + (~(r'X)r + o(h) 

=h 1 + (G(X, u(r, X))) 2 + o(h). 
F(x,u(r,x)) 

On the other hand, the speed of the flow at (x, u(r, x)) is 

y'F(x, u(r, x))2 + G(x, u(r, X))2, 

and along the graph of u from u(r, x) to u(r, x + h), the speed will vary at 
most by terms of order h. 

Recall from Part I, Appendix A, Asymptotic Development, that little 
o(h) means smaller than h (for instance, h2)j big O(h) means terms of 
order at most h. 

According to the principle that time = distance/speed, this leads to 

hy'1 + G2 / F2 + o(h) 1 (h + o(h) ) h 
T(r,x,x+h)= VF2+G2+0(h) =IFI 1+0(h) =IFI+o(h), 

which proves the lemma. o 

Proof of Theorem 8*.3.2, continued. Now let us see that T(r, a) tends 
to 00 as r -+ 0 for fixed x = a. The function P(x, y)/x is defined and 
bounded in the region Iyl ~ x ~ a, so that we see (Exercise 8*.3#la) that 

La dx La dx 
r IF(x,u(r,x))l- r J.LX-P(x,u(r,x)) 

logr . 
= - -- + {somethmg bounded as r -+ O} 

J.L 

(8) 

and does tend to infinity. The dominant term is determined by r, which 
measures how close you are passing to the saddle. 

To see that the derivative tends to -00 as r -+ 0, we differentiate under 
the integral sign to find 

8T(r,r,a) = _ 1 -La aIF(x,u(r,x))I/Or dx. 
Or F(r,u(r,r» r IF(x,u(r,x))12 

The first term is equivalent to -1/ J.Lrj we will show that the absolute value 
of the second is bounded by -C log r for an appropriate constant C so is 
negligible before the first term. 
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Computing the partial derivative above, still considering x fixed, we find 
(Exercise 8*.3#1b) 

ILa aWl/Or I = La lap/ay(x,u(x,r))llau/~(r,x)ldx. (9) 
r IFI2 r lJ.tx - P(x,u(r,x))1 

The first factor in the numerator is bounded above by 01X in the region 
Iyl s: x s: a for some constant 0 1• 

Formula (9) from the proof of Lemma 8.3.3 and the computation follow­
ing it show that the solutions approach each other in the region {Iyl < x < 
a} for a sufficiently small; i.e., the function u(rb x) -u(r2' x) is a decreasing 
function of x for r2 < rl s: x < a, so the second factor in the numerator is 
a decreasing function of x for any fixed r. 

Figure 8* .3.5 may help with the final steps of the proof. 

,{(r) 

(1-5) Ar 

-sAr 

FIGURE 8* .3.5. The final steps of proving Theorem 8* .3.2. 

Thus, (Exercise 8*.3#1c) you can see from Figure 8*.3.5 that 

au au G(r,r) 
Os: Or (r,x) ~ Or (r,r) = 1- F(r,r) ' (10) 

which is a continuous function of r for 0 < r < a and tends to the limit 
1 + v / J.t as r -+ 0; as such, it is bounded, for instance, by 2 + v / J.t for 
a sufficiently small. The denominator is bounded below by J.t2x2/2 for a 
sufficiently small, so the whole integral is bounded by 

La _20....;.1;..!.(2_+_v:...:./J.t....:...) dx ~ -O(logr -loga) s: -Ologr, 
r J.t X 

setting 0 = 201 (2 + v/J.t)/J.t2 and assuming a < 1. 0 

Remark. The proof above makes Theorem 8*.3.2 a rather delicate result, 
depending on the comparison of the rates at which two functions tend to 
infinity. The authors do not know of anything simpler. 
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8*.4 Structural Stability of Limit Cycles 

The main business of this section is to prove the Structural Stability Theo­
rem 8*.4.10, which is the analog of Theorem 8*.2.1 for linearly attracting or 
repelling limit cycles: such cycles are structurally stable. For the purposes 
of Section 8*.6, we will require a more precise statement. The proofs are 
very similar in spirit to that for Theorem 8*.2.1; more precisely, the key 
Lemma 8*.4.2 is by itself an analog of Theorem 8* .2.1 for one-dimensional 
mappings, as opposed to two-dimensional vector fields. 

Before we state and prove the main theorem, however, we must lay some 
more groundwork. 

THE SECTION MAPPING 

In Part I, Chapter 5, we encountered the period mapping of a periodic 
differential equation. The section mapping introduced in Figure 8.7.4 and 
described below is closely analogous, and the period mapping is a special 
case of a section mapping. See Figure 8*.4.1. 

Let f(x) be a vector field on a subset of JRn, with flow <Pf(t, x). 
Let r be a cycle of the differential equation x' = f(x), Xc Era point, 

and H c JRn an (n - I)-dimensional space transverse to r through Xc. 
In a first reading, the reader may think that n = 2, so that r is a curve in 

the plane as in Examples 8.4.1 and 8.4.2, and that H is a line transverse to 
r at Xc. This case does not quite convey the full complexity ofthe situation, 
but very little is lost if we imagine n = 3, so that r is a curve in space and 
H is a plane transverse to r at Xc . 

Solutions near the cycle 

FIGURE 8*.4.1. Section mappings in R? and JR3. 

For a sufficiently small neighborhood N of Xc in H, we can define a 
mapping P : N --+ H by starting a solution at x EN and setting P(x) to 
be the next intersection of this solution with H. Figure 8*.4.2 shows this 
construction. The domain of such a mapping is a bit delicate to define, 
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as the figure suggests. Sometimes solutions close to r will return close to 
Xo sooner than the "correct" return, and the domain of P must be chosen 
sufficiently small that the first return is the correct return. 

FIGURE 8*.4.2. The inner trajectory crosses H too soon, so the domain for P 
must be a smaller subset of H, as indicated by the thicker line for N. 

Definition 8*.4.1 (Section mapping). P : N -t H is defined as follows. 
Let T be the period of Xo, i.e., the time it takes for a solution to go around 
r. Choose a neighborhood U of Xo in H, sufficiently small that the vector 
field is transverse to H in U and that U n r = Xo. Choose c < T /2; let 
We IRn be the set of {cPr(t,x)} for x E U and It I < c. We will assume 
that c is chosen sufficiently small so that if x E U and Itll, It21 < c, then 
cPr(tl'X) i= cPr(t2, x) only when tl = t2· 

Now consider the set N c U defined by 

N = {x E U I cPr(T,x) E W}. 

Since cPr(T, xo) = Xo E W and cPr(T, x depends continuously on x, we see 
that N contains a neighborhood of Xo in H. Define P(x) = cPr(s(x) +T, x), 
where s(x) is the unique time satisfying Is(x)1 < e and cPr(s(x)+T,x) E H. 

In summary, Figure 8*.4.3 shows for n = 2 and n = 3 the following: 

H = section 

U = portion of H where trajectories intersect transversely 
(are not tangent) to H 

N = subset of U in which P is well defined (trajectories always 
come back) 

W = tube of forward and backward trajectories of points in U. 
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FIGURE 8* .4.3. Regions used in defining section mapping P : N -+ H in ]R2 

(above) and ]R3 (below). 

Example 8* .4.2. Let us compute explicitly the mapping P for the equa­
tion from Example 8.4.1. 

(11) 

In polar coordinates, the radial equation can be rewritten (Exercise 
8.4#2a) as 

dr 
( )( ) = adt, (12) r l-r l+r 

which gives a direction field like Figure 8*.4.4. 
Equation (12) can be integrated (Exercise 8* .4#2b) to yield 

r(O)etl<t 
r(t) = vr(O)2(e2tl<t _ 1) + 1 (13) 
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1.5 1---------;;;----, 1.5 f-~;::----------, 

o o 
negative a posHive a 

FIGURE 8*.4.4. Solutions for equation (12); 0 = -0.1 (left) and 0 = 0.1 (right). 

Take H to be the x-axis, in which case N can be chosen to be the positive 
x-axis. From the equation (J' = 1, we deduce that the time required to go 
from the positive x-axis back to itself is 211", so the mapping P is given by 

(14) 

Graphs of such functions are represented in Figure 8*.4.5 for e2,..", = 2 and 
e2,..", = 0.8. If a = 0, the P map is the identity. 

PIx) PIx) 

x x 

FIGURE 8*.4.5. The section mappings for equation (12) in Example 8*.4.2, with 
fixed points at x = 1: attracting on the left (0 = 0.1) and repelling on the right 
(0 = -0.1). ... 
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Proposition 8*.4.3. The section mapping P is differentiable and one-to­
one. If P(N) = N' is the image, then p-1 : N' --+ N is also differentiable. 

Proof. The fact that P is one-to-one comes from the choice of e in the 
construction of P above. More precisely, if you flow a time -T from P(x), 
you will be in W, and then x is the unique point of N which you can flow 
to H in time less than e. This makes it clear that P is one-to-one and that 
in fact, p-1 is a section mapping for the differential equation x' = -f(x). 

Theorem 8*.1.14 asserts that there is a differentiable function T(X), de­
fined in a neighborhood of xo, such that ¢>f(T(X) , x) E H and T(Xo) = T. 
Then P is simply the restriction of 

x ....... ¢>f(T(X) , x) 

to N, which is a composition of two differentiable maps. 0 

THE SECTION MAPPING AS A DYNAMICAL SYSTEM 

The essential property of P is that iterating P is equivalent to solving the 
differential equation. More precisely, define the return time T(x) = s(x)+T: 
this is the function which measures how long it takes for a point of N to 
return to N. In particular, T(Xo) = T. 

Choose yEN and set Yi = poi (y). Of course, this sequence may not 
be defined for all i because some Yi may not lie in N, so that Y i+ 1 is not 
defined. 

Proposition 8*.4.4. Iterates of P and solutions of the differential equation 
are related by 

Proof. By definition, we have ¢>f(Yi, T(Yi)) = Yi+l. Now the formula fol­
lows from the fundamental property (refer to Section 6.8 on flows): 

In particular, if Yi is defined for all i > 0, then the times T(yo) + ... + 
T(Yi-l) tend to infinity, and understanding the orbit of Y under P allows 
us to say something (in fact, a lot) about solutions for arbitrarily large 
times. 

Proposition 8*.4.4. makes it clear that the mapping P should be viewed 
as a dynamical system on N, i.e., that it should be iterated. Unfortunately, 
the mapping P depends not only on f and r, but also on the choice of 
section. We want to say that it is really independent of the section: more 
precisely, we will show that different sections lead to conjugate section 
mappings. 
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Proposition 8* .4.5. Let Xo and x~ be two points on r; choose subspaces H 
and H' transverse to r at Xo and x~ and construct section maps P : N -4 H 
and pI : N ' -4 H' as above. Then there exist subsets Nl and N~ and a 
differentiable mapping h : Nl -4 N{ with differentiable inverse such that 
pI = h-1 0 Po h. 

In other words, the section maps for two different H's are conjugate, 
as shown in Figure 8*.4.6, which means that P and pI are essentially the 
same dynamical system. 

FIGURE 8*.4.6. The mapping h which conjugates P to p'. 

Proof. Define h by "flowing" from N to N ' ; all the extra words in the 
statement above are just to restrict to a subset on which this is well defined. 
The details are very similar to Definition 8*.4.1 and will be left to the 
reader. D 

DERIVATIVE OF THE SECTION MAPPING 

For the remainder of this section, we will assume that we are in the plane, 
so that H is a line and N is an interval. The higher-dimensional case is 
quite a bit more elaborate, and the plane case will be complicated enough. 

In the plane, a section mapping P like the one in Example 8* .4.2 is 
completely typical and just the sort of mapping studied in Chapter 5 (Part 
I). The mapping P : N -4 H is always monotone increasing, and in fact 
pI > O. The point xo is a fixed point of P, which is linearly attracting if 
PI(XO) < 1 and linearly repelling if PI(xo) > 1. 

Note that if Xo is linearly attracting, then it really does attract a neigh­
borhood of itself: choose a neighborhood I of Xo in which pI < 1 - c for 
some c > 0, then by the mean value theorem, IP(xo)-P(x)1 = PI(y)lxo-xl 
for some y E [xo,x] C I, so that IP(xo) - P(x)1 < (1- c)lx - xol. Thus, 
applying P to a point in I moves you closer to XO by a definite amount. 
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If P'(xo) < 1, not only is Xo an attractive fixed point of P, but r at­
tracts a neighborhood of itself. The following result further emphasizes the 
relation between iterations of P and solutions of the differential equation. 

Proposition 8*.4.6. If P'(xo) < 1, there is a neighborhood ofr such that 
every solution starting in that neighborhood converges to r as t ----+ 00. 

Proof. First assume that the solution starts at Yo E I, where I is the 
neighborhood proved above to be attracted to Xo. Let Yi = pOi(yo). Note 
that since Yi exists for all i, the solution starting at Yo is defined for all 
t ~ O. Moreover, since Yi ----+ xo, the times Ty , tend to the period T of Xo. 
Thus, for large t, the solution is always obtained by flowing from a point 
near Xo for a time less than 2T, so it stays close to r. 

If Yo is close to r but not on I, then the trajectory through Yo will pass 
close to Xo and hence will cross I at some point Yl. You now continue as 
above. 0 

Definition 8*.4.7 (Linearly attracting or repelling cycles). If P'(xo) 
< 1, we will say that the cycle r is linearly attracting; if P'(xo) > 1, we 
will say that r is linearly repelling. 

The fact that this depends only on the cycle and not on the section 
follows from Proposition 8*.4.5. The case where P'(Xo) = 1 will be studied 
further in Chapter 9. 

CHOOSING A NEIGHBORHOOD OF A LIMIT CYCLE 

In this subsection, we will construct a nice neighborhood of a limit cycle in 
the plane which is linearly attracting or repelling. A corresponding neigh­
borhood in the case of a linear sink was found by choosing a basis with 
respect to which the square length is a Liapunov function, then choosing 
the region where this Liapunov function is smaller than some small positive 
constant. 

There does not seem to be an analogous construction for cycles, and the 
result is harder than it appears. We have used a different proof inspired by 
the Cornell Ph.D. thesis of Salvador Malo, based on the notion of turning 
a vector field. Because this construction is harder to carry over to lRn for 
n > 2, we still restrict ourselves to the plane. 

TURNING A VECTOR FIELD 

To "turn" or "rotate" a vector field f through an angle () means to create 
a new vector field 

£ = [c~() -Sin()] f. 
8 sm() cos() 

Examples for positive and negative rotation are shown in Figure 8*.4.7. 
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FIGURE 8*.4.7. A vector field is given in the center; turned vector fields are 
shown for a = 0.1 (above), and for a = -0.1 (below). • 
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Example 8*.4.8. Consider the Van der Pol oscillator of Example 8.4.2: 

x" + (x2 - l)x' + X = 0 

or 

x' =y 

y' = (1 - x 2 )y - x, 

88 shown in the center of Figure 8*.4.7. The results of rotating this vector 
field through angles of 0.1 and -0.1, are shown on the left and right, re­
spectively. The angle is easy to observe in the long trajectory coming in at 
the top of each picture. • 

Proposition 8*.4.9. Let r be a linearly attracting cycle of x' = f(x). 
Then there exists a neighborhood W of r bounded by two smooth simple 
closed curves, transverse to f, such that every point in W is attracted to 
r. 

Proof. Consider the one-parameter family f9 of vector fields obtained by 
turning f by an angle O. 

A turned vector field is transverse to f if 0 is not a multiple of 7r. So for 
small positive 0, it points into or out of the region bounded by r; let us 
suppose it points out (if not, turn the vector field in the other direction). 
Choose a segment I = [Yo, zol transverse to r at Xo, attracted to Xo under 
P : I -+ I, 88 above, where Yo is the endpoint outside the region bounded 
by r. 

FIGURE 8*.4.8. A suitable neighborhood W of a limit cycle r. 

The solution to x' = f(x) through Yo next intersects I at a point Yl 
between Yo and Xo, and for sufficiently small 0 > 0, the solution to x, = 
f8(X) will next intersect I at a point Yl(O) between Yo and Yl. This solution 
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will be one boundary curve of W; we need to round the two cor'lers, as 
suggested in Figure 8* .4.8, to make it smooth. 

The other boundary curve is constructed by turning the vector field in 
the opposite direction and starting at zo. 0 

SRUCTURAL STABILITY OF CYCLES 

Let f be a vector field on an open subset U of ]R2, and r a linearly attracting 
cycle of x' = f(x) . Let W, I, and P be as above: 

W is an annular neighborhood of r such that every point of W is 
attracted to r, and the vector field f enters W transversely along its 
entire boundary; I is a segment transverse to f joining one boundary 

curve of W to the other; P : I -+ I the corresponding section mapping, 

with a single linearly attracting fixed point at XQ, which attracts all of 
I. 

Theorem 8*.4.10 (Structural stability of limit cycles). There exists 
I) > 0 such that for any homeomorphism h : oW -+ oW which maps each 
boundary curve to itself, preserving the direction, and any g vector field 
on a neighborhood of W with IIf - gil < I), there exists a homeomorphism 
h : W -+ W extending h which maps oriented tmjectories of x' = f(x) to 
oriented tmjectories of x' = g( x). 

Proof. Call Yo and Zo the endpoints of I. We ask the reader to believe that 
there exists a curve It c W transverse to f joining h(yo) to h(zo). Figure 
8*.4.9 suggests how to construct a system of coordinates on W in which It 
can be taken as a segment of straight line, at least if W is so small that its 
boundary curves are "close parallels" to r and f has solution curves that 
are also almost parallel to r. Writing the details would distract from the 
main argument. 

FIGURE 8* .4.9. How to draw in h. 
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Consider the graphs Go = aWUI and G1 = aWUI1 , as shown in Figure 
8*.4.10. We can extend h to W. 

FIGURE 8*.4.10. The graphs Go and Gt. 

Since every solution in W is attracted to r under the flow ¢f of the 
differential equation x' = f(x), every solution leaving a will intersect a 
again and, more specifically, I. Let us call this mapping Pf: G --. I. 

The same is true of the graph Gt, and, more significantly, it is still true 
for the flow tPg if IIf - gil is sufficiently small. Let us call the corresponding 
mapping Pg : a1 --. 11' 

The following result is the first step toward the construction of h. 

Lemma 8*.4.11. (a) For any g sufficiently close to f, Pg has a unique 
linearly attractive fixed point on 11. 

(b) If g is su1Jjciently close to f for part (a) to hold, then there is a 
homeomorphism h : Go --. G1 extending h and conjugating Pf to Pg . 

Remark. The reader should observe that this statement is not quite ob­
vious even if f = g. 

Proof of Lemma. For part (a), observe that f induces a section mapping 
PI : II --. II which is differentiably conjugate to the section mapping 
Pf : 10 --. 10 by Proposition 8*.4.5. Thus, the point II n r is a linearly 
attractive fixed point of Pl. For g close to f (in the technical sense we 
imposed in Section 8*.1), the mapping Pg will be close to PI together with 
its derivative. In particular, it will have a unique attractive fixed point Xl. 

For part (b), the key idea is as follows: We will construct h by a scattering 
construction, as usual, but we will need to do it in stages. For any point in 
10 , we can solve x' = f(x) backward starting at that point. The solution 
will cross 10 some number of times (possibly 0) before it escapes W, and 
we will extend h successively to the subsets where this solution intersects 



8*4. Structural Stability of Limit Cycles 235 

0,1,2, ... times. This will still leave the point Xo = r n fo, which never 
escapes and has to be dealt with separately. 

_ For the dedicated reader, we now provide greater detail: On 8W eGo, 
h is already defined (in fact, on the boundary, 8W, it is h). On Pr(8W), 
define 

h(x) = Pg h(Pr- 1(x)). 

We invite the reade! to think about why this is continuous at the endpoints 
of f o. Now extend h to Pi(8W) by 

this is well defined because Pr- 1 (x) is in the locus where h was defined in 
the pre_vious step. Proceeding similarly for Pt(8W), pt(8W), ... , we will 
define ~ on all of Go except Xo. 

Set h(xo) = Xl; we must check that this is continuous. A point in fo 
very close to Xo will have a backward trajectory unde~ x' = f(x) which 
intersects fo a great many times. It will be mapped by h to a point whose 
backward trajectory under x' = g(x) intersects h the same number of 
times before leaving W. Such a point must be close to Xl. 0 

Proof of Theorem 8* .~10, continued. Again, we first state the key idea: 
Now we must extend h to all of W. The idea for this is not difficult, 

though the formulas are a little awesome. Every point of pEW - Go is on 
a unique arc of trajectory of x' = f(x) going_from a point of q1 E Go to a 
point q2. The points q1 and q2 are taken by h to the points h(qd, h(q2) E 
G1 which are two endpoints of a segment of trajectory under x' = g(x). 
We will map p to the point on this trajectory that is proportionally as far 
along as p was on its segment of trajectory. 

To fill out the proof more precisely: 
Define the functions To, So: W -Go ~ JR, which give the time it takes for 

a point to reach Go under x' = f(x) forward and backward, respectively. 
Similarly, define T!, Sl : W - G1 using x' = g(x). We extend T1 to G1 

so that it measures the time it takes to reach the next intersection with 
G1 (we could have extended To too, but it is not necessary). Moreover, to 
lighten the notation (which badly needs it), define the origin of p to be 

O(p) = <l>r( -So(p), p), 

i.e., the place where the trajectory through p last intersected Go before 
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reaching p. The construction is illustrated in Figure 8*.4.11. 

FIGURE 8*.4.11. The key idea o~ the proof of Theorem 8*.4.10. For pone-fifth 
of the way along the trajectory, h(p) will also be one-fifth of the way along its 
trajectory. 

Now define h : W - Go --+ W - G 1 

- (So(P) = = ) h(p) = <pg So(p) + To(p) Sl(h(O(p», h(O(p)) . 

We leave to the reader to check that this ghastly formula really does 
reflect the geometric construction defined above; once he or she has ~one 
this, they will have no trouble convincing themselves that h extends h. 

That h is a homeomorphism follows from the fact that f and g can be 
exchanged. 0 

Note that in this case the map h is not a conjugacy of the flows and 
that in fact there cannot be a conjugacy if the periods of I' = I' f and the 
cycle I' g for g, which we have shown to exist, are different. This is why the 
equivalence condition requiring topological conjugacy of the flows is too 
strong. 

8*.5 Why Poincare-Bendixson Rules Out "Chaos" 
in the Plane 

Differential equations in the plane do not exhibit "chaos." You cannot find 
in 1R2 the sort of complication associated with infinitely many periodic 
orbits, invariant Cantor sets, and other exotic phenomena which are such 
a common feature of iteration (even in one dimension) and of differential 
equations in three dimensions or more. 

The reason for this simplicity is rooted in the Poincare-Bendixson Theo­
rem, in its more general form (soon to be stated as Theorem 8*.5.5), which 
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asserts that away from the singularities the most complicated sort of orbit 
a differential equation in the plane can have is a closed orbit. 

To prepare for the classical statement of the Poincare-Bendixson Theo­
rem 8*.5.5, we must first define the concept of "limit set." 

THE LIMIT SETS OF A POINT 

A limit set of a point xp under a differential equation is the set of accu­
mulation points, in the forward or backward direction, of a solution u(xp ). 

More formally, let x' = f(x) be a differential equation in ]Rn, with flow 
¢r(t, x). 

Definition 8*.5.1 (Limit set). The w-limit set of a point x is the set of 
points to which you come arbitrarily close along the trajectory ¢r(t, x) as 
t -+ +00: 

Lw(x) = {.lim ¢r(ti, xp ) I ti -+ 00 and the sequence is convergent} . 
0--+00 

There is a corresponding definition of the a-limit set: 

La(x) = {.lim ¢r(ti, x) I ti -+ -00 and the sequence is convergent} . 
0--+00 

Some limit sets are illustrated in Figure 8*.5.1. 

FIGURE 8*.5.1. Some possible limit sets: a point, a simple closed orbit, and a 
more complicated cycle, formed by two homoclinic orbits of a single saddle. 

Alternate definitions of limit sets are explored in Exercise 8*.5#1. 

Remark. The names for these limit sets come from the first and last letters 
of the Greek alphabet: a is the beginning, whence solutions come; w is the 
last, whither solutions go. 

Clearly, the limit sets of points on the same trajectory coincide, so we 
can speak of the limit set of a trajectory. 
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With this definition, the w-limit set Lw (x) is empty if the solution through 
x is not defined for all t ?: 0 or tends to 00 with t. Similarly, the a-limit 
set is empty if the solution is not defined for t :5 O. Furthermore, the limit 
set has odd properties if the solution does not remain bounded. 

Example 8*.5.2. For the differential equation x' = x and the solution 
u(t) = et , the w-limit set is empty and the a-limit set is O. In fact, all 
solutions of this equation have the same limit sets, except the constant 
solution 0 for which both limit sets are the point O. See Figure 8*.5.2. 

FIGURE 8*.5.2. Solutions for x' = x. L",(u) = {0}, L,.(u) = O. • 

Example 8*.5.3. For the equation of Figure 8.4.1, 

the w-limit set of any solution except the constant solution 0 is the unit 
circle. 

·2 

FIGURE 8*.5.3. For any x =F 0, the L",(x) is the unit circle. • 
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In proving the strong Poincare-Bendixson Theorem 8*.5.6, we shall need 
to know that both limit sets of a point in a limit set are a subset of the 
limit set. This may not be so surprising for Lw, but it is certainly not so 
clear for La. Thus, we prove the following proposition: 

Proposition 8*.5.4. Ify E Lw(x), then the trajectory through Y is also a 
subset of Lw(x). In particular, Lw(y) c Lw(x) and La(Y) C Lw(x). 

Proof. Let z = <Pr( T, y). Then for any c > 0 there exists 8 > 0 so that 
for any Yl with IIYl - YII < 8, we have <Pr(Yl,T) is defined and Ilz­
<Pr(Yb T)II < c. By (the second) definition of the limit set, there exists a 
sequence ti E JR such that ti -+ 00, and <Pr(ti, x) -+ y. For i sufficiently 
large, II<pf(ti, xp) - yll < 8, so we see that 

Thus, points of the forward trajectory through x will converge to any point 
of the orbit of Y, whether forward or backward. But Lw(x) is closed, so it 
will also contain both limit sets. 0 

STATEMENT OF THE THEOREMS 

The classical statement of the Poincare-Bendixson Theorem is the follow­
ing: 

Theorem 8*.5.5 (Poincare-Bendixson). Let u(t) be a solution to the 
differential equation x' = f(x) in JR2 as above, defined and bounded for 
t ~ to. Then if Lw (u) contains no zero of f, it is a cycle. 

Remark. Our original Poincare-Bendixson Theorem 8.5.1 concerns a vec­
tor field in an annulus, which enters along the entire boundary, and such 
that the annulus contains no zeroes of f. Theorem 8*.5.5 says that the 
w-limit set of every point must be a cycle. 

We will prove a stronger result. 

Theorem 8*.5.6 Stronger Poincare-Bendixson). Let x be a point 
such that the solution <Pr(t, x) of the differential equation x' = f(x) in JR2 
is defined and bounded for t > O. Then either Lw(x) is a cycle or, for any 
Y E Lw(x), f vanishes identically on Lw(Y) and La(Y)· 

Remark. Of course, one possibility is that Y itself is a zero of f. Reasonable 
vector fields have isolated zeroes, so that usually Lw (y) and La (y) will be 
single points, but it can happen that the limit sets of points Y as above are 
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actually subsets of the plane which are not single points (but on which the 
vector field vanishes identically, as the theorem says). 

LABYRINTHS IN THE PLANE 

Theorem 8* .5.6. is hard to understand if you cannot imagine what a coun­
terexample might look like. The reader should run the Lorenz equation, 
Example 6.1.6, on a computer program such as DiffEq, 3DViews in the 
MacMath package, and consider carefully the resulting Lorenz attractor, 
pictured for instance in Figure 6.1.8. 

It might seem "obvious" that nothing like the Lorenz attractor can exist 
in the plane, but this is just a failure of the imagination. We will show 
in Example 8*.5.7 that such things, called labyrinths, do exist. Neverthe­
less, the Poincare-Bendixson Theorem asserts that in ]R2 a solution cannot 
wind around such a labyrinth, accumulating on something like the Lorenz 
attractor. 

Example 8*.5.7 (Labyrinth). Consider the region U c 1R.2 bounded by 
three semi-circles as represented in Figure 8*.5.4. Fill each semi-circle by 
concentric semi-circles, and imagine the "differential equation" whose flow 
curves are precisely these arcs. These curves can obviously be continued 
forever unless they run into one of the centers of the circles or the point o. 

FIGURE 8* .5.4. A labyrinth with an unending orbit, unless you land on a sin­
gtIlarity. Part of a typical orbit is drawn as a thicker path, starting and ending 
near the center. .to 

Example 8*.5.7 becomes especially interesting if 0, the meeting point of 
the two semi-circles on one side, is irrational. Consider the following two 
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lemmas and their implications. 

Lemma 8*.5.8. If () is irrational, then for all but countably many x E 
[-1,1]' the trajectory through x has limit set equal to U. 

Proof. Consider the two mappings UI, U2 : [-1, 1] --+ [-1, 1], which give, 
for any x E [-1,1], the other endpoint of the top or bottom semi-circle, 
one endpoint of which is x. The bottom map is simply Ul : x 1--+ -x, and 
the top map is 

{ -x - 1 + () if x < () 
U2(X) = -x + 1 + () if x > () , 

so we see that U2 0 Ul(X) = x + 1 + () mod2. Exercise 8*.5.2 asks you to 
prove the result from here. D 

Remark. You can use the MacMath program Analyzer to iterate this func­
tion, even though it is discontinuous. Enter the function 

0.5 * «sgn(x - ()) + 1) * (-x + () + 1) + (sgn«() - x) + 1) * (-x + () - 1)), 

say with () = 11"/11, and then with () = 3/11, and see the difference, as 
shown in Figure 8*.5.5. 

2.0 

e=Yf~o.707 

FIGURE 8*.5.5. Different iteration behaviors, to illustrate Lemma 8*.5.8; (J is 
irrational on the left, mtionalon the right. 

The labyrinth of Example 8*.5.7 is not quite a counterexample to the 
Poincare-Bendixson Theorem, because U contains singularities. In order 
to remove the singularities, try Example 8*.5.9. 

Example 8*.5.9. Start with the idea of Example 8*.5.7, but open up 
the exceptional trajectories to a union of tadpole-shaped regions V, with 
narrowing infinitely long tails, as indicated in Figure 8* .5.6, and fill in the 
opened region, also as indicated. Now a trajectory in U - V has limit set 
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u - V and, in particular, contains no singularities. See Exercise 8*.5.3 for 
further exploration of this example. • 

FIGURE 8*.5.6. A labyrinth without singularities, to illustrate Example 8*.5.9. 

Why is the labyrinth of Example 8*.5.9 still not a counterexample to 
the Poincare-Bendixson Theorem 8* .5.6? Because there is no direction to 
these flow curves, you cannot put arrows on the curves in a coherent way! 
So the Poincare-Bendixson Theorem has met the labyrinth challenge in 
R,2. Another labyrinth example is given in Exercise 8* .5#4 which especially 
shows how wrong the Poincare-Bendixson Theorem must be for differential 
equations in R,3. 

Remark. There is a great similarity between this labyrinth "counterexam­
ple" and the cardboard model for the Lorenz equations of Example 8.7.l. 
Nothing like Lemma 8*.5.10, which excludes the labyrinth, holds in R,3, 

and "chaos" can therefore rear its ugly head in the Lorenz attractor. 

PROOF OF THE POINCARE-BENDIX80N THEOREM 

The first step in proving the Poincare-Bendixson Theorem 8*.5.6 is Lemma 
8*.5.10, the key result that avoids chaos in the plane. 

Lemma 8*.5.10 (Monotonicity). If I is a segment in R,2 transverse to 
f, which a solution u of X' = f(x) crosses at three points Ai = U(ti) with 
tl < t2 < t3, then A2 is between Al and A3 on I. 

Proof of Lemma. The construction is shown in Figure 8*.5.7. The set 
u[h, t2J U [AI, A2J forms a simple closed curve, which bounds a region U. 
The vector field either enters or leaves U. Changing the sign of the vector 
field if necessary, we can suppose it enters. 

Then U(t2' 00) is contained in the interior of U, but the part of I - A2 
containing Al is in the boundary of U or outside. Hence, A3 is in the 
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component of I - A2 E u( t2, 00) belonging to the component of I - A2 not 
containing AI. 0 

FIGURE 8*.5.7. Section crossed by u at three points. 

Remark. As said at the beginning of Chapter 8, we are assuming Lipschitz 
vector fields. So even if the boundary of a region is a solution rather than 
being crossed by the vector field, it nevertheless prevents any solutions from 
escaping. 

Proof of Theorem 8* .5.6. Let x be a point with bounded forward tra­
jectory, Y E Lw(x), and Z E Lw(Y) or Z E La(Y). We shall illustrate the 
steps of the proof with Figure 8*.5.8. 

If z is not a zero of f, there exists a section Iz through z. The essential 
thing to see is that cPr([O, 00), y) n Iz = {z}, i.e., the trajectory through Y 
cannot intersect Iz in more than one point. 

Indeed, suppose cPr([O,oo),y) n Iz has two points Yl and Y2 . By Propo­
sition 8*.5.4, both Yl and Y2 belong to Lw(x), so there exist sequences 
ti ---- 00 and Si ---- 00 such that cPr(ti, x» ---- Yl and cPr(Si, x) ---- Y2. There 
is a neighborhood V of Iz such that any point in it can be moved onto Iz 
by flowing a time < c j so there exist sequences t~ ---- 00 and s~ ---- 00 with 
cPr(t~,x», cPr(s~,x) E I and still ux(tD ---- Yl and ux(sD ---- Y2· IfYI and Y2 
are distinct, this is incompatible with the Monotonicity Lemma 8*.5.10. 

Now there exist t 1 and t2 such that cPr( t 1 , y) and cPr( t2 , y) are both in 
V and, in fact, on the arc of trajectory through z in Vj moreover, we may 
assume t2 - tl > 2c. 

Then by modifying t 1 and t2 by less than c, you can find t~ and t~ such 
that cPr( t~ , y) = cPr( t~, y) = z, and t~ 1= t~. This shows that cPr( t~ - t~ , y) = 
y, which implies that the trajectory through y is a cycle. 

We still need to show that if the trajectory through y is a cycle, then 
this cycle is the whole w-limit set of x. Choose a section I at Y and let 
ti be the times for which cPr(ti, x) E Ij the cPr(ti, x) form a sequence on I 
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cp,(t.x) 

I Y,-
The trajectory of x ""'" 
accumulates on the point y . 

__ --~ .k'" The trajectory of y accumulates 
on the point z . 

y 

These lines are part of the trajectory of x • • ~ ~ 

+ t 
these lines are part of the trajectory through y 

FIGURE 8*.5.8. Illustration of the proof of Theorem 8*.5.6. 
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converging monotonically to y. Since the solution through y is a cycle of 
some period T > 0, we have cP,(T,y) = y, so that cP,(ti + T,X) is close to y 
for large i and, in particular, ti+l is close to ti +T. But this means that the 
trajectory through x is close to the trajectory through y for all sufficiently 
large times. 0 

8*.6 Structurally Stable Equations in the Plane 

MORSE-SMALE VECTOR FIELDS IN THE PLANE 

In this section we will attempt to pin down the fact that vector fields in 
the plane do not exhibit "chaos." More specifically, we will define the set 
of "nice" (Morse-Smale) vector fields by a few negative properties. Then 
we will show that these vector fields are structurally stable and dense. 

The first of these properties means that 

If you perturb a nice vector field a little bit, for instance by adding on a 
small vector field, then the essential structure of the phase plane does 
not change: the perturbed differential equation is topologically equiva­
lent to the original one. 

The second property means that 

Any vector field, however nasty, for instance the zero vector field, can 
be perturbed an arbitrarily small amount and become nice. 

Definition 8*.6.1 (Morse-Smale vector field). A vector field f on a 
region U C ]R2 is Morse-Smale (abbreviated M-S) if: 

(1) the linearizations of f at the zeroes are sinks, saddles, or sources; 

(2) the limit cycles are all linearly attracting or repelling; 

(3) there are no saddle connections. 

Historical Remark. In the West, after the momumental work of Poincare 
at the turn of the century, the study of differential equations more or less 
dried up (with the notable exception of George Birkhoff, and some very 
deep work in celestial mechanics by Carl Ludwig Siegel). In the Soviet 
Union, work on differential equations never slowed, spearheaded by such 
mathematicians as A. A. Andronov and L. Pontryagin. 

To the authors of this book, these names are historical. Not so the names 
of Marston Morse, Stephen Smale, Raoul Bott, and John Milnor, who have 
been at the heart of current developments. Morse's main contribution is 
not in differential equations, but in a topic called the calculus of variations 
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in the large, now usually called Morse theory. In the 1930s, he proposed 
to take something like a surface with a function f and try to understand 
the topology of the surface by flowing down the gradient curves of the 
function, eventually deforming the surface into the unstable separatrices 
of the gradient flow. Even if one is not centrally interested in differential 
equations, thinking about surfaces forces one to think about gradient flows. 

This program was spectacularly applied by Bott in the early 1950s to 
understand the topology of the space of loops on groups like 80(3). This 
brought the subject to the forefront of mathematical research. In particular, 
Milnor wrote a book called Morse theory, which was extremely influential. 
Smale, who had been a student of Bott in the 1950s, used Morse theory to 
prove the Poincare conjecture in dimensions at least five. This earned him 
a Fields medal, the mathematical equivalent of the Nobel prize. After this, 
his work centered on dynamical systems, and he started a whole school, of 
which the authors are in some sense a part. He is still very active in the 
subject, and it is clear that he was much influenced by gradient flows in 
his more general investigations. 

Such gradient flows have very nice properties, and Morse-Smale vector 
fields are those that share these properties. 

For differential equations in the plane, the long-term behavior of trajec­
tories of x' = f(x) is quite easy to understand. We have suggested that to 
study a differential equation in the plane, the main objective is to locate the 
basins of the sinks and attracting limit cycles (usually bounded by stable 
separatrices and repelling limit cycles), and the "antibasins" of the sources 
and repelling limit cycles (usually bounded by unstable separatrices and 
attracting limit cycles). Theorem 8*.6.2 justifies this philosophy when the 
vector field is M-S. 

Theorem 8*.6.2. Let U be a bounded region of the plane, bounded by 
smooth curves, and f be a M-S vector field in U transverse to its boundary, 
aU. Then as t -+ 00, every solution of x' = f(x) either 

(1) leave U, or 

(2) tends to a sink or an attracting limit cycle, or 

(3) is a stable separatrix of a saddle or a repelling limit cycle. 

Similarly, as t -+ -00, every solution either 

(1) leaves U, or 

(2) emanates from a source or a repelling limit cycle, or 

(3) is an unstable separatrix of a saddle or an attracting limit cycle. 
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Proof. This is a corollary of the Poincare-Bendixson theorem (in its strong 
form Theorem 8*.5.6). Suppose the trajectory 4>f{t,X) does not leave U as 
t ---+ 00, that Lw{x) is not a cycle, and let y E Lw{x). We wish to show 
that y is a zero of f (clearly either a sink or a saddle unless x was itself 
a source). Suppose that f{y) =/: O. The vector field f vanishes identically 
on L",{y) and on Lw{y) by Theorem 8*.5.6. But both L",{y) and Lw{y) 
must be saddles: clearly, Lw (y) cannot be a source; if it is a sink, then that 
sink is also Lw{x). Similarly, L",{y) cannot be a source or a sink. So the 
trajectory through y is a saddle connection. A similar argument can be 
made for L",{x). 0 

Remark. The notion of a Morse-Smale vector field is not restricted to 
the plane. However, Theorem 8*.6.2 does not follow from the definition 
we have given of Morse-Smale in higher dimensions; and the appropriate 
modification of the conclusion of Theorem 8*.6.2 simply becomes part of 
the definition of M-S. With this modified definition, structural stability is 
still true, and the proof we give almost carries over. On the other hand, 
the density result fails drastically, so the notion of M-S is much less useful: 
a "general" vector field in an is not M-S when n > 2. 

THE STRUCTURAL STABILITY THEOREM 

Theorem 8* .6.3 is due to Andronov and Pontryagin. It had a deep influ­
ence on the whole theory of dynamical systems, and for quite a while, the 
hope was that something similar would be true in higher dimensions: that 
structurally stable vector fields would be open and dense in general. Al­
though this hope was dashed [Smale, 1966,Amer. J. Math], the underlying 
philosophy is still a central part of the way people think about dynamical 
systems. 

Theorem 8* .6.3 (Structural Stability Theorem). Let U be a bounded 
region of the plane, bounded by smooth curves, and f be a Morse-Smale 
vector field on U transverse to the boundary curves. Then f is structurally 
stable. 

Proof. Without being enormously difficult, the proof is quite long and an 
order of magnitude more elaborate than anything encountered in this book 
so far. There are four preliminary lemmas, so hang on for a long ride! 

For each sink or source Xi, choose a small neighborhood Wx ; and 8x ; > 0 
as given by Theorem 8*.2.1. For each limit cycle r j , choose a neighborhood 
Wrj and 8r j as given by Theorem 8*.4.10. We will take all these neigh­
borhoods disjoint. Let Y be U with the interiors of these neighborhoods 
deleted. Then the boundary aY of Y is a finite union of simple closed 
curves, and naturally breaks up into aY = aY' U aY", where aY' is the 
part of the boundary where solutions enter and aY" is the part where they 
leave. 
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Lemma 8* .6.4. Every trajectory enters and leaves V, except the constant 
solutions at the saddles and their separatrices. The stable separatrices enter 
V transversely to BV' and the unstable separatrices leave V transversely to 
BV". 

Proof of Lemma. By Theorem 8*.6.2, any solution that does not leave 
is the stable separatrix of a saddle, and any solution that does not enter 
is the unstable separatrix of a saddle; all other behaviors were excluded 
by removing neighborhoods of the sinks, sources, and cycles. Moreover, no 
trajectory can be both a stable and an unstable separatrix, since there are 
no saddle connections. 0 

So we see that we can define the arrival time, departure time, and the 
transit time respectively as Arr, Dep, Trans: V -+ IR U 00 by setting 

Arr(x) = sup{t I ¢>r([-t, OJ, x) C V}, 
Dep(x) =sup{t I ¢>r([O,tj,x) C V}, 

Trans(x) = Arr(x) + Dep(x). 

Let a stable separatrix of a saddle Xo intersect BV' at x; let I be a 
neighborhood of x in BV homeomorphic to an interval; 1- {x} will consist 
of two intervals 1+ and 1- . 

Lemma 8* .6.5. If I is sufficiently short, the function Trans(y) is a mono­
tone function on each of 1+ and 1-, tending to 00 as y -+ x. 

Proof of Lemma. Choose a neighborhood of Xo, two sections Ii : It -+ 

V and 12 : 12 -+ V at points of the stable and unstable separatrices, 
respectively, and a diagonal segment IJ : J -+ V at Xo, all sufficiently 
small so that Proposition 8* .3.2 holds. The construction is shown in Figure 
8*.6.1. We will call Sl and S2 the variables of Ii and 12 , and s the variable 
of J, so that the Si live in a neighborhood of 0, whereas ° < s < c. Again, 
as in Proposition 8* .3.2, the key to success is to write everything in terms 
of s. 

If necessary, making the intervals Ii short, and the J shorter yet, the 
flow ¢>r defines injective maps G:i : J -+ Ii and positive functions Ti : J -+ IR 
and Ui : Ii -+ IR such that 

and 
¢>r (( -l)iui(si), li(Si» E BY. 

In words, Ti is the time it takes to flow from the diagonal to the transverse 
sections li(Ii ), and Ui is the time it takes to flow from these to the entering 
and exiting boundary. 
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1 measures the 't2 measures the 
time it takes to get time it takes to get 

av' from 11 to J from J to 12 

01 measures the 
time it takes to get 
from av' to 11 

~::::::=:::::::: 

02 measures the 
time it takes to get 
from 12 to av" 

FIGURE 8*.6.1. 

With this description, clearly 

Trans(-yJ(8)) = L Ti(8) + O"i(O:i(8)). 
i=1,2 

249 

Proposition 8* .3.2 tells us that Ti (8) tends to infinity as 8 "" 0, with 
derivative tending to -00, and that O:i has a bounded derivative. On the 
other hand, O"i is defined and differentiable in a neighborhood of 0, so it 
certainly has a bounded derivative in a neighborhood of 0. By the chain 
rule, 

is the sum of a function tending to -00 and of a bounded function, and 
hence tends to -00. Thus, Trans(-yJ(s)) is a monotone function tending to 
infinity on J if J is chosen sufficiently short. 

This proves the lemma, since the flow defines a homeomorphism from J 
to a one-sided neighborhood of x in av. 0 

Choose, for each intersection x of a separatrix of a saddle and av, a 
neighborhood Ix C av of x homeomorphic to an interval, and such that 
these neighborhoods are disjoint. 

We can now state precisely what perturbations g = f + k of f we will 
allow. They will be required to satisfy five conditions: 

(1) g is transverse to av, entering on av' and leaving on av"; 

(2) for each sink or source Xi, the perturbation is smaller on the neigh­
borhood W x ; than ox; > 0, so that Theorem 8*.2.1 applies to the 
restriction of g to W x; ; 
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(3) for each limit cycle r j, the perturbation is smaller on the neighbor­
hood Wrj than {jrjl so that Theorem 8*.4.1 applies to the restriction 
of g to Wrj ; 

(4) for each saddle Xo of f, there exists a saddle x" of g, with separa­
trices intersecting av in exactly the same four ~gments Ix as the 
separatrices of Xo; 

(5) there are no other zeroes of g in V. 

Let g be a perturbation of f satisfying the conditions ab(),ve. We will 
denote by Transr, etc., the constructions above as applied to f. 

Lemma 8*.6.6. There exists a homeomorphism h : av' -+ 8V' which 
is the identity on av' - Ulx and such that, for each intersection x of a 
separatrix with 8V, there exist subintervals K x , K; c Ix on which transit 
times are preserved, i.e., 

Transr(Y) = Transg(h(y» (15) 

for all y E Kx· 
h is designed to take points of 

Kx to points of K' X with the same transit times 

transit time 

xy x h{y) 
'---' ~ 

K. x and x· are on separatrices. K; 
and have infinite trans~ times 

FIGURE 8*.6.2. Choosing h so that corresponding points have equal transit 
times. 

Proof of Lemma. Lemma 8* .6.5 also applies to x". So for M sufficiently 
large, there exist Kx and Kx' neighborhoods of x and x" respectively, such 
that Transr maps each component of Kx - {x} bijectively to (M,oo), and 
similarly for Kx' and g. Taking M larger if necessary, we may assume 
K x , Kx' C Ix. Equation (15) and the fact that h should preserve the ori­
entation of av now impose h: Kx -+ Kx" It can now easily be extended 
to Ix, for instance as suggested by Figure 8*.6.2. 0 

We can now extend h: av' ....... av' to a homeomorphism It: V ....... V. To 
make the formula more readable, we define 

Entr(x) = ¢x( -Arr(x), x) and Exit(x) = ¢r(Dep(x), x), 
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so that Entr(x) is the point of BV where the trajectory through x enters 
V and Exit(x) is the point where it leaves. The point Entr(x) is defined 
except at the saddles and their unstable separatrices, and the point Exit(x) 
is defined except at the saddles and their stable separatrices. 

Now our extension is given by the following formula: 

hex) = <pg ( :::~7~) Transg(h(Entr(x))), h (Entr(X») . (16) 

This formula is not well defined on the separatrices, since the times Arr(x) 
and Trans(x) are not well defined on the separatrices. Let us denote by 
S(f) the union of the saddles of f and of their separatrices, and similarly 
for S(g). 

Lemma 8*.6.7. Formula (16) defines a homeomorphism h : V - S(f) -+ 

V - S(g}, which extends continuously to a homeomorphism V -+ V. 

Proof of Lemma. Clearly, h is defined and continuous on V - S(f) and 
maps V - S(f) to V - S(g). The first part of the statement simply comes 
from observing that the roles of f and g can be interchanged, leading to an 
inverse of h. 

For the second part, first choose p E Ss(xo), a point on astable separatrix 
entering V at x. Then for y in a sufficiently small neighborhood of Xo, the 
point Entr(y) will be in K x , so that Transf(Entr(y) = 'fraDSg(h(Entr(y». 
In this neighborhood, formula (17) becomes 

hey) = <pg(Arrf(Y), h (Entr(y))), 

which is a continuous function of y. 
To see the result for points on the unstable separatrices, we must write 

formula (17) in terms of the leaving point Exit(x) rather than the entering 
point. First observe that the homeomorphism h : BV' -+ BV' induces a 
homeomorphism k : BV" -+ BV" of the leaving boundary by the formula 

key) = Exit(h(Entr(y))). 

This is obviously well defined and continuous except at the intersections of 
the unstable separatrices with the boundary. There is a unique such point 
in each interval Ix C BV" for both f and gj the first must be sent to the 
second. 

Now we leave to the reader the verification that 

hex) = <pg ( .::::~~) Transg (k (Exit (x))) , k (Exit (x) ») j 

with this formula, the proof works as above for points on the unstable 
separatrices. 
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This leaves the saddles. If a sequence of points Xi approaches a saddle 
xo, and these points are not on the separatrices, then the Xi have entering 
and leaving points that must approach the intersections of the separatrices 
with BV; moreover, their arrival and departure times tend to infinity. The 
sequence h(Xi) must then have the same property, and this shows that it 
also converges to the saddle X* of g corresponding to Xo. If the sequence 
Xi is contained in the separatrices of the saddle Xo and converges to xo, 
then the image sequence is contained in the separatrices of x*, and since 
the times tend to infinity, such a sequence must must also converge to X* • 

Any sequence converging to Xo is formed of two subsequences, one of each 
of the types above, and since the images of both converge to x*, the image 
sequence converges. 0 

Finally, the homeomorphisms h and k can be extended to the interiors 
of the Vi and Wj by Theorems 8*.2.1 and 8*.4.1. Denote still by h the 
homeomorphism U - U obtained in this way; it is a homeomorphism 
sending oriented trajectories of f to trajectories of g. This ends the proof 
of the Structural Stability Theorem 8* .6.3. 0 

THE DENSITY THEOREM 

We next want to claim that any vector field can be approximated by a 
structurally stable one. The next theorem is attributed to M. M. Peixoto, 
a contemporary Brazilian mathematician. 

Theorem 8*.6.8 (Peixoto's Density Theorem). For any twice-differ­
entiable vector field f in a region U of the plane, there exists a M-S vector 
field g for IIf - gil arbitrarily small. 

Proof. We will proceed in several steps: 

(i) First perturb the vector field so that the zeroes are isolated and are 
sinks, sources, and saddles. 

(ii) Then destroy the saddle connections. 

(iii) Finally, adjust the cycles so that they are linearly attracting or re­
pelling. 

Each of these steps is rather delicate, because we must be sure that we 
have not undone the steps already accomplished. 

Proof of (i). Approximate f by a vector field with isolated zeroes. We will 
outline in Exercise 8*.6.#2 a proof that any function defined and k times 
continuously differentiable on a closed subset of an can be approximated 
on that subset together with its first k derivatives by a polynomial function. 
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For our purposes, approximate both components h and h of the vector 
field together with their first two derivatives by polynomials PI and P2. 

Remark. It is not really any easier, but it is more standard to show that 
functions can be approximated by trigonometric polynomials. For our pur­
poses, this would do just as well. Exercise 8* .6#3 outlines this proof. 

Polynomials vanish on algebraic curves, and algebraic curves, if they do 
not have whole components in common, intersect at finitely many points. 
If PI and P2 have an algebraic curve Z of zeroes in common, take any 
polynomial P that does not vanish identically on Z; then PI and P2 + lOp 
will have finitely many common zeroes for arbitrarily small e. 

Essentially the same argument shows that the zeroes can be taken to be 
sinks, saddles, or sources. We will take them one at a time, each time taking 
a much smaller perturbation than before, so as not to disturb the work 
already done. So suppose Xo is a common zero of PI and P2; by translation, 
we can assume Xo = O. If we modify PI and P2 by adding on an arbitrarily 
small linear vector field, for instance choose pi(x,y) = PI(X,y) +elX and 
pi(x, y) = P2(x, y) + e2Y, then 101 and 102 can be chosen arbitrarily small so 
that neither the trace nor the determinant of the linearization vanish. 

Proof of (ii). We next deal with the saddle connections, which are dis­
cussed at length in Section 9.3. Some pictures of saddle connections are 
shown in Figures 9.3.1 and 9.3.2 in Figure 8*.6.3; note that a saddle con­
nection may connect a saddle to another saddle (heteroclinic) or to itself 
(homoclinic) . 

FIGURE 8*.6.3. A heteroclinic saddle connection (on the left), slightly perturbed 
in the shaded region (as shown on the right). 

Note in Figure 8*.6.3 that this break creates a global change in the be­
havior of solutions that were near the saddle connection. 

There are only finitely many saddle connections; choose a point Xo on 
one of them, and a neighborhood V of xo, obtained by choosing a section 
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"I : h ---. lR2 and considering the image of the map h x I2 given by (s, t) t-+ 

c/>r( t, "I ( s)). We will make infinitely many modifications to f but will keep 
the same V's throughout. 

Lemma 8* .6.9. There exists g with Ilg - fll arbitrarily small such that the 
vector field g has no saddle connection intersecting V. 

It seems obvious that you can break saddle connections by locally mod­
ifying the vector field near a saddle connection as suggested by Figure 
8*.6.4. 

FIGURE 8*.6.4. A small perturbation of a vector field breaks a homo clinic saddle 
connection. Note that a limit cycle is created in the homoclinic case. 

Example 8* .6.10. The vector field of Figure 8* .6.5 illustrates the difficul­
ties that may arise in when carrying out this construction: if a separatrix of 
a saddle has a saddle connection as w-limit set, as in Figure 8* .6.5, then an 
arbitrarily small perturbation of the vector field in V may cut the original 
saddle connection, but create a new one at the same time. 

A small break of this 
saddle connection 
mightcauset~ 
and this one 
to connect 

FIGURE 8*.6.5. A bad saddle connection where a break creates another saddle 
connection. ... 
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Proof of Lemma. The following argument, suggested by John Gucken­
heimer, will show two statements: 

(a) For any integer k and any perturbation fk of f that coincides with 
f outside V and such that every saddle connection crossing V crosses V 
at least k times, there exists an arbitrarily small perturbation of fk+1 such 
that every saddle connection for f k+ 1 crossing V crosses V at least k + 1 
times. 

(b) For any k and any fk of f that coincides with f outside V and such 
that every saddle connection crossing V crosses V at least k times, there 
exists € > 0 such that any perturbation g of fk with Ilg - fkll < €, any 
saddle connection for g crossing V crosses at least k times. 

Using these two statements, we prove Lemma 8*.6.10 as follows: 
Given 0 > 0, find a sequence of perturbations f2 of f1 = f, then f2 of f1, 

then f3 of f2, and so on, and a sequence of numbers 01 = 0,02,03, ... , such 
that 

(1) IIfk - fk - 111 < ok-I/2, k = 2,3, ... , 

(2) every saddle connection for fk crosses V at least k times, 

(3) for any g with Ilfk - gil < Ok, all saddle connections for g crossing V 
cross V at least k times, 

(4) Ok < ok-I/2. 

You can choose fk satisfying (1) and (2) by property (a), and you can 
choose Ok satisfying (3) and (4) by property (b). 

Properties (1) and (4) guarantee that the fk converge to a vector field 
g with IIg - fll < 0, and properties (3) and (4) guarantee that g has no 
saddle connections crossing V. This reduces the proof of Lemma 8* .6.10 to 
proving (a) and (b). 

Remark. In this proof, we made separatrices cross V more and more times. 
In the limit, they must cross V infinitely many times. This implies that their 
w-limit sets are cycles. 

The proof of (a) goes as follows: Mark on the boundary of V the points 
where separatrices enter and leave V on their first k crossings (if they 
occur): this is a finite set of points Z = Z' u Z", where Z' is the subset of 
Z on saddle connections crossing V in exactly k crosses and Z" = Z - Z'. 
Next, choose a neighborhood W C V of all k crossings of all the saddle 
connections crossing V in exactly k segments and intersecting no trajectory 
segment through a point of Z". 

Now perturb the vector field in W so little that the trajectories first 
entering V at points of Z' cross V k times in W, but after k crosses they 
do not connect points of Z' to points of Z'. 
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This perturbation satisfies our requirement: any saddle connection cross­
ing V must enter at some point of Z j if it entered at a point of Z", its tra­
jectory has not been modified for the first k crossings of V (if they occur), 
and after k such crossings, it does not connect with another point Z. If it 
enters at a point of Z', then after k crossings it does not connect with a 
point of Z, so again it must take more than k crossings to connect to a 
saddle. This proves (a). 

Part (b) is much easier. Mark on the boundary of V the points where sta­
ble separatrices depart to go to saddles without reentering V, and the first 
k exit points of unstable separatrices. Our hypothesis says that these two 
finite sets of points are disjoint, but both move continuously with the vec­
tor field, so they will still be disjoint after a sufficiently small perturbation. 
o 

Using Lemma 8*.6.10, it is easy to make an arbitrarily small perturba­
tion of the vector field so that it will have no saddle connections. By the 
Poincare-Bendixson Theorem (in its strong form, Theorem 8*.5.6), we see 
that all separatrices must now either go to sinks or sources, accumulate on 
cycles, or leave the region U. 

Now we need to make the cycles linearly attracting or repelling. There 
may well be infinitely many limit cycles, but they can be classified into 
finitely many classes as follows: 

Declare two cycles to be equivalent ("homotopic in the complement 
of the zeroes of f" is the standard expression) if they separate the 
same zeroes of f. Then there are only finitely many classes, since the 
(finite) set of zeroes of f can be partitioned in only finitely many ways. 
Moreover, for each equivalence class r, we can consider VI' the union 
of the annular regions bounded by cycles 'Y E r. 

Lemma 8*.6.11. Either the class r contains a single cycle, or VI' is an 
annular region bounded by two elements of r (the innermost and the out­
ermost cycles in r ). 

Remark. For this to be true, it is essential that we first eliminate the 
saddle connections, for otherwise the boundaries of such regions VI' might 
well be made up of saddle connections on which cycles in r accumulate. 
That would make the next argument much more delicate. 

Proof of Lemma. Suppose Xi E 'Yi are points of 'Yi E r converging to 
x E aVI'. Now apply the Poincare-Bendixson theorem to x: both the LQ(x) 
and Lw(x) must either be cycles or contain a zero of f. 

Suppose first that Lw(x) is a cycle 6, so that there exists a sequence 
ti -t 00 such that 4>f( ti, x) converges to a point y E 6, so 4>f( ti, Xi) also 
converges to y. Call Yi = 4>f( ti, xd· 
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Next observe that the periods Ti of 'Yi converge to the the period T6 of 8 
(and not to 00, as one might fear). Indeed, take a transversal J to 8, which 
we may assume will contain the Yi. Note that by monotonicity, a cycle can 
intersect J in at most one point. Then ¢>r(T6, y) = y, so ¢>r(T6,yi) is close 
to y and will intersect J again within a time which goes to 0 as i -+ 00; 
since the next intersection is also Yi, this shows that the periods converge. 

We may then assume that the ti are bounded and in fact a convergent 
sequence, converging to some to. Then 

and this shows that if Lw(x) is a cycle, then every point of 8Vr is on a 
cycle. The same argument applies if L",(x) is a cycle. 

If neither is a cycle, then both limit sets must contain zeroes of f. In fact, 
both limit sets must be just one point, which is a saddle of f. Indeed, by 
Theorem 8* .5.6, f will vanish on both limit sets of any nontrivial trajec­
tory contained in Lw(x), and that would make such a trajectory a saddle 
connection. But this means that the trajectory through x is itself a saddle 
connection unless x is itself a saddle of f. 

If this is the case, then 'Yi must accumulate not only on x, but also on 
at least two of the separatrices emanating from x; we just saw that that 
means that these are saddle connections, which contradicts our hypothesis. 
o 

Proof of (iii). Now we will modify the flow by a small perturbation near 
each Yr. Choose a section 'Y : I -+ JR2 to the flow which goes from inside the 
inner boundary to outside the outer boundary of Yr. There is a subinterval 
lIe I also crossing Vr such that the Poincare section mapping P : II -+ I 
is well defined. Note that the cycles of r, and in particular the boundary 
of Vr, intersect h in fixed points of P. Let us approximate P by a Coo 
mapping p. : II -+ I which agrees with P outside a small neighborhood of 
VrnII, with all fixed points transverse and having at least one fixed point. 

Remark. This last condition is to avoid creating new saddle connections 
when we eliminate cycles; in Section 9.3 we will see that this is a real 
possibility. 

Lemma 8*.6.12. There exists a vector field which agrees with f outside a 
small neighborhood of V, which is close to f when p. is close to P, and 
with section mapping p •. 

Proof of Lemma. Embed the rectangle h x [0, a] into V by (s, t) 1-+ 

¢>r( t, 'Y( s); we will modify the vector field only in this rectangle. There are 
two flows from the right side to the left side of this rectangle: backward 
through the inside of the rectangle, and forward through the outside. We 
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will use the outside identification to identify the right edge with a subin­
terval of J c I, so that the flow through the rectangle connects s E I to 
P(s) E J. 

We may think of the trajectory through (0, s) as the graph of a function 
as(t). We will replace this trajectory by the graph of the function (1 -
1J(t»as (t) + 1J(t)P*(s), where 1J(t) ~ 0 is a Coo function defined on [O,a] 
which is identically 0 near 0 and identically 1 near a. We leave it to the 
reader that these graphs are indeed trajectories of a vector field f*, which 
is an arbitrarily small perturbation of f when P* is sufficiently close to P. 
Moreover, the Poincare map for this new vector field is P*, so all cycles of 
f* in Vr are linearly attracting or repelling. 0 

No new saddle connections were created by this construction. The vector 
field was not modified outside a small neighborhood of the Vr, so there can 
be no saddle connection there. Moreover, each boundary of Vr is attracting 
or repelling, according to whether the graph of P is above or beneath the 
diagonal on It - Vr . We did not modify P near the edges of It, so even 
after modification, a separatrix that enters V H on one side can never leave 
it on the same side. And it can not leave VH on the other side, since there 
is a cycle in Vr separating the two boundary components for the modified 
equation. This proves the Density Theorem 8* .6.8. 0 

Chapter 8* Exercises 

Exercises 8*.1 Preliminaries of Structural Stability 

8*.1#1. 

(a) Find formulas for the inverse of the mappings hA and hB in Examples 
8*.1.3 and 8*.1.4. 

(b) Verify that hA does indeed map the curve of equation y = x 3 to the 
diagonal. Verify that hB does map a half-line () = ()o to a curve which 
spirals infinitely many times around the origin. 

8*.1#2. Write a formula for a homeomorphism J:R2 --> R2 which will 
map 

(a) every ring to a spiral of finite length. 

(b) every ring to a spiral of infinite length. 

(c) circles centered at the origin to squares. 
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8*.1#3. With reference to Definitions 8*.1.2, 5 and 6, 

(a) Show that differentiable conjugacy of vector fields implies topological 
conjugacy of the flows. 

(b) Show that topological conjugacy of flow implies topological equiva­
lence. 

8*.1#4. 

(a) Show that if h is a differentiable conjugacy between the vector fields 
f and g, with f(xo) = 0, then 

(i) g(h(Xo)) = 0, and 

(ii) the eigenvalues of the linearizations of fat Xo and of gat h(xo) 
coincide. Hint: Show that 

dxohdxof = dh(xo)gdxoh 

by differentiating equation (2) in Definition 8.1.6. 

(b) Show that if h is a homeomorphism conjugating the flows of the vector 
fields f and g, and if 'Y is a cycle for f of period T, then hC'Y) is a 
cycle for g of the same period T. 

Exercises 8*.2 Structural Stability of Sinks and 
Sources 

8*.2#1. 

(a) Find a homeomorphism ha : lit -+ lit that conjugates the flows of 
x' = -x and x' = -ax for a > O. That is, flow out the first equation 
to some point like x = 1, then flow back in by the second equation. 

(b) When is ha differentiable? When is h;;l differentiable? When are both 
differentiable? How do these results relate to Exercise 8*.1#4? 

8* .2#2. Find a homeomorphism h : lit -+ lit which conjugates the flows 
of x' = -x and x' = _x3 for a > O. Show that this function is even less 
differentiable than the ones found in Exercise 8*.2#1, in the sense that 
h(x)jx tends to infinity faster. 
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8*.2#3. 

(a) Find a homeomorphism hOI : I ~ JR, where I is an appropriate neigh­
borhood of the origin, which conjugates the flows of x' = -ax and 
x, = - sin x for a > O. You might try flowing out the first equation 
to x = 7r /3, then flowing back in by the second equation. If you do 
this, the formula you obtain will contain an arccos, and you have to 
be careful about which branch of the arccos you are using. 

(b) Draw graphs of hOI for 0: = 1/2,1,2. What is the largest interval I on 
which hOI is defined? What is the image of hOI? Why can hOI not be 
extended to a larger interval? 

(c) Are hOI and h;;l differentiable? How do these results relate to Exercise 
8*.1#4? 

If we set fQ(x) = -x and g(x) = - sin x (thought of as vector fields on 
the line), we might also try to find such a homeomorphism by computing 

lim <Pf",(-t,<Pg(t,x)). 
t-co 

(d) Say carefully what the difference is between this formula and the hint 
in part (a). 

(e) Show that the limit above exists only for one value of 0:. Compute it 
in that case, and relate your formula to the one found in a. 

8* .2#4. In this exercise, we will explore the difference between differen­
tiable conjugacy of vector fields and topological conjugacy of the flows. Let 
the reader be warned that this exercise is quite difficult, and that both the 
computations and the concepts involved are pretty deep. 

(a) Write explicitly the flows <Pr, <Pg, <Pk, of the differential equations 

and 

[: J' = [ ~~], [: J' = [ -2;: x3 ] , 

[:J' = [-2;:x2 ]. 

Note the difference that arises from the fact that undetermined coef­
ficients do not work for the last equation. 

(b) Show that the first two vector fields are differentiably conjugate, by 
computing 

h(x) = lim cpr( -t, cpg(x, t)). 
t-co 

Verify that h JR2 ~ JR2 is a differentiable homeomorphism with 
differentiable inverse, and provides a change of variables which turns 
the second equation into the first. 
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(c) Try to do the same for the first and the third equation, and show 
that the corresponding limit does not exist. Try to explain this as 
follows: the trajectories of the first equation are the curves y = Cx2 • 

What is the equation for the trajectories of the third equation? Can 
a differentiable homeomorphism with differentiable inverse map the 
first family of curves to the second? 

\ 

(d) Show that the flows of the first and third equation are none the less 
conjugate by a homeomorphism, by 

i. showing that each trajectory crosses the curve C of equation 
x4 + y2 in a single pointj 

ii. finding the time T(x) such that <l>r(T(x), x) E Cj 
iii. writing the formula for tPJ.(-T(x), <l>r(T(x), x)). 

iv. showing that this formula is a homeomorphism h : IR2 - lR.2. 

(e) How differentiable is h at the origin? 

Exercises 8*.3 Time to Pass by a Saddle 

8*.3#1. In the proof of Theorem 8*.3.2: 

8* .3#2. Let D be the unit disc, and f be the linear differential equation 

x' =ax 
y' =-by 

for a, b > O. Find the entering and leaving parts of the boundary, and 
compute the arrival, departure and transit time. 

8* .3#3. Repeat Exercise 8* .3#2 for the differential equation 

x' = ax 
y' = _by+x2 

for a, b > O. Find the entering and leaving parts of the boundary, and 
compute the arrival, departure and transit time. 

Exercises 8*.4 Structural Stability of Limit Cycles 

8*.4#1. Consider the system of differential equations 

I sin(x2 + y2) 
x =y+ 2 2 X 

X +y 
I sin(x2 + y2) 

Y = -x + x2 + y2 y 
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(a) Show that the positive x-axis is transverse to the flow, and compute 
the section mapping P{x). Hint: pass to polar coordinates. 

(b) What are the fixed points of P, and what are the derivatives of P at 
these fixed points? 

(c) Relate the results of (b) to the limit cycles of the differential equation. 

8* .4#2. Confirm the calculations for Example 8*.4.2, the radial equation 
and its solution. 

(a) First confirm the radial equation (12). Hint: to translate into polar 
coordinates, see equation (18) in Example 8.4.1. 

(b) Second, confirm the solution (13). Hint: use partial fractions. 

Exercises 8*.5 Poincare-Bendixson Rules Out 
Chaos in the Plane 

8*.5#1. There is another way of defining L..,(xp ): 

and similarly 

8* .5#2. Complete the proof of Lemma 8* .5.8. 

8*.5#3. For Example 8*.5.9, show that the white regions crossing the axis 
form a Cantor set. 

8*.5#4. For a labyrinth in 1R3 , make a can X out of lined paper, so that 
the lines are vertical on the sides and let 211'Ct be the angle between the 
lines on the top and the bottom. The space X is topologically a sphere, 
and there are trajectories on it gotten by following the lines. Which four 
of theoe '"jectorieo are exceptional? III 
Exercises 8*.6 Structural Stability in the Plane 

8* .6#1. The object of this exercise is to prove a strong form of the Weier­
strass approximation theorem, which is an important and rather difficult 
result. 
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Theorem (Strong Weierstrass). If f is a k-times continuously differ­
entiable function on ]Rn, then given any bound R > 0, the function f can 
be approximated on Ilxll ~ R by a polynomial, and further, the derivatives 
of this polynomial up to order k approximate the derivatives of f. 

(a) Show that given such a function f and R > 0, there exists a k-times 
continuously differentiable function /1 such that 

f ( ) - {f(X) if IIxil ~ R/2 
I x - ° if IIxil ;::: R. 

Try this first in dimension one, and then think of polar coordinates 
in dimension two. 

We will assume from here on that f = /1, so that f(x) = ° when 
IIxl;::: R. 

(b) Let f be a continuous function of one variable and p( x) a polynomial. 
Show that the function 

g(x) = i: p(x - y)f(y)dy 

is a polynomial. 

(c) Do the same if f is a function of x = (Xl, ... , xn) vanishing when 
IIxil ;::: R and p is a polynomial in (XI, •.. , xn). 

Thus the idea is to find polynomials p«x) such that 

ge(x) = i:··· i: p«x - y)f(y)dYI ... dYn 

satisfies Ige(x) - f(x) ~ € for any x with IIxil ~ R. One way to 
do this is to try to make a polynomial bump function, with graph 
something like a tower in the middle of a plain. With polynomials 
this is impossible, since polynomials always tend to 00 at 00; but if 
our tower is surrounded by a big enough plain, then the surrounding 
mountains will not influence g(x) when x ~ R. 

(d) Let p(x) = 1- X2. Show that for any € > 0, there exist N,p and C 
such that the function 

PN(X) = C(p(pX»N 

satisfies 

j2R 
pN(x)dx = 1, 

-2R 
IpN(x)1 < € when € < Ixl < 2R. 
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(e) Show the n-dimensional analog of (d) for the polynomial 

qN(Xlo' .. xn) = PN(Xt} ..... PN(Xn). 

(f) Show that 

is a polynomial which approximates I for IIxll :5 R. 

(g) Show that the derivatives of gN of order at most K approximate the 
derivatives of I for IIxll :5 R. by differentiating under the integral 
sign. 

8* .6#2. The object of this exercise is to outline a proof of the following 
theorem. 

Theorem. II I is a k times continuously differentiable function on an, then 
lor any R > 0 there exists a trigonometric polynomial which approximates 
I on 11/11 :5 R together with its first k derivatives. 

This should remind you of Dirichlet's theorem giving the convergence of 
Fourier series, and the proof is closely related. However, it is a bit fussy 
to go directly from Dirichlet's theorem to this result, and we will sketch 
a different method, very similar to the proof above. The first step (a), to 
replace I by a function which vanishes when IIxll > R, is identical. 

(b) Show that for any 0 < r < R and c > 0, there exists N and C such 
that the function 

satisfies 

r PN,p(x)dx1 ... dXn = 1, JBR 
where BR = {x E an I IIxll < R}, and PN,p(X) < c when r :5 IIxll < R. 
Can you compute C exactly when n = I? 

(c) Show that the function gN defined by 

gN(X) = r l(x)pN(Y - X)dXl ... dxn JRft 
converges to I as N - 00, together with its first k derivatives. 

(d) Show that gN(X) is a trigonometric polynomial. 
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Bifurcations 
Consider an autonomous differential equation in ]R2, with a parameter a: 

dx 
dt = !(x, y, a) 

dy 
dt = g(x, y, a), 

or, more generally, several parameters: 

dx 
dt = !(x, y, al, a2,·· .) 

dy 
dt = g(x,y,al,a2, .. . ). 

In general, the phase portrait changes gradually as the parameters vary. 
But there will usually be values of the parameter for which the phase 
portrait changes drastically, "revolutionary" values where the entire social 
order is changed in an instant. For instance, if a sink becomes a source, 
the solutions starting at initial values in the basin of the sink will have to 
change their minds and decide to do something else. These abrupt changes 
in the phase portrait due to a changing parameter are called bifurcations. 

Before going further, we must insist on the distinction between the dy­
namical variables x and y, and the pammeters al,a2, .... The number of 
dynamic variables is here restricted to two. It makes perfectly good sense 
to try to understand bifurcations for differential equations in any number 
of dimensions, and we have seen it in one dimension as in the hunting Ex­
ample 2.5.2 in Part I. However, we do not understand bifurcations in more 
than two dimensions: there is no classification of the bifurcations in even 
three dimensions, and no clear indication that there ever will be such a 
classification. The number of parameters is much less critical; essentially 
for reasons of convenience, we will consider only one- and two-parameter 
families, but similar techniques would go through (with greater effort) for 
families depending on more parameters. 

In order for a parameter value to be revolutionary, at least one of the 
following four exceptional behaviors must occur: 

(1) a zero has linearization with a zero eigenvalue; 

(2) a zero has linearization with a pair of purely imaginary eigenvalues; 

(3) there is a saddle connection; 
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(4) there is a cycle that is: not linearly attracting or repelling. 

In Chapter 8.8 we explained why, when none of these occur, flow of the 
vector field is stable, and we proved the results in Chapter 8*.{),. 

We will see that corresponding to each of the four events listed, there is 
a bifurcation that can occur "in general" in one-parameter families. They 
are, respectively, 

(1) saddle-node bifurcations: Section 9.1 

(2) Andronov-Hopf bifurcations: Section 9.2 

(3) saddle connection: Section 9.3 

( 4) semi-stable limit cycles: Section 9.4 

The first two local bifurcations were already mentioned as exceptions to 
Principle 8.1.6 and studied in Examples 8.1.7 and 8.1.8. Saddle connections 
and degenerate limit cycles are harder to study, because they are global bi­
furcations of the equation; they concern the global behavior of the equation, 
not just the behavior near a zero of the equation. 

Figures 9.0.1 and 9.0.2 illustrate how the presence of a saddle connection 
or a degenerate limit cycle can cause revolutionary change in the phase 
plane portrait of a differential equation. 

A stable separatrix 
spirals backward to 
a source, 

then saddle connects 
(solutions accumulate 
on the saddle connection), 

--+ varying parameter --+ 

then an unstable sepa­
ratrix accumulates on a 
newly created attracting 
limit cycle 

attracting 
limit 
cycle 

FIGURE 9.0.1. A saddle connection before, during, and after bifurcation. The 
"revolutionary" value of the parameter that creates the center picture separates 
different behaviors "before" and "after" the bifurcation. 
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Two limit cycles that collide and disappear. 

--+ varying parameter --+ 

FIGURE 9.0.2. Two limit cycles that collide and disappear, causing a degenerate 
limit cycle at the "revolutionary" value of the parameter, shown in the center 
picture. 

You will see that limit cycles often occur in bifurcations; therefore, wher­
ever you find a limit cycle is a good place to look for bifurcation behavior. 

BIFURCATION DIAGRAMS 

The main object of this chapter is not so much to study the individual 
bifurcations for their own sake but to understand families of differential 
equations that depend on pammeters. In practice, this means drawing the 
bifurcation diagmm for such a parametrized family of differential equations: 
finding the locus of "revolutionary values." 

We have already studied one bifurcation diagram: the one corresponding 
to linear differential equations 

which was analyzed in detail in Section 7.5. 
This really forms a four-parameter family (the parameters are a, b, c, and 

d), and even here, trying to imagine the locus in ]R4 where the determinant 
vanishes (i.e., given in ]R4 by the equation ad - be = 0) is quite a mind­
stretcher, so we will study a two-parameter family instead, which displays 
most of the features of the general case [since the behavior of the linear 
equation is almost always controlled by the trace (a) and the determinant 
(/3) of A, as you can recall from Section 7.5 and Figure 7.5.7, the bifurcation 
diagram for two-dimensional linear systems]. 
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Example 9.0.1. Consider the two-parameter family of differential equa-
tions 

(1) 

cooked up so that the trace is T and the determinant is o. Many different 
phase portraits occur for this family, depending on the value of the param­
eters T and OJ a few are shown in Figure 9.0.3. The picture in the (T, 0) 
parameter plane comes from Figure 7.5.7 and is shown in Figure 9.0.4. 

T = 1,8= 1 T = 1,8 = 0 T = 3, 8 = 1 

T =-1, 8 =-1 T = 0, 8 = 0 T = 0,8 = 1 

FIGURE 9.0.3. Different phase plane behaviors for x' = TX + by, y' = x, for 
different values of the parameters T and b. 

saddle-node 
bifurcation 

detA 

airj(· roe 
bifu on 

Sinks Sources 
F ·A·C 

trace A 

FIGURE 9.0.4. The bifurcation diagram for equation (1). The six labeled points 
give values of the parameters corresponding to the phase portraits in Figure 9.0.3 . 

• 
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For nonlinear systems, 

dx 
dt = !(x, y, 0:1> 0:2, ... ,O:n) 

dy 
dt = g(x, y, 0:1> 0:2,· .. ,O:n), 

the bifurcations will usually occur on hyperspaces in the n-dimensional 
parameter space (points if n = 1, curves if n = 2, surfaces if n = 3, etc.). 
Suppose n = 2; then we will be interested in finding, in the 0:10:2-parameter 
plane, the bifurcation curves along which the differential equation changes 
abruptly. These curves define regions in the parameter space in each of 
which all the corresponding differential equations have roughly the same 
behavior (shown earlier, for example, in Figure 8.8.1, where we discussed 
structural stability). That is: 

In each region defined by bifurcation curves in parameter space, the 
corresponding differential equations have the same numbers o! sinks, 
sources, saddles, limit cycles, and basins, related to each other in the 
same ways. 

OVERVIEW 

We will devote each of Sections 9.1-9.4 to one of the four bifurcations. 
Then we summarize and put them all together in Section 9.5, where we will 
study several equations depending on a single parameter, and show how and 
where the phase diagrams bifurcate. In Section 9.6, we will introduce two­
parameter families, which have more degenerate bifurcations, and construct 
global bifurcation diagrams for these situations. We close with a grand 
example in Section 9.7. 

Our goal with Chapter 9 is to show that for a general two-dimensional 
system of differential equations depending on parameters, there is in the 
parameter space a bifurcation drawing, somewhat similar to Figure 9.0.4, 
when there are two parameters. Finding this bifurcation diagram for a 
given family is tantamount to "understanding the family of differential 
equations." 

PREVIEW SUMMARY 

For easy reference we have created here a summary chart of the bifurcations 
that will be discussed in each of the next four sections. Do not expect to 
understand this summary all at once! But as you read each of the sections 
that are devoted to explaining one of the bifurcations, you will be able to 
use this chart to get some perspective and keep track of what is going on. 
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9.1 Saddle-Node Bifurcation 

The saddle-node bifurcation is the most important of all: it is the bifurca­
tion in which zeroes of vector fields are created and destroyed. 

Definition 9.1.1 (Saddle-node bifurcation). A saddle-node bifurcation 
is what occurs, in general, when a zero of a vector field has a linearization 
with zero determinant. 

A zero determinant implies that at least one of the eigenvalues is zero. 
Later in this section, the definition's phrase "in general" will be amplified 
by specific Nondegeneracy Conditions 9.1.6 and 9.1.7. Meanwhile, we shall 
explain the generic saddle-node, where we can assume one eigenvalue is 
zero and the other is not: 

Suppose a vector field depends on some parameter a, and (x( a), y( a)) is 
a zero of the vector field. Then there is a corresponding linearization with 
coefficient matrix A(a), which in turn defines a point 

(tr A(a), det A(a)) 

which moves along a curve in the (trace, determinant)-plane as a varies. 
You might think from the bifurcation diagram for linear differential equa­
tions in JR2 (as in Example 9.0.1) that if this curve hits the line det A = 0 
for some value ao of the parameter, the zero of the vector field just changes 
from being a saddle to being a node, but this is infinitely exceptional. Usu­
ally, the zero under consideration collides with some other zero of the vector 
field, and the two destroy each other like a particle and an antiparticle, dis­
appearing into thin air. 

More precisely, in the most usual case: 

(i) For a to one side of ao, there are two zeroes of the vector field; a 
node and a saddle both exist. 

(ii) At a = ao there is only one zero; the node and saddle coalesce. 

(iii) For a to the other side of ao, these zeroes of the vector field no longer 
exist; the node and saddle simply disappear. 

Example 9.1.2. Consider the differential equation 

dx 
dt 

=y 

~; =x2 -y+a, 

which undergoes bifurcation for ao = 0, as shown in Figure 9.1.1. 
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Before bifurcation: 
a = -0.266 < ao = o. 
Sink and saddle. 
(A spiral sink for this 
value of aj it would be 
a node sink for a closer 
to 0.) 

At bifurcation: 
a = ao = o. 
"Pony tail" drawing. 
(Sink saddle have 
coalescedj one positive 
eigenvalue, one zero eigen­
value.) 

After bifurcation: 
a = 0.266 > ao = o. 
Both zeroes of vector field 
have disappearedj no 
separatrices. 

FIGURE 9.1.1. Saddle-node bifurcation for x' = y, y' = x 2 - Y + a. 

You are asked in Exercise 9.1.#3 to check that the zeroes of the vector 
field are of the type described and to explore the "pony tail" behavior, 
which you may recall from Part I, Section 2.7. A 

Figure 9.1.2 reproduces the middle picture of Figure 9.1.1. for closer 
examination of the actual saddle-node: The original stable separatrix from 
the saddle remains as a stable separatrix of the saddle-node, tangent to 
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the eigendirection for the nonzero eigenvalue. But the original unstable 
separatrix from the saddle exists only on one side, and we call that the 
exceptional saddle node trajectory. On the other side is the so-called pony 
tail of undistinguished trajectories. 

Pony Toll 

FIGURE 9.1.2. Anatomy of a saddle-node. 

All solutions in the pony tail are tangent to the eigendirection with 
eigenvalue zero, as is the exceptional trajectory. 

In Figure 9.1.2, this tangency to the horizontal axis may be hard to see; 
Exercise 9.1.#3c asks you to blow up further the equations of the example. 
Look ahead to Figure 9.1.8 for the generic saddle-node picture; Figure 9.1.2 
shows how it can be twisted. 

In this case, there is no distinguished solution in the ponytail: 

No solution in the pony tail naturally continues the exceptional 
solution, 

in the sense that it is given by the same convergent power series. [For this 
example, this was proved in Chapter 2 (in Part I), as you can show in 
Exercise 9.1.#d]. Such behavior is usually but not always the case. For 
instance, Exercise 9.1#5 gives an example of a saddle-node in which one 
solution in the pony tail and the exceptional solution are given by a single 
formula. 

Note that there are two kinds of saddle-nodes. Figure 9.1.2 is an example 
where the unstable separatrix of the saddle (corresponding to a positive 
nonzero eigenvalue) becomes the exceptional trajectory. Reversing all the 
arrows will give the opposite type, where it is the stable separatrix of the 
saddle (corresponding to a negative nonzero eigenvalue) that becomes the 
exceptional trajectory. 
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FINDING SADDLE-NoDES 

It is quite easy to understand how two singularities can coalesce and disap­
pear if you consider the isoclines along which the vector field is horizontal 
and vertical. The zeroes of a vector field are the points where these isoclines 
intersect; possibilities are shown in Figure 9.1.3. If the isoclines for two dif­
ferent slopes (e.g., horizontal and vertical) are smooth curves depending 
on a parameter a, the number of intersections remains constant unless the 
parameter passes through a value ao where the curves are tangent. At 
such a point of tangency, in general, two intersection points coalesce and 
disappear, as in the last picture of Figure 9.1.1. 

FIGURE 9.1.3. Possible interactions of isoclines of horizontal and vertical slopes: 
intersection, tangency, nonintersection. 

In Figure 9.1.3 the phase plane for the left-hand possibility has five differ­
ent incline regions (see Section 6.1); then as you move through the middle 
possibility, which defines four regions, to the right-hand possibility, which 
defines only three regions, the phase plane pictures become simpler, until 
there is no singularity at all. 

Example 9.1.3. For the differential equation of Example 9.1.2, with values 
of a before, at, and after saddle-node bifurcation, the isoclines of horizontal 
and vertical slopes in the phase plane look like Figure 9.1.4. 

you can expect a saddle-node bifurcation any time the isoclines for 
horizontal and vertical slopes have an ordinary tangency. 

More elaborate tangencies, for instance tangencies where the curves cross, 
lead to different bifurcations, which do not, in general, appear in one­
parameter families. They will occur, however, if the equation has symme­
tries or satisfies other restrictions. See the subsection below on degenerate 
saddle nodes, and Section 9.6, with Exercises 9.1#8-10, 9.1#12, and 9.6#6. 
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Before bifurcation: 
01<010· 

275 

The isoclines intersect in two 
points, one sink and one saddle. 

At bifurcation: 
01=010. 

The isoclines are tangent; 
"pony tail" drawing. 

After bifurcation: 
a> 010. 

The isoclines no longer inter­
sect; no zeroes of vector field. 

FIGURE 9.1.4. How saddle-node bifurcation occurs for x' = y, y' = x 2 - Y + a. 

SADDLE-NoDES IN ONE DIMENSION 

Saddle-nodes are not restricted to dimension two; they occur in all dimen­
sions, and the simplest is dimension one. We have not emphasized sinks 
and sources in dimension one, largely because they are so simple; they are 
covered as a special case in Section 8.3. A zero of x' = f(x) is, of course, 
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a value Xo of x such that f(xo) = 0; it will be a sink if f'(xo) < ° and a 
source if f'(XO) > 0. In the tx-plane, for any c > 0, the lines x = Xo + c 
and x = Xo - c will then delimit a funnel (in the case of a sink) or an 
antifunnel (in the case of a source), as shown in Figure 9.1.5. Furthermore, 
the antifunnel will have the uniqueness property of Theorem 1.4.5. 

solutions phase line solutions phase line 

:":~~ 'l -~~ " I ) 

-~~ 

sink source 

FIGURE 9.1.5. One-dimensional sinks and sources, with phase lines (on the right 
in each case). 

To a one-dimensional autonomous equation x' = f(x) there corresponds 
a (pretty dull) drawing in the phase line, with sinks and sources appearing 
as in the vertical lines at the right of each solutions drawing in Figure 9.1.5. 
(In dimension one, there is no phase plane, just a phase line, parametrized 
by the dependent variable x.) 

In one dimension, it would be more reasonable to talk of sink-source bi­
furcation, instead of a saddle-node: In one dimension, there are no saddles, 
and the bifurcation occurs when a sink and a source collide and annihilate 
each other. 

Example 9.1.4. The simplest family of equations for which saddle-node 
bifurcation occurs is 

x' = Q - x2 • 

Clearly, this equation has no equilibria if Q < 0, and two if Q > 0, at 
±y'{i; +y'{i is a sink and -y'{i is a source. Computer drawings in the tx­
plane for Q = -0.5,0,0.5 look like Figure 9.1.6, with phase lines shown to 
the right of each solutions picture. 

It is clear from these pictures, and not much harder to verify by explicitly 
calculating solutions, that when Q decreases to 0, the source and the sink 
coalesce, forming an equilibrium at x = ° which is semi-stable, in the sense 
that solutions that start at a positive initial value are attracted to it and 
those that start at a negative initial value are repelled. 
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solutions drawing phase line 

-7 

Before bifurcation: 
a = -0.5. 

At bifurcation: 
a=O. 

After bifurcation: 
a = +0.5 

FIGURE 9.1.6. Sink-source bifurcation, for x' = a - x 2 . • 

277 
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GENERIC VERSUS DEGENERATE SADDLE-NoDES 

In this section, we will discuss what "in general" means. We will not give a 
precise definition of the term, but it should be fairly easy to get an intuitive 
grasp of the notion, and the discussion below should help. 

Genericity is easiest in one dimension. If we have a differential equation 

X' = la(x) 

depending on the parameter a, then the equilibria or zeroes for any value 
of a are the solutions of la(x) = O. 

It should be clear to the reader that, in general, these zeroes will be 
nondegenerate; i.e., when la(xo) = 0, then I~(xo) =1= o. But sometimes, as 
a varies, the graph of la will become tangent to the x-axis and I~(xo) = 0; 
this is unavoidable in one-parameter families, where a graph cannot deform 
or move from a position where it intersects the x-axis to a position where 
it does not without going through a position where they are tangent, as 
shown in Figure 9.1.7. 

FIGURE 9.1.7. As fa(x) moves from crossing the x-axis twice to not crossing it 
at all, it must go through a position where it is tangent to the x-axis. 

However, when la(xo) = I~(xo) = 0 occurs at Xo for some parameter 
value ao, we would expect 1::0 (xo) =1= 0 in general. When this is the case, 
the differential equation x' = la(x) undergoes a saddle-node bifurcation, 
exactly as in Example 9.1.4. 

Of course, in an exceptional family, at some zero the second derivative 
might vanish when the first derivative vanishes; for instance, la(x) = x3 -

ax has, when a = 0, 10(0) = I~(O) = 1{f(0) = O. The geometric significance 
is that three zeroes for a > 0 coalesce at 0 when a = 0, leaving just one 
root for a < o. Thus, the differential equation 

x' = x3 - ax 
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has a more complicated bifurcation than a saddle-node: three zeroes coa­
lesce rather than two. This is a degenerate bifurcation (in fact, a pitchfork 
bifurcation, such as will be shown in Exercises 9.1#8-10). But such degen­
erate or unusual behavior will not happen in a generic family depending 
on one parameter. 

In two dimensions, genericity is a bit more complicated. It is possible to 
define degeneracy in terms of appropriate first and second derivatives, but 
this will be easier if we first put the equation into a standard form. We 
may assume, by a translation and linear change of variables, that 

• the equilibrium point is at 0; 

• the x-axis is the eigendirection for the eigenvalue 0; 

• the y-axis is the eigendirection for the eigenvalue ,x. 

Then the system of differential equations can be written 

x' = 0 + P(x,y) 
(2) 

y' = >..y + Q(x, y), 

where P(x, y) and Q(x, y) both start with at least quadratic terms. In 
particular , 

P(x, y) = P2,OX2 + PI,IXY + PO,2y2 + (higher order terms). 

Generic will mean that two numbers, >.. and P2,O, do not vanish. 

9.1.5 First Nondegeneracy Condition: The value 0 is a simple eigen­
value of the linearization, the other eigenvalue>.. is nonzero. 

9.1.6 Second Nondegeneracy Condition: The coefficient P2,O of x 2 in 
the Taylor expansion of x' is nonzero. 

There are two basic configurations for a saddle-node bifurcation, depend­
ing on the sign of ,x, as you can show in Exercise 9.1#6. Reflection about 
the y-axis (i.e., changing to the variables Xl = -x, YI = y) will change the 
sign of P2,o, and reversing the direction of time changes the sign of >... For 
convenience, we shall assume >.. < 0 and P2,O > 0, as pictured in Figure 
9.1.8. System (2) is based on this configuration, but you can adapt to one 
of the others by reversing t or reversing x. 

Removing the nondegeneracy conditions opens a Pandora's box of pos­
sibilities. Practically anything might happen, but some behaviors are more 
common than others; these are discussed in Section 9.6 on two-parameter 
families. Here we will just give a brief comment about each. 
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><L_ .;:: 
a; 

I exee tional 
trajectory 

FIGURE 9.1.8. Generic saddle-node for .A < 0, P2,O > O. 

If the First Nondegeneracy Condition 9.1.5 fails, both eigenvalues are 
zero. The linearization is then usually not diagonalizable, so the form (2) 
is not a reasonable normal form. The example 

X' = y 

y' = X2 +xy 

is quite typical, and the corresponding phase plane is represented in the 
first drawing in Figure 9.1.9. 

first nondegeneracy 
condition fails 

.. 
second nondegeneracy 

condition fails 

FIGURE 9.1.9. Degenerate saddle-nodes: some examples. 

If the Second Nondegeneracy Condition 9.1.6 fails, then the locus where 
the vector field is vertical will have equation 

2 - 0 Pl,lXY + PO,2Y + ... - , 

which will, when Pl,l # 0, consist of two curves Cr and cy, through 
the origin, with Cr having slope 0 at the origin and the other not. The 
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locus where the vector field is horizontal is a smooth curve C H through 
the origin when>. i= 0, usually having an ordinary tangency with Cr. See 
Figure 9.1.10 and Exercise 9.1#7. 

FIGURE 9.1.10. Isocline of horizontal slope C R intersecting isoclines of vertical 
slope Cr nd Cr. 

Then it is clear that a small perturbation of the vector field, for instance 
adding a small constant to y', will create three zeroes, so that this cannot be 
a standard saddle-node. The second and third drawings of Figure 9.1.9 give 
typical pictures: they look like a node sink or a saddle, with greatly flattened 
tangencies. Exercise 9.1.#12 shows that which picture to expect depends 
on the sign of q2,OPl,1 + P3,O' Warning: Exercise 9.1#12 is designed to check 
your understanding of the serious explanation of saddle node behavior that 
follows, going through similar computations in a more difficult setting. 
Exercise 9.6#6 gives a different proof of the same result. 

SERIOUS EXPLANATION OF SADDLE-NoDE BEHAVIOR 

Theorem 9.1.7. Under the two nondegeneracy assumptions 9.1.5 and 
9.1.6, with>' < ° and P2,O > 0, there exist unique trajectories which tend to ° tangentially to the y-axis from both sides. 

(i) These trajectories, together with the origin, form a smooth curve 
called the separatrix of the saddle node. 

(ii) All trajectories to the left of this separatrix tend to ° tangentially to 
the x-axis, forming the pony tail. 

(iii) There is a unique exceptional trajectory to the right which emanates 
from the origin, also tangential to the x-axis. 

In other words, Theorem 9.1. 7 gives the generic saddle-node of Figure 
9.1.8. 

Proof. The proof of Theorem 9.1. 7 is essentially a replay of that for Theo­
rem 8.3.2 about saddles; we repeatedly use funnels and antifunnels. Rather 
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than prove everything, we will sketch the main points; the details are left 
as exercises, corresponding to the similar proof of Theorem 8.3.2. 

First, we turn the system of equations (2) into two first order equations, 
the first for y as a function of x, and the second for x as a function of y. 

dy .>..y + Q(x, y) 
dx P(x,y) 

(3) 

dx P(x,y) 
dy .>..y + Q(x, y)' 

(4) 

Of course, we need to see where these equations are defined, since the 
denominators can vanish. For any 'T/, 13 > 0, let S be the square lxi, Iyl :::; 'T/, 
and let the curves y = ±J3x2 subdivide S into regions U1 , U2, U3 , and U4 

as indicated in Figure 9.1.11. 

FIGURE 9.1.11. Regions defined by y = ±(3x2 • 

We proceed to prove the theorem in stages, with three lemmas. Lemma 
9.1.8 tells where everything is defined. 

Lemma 9.1.8. There exists f30 > 0 such that if 13 > 130, then there exists 
'T/o (13) such that if'T/ < 'T/o (f3), then 

(i) the function P(x, y) does not vanish in U1 or in U2 except at the 
origin; 

(ii) the function .>..y + Q(x, y) does not vanish in U3 or U4 except at the 
origin. 

Proof of Lemma. By Taylor's Theorem we can write 

P(x, y) = P2,OX2 + Pl,lXY + PO,2y2 + h(x, y), 

where h(x, y) satisfies the following property: 
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For all c > 0, there exists 'T}1 > 0 such that if lxi, Iyl < 'T}1, then 

For any c and 13, you can choose 'T}1 (c, 13) such that for the corresponding 
U1 and U2, we have Ih(x, y)1 :::: c(1 + f3)x2 on U1 U U2. Clearly, there exists 
'T}2(c,f3) such that Ip1,lxy + po,2y21 :::: eX2 in U1 U U2. Thus, 

P(x, y) = P2,OX2 + P1,lXY + PO,2y2 + h(x, y) 2': (P2,0 - e(2 + f3))x2 2': 0, (5) 

which equals zero only when x = o. 
Similarly, in U3 and U4 we have that Ixl :::: Vly/f3l. Write 

Q(x, y) = q2,Ox2 + q1,lXY + qO,2y2 + higher order terms. 

The term Q2,Ox2 contributes to the sum something of order at most y, 
and this term together with the term >..y comprises the dominant terms of 
>..y + Q(x, y). So we have 

I>"y + Q2,ox21 2': (I>"yl - IQ~~YI. 

Choose 130 sufficiently large that (1)''1 - IQ2,01/f33) > 0; for any 13 > 130, 
there exists e(f3) > 0 such that 

P2,0 - e(f3)(2 + 13) > 0 and 1>"1 - IQ2,0! 131 - e(f3) > O. 

By Taylor's Theorem, there exists 'T}3(f3) such that for the corresponding 
U3 and U4 , 

I>"y + Q(x, y)1 2': (1)''1-IQ2,0/f3l- c(f3))IYI· (6) 

Finally, set 'T}o (13) to be the smaller of 'T}1 (e, 13), 'T}2 (e, 13), and 'T}3 (13). Thus, 
inequality (5) proves part (i); inequality (6) proves part (ii). 0 

Thus, Lemma 9.1.8 has shown that equation (3) is well defined in U1 and 
U2 , and equation (4) is well defined in U3 and U4 . 

Next we need to show, by Lemma 9.1.9, that each of these regions is an 
appropriate funnel or antifunnel, forward or backward, as shown in Figure 
9.1.12. 

Lemma 9.1.9. For 13 > 0 sufficiently large and 'T} < 'T}o(f3) sufficiently 
small, we have 

(i) the region U1 is a funnel for (3), and all trajectories entering U1 
approach 0 tangentially; 
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(ii) the region U2 is a backward anti funnel for (3) satisfying the (first) 
uniqueness condition of Theorem 4.7.4. Hence, there is exactly one 
tmjectory leaving the origin in U2, and it leaves tangent to the x-axis 
at the origin; 

(iii) the regions U3 and U4 are an antifunnel and a backward anti funnel, 
respectively, satisfying the (secontl) uniqueness property of Theorem 
4.7.5. 

FIGURE 9.1.12. Funnels and antifunnels for saddle-node bifurcation. 

Proof of Lemma. Parts (i) and (ii) are relatively easy (Exercise 9.1#11), 
but the uniqueness claim in (iii) requires a bit of work. The cases of U3 and 
U4 are similar; we will deal with U3. A careful look at Theorem 4.7.5 will 
show that we need to find a function W(y) defined for -T] < y < 0, such 
that 

8 ( P(x, y) ) W() 
8x )..y+Q(x,y) > y 

[0" W(y)dy > -00. 

The partial derivative yields 

~ ( P(x,y) ) = ()..y+Q(x,y))8P/8x-P8Q/8x 
8x )..y + Q(x, y) ()..y + Q(x, y))2 . 

In U3, the denominator is bounded below by C1y2 for some C1 > 0, as 
shown in inequality (6), and the leading terms of the numerator are of order 
lyI3/2, satisfying an inequality 
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for some C2 > 0, since Ixl :::; (y / (3) 1/2. Thus, the partial derivative is 
bounded below by -C2 /(C1 v'!YT), and this function has a finite integral 
over (-1/,0). D 

Remark. We could not use the first uniqueness theorem for antifunnels, 
since the leading terms above do not have signs that we can control. 

Lemma 9.1.9 proves all the uniqueness required by the theorem; that is, 
everything except that the solutions leading to the origin in U3 and U4 do 
so tangentially to the y-axis. To see this, in Lemma 9.1.10 we essentially 
turn Figure 9.1.12 by 90° and consider the regions V3 and V4 , defined by 
Ixl :::; "Iy2 with lxi, Iyl :::; 1/, as shown in Figure 9.1.13. 

FIGURE 9.1.13. More funnels and antifunnels for saddle-node bifurcation. 

Lemma 9.1.10. For "I sufficiently larye, regions V3 and V4 are a narrowing 
anti funnel and a narrowing backward anti funnel, respectively, for equation 
(4). 

Proof of Lemma. This is again a little delicate. The leading term of 

is (PO,2 / >.)y (or higher degree terms in y if PO,2 = 0), and we know nothing 
about its sign. But it does not matter: the slope of the bounding curve is 
±2"1Y, and if we choose "I so that 2"1 > IPo,2/>'I , the required inequalities 
will be satisfied for 1/ sufficiently small. 

Thus, the unique solution in U3 and U4 must in fact be in V3 and V4 , 

respectively. This forces them to be tangent to the y-axis. D 
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Proof of Theorem 9.1.7, continued. The proof is completed by Lemmas 
9.1.8, 9.1.9, and 9.1.10, giving where things are defined, where there is 
uniqueness, and where there are tangencies, respectively. 0 

See Exercises 9.1.#12 and 9.6#6 to work through what happens to this 
proof when degeneracies occur. 

HOMOCLINIC SADDLE-NoDES 

When Nondegeneracy Conditions 9.1.5 and 9.1.6 are satisfied, saddle-nodes 
will have, in the eigendirection of eigenvalue zero, a pony tail of solutions 
tending to the singularity on one side and a single trajectory leaving on the 
other side. Something peculiar happens when that exceptional trajectory 
leads back into the pony tail: for nearby values of the parameter for which 
there are no zeroes of the vector field, there will be limit cycles. 

Example 9.1.11. Consider the system of differential equations 

x'=a+x2 _ y3 

y' = _y+x3 • 

For a 
9.1.14. 

0, a computer drawing of the phase plane looks like Figure 

2.5 

FIGURE 9.1.14. Homoclinic saddle node. 

The origin is a saddle-node, satisfying both nondegeneracy hypotheses, 
and the drawing shows that the trajectory leaving the saddle-node goes 
back into the pony tail. 
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If (xo, Yo) is a zero of the vector field, then Xo is a solution of the equation 

a+x~ -xg = 0, 

for which there are three solutions when a is small and negative, and only 
one when a is positive, as shown in Figure 9.1.15. 

FIGURE 9.1.15. The three possibilities for the roots of 0: + x~ - xg = o. 

So the zero of the vector field has bifurcated out of existence for a > 0, in 
particular when a = 0.2, and the phase plane now looks like Figure 9.1.16. 
A limit cycle has appeared. 

·1.5 a=O.2 
""--=-~ ..... --_. 

FIGURE 9.1.16. Limit cycle created by homoclinic saddle-node bifurcation. Note 
the source in the center of both phase portraits. • 



288 9. Bifurcations 

It is quite easy to see why the limit cycle of Example 9.1.11 must be 
there, as will be shown with Figure 9.1.17. Choose coordinates near the 
saddle-node so that the differential equation is written in "generic form" 
as system (2). 

Take a small rectangle around the saddle-node, so that the vector field 
points into it on all sides except the right side, and the exceptional trajec­
tory enters it on the left. 

If the points A and B are chosen along the top and bottom of the rect­
angle, sufficiently close to the trajectory approaching the origin tangent to 
the eigenvector with eigenvalue). < 0, then the trajectories starting at A 
and B will also reenter the rectangle on the left, as shown. 

If we now perturb the equation slightly to make the saddle-node zero 
of the vector field disappear, the shaded region, bounded by the rectangle 
and the new solutions through A and B, satisfies the conditions of the 
Poincare-Bendixson Theorem 8.5.1; thus, a limit cycle within that shaded 
region is guaranteed. 

FIGURE 9.1.17. Poincare-Bendixson region just "after" saddle-node bifurcation, 
when saddle and node singularities have disappeared. 

In conclusion of our discussion of saddle-node behavior, we add yet an­
other possibility of degenerate behavior. Under symmetry, saddle nodes 
may also exhibit degeneracies. An example is the pitchfork bifurcation, 
which is explored in Exercises 9.1#8-10. 

9.2 Andronov-Hopf Bifurcations 

The Hopf bifurcation is a bit more exotic than the saddle-node bifurcation: 
it is really a phenomenon that requires at least two dimensions and has no 
analog in dimension one. Its discovery and analysis are usually attributed 
in the West to Eberhardt Hopf, a Dutch mathematician. We will follow the 
customary terminology, although apparently A.A. Andronov, a Russian 
mathematician, has a better claim to its discovery in the 1930s, when Hopf 
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and Andronov were both active. In any case, Poincare apparently knew all 
about it 40 years earlier. 

Definition 9.2.1. (Andronov-Hopf bifurcation) An Andronov-Hopf 
bifurcation occurs in general when a zero of a vector field has a linearization 
with zero trace and positive determinant. 

Thus, Hopf bifurcation occurs in general if an equilibrium is a "center." 
Of course, a linear center is surrounded by periodic solutions. In Section 
8.7, we saw that if a vector field is area-preserving, the zeroes will often be 
surrounded by periodic solutions, but this is not what happens in general. 
In general, a zero of a vector field whose linearization is a center will be 
a "weak" source or sink, in the sense that the nonlinear center attracts 
or repels nearby points, but at a slower rate than the exponential rate 
associated with linear sinks and sources. 

Associated with Hopf bifurcations are limit cycles. It is easy to see why. 
Suppose that a nonlinear center is a weak sink: nearby solutions are at­
tracted to it; the solutions with the same initial condition will still come 
back inside itself after a sufficiently small perturbation. If this perturbation 
makes the center a source, then such a solution is trapped: it must head 
toward the zero of the vector field, but it cannot get there. This is just the 
kind of situation to which the Poincare-Bendixson Theorem 8.5.1 applies, 
and implies the existence of a limit cycle, as shown in Figure 9.2.1. 

before perturbation after perturbation 

FIGURE 9.2.1. Existence of the limit cycle created by Hopf bifurcation, as indi­
cated by the Poincare-Bendixson Theorem. 

The typical scenario is that as a parameter a approaches a bifurcation 
value ao, a sink (or source) becomes a weak sink (or source) and then, after 
bifurcation, changes to a source (or sink). At the same time, a limit cycle 
grows out of the equilibrium point, as the following example shows. 

Example 9.2.2. Consider the differential equation 

x'=y 

y' = (a - x 2 )y - x. 
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·2 

i.2 

Before bifurcation: 
n = -0.5 < no = O. 

9. Bifurcations 

The origin is a linear sink to 
which everything is attracted. 
(Several trajectories.) 

At bifurcation: 
n=no = O. 
The linearization at the origin 
is a center, but the origin is a 
weak sink, very slowly attract­
ing all solutions. 
[All this is one trajectory, still 
heading toward (0,0).) 

After bifurcation: 
n = 0.5 > no = O. 
The origin is now a source. 
However, the small modification 
of the equation has not much 
modified its behavior far from 
the origin. Solutions from afar 
still head inward and are at­
tracted to a limit cycle. 
(Two trajectories shown-Qne 
inside, one outside limit cycle.) 

FIGURE 9.2.2. Hopf bifurcation for Example 9.2.2. 

For n = -1, this is the Van der Pol equation studied in Example 8.5.2. 
There is clearly a unique zero of the vector field, at (0,0), where the lin­
earization has coefficient matrix 

A=[O 1]. 
-1 a 

Since det A = 1 and tr A = a, the equation has a Hopf bifurcation at a = o. 
The computer gives for a = -0.5, 0, 0.5 the phase plane pictures shown 

in Figure 9.2.2. 
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The following computation shows that for a = 0, the zero is a wel\k sink: 
If (x(t),y(t)) is a solution, then 

d 
dt (X(t)2 + y(t)2) = 2xx' + 2yy' = _2x2y2 ~ O. 

Thus, X(t)2 +y(t)2 is a decreasing positive function of t, which must have a 
limit as t -t 00. Theorem 9.2.3 will give a way to improve on this function 
by adding cubic and fourth degree terms to avoid unpleasant places where 
this derivative vanishes. 

Thus, all solutions are attracted to 0 for a ~ O. & 

SERIOUS EXPLANATION OF HOPF BIFURCATION BEHAVIOR 

Justifying our description of the Hopf bifurcation is really quite compli­
cated. The main task is to show that when the linearization of a vector 
field at a zero is a center, then the zero in question is usually a weak source 
or a weak sink. As we saw in Example 8.7.1, an equilibrium point where 
the linearization is a center may be far more complicated than that; for 
instance it may have infinitely many limit cycles in every neighborhood 
of the equilibrium. But we shall see that this is exceptional rather than 
ordinary. 

Suppose x' = fa(x) is a one-parameter family of differential equations in 
the plane, that Xo is a zero of fa, and that the linearization of x' = faD (X) 
at Xo is a center. By a translation, we may assume that Xo = (0,0), and 
by a linear change of variables we may assume that the linearization has 
coefficient matrix 

A = [~1 ~]. 
In Exercise 9.2.#6, you will see how to make a linear change of variables 
in x and y, and also in t, to bring the equation to this form; Exercise 
9.2.#7 works out an example (which is a harder computation than one 
might expect). Thus, we assume that at a = ao our differential equation 
can be written as a perturbation of the equation that gives centers, 

x' = F(x, y) = y + F2(x, y) + F3 (x, y) + ... 
y' = G(x, y) = -x + G2(x, y) + G3 (x, y) +"', (7) 

where F2, F3 , G2, and G3 are the second and third degree terms of F and 
G, and so on. In Theorem 9.2.3, we will use the coefficients of the Fi and 
G i and will write 

i 

Fi(x,y) = LP.j,(i_j)x1yi- j 
j=O 

i 

Gi(x, y) = L Vj,(i_j)xjyi- j . 
j=O 
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Theorem 9.2.3. (Liapunov test for weak sink or source in Hopf bi­
furcation) Ifx' = flAx) is a one-parameter family of differential equations 
in the plane such that for Q = Qo the equation can be written 

, 2 2 3 2 2 
X = Y + /-L2,OX + /-Ll,lXY + /-LO,2Y + /-La,ox + /-L2,lX Y + /-Ll,2 XY 

+/-Lo,aya + ... , 
, 2 2 a 2 2 

Y = -x + V2,OX + Vl,lXY + VO,2Y + V3,OX + V2,lX y + Vl,2 X Y 

+vo,aya + ... , 

as described directly above, then define the Liapunov coefficient 

L == 3/-L3,O + /-Ll,2 + V2,1 + 3vo,a - /-L2,O/-Ll,1 + Vl,lVO,2 
-2/-LO,2VO,2 - /-LO,2/-Ll,1 + 2/-L2,OV2,O + Vl,lV2,O' 

(8) 

(i) If L is positive, the origin is a weak source for Q = Qo, and if L is 
negative, then the origin is a weak sink; if L is zero, you cannot tell. 

(ii) If L > 0, the differential equation will have an unstable limit cycle 
for all values of Q near Qo for which the zero is a sink, and if L < 0, 
it will have a stable limit cycle for all values of Q near Qo for which 
the zero is a source. 

Note: Formula (8) for L is pretty awful, but it may help to think of it 
as (a weighted average of coefficients of cubic terms) minus (a weighted 
average of coefficients of quadratic terms). 

It is important to realize that when a real system undergoes a Hopf 
bifurcation, then weak sinks or weak sources correspond to very different 
behaviors. Suppose a "real" system has a "control" parameter a (a knob), 
and for some value ao undergoes a Hopf bifurcation; we will imagine that 
there is a sink for a < ao, and that the parameter is increased. Then if there 
is a weak sink for a = ao, there will be a small limit cycle for a slightly 
larger than ao, and the system simply changes from rest at the sink to 
small oscillations. 

But if there is a weak source for a = ao, the behavior is quite different: 
There will be nothing near the source to "catch" the system, which will 
presumably crash or blow up as soon as a hits ao. 

In the literature, Hopf bifurcations are often called by the ghastly names 
"subcritical" in the case of a weak source and "supercritical" in the case 
of a weak sink: we will not use this exceptionally obscure and unsuggestive 
terminology. 

Example 9.2.4. In Example 9.2.2, at Q = 0, all the /-Li,j and Vi,j are ° 
except V2,1 = -1; hence, the Liapunov coefficient L = -1 and the zero at 
(0,0) is a weak sink, as it should be. & 
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Proof of Theorem 9.2.3. (i) Since we are perturbing a center, we will 
seek a Liapunov function (Definition 8.2.6) of a form to give a perturbation 
of circles, 

(9) 

with h and 14 homogeneous of degrees three and four, respectively; i.e., 
we will try to choose a function that is strictly increasing or decreasing 
along trajectories near (0,0). Note that we have chosen these quadratic 
terms because the linear terms of the differential equation were selected to 
make the solutions turn on round circles. Since any such function 1 has an 
isolated minimum at (0,0), if it is decreasing along trajectories, this will 
imply that the origin will be a sink, as indicated in Figure 9.2.3. 

FIGURE 9.2.3. The surface is the graph of !(x, y) in JR3; the curve on the surface 
is the unique projection from the plane up onto the surface, where each point on 
the curve has the form (x(t), y(t), f(x(t), y(t))). This figure illustrates a weak 
sink; if the singularity were a weak source, the arrows would be reversed. 

Incidentally, there is no good a priori reason to limit oneself to homoge­
neous polynomials of degree four; it just seems to be what works, and the 
proof naturally leads to consideration of such a function. 

By the chain rule, if (x(t), y(t)) is a solution of the differential equation, 
we see that along this path, on the surface I(x, y) described by equation 
(9), 
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! (J(x(t), yet))) = (~~) F + (~) G 

= (x+ a;: + ':::) (y+F2(x,y)+F3(x,y» 

+ (y+: + a::) (-x+G2(X,y)+G3 (x,y» 

+ higher order terms 

= [xy - xy] (2nd order terms) 

+ [XF2 + yG2 + y a;: -x:] (3rd order terms) 

+ [XF3 + yG3 + F2 a h + G2 a h + y o!4 _ x a f4] 
ox 8y ox 8y 

(4th order terms) 

+ higher order terms. (10) 

In (10), the terms of degree two cancel; this was the point of the original 
changes of variables (7). If we want df /dt to be of constant sign, we must 
make the terms of degree three disappear; we will show that h can be 
chosen uniquely so that the terms of degree three vanish. However, f4 
cannot be chosen so as to make the terms of degree four vanish in general. 

This is really a problem in linear algebra: solving linear equations. Let 
Pk be the space of homogenous polynomials of degree k in two variables; 
it is a vector space of dimension k + 1 and can be identified with ]Rk+l by 
identifying 

[Z [ to "ox' + a,x'-'y + ... + au/'· 

Now consider the linear transformation Tk: Pk - Pk given by 

Op Op 
Tk(P) = y ox - x oy' 

where the polynomials Tk(P), Op/ox, and op/oy are all evaluated at (x, y). 

Lemma 9.2.5. If k is odd, Tk is an isomorphism. If k is even, Tk has kernel 
of dimension one, with basis (x2 + y2)k/2, and its image has dimension k. 

Proof of Lemma. It is quite possible to give a conceptual proof of this 
lemma; such a proof is sketched in Exercise 9.2.#8. We will only need the 
result for k = 3 and 4, and it is easier to simply write down the matrix of 
T3 and T4 and check. 
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With the identification of Pk with lRk+l given above, the matrices are 
the following: 

[

0 -1 

T3 has matrix ~ ~ 
o 0 

o 0 1 -2 0 
o -3 ' 
1 0 

[

0 -1 0 0 0 ] 
4 0 -2 0 0 

T4 has matrix 0 3 0 -3 0 . 
o 0 2 0 -4 
o 0 0 1 0 

The first is invertible: it has nonzero determinant. The second is not invert­
ible: it has determinant zero. But it has rank 4, since the 4 x 4 submatrix 
in the upper right corner has determinant =1= 0, and the vector 

corresponding to the polynomial (x2 + y2)2, is in the kernel. 

Remark. The function 3ao + a2 + 3a4 vanishes on each column vector, 
hence on the image. D 

Proof of Theorem 9.2.3, continued. Using Lemma 9.2.5, we see that 
we can choose 13 uniquely so as to make the cubic term of equation (10) 
vanish. Further, we can choose 14 so that if we write 

G D ah G ah 4 3 2 2 3 4 
xF3 + Y 3 + £2 ax + 2 ay = aox + alx Y + a2x Y + a3 xy + a4Y 

and set L = 3ao + a2 + 3a4, then 

ah ah al4 al4 L 2 2 2 XF3 +yG3 +F2- +G2- +y- -x- = -(x +y) , 
ax ay ax ay 8 

since 
ah ah L 2 22 

xF3 + yG3 + F2 ax + G2 ay - 8(X + y ) 

is in the image of T4 • 

Clearly, with this choice of function I, the quantity 

dd (f(x(t), y(t))) = !:(X(t)2 + y(t)2)2 + higher order terms 
t 8 
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has the same sign as L for (x(t), y(t)) sufficiently small. This proves the 
first part of the theorem. 

(ii) This second part is almost an immediate consequence of the Poin­
care-Bendixson Theorem 8.5.1. Suppose the linearization of x' = f",o(x) at 
Xo is a center; we will give the proof when the number L above is negative. 
A similar argument takes care of the case when L is positive. Construct 
the function f(x, y) as in part (a) and choose a level curve of f sufficiently 
close to the origin so that the vector field points strictly inside it. 

The vector field will still point in along that curve for nearby values 
of a: a small perturbation cannot change the direction in which a 
vector field crosses a curve if it cuts the curve tmnsversely. 

Now consider a value 0.1 very close to 0.0 for which Xo is a source. There 
is then a much smaller curve around Xo such that the vector field f "'1 points 
out along that curve, as a result of Theorem 8.2.2. The two curves above 
bound an annular region to which the Poincare-Bendixson Theorem 8.5.1 
can be applied and that will contain a limit cycle. This completes the proof 
for the second part of the theorem. 0 

Theorem 9.2.3 has shown that if a vector field undergoes a Hopf bifur­
cation that is a weak sink, then the differential equation will have a limit 
cycle for nearby values of the parameter for which the zero of the vector 
field has become a source. If it is a weak source, then the limit cycles will 
exist for parameter values for which the zero is a sink. 

The following examples demonstrate some of the possibilities for nonlin­
ear systems where linearization at a zero produces a center. 

Example 9.2.6. Consider the differential equation 

x'=y+x2 

y'=-x. 

Then the Liapunov number L of Theorem 9.2.4 is zero. The origin is a zero 
at which the linearization is a center. In fact, the computer quite likely will 
tell you that the origin is also a center for the nonlinear system; i.e., that 
all solutions close to the origin are periodic. Exercise 9.2#5 asks you to 
prove this. 
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FIGURE 9.2.4. Phase plane for Example 9.2.6. A 

Example 9.2.7. Consider the family of differential equations 

x' = y + ax + x2 + x3 

y' = -x. 

297 

For a = 0, the origin is a zero at which the linearization is a center. The 
number L is 3 in this case, so the origin is a weak source. 

If a < 0, the origin is a sink, so there should be limit cycles for a very 
small and negative. 

Again you are asked to verify these facts by computer in Exercise 9.2.#3, 
showing that Hopf bifurcation occurs in this family. 

'0,"'\ i" \ 

, I,",' ~, 
"\ / II 

,\ . I' 
\ ," r 

, : 

: ' i,fin' 

FIGURE 9.2.5. Phase plane for Example 9.2.7 for Q = -0.1, 0, and 0.1 from left 
to right. A 
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Example 9.2.8. Consider the system 

x'=y+ xy2 

y' = -x + xy _ y2. 

9. Bifurcations 

In this case again, L = 0, so you cannot tell, but Figure 9.2.6 shows that the 
origin is a very weak source. Proving this will wait until later; see Exercise 
9.6#3. 

Exercise 9.2#4 asks you to show that a small perturbation of this equa­
tion can be made to have two limit cycles, thus showing that something 
else is going on, which we will meet in Section 9.4. 

, . 

FIGURE 9.2.6. Phase plane for Example 9.2.8. • 

9.3 Saddle Connections 

We now turn our attention to saddle connection bifurcations. Unlike saddle­
node or Hopf bifurcations, these are global bifurcations, and they cannot be 
detected by studying the zeroes of the vector field. 

Saddle connections are harder to locate than saddle-nodes or Hopf bifur­
cations (Sections 9.1 and 9.2, respectively), for which you must solve some 
algebraic (nondifferential) equations. You must actually solve the differen­
tial equation in order to know that a saddle connection occurs. That is, to 
draw the pictures and see what is happening, you (or the computer) must 
be able to draw the separatrices of the saddles. 

In general, the stable separatrix of a saddle is not the unstable separatrix 
of the same or any other saddle. However, this does usually occur for some 
parameter value in a one-parameter family, and when it does, the phase 
portrait tends to undergo big changes: we will give some examples below, 
and there are many more in the exercises. Figure 9.3.1 shows a heteroclinic 
saddle connection between two saddles. 
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before bifurcation at bifurcation after bifurcation 

-----t varying parameter -----t 

FIGURE 9.3.1. Heteroclinic saddle connection at bifurcation. 

When a stable and an unstable separatrix of one saddle coincide, the 
saddle is called homoclinic, as shown in Figure 9.3.2. 

before bifurcation at bifurcation after bifurcation 

-----t varying parameter -----t 

FIGURE 9.3.2. Homoclinic saddle connection at bifurcation. Note that the sink 
remains a sink throughout, so a limit cycle is created. 

Quite often, the homoclinic loop of a homoclinic saddle connection en­
closes a unique zero of the vector field. This zero will be a source or a sink, 
unless a Hopf or a saddle-node bifurcation occurs for the same value of the 
parameter. Suppose this zero is a source; it will then still be a source for 
nearby values of any parameters. But the overall spiral behavior "changes 
arms" -if a stable separatrix goes "in" before bifurcation, then an unsta­
ble one does after bifurcation. The stable separatrix will usually emanate 
from the source, but the unstable one cannot go to a source and must do 
something else. Most often it will be attracted to a limit cycle, which is 
created in the homoclinic saddle connection. 

In this case of a homoclinic saddle connection with a limit cycle, there 
often is a Hopf bifurcation nearby in the parameter space, where the limit 
cycle dies; this comment will be examined in Section 9.5. 

An important aspect of both heteroclinic and homo clinic saddle connec­
tions is that this bifurcation drastically changes the basins as shown in 
Figures 9.3.3 and 9.3.4, elaborations of Figures 9.3.1 and 9.3.2. 
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before bifurcation at bifurcation after bifurcation 

~ varying parameter ~ 

FIGURE 9.3.3. Heteroclinic saddle connection, showing change of basins. 

- -~ 

before bifurcation at bifurcation after bifurcation 

~ varying parameter ~ 

FIGURE 9.3.4. Homoclinic saddle connection, showing change of basins. 

Example 9.3.1. Consider the family of differential equations 

x' =y 

y' = x 3 - X + QX2 - O.ly 

depending on the parameter Q. The computer shows in Figure 9.3.5 the 
phase planes for Q = 0.1 and Q = 0.2, on either side of a saddle connection. 

We shall concentrate henceforth on these "before" and "after" pictures, 
since that is what you look for when you are trying to locate a saddle 
connection. 

As Exercise 9.3.#1, you should experiment with a computer to find to 
two or three significant figures the value of Qo, for 0.1 < Qo < 0.2, where 
this saddle connection occurs. 

In Figure 9.3.5, note that the region A from the first picture, which is 
in the basin of the sink at the origin, has no corresponding region in the 
second picture. 
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0=0.1 0=0.2 

FIGURE 9.3.5. Before and after a heteroclinic saddle connection for Example 
9.3.1, showing the change of basins of the spiral sink. 

The system of differential equations of this example is fairly easy to 
understand from mechanics, as discussed in Section 6.5: it corresponds to 
a particle moving in the potential 

x 2 x 3 x4 
Vo«x) ="2 -a"3 - 4' 

with a little bit of friction. The graph of such a function looks like Figure 
9.3.6. 

.50 

a = 0.2 
a=O 

-2.0 2.0 

FIGURE 9.3.6. Potential Va(x) for Example 9.3.1. The parameter 0 controls 
the difference in height of the two peaks and the x-coordinate of the two corre­
sponding saddles. The solid curve is for 0 = 0.2, dashed for 0 = 0.1, dotted for 
0=0. 
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The potential energy Va(x) has two maxima, with the left-hand one 
higher than the right-hand one for a > o. As a increases, the bump on 
the left gets higher and the one on the right gets lower. Before the saddle 
connection, a particle falling from rest at the top of the left bump loses 
too much energy due to friction to make it over the right bump and gets 
caught by the sink. After the saddle connection, the same initial position 
leads to a motion which goes over the right-hand bump and escapes. Now 
the solutions starting in A, correspond to initial position far to the left and 
initial velocity positive, slightly larger than what is required to make it over 
the left-hand maximum. For a = 0, such a solution is captured by the sink; 
for a = 0.3, it bounces over the right-hand maximum and escapes. • 

Example 9.3.2. Consider the system of equations 

x' =y 

y' = X3 - X + 0.2X2 + ({3x2 - 0.2)y. 

------y 
115 

- --L 
l~_ 

f3 = 1.4 
The unstable separatrix from 
the right-hand saddle near (1,0) 
is attracted to the sink at (0,0). 

f3 = 1.5 
The basin of the sink is now 
bounded by a repelling limit 
cycle. 

FIGURE 9.3.7. Before and after a homoclinic saddle connection (on the right­
hand saddle) for Example 9.3.2. • 

As Exercise 9.3#2a, you should experiment with a computer to find to 
two or three significant figures the value of {3o, for 1.4 < {3o < 1.5, where 
this homoclinic saddle connection occurs, and to confirm that it is indeed 
a sink at the origin for all values of {3 in this interval. As Exercise 9.3#2b, 
you can experiment further with the computer to make the left-hand saddle 
of Figure 9.3.7 connect, either to itself or to the right-hand saddle. 
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We will now show that in a homo clinic saddle connection bifurcation, the 
appearance of limit cycles is unavoidable. This requires a bit of terminology, 
illustrated by Figures 9.3.8 and 9.3.9. A homoclinic saddle connection is 
a loop bounding a region (shaded) of the plane. A perturbation fa of the 
equation x' = fa(x) at bifurcation (that is, for a near ao) will be called 
inward if the unstable separatrix which at bifurcation led back to the zero 
now goes into the loop region, outward otherwise, as shown in Figure 9.3.8. 

The saddle connection will be called attracting if solutions just inside it 
spiral toward the homoclinic loop, repelling otherwise, as shown in Figure 
9.3.9 on the next page. 

Theorem 9.3.3. Let x' = fa(x) be a family of differential equations de­
pending on a parameter a, and suppose that for some value ao of the pa­
rameter, the vector field has a zero Xo which is a saddle with a homoclinic 
saddle connection. Let u' = Au be the linearization of x' = fao(x) at Xo. 

(i) If tr A > 0, the saddle connection is repelling. 
If tr A < 0, the saddle connection is attracting. 
If tr A = 0, you cannot tell. 

(ii) If the saddle connection is repelling, and a is close to ao with the 
perturbation outward, there will be for that value of a a repelling 
limit cycle. 

(iii) If the saddle connection is attracting, and a is close to ao with the 
perturbation inward, there will be for that value of a an attracting 
limit cycle. 

FIGURE 9.3.8. Inward and outward perturbations of a homoclinic orbit, as shown 
on the right saddle of each picture in Figure 9.3.2. 
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attracting repelling 

FIGURE 9.3.9. Attracting and repelling homoclinic loops. 

Example 9.3.4. Go back to the equations of Example 9.3.2, 

x' = y 

y' = x3 - X + 0.2X2 + ({3x2 - 0.2)y. 

For (3 ~ 1.4, for which there is a homoclinic saddle connection, we find that 
the saddle point to the right is the point (xo,O), where Xo is the positive 
solution of the equation x2 + 0.2x - 1 = 0, i.e., Xo = -0.1 + V1.01 ~ 0.9. 
The linearization matrix 

A = [3X~ - O.4xo ~ 1 + 2{3xoY {3x~ ~ 0.2 ] 

has tr(A) = {3x~ - 0.2 ~ (1.4)(0.9)2 - 0.2 > O. Thus, the saddle connection 
is repelling, and repelling limit cycles appear for the outward perturbations, 
which occur for {3 > {3o, as was shown on the right of Figure 9.3.7. • 

Proof of Theorem 9.3.3. The hard part is part (i)j parts (ii) and (iii) 
then follow by an easy application of the Poincare-Bendixson Theorem 
8.5.1. 

We will deal with the case tr(A) < OJ the proof for tr(A) > 0 is similar. 
Consider a solution inside the attracting saddle connection and break it 

up into the part near the saddle and the remainder, as indicated in Figure 
9.3.10. 

We claim that part I of the solution, the part near the saddle, is im­
portant, and controlled by tr(A), and part II, away from the saddle, is 
benign. 

To be more precise, we need to introduce some notation. First, let Al > 0, 
A2 < 0 be the two eigenvalues at the saddle, so that the trace being negative 
gives A == IA2/ All > 1. Choose transversals Ts and Tu to the homoclinic 
loop near the saddle, as indicated in Figure 9.3.11, parametrized by u and 
v, respectively, so that u = 0 and v = 0 are the intersections with the 
separatrices. 

Suppose a solution starts on Ts at u = 80, then intersects Tu at v = 81, 

and then intersects Ts at u = 82 , 
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FIGURE 9.3.10. Homoclinic saddle connection; inner solution near (I) and away 
(II) from saddle. 

FIGURE 9.3.11. Defining transversals and deltas for a typical attracting homo­
clinic saddle connection. 

Then part I is essential in the sense that 

81 '" C 18G for some C l #- 0, 

and part II is benign in the sense that 

Raising to the power>. dominates multiplication by a constant, 

82 '" C28l '" Cl C2 8G < 80 , 

when 80 > 0 is sufficiently small, so the loop is attracting. 
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Armed with this notation, we return to proving the theorem, which con­
sists of three parts-looking at region I first with the linear approximation 
to the saddle, then as a nonlinear saddle, and then meandering through re­
gion II. We will actually prove inequalities rather than equivalences, which 
is enough for our purposes. 

Swinging by the Saddle, Part I: the Linear Approximation. To see 
why the passage near the saddle has the dominant effect, let us study how 
the linear equation behaves; i.e., let us consider 

in some region lui, Ivl ::5 TJ, centered at Xo. The solutions when Al = 1 and 
A2 = -2 appear in Figure 9.3.12. 

FIGURE 9.3.12. A linear saddle when Al = 1, A2 = -2. Note that 61 '" 6~. 

The solution (u(t), v(t)) , with (u(O), v(O» = (b, TJ) is given explicitly by 

u(t) = be>'!t 

y(t) = TJe).2 t . 

This solution crosses the line u = TJ when t = 1/Allog(TJ/6)j the corre­
sponding value of v is 

b1 = TJ e).2/).1 iog('1/6) = TJ1-).) 6).. 

So we see that passage near a linear saddle does indeed raise the distance 
to the homoclinic loop by a power > 1. 
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FIGURE 9.3.13. A nonlinear saddle when Al = 1, A2 = -2. Note that 61 rv 63. 

Swinging by the Saddle, Part II: the Nonlinear Case. Now we must 
see that passage near a nonlinear saddle leads to the same behavior, as 
shown in Figure 9.3.13. This requires a lemma. 

Lemma 9.3.5. There exist variables (u, v) centered at Xo such that in these 
variables the equation becomes 

U' = AIU(l + gl(U,V)) 

v' = A2v(1 + g2(U, v», 

where gi (0,0) = g2(0, 0) = 0, so both begin with at least linear terms. 

Remark. In these coordinates, the stable separatrix is the v-axis and the 
unstable separatrix is the u-axis. 

Proof of Lemma. By a linear change of variables, it is easy to find co­
ordinates (UI' VI) centered at Xo in which the differential equation has the 
form 

U~ = AIUI + hduI' vI) 

v~ = A2VI + h2(UI, VI), 

where both hI and h2 start with quadratic terms. The unstable separatrix 
is then a curve tangent to the ul-axis, and the stable separatrix is a curve 
tangent to the vI-axis, by Theorem 8.3.2. The first is then the graph of a 
function VI = a(uI) and the second is the graph of a function UI = ,B(vI), 
where both a and ,B start with terms that are at least quadratic. 

Now set U = UI - ,B(vI) and v = VI - a(uI). It requires the Inverse 
Function Theorem to see that these form coordinates near Xo: the Jacobian 
matrix at (Ub vI) is 

-8,B/8vI ] 

1 ' 
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which is the identity, hence, the matrix is invertible at {UbVt} = (O,O). 
It should be clear that in these coordinates, the stable and unstable 

manifolds become exactly the v- and u-axes, respectively, and this implies 
that the differential equation has the required form. 0 

In these coordinates, we can compare the nonlinear equation to a lin­
ear system by a fence argument rather similar to several we have seen in 
Chapter 8 and in Section 9.2. Choose J.tl and J.t2 so that 

and J.tl + J.t2 < 0, so that J.t = 1J.t2/ J.tll > 1. Next, switch to the equation for 
vasa function of u: 

dv A2{v{1 + 92{U,V)) = ~~--~~~7 
du AIU{l + 91{U,V» 

(11) 

and compare it to the equation coming from the linear system 

(12) 

The first (and, of course, the second) is well defined near the origin if U > 0; 
Le., Al u( 1 + 91 (u, v)) :I 0 if U :I 0 and both U and v are sufficiently small, 
since 91 vanishes at the origin. 

Next, we claim that the solutions of (12) are upper fences for (11) suffi­
ciently close to the origin; Le., 

I A2v(1 + 92(U, v)) I > I J.t2V I 
AIU(l + 91(U,V)) - J.tlU ' 

again because 91 and 92 vanish at the origin. 

(13) 

We can now complete our analysis of passing near a nonlinear sink. 
Choose a neighborhood U of Xo in which (u, v) form coordinates, and a 
number "I > 0 so small that the fence property (13) holds in the region 
21ul,21vl ::; "I. Let X6o{t) be the solution of the differential equation with 
initial condition X60 (0) as the point with coordinates U = "I, v = 60 , and 
suppose this solution crosses the line U = "I at {TJ,6t}. Since the solution to 
equation (12) with the same initial condition is 

v = TJ6~u-J.' 

with value TJI-J.'6~ at u = "I, we see that 

61 ::; TJI-J.'6~. (14) 

Meandering away from the saddle. Going back to the notation at the 
beginning of this proof, let Ts and Tu be the transversals v = "I and u = "I, 
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respectively [in the coordinates (u, v) above]. Note that the coordinates u 
and v do parametrize these transversals, as required. 

The homoclinic loop itself is a perfectly nice solution leading from Tu to 
Ts. The same proof as in Section 8*.4.3 says that the mapping Tu - Ts 
defined near the point v = 0 of Tu, which consists of starting a solution 
at a point of Tu and following it until it intersects Ts , is a differentiable 
mapping with differentiable inverse. 

Lemma 9.3.6. There exists a constant 0 such that the solution starting 
at the point (u, v) = (1], 61 ) next intersects the line Ts at the point (62 , 1]), 
where 62 :5 061 • 

Formula (14) and Lemma 9.3.6 together prove part (i) of Theorem 9.3.3. 
The main message is that passing by the saddle of an attracting homo­
clinic saddle connection squeezes the solution much closer to the unstable 
separatrix. 

For parts (ii) and (iii), find a solution inside the saddle connection for 
which the solution returns closer to the saddle connection than it started. 
Then this will still be true for a small perturbation; if the saddle connection 
is inward, a segment of the unstable separatrix and of the solution above 
bound an annular region such that the vector field points into it everywhere 
and which must contain a limit cycle. 0 

9.4 Semi-Stable Limit Cycles 

Another bifurcation that cannot be understood locally, by studying the 
zeroes of the vector field, is the coalescence of limit cycles. Again, you must 
solve the differential equation in order to know that this bifurcation occurs. 

Example 9.4.1. A simple but rather artificial example of such a bifurca­
tion is given by the family of equations 

, (x2 + y2)2 x2 + y2 ) 
X = -y + 4 - 2 + 0: X 

,_ (x2+y2)2 X2 +y2 ) 
Y -x+ 4 - 2 +0: Y 

The computer pictures for this family are shown in Figure 9.4.1, on the 
next page. 

This equation is actually rather easy to understand: in polar coordinates 
the equation becomes 

r' = (r4 /4 - r2 /2 + o:)r 
()' = 1. 
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Before bifurcation: 
0: < 1/4. 

9. Bifurcations 

Two nested limit cycles, with 
arrows showing direction of flow 
inside, outside, and between 
them. 

At bifurcation: 
0: = 1/4. 
The limit cycles coalesce, with 
flow directions as marked. 

After bifurcation: 
0: > 1/4. 
The coalesced or "semi-stable" 
limit cycle has become a spiral 
source. 

FIGURE 9.4.1. Semi-stable limit cycle bifurcation for Example 9.4.1. 

Since the zeroes of the polynomial r 4 /4-r2 /2+0: occur at r2 = 1±J1 - 4a, 
we see that there are two zeroes of r' for 0 < a < 1/4, one degenerate zero 
for a = 1/4, and none for a > 1/4. Thus, there are two cycles when 
0< a < 1/4, one when a = 1/4, and none when a > 1/4. 

For 0 < a < 1/4, r' is negative between the zeroes and positive elsewhere, 
so solutions spiral toward the inner limit cycle from both sides and away 
from the outer one from both sides. For a = 1/4, r' ~ 0 everywhere, van­
ishing only when r = 1; consequently, the unit circle r = 1 is a semi-stable 
limit cycle, attracting solutions inside it and repelling solutions outside it. 
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For a> 1/4, r' > 0 whenever r > 0, so all solutions, except the equilibrium 
at the origin, spiral to infinity. 

This analysis completely explains the observed behavior. A 

It is not so very easy to come up with examples of semi-stable limit 
cycle bifurcations: even though they occur in many families, they tend to 
occur for rather restricted values of the parameter. We will show in Exer­
cises 9.4#1 and 9.4#2 that near the indeterminate cases of both Theorem 
9.2.3, where the Liapunov coefficient L = 0, and Theorem 9.3.3, where a 
homoclinic saddle connection occurs and the trace of the linearization at 
the saddle vanishes, this bifurcation usually can be found. 

It is also possible to perturb area-preserving vector fields so as to create 
limit cycles, and examples are given in Exercise 9.4.#2. The next example 
is of this form, since it can be thought of as a perturbation of 

x' = y 

y' = -x. 

Since many differential equations of practical importance can be thought 
of as conservative mechanical systems, slightly perturbed by friction and 
slightly perturbed by a driving force, such examples show up quite fre­
quently in applications. 

Example 9.4.2. Consider the family of differential equations 

x' =y 

y' = -x + (a + /3 cos x)y. 

Figure 9.4.2 is the computer result for a = 0 and /3 = 0.5. 

FIGURE 9.4.2. Four, of the infinitely many, limit cycles for Example 9.4.2. 
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Before bifurcation: 
Q = 0.063. 
Three limit cycles: one irrele­
vant inner one, and two very 
close outside. 
Two trajectories shown. 

At bifurcation: 
Q = 0.065. 
Too outer cycles appear to 
have coalesced; too close to call. 
Drawn as two trajectories, one 
on the outside, one on the 
inside. 

After birfucation: 
Q = 0.07. 
Although solutions take a while 
getting through the region where 
the limit cycles were, there cer­
tainly are not any there any­
more; this is all a single tra­
jectory. 

FIGURE 9.4.3. One semi-stable limit cycle bifurcation for Example 9.4.2. 

It seems that there are infinitely many cycles as you zoom out. This 
was proved by Zhang Zhi-fen in 1980; the reader can find a proof and a 
discussion of the literature in The Theory of Limit Cycles (Ye Yan-Qian, 
AMS, 1984, pp. 166, 172). 



9.4. Semi-Stable Limit Cycles 313 

More precisely, Zhang proves that there are precisely n limit cycles in 
the vertical strip Ixl < (n + 1)7r. Note that Figure 9.4.2 corresponds to the 
region Ixl < 15.71 '" 57r, and that there are four limit cycles, as there should 
be. Observe that the limit cycles are alternately attracting and repelling, 
with the innermost one attracting. 

Suppose we keep {3 = 0.5 and increase o. Exercise 9.4#5a asks you to 
show that the origin is a source for all ° > 0 and that r' > 0 when ° > {3, 
so that there can then be no limit cycles. What happens to the cycles? 

Figure 9.4.3 shows what happens: the attracting limit cycles move out 
and the repelling limit cycles move in, until they merge and disappear in 
pairs. 

Exercise 9.4#5e asks you to prove that this description is correct. It 
seems likely that the outer ones disappear first and that the innermost pair 
disappears last, though the authors have not proved this. A 

Another natural way to find coalescing limit cycles is to consider peri­
odic differential equations in one variable. In fact, we have already seen in 
Chapter 2 (Part I) an example of such a thing. 

Example 9.4.3. Example 2.5.2 was the population problem that incorpo­
rated both competition and hunting: 

x' = (2 + cos t)x - 0.5x2 - o. 

When we changed the values of the "hunting" parameter 0, our pictures 
looked like Figure 9.4.4. 

0=1 0=2 

FIGURE 9.4.4. Results of changing hunting parameter in Example 9.4.3. A 
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If we now wrap these pictures around a cylinder of circumference equal 
to one period, we realize that they are the first and third stages of a semi­
stable limit cycle bifurcation, as shown in Figure 9.4.5. 

Before bifurcation: 
Two limit cycles, with 
arrows showing direc­
tion of flow inside, out­
side, and between them. 

At bifurcation: 
The limit cycles coa­
lesce, with flow direc­
tions as marked. 

After bifurcation: 
All solutions simply go 
downward. 

FIGURE 9.4.5. Illustration of Example 9.4.3 as semi-stable limit cycle bifurca­
tion. 

9.5 Bifurcation in One-Parameter Families 

In preparation for this section, you might review the summary presented 
in Figure 9.0.5, of the four types of bifurcations described in the four ear­
lier sections. We now proceed to give some examples of how you find the 
various possible bifurcations in a family of differential equations with one 
parameter. In the process, we will explain what understanding a differential 
equation that depends on a parameter means. 

Example 9.5.1. Consider the system of differential equations 

x' = x 2 - y2 + 1 
y' = y _ x2 _ Q. 

In this case, it is quite easy to understand the isocline picture. The curve 
where the vector field is vertical is the hyperbola of equation x 2 - y2 = -1, 
and the curve where the vector field is horizontal is the parabola of equation 
y = x2 + Q, which moves up and down with Q. 

It is clear that these two curves are tangent exactly when Q = ±1, at 
the points (0,1) and (0, -1), respectively. It should also be clear that the 
vector field has no zeroes for Q > 1, two zeroes for -1 < Q < 1, and four if 
Q <-1. 

At a zero (xo, Yo) of the vector field, the linearization matrix A is 

A = [ 2xo - 2Yo] . 
-2xo 1 
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Sample positions of parabola for horizontal slopes 

/ 
fixed 

hyperbola 
x2 _y2=_1 

Y= x2 + 0::. 

~~~ 

315 

FIGURE 9.5.1. Isoclines of horizontal and vertical slope for x' = x 2 - y2 + 1, 
I 2 Y = Y -x - O. 

From Figure 9.5.1 it is clear that saddle nodes occur only when the 
(moving) parabola is tangent to the (fixed) hyperbola at the points (0, -1) 
and (0,1); you can check this by noting that detA vanishes only when 
Xo = 0 and when Yo = 1/2; this latter line does not intersect the hyperbola 
x 2 - y2 + 1 = 0, hence it contributes no tangencies. Computer drawings 
confirming saddle nodes at 0= -1 and a = +1 are in Figure 9.5.2. 

Similarly, we can look for Hopf bifurcations by looking at tr A = 1 + 2xo, 
which vanishes when Xo = -1/2. There are two points on the hyperbola 
with x-coordinate -1/2; they are (-1/2,±J5/2). If (-1/2,+J5/2) is a 
zero of the vector field for some a, then det A = J5 - 1 > 0, so at such a 
value of a, a Hopf bifurcation will indeed occur. It is easy to show that this 
happens for the unique value ao = J5/2 - 1/4 ~ 0.868. With a computer, 
you can confirm that this Hopfbifurcation lies just to the right of a = 0.868, 
for which the phase plane is shown in Figure 9.5.2. 

A similar analysis shows that if (-1/2, -J5/2) is a zero of the vector 
field, then it will be a saddle, so it contributes no bifurcation. 

There are two more bifurcations, which you cannot find by analyzing 
the isocline picture or the linearization matrix, but which can be found 
by computer exploration: a homoclinic saddle connection for some value 
a1 ~ 0.722, and a heteroclinic saddle connection for a2 ~ -1.513, as 
shown in Figure 9.5.2. Both the Hopf bifurcation and the homoclinic saddle 
connection are associated with limit cycles; indeed, this equation has such a 
cycle for a = 0.868, as shown in Figure 9.5.2. Apparently, limit cycles exist 
for no values of a outside the small interval (0.722, 0.86803 ... ) (though 
we do not quite know how to prove that). A clue to how and where to 
search for global bifurcations will be provided by closer examination of the 
numbers and types of singularities and limit cycles in each region of the 
parameter space defined by the bifurcation diagram. 
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0=-2.0 0=-1.6 
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FIGURE 9.5.2. Representative dynamic plane pictures for Example 9.5.1, with 
parameter line bifurcation diagram. The equations are x' = x2 - y2 + 1, y' = 
Y - x 2 - o. 
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Pictures of the phase plane for this equation, for some representative 
values of the parameter, are shown (arranged in order of increasing a) in 
Figure 9.5.2. The accompanying bifurcation diagram on the parameter line 
is shown at the bottom of the same page. A 

CAPSULES FOR NUMERICAL INVARIANTS 

It is helpful to label the parameter line in a more informative way. The 
parameter line of Example 9.5.1 is broken up by the five bifurcation points 
into six regions, and within each of these regions, the numbers of sinks, 
sources, saddles, and attracting and repelling limit cycles does not change, 
as we saw in Section 8.8 and more formally in the Structural Stability 
Theorem 8* .6.3. We call these numbers the numerical invariants of the 
region, and we will write them as the following "capsules": 

[ 
# sinks 

# attr lim cycles 

# sources 1 
# saddles 

# repel lim cycles 

The numerical symbols for adjacent regions are related to each other in 
quite specific ways, depending on the bifurcation that separates them. In 
Exercise 9.5#7, you are asked to summarize Sections 9.1-9.4 by making a 
complete list of these possible changes. 

Thus, the parameter line in Figure 9.5.2 should be labeled as in Figure 
9.5.3; the reader should check that the capsules of adjacent regions are 
related as Exercise 9.5#7 prescribes. For example, with blowups, you can 
see that the limit cycle between the homo clinic saddle connection and Hopf 
bifurcation is repelling, or you can deduce that from the fact that inside the 
limit cycle the zero is a sink, as identified from the trace of the determinant 
of the linearization. 

(path) (loop) 

S.C sr I S.C .S,N ) 

-2 

FIGURE 9.5.3. Repeat of the bifurcation diagram for Figure 9.5.2, with cap­
sules describing numerical invariants in each of the six intervals defined by the 
bifurcation values of Q. 
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Note that a heteroclinic saddle connection does not change the numbers 
in a capsule. 

Example 9.5.1 brings out a very common phenomenon: saddle connec­
tions are often related to Hopf bifurcations in the sense that a limit cycle 
is born in one bifurcation and dies in the other; moreover, the relevant 
values of the parameter are often very close, and you often find parameters 
for which limit cycles exist only after trying to come up with a consistent 
capsule labeling of the parameter space. 

Example 9.5.2. Consider the differential equation 

x' = y - x + (x - a)2 

y' = y - x3 + 3x. 

For a = 2, the point (2,2) is an equilibrium point whose linearization is a 
center. However, the nonlinear behavior of this equilibrium makes it a weak 
source; you will note in Figure 9.5.4 when a = 2 how slowly the solution 
converges backward to the equilibrium point. For a > 2, the equilibrium 
point is an ordinary sink; after Hopf bifurcation, the equilibrium point is 
an ordinary source, with solutions spiralling out from it toward a limit 
cycle. The limit cycle disappears with a homoclinic saddle connection at 
a:::::: 1.77. & 

As explained in Section 8.7, symmetries in differential equations can lead 
to other, nongeneric, behaviors that will be discussed further in Section 
9.6. An example is provided in Exercise 9.5#2, where a double saddle 
connection appears. 

9.6 Bifurcation in Two-Parameter Families 

In this section, we will present examples of bifurcation behavior for two­
parameter systems of the form 

x' = f(x, y, a, (3) 

y' = g(x,y,a,{3). 

That is, we will break up the a{3 pammeter plane according to the dynam­
ical behavior of the corresponding differential equation. A detailed treat­
ment of this topic is really beyond the scope of this book; there is a large 
variety of possible behaviors that can occur, and we will not provide an 
exhaustive list. But we can provide a good introduction, and you can go to 
the References for more detail. 
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FIGURE 9.5.4. Representative dynamic plane pictures for Example 9.5.2. At 
the bottom is the parameter line bifurcation diagram, with capsules describing 
numerical invariants. The equations are x' = y - x + (x - a?, y' = y - x3 + 3x. 
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The main thing to realize is that each of the four bifurcations presented 
in Sections 9.1-9.4 will now occur along a curve in the u{3-parameter plane. 
These curves cut up the parameter plane into regions in which all phase 
planes "look the same," in particular, have the same "capsule," as defined 
in Section 9.5. 

These bifurcation curves can intersect and meld in various ways; the 
object of this section is to describe some of the ways in which this can 
happen. One very innocent way in which they can intersect occurs simply 
when two bifurcations occur independently in different parts of the xy phase 
plane, even though they collide in the parameter plane. Things are much 
more complicated when two bifurcations collide in the phase plane, as well 
as in the parameter plane. These are called degenerate bifurcations; we will 
be concerned with bifurcations of codimension two, meaning that they will 
inevitably occur in systems with two parameters and cannot be eliminated 
or simplified by small modifications of the equations. Our examples in this 
section will explore some of the possibilities. 

What would we expect of degenerate bifurcations? One answer lies in the 
fact that each of the codimension one bifurcations-saddle-nodes, Hopf bi­
furcations and homo clinic saddle connections, and semi-stable limit cycles­
had a nondegeneracy hypothesis: some number had to be nonzero in order 
for the description to be correct. Along the curve corresponding to that 
bifurcation, the number in question might change sign, going from positive 
to negative. You must expect something strange to happen at such values. 

This leads to the following degenerate bifurcations (Figures 9.6.1-9.6.5): 

Case (a): A saddle-node with both eigenvalues 
zero at the zero of the vector field, creating 
failure of the First Nondegeneracy Condition 
9.1.6 and simultaneous Hopf bifurcation (Ex­
ample 9.6.1). 

FIGURE 9.6.1. 
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Case (b): A saddle-node with one eigenvalue 
zero at the zero of the vector field, the other 
nonzero, and Failure of the Second Nondegen­
eracy Condition 9.1.7, resulting in a double 
pony tail (Example 9.6.5). 

FIGURE 9.6.2. 

Case (c): A Hopf bifurcation for which the first 
Liapunov coefficient L (Theorem 9.2.3) van­
ishes, resulting in a weak weak sink or source; 
we will see that there are arbitrarily small per­
turbations with two limit cycles near the zero 
of the vector field (Example 9.6.2 and Exercise 
9.2#4). 

FIGURE 9.6.3. 

Case (d): A homoclinic saddle connection for a 
saddle with linearization having trace 0 at the 
zero of the vector field; we will see that when 
this happens there are arbitrarily small pertur­
bations with two nested limit cycles near the 
homoclinic saddle connection (Example 9.6.2 
and Exercise 9.4#1). 

FIGURE 9.6.4. 
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Case (e): Three limit cycles coalescing into one. 
(Example 9.6.6, which has a great deal of dis­
cussion, and Exercise 9.6#13). 

FIGURE 9.6.5. 

9. Bifurcations 

A bit of thought will show that there are many other degenerate possi­
bilities (Figures 9.6.6-9.6.8): 

Case (f) : A sort of double saddle connection 
in which a stable separatrix leading from one ~ 
saddle to another may occur at the same time 
as a stable separatrix from the second leads 
back to the first (Exercise 9.5#2). 

FIGURE 9.6.6. 

Case (g): Another sort of double saddle connec­
tion involving a single saddle with two homo­
clinic loops (Exercise 9.6#1). 

FIGURE 9.6.7. 
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Case (h): An exceptional homoclinic saddle-node 
where the exceptional solution comes back not 
in the pony tail but as one of the separatrices 
of the saddle (Exercises 9.6#6 and 9.6#12). 

FIGURE 9.6.8. 
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This is not the end of the list of possible degenerate bifurcations: Exercise 
9.6#15 suggests several more. Space does not allow us to look at all of these 
carefully, but we will examine a few. 

Degenerate case (a) is perhaps the most entertaining. Note that it is a 
degenerate case of both a Hopf bifurcation and a saddle-node bifurcation, 
so we would expect it to occur where the curves of saddle-node bifurcations 
and Hopf bifurcations meet. It turns out that a curve of saddle connections 
comes to the same point of the parameter plane! The following example 
represents what happens in general. 

Example 9.6.1. 
X' =y_x2 

y' = ax + f3 - y. 
(15) 

The bifurcation diagram is represented with relevant phase plane figures 
in Figure 9.6.9. This is one rather exceptional case in which most of it can 
be calculated by hand. 

The first thing to do is to find the zeroes and to see when their lineariza­
tions have a zero or purely imaginary eigenvalue. This is quite easy: the 
zeroes of the vector field are the intersections of the parabola y = x2 and 
the line y = ax + {3, which have coordinates 

a±Ja2 +4{3 
Xo = 2 ' 

The linearization at (xo, Yo) is given by 

(i) The saddle-node locus 

[ -2XO 1]. 
a -1 

_ 2 
Yo - xo· (16) 

Saddle-nodes occur when one eigenvalue of the linearization is zero or, 
alternately, when the determinant of the linarization is zero. In our case, 
this gives 

2xo - a = (a ± J a 2 + 4(3) - Q = 0, 
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Le., along the curve in the parameter plane of equation a 2 + 4/3 = O. The 
reader should see that 

(17) 

precisely when the line of equation y = ax + /3 is tangent to the parabola 
y = x2 • So we see that at least for this example, along the saddle-node 
locus, zeroes of the vector field are created or annihilated. 

parameter plane dynamical plane 

FIGURE 9.6.9. Saddle-node bifurcation locus (in parameter plane). 

In summary, as shown in Figure 9.6.9, 

The saddle-node locus is the parabola of equation a 2 + 4/3 = 0 in the 
parameter plane; inside the parabola, the vector field has no zeroes; 
outside the parabola, the vector field has two zeroes. 

We will now analyze the types of these zeroes. 

(ii) The Hopf bifurcation locus 

Hopf bifurcation occurs if there is a zero of the vector field whose lineariza­
tion (2) has a pair of purely imaginary eigenvalues or, equivalently, for a 
2 x 2 matrix, if the determinant is positive and the trace is zero. 

In our case, these conditions read 

2xo = -1, 2xo - a> O. (18) 
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The first equation of (18) is satisfied if 0 2 +4{3 = (0+ 1)2, which reduces 
to the equation of the line 

o 1 
{3=-+-2 4' (19) 

Substituting the second equation of (18) into the first gives 0 < -1, 
which describes part of the line (19). 

At the point (0,{3) = (-1, -1/4), the Hopf bifurcation curve meets tan­
gentially with the saddle-node curve, as shown in Figure 9.6.10. The cor­
responding zero of the vector field is at (xo, Yo) = (-1/2, 1/4). 

- -
parameter plane dynamical plane 

FIGURE 9.6.10. Hopf bifurcation locus added to parameter plane. 

In Exercise 9.6#2b you are asked to show that in this example the Hopf 
bifurcations are always weak sources, so that case (c) bifurcations do not 
occur. 

(iii) Saddle connections 

Figure 9.6.10 is not the complete description of the parameter plane: if we 
attempt to put capsules in the various regions, we will find 
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just above the line of Hopf bifurcations and just to the right of the parabola, 
respectively. Something must happen to make the limit cycle disappear, and 
it is quite easy to see what. 

If we try the values a = -2, {3 = -0.7 and a = -2, {3 = -0.5, we find 
the pictures of Figure 9.6.11 in the dynamical plane. A careful look at the 
handedness of the separatrices shows that a homoclinic saddle connection 
must occur between these two values. 

-
parameter plane 

, \ 
~ 

dynamical plane 

FIGURE 9.6.11. Saddle connection bifurcation locus added to parameter plane. 

The curves of Hopf bifurcations and saddle-nodes could be computed 
explicitly in this case. It is much harder to understand the curve of saddle 
connections, since this requires solving the differential equation. But this 
bifurcation locus can be found approximately with a bit of computer ex­
perimentation, and the program Planar Systems will draw it. It turns out 
to be another curve tangent to the previous two at their point of contact 
(a,{3) = (-1, -1/4), as is also shown in Figure 9.6.1l. 

Exercise 9.6#2a asks you to extend the locus for saddle connections by 
computer experiment, such as by fixing a at -3, then -4, then -5, and so 
on, in each case varying {3 to locate where the saddle connection occurs for 
that value of a. The results are shown, with capsules, in Figure 9.6.12. 

We claim to have now found the complete bifurcation diagram. We have 
not actually proved it, but the labeling by capsules is now coherent. 
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FIGURE 9.6.12. Parameter plane for Example 9.6.1, with "matrix" notation 
added for numbers of sources, sinks, saddles, and attracting and repelling limit 
cycles. • 

Example 9.6.1 has demonstrated what usually happens under degenerate 
possibility (a): 

If a vector field depends on two parameters and for some value 
(00,.80) of these parameters a zero has linearization with both 
eigenvalues zero, then a smooth curve of saddle nodes goes through 
(00,.80); furthermore, both a curve of Hopf bifurcations and a 
curve of saddle connections touch this saddle-node curve tangen­
tially at the same point and die there. There are limit cycles for 
parameter values between these two curves. 

When for a parametrized family of differential equations we have pro­
duced a picture like Figure 9.6.12, we think we can fairly say that we 
understand that family. It may still be quite a task to prove the figure 
complete, but in our experience, the compatibility test is a good indication 
that it is. In any case, that is our objective in this chapter. 

You know that in passing from one structurally stable region to another, 
these numerical invariants can vary only in quite restricted ways (Exercise 
9.5#7), and it often occurs that a first attempt at labeling does not satisfy 
these rules, indicating that some bifurcation curves have not been found. 

The next example explores degenerate possibilities (c) and (e): 
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Example 9.6.2. Consider the system 

x' = /3x + y + a(x2 + xy) + X3 
y' = -x + y2. 

(20) 

In Exercise 9.7#11, you are asked to explore the bifurcation diagram in 
the large for this system of equations, but one feature is clear: the origin is 
a zero of the vector field for all values of (a, /3), and the line /3 = ° is a line 
of Hopf bifurcations. Moreover, the first Liapunov coefficient (defined in 
Theorem 9.2.3) is L = 3 - a 2 , which vanishes at a = ±.J3; we will examine 
the bifurcation diagram near a = -.J3. 

An easy computer experiment, or, more rigorously, a difficult compu­
tation (better done using a computer algebra system such as Maple or 
Mathematica) will show that this point is a weak weak sink. This means 
that for (a,/3) = (-.J3, 0) you can find a unique function 

(21) 

with Ii homogeneous of degree i, and a unique number B such that 

! (f(x(t), y(t))) = B(x2 + y2)3 + higher order terms. 

The number B is called the second Liapunov coefficient, it is only defined 
if the first one vanishes. Clearly, if B f. 0, the function I is a Liapunov func­
tion, making the origin a weak weak sink or source depending on whether 
B is negative or positive. 

This statement about the second Liapunov coefficient is fairly easy to 
prove using Lemma 9.2.5. Finding such a function I really comes down to 
making the cubic, quartic, and quintic terms of 

d 
d/(x(t), y(t)) 

vanish, which involves solving three systems of linear equations for the 
coefficients of 13, 14, and 15. The system of equations to find 14 is singular 
but has a solution anyway: that is precisely what the vanishing of the first 
Liapunov exponent means. Then there is an "obstruction" to making the 
terms of degree six vanish, and this obstruction is the number B. 

Using Maple for equation (21) on system (20) (with many thanks to Allen 
Back), we find 

x 2 y2 (2 .J3) 3 (;; 2 2 2.J3 3 
l(x'Y)="2+"2+ -3"+3" x -v3x y-xy --3-y 

+ (2 v'3 - 2) x 3y + (~ + v'3) x 2y2 + 2 v'3xy3 + (~ + 3 ~) y4 
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and 

( 64 34v3) 5 (ln3 2) 4 (5 11 v3) 3 2 + ---- x + V')- xy+ ---- xy 15 15 3 3 

( 35 In) 2 3 ( In) 4 (88 12 \1'3) 5 + -"3 + 3 v 3 x y + -1 - 3 v 3 xy + -15 + -5 - Y 

( 407 167 \1'3) 5 (8 11 \1'3) 4 2 (574 97 \1'3) 3 3 + ----- xy+ --- xy + ---- xy 12 8 3 9 3 

( 151 5\1'3) 2 4 (353 299\1'3) 5 (181 71\1'3) 6 + 12-~ xy + 12---U- xy + 36"-36 y 

1 11 
B = 12 - 24 v3· 

Now we will see that near the point (-\1'3,0) in the (a,,B)-plane, there 
must be parameter values for which the system has two limit cycles. We 
have seen examples of this sort of thing in Exercise 9.4#2. Indeed, since the 
origin is a weak weak sink, we can find a solution which comes back inside 
itself; then we perturb the parameters along the Hopf bifurcation curve, 
very slightly so that the origin is now a weak source, but the solution we 
were considering still comes back inside itself. Now since the origin is a 
weak source, we can find a solution closer to the origin which comes back 
outside itself, and these two solutions bound a region to which the Poincare­
Bendixson Theorem 8.5.1 can be applied, guaranteeing the existence of one 
limit cycle. 

Now we further perturb the parameters, off the Hopf bifurcation curve, 
so the origin becomes a linear sink, but we perturb it sufficiently little 
that the two solutions considered above still come back inside or outside 
themselves as before. We can now find another solution, much closer to the 
origin yet, which comes back inside itself, and this third solution, together 
with the second, bounds a new region to which the Poincare-Bendixson 
Theorem 8.5.1 can also be applied. Hence, the existence of a second limit 
cycle is also guaranteed. 

Figure 9.6.13 illustrates the construction described in this example; note, 
however, that the phenomena described are often rather hard to observe, 
because a weak weak sink is so nearly a center that it is rather hard to see 
the solution coming back clearly inside itself, as opposed to on itself. The 
effect being observed is so small that the skeptic would be well justified in 
wondering whether he is really observing a phenomenon connected with the 
weak weak sink or whether the numerical method introduces errors larger 
than the effect under study. 
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weak weak sink weak source plus sink plus 
limit cycle two limit cycles 

FIGURE 9.6.13. Three steps for going from a weak weak sink to two limit cycles . 

• 
Note also the word "small" as applied to the perturbations of Example 

9.6.2. These pairs of limit cycles only exist in a very small region of the 
parameter space, and if the trace at the linear sink is further decreased, 
the limit cycles collide and disappear. Thus, as shown in Figure 9.6.14: 

Near a degenerate Hopf bifurcation, you can expect to see a smooth 
curve of Hopf bifurcations and a curve of semi-stable limit cycles, 
which touches the curve of Hopf bifurcations tangentially and dies. 

__ ---- Hopi bifurcation 

semi·stable 
limit cycle 

FIGURE 9.6.14. Locus of semi-stable limit cycle bifurcation ending tangentially 
at Hopf bifurcation locus. 

Exactly the same argument as the last can be applied to a homoclinic 
saddle connection if the trace of the linearization at the saddle vanishes. 
The saddle loop will then usually be weakly attracting or repelling; two 
perturbations-the first keeping the saddle connection but making it of 
the opposite type, as it was for the degenerate value of the parameter, 
will create one limit cycle, and the second to vary it in or out will create 
another. Thus, as shown in Figure 9.6.15: 

near a degenerate saddle connection, you also expect a smooth 
curve of saddle connections and a curve of semi-stable limit cycles 
touching the saddle connection curve tangentially and dying there. 
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---
saddle connection 

FIGURE 9.6.15. Locus of semi-stable limit cycle bifurcation ending tangentially 
at saddle connection bifurcation locus. 

The two events above often occur together. We have seen that a curve 
of Hopf bifurcations often has a companion curve of saddle connections, 
together bounding a region of the parameter plane in which the differential 
equation has a limit cycle. If the Hopf bifurcation becomes degenerate, its 
companion curve must move to the other side but will not, in general, cross 
the curve of Hopf bifurcations exactly at the degenerate Hopf bifurcation, 
but somewhere nearby. Until you understand the discussion above, this 
would appear to lead to inconsistencies as to the sides of the curves of 
Hopf bifurcations and saddle connections on which limiit cycles appear. 
These inconsistencies are resolved by Figure 9.6.16. 

saddle connection 

limit cycles occur in shaded areas, in number indicated 

FIGURE 9.6.16. Typical fitting together of Hopf, saddle connection, and semi­
stable limit cycle bifurcation loci. 

All three bifurcation curves together as described is precisely what hap­
pens in our last example; let us return to it. 

Example 9.6.3. For the equation of Example 9.6.2, 

x' = f3x + y + a(x2 + xy) + x3 

y' = _x+y2, 

Figure 9.6.17 represents the parameter space near (a,f3) = (-y'3,0). 
The a-axis of Figure 9.6.17 is a curve of Hopf bifurcations, degenerate 

when a = -y'3; the computer also calculated a curve of saddle connec­
tions, which becomes degenerate near (-1.265, -0.0465). The computer, 
furthermore, calculated a curve of semi-stable limit cycles, which connects 
the two degenerate bifurcations. This curve, together with the curves of 
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Hopf bifurcations and saddle connections, delimits a tiny region in the pa­
rameter plane in which the equation has two limit cycles. This sort of figure 
in parameter space is quite common, but a look at its size will tell you why 
you seldom see it. 

Saddle C 
onnection 

one limit cycle S 

degenerate 
Hopf Sifu rcation 
at (-1.732,0) 

no limit cycle 

no limit cycle 

Hopf Bifurcation 

one limit cycle 

degenerate 
Saddle Connection 
at (-1.265, -0.465) 

FIGURE 9.6.17. A tiny piece of parameter space, near two degenerate bifurca­
tions, for x' = (3x + y + a(x2 + xy) + x 3, y' = -x + y2. 

Figure 9.6.17 is a blowup of just a small part of the parameter space for 
Example 9.6.3. Exercise 9.6#12 gives you the larger picture and asks you 
to determine the capsule labels for each region. This is an excellent way to 
test your understanding of bifurcations. .t 

In order to examine cases (b) and (d), we shall need the following lemma, 
which is proved in Exercise 9.6#14. 

Lemma 9.6.4. The discriminant of the polynomial P( x) = x3 + ax + f3 is 
fl = 4a3 + 27 f32. Then P has 

three real roots if fl < 0, 

one real root if fl > 0, and 

two real roots, of which one is double, if fl = o. 

The curve fl = 0 in the parameter plane is represented in Figure 9.6.18; 
note that it has a cusp at the origin. 

The following example shows one of the two possible generic possibilities 
when degenerate possibility (b) occurs, the other is explored in Exercise 
9.6#10. 
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a 

FIGURE 9.6.18. Parameter plane for Examples 9.6.5 and 9.6.6. 

Example 9.6.5. Consider the system of differential equations 

x' = y - X 3 

y' = Y - ax + {3. 
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At (a, (3) = (0,0), there are two pony tails tangent to the x-axis, and, in 
addition, there are unique trajectories approaching the origin tangent to 
the other eigendirectionj in the example, these are the upper and lower 
parts of the y-axis. 

Nearby differential equations depend on the value of Aj inside the cusp 
of Figure 9.6.18, there are three zeroes, and the differential equation looks 
like Figure 9.6.19. Outside the cusp, there is a single zero, which is near 
the origin a node sink. Along the curve A = 0, there are saddle-nodes. 

In the parameter space, we see that degenerate possibility (b) simply 
means that the curve of saddle nodes has a cusp. 

FIGURE 9.6.19. On the way to a double pony tail; phase plane for (0:, (3) 
(-1,0), in the ~ cusp of Example 9.6.5. • 
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Degenerate possibility (d), where three limit cycles coalesce, is rather 
similar to degenerate possibility (b). Consider the following example, which 
also looks rather artificial. 

Example 9.6.6. Let r2 = x2 + y2 and consider the system of differential 
equations 

This equation has limit cycles r2 = C at those numbers C such that 

(C - 1)3 + a(C - 1) +,6 = o. 

By Lemma 9.6.4 we know C-1 has three real roots if ~ = 4a3+27,82 < O. 
Figure 9.6.18 serves as parameter plane for this example also. We find 

that inside the cusp there are three limit cycles, outside there is just one, 
and on the curve ~ = 0, there is a semi-stable limit cycle plus one other 
limit cycle. 

Phase plane pictures are shown in Figure 9.6.20. The calculations com­
prise Exercise 9.6#8. 

FIGURE 9.6.20. Creation of three limit cycles for Example 9.6.6. & 

Thus, we see in the parameter space that the curve of semi-stable limit 
cycles may also have cusps, under degenerate possibility (d). 

9.7 Grand Example 

If you wish to understand a system of differential equations depending on 
two (or for that matter any number of) parameters, the basic idea is to 
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locate in parameter space the curves (hypersurfaces in parame­
ter space of higher dimensions) along which bifurcations occur, 
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more particularly, the places where these curves meet. Then attempt to 

label the components of your drawing by the numbers of sources, 
sinks, saddles, and attracting or repelling limit cycles. 

We shall use the capsules described in Section 9.5, telling how many of 
each type of feature a differential equation has for parameter values located 
within a given region of the parameter plane: 

[
sinks 

attracting cycles 

sources 1 
saddles 

repelling cycles 

This section is devoted to the following example, which shows some of 
the complications even simple systems can display. The authors learned a 
lot from its study, and we have tried to recapture the spirit of exploration 
in the text. 

Example 9.7.1. Consider the system of differential equations 

x' = (y - a) cosO - (y - x 3 + 3x)sinO 

y' = (y - a)sinO + (y - x 3 + 3x)cosO, 

for which a few phase portraits are shown in Figure 9.7.1-enough to show 
that we will definitely find some interesting bifurcations. 

0=-2.2 
0= -0.13 

, I 
I 
I 
I 

" i 

0=0 
0= -0.18 

0=2.2 
0=-0.05 

FIGURE 9.7.1. Very different phase planes for three different (0,0) values. 
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TURNING A VECTOR FIELD 

Example 9.7.1 is an instance of an interesting general construction: turn­
ing or rotating a vector field, already encountered in Section 8* .4. Various 
properties of turned vector fields are explored in Exercise 9.7#1. If 

X' = I(x,y), y' = g(X,y) 

is any vector field, the turned vector field is the one-parameter family 

X' = I(x, y) cosO - g(x, y) sinO 

y' = I(x, y) sinO + g(x, y) cosO. 

It can easily be imagined by simply rotating, at every point (x, y), the 
vector at that point by O. A nice illustration was given by Figure 8*.4.7. 

In particular, the zeroes of a rotated vector field do not move, and if 
u' = Au is the linearization of the old vector field at such a zero, then the 
turned vector field has linearization (Exercise 9.7.#lb) 

I _ [COSO -SinO] A 
U - sin 0 cos 0 u. 

Since the rotation matrix has determinant one, we see that the deter­
minant is not changed, so that: saddles stay saddles, saddle-nodes stay 
saddle-nodes, sources can become sinks, and vice versa. 

More specifically, you are asked in Exercise 9.7#le to show that for any 
zero of the original vector field that is a sink, source, or center, there are 
precisely two values of 0 E [-11",11") for which a Hopf bifurcation occurs and 
that these differ by 11". 

In Exercise 9.7#1£, you are asked to show that if the zero of the vector 
field is a nondegenerate saddle-node, then there are precisely two values of 
() in [-11", 11") for which both eigenvalues of the linearization vanish and that 
these differ by 11". 

LOCAL BIFURCATIONS OF EXAMPLE 9.7.1 

It is quite easy to see (in Exercise 9.7#5), when () = 0 or 2n1l", what the 
zeroes of 

x' = y-a, (22) 

look like: there are three zeroes for -2 < a < 2, two of which collide 
at a = ±2 in a saddle-node, leaving only one for lal > 2. Figure 9.7.2 
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illustrates this basically geometric argument. Thus, the two lines 0: = ±2 
are the saddle-node locus in parameter space. 

y=,'-3, ! 

I Y=Cl 

\) 
y=a=-2 

FIGURE 9.7.2. Isoclines of horizontal and vertical slope for x' = y - 0, y' = 
y - x 3 + 3x. 

A little computation or experimentation will show that when there is 
only one zero, it is a sink or a source, and when there are three (necessarily 
aligned on the line y = 0:), the middle one is a saddle and the two others 
are sinks or sources. 

To find the parameter space locus for Hopf bifurcation, we must find 
zeros of the vector field where the trace of the linearization is zero. This 
means we must solve the system (22) in conjunction with the equation for 
zero trace: 

3x2 sin 0 = 2 sin 0 - cos O. (23) 

It is easy to eliminate x and y from equations (22) and (23) to get 

_ ./2 - cot 0 (7 + coto) 
0: - ±y 3 3· 

In Exercises 9.7#6 and 9.7#7, you are asked to fill in the details. The 
graph of this curve for 0: = f(O) looks like Figure 9.7.3. 

o 

( ---T,··· --..., 
FIGURE 9.7.3.0 = ±J2 - cot 8)/3(7 + cot 8)/3. The solid parts of these curves 
give the locus for Hopf bifurcation. 
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The points marked PI and P2 in Figure 9.7.3 have coordinates (a,O) = 
(±2, -1'(/4): they are two of the points where the saddle-node becomes 
degenerate with a double eigenvalue zero [the others are (±2, 31'(/4)]. (Recall 
Exercise 9.7#1£.) The part of the curve above PI and P2 (i.e., -1'(/4 < 
o < 0) corresponds to a node having trace zero; in other words, they are 
Hopf bifurcations; the remainder of the curve (dotted) concerns saddles 
and hence is not a bifurcation curve. 

All this information about local bifurcations is displayed in Figure 9.7.4. 

THE GLOBAL BIFURCATIONS OF EXAMPLE 9.7.1 

So far, we know where the saddle nodes and Hopf bifurcations occur; it 
remains to find the saddle connections and semi-stable limit cycles. These 
can no longer be computed by hand; finding the global bifurcations requires 
an entirely different approach. 

However, even without further computer work, note that we do know 
something: the points of tangency of the curve of saddle nodes and Hopf 
bifurcations, at (±2, -1'( /4), are places where degenerate bifurcation possi­
bility (a), the double zero eigenvalue, occurs (Section 9.6). You can confirm 
this in Exercises 9.7#8,9. 

In particular, there should be a curve of saddle connections emanating 
from these points, and there should be a region in the parameter plane 
between these curves and the Hopf bifurcation curves for which the corre­
sponding dynamical plane pictures show limit cycles surrounding the ap­
propriate nodes. 

If you have a program like Planar Systems from Extensions of MacMath 
draw these curves, you will see that they cross on the line a = 0, at a point 
Q where 0 is very close to -0.19, and where there are two homo clinic saddle 
connections simultaneously, creating degenerate bifurcation possibility (f). 
It is a good bit harder to figure out what they do after that, and the 
authors only found out after considerable experimentation. It turns out that 
the curve of saddle connections starting at (2, -1'(/4) approaches the line 
a = -2, at a critical homoclinic saddle-node where 0 E [-0.139, -0.1385]' 
as shown in Figure 9.7.5. 

The typical behavior near such a parameter value was studied in Exercise 
9.6#6. Such a point must be at one end of a segment in the curve of saddle­
nodes in which the saddle-node is homoclinic. By computer, we can attempt 
to find the other end of the segment, and find that there is another critical 
homoclinic saddle node with 0 E [-0.1405, -0.14]' and that between these 
two values the saddle-node is homoclinic. Notice that this range (less than 
0.002, tiny compared to the natural 0 range of 21'() is so small that we never 
would have found it if we had not been looking for a place for the curve of 
saddle connections to go. 

But this leads to another question: what happens at the other end of 
this interval? A bit of thought and experimentation will show that there is 
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0.=-2 0.=2 

[1 0] [1 0] 

[2 1] Truncated "capsule" notation 
for number of features: 

~ of sinks # of sourc~ 
L # of saddles J 

First, showing loci for saddle node 
bifurcations at a = ± 2 showing total 
numbers for sinks and sources, ignoring 
numbers of saddles or limit cycles 

0.=2 

Hopf bifurcation 

Hopf bifurcation 

Second, adding loci for Hopf bifurcation showing number of sinks, sources, 
and saddles, ignoring numbers of limit cycles 

All the "action' for other bifurcations occurs in a region like that shaded, 
which is blown up in the remaining figures of Section 9.7. 

6=0 

6=-\ 

6=-2 

6=-3 

FIGURE 9.7.4. Summarizing the bifurcation loci for local bifurcations. 
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a=-2 

9=-lt/4 
~ - 0.785 

Saddle node 

9. Bifurcations 

a=2 
9 =-0.0783 

Hopf bifurcation 

ddle connection 

9 =- 0.8 
Saddle node 

FIGURE 9.7.5. Adding first saddle connection curves to the bifurcation diagram 
for saddle-node and Hopf bifurcation. The region illustrated is a blowup shown 
by the shaded region of Figure 9.7.3. 

yet another curve of saddle connections emanating from this point! Again, 
this possibility only occurred to the authors as they tried to understand the 
question above. Now we must follow this new curve of saddle connections: 
where does it go? The answer is that it goes right back to the point Q, 
where the original saddle connection curves met, as shown in Figure 9.7.6. 

a=-2 

9=-Xf4 
- - 0.785 

Saddl node 

a=2 
9 = -0.0783 

Hopf bifurcation 

9 =- 0.8 
Saddle node 

FIGURE 9.7.6. Adding yet another curve for saddle connections to the bifurcation 
diagram. 
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In fact, if two for some value of the parameters a saddle has two homoclinic 
loops [degenerate possibility (g)), there will usually be in the parameter 
space two curves of homo clinic saddle-nodes which intersect transversely, 
and two half-curves corresponding to "funny" saddle connections. Typical 
phase plane pictures are shown in Figure 9.7.7. 

IX=-0.4918428 
Il = - 0.1880326 

IX = 0.0000000 
Il = - 0.1859830 

IX = 0.5802880 
13 = - 0.1864141 

FIGURE 9.7.7. Phase planes for degenerate and "funny" saddle connections in 
Example 9.7.1. 

SEMI-STABLE LIMIT CYCLES IN EXAMPLE 9.7.1 

When attempting to label components of the drawing so far by the number 
of limit cycles, we discover inconsistencies. For instance, if you draw the 
phase diagram for 0: = 2.1, () = -0.13, you will find two limit cycles, both 
surrounding the unique sink that exists for this value. On the other hand, 
if you try 0: = 2.1, () = -0.2, you will find no limit cycles. Something 
must have happened, and a bit of experimentation will show that there is a 
semi-stable limit cycle for some () E [-0.155, -0.15). Of course, this is just 
one point of a curve, and we need to find out where the curve goes. Such 
a curve could meld with a curve of saddle connections, but only at a point 
where the trace of the corresponding saddle is zero, and we have seen that 
there are none. It could also meld with a curve of Hopf bifurcations at a 
point where the first Liapunov coefficient vanishes, and as far as we know, 
this may happen for some large values of 0:; in principle, the Liapunov 
coefficient can be computed, but the algebra is daunting. The program 
Planar Systems in Extensions of MacMath will draw this curve of semi-
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stable limit cycles, if properly coached, as shown in Figure 9.7.8. It turns 
out to be a nearly horizontal curve that crosses the entire picture without 
interacting with any other bifurcation curve. 

a=-2 

9=-0.1 

a=2 

HopI bifurcation 

Saddle connection 
Saddle connection 

Semi·stable limn cycle 

9=-0.0783 

9=-0.8 

FIGURE 9.7.8. Adding the curves for semi-stable limit cycles to the bifurcation 
diagram. 

Figure 9.7.9 collects all the bifurcation curves we have found in this grand 
example, complete with capsules showing the number of singularities and 
limit cycles in each region found by the bifurcation curves. 

CYCLES AT INFINITY IN EXAMPLE 9.7.1 

There is one more curve of "bifurcations" that must be understood in order 
to have a coherent bifurcation diagram, and as far as we know, this one 
cannot be understood in terms of the theory developed so far. There are 
values of (B,a) such that when you approach them, a limit cycle surround­
ing everything appears to grow without bounds. We have not succeeded in 
analyzing this phenomenon theoretically, but the computer indicates that 
there is a curve close to the line B = 0 along which this occurs. 
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THE FINAL BIFURCATION DIAGRAM FOR EXAMPLE 9.7.1 

Adding the global bifurcation curves to a blow-up of the shaded region in Figure 9.7.4. 
stretched vertically: 

a=-2 a=2 

Hopf bifurcation Hopf bifurcation 

Saddle connections 

Semi-stable limit cycle 

&' en 
II> 

0. 0. 
0. 0. 
iii" iii" 
::l ::J 

8. 0 
0. 

II> II> 

And finally. adding the 'capsules' showing the number of features: 

6=-0.0783 

6 = - 0.2823 

FIGURE 9.7.9. The complete bifurcation diagram for Example 9.7.1. 
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Chapter 9 Exercises 

Exercises 9.1 Saddle-Node Bifurcation 

9.1#1. Each curve in the following pairs represents an isocline of horizon­
tal or vertical slope and its associated phase plane influence. Put each pair 
together in the three possible ways (intersecting twice, tangent, or nonin­
tersecting) and sketch the resulting phase plane trajectories (as in Example 
6.1.5) to illustrate the saddle-node bifurcation. 

(a) / ~-
l~ _, 

(d)~~ ~ 
9.1#2. The examples in Section 9.1 all emphasize what happens geomet­
rically for saddle-node bifurcation to occur; here we focus on the algebraic 
approach, which may be useful when it gives solvable equations. For each of 
the following systems of differential equations, find algebraically the values 
of a for which the system undergoes a saddle-node bifurcation. For each 
segment of the a-axis in the complement of these points, say how many 
saddles and how many sinks or sources there are. 

x'=y 
(a), 2 (Example 9.1.2) 

y =x -y+a 

(b) 
x'=y-x3 

y'=x-y+a 

(c)O x' = y - x 3 + xy 
y'=4x-y-a 

x'=x2 +a- y3 
(d) y' = _y + x3 (Example 9.1.12) 

Hint: you will need to write three equations in x, y, and a, stating the 
locations of the singularities as well as the condition for the bifurcation. It 
is then quite easy to eliminate x and y in parts (a) and (b), but for parts 
(c) and (d), you will probably want a computer to solve a cubic equation 
(unless you happen to know Cardano's formulas). 
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9.1#3. For the system of Example 9.1.2, 

X' = Y 
y' = X 2 - Y + a. 

(a) Confirm algebraically that for a = -0.266,0, and +0.266, the zeroes 
are of the type described in Figure 9.1.1. 

(b) Find, by computer experiment and algebraic calculation, a negative 
value of a closer to zero that gives a node sink rather than a spiral 
sink. 

(c) Blow up a computer picture for a = 0, further than in Figure 9.1.2, 
to show the tangencies of solutions near the origin. Identify the sep­
aratrix of the saddle-node, the exceptional solution, and the pony 
tail. 

(d) Show that when a = 0 there is no curve y = f(x) given by a power 
series near zero, with f(O) = 1'(0) = 0, that contains the exceptional 
solution in its graph. Hint: Look at Part I, Example 2.7.4. 

9.1#4. For each of the following systems, find a value of a for which the 
system undergoes saddle-node bifurcation. Explain what happens for values 
of a close to ao (bifurcation value). Verify your answers with the computer. 
Make a set of "before, at, after" pictures to use in the next two exercises. 

X' = a - x 2 

(a) y' =_y 

(b) 
X' = cos x - y + a 
y' = x4 - Y 

9.1#5°. In Exercise 9.1#4a, the differential equation can be solved explic­
itly. Do so in order to provide equations for the various curves occurring 
in your pictures. Show how (in this case as opposed to Example 9.1.2) the 
exceptional solution has a special hair in the pony tail, because one analytic 
formula holds all across the domain. 

9.1#6. Show that in the system of equations (2) 

X' = 0 + P(x, y) 
y' =)..y + Q(x,y). 

if ).. > 0, solutions on the exceptional trajectory leave the origin, and if 
).. < 0, solutions on the exceptional trajectory approach the origin. Hint: 
Read Theorem 9.1.7. 
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9.1#7. For each of the four systems described by 

X' = xy±y2 

y' = _y ± X 2 , 

9. Bifurcations 

draw the loci where the vector field is horizontal and where it is vertical. In 
all cases find arbitrarily small perturbations where the differential equation 
has three zeroes near the origin. 

9.1#8. Suppose V(x) is an even potential, so V(x) = V( -x), and dVjdx(O) = 
o. Consider the differential equation 

" I dV 
X +ax + dx = O. 

(a) For a > 0, show that the origin is a sink if ~ > 0, and a saddle if 
d 2 V 
dx'I" < o. 
The question we will explore is what happens when ~ = O. Note 

that ~ = 0 (why?). We shall suppose that ~ > o. 
(b) Make a phase portrait for the equation if V (x) = X4. 

(c) Show that for V,B(x) = V(x) + {3x2, when {3 > 0, the differential 
equation has a single zero in the neighborhood of the origin, and 
when {3 < 0, it has three zeroes. 

(d) Make phase portraits to show the effects of (c). 

(e) Draw a graph of ((x,{3) I V,B(x) = O}. This should explain why this 
bifurcation is called a "pitchfork." 

9.1#9. Return to the second order equation of Exercise B.2-B.3#14a, 

x" - ax + x 3 = 0, 

and treat it as a system of first order equations with x' = y. At what values 
of a does the behavior of the trajectories change? Explain these changes. 

9.1#10. A pendulum in ]R3, rotating around a vertical axis at a constant 
speed w with friction coefficient a > 0, satisfies the equation 

()" + a()' + [1 - w2 cos ()j sin () = O. 
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(a) Write this equation as a system of two first order equations. 

(b) Show that this is analogous to the scenario of Exercise 9.1#8 for a 
potential Vf3(8). Find Vf3(8). 

(c) Find the value Wo of w for which this system has a pitchfork bifurca­
tion. Explain physically the meaning of the two new zeroes that arise 
after bifurcation. 

(d) Make phase plane drawings for w < Wo and for w > Wo. Explain the 
difference in the motions. 

9.1#11. Verify parts (i) and (ii) of Lemma 9.1.10. 

9.1#12°. (A serious exercise!) In order to see what happens when the Sec­
ond Nondegeneracy Condition 9.1.6 fails, consider the differential equation 

x' = !(x, y) = Pl,lXY + PO,2y2 + P3,OX3 + higher order terms, 

y' = g(x, y) = -y + q2,OX2 + ql,lXY + higher order terms. 

Suppose that Q2,OPI,1 + P3,O =F O. 
Consider also the associated differential equation 

dy g(x,y) -y+Q20X2+QllXY+··· = = ' , = G(x, y). 
dx !(x, y) Pl,lXY + PO,2Y2 + P3,OX3 + ... 

(a) Show that for any Al < A2 , there exists an c > 0 such that in the set 
U AloA2 = {(x, y)1 Q2,Ox2 + AIX3 < y < Q2,Ox2 + A2x3, 0 < x < c}, 
G(x, y) is defined [i.e., !(x, y) =F OJ. 

(b) Show that such numbers Ab A2 can be chosen so that U Al ,A2 is a 
backward antifunnel if C = Q2,OPl,1 +P3,O > 0, and a backward funnel 
if C < o. 

(c) Show that if C < 0, there is a unique solution in the antifunnel. 

(d) Formulate and prove analogies of (a), (b), and (c) for -c < x < O. 

(e) Show that if C > 0, the origin is a sink, and that all trajectories 
approach the origin in the funnels of parts (b) and (d), except for 
two trajectories that approach the origin tangent to the y-axis, from 
above and below, respectively. 

(f) Show that if C < 0, there are two exceptional trajectories that em­
anate from the origin tangent to the y-axis and two trajectories that 
approach the origin tangent to the y-axis; all others leave a neighbor­
hood of the origin both backward and forward. 

Another approach to this problem is given in Exercise 9.6#6. 
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Exercises 9.2 Hopf Bifurcation 

9.2#1. Often a Hopf bifurcation will occur near a saddle. Start with this 
phase plane picture, assuming that the spiral singularity is a sink. 

(a) Draw appropriate arrows on all the separatrices of the saddle and add 
a few trajectories, with arrows. 

(b) Make two more drawings, with arrows, showing how this sink will 
Hopf bifurcate into a source, showing both what happens at the bi­
furcation value of parameter and what will happen on the other side 
of the bifurcation value. 

9.2#2°. Consider the equation of Exercise 9.1#2c, 

x'=y-x3 +xy 

y' =4x - y - a. 

(a) Using the algebraic approach, find where Hopf bifurcation occurs. 

(b) Explain how the saddle-node and Hopf bifurcations fit together as a 
varies. Use the computer to make a picture of each of the possible 
types of phase planes that occur. 

9.2#3. Verify the facts of Example 9.2.7 for 

x' = y + ax + x2 + x3 

y' = -x. 

By computer experiment, verify that Hopf bifurcation occurs for a small 
and negative. Find a sufficiently small perturbation of a to produce a single 
limit cycle. 
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9.2#4. Consider the equations of Example 9.2.9, 

X'=y+ xy2 

y' = -x + xy _ y2. 

Find a computer perturbation such that the phase plane shows two limit 
cycles (a phenomenon that will be further explored in Exercise 9.4#2). 
There is a strategy to this exercise, and an interactive graphics program is 
most advisable. 

First, check that the first Liapunov coefficient L indeed vanishes, and 
use the computer to see that the origin is a weak weak source. 

Next you will have to introduce new terms, with a parameter, for each 
of the following two steps. There are many possible ways to do this, but 
your choices should accommodate the following stipulations: 

(a) First, a limit cycle can be made to occur by creating a Hop! bifurca­
tion. Add a nonlinear term so that the origin remains a center, but 
so that the first Liapunov coefficient L changes. (For example, add 
to the x' equation the term ax3 .) Vary the parameter a as you look 
at the phase portraits until the origin becomes a weak sink. If a is 
sufficiently small, you will find a limit cycle. 

(b) Then you want to change the linearization to make the origin become 
a source again. That is, add a linear term, such as {jx to x'. Show 
that if the origin becomes a source, and if (j is sufficiently small, there 
will be a second limit cycle. 

Save your results, which you will use in Exercise 9.4#2. 

9.2#5. For the differential equation of Example 9.2.6, 

x'=y+x2 

y'=-x, 

(a) Show that the Liapunov coefficient at the origin is zero, by using 
Theorem 9.2.4. 

(b) Show that all solutions starting near the origin are periodic. Hint: 
Consider the symmetries of the differential equation. 

(c) What is the relation between parts (a) and (b)? 

Analysis of a similar problem will be extended in Exercise 9.6#4. 

9.2#6. Suppose that a differential equation 

x' = !(x, y) 

y' = g(x,y) 
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has a zero at the origin and that the linearization there is a center. Show 
that by a linear change in x, y, and t, the differential equation can be 
brought to the form 

x' = y + P(x,y) 

y' = -x + Q(x, y), 

where P and Q start with quadratic terms. Hint: In Appendix L6, you will 
find how to bring the linear part to the form 

A = [0 (3] -(3 0 

for an appropriate (3, by making a linear change of coordinates in x, y. Then 
you should rescale time. 

9.2#7°. As illustration of Theorem 9.2.3, consider the system of differential 
equations 

x' = (1 + o:)x - 2y + x 2 

y' =x-y. 

(a) Verify that for 0: = 0, the linearization at the origin is a center. 

(b) Compute the Liapunov coefficient at the origin, in order to know 
whether the nonlinear singularity is a weak sink or a weak source. 
Hint: to use Theorem 9.2.3, you will need to make a linear change of 
variables to bring the linear terms to 

[ ~ r = [~1 ~] [~] . 
The trick to do this is described in Exercise 9.2#6. 

(c) Would you expect to find limit cycles for small positive or negative 
values of o:? Check your prediction on a computer. 

9.2#8. 

(a) Show that if f is a differentiable function on ]R2 satisfying 

of of y--x-=o, ax oy 

then f is constant on all circles x 2 + y2 = r2, so f depends only on 
the radius. 

(b) Show that if p is a homogeneous polynomial of odd degree satisfying 
y~ - x~ = 0, then p vanishes identically. 
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(c) Show that if p is a homogeneous polynomial of even degree 2n, satis-
fying y!!2. - x!!2. = 0 then 8x 8y , 

(d) Prove Lemma 9.2.5 for all k. 

Exercises 9.3 Saddle Connections 

9.3#1. For the family of differential equations in Example 9.3.1, 

x'=y 

y' = x3 - X + o:x2 - O.ly, 

experiment with a computer to find to two or three significant figures the 
value of 0:0, for 0.1 < 0:0 < 0.2 where a (heteroclinic) saddle connection 
occurs. 

9.3#2. For the family of differential equations in Example 9.3.1, 

x'=y 

y' = x3 - X + 0.2X2 + (f3x2 - 0.2)y 

(a) Experiment with a computer to find to two or three significant fig­
ures the value of {30, for 1.4 < f30 < 1.5 where a homoclinic saddle 
connection occurs. 

(b) Experiment further with the computer to make the left-hand saddle 
connect, either to itself or to the right-hand saddle. This is harder 
than Exercise 9.2#4, where you had conditions on the linearization 
matrix to guide you. But we will tell you that at the very least you 
can find a value of f3 in the current equation that will indeed cause a 
saddle connection. 

9.3#3. Consider the system of equations 

Set 0: = -5. 

x' = x 2 - xy + x - O.4y + f3 

y' = y2 + xy - y + 0:. 

(a) For sequence of f3 = -0.1, 0, +0.1, +0.2, +0.3, ... make enough com­
puter drawings to locate the f3 interval in which a saddle connection 
occurs. 



352 9. Bifurcations 

(b) Show on your drawings the difference this bifurcation makes in global 
behavior of solutions. Also sketch by hand the saddles and separa­
trices before and after bifurcation, exaggerating, if you like, to show 
how the changes in global behavior have occurred. 

(c) Using blow-ups, try to locate the actual saddle connection to at least 
one more decimal place. 

9.3#4°. Consider the system of equations 

x'=y-x+axy+(3 
y' = 0.8y - x3 + 3x. 

Set (3 = -.0.4. 

(a) For a = -0.24, -0.26, ... , -0.34 make enough computer drawings to 
locate the a interval in which a homoclinic saddle connection occurs. 
You should blow up the area of interest in the first picture and keep 
that new window for this exploration. 

(b) Explain with hand drawings the global behavior of solutions before, 
at, and after bifurcation. 

9.3#5. For the differential equation 

x" = (1 - x2 )x' - X + ax3 

(a) Turn the second order equation into a system of first order equations. 

(b) Find to at least two decimal places the value of a between 0 and 1 
where a heteroclinic saddle connection occurs. 

(c) Print out phase portraits for a set of "before," "at," and "after" values 
of a and color in the cobasins of the source in each of the three views 
to demonstrate how the global behavior changes. Show also any other 
places that the behavior changes. 

(d) Explain the various possible behaviors as a Van der Pol oscillator 
(Example 8.4.2) to which a term -ax4 /4 has been added to the 
potential. 

9.3#6. With an asymmetric potential equation, you can get a system of 
equations 

x' = y+ax2 

y' = (1 - x2 )y - x 

similar to those of Exercise 9.3#5. 
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(a) Show that a bifurcation again occurs for a value of a between 0 and 
1, but that this one gives a homoclinic saddle connection. 

(b) Print out phase portraits for a set of "before," "at," and "after" values 
of a and color in the cobasins of the source in each of the three views 
to demonstrate how the global behavior changes. Show also any other 
places that the behavior changes. 

Exercises 9.4 Semi-stable Limit Cycles 

9.4#10 • Consider the system of equations 

x' = y + [3(x2 + y2) 

y' = X + y2 + y3. 

(a) Show that the origin is a critical saddle for all values of the parameter 
[3. 

(b) Show that the separatrices for this saddle have a homoclinic saddle 
connection for a value [30 satisfying 1.2 < [30 < 1.21. Find another 
decimal of [30. Show (using a computer) that this critical saddle con­
nection is weakly attracting. 

Now introduce another parameter a: consider the system of differential 
equations 

x' = ax + y + [3(x2 + y2) 

y' = X + y2 + y3. 

(c) For values of (a, [3) for which there is still a saddle connection, show 
that the homoclinic loop is attracting or repelling, depending on the 
sign of a. For which sign would one expect limit cycles? 

(d) Experiment on the computer with lal = 0.3 and of the appropriate 
sign until you find a good approximation to a saddle connection. 
Observe the homoclinic loop. Is it attracting or repelling? 

(e) Now perturb a and break the saddle connection so as to create two 
limit cycles. Is the new limit cycle attracting or repelling? 

( f) Vary the parameter [3 so as to make the cycles merge and disappear. 

9.4#20 • Return to the equations of Exercise 9.2#4 and Example 9.2.9, 

x' = y + xy2 

y' = -x + xy _ y2. 
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There you found with a computer some perturbation of the equations such 
that the phase plane showed two limit cycles. Vary your equations further 
and use the computer to find a semi-stable limit cycle. 

9.4#3. Consider the following differential equation (which is a turned vec­
tor field, as discussed in Example 8* .4.8 and at the beginning of Section 
9.7): 

X' = ycosf3 - (-x + ycosx) sinf3 

y' = ysinf3 + (-x + y cos x) cosf3. 

(a) Make a phase portrait for f3 = 0.01, with bounds -20::; x ::; 20, -20 ::; 
y ::; 20, to show that there exist four limit cycles. 

(b) Make another phase portrait for f3 = 0.02 to show now that there 
exist only two limit cycles. 

(c) Find to two significant figures where the semi-stable limit cycle bi­
furcation occurs. 

(d) Find to two significant figures where another semi-stable limit cycle 
bifurcation will occur, eliminating the last two limit cycles. 

(e) Estimate, and support with computer experimentation, a value of f3 
above which the phase portrait will show six limit cycles. 

9.4#4. For the equations of Exercise 9.4#3, conjecture and prove how 
many limit cycles can exist for this equation. Hint: You might try some­
thing to make the original solutions become inward and outward fences. 
For example, you might turn the vector field by an angle that is alternately 
positive and negative. 

9.4#5. Consider the family of equations 

x' =y 

y' = -x + (a + f3cosx)y. 

(a) Show that the origin is a source if f3 > 0 and a sink if f3 < O. 

(b) Show that if a < f3 < 0, then r2 is a Liapunov function on all of lR? 
Deduce that there can be no cycles when lal > 1f31. 

(c) Suppose that / is a cycle for some value (a, (3) of the parameter. Show 
that if al > a, then solutions for the parameter value (aI, (3) cross / 
from the inside to the outside. 

(d) Suppose now that /1 and /2 are two distinct cycles for some value 
(a > 0, f3 > 0) of the parameter. Suppose /1 attracting, /2 repelling, 
and /1 inside /2. Show that if al > a and al - a is sufficiently small, 
then the equation for (aI, (3) has at least two limit cycles in the region 
bounded by /1 and /2. 
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(e) Fix (3 = 0.5 (for instance) and let fa be a cycle for the parameter 
value ((3,0:), defined and linearly attracting for 0 :::; 0: < 0:0, and that 
0:0 is maximal for this property. Show that limajao fa exists and is 
not linearly attracting or repelling. 

Exercises 9.5 Bifurcation in One-Parameter 
Families 

9.5#1. Consider the system of differential equations 

x' = y + o:x2 

y' = (1 - x2)y - X, 

which we will study for 0: > O. 

(a) Analyze the zero at (0,0) for all 0:. 

(b) Show that the differential equation has exactly one other zero for all 
0: > O. 

(c) Find and analyze the extra zero for 0: = 1/24 and 0: = 1/6. 

(d) You should find in (c) that it is a saddle for both values. Show that 
this is true for all 0: > O. (Hint: this can be done either by computing 
the determinant of the linearization or by an antifunnel argument). 

(e) Use the computer to sketch the separatrices of this saddle for 0: = 1/6 
and 0: = 1/24, and deduce that there is a number 0:0 with 1/24 < 
0:0 < 1/6 for which there is a saddle connection. 

(f) By successive attempts, find 0:0 to three significant digits. 

(g) Show that the change of variables Xl = -X, YI = -y changes the 
differential equation above into itself, except that 0: becomes -0:. 

(h) For what values of 0:, -00 < 0: < 00, does the equation admit a limit 
cycle? 

9.5#2. Consider the system of differential equations 

X' =y 

y' = (1 - x2)y - X + o:x3, 

which we will study for 0: > O. 

(a) Analyze the zero at (0,0) for all 0:. 

(b) Show that the system has exactly two other zeroes for all 0: > O. 
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(c) Show that these two extra zeroes are saddles for all a > O. 

( d) You should find in (c) that the two extra zeroes have precisely the 
same behavior. This can be better expressed by saying that the change 
of variables Xl = -X, YI = -y preserves the differential equation. 
What does this say about the solutions? 

(e) Use the computer to sketch the separatrices of these saddles for a = 
0.1 and a = 0.3 and deduce from this and the symmetry that there 
is a number ao with 0.1 < ao < 0.3 for which there are two saddle 
connections. 

(f) By successive attempts, find ao to three significant digits. 

9.5#3°. For each of the following differential equations, 

X' = y - x3 + 3x 
(a) y' = X + a _ y2 

X' =x+a _y2 
(b) y' = y _ x3 + 3x 

(c) x' = (x - a)2 + y2 - 4 
y' =y - x 3 +4x 

(i) Sketch the phase plane, showing the isoclines of horizontal and vert i­
C8.1 slope. One of these isoclines is fixed in each case; the other depends 
on a. Show the possible different arrangements of the two isoclines 
and how many zeroes are produced by each. 

(ii) Find any saddle-node bifurcations. From the pictures in (i), you can 
tell where on the a parameter line to look. Calculate (from the de­
terminant of the linearization, from the isocline intersections, or from 
computer experimentation) the values of a at which saddle-node bi­
furcations occur, and use the program DiJJEq to make computer pic­
tures to verify each result. 

(iii) Find any saddle connections. You can use the computer pictures from 
(ii) to locate and explore possibilities for saddle connections; in two 
of the three cases, you should find some. Hint: The easiest way to 
look closely for saddle connections is to clear slope marks and draw 
saddles with separatrices. 

(iv) Find any Hopf bifurcations. You can use the linearization matrix at 
the singularities, the pictures, or any information from the previous 
parts. 
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Note: Parts (a) and (b) exhibit a common phenomenon: switching the func­
tions for x' and y' leads to a picture of entirely different character. 

9.5#4. Investigate the following system: 

[x]' [ y ] 4 2 [4X3 -2X] y = -4x3 + 2x + (x - x - a) y . 

Draw the phase plane for a = -1/2, -1/4, -l/B, 0, 1/2. Can you explain 
why the solutions look the way they do? 

9.5#5. Consider the nonlinear system of differential equations 

x' = y 

y' = -sinx - ey, 

from Example 6.5.4, describing a pendulum with constant e 2: ° depending 
on friction. 

(a) For a given e, locate the singularities of the system. Show that there 
are two types of singularities for each e. 

(b) For a given e, find the linearization of the system at the singular 
point (xo, Yo) = (0,0). Call the relevant matrix Ae and draw in the 
(tr A, detA)-plane the curve made up of the points (tr Ae, detAe) for 
varying e 2: 0. 

(c) Use the principle that near (xo, Yo) = (0,0) the solutions to the non­
linear system look like those of 

to describe near (0,0) the different qualitative behaviors of the pen­
dulum due to different friction. 

( d) For a given e, find the linearization of the system at the singular 
point (xo, Yo) = (11",0). Call the relevant matrix Be and draw in the 
(trA, detA)-plane the curve made up of the points (trBe, detBe) 
for varying e 2: 0. 

(e) What can you say about different qualitative behaviors near (11", o)? 

9.5#6. Return to the second order equation of Exercises 6.5#10 and B.2-
B.3#14b, 

x" = - :' where V = sin x + ax2 , 

and treat it as a system of first order equations with x' = y. You can 
predict at which values of a the trajectories will change behavior using the 
following geometric method. 
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(a) Show that the zeroes of the system occur when the graph of cosx 
intersects the graph of 2ax and sketch the different possibilities within 
-10 < x < 10. 

(b) With the help of MacMath's Analyzer, or another graphing program, 
find, using the computer, the exact values a* of a where the number of 
intersections changes. Then, for each a", use DifJEq to make a series 
of careful drawings before, at, and after bifurcation to confirm these 
results. Mark all separatrices with arrows showing the direction of the 
trajectories in forward time. Explain exactly which type of bifurcation 
occurs each time and discuss the stability of the equilibria. 

9.5#7. Consider a one-parameter family of differential equations 

x' = fa(x,y) 

y' = 9a(X, y). 

(a) Suppose that the system undergoes a saddle-node bifurcation at ao. 
If the capsule of the equation is 

[: c :] 

on the side of ao with the fewer zeroes, show that on the other side 
it must be one of 

[: c+1 b:1 [
a + 1 b] 

c+ 1 , 
d e 

[a + 1 c + 1 b], [a + 1 c + 1 b] , 
d-1 e d e-1 

where the latter two correspond to homoclinic saddle nodes. 

(b) Now suppose that at ao the system undergoes a Hopf bifurcation. If 
the capsule of the equation is 

[: c :] 

on the side of ao where the bifurcating zero is a sink, show that on 
the other side the capsule must be either 

b+ 1] 
c , 

e-1 
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depending on whether the zero is for a = ao a weak sink or a weak 
source. 

(c) Now suppose that at ao the system undergoes a homoclinic saddle 
connection. If the capsule of the equation is 

[: c :] 

on the side of ao where there is no limit cycle near the homoclinic 
loop, then show that on the other side of ao, the capsule is either 

depending on whether the trace of the linearization of the relevant 
saddle is negative or positive. 

(d) Show that heteroclinic saddle connections do not change the capsule. 

(e) Finally, suppose that at ao the system undergoes a semi-stable limit 
cycle. If the capsule of the equation is 

[: c :] 

on the side of ao where there are no limit cycles near the semi-stable 
limit cycle, show that the capsule must be 

on the other side of ao. 

Exercises 9.6 Bifurcation in Two-Parameter 
Families 

9.6#1. Consider the two-parameter family of differential equations 

x' = y + /3x3 

y' = X - x3 + ay. 

(a) Set a = -0.1 and make phase portraits for j3 = 0.03,0.05, showing 
the behavior at all the singularities. 
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(b) Find by computer experiment a value of {3 that gives a double saddle 
connection. Hint: Think ahead about what information about the 
singularities will be your sign that such a connection has occurred. 

(c) Continue the computer experiment to find some of the bifurcation 
locus for saddle connections, e.g., by fixing (3 above the bifurcation 
value found in (b) and varying aj repeat for {3 below the bifurcation 
value. 

9.6#2. For Example 9.6.1, 

x'=y-x2 

y' = ax + {3 - y, 

(a) Extend the locus for saddle connections by computer experiment, 
such as by fixing a at -3, then -4, then -5, and so on, in each case 
varying (3 to locate where the saddle connection occurs for that value 
ofa. 

(b) Show that the Hopf bifurcations are always weak sources and that 
therefore degenerate bifurcations type (c) can never happen. 

9.6#3. Consider again the system of equations studied in Exercise 9.2#5, 

x' = x 2 - a - {3y3 + 0.015x4 

y' = -y + (3x3 • 

What does part (b) of that exercise say about the second Liapunov coeffi­
cient? Compute this coefficient directly and confirm. 

9.6#4. For the system of equations 

X'=y+ xy2 

y' = -x + xy _ y2, 

show that the first Liapunov coefficient vanishes but the second does not. 
Predict whether the origin is a very weak source or very weak sink. Confirm 
with a computer picture. 

9.6#5. Carry out the calculations to confirm the statements in Example 
9.6.7. 

9.6#6. Consider the system of differential equations 

x' = x 2 - a - {3y3 + 0.015x4 

y' = -y + {3x3. 
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(a) Show that for a = 0 this equation has a saddle-node at the origin, 
which is nondegenerate for all values of /3. Further, show that if a > 0, 
there are no zeroes of the vector field near the origin, and if a < 0, 
there are two. 

(b) Draw the dynamical plane by computer for /3 = -2.5 and /3 = -1.5, 
when a = O. For which of these is the saddle-node homoclinic? For 
which is there a limit cycle? 

(c) Find, still by computer, a value /30 of /3 that separates homoclinic 
saddle-nodes from nonhomoclinic ones. State exactly what happens 
to the exceptional trajectory and the separatrices of the saddle-node 
for that value. 

(d) Show that for /31 slightly smaller than /30 (for instance, /31 = -2.3), 
there is a value of a negative but close to zero for which there is a 
saddle connection. Follow the curve of saddle connections and "show" 
that it approaches the line a = 0 tangentially at /3 = /30, 

9.6#7. For the following two-parameter families of equations, investigate 
where bifurcations can occur and confirm them with computer drawings. 

X' = ax - /3y2 
(a) y' = a(x _ y) _ y2 

(b) x' = x 2 - xy + x + a 
y' = y2 + xy - y + /3 

9.6#8°. For the differential equation of Example 9.6.6, 

x' = y + ((r2 - 1)3 + a(r2 - 1) + (3)x 

y' = -x + ((r2 - 1)3 + a(r2 - 1) + (3)y, 

(a) Show that the equation decouples in polar coordinates. 

(b) Show that the limit cycles correspond to the circles of radius r, where 

(r2 - 1)3 + a(r2 - 1) + /3 = o. 

(c) Find the locus of Hopf bifurcation. 

(d) Compute the first Liapunov number along this locus. Where does it 
vanish? 

(e) Find the semi-stable limit cycle locus, using parts (a) and (b), and 
Lemma 9.6.4. Show that it is tangent, at the point found in part (d), 
to the locus found in part (c). What exactly happens at that point? 
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9.6#9. Consider the system of differential equations 

x' = x - ay - x(x2 + y2) 

y' = ax + y - y(x2 + y2) - {3, 

9. Bifurcations 

the subject of pp. 70-73 in J. Guckenheimer and P. Holmes, Nonlinear Os­
cillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer­
Verlag, 1983). Use the computer program Planar Systems (or MacMath's 
DifJEq, Phase Plane to draw actual pictures for trajectories with (a, {3) 
chosen from various different regions in the a{3-parameter plane. 

9.6#10. Explore the family of equations 

x' = x 3 + ax + {3 

y' = y, 

which is very similar to Example 9.6.5 but shows the other possibility for 
degenerate possibility (b). 

9.6#11. This problem is devoted to another way to understand the be­
havior of saddle nodes when the Second Nondegeneracy Hypothesis (9.1.6) 
fails. This question was first considered as Exercise 9.1#12. 

Consider the system of equations 

123 
X = Pl,lXY + PO,2Y + P3,OX + ... 

I 2 Y = -y + q2,OX + .... 

We will show that if the number P3,O + Pl,lq2,O, is positive, the trajectories 
behave like the trajectories of a saddle, whereas if P3,O + Pl,lQ2,o < 0, the 
trajectories behave like those of a node sink. 

(a) Show that if you make the change of variable U = x, v = y + Q2,OX2, 
the differential equation becomes 

u' = Pl,lUV + PO,2V2 + (P3,O + Pl,lQ2,O)X3 + ... = P1(u,v) 

v' = -v + Ql,luV + QO,2v2 + ... = -v + Ql(U, v), 

where Ql (u, v) has no term in u2 . 

(b) Show that for sufficiently small € and b, (-v + Ql(U,V»/P1(u,v) is 
well defined in the region {lxi, IYI ::::: €; Iyl ::::: bx2} and P1(u, v)/(-v + 
Ql (u, v) is well defined in the region {lxi, Iyl ::::: €; IYI ~ bx2 }. Why is 
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the preliminary change of variables (a) necessary? 

First Region 

~"''''Qr·t'\n,n Region 

(c) If P3,O + Pl,lQ2,O < 0, show that the first region of (b) is the union of 
a funnel and a backward funnel for the differential equation 

dv -v + Ql (u, v) 
du P1(u, v) 

and that the second region of (b) is the union of an antifunnel and a 
backward anti funnel for the differential equation 

du P1(u, v) 
dv -v + Ql(U, v)' 

to which the uniqueness criteria of Section 4.7 of Part I apply. 

(d) If P3,O + Pl,lQ2,o > 0, show in a manner like part (c) that each of the 
regions of (b) are formed by a forward and backward anti funnel for 
an appropriate differential equation, to which a uniqueness criterion 
applies. 

(e) Use the computer to draw the trajectories for a differential equation 

x' = 2xy + x3 

y' = _y±x2 , 

and relate the results to the analysis above. 

9.6#12°. 

(a) Given the full bifurcation diagram for Example 9.6.3, add labels for 
the capsules showing the numbers of sinks, sources, saddles, and cy-
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des in each region defined by the bifurcation curves. 

Saddle Connections 

Hopf Bifurcations s; 3 \ 
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(b) Analyze the points where the curve of saddle-nodes meets the curves 
of saddle connections; show that these are examples of degenerate 
possibility (h). 

9.6#13. Find the saddle-node locus for the family of equations 

x' = y - x 3 

y' = Y - ax - b, 

and show that it has a cusp at the origin. Show what this implies for the 
phase plane behavior. 

9.6#14. In this exercise, we will prove Lemma 9.6.4. Consider the function 
f(x) = x3 + ax +,8. 

(a) Show that the equation f(x) = 0 will have three real roots if and only 
if f has a positive maximum and a negative minimum. 

(b) Show that there are no maxima or minima if a > 0, and that if a ::::; 0, 
there is a maximum at - J -a/3 and a minimum at J -a/3. 

(c) Show that the maximum is positive and the minimum is negative if 

(d) Show that these conditions together are equivalent to 4a3 + 27,82 < o. 

(e) The trigonometric solution of the cubic gives an entertaining way of 
computing the three real roots when they exist. Make the change of 
variables x = cy, where c = 2J-a/3, and set A = 3/(ca) to find 

3,8 (3 
A(x3 + ax +,8) = A((cy)3 + acy +,8) = 4y3 - 3y - 2a V --;; = o. 
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Show that 

when the discriminant is negative, so that there exists an angle () with 

cos(} = 3{3 J -~. 
20: 0: 

Use the formula cos 3<1> = 4 cos3 <I> - 3 cos <I> to find 

() 
Yl = cos 3' 

() + 271" 
Y2 = cos --3-' 

() + 471" 
Y3 = cos --3-· 

(f) When the discriminant is positive, it is easy to find a formula for the 
unique positive root. Make the substitution x = Y - o:j(3y) to obtain 
a quadratic equation for y3, with real solutions when the discriminant 
is positive. Use the quadratic formula to find y, then x. 

9.6#15. There are many ways in which the exceptional curve and the 
separatrices of a saddle-node can interact with the separatrices of a saddle 
or lead into the pony tail of another saddle-node. 

(a) Make a list of such possibilities, which occur in codimension two. 
The authors found six distinct ones, and are not sure that the list is 
complete. 

(b) For each, find a two-parameter family of differential equations in 
which it occurs generically. What curves of codimension one bifur­
cations lead to this parameter value? 

Exercises 9.7 Grand Example 

9.7#1. Let 

be a vector field, and set £9 to be £ turned by (), i.e., 

f. = [C?S(} -Sin(}] [ft]. 
9 sm(} cos(} h 

(a) Show that if Xo is a zero of f, then it is a zero of f9 for all (). (This is 
obvious; it is included for completeness.) 
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(b) Show that if u' = Au is the linearization of x' = f(x) at a zero xo, 
then the vector field turned by 0 has linearization 

I [COSO -sinO] A 
u = sinO cosO U; 

Le., the linearization of the turned vector field is the turn of the 
linearization. 

(c) If A = [~ ~ ] , then find a formula for the trace of the linearization 

of f9 at Xo. 

(d) Show that if Xo is a zero of a vector field that is a saddle-node, then 
Xo is still a saddle node for the vector field turned by any angle. 

(e) Show that if Xo is a linear sink or a linear source, then as you turn the 
vector field, there will be two opposite angles for which the lineariza­
tion at Xo is a center (usually these values are Hopf bifurcations). 

(f) Show that if Xo is a zero of a vector field that is a saddle-node, then as 
you turn the vector field, there will be two opposite angles for which 
the linearization at Xo has a double eigenvalue O. 

9.7#2. Let 

X' =x2 _ y2 

y' = X + 2y + x 2 • 

(a) Imagine turning this vector field through an angle O. Find the trace 
of the linearization of f9 at the origin. 

(b) For what values of 0 is the origin a sink, a source, or a center? 

(c) For the values of 0 for which the origin is a center for the linearization, 
is it a weak sink or a weak source in the original nonlinear equation? 

(d) On which side of these values does the equation have a limit cycle? 

9.7#3. Let f be a vector field with a linearly attracting limit cycle "I. 

(a) Show that the vector field f9 that has been turned through an angle 
o still has a limit cycle "19 for 101 < c, where c is sufficiently small. 

(b) Show that "I does not intersect "19 if 0 i:- o. 
(c) Show that "191 and "192 are on opposite sides of "I if 

-c < 01 < 0 < O2 < c. 

Hint: Think of the Poincare-Bendixson Theorem 8.5.1. 
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9.7#4. For Example 9.7.1, 

x' = (y - a) cos B - (y - x3 + 3x) sin B 

y' = (y - a) sinB + (y - x 3 + 3x) cosB, 
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show that there will always be values of B for which the zero becomes 
a spiral source or a spiral sink. Will there always be values for which it 
becomes a node source or node sink? 

9.7#5. For Example 9.7.1, locate and demonstrate the saddle-node bifur­
cation for any B. 

9.7#6. For a = 0 in Example 9.7.1, show that the zero at (y'3, 0) undergoes 
Hopf bifurcation at angles B where tan B = -1/7. This locates precisely 
those points where the Hopf bifurcation locus (Exercise 9.7#7) crosses 
itself, as shown in Figure 9.7.3. 

9.7#7. 

(a) Show that Example 9.7.1 has a zero at which the trace of the lin­
earization vanishes precisely if 

= ±J2 -cotanB 7 + cotanB. 
a 3 3 

(b) Draw a graph of the curve above, which gives the locus of Hopf bi­
furcation for Example 9.7.1. 

(c) Identify the part of this curve where the zero in question is a saddle. 

9.7#8. For Example 9.7.1, show that if the zero of the vector field is 
a nondegenerate saddle-node, then there are precisely two values of B in 
[-11',11') for which both eigenvalues of the linearization vanish [degenerate 
behavior (a)]. Show also that these differ by 11'. 

9.7#9. Show that for a = 2 in Example 9.7.1, the double zero eigenvalue 
occurs for angles B such that tan B = -1. This shows exactly where you 
can begin to look for the locus of saddle connections. 

9.7#10. Consider the two-parameter family of vector fields obtained by 
turning the system of equations 

x' = y - x2 , y' = y-a. 

(a) Find the locus where the equation has a saddle node. 

(b) When is the saddle node degenerate? 

(c) Find the locus where the equation has a Hopf bifurcation. 
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(d) Find a value of the parameters where the equation ha a limit cycle. 

(e) Find an approximate value where the equation has a saddle connec­
tion. 

9.7#11. Explore the system 

x' = fix + y + a(x2 + xy) + x 3 

y'=_X+y2, 

as discussed in Example 9.6.2 as a general problem, using the sort of anal­
ysis illustrated in the Grand Example of Section 9.7. 
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Linear Algebra 
Linear algebra is a language and a collection of results used throughout 
mathematics and in a great many applications. Elementary linea,r algebra 
is not very difficult; in fact, mathematicians tend to consider a problem 
solved when they can say: "and now it's just linear algebra." For all that, 
the field involves a number of ideas that are typical of modern mathematics 
and rather foreign to students whose background is strictly calculus. 

Furthermore, although basic linear algebra is rather simple, the problem 
for the beginner is that it takes so many words to describe the simple 
procedures and results that the subject may seem tedious and deadly. So 
let us try to put it in a lighter perspective to keep you going while we lay 
out the essential tools. 

Linear algebra is a bit like a classical symphony, with three main move­
ments and a minuet thrown in for diversion. The main movements are: 

I. the theory of linear equations (Iento ponderoso); 

II. the geometry of inner product spaces (andante grazioso); 

III. the theory of eigenvalues and eigenvectors (allegro). 

The minuet is the theory of determinants (allegretto) and is played between 
the second and third movements. 

Only the third part is really a branch of the theory of dynamical systems, 
which includes differential equations, but the others are necessary there as 
well as in practically every other aspect of mathematics. 

Each of the parts above has its key words and themes: for the first, 

vector space, linear independence, span, dimension, basis; 

for the second, 

orthonormal basis, quadratic form; 

finally, for the third, 

eigenvalue, eigenvector, diagonalizability, invariant subspace. 

The key words above all relate to the theoretical aspect of linear alge­
bra, but there is a different way of looking at the field. Especially in these 
days of computers, linear algebra is an essential computational tool, and 
one can also organize linear algebra around the algorithms used in compu­
tations. The main algorithm of the first part (and perhaps of all of linear 
mathematics) is 
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row reduction. 

The key algorithm for the second part is the 

Gram-Schmidt orthogonalization process. 

Appendix L 

Finally, the third part depends on a variety of more recent algorithms. The 
decision as to which ones are key is perhaps not yet final; however, the 

QR algorithm 

is emerging as central for arbitrary matrices, and 

Jacobi's method 

appears to be an excellent way to approach symmetric matrices. 
The remainder of this appendix on linear algebra is arranged in the 

following eight sections: 

Ll The theory of linear equations: in practice first movement 
L2 The theory of linear equations: in theory 

L3 Vector spaces with inner product spaces second movement 
L4 Linear transformations and inner products 

L5 The theory of determinants minuet 

L6 The theory of eigenvalues and eigenvectors third movement 
L 7 Finding eigenvalues: the QR method 
L8 Finding eigenvalues: Jacobi's method 

The first movement is so "ponderous" as to require splitting into two 
sections. Nevertheless, they share the common theme of "existence and 
uniqueness of solutions to systems of linear equations." The second move­
ment and the algorithms of the third movement are also lengthy enough 
that they are better as separate sections. 

After L8 we return to the overall Appendix L to give a very brief summary 
of all eight subsections and some exercises. You can use the summaries for 
a quick reference or review, then refer to the specified sections for details. 

L 1 Theory of Linear Equations: In Practice 

All readers of this book will have solved systems of simultaneous linear 
(nondifferential) equations. Such problems keep arising allover mathemat­
ics and its applications, so a thorough understanding of the problem is 
essential. What most people encounter in high school is systems of n equa­
tions in n unknowns, where n might be general or restricted to n $ 3. Such 
a system usually has a unique solution, but sometimes something goes 
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wrong and some equations are "consequences of others" or "incompatible 
with others," and in these cases there will be infinitely many solutions or 
no solutions, respectively. This section is largely concerned with making 
these notions systematic. 

A language has evolved to deal with these concepts, using the words 
"linear transformation," "linear combination," "linear independence," "ker­
nel," "span," "basis," and "dimension." These words may sound unfriendly, 
but they correspond to notions that are unavoidable and actually quite 
transparent if thought of in terms of linear equations. They are needed 
to answer questions like: "How many equations are consequences of the 
others?" 

The relationship of all these words with linear equations goes further. 
Throughout this section and the next, there is just one method of proof: 

Reduce the statement to a statement about linear equations, 
row-reduce the resulting matrix, and see whether the statement 
becomes obvious. 

If so, the statement is true, and otherwise it is likely false. 
This is not the only way to do these proofs; some people might prefer 

abstract induction proofs. But we use this method in order to hook into 
what most students more readily understand. 

L1.1. INTRODUCING THE ACTORS: VECTORS AND 

MATRICES 

Much of linear algebra takes place within JRn or en. These are the spaces 
of ordered n-tuples of numbers, real for IRn and complex for en. 

Such ordered n-tuples, or vectors, occur everywhere, from grades on a 
transcript to prices on the stock exchange. But the most important exam­
ples of vector spaces are also the most familiar, namely IR2 and IR3, which 
everyone has encountered when studying analytic geometry. 

These spaces are important because they have a geometric interpretation, 
as the plane and space, for which almost everyone has some intuitive feel. 
Much of linear algebra consists of trying to extend this geometric feel to 
higher-dimensional spaces; the results and the language of linear algebra 
are largely extrapolated from these cases. We will often speak of things 
like "three-dimensional subspaces of IR5." In case these words sound scary, 
you should realize that even the experts understand such objects only by 
"educated analogy" to objects in JR2 or JR3; the authors cannot actually 
"visualize IR4" and they believe that no one really can. 

We will write our n-tuples, the vectors, as columns. Some people (espe­
cially typists) are bothered by writing vectors as columns rather than rows. 
But there really are reasons for doing it as columns, such as in expressing 
systems of linear equations (this section) and in interpreting determinants 



372 Appendix L 

(Section L4). So if you stick to columns religiously you will avoid endless 
confusion later. 

As you know from basic calculus, an important operation unique to vec­
tors is the scalar or dot product, formally defined as follows: 

The dot product is a special case of the inner product, to be studied in 
Section L3. 

The other concrete objects that occur in linear algebra are matrices. 
An m X n matrix is simply a rectangular array, m high and n wide. A 
vector v E am is also an m x 1 matrix. Usually our matrices will be arrays 
of numbers, real or complex, but sometimes one might wish to consider 
matrices of polynomials or of more general functions. Clearly, the space of 
m x n real or complex matrices is just amn (or cmn). Putting the entries 
into a rectangular array allows another operation to be performed with 
matrices: matrix multiplication. 

You cannot multiply just any two matrices A and Bj for the product AB 
to be defined, the length of A must be equal to the height of B, and then 
the resulting matrix has height A and length B. 

The formal definition is as follows: if A = (ai,j) is an m x n matrix, and 
B = (bi,i) is an n X p matrix, then C = AB is the m x p matrix with entries 

There is a nice way of remembering this formula, which the authors 
recommend using whenever multiplying matrices: write B above and to 
the right of A, then C will fit in the space to the right of A and below B, 
and each entry is the dot product of the row of A and the column of B 
that it is on. 

Example L!.!. To compute AB = C, write 

[! 4 
o 

Observe that this method applies equally well to repeated multiplica­
tions. An "explanation" of what makes matrix multiplication a "natural" 
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operation to perform appears in Theorem L2.20. Exercise L1#1 provides 
practice on matrix multiplication if you need it. 

Once you have matrix multiplication, you can write a system of linear 
equations much more succinctly, as follows: 

is the same as 

[I I] [J] [I] 
, , 

which can be written far more simply as 

Ax=b. 

The m x n matrix A is comprised of the coefficients on the left of the equa­
tions; the vector x in lRn represents the unknowns, the operation between 
A and x is matrix multiplication, and the vector b in lRm represents the 
constants on the right of the equations. 

L1.2. THE MAIN ALGORITHMS: Row REDUCTION 

Given a matrix A, a row opemtion on A is one of the following three 
operations: 

(1) multiplying a row by a nonzero number; 

(2) adding a multiple of a row onto another row; 

(3) exchanging two rows. 

There are two good reasons why these operations are so important. The 
first is that they only involve arithmetic, i.e., addition, subtraction, multi­
plication, and division. That is just what computers do well; in some sense, 
it is all they can do. And they spend a lot of their time doing it: row 
operations are fundamental to most other mathematical algorithms. 

The other reason is that row operations are closely connected to linear 
equations. Suppose Ax = b represents a system of m linear equations in n 
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unknowns. Then the m x (n + 1) matrix [A, b] composed of the coefficients 
on the left and the constants on the right, 

al,n bl] 
: : = [A, b], 

am,n bm 

sums up all the crucial numerical information in each equation. 
Now the key property is the following: 

Theorem Ll.2. If the matrix [A', b'] is obtained from [A, b] by a sequence 
of row operations, then the set of solutions of Ax = b and of A'x = b' 
coincide. 

Proof. This fact is not hard to see: the row operations correspond to 
multiplying one equation through by a nonzero number, adding a multiple 
of one equation onto another, and exchanging two equations. Thus, any 
solution of Ax = b is also a solution of A'x = b'. On the other hand, any 
row operation can be undone by another row operation (Exercise L1#2), 
so any solution A'x = b' is also a solution of Ax = b. 0 

Theorem L1.2 suggests trying to solve Ax = b by using row operations 
on [A, b] to bring it to the most convenient form. The following example 
shows this idea in action. 

Example L1.3. Let us solve (we shall explain how over the next two pages) 

2x+y+3z = 1 

x-y+z=l 

x+y+2z = 1. 

By row operations, the matrix 

[2 1 3 1] 
1 -1 1 1 
1 1 2 1 

can be brought to 

[* ~ ~ =~], 
001 2 

(1) 

so [:: n .. the unique solution of the equation, boca .... the matrix (1) .. 

equivalent to the system 
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X= -2 

y= -1 

z=2 .• 

375 

Most people agree that the "echelon" form (1) at the center of Example 
L1.3 is best for solving systems of linear equations (though there are many 
variants, and the echelon form is not actually best for all purposes). 

A matrix is in echelon form if 

( a) for every row, the first nonzero entry is 1, called a leading 1; 

(b) the leading 1 of a lower row is always further to the right then the 
leading 1 of a higher row; 

(c) for every column containing a leading 1, all other entries are O. 

Examples L1.4 and L1.5 show matrices that respectively are and are not 
in echelon form. 

Example L1.4. The following matrices are in echelon form; the leading 
l's are underlined: 

[1 0 0 2] o 1 0 -1 , 
o 0 1 1 

[1 1 0 0] 
o 010 , 
o 0 0 1 

[
0 1 2 0 0 3 0 -3] 
o 0 0 1 -1 1 0 1 
o 0 0 0 001 2 

•• 

Examples L1.5. The following matrices are not in echelon form: 

[1 0 0 2] o 0 1 -1 , 
o 1 0 1 

[1 1 0 1] o 0 2 0 , 
000 1 

[
0 1 2 0 0 3 0 -3] 
o 0 0 1 -1 1 1 1 
o 0 0 0 001 2 

The first matrix violates rule (b); the second violates rules (a) and (c); the 
third violates rule (c). Exercise L1#3 asks you to find row operations that 
will bring them to echelon form. • 

The following result is absolutely fundamental: 

Theorem L1.6. Given any matrix A, there exists a unique matrix A in 
echelon form which can be obtained from A by row opemtions. 

The proof of Theorem L1.6 is more important than the result: it is an 
explicit algorithm to compute A. This algorithm, called row-reduction, or 
Gaussian elimination (or several other names), is the main tool in linear 
equations. 

Row-reduction algorithm. To bring a matrix to echelon form: 



376 Appendix L 

(1) Look down the first column until you find a nonzero entry (called a 
pivot). If you do not find one, then look in the second column, etc. 

(2) Move the row containing the pivot to the first row position, and then 
divide that row by the pivot to make that entry a leading 1, as defined 
above. 

(3) Add appropriate mUltiples of this row onto the other rows to cancel 
the entries in the first column of each of the other rows. 

Now look down the next column over (and then the next column if neces­
sary, etc.), starting beneath the row you just worked with, and look for a 
nonzero entry (the next pivot). As above, exchange its row with the second 
row, divide through, etc. 

This proves existence of a matrix in echelon form which can be obtained 
from a given matrix. Uniqueness is more subtle (and less important) and 
will have to wait. D 

Example L1.7. The following row operations row-reduce the original ma-
trix: 

[ ~I 
2 3 I] [1 2 3 1] [1 2 3 

:] 1 0 2 --+ Rl + R2 0 3 3 3 --+ R 2/3 0 1 1 
0 1 2 R3 - Rl 0 -2 -2 1 0 -2 -2 

RI - 2R, [1 0 1 
Tl [~ 

0 1 -I] --+ 011 --+ 1 1 1 . 
R3 +2R2 0 0 0 R 3/3 0 0 1 

The row operations are labelled with R; 's, which refer in each case only 
to the rows of the immediately preceding matrix. 

Note that after the fourth matrix, we were unable to find a nonzero entry 
in the third column and below the second, so we had to look in the next 
column over, where there is a 3. A 

A word about practical implementation of the row-reduction algorithm: 
real matrices as generated by computer operations often have very small 
entries, which are really zero entries but round-off error has made them 
nonzero (perhaps 10-5°). Such an entry would be a poor choice for a pivot, 
because you will need to divide its row through by it, and the row will then 
contain very large entries. When you then add multiples of that row onto 
another row, you will be commiting the basic sin of computation: adding 
numbers of very different sizes, which leads to loss of precision. So, what 
do you do? You skip over that amost-zero entry and choose another pivot 
(that is, you set a tolerance below which the computer will treat the entry 
as an actual zero). 
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Example L1.8. If you are computing to 10 significant digits, then 1 + 
10-10 = 1.0000000001 = 1. So consider the system of equations 

lO- lOx + 2y = 1 

x+ Y = 1, 

the solution of which is x = 1/(2 - 10-10 ), y = (1 - 10-10)/(2 - 10-1°). 
If you are computing to 10 significant digits, this is x = Y = 0.5. If you 
actually use 10-10 as a pivot, the row reduction, to 10 significant digits, 
goes as follows: 

[
10-10 2 

1 1 
2.1010 

1 

f .~]. 
The "solution" shown by the last matrix reads x = 0, which is very 

wrong: x is supposed to be .5. If instead we treat 10-10 as zero and use the 
second entry of the first column as a first pivot, we find 

2 
1 

1] [1 1 
1 ~ 0 2 

1] [1 0 .5] 
1 ~ 0 1 .5 ' 

which is right. In Exercise Ll#5, you are asked to analyze precisely where 
the troublesome errors occurred. All computations have been carried out 
to 10 significant digits only. A 

There is no reason to choose the first nonzero entry in a given column; 
in practice, one always chooses the largest. 

L1.3. SOLVING EQUATIONS USING Row REDUCTION 

If you want to solve the system of linear equations Ax = b, form the matrix 
[A, bj and row-reduce it to echelon form, giving [A, bj. The solutions can 
then be read right off, as already shown in Example L1.3. 

To be more precise, we can state the following, showing what Theorem 
L1.6 does for us: 

Theorem L1.9. Consider the system of linear equations Ax = b, where 
A is an m x n matrix, x is a vector in IRn , b is a vector in IRm , and the 
matrix [A, bj row-reduces to echelon form [A, bj. Then one of the following 
must occur: 

(a) If b contains a leading 1, then there are no solutions. 

(b) If b does not contain a leading 1, and if every column of A contains 
a leading 1, then there is exactly one solution. 
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(c) If b does not contain a leading 1, and if some column of A contains 
no leading 1, then there are infinitely many solutions. They form a 
family that depends on as many parameters as the number of columns 
of A not containing leading 1 'so 

Before discussing details of this theorem, let us consider the instance 
where the results are most intuitive, where n = m. Case (b) of Theorem 
L1.9 has been illustrated by Example L1.3; Examples L1.lO and L1.11 
illustrate cases (a) and (c), respectively. 

Example L1.10. Let us solve 

The matrix 

row-reduces to 

2x+y+3z = 1 

x-y=1 

x + y + 2z = 1. 

[: ' 3 '] -1 0 1 
121 

[~ 
0 1 

1] 1 1 
0 0 

so the equations are incompatible and there are no solutions. & 

Example L1.11. Let us solve 

The matrix 

row-reduces to 

2x + y +3z = 1 

x-y=1 

x + y + 2z = 1/3. 

[: 
1 3 

'~3] -1 0 
1 2 

[~ 
0 , 2/3] 
1 1 -1/3 
0 o 0 

and there are infinitely many solutions. You can choose z arbitrarily, and 
then the vector 

[ 
2/3 - z ] 
-1/~ - z 
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is a solution, the only one with that value of z. A 

For instances where n i= m, examples for Theorem Ll.9 are provided in 
Exercises Ll#4 and Ll#6e. 

These examples have a geometric interpretation. As the reader surely 
knows, and can verify in Exercise Ll#7, two equations in two unknowns 

a1X + b1y = C1 

a2X + b2y = C2 

are incompatible if and only if the lines £1 and £2 in 1R2 with equations 
a1x+b1Y = C1 and a2x+b2Y = C2 are parallel. The equations have infinitely 
many equations if and only if (1 = (2' 

The case of three equations in three unknowns is a bit more complicated. 
The three equations each describe a plane in 1R3 . 

There are two ways for the equations in 1R3 to be incompatible, which 
means that the planes never meet in a single point. One way is that two of 
the planes are parallel, but this is not the only, or even the usual way: they 
will also be incompatible if no two are parallel, but the line of intersection 
of any two is parallel to the third, as in Figure Ll.IA. This latter possibility 
occurs in Example Ll.lO. 

There are also two ways for equations in 1R3 to have infinitely many so­
lutions. The three planes may coincide, but again this is not necessary or 
usual. The equations will also have infinitely many solutions if the planes 
intersect in a common line, as shown in Figure Ll.IB. This second possi­
bility occurs in Example Ll.ll. 

A. No points where 
all three planes meet 

B. A whole line of points 
where three planes meet 

FIGURE L1.l. 
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The phrase in part (c) of Theorem L1.9 concerning the number of param­
eters is actually a statement about the "dimension of the solution space," 
a concept that will be explained in Subsections L2.1 and L2.2. 

Theorem L1.9 has additional spin-offs, such as the following: 

Remark: If you want to solve several systems of n linear equations in n 
unknowns with the same matrix, e.g., AXl = bI. ... , AXk = bk, you can 
deal with them all at once using row reduction. Form the matrix 

and row-reduce it to get 

Various cases can occur: 

(a) If A is the identity, then hi is the solution to the ith system Axi = bi' 

(b) If hi has a nonzero entry in a row and all the entries of A in that row 
are zero, then the ith equation has no solutions. 

(c) If hi has only zeroes in the rows in which A has only zeroes, then 
the ith equation has infinitely many solutions, depending on as many 
parameters as the number of columns of A not containing leading 1 'so 

This remark will be very useful when we come to computing inverses of 
matrices, in the next subsection. 

L1.4. INVERSE AND TRANSPOSE OF A MATRIX 

The identity matrix In is the n x n-matrix with 1's along the diagonal and 
O's elsewhere: 

I, = [~ ~ 1 and 13 = [~ ! ~]. 
It is called an identity matrix because multiplication by it does not change 
the matrix being multiplied: If A is an n x m matrix, then 

The columns el, ... , en of In, i.e., the vectors with just one 1 and all other 
entries 0, will play an important role, particularly in Appendix L2. 

For any matrix A, its matrix inverse is another matrix A-I such that 

AA-I = A-I A = I, the identity matrix. 

The existence of a matrix inverse gives another possible tock to solving 
equations. That is because A-I Ax = x, so the solution of Ax = b is then 
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x = A-lb. In practice, computing matrix inverses is not often a good 
way of solving linear equations, but it is nevertheless a very important 
construction. 

Only square matrices can have inverses: Exercise Ll#8 asks you 

(a) to derive this from Theorem L1.9, and 

(b) to show an example where AB = I, but BA :F I. Such a B would 
be only a "one-sided inverse" for A; a "one-sided inverse" can give 
uniqueness or existence of solutions to Ax = b, but not both. 

Example L1.12. The inverse of a 2 x 2 matrix 

as Exercise Ll#9 asks you to confirm by matrix multiplication of AA-I 
and A-IA. ~ 

Notice that this 2 x 2 matrix A has an inverse if and only if ad - be :F 
0; we will see much more about this sort of thing in the section about 
determinants. There are analogous formulas for larger matrices, but they 
rapidly get out of hand. 

The effective way of computing matrix inverses for larger matrices is by 
row reduction: 

Theorem L1.13. If A is a square n x n matrix, and if you construct the 
n x 2n matrix [A I I] and row-reduce it, then there are two possibilities: 

(1) the first n columns row-reduce to the identity; in that case the last n 
columns are the inverse of A; 

(2) the first n columns do not row-reduce to the identity, in which case 
A does not have an inverse. 

Proof. (1) Suppose [A I I] row-reduces to [I I B]. Then, since the columns 
(n + 1, ... , 2n) behave independently, the ith column of B is the solution 
Xi to the equation AXi = ei. Putting the columns together, this shows 
A[XI,X2,""Xn ] =AB=I. 

In order to show BA = I, start with the matrix [B I I]. Undoing the row 
operations that led from [A I I] to [I I B] will lead from [B I I] to [I I AJ, 
so BA= I. 

(2) If row-reducing [A I I] does not reduce to [I I B] but to [A' I A"], 
with the bottom row of A' all zeroes, then there are two possibilities. If 
the bottom row of A" is also all zeroes, there are infinitely many solutions; 
if there is a nonzero element in the bottom row of A", then there is no 
solution. In either case, A is noninvertible. 0 



382 Appendix L 

Remark. The careful reader will observe that we have shown that if [A I f] 
row-reduces to [f I BJ, then AB = f. We have not shown that BA = f, 
although this also is true. 

Example L1.14. 

A ~ [: -: [] has inverse A- 1 = [ ~ =~ =i] 
-2 1 3 

because 

[: 
1 3·1 0 

~] -1 1·0 1 
1 2·0 0 

row-reduces to [1 0 
O· 3 -1 -4] o 1 o· 1 -1 -1 . 

o 0 1· -2 1 3 

You can confirm in Exercise LI#9 that AA-l = A-l A = f and that you 
can use this inverse matrix to solve the system of Example L1.3. • 

Example L1.15. 

[: 
1 

~] A= -1 
1 

has no inverse A -1 because 

[ 2~ 1 3· 1 0 0] 
-1 0·0 1 0 

1 2·0 0 1 

row-reduces to 

[
1 0 1· 1 0 -1] 
o 1 1· -1 0 2. 
o 0 O· -2 1 3 

This is the matrix of Examples L1.lO and L1.l1, for two systems of linear 
equations, neither of which has a unique solution. • 

Note: Examples L1.14 and L1.15 are unusually "simple" in the sense 
that the row reduction involved no fractions; this is the exception rather 
than the rule (as you might guess from Example L1.12). So do not be 
alarmed when your calculations look a lot messier. 

Finally, to complete our list of matrix definitions, we note that one more 
matrix related to a matrix A is its transpose AT, the matrix that inter­
changes all the rows and columns of A. 
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[ 1 4 -2] T [1 3] Example L1.16. If B = 3 0 2' then B = _~ ~. A 

A frequently used result involving the transpose is the following: 

Theorem L1.17. The tmnspose of a product is the product of the tmns­
poses in reverse order: 

The proof of Theorem L 1.1 7 is straightforward and is left as Exercise 
L1#11. 

The importance of the transpose will be discussed in Section L3.3. 

L2 Theory of Linear Equations: Vocabulary 

We now come to the most unpleasant chore of linear algebra: defining a 
fairly large number of essential concepts. These concepts have been isolated 
by generations of mathematicians as the right way to speak about the 
phenomena involved in linear equations. For all that, their usefulness, or 
for that matter meaningfulness, may not be apparent at first. 

The most unpleasant of all is the notion of vector space. This is the 
arena in which "linear phenomena" occur; that is, the structure imposed 
by a vector space is the bare minimum needed for such phenomena to occur. 

L2.1. VECTOR SPACES 

A vector space is a set V, the elements of which can be added and multi­
plied by numbers, and satisfying all the rules which you probably consider 
"obvious." Being specific about what this means will probably seem both 
pedantic and mysterious, and it is. In practice, one rapidly gets an intuitive 
feeling for what a vector space is, and never verifies the axioms explicitly. 

A vector space is a set endowed with two operations, addition and mul­
tiplication by scalars. A scalar is a number, and in this book the scalars 
will always be either the real numbers or the complex numbers. 

For a vector space V, these two operations must satisfy the following ten 
rules: 

(1) Closure under addition. 
For all v, w E V, we have v + w E V. 

(2) Closure under multiplication by scalars. 
For any v E V and any scalar a, we have av E V. 

(3) Additive identity. 
There exists a vector 0 E V such that for any v E V, 0 + v = v. 
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(4) Additive inverse. 
For any v E V, there exists a vector -v E V such that v + (-v) = O. 

(5) Commutative law for addition. 
For all v, W E V, we have v + W = W + v. 

(6) Associative law for addition. 
For all Vb V2, v3 E V, we have VI + (V2 + V3) = (VI + V2) + V3' 

(7) Multiplicative identity. 
For all v E V, we have Iv = v. 

(8) Associative law for multiplication. 
For all scalars a, f3 and all v E V, we have o.(f3v) = (o.f3)v. 

(9) Distributive law for scalar addition. 
For all scalars a, f3 and all v E V, we have (a + f3)v = o.v + f3v. 

(10) Distributive law for vector addition. 
For all scalars a and v, WE V, we have o.(v + w) = o.v + o.w. 

We shall now give four examples of vector spaces, which with their vari­
ants will be the main examples used in this book. 

Example L2.1. The basic example of a vector space is IRn, with the obvious 
componentwise addition and multiplication by scalars. Actually, you should 
think of the ten rules as some sort of "essence of IRn ," abstracting from IRn 

all its most important properties. & 

Example L2.2. The more restricted set of vectors 

[ ~ 1 E R3 ,uch that 2x - 3. + z ~ 0 

(or any similar homogeneous linear relation on the variables of IRn) forms 
another vector space, because all ten rules are satisfied by such x, y, z triples 
(Exercise L2#1). These are important examples also, since they are sub-
spaces of the vector space IRn. & 

A subspace of a vector space is a subset that is also a vector space under 
the same operations as the original vector space. Exercise L2#2 asks you 
to show that all requirements for a vector space are automatically satisfied 
if just the following two statements are true for any elements Wi, Wj of a 
subset W of V and any scalar a: 

i) Wi +Wj E W; ii) o.Wi E W; 

The "vectors" in our third example will probably seem more exotic. 



Appendix L2 385 

Example L2.3. Consider the space C([O, 1]), which denotes the space of 
continuous real-valued functions f(x) defined for 0 :5 x :5 1, with addition 
and multiplication by scalars the usual operations. That is, the "vectors" 
are now functions f(x), so addition means f(x) + g(x) and multiplication 
means 0: f(x). Although these functions are not geometric vectors in the 
sense of our previous example, this space also satisfies all ten requirements 
for a vector space. • 

Example L2.4. Consider the space of twice-differentiable functions f(x) 
defined for all x E IR such that rP f / dx2 = O. This is a subspace of the 
vector space of the preceding example and is a vector space itself. But 
since a function has a vanishing second derivative if and only if it is a 
polynomial of degree 1, we see that this space is the set of functions 

fa.b(X) = a + bx. 

In some sense, this space "is" 1R2 , by identifying fa.b with [:] E 1R2 j this 

was not obvious from the definition. • 

L2.2. LINEAR COMBINATIONS, LINEAR INDEPENDENCE AND 

SPAN 

If Vb •.• , Vk is a collection of vectors in some vector space V, then a linear 
combination of the viis a vector v of the form 

k 

v = Laivi. 
i=i 

The span of Vi, ••• , Vk is the set of linear combinations of the Vi. 

Examples L2.5. The standard unit vectors i and j span the plane, because 
any vector in the plane is a linear combination 

The vectors u and V also span the plane, as illustrated in Figure L2.1. 

FIGURE L2.1. Any vector can be expressed as the sum of components in the 
directions u and v. 
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A set of vectors VI,"" Vk spans a vector space V if every element of V 
is in the span. For instance, i and j span ]R2 but not ]R3. 

The vectors V}, ... , Vk are linearly independent if there is only one way 
of writing a given linear combination, i.e., if 

k k 

L aiVi = L biVi implies al = b}, a2 = ~, ... , ak = bk' 

i=1 i=1 

Many books use the following as the definition of linear independence, 
then prove the equivalence of our definition: A set of vectors VI, ... ,Vk is 
linearly independent if and only if the only solution to 

Another equivalent statement is to say that none of the viis a linear 
combination of the others (Exercise L2#3). If one of the Vi is a linear 
combination of the others, they are called linearly dependent. 

Remark. Geometrically, linear independence means the following: 

(1) One vector is linearly independent if it is not the zero vector. 

(2) Two vectors are linearly independent if they do not lie on a line, i.e., 
if they are not collinear. 

(3) Three vectors are linearly independent if they do not lie in a plane, 
i.e., if they are not coplanar. 

The following theorem is basic to the entire theory. 

Theorem L2.6. In ]Rn, n + 1 vectors are never linearly independent, and 
n - 1 vectors never span. 

Proof. The idea is to reduce both statements in the theorem to linear 
equations. 

For the first part, let the n + 1 vectors in ]Rn be 

[VII] [VI 2] [VI n+l] VI = :' , V2 = :' , ... ,Vn+l = ': 

Vn,1 Vn ,2 Vn,n+l 

Linear independence for n + 1 vectors can be written as the vector equa­
tion alVI + a2V2 + ... + an+lvn+l = 0 or as a system of linear equations 
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which is n equations in n + 1 unknowns al, ... , an+! , with Vl,l, ... - Vn,n+l 

as coefficients (exactly the reverse of the usual interpretation of such a 
system). These equations are certainly compatible, since al = ... = an+! = 
o is a solution, but this solution cannot be the only solution: that would 
mean that fewer equations than unknowns determined the values of the 
unknowns. 

To see this rigorously, row reduce the matrix [Vl, ... ,vn +1. 01. At least 
one of the n + 1 columns must not contain a leading 1, since there is at 
most one per row and there are fewer rows than columns. By Theorem 
L1.9, there cannot be a unique solution to the system of equations. 

For the second part, let Vt. ... , Vn-l be vectors in ]Rn. To say they do 
not span is to say that there exists a vector b such that the equation 

has no solutions. Again write this out in full, to get 

= :' 

i.e., n equations in the n-l unknowns al, ... , an-t. with Vl,l, ... , Vn,n-l as 
coefficients. We must see that the bi's can be chosen so that the equations 
are incompatible. Write the matrix 

[Vt. ... , Vn-t. I, 

temporarily leaving the last column blank. Row-reduce it, at least the first 
n - 1 columns. There must then be a row starting with n - 1 zeroes, since 
any row must either begin with a leading one or be all zeroes; furthermore, 
there is at most one leading 1 per column. Now put a 1 in the nth, or 
last, position of that row and fill up the nth column by making all the 
other entries O. By Theorem L1.9, case (b), such an echelon form of the 
matrix represents a system with no solution. Since any row operation can 
be undone, we can bring the echelon matrix back to where it started, with 
the matrix A on the left; the last column will then be a vector b, making 
the system incompatible. 0 

In a vector space, an ordered set of vectors Vl, ... ,Vn is called a basis 
if it satisfies one of the three following equivalent conditions (We will see 
below that they are indeed equivalent): 

(1) The set is a maximal linearly independent set. 

(2) The set is a minimal spanning set. 

(3) The set is a linearly independent spanning set. 
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Example L2.7. The most fundamental example of basis is the standard 
basis of ]Rn: 

Clearly, every vector is in the span of el, ... , en: 

it is equally clear that el, ... ,en are linearly independent (Exercise L2#4) . 

• 
Example L2.S. The standard basis is not in any sense the only one. Quite 
the contrary: in general, any old n vectors in ]Rn form a basis. For instance, 

We need to show that the three conditions for a basis are indeed equiv­
alent: 

If a set Vl,"" Vn is a maximal linearly independent set, then for any 
other vector w, the set {Vl, ... , Vn, w} is linearly dependent, and there 
exists a nontrivial relation 

al Vl + ... + an Vn + bw = O. 

The coeffcient b is not zero, because the relation would then involve only the 
v's, which are linearly independent by hypothesis; so w can be expressed 
as a linear combination of the v's and we see that the v's do span. 

But {Vl,"" vn} is a minimal spanning set: if one of the Vi'S is omitted, 
the set no longer spans, since the omitted Vi is linearly independent of 
the others and hence cannot be in the span of the others. This shows that 
(1) and (2) are equivalent; the other equivalences are similar and left as 
Exercise L2#6. 

Now Theorem L2.6 above can be restated: 

Theorem L2.9. Every basis of]Rn has exactly n elements. 

Indeed, a set of vectors never spans if it has fewer than n elements, and 
is never linearly independent when it has more than n elements. 



Appendix L2 389 

A vector space is finite-dimensional if it is spanned by finitely many 
elements. It then has a basis (in fact, many bases): find any finite spanning 
set and discard elements of it until what is left still spans, but if another 
vector is discarded, it no longer does. 

Theorem L2.10. Any two bases of a finite-dimensional vector space have 
the same number of elements. 

Proof. Let Vb ... , vn be the first basis and W1, .•• , Wm be the second. 
Then we can write 

n 

Wj = L ai,jVi· 
i=1 

Now any vector V can be written uniquely v = E~1 biVi = Ej:1 CjWj, so 

n m m n n m 

LbiVi = LCjWj = LCj Lai,jVi = LLCjai,jVi, 
i=1 j=1 j=1 i=1 i=1 j=1 

so that bi = Ej:1 Cjai,j. Consider the bi's known and this expression a 
system of n linear equations for the m unknowns C1, •.. , em. The state­
ment that there exist such Ci'S and that they are unique is precisely the 
statement that this system of equations has a unique solution. We have 
seen in Theorem Ll.9 that this requires that there be as many unknowns 
as equations, i.e., that n = m. 0 

If a vector space is finite-dimensional, then the number of elements in a 
basis is called the dimension of the vector space. The dimension of a space 
is the same as the number of parameters used to describe it. Therefore, we 
can now more clearly state Theorem Ll.9, case (c): the dimension of the 
solution space to a system of linear equations with infinitely many solutions 
is the same as the number of columns of A not containing a leading l. 

Theorem L2.10 says precisely that an has dimension n. Therefore, we 
have 

Principle L2.11. An n-dimensional vector space with a basis is essentially 
the same as an. 

More precisely, if Vb .•. , vn is a basis of a vector space V, then V can 
be identified to an by identifying v with its coefficients with respect to the 
basis: 

a ~ [] can be identilied with a,v,+··· + .. v. ~ v. 

One way to understand the proof of Theorem L2.10 is to think that we 
identified V with an, via the basis Vb ... , vn; then in that identification, 
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Wl, ... , Wm became m vectors of ]Rn, namely the columns of the matrix 
(ai,j)' (Think about this, as Exercises L2#1O, 11.) The identification pre­
serves all "linear features"; in particular, these m vectors are a basis of]Rn, 
hence there are n of them. We shall use this fact in Section L2.4. 

Remark. Not every vector space comes with an outstanding basis like ]Rn 
does. 

Example L2.12. Consider the subspace V c ]R3 given by 

This V does not (in the authors' opinion) have any obvious basis, but, 
of course, it does have lots of bases; for instance, 

U] U] m U] [-1] 
Each of these bases induces an identification of ]R2 with V as above. For 
instance, the first pair of basis vectors induces the identification of 

Exercise L2#8 asks you to write the identification corresponding to the 
second pair of basis vectors. • 

More generally, any theorem about ]Rn is also a statement about every n­
dimensional vector space, and any question about finite-dimensional vector 
spaces can be replaced by a question about ]Rn. We will see many instances 
of this sort of thinking, both in these appendices and in the body of the 
book. 

Remark. Once you have understood and absorbed the philosophy above, 
another question naturally comes up: if all vector spaces (at least finite 
dimensional) are just like]Rn, then why study abstract vector spaces? Why 
not just stick to ]Rn? The answer is a bit subtle: ]Rn has more structure 
than just any old vector space-it has a distinguished basis. When you 
prove something about ]Rn, you then need to check that your proof was 
"basis independent" before you can extend it to an arbitrary vector space. 
Even this answer is not really honest; proving things basis independent is 
usually quite easy. But mathematicians do not really like such proofs: if 
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you can prove something by adding some structure and then showing you 
did not need it, it should be possible to prove the same thing without ever 
mentioning the extra structure. This aesthetic-philosophical consideration 
is also part of why abstract vector spaces are studied. 

Let us turn briefly to the idea of a vector space that is infinite-dimensional. 

Example L2.13. The vector space e[O, 1] of continuous functions on [0,1], 
as in Example L2.3, is not finite-dimensional. This may be seen as follows: 

Suppose functions It, ... , / n were a basis and pick n + 1 distinct points 
xb ... ,Xn+I in [0,1]. Then given any values CI, ... ,Cn+b there certainly 
exists a continuous function /(x) with /(Xi) = Ci, for instance, the piecewise 
linear one whose graph consists of the line segments joining up the points 
(Xi, Ci). 

We can write / = E ak/k and, evaluating at the Xi, we get 

i = 1, ... ,n + 1. 

This, for given Ci'S, is a system of n + 1 equations for the n unknowns 
ab ... , an; we know by Theorem L1.9 that for appropriate c/s the equa­
tions will be incompatible. This is a contradiction to the hypothesis that 
/b ... , /n spanned. • 

Remark. In infinite-dimensional vector spaces, bases still make sense but 
tend to be useless. The interesting notion is not finite linear combinations 
but infinite linear combinations, i.e., infinite series E:'o aiVi. This intro­
duces questions of convergence, which are very interesting indeed, but a 
bit foreign to the spirit of linear algebra. We will examine such questions, 
however, when dealing with Fourier series. 

L2.3. LINEAR TRANSFORMATIONS AND MATRICES 

In "concrete" linear algebra, the central actors were "column vectors," in­
habiting ]Rn; these became ''vectors'' inhabiting ''vector spaces" in "ab­
stract" linear algegra. The other major actors of "concrete" linear algebra 
are "matrices"; these correspond to "linear transformations" in the abstract 
language. 

If V and W are vector spaces, a linear trans/ormation T: V -+ W is a 
mapping satisfying 

for all scalars a, b and all VI, V2 E V. 

Example L2.14. Matrices give linear transformations: let A = (ai,i) be 
an m x n matrix (that means m high and n wide). Then A defines a linear 
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transformation T: IRn _ IRm by matrix multiplication: 

T(v) = Av. 

Such mappings are indeed linear, because A(v + w) 
A(cv) = cAY. A 

Appendix L 

Av + Aw and 

Remark. In practice, a matrix and its associated linear transformation are 
usually identified, and the linear transformation T : IRn _ IRm is denoted 
simply by its matrix A. 

For an infinite-dimensional V, a linear transformation T is often given 
as a differential opemtor on the functions that comprise V: 

Example L2.15. Let V be the vector space P2 of polynomials p(x) of 
degree at most 2; then an example of a linear transformation T is given by 
the formula 

T(p)(x) = (x2 + l)p"(x) - xp'(x) + 2p(x). 

The notation T(p)(x) emphasizes that T acts on the polynomials p that 
comprise the vector space P2 , never on a number p(x) that might describe 
p for a particular x. 

We leave it to the reader as Exercise L2# 13 to verify linearity. A 

Example L2.16. A differential operator like that in Example L2.15 can 
be used on a more general function f ( x) to define a linear transformation 
such as 

T(f)(x) = (x2 + 1)!"(x) - xJ'(x) + 2f(x), T: C2 [0, 1] - C[O, 1] 

from the space of twice continuously differentiable functions on [0,1] to the 
space of continuous functions on [0,1]. A 

Alternatively, for an infinite-dimensional V, a linear transformation T is 
sometimes given by an integml involving the functions of V, corresponding 
to the matrix A of the finite-dimensional case. 

Example L2.17. There are analogs of matrices in C[O, 1]. Let K(x,y) be 
a continuous function of x and y defined for 0 ::; x, y ::; 1, and consider the 
mapping 

T:C[O, 1]- C[O, 1] 

given by 

T(f)(x) = fa1 K(x,y)f(y)dy. 
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This is analogous to Example L2.14, which could be written 

n 

T(V)i = Lai,jVj, 
j=l 

393 

but here the discrete indices i, j have become "continuous indices" x, y. 
A 

For finite-dimensional matrices, the following result is crucial: 

Theorem L2.1S. Every linear transformation T:]Rn -+ ]Rm is given by an 
m x n matrix MT , the ith column of which is T(ei). 

This means that Example L2.14 is "the general" linear transformation 
in finite-dimensional vector spaces. 

Proof. Start with the linear transformation T of Example L2.14 and man­
ufacture the matrix A according to the given rule. Then given any v E ]Rn, 

we may write 

then, by linearity, 

which is precisely the column vector Av. 0 

Example L2.19. Consider Sf}, the rotation about the origin by an angle 
() in the plane, as shown in Figure L2.2. Since 

Sf} [~] = [:~::] , S [0] _ [-sin(}] f} 1 - cos(} , 

• 
[ -sin 9] '.. 
COsS ... 

... 9 

[~] 

[ COS 9] 
sin9 __ • 

.' .•.•.. 9 
---

FIGURE L2.2. 

Theorem L2.18 tells us that Sf} is given by the matrix 

[ COS(} -Sin(}] 
sin () cos () . 
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y 

[ XCOSO-YSinO]_ rCOs(a+o)] 
xsinO+ycosO -lxILsin(a+O) 

FIGURE L2.3. 

Exercise L2#7a,b asks you to confirm the geometric picture shown in 
Figure L2.3 and compute some examples of rotations by matrices. A 

Remark. In order for a rotation to be a linear transformation, it must 
be about the origin, which remains fixed. Rotation about any point other 
than the origin is not linear. (See Exercise L2#7c.) 

Example L2.20. Consider Example L2.15. We will identify the polynomi­
als of degree at most 2 with ]R3 by identifying 

We can find the matrix A that describes this linear transformation by the 
following observations: 

T{p){x) = (x2 + l)p"{x) - xp'{x) + 2p{x). 

if p{x) = 1, 

if p{x) = x, 
if p{x) = x2, 

T(l) = 2; 

T(x) = x; 
T(x2) = 2x2 + 2. 

From this, you can show (Exercise L2#13) that T is given by the matrix 

Exercise L2#13 also asks you to compute the matrices of the same dif­
ferential operator, operating on polynomials of degree at most 3, 4, n. A 
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If Vi! V2, and V3 are vector spaces and if S: Vl - V2 and T: V2 - V3 
are linear transformations, then the composition To S: Vl - V3 is again a 
linear transformation. In particular, if Vl = anI, V2 = an2 , and Va = an3 , 

then the matrix MTos should be computable in terms of Ms and MT. 

Theorem L2.21. Composition corresponds to matrix multiplication: 

MTos =MTMS. 

Proof. Take ei E anI, then S(ei) E an2 is the ith column of Ms, and 
T(S(ei» = MTS(ei) E an3 is the ith column of MTMS. 0 

Remark. Many mathematicians would claim that this proposition "ex­
plains and justifies" the definition of matrix multiplication. This may seem 
odd to the novice, who probably feels that composition of linear mappings 
is far more baroque than matrix multiplication. 

One immediate consequence of Theorem L2.21 is: 

Corollary L2.22. Matrix multiplication is associative: if A, B, and C are 
matrices such that the matrix multiplication (AB)C is allowed, then so is 
A(BC), and they are equal. 

Proof. Composition of mappings is associative. 0 

L2.4. MATRICES OF LINEAR TRANSFORMATIONS WITH 

RESPECT TO A BASIS 

So far, matrices have corresponded to linear transformations an _ an 
or en _ en. What about linear transformations defined on more general 
vector spaces? 

In accordance with Principle L2.11 that a vector space with a basis is an, 
we will not be surprised to hear that if vector spaces V and W have bases 
{Vl, ... , vn } and {Wi! ... , w m }, respectively, then any linear transforma­
tion T: V - W has a matrix (ti,j) with respect to the bases. One way to see 
this is to say that the bases allow us to identify V and W to an and am, 
respectively, via the coefficients of the basis vectors. Then the coefficients 
ofT(v) with respect to the Wi must depend linearly on the coefficients ofv 
with respect to the Vi. What this boils down to, in practice, is the following 
formula: 

T(Vi) = Ltj,iWj, 

which can be taken as the definition of the matrix. Note the order of the 
indices: the ith column of ti,j is the vector of coefficients of T(Vi) with 
respect to {Wi! ... , wm }. A look at Theorem L2.18 will show that this is 
indeed the correct definition. 
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In practical applications, the vector spaces V and W are often !R.n and 
!R.m themselves, but the bases {Vl,"" v n } and {Wl,"" w m } are not the 
standard bases. Is it possible to find the matrix of a linear transformation in 
terms of the new bases in terms of the old matrix? Of course, it is possible, 
and the important change of basis theorem is the answer: 

Theorem L2.23. If {Vb ... , v n } and {Wb"" wm } are bases of!R.n and 
!R.m respectively, and if we form the matrices 

P = [Vb' .. ,vnJ and Q = [Wb' .. ,wmJ, 

then the linear transformation T:!R.n -+ !R.m having matrix A with respect 
to the standard basis has matrix Q-l AP with respect to the new bases. 

The matrices P and Q are called the change of basis matrices, and 
Q-l AP is the change of basis formula. 

Before proving Theorem L2.23 formally, let us see exactly what the 
change of basis matrices actually do. 

If a E !R.n , then Pa = alVl + ... + anvn , so that P takes a column of 
numbers and uses them as coefficients of the Vi: 

[z] 

Thus, p- l must do the opposite; it takes vectors in !R.n and gives you their 
coordinates with respect to the Vi. You might think of P as synthesis and 
p- l as analysis. 

Proof of Theorem L2.23. The ith column of a matrix is the result of 
applying the matrix to ei' So let us compute Q-l AP(ei). Well, P(ei) = Vi, 

so AP(ei) = A(Vi)' Finally, Q-l takes a vector and gives its coordinates 
with respect to the basis {Wb ... , w m }. So the ith column of Q-l AP 
is formed of the coordinates of Vi with respect to {Wl, ... , w m }; this is 
precisely what was to be proved. 0 

Of particular importance will be the case where n = m, and the bases in 
the domain and the range coincide. In that case, there is only one change 
of basis matrix P, and the matrix of the linear transformation with respect 
to the new basis is p- 1 AP. The matrices A and p- l AP are said to be 
conjugate: they are different descriptions of the same linear transformation. 
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They will share many properties: determinants, characteristic polynomials, 
eigenvalues, dimensions of eigenspaces, etc. Over and over, we will say 
that some property of linear transformations is "basis independenf'; this 
means that if a matrix has the property, then all its conjugates do too. (See 
Appendix L5, Theorems L5.6, L5.8, and L5.1O.) 

Note: Any invertible matrix is a change of basis matrix if you use its 
columns for the basis. 

L2.5. KERNELS AND IMAGES 

The kernel and the image of a linear transformation are the "abstract" no­
tions that allow a precise treatment of uniqueness and existence of solutions 
to linear equations. 

If V and W are vector spaces and T: V -+ W is a linear transformation, 
then the kernel of T is the subspace ker(T) C V given by 

ker(T) = {v E V I T(v) = o}. 

For more or less obvious reasons, this space is also often called the null 
space of T. 

The image of T is the set of vectors w such that there is a vector v with 
T(v) = w. That is, 

Im(T) = {w E W I there exists v E V such that T(v) = w}. 

(Sometimes the image is also called the "range": this usage is a source 
of confusion since most authors, including ourselves, call the whole vector 
space W the range of T; consequently, we shall not use the word "range" 
to refer to the image.) 

If V and W are finite-dimensional, we may choose bases for V and W; 
i.e., we may assume that V = IRn, W = IRm and that T has an m x n 
matrix A. If we row-reduce A to echelon form A, we can read off a basis 
for the kernel and the image by the following two neat tricks: 

(i) The image is a subspace of W = IRm. Hence any basis will 
consist of m-vectors. Such a basis is provided by those columns 
of the original matrix A that after row-reduction will contain a 
leading 1; the row-reduced matrix A shows that these columns 
of A are linearly independent. 

(ii) The kernel is a subspace of V = IRn. Hence, any basis 
will consist of n-vectors. We will find one such basis vector for 
each column of A that does not contain a leading 1, as follows: 
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If the jth column of..4 does not contain a leading 1, then it 
is a linear combination of those that do, giving a vector 

Cj = Cjj , 

such that ..4Cj = OJ hence, ACj = o. 
The vectors Cj found this way are linearly independent, since 

exactly one has a 0 sitting in each position corresponding to a 
column without leading 1 'so 

Example L2.24. Consider the matrix 

[-: 2 3 7 

~l 1 0 -1 A= 
1 -1 0 1 
0 2 2 4 

which row-reduces to 

[1 0 1 3 0] 
..4= 0 1 1 2 0 

o 0 0 0 1 
o 0 000 

and describes a linear transformation from ]R5 to ]R4. According to the 
prescription above, we find bases for the image and for the kernel as follows: 

(i) The leading l's of the row-reduced matrix..4 are in columns 1, 2, and 
5, so columns 1, 2, and 5 of the original matrix A are a basis for the image: 

(ii) A basis for the kernel is provided by the columns not containing 
leading 1 'so We have in ..4 

col 3 = col 1 + col 2j col 4 = 3 colI + 2 col 2. (1) 

The second equation of (1) can be rewritten as 

3(coll) + 2(col 2) + O(col 3) - l(col 4) + O(col 5) = Ax = O. 
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A solution for Ax = 0, and hence for Ax = 0, is found from the coefficients 
of the columns in the last line: 

In like manner, the first equation of (1) can be rewritten and you can find 
another 5-vector, linearly independent of the one from the fourth column 
(just looking at the third and fourth entries shows that one is not a multiple 
of the other) and we now have a basis for the kernel: 

Hl' [-rl· · 
Many students find kernels and images difficult concepts to absorb and 

use comfortably. These important but rather abstract concepts are best 
understood in terms of linear equations, where the linear transformation T 
is represented by a matrix A: 

The kernel of T is the set of solutions of the homogeneous equa­
tion Ax = O. 

The image of T is the set of vectors b for which there exists a 
solution of Ax = b. 

Kernels are related to uniqueness of solutions of linear equations, and 
images are related to their existence. The latter fact is stated directly above, 
and the former fact results from the following statement, which is easy to 
prove: 

Vectors Xl and X2 are both solutions of Ax = b if and only if 
Xl -x2 E ker(A)j in particular, solutions are unique if and only 
if ker(A) = {O}. 

Much of the power of linear algebra comes from the following theorem, 
known as the dimension formula. It says that there is a conservation law 
concerning the kernel and the image, and that saying something about 
uniqueness ipso facto says something about existence. 

Theorem L2.2S. Let V and W be finite-dimensional vector spaces, of 
dimensions nand m, respectively, and let T: V -+ W be a linear transfor­
mation. Then 

dim(ker(T)) + dim(Im(T)) = dim V. 
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Proof. This is clear from tricks (i) and (ii) above. We find one basis vector 
for the kernel for each column of A containing a leading 1, and one basis 
vector for the kernel for each column of A containing a leading 1, so in all 
we find 

dim(ker(T)) + dim(Im(T)) = number of columns of A = dim V. 

o 

The most important case of Theorem L2.25 is when the dimensions of V 
and W are equal. 

Corollary L2.26. If V and W are finite-dimensional vector spaces with 
the same dimension, and T: V -+ W is a linear transformation, then 

the equation T(x) = b has a solution for any b 

if and only if 

the equation T(x) = 0 has only the solution x = O. 

Proof. Let n be the dimension of V and W. The first statement above is 
that W is the image of T, so dim(Im(T)) = nj hence, dim(ker(T)) = 0, 
which is the second statement. 0 

The power oflinear algebra comes from Corollary L2.26. See the following 
example and Exercises L2#16 and L2#17. 

Example L2.27. Partial fractions. This example is rather extensive but 
gives a good idea of the power of Corollary L2.26. Let 

P(x) = (x - xt}nl ... (x - Xk)nk 

be a polynomial of degree n = nl + ... +nk, with the Xi distinct. The claim 
of partial fractions is that for any polynomial q of degree < n, the rational 
function q(x)/p(x) can be written uniquely as 

q(x) ql(X) + ... + qk(X) (2) 
p(x) (x - Xl)n1 (x - Xk)nk ' 

with each qi a polynomial of degree < ni. 
The space V of all such ''vectors of polynomials" (ql (x), ... , qk (x)) is 

of dimension n, since the ith polynomial has ni coefficients, and similarly 
the space W of polynomials q of degree < n has dimension n. The process 
of multiplying out the right-hand side of (2) to get the left-hand side is a 
linear transformation T: V -+ W, which can be written "explicitly" as 

T(ql, . .. , qk) = ql (x)(x - X2)n2 ••• (x - Xk)n k + ... + qk(X)(X - xt}nl 
... (x - Xk_l)n k - 1 • 
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Except in the simplest cases, however, computing the matrix of T would 
be a big job. 

Saying that q/p can be decomposed into partial fractions is precisely 
saying that W is the image of T, i.e., the first condition of Corollary L2.26. 
Since it is equivalent to the second alternative, we see that "partial fractions 
'Vork" if and only if 

the only solution of T( qb ... ,qk) = 0 is ql = ... = qk = O. 

Lemma L2.2S. If qi =1= 0 is a polynomial of degree < ni, then 

Proof. By making the change of variables u = x - Xi, we can suppose 
Xi = O. Since qi =1= 0, qi(X) = amxm+ higher terms, with am =1= 0 and 
m < ni' By Taylor's theorem, for any c there exists 6 such that 

if Ixi < 6. So 

which tends to 00 as X tends to O. 
It follows from this that T(qt, . .. , qk) =1= 0 if some qi =1= 0, since for all 

j =1= i, the rational functions 

have the finite limits qj(Xi)/(X, - Xj)n; as X -+ Xi, and therefore the sum 

has infinite limit as X -+ Xi and therefore q cannot vanish identically. 0 

Examine Example L2.27 carefully. It really put linear algebra to work. 
Even after translating the problem into linear algebra, via the linear trans­
formation T, the answer was not clear, and only after using dimensions 
and the dimension formula is the result apparent. Still, all of this is noth­
ing more than the intuitively obvious statement that either n equations in 
n unknowns are independent, the good case, or everything goes wrong at 
once. 
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L3 Vector Spaces and Inner Products 

An inner product on a vector space is that extra structure that makes met­
ric statements meaningful: such notions as angles, orthogonality, and length 
are only meaningful in inner product spaces. The archetypal examples are 
the dot product on JRn and en. Just as in the case of vector spaces, we will 
see that these examples are not just the most obvious ones, but that all 
others are just like them. 

However, also just as for vector spaces, there are frequent occasions where 
stripping away the extra structure of JRn and en is helpful, and we will begin 
with the general definition. 

In this appendix, we will describe spaces with inner products; then in 
Appendix L4 we will deal with the relations between linear transformations 
and inner products. 

L3.1. REAL INNER PRODUCTS 

An inner product on a real vector space V is a rule that takes two vectors 
a and b and gives a number (a, b) E JR, satisfying the following three rules: 

(i) (a, b) = (b, a) 

(ii) (aal + f3a2, b) = a(at, b) + f3(a2, b) 

(iii) (a, a) > 0 if a =F 0 

symmetric 

linear 

positive definite. 

The norm of a vector a with respect to an inner product is 

lIall = ../(a,a). 

Example L3.!. The standard inner product or dot product on JRn, 

n 

a·b= Laibi =aTb, 
i=l 

satisfies all these properties. Furthermore, 

lIall = va:a: = Ja~ +a~ + ... +a~ 

gives the standard, or Euclidean norm. & 

Example L3.2. On JR2, consider the function 
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This function easily satisfies properties (i) and (ii). For property (iii), ob­
serve that 

(a, a) = 2a~ + 2a~ + 2ala2 = (al + a2)2 + a~ + a~ 
is a sum of squares and is certainly strictly positive unless a = O. Hence, 
(a, b) is also an inner product. & 

The next example will probably be less familiar; it is, however, of great 
importance, particularly in trying to understand what Fourier series are all 
about. 

Example L3.3. Consider V the vector space of continuous functions on 
an interval [a, b], and p(x) a positive continuous function on [a, b]. Then the 
integml 

(/,g) = lb p(x)f(x)g(x)dx 

defines an inner product on V. The case p = 1 is the continuous analog of 
the standard inner product. & 

L3.2. COMPLEX INNER PRODUCTS 

A complex inner product (also called a Hermitian inner product) on a com­
plex vector space V is a complex-valued function on two vectors a and b 
giving a number (a, b) E e, satisfying the following three rules: 

(i) (a, b) = (b, a) 

(ii) 

(iii) (a, a) > 0 if a ;of 0 

conjugate-symmetric 

linear with respect to 
first argument 

positive definite. 

where the bar denotes the complex conjugate. Note that property (ii) is 
unchanged from the real case, but, in combination with (i), it says that 
the complex inner product is linear with respect to the first variable but 
not the second. Note also that property (iii) makes sense because, from (i), 
(a, a) is real. 

Example L3.4. In en, the standard inner product is (a, b) = Li aibi, and 
the norm is lIall = V(a,a). & 

Example L3.5. Let V be the vector space of complex-valued continuous 
functions on [-11", 11"]. Then the formula 

(/,9) = i: f(x)g(x)dx 
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defines an inner product on V [where g(x) is the complex conjugate of 
g(x)]. • 

L3.3. BASIC THEOREMS AND DEFINITIONS USING INNER 

PRODUCTS 

The following rather surprising theorem concerning the transpose of a ma­
trix (defined at the end of Section L1.4) is very useful in manipulating and 
proving other theorems throughout the rest of linear algebra. 

Theorem L3.6. For any two vectors v and w in a real or complex inner 
product space and any real or complex-valued matrix A, 

T -(A v, w) = (v, Aw). 

The proof of Theorem L3.6 is straightforward and is left as Exercise 
L3#1. 

Remark. Theorem L3.6 says that the transpose depends on the inner 
product, not the basis; this is why it is important. 

Suppose V and W are vector spaces with inner products (but without 
chosen bases). If T: V - W is a linear transformation, then there is an 
abstract transposed linear transformation TT: W - V, often called the 
adjoint, defined by the formula 

(TT w, v) = (w,Tv). 

If V = an and W = am, with inner products the standard dot product, 
the matrix for TT is (MT ) T. 

Another fact we shall want to have handy is the following: 

Theorem L3. 7. The derivative of an inner product follows the ordinary 
product rule for derivatives: (v(t) , w(t)}' = (v/(t), w(t) + (v(t), w/(t). 

The proof of Theorem L3.7 is straightforward and is left as Exercise 
L3#2. 

In the case of a complex vector space, Theorem L3.7, in conjunction 
with the definition of inner product, leads to interesting results like the 
following: 

Example L3.S. If a vector v E en, 

! IIvll2 = (v', v) + (v, v') = (v', v) + (VI, v) = 2Re (v', v), 
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where Re refers to the "real part" of the complex inner product (Vi, v) . 

• 
Another result, absolutely fundamental, about inner products is the fol­

lowing: 

Theorem L3.9 (Schwarz's Inequality). For any two vectors a and b 
in a real or complex inner product space, the inequality 

I(a, b)1 :::; IIail IIbil (1) 

holds, and equality holds if and only if one of a and b is a multiple of the 
other by a scalar. 

Proof. This proof is not simply crank-turning and really requires some 
thought. The inequality is no easier to prove for the standard dot product 
than it is in the general case. We will prove the real case only; the complex 
case is in Exercise L3#3. 

For the first part, consider the function IIa + kbll 2 as a function of k. It 
is a second degree polynomial, in fact 

and it also only takes on values ~ O. But if the discriminant 

of the polynomial were positive, the polynomial would have two distinct 
roots and certainly would change sign. So the discriminant is nonpositive, 
as we wanted to show. 

For the second part, assume b = ca with c > 0; equality now drops 
out of inequality (1) when the discriminant is zero. Moreover, if a and b 
are linearly independent, the polynomial Iia + kbll 2 never vanishes; so the 
discriminant is strictly negative, and equality cannot occur. 0 

Having Schwarz's inequality, we can make the following definition: 
The angle between two vectors v and w of an inner product space V is 

that angle 0 satisfying 0 :::; 0 :::; 7r such that 

(v,w) 
coso = IIvil IIwil' 

Schwarz's inequality was needed to make sure that there is such an angle, 
since cosines always have absolute value at most 1. 
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L3.4. ORTHOGONAL SETS AND BASES 

Two vectors are called orthogonal (with respect to an inner product) if 
their inner product is zero; this means that the angle between them (just 
defined) is a right angle, as it should be. A set of vectors is orthogonal if 
each pair is orthogonal. A set of vectors is further said to be orthonormal 
if all the vectors are of unit length. 

In general, you cannot say whether a set of vectors is independent just 
by looking at pairs, but if they are orthogonal, you can. 

Theorem L3.10. If a set of nonzero vectors is orthogonal, then the vectors 
are linearly independent. 

Proof. Let al, ... ,lin be an orthogonal set of nonzero vectors and suppose 
L ki 8.i = O. Then 

0= lIL:ki8.i1l
2 = L:kikj (8.i,aj) = L:k;I!8.i1!2, 

i,j 

and the only way this can occur is for all the ki to be zero. D 

Orthogonal bases have a remarkable property. In general, if you wish to 
express a vector with respect to a basis, you must write it as a linear com­
bination of the basis vectors, using unknowns as coefficients, and expand. 
You then obtain a system of linear equations, with as many equations and 
unknowns as the dimension of the space. Solving such a system is cumber­
some when there are many equations. But if the basis is orthogonal, each 
coefficient can be computed with one inner product; this result is essential 
to motivating the definition of Fourier coefficients. 

Theorem L3.11. If Ut, U2,··., Un is an orthogonal basis of V, then for 
any a E V, we have 

a = t (a, Ui) Ui' 

i=l (Ui' Ui) 

Proof. Certainly, we can write a = LajUj, since the Uj form a basis. Take 
the inner product of both sides with Ui, to get (a, Ui) = ai(ui, Ui), which 
can be solved for ai' D 

Remark. The formula of Theorem L3.11 will find its main use in calculat­
ing the coefficients of Fourier series. In that case, the basis in use is often 
orthogonal but not orthonormal. 

Theorem L3.12. If Wt, ... , Wn is an orthonormal basis of a real vector 
space V, and if 



Appendix L3 407 

then (a, b) = I: aibi' 

Proof. Just plug in: (a, b) = L:i,j aibj(wi, Wj) = L:i aibi' 0 

Simple though the proof might be, this result is important; it says that 
if you identify an inner product space V with IRn using an orthonormal 
basis of V, then the inner product becomes the ordinary dot product on 
the coordinates. This says that vector spaces with inner products have no 
individuality; they all look just like IRn with the ordinary dot product, at 
least if they have orthonormal bases, which they do, as we will see below. 

L3.5. THE GRAM-SCHMIDT ALGORITHM 

The Gram-Schmidt algorithm is one of the fundamental tools of linear 
algebra, used in innumerable settings. 

Theorem L3.13 (Gram-Schmidt Orthogonalization). Let V be a vec­
tor space with an inner product and Ul, U2, ... , Urn be m linearly indepen­
dent vectors of V. Then the algorithm below constructs an orthonormal set 
of vectors WI,"" Wrn having the same span. 

Proof. Define new vectors a; and Wi inductively as follows: 

al = Ul, 
a2 = U2 - (U2' Wl)Wb 
a3 = U3 - (U3, Wl)Wl - (U3, W2)W2, 

WI = a1/lIall1, 
W2 = a2/lla211, 
W3 = a3/lIa311, 

Wm = 3m/1I3m1l· 

The WI, ... , Wk are clearly unit vectors, so the normal aspect is covered; 
showing algebraically that they are orthogonal is left as Exercise L3-4#6a. 

To finish proving the theorem, assume by induction that the span of 
Wb ... , Wk-l is the same as the span of Ul,"" Uk-I. Writing ak = 0 
is precisely writing Uk as a linear combination of Wb"" Wk-b which is 
impossible, so ak i- 0 and the division by Ilak II is possible. Then in the 
kth line above, Uk is a linear combination of WI,"" Wk, and that Wk is a 
linear combination of Uk, Wk-l, ... , Wb verifying the inductive hypothesis 
for k. 0 

Example L3.14. Figure L3.1 shows the Gram-Schmidt algorithm in action 
in 1R2 . 
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'a-u 29 U '2- 2-25 1 , , , , , 

W1 = t[~] 

, , 

FIGURE L3.1. Gram-Schmidt orthogonalization. 

al 1 [4] [0.8] 
WI = IIal II = 5 3 = 0.6 ' 

a2 1 [-2.64] [-0.6] 
W2 = lIa211 = 4.4 3.52 0.8' 

= [~] - {~[~]. [~]} ~ [~] 
[2] 29 [4] [-2.64] 

= 7 - 25 3 = 3.52 . A 

Theorem L3.15. Any finite-dimensional vector space with an inner prod­
uct has an orthonormal basis. 

Proof. Apply Gram-Schmidt to any basis. 0 

L3.6. ORTHOGONAL COMPLEMENTS AND PROJECTIONS 

Let V be an inner product space and W be a subspace of V. Then the 
orthogonal projection 1i"w(v) ofv onto W is the unique vector in W closest 
to V. If W is finite dimensional, there is a formula for 1i"w (v) in terms of 
an orthonormal basis for W. 

Theorem L3.16. If V is an inner product space and W a finite-dimensional 
subspace with an orthonormal basis W17 W2, ••. , Wk, then 

(2) 

Proof. We can express 1i"w(v) as Ei aiwi, and then the job is to find the 
ai's. Since we want to minimize the distance from v to 1i"w(v), this means 
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we want to minimize 

which can be rewritten 

= IIvll2 + ~) (v, Wi) - ai)2 - L (v, Wi)2. 

i i 

In this final form, the first and last terms do not depend at all on the ai's, 
so the only term that can be adjusted by the ai's is the middle term. When 

the middle term is zero, producing a minimum of the distance from 7rw{v) 
to V. This proves uniqueness and existence of expression (2) representing 
7rw (v) in terms of the orthonormal basis of W. 0 

Example L3.I7. Consider in 1R3 a vector x and a subspace S that is a 
plane through the origin. Then 7rs{x) is the vector lying in S obtained by 
dropping perpendiculars from the ends of the vector x to the plane S, as 
shown in Figure L3.2. 

FIGURE L3.2. Orthogonal projection. 

Remark. If W is infinite-dimensional, you can still try to use the argument 
of Theorem L3.16. The finite sum Li aiWi now becomes a series; you need 
to worry about its convergence. We will see, when dealing with Fourier 
series, that such questions can be quite complicated. In particular, it is quite 
possible, when W is infinite dimensional, that the orthogonal projection 
does not exist: sometimes there will not be a vector in W closest to v. 
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There is now one more term to define: The orthogonal complement of W 
is the subspace 

W.L = {v E V I (v, w) = 0 for all w E W}. 

Example L3.18. The orthogonal complement of the plane S in Example 
L3.17 is S.l., the line through the origin that is perpendicular to S, as shown 
in Figure L3.3. The projection 7rs.!. (x) is the vector obtained by dropping 
perpendiculars from the ends of x to the line S.L. 

FIGURE L3.3. Orthogonal complement S.!. and projection 7rs.!. (x). 

We can now decompose the vector x into the two components shown in 
Figures L3.3 and L3.4j that is, we can write x as the sum of its orthogonal 
projection and its projection on the orthogonal complement: 

FIGURE L3.4. Decomposition: x = 7rs(x) + 7rs.!.(x). .. 

Example L3.18 illustrates the following important theorem. 

Theorem L3.19. Any vector v E V can be written uniquely as 

v = 7rw{v) + 7rw.!.{v). 

Furthermore, IIvll2 = l17rw(v)1I2 + l17rw.!.(v)1I2j in particular, IIvll2 > 
l17rw{v)1I2, with equality if and only if v E W. 



Appendix L4 411 

Proof. Let W = ll'WV and w = V-ll'WV. First, let us check that wE W.L. 
It is enough to show that w is orthogonal to all vectors WI, ••• , Wk of some 
orthonormal basis of W. We see this as follows: 

= (v, wi) - I)v, Wi) (Wi, Wi) = (v, wi) - (v, wi) = O. 
i 

Next observe that 

Remark. If we had been in a complex vector space, the cross-term above 
would have been replaced by (w, w) + (w, w) = 2 Re{w, w). 

Finally, we need to show that w = ll'w.L(v), i.e., that if u E W.L, then 
the minimum of IIv - ull is realized by u = w. We see this as 

which is clearly minimal when w = u. 0 

L4 Linear Transformations and Inner Products 

We shall explain in this section the three kinds of linear transformations 
that are intimately linked to real inner products: the orthogonal transfor­
mations, the antisymmetric ones, and the symmetric ones. All these are 
special cases of the corresponding complex linear transformations: unitary, 
anti-Hermitian, and Hermitian, respectively. We will deal here with the 
real case; the complex case will largely be left as exercises but will appear 
in Appendix L6 for characterization of eigenvalues. 

L4.1. ORTHOGONAL TRANSFORMATIONS 

A linear transformation TQ: V - V from an inner product space to itself is 
called orthogonal (for that inner product) iffor any vectors VI and V2 of V 
and matrix Q for T, we have (QVI, QV2) = (VI, V2). That is, an orthogonal 
transformation preserves inner products. 

Remark. The name orthogonal is a bit unfortunate; it would be much 
better to call such linear transformations orthonormal. 

Theorem L4.1. The three following conditions are equivalent: 
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(1) A trons/ormation TQ: Rn --+ Rn is orthogonal/or the dot product. 

(2) The column vectors 0/ the matrix Q 0/ an orthogonal linear trons/or­
mation form an orthonormal basis. 

(3) The inverse 0/ the matrix Q 0/ a linear trons/ormation is its trons-
pose; i.e., QT = Q-l. 

Proof. (1) implies (2) follows from the fact that the columns of WI, ... , Wn 

of Q are the vectors TQ(ei); from the definition of an orthogonal transfor­
mation, we see that 

Wi' Wj = TQ(ei)' TQ(ej) = ei' ej. 

The equivalence of (2) and (3) follows from the following computations: To 
see the equivalence, suppose that the columns of Q are WI..'" W n • Then 
writing QT Q = I, i.e., 

we see that the dot product of each column with itself is 1 (the normal 
part) and with another is 0 (the orthogonal part) because the Wi form an 
orthonormal basis. 

Finally, (3) implies (1) is seen as follows: pick any vectors v, W ERn. 
Then, by the definition of dot product and Theorem Ll.17 about trans-
poses, 

TQ(v), TQ(w) = (Qv)T(Qw) = V T QT Qw = V· w, 

because we are now back to the definition of orthogonal transformation. 
o 

It follows immediately from the definition and Theorem L4.1 that the 
orthogonal trons/ormations form a group, denoted O(n). This means that 
the orthogonal transformations that compose the group must and do satisfy 
the following properties: 

(i) the product of two orthogonal transformations is orthogonal (this was 
clear right from the definition); 

(ii) an orthogonal transformation is invertible; 

(iii) its inverse is orthogonal. 
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Example L4.2. As we saw in Example L2.19, the orthogonal matrix giving 
rotation in JR.2 by angle 0 is 

Q( 0) = [ cc:s 0 sin 0] . 
- smO cosO 

You can confirm that the columns of Q(O) form an orthonormal basis. 
The inverse of Q(O) is rotation by -0, and since sin( -0) = - sin 0, we see 
that 

(1) 

the transpose, as it should. These are not the only elements of 0(2); the 
matrix 

is also orthogonal; geometrically, it represents reflection with respect to the 
x-axis. More generally, the product 

[
COS 0 - sin 0] [1 0] [cos 0 sin 0] 
sinO cosO 0 -1 = sinO - cosO 

is an element of 0(2), and in Exercise L3-4#16 you are asked to show that 
these and the matrices Q(O) are all elements of 0(2). A 

There is a way of expressing the Gram-Schmidt orthogonalization pro­
cess in terms of orthogonal matrices; this formulation will be used twice in 
the remainder of these notes, once in the section on determinants and once 
in the section on the QR method. 

Theorem L4.3. Any matrix M can be written as the product M = QR, 
where Q is orthogonal and R is upper-triangular. 

Proof. This is just a way of condensing the Gram-Schmidt process. Let the 
columns of M be UI,"" Un. First, we will assume that the Ui are linearly 
independent. Then we can apply Gram-Schmidt to them, and using the 
notation of Theorem L3.13 we see that all the Gram-Schmidt formulas can 
be condensed into the following matrix multiplication: 

[IT U2 'WI U3 'WI 

lIa211 U3 'W2 

0 

Un' WI] 
Un 'W2 

II~II 
[WI ... W n ] [ UI U2 

which is precisely what we need, since the matrix [WI,"" wnl is orthogonal 
(Theorem L4.1, part 2). 0 
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L4.2. ANTISYMMETRIC TRANSFORMATIONS 

A linear transformation T from a vector space V to itself is called antisym­
metric with respect to an inner product if for any vectors VI and V2 we 
have 

(antisymmetric T). 

The appropriate definition for the complex case is an anti-Hermitian 
transformation, which takes the complex conjugate of the right-hand side: 

(anti-Hermitian T). 

The reason why antisymmetry is an important property is that 

A ntisymmetric linear transformations are infinitesimal orthog­
onal transformations. 

More precisely, 

Theorem L4.4. Let Q(t) be a family of orthogonal matrices depending on 
the parameter t. Then Q-l(t)Q'(t) is antisymmetric. 

Proof. Start with the definition of orthogonal matrices 

and differentiate with respect to t to get 

Since Q is orthogonal, we can apply Q-l to both terms in each inner 
product, so the equation can be rewritten 

Theorem L4.4 will have the consequence that if T is antisymmetric with 
matrix A, then a solution x( t) of x' = Ax will have constant length; i.e., 
the vector x(t) will move on a sphere of constant radius. Such examples 
will occur and be of central importance in classical mechanics. 

The reason for the word "antisymmetric" is the following. 

Theorem L4.5. If V = IRn with the standard inner product, then a linear 
transformation is antisymmetric if and only if its matrix A is antisymmet­
ric, that is, if AT = -A. 

The proof is easy and left to the reader. 
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L4.3. SYMMETRIC LINEAR TRANSFORMATIONS 

A linear transformation T: V -+ V is symmetric with respect to an inner 
product if for any vectors Vl, v2 E V we have 

(symmetric T). 

The appropriate definition for the complex case is a Hermitian transfor­
mation, which takes the complex conjugate of the right-hand side: 

(Hermitian T). 

Remark. Linear transformations symmetric with respect to an inner prod­
uct are often called self-adjoint (and antisymmetric ones are called anti­
self-adjoint) . 

The matrix interpretation is as follows, and the easy proof is left to the 
reader: 

Theorem L4.6. If V = lRn with the standard inner product, then a linear 
tmnsformation T: V -+ V is symmetric if and only if its matrix A is sym­
metric, that is, if AT = A. Similarly, if V = en and T is Hermitian, then 
the matrix A ofT is Hermitian; i.e., it satisfies A = AT. 

Orthogonal linear transformations are more or less obviously important. 
Antisymmetric and anti-Hermitian transformations are important because 
of their intimate relation with orthogonal and unitary transformations. 
Symmetric and Hermitian transformations are rather harder to motivate, 
even though they are studied far more frequently than the anti-Hermitian 
ones. 

Remark. One might look for motivation in quantum mechanics, where 
Hermitian matrices show up constantly. For instance, finding the energy 
levels of atoms or molecules boils down to computing the eigenvalues of a 
Hermitian matrix. Actually, anti-Hermitian matrices are the ones impor­
tant to quantum mechanics, and the presence of Hermitian matrices is due 
to the following trick: If H is a Hermitian matrix, then iH is anti-Hermitian. 

Indeed, the basic equation of quantum mechanics is the Schrodinger 
equation 

o'l/J h h 
dt = 27ri(~'l/J+ V'l/J) = 27ri H ('l/J), 

where h is Planck's constant. As we will see in Example L4.7 for a one­
dimensional case, the Laplace operator ~ (in that case, just the second 
derivative) is a symmetric operator, if appropriate boundary conditions 
are imposed, and so is the multiplication operator V. Thus, H is sym­
metric, and it is usually H, the Hamiltonian opemtor, which is studied. 
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But a glance at the equation shows that the really fundamental operator 
is (h/27ri)H, which is anti-Hermitian. One consequence of the principle 
"anti-Hermitian operators are infinitesimal unitary operators" is that 111P112 
is constant in time; physically, this just says that the probability of finding 
the system in some state is always 1. 

Symmetric matrices show up in their own right when studying quadratic 
forms; in fact, they correspond precisely to quadratic forms. Our treatment 
will emphasize this relationship, which will be elaborated in Subsection L4.5 
of this appendix and in Appendix L8. 

There is not really much point in writing down finite-dimensional exam­
ples of Theorem L4.6; they are simply given by symmetric matrices. 

The next example is the real reason for Fourier series. It is a bit less 
straightforward but well worth poring over a bit. 

Example L4. 7. Let V be the space of twice continuously differentiable 
functions on [0,7r] which vanish at ° and 7r, and W the space of continuous 
functions on [0,7r]. Both spaces are endowed with the inner product 

(f, g) = 101< f(x)g(x)dx. 

Consider the second derivative operator D2: V -+ W. We claim that D2 is 
symmetric. 

Remark. The attentive reader may well complain: since V and W are 
different vector spaces, how can such an operator be symmetric? But V is 
a subspace of W, so the equation (D2 f, g) = (f, D2g) makes perfectly good 
sense. 

The proof that this is so is an exercise in integration by parts: 

(D2 f, g) = 101< J"(x)g(x)dx = [f'(x)g(x)]o -101< f'(x)g'(x)dx = (f, D2g). 

The second equality is integration by parts; the third comes from the fact 
that the boundary term drops out since g(O) = g(7r) = 0, and only the 
integral, which is obviously symmetric in f and 9 (in the ordinary sense of 
the word), is left. A 

Several more examples of a similar style are given in Exercise L3-4#17. 

L4.4. THE INNER PRODUCTS ON Rn 

We can finally come full circle and describe all inner products on IRn. 

Theorem L4.8. Let ( , ) be an inner product on IRn, and let G be the 
symmetric matrix with entries 
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Then the given inner product can be written in terms of the standard dot 
product as 

(a, b) = a· Gb. (2) 

Conversely, if G is a symmetric matrix and a· Ga =I- 0 for all a =I- 0, then 
(2) defines an inner product on ]Rn. 

Remark. We shall see in Section L4.5 that the property a· Ga =I- 0 for all 
a =I- 0 makes G a "positive definite" or "negative definite" matrix. 

Example L4.9. G = the identity matrix gives the standard inner product . 

• 
But Theorem L4.8 holds true for an arbitrary inner product, not just the 

standard one, as we show in the following: 

Example L4.1O. In Example L3.1, (a, b) == 2a1b1 + 2a2b2 + a1b2 + a2b1 is 

given by the matrix [i ~] because 

(a, b) = [:~] . [i ~] [~~]. • 
Proof of Proposition L4.S. The first part follows from the fact that if 
you know an inner product on all pairs of basis vectors, then you know 
it on any pair of vectors by writing the vectors in terms of the basis and 
multiplying them out. 

The second part, the converse, is easy to prove by referring to the sym­
metric, linear, and positive definite properties listed for an inner product 
in Section L3.1j this is left to the reader. 0 

L4.5. QUADRATIC FORMS 

After linear functions, the next simplest to study are the quadratics, and 
they are important in any mathematician's vocabulary. We often want to 
know the character of a surface at a critical point, for instance. 

Consider the function f(x) that describes the surface in ]Rn+1 for a vector 
x in ]Rn. Expanding about a critical point a by Taylor series gives 
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The second (linear) term is zero at a critical point, so the shape of the 
surface near the critical point is dominated by the quadratic term (un­
less the quadratic terms have rank < n; see below). This quadratic term 
is a homogeneous quadratic function (meaning there are no nonquadratic 
terms). 

What becomes important is to be able to tell whether at a critical point 
a given quadratic function represents a maximum, a minimum, or a saddle. 
The wonderful news is that we shall be able to use a correspondence be­
tween quadratic functions and symmetric linear transformations to answer 
this question easily for any example, using only the high school algebra 
technique of "completing the square." So let us begin. 

A quadratic form on]Rn is a function q(v):]Rn ---+ ]R that is a homogeneous 
quadratic function of the coordinates Xl,' .. ,Xn comprising the vector v. 
That is, a quadratic form is a sum of terms of the form aiix~ or aijXiXj' 

Examples L4.11. 

(i) (4X2 + xy - y2) and xy are quadratic forms on ]R2. As you can see 
from the graphs of these functions in Figure L4.1, at the origin both 
these examples represent saddles. 

z 

FIGURE L4.1. On the left: q(x) = 4x2 + xy - y2j on the right: q(x) = xy. 

(ii) (X2 + xz - yz - Z2) and (xy + xz + yz) are quadratic forms on ]R3. 

(iii) q(v) = (v, v) = IIvll 2 is one outstanding quadratic form on ]Rn. ~ 

More generally, a quadratic form on a finite-dimensional vector space V 
is a function q: V ---+ ]R that is a homogeneous quadratic function in the 
coordinate functions of V with respect to any basis. Note: the authors do 
not know why quadratic forms are not simply called quadratic functions. 

A very important aspect of quadratic forms is the following: 

Any quadratic form can be represented by a symmetric linear 
transformation Lq , in the following way: 



Appendix L4 

.(v) ~ Ix" ,xnlL, [] . 

Example L4.12. 

X2 + xz - yz - z2 = [x, y, z] [ ~ 
1/2 

o 
o 

-1/2 
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The recipe is to use the coefficients of x~ for the diagonal terms aii and 
half the coefficients of XiXj for the off-diagonal terms aij. This procedure 
justifies the following statements: 

Theorem L4.13. Let V be a finite-dimensional vector space with an inner 
product. Then, for any quadratic form q there exists a unique symmetric 
linear transformation Lq : V -> V such that for any v E V, 

q(v) = (v, Lq(v)). 

Something useful to do with quadratic forms is a process called decom­
position as a sum of squares of linear functions of the variables; these will 
turn out, by Theorem L4.15, to form a linearly independent set. 

Example L4.14. The quadradic form shown in Figure L4.2 can be decom­
posed as follows: 

FIGURE L4.2. q(x) = x 2 + xy. • 
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Theorem L4.15. Given a quadratic form q(x) on]Rn, there exist linearly 
independent linear functions 01 (x), ... , Om (x) such that 

Theorem L4.15 can be proved by "completing squares"; an eXaIllple will 
show how this can be done, working from left to right on one variable at a 
time. 

Example L4.16. Consider the quadratic form 

q(x) = x 2 + 2xy - 4xz + 2yz - 4z2. 

Taking all terms in which x appears and completing the square yields 

q(x) = [(x + y - 2z)2 - (y2 + 4z2 - 4yz)] + 2yz - 4z2. 

Collecting all remaining terms in which y appears and completing the 
square gives: 

q(x) = (x + y - 2z)2 - (y - 3z)2 + z2. 

The linear functions that appear in the decomposition, 

01 (x, y, z) = x + y - 2z, 02(X, y, z) = y - 3z, 03(X, y, z) = z, 

are cert.linly independent since x appears only in Ot, y only in 02, and 
z only in 03' You can also, of course, check by considering Ax = 0: and 
showing det A ¥- O. 

The decomposition just derived is not unique. For eXaIllple, Exercise L3-
4#18 asks you to start with the terms in z first and derive the following 
alternative decomposition: 

q(x) = x 2 + 2xy - 4xz + 2yz - 4Z2 = x 2 + (x + y/2)2 - (x - y/2 + 2Z)2. A 

The algorithm for completing the squares should be pretty clear: as long 
as the square of some coordinate function actually figures in the expression, 
every appearance of that variable can be incorporated into a perfect square; 
by subtracting off that perfect square, you are left with a quadratic form 
in fewer variables. This works as long as there is at least one square, but 
what should you do with something like the following? 

Example L4.17. Consider the quadratic form 

q(x) = xy - xz + yz. 
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One possibility is to trade x for the new variable u = x - y, Le., x = u + y, 
to give 

(u + y)y - uz = y2 + uy - uz 

= (y + U/2)2 - u2 /4 - uz - z2 + Z2 

= (y + U/2)2 - (u/2 + Z)2 + z2 

= (x/2 + y/2)2 - (x/2 - y/2 + z)2 + z2. 

There was not anything magical about the choice of Uj almost anything 
would have done. 

We leave it as Exercise L3-4#20 to verify that the linear functions found 
in this way are indeed linearly independent. A 

One more example elaborates on the crucial hypothesis of Theorem 
L4.15: 

EXaIIlple L4.1S. Consider the quadratic form from Example L3.2: 

q(x) = (x, x) = 2x~ + 2x~ + 2XIX2. 

We can write 

q(x) = 2x~ + 2x~ + 2XIX2 = (2x~ + 2XIX2 + xV2) + 2x~ - x~/2 

= (V2Xl +x2/V2)2 + (y'372x2)2. 

So the quadratic form shown in Figure L4.3 has been decomposed into the 
sum of two squared linear functions. 

FIGURE L4.3. q(x) = 2x~ + 2x~ + 2XIX2. 

But, how about writing q(x) = x~ +x~ + (Xl +X2)2, as we did in Example 
L3.2, with three squared linear functions? This alternative "decomposition" 
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does not reflect Theorem L4.15 because the three linear functions Xl, X2, 

and Xl + X2 are not linearly independent. & 

There are many ways of decomposing a quadratic form as a sum of lin­
early independent squares. We will see in Theorem L4.19 that the number 
m of squares which appear does not depend on the decomposition. 

In order to use decomposition of a quadratic form to identify the char­
acter of a quadric surface, we must introduce a few more terms. 

The number m of linearly independent squares in a representation as 
above is called the rank of the quadratic form; if m = n, then the form is 
called nondegenerate. The examples in this section are all nondegenerate; 
some degenerate cases are illustrated in Exercise L3-4#21. 

If there are k plus signs appearing and f minus signs, then the form has 
signature (k, f); a form of signature (n, 0) is called positive definite, and one 
of signature (0, n) is called negative definite; the others are called indefinite. 
The symmetric matrices corresponding to the forms are also called positive 
or negative definite. Note: Without loss of generality we may assume that 
the first k have plus signs and the last f have minus signs. 

According to these definitions, the form of Example L4.14 has signature 
(1,1) and rank 2; Examples L4.16 and L4.17 both have signature (2,1) and 
rank 3; Example L4.18 is positive definite with rank 2; all four examples 
are nondegenerate. 

Now we are ready for the following: 

Theorem L4.19. In any two representations of a quadratic form as the 
sums of squares of linearly independent linear functions 

q(x) = 0::1 (x)2 + ... + O::k(x)2 - O::k+1 (x)2 - ... - O::k+l(x)2, 

the number (k) of plus and the number (f) of minus signs appearing will be 
the same; i.e., the signature (k, f) is the same in every representation of a 
given quadratic form. 

There will usually be many ways of representing a quadratic form as 
a sum of squares of linearly independent linear functions; why should the 
signs be independent of the representation? In the case of definite matrices, 
this is clear, as follows: 

A quadratic form is positive (resp. negative) definite if and only 
if it takes positive (resp. negative) values on all nonzero vectors. 

This second characterization of positive definiteness says nothing about 
any decomposition. Similarly, the following statement describes the signa­
ture in a third way, also independently of any decomposition: 

The numbers (k,f) of the signature are respectively the largest 
dimensions of the subspaces on which a quadratic form is posi­
tive and negative definite. 
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Proof of Theorem L4.19. Let us make vectors 0i from the coefficients 
of the variables in the Qi; e.g., for 

Q1 = x+2y - z, Q2 = -x + z, 

then 
01 = (1,2, -I); 02 = (-1,0,1). 

Next add to the k + i vectors formed this way 0i independent vectors 
Ok+l+ 1, ... ,an to make a basis for IRn. 

If we now define the positive definite subspace 

P = {x I Qk+1(X) = ... = Qn(X) = O}, 

then P is a k-dimensional subspace of vectors in IRn, by the dimension 
formula of Theorem L2.9. Likewise, we can define the negative definite 
subspace which has dimension i 

omitting the i terms from k + 1 to k + i + 1. 
If We IRn is a subspace with dim(W) = k+ 1, then there must be x =I- 0 

in W such that 
Q1(X) = ... = Qk(X) = 0, 

again by the dimension formula. On such a vector the quadratic form must 
take a nonpositive value, so the form is not positive definite on W. This 
proves that the number k of positive Qi cannot change; likewise, we can 
show that the number i of negative Qi cannot change. A 

Remark. The number n - m is not the dimension of a maximal subspace 
on which q vanishes. For instance, the form xy = ((x+y)/2)2 - ((x-y)/2)2 
has signature (1,1) and is nondegenerate, but it vanishes on the x-axis and 
on the y-axis. 

The following example shows the use of the quadratic form representation 
in terms of the Xi'S to determine whether a function has a maximum, 
minimum, or neither. 

Example L4.20. Consider the function 

f(x, y, z) = 3 + (x2 + 2xy - 4yz + 5z2) + terms of order three or higher. 

This function has a critical point at (x, y, z) = (0,0,0) since af lax, af lay, 
and af laz are all zero there. We want to see whether it is a maximum, a 
minimum, or neither. 
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For small x, y, and z the quadratic terms are larger than the higher order 
terms, so we look at 

x2 + 2xy - 4yz + 5z2 = (x + y? - (y + 2Z)2 + (3Z)2. 
~ ____ '-v-' 

Since the signature is (k, £) = (2, 1), I( x, y, z) has neither a maximum nor 
a minimum. 

If you move away from (0,0,0) in a direction where y = -2z 
(Le., where a2 = 0), then the function will increase. 

Try 1(0, -2, 1) > 3 = 1(0,0,0). 

If you move away from (0,0,0) in a direction where x = -y and 
z = ° (Le., al = a3 = 0), then the function will decrease. 

Try 1(1, -1,0) < 3 = 1(0,0,0). 

This illustrates how the ai give you planar directions along which the func­
tion increases (if the a is preceded by a +) or decreases (if the a is pre­
ceded by a -). Different planes can be chosen (by the ai), but in every 
case, the number of linearly independent planes along which the function 
increases/decreases stays the same. A 

L5 Determinants and Volumes 

The determinant is a function of square matrices. It is given by various for­
mulas, all of which are far too messy for hand computation once the matrix 
gets larger than 3 x 3. It can also be computed (much more reasonably) by 
row reduction. The determinant has a geometric interpretation as a signed 
volume, and this really makes it important. 

In order not to favor anyone of the formulas and to obtain the volume 
interpretation most easily, we shall define the determinant by three prop­
erties that characterize it. We will think of the determinant as a function 
of n vectors rather than as a function of a matrix; this is a minor point, 
since whenever you have n vectors in IRn , you can always place them side 
by side to make an n x n matrix. 

L5.1. DEFINITION, EXISTENCE, AND UNIQUENESS OF 

DETERMINANT FUNCTION 

The determinant 

detA = det [+ + ... , +] = det(a"8,, ... , .... ) 
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is the unique real-valued function of n vectors in R.n such that 

(1) det A is linear with respect to each of its arguments, Le., 
(multilinearity) 

det(aI, ... , Iii-I, (au + /3w), 8i+l, ... , an) 

= a det( a1, ... , Iii-1, u, 1ii+1, ... , an) 

+/3 det(a1, ... , Iii-l, w, Iii+I,· .. , an). 

(2) det A is antisymmetric, Le., ( antisymmetry ) 

(3) det I of the identity is 1, Le., (scaling, or normalization) 

det(el, e2,"" en) = 1, where ei is the ith standard unit basis vector. 

In order to see that this definition of determinant is reasonable, we will 
want the following theorem: 

Theorem L5.1. There indeed exists a function satisfying the three prop­
erties of determinant, det A, and it is unique. 

The proofs of these two parts are quite different, with a somewhat lengthy 
but necessary construction for each. The outline for the next several pages 
is as follows: 

First, we shall use a computer program to construct a func­
tion D(A) by a process called "development according to the 
first row." Of course, this could be developed differently, e.g., 
according to the first column, but you can show in Exercise 
L5#4 that the result is equivalent to this definition. 

Then, we shall prove that D(A) satisfies the properties of 
det A, thus establishing existence of a function appropriate to 
the definition of determinant. 

Finally, we shall proceed by "column operations" to evaluate 
this function D(A) and show that it is unique, which will prove 
uniqueness of the determinant function. 

Development according to the first row. Consider the function 

n 

D(A) = L( -l)1+ial,idet Al,i, 
i=l 

(1) 

where Al,i is the (n - 1) x (n - 1) matrix obtained from A by erasing the 
first line and the ith column. 
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Example L5.2. If 

[011 3~ 4~1 A = , then A 1,3 = [rTil 
so equation (1) corresponds to 

D(A) = 1det [~ ~] - 3det [~ ~] + 4det [~ ~] 
=1(-2)-3(-1)+4(-1)=-3. ~ 

Of course, the definition (1) is recursive, and to start it out we must say 
that the determinant of a 1 x 1 matrix, Le., a number, is the number itself. 
The following Pascal program implements this definition and will compute 
D(A) for any square matrix of side at most 10; this program will actually 
run on a personal computer and compute a determinant of the maximum 
size in about an hour. 

Program determinant; 

Canst maxsize = 10; 

Tupe matrix = record 

end; 

submatrix = record 

Var M:Matrix; 
S:submatrix; 
d:real; 

end; 

size:integer; 
array[l .. maxsize.l .. maxsizel of real; 

size:integer; 
rows.cols:array[l .. maxsize.l .. maxsizel of boolean; 

function det(S:submatrix):real; 
Var tempdet:real; 

i.sign:integer; 
51 :submatrix; 

Procedure erase(S,SubMatrix, I,jdnteger, liar SIISubMatrix), 
Var kllnteger, 
begin {erase) 

5 l.slze 1= S.size-l, 
for k = S.slze-l downto I do S1.cols(k) 1= S.cols[k+ 1 h 
for k = 1-1 downto 1 do Sl.cols(k) 1= S.cols(k), 
for k = S.slze-l downto J do 5 1.rows(k) 1= S.rows[k+ 1 h 
for k = J-l downto 1 do Sl.rows[k) 1= S.rows(k+ 1 h 

end, 
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begin (function deU 
If S.slze = 1 then det .= M.coeffs[row[ 11,coll1]] 
else 
begin tempdet.= 0, sign .= I, 

for I .= 1 to S.slze do 
begin 

erase(S,I, I,S 0, 
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tempdet .= tempdet .. slgn*M.coeffs[S.rows[ 1),S.colsllll*det(S I), 
sl gn .= -sl gn, 

end, 
det .= tempdet 

end, 

Procedure InltSubMatrlx(Var S.SubMatrlx}, 
Var kll nteger, 
begin 

S.slze .= M.slze, 
for k .= 1 to S.slze do begin S.rows[k) .= k, S.cols[k) .= k end, 

end, 

Procedure InltMatrlx, 
begin {define M.slze and M.coeffs any way you like} end, 

eegln {main program} 
Inl tMatrl x, 
InltSubMatrl x(S}, 
d .= det(S}, 
wrlteln('determlnant = 'd}, 

end. 

This program embodies the recursive nature of the determinant as de­
fined above: the key point is that the function det calls itself. It would be 
quite a bit more difficult to write this program in a language like Basic, 
which does not allow that sort of thing. 

Please note that this program is very time-consuming. This can be seen 
as follows: suppose that the function det takes time T(k) to compute the 
determinant of a k x k matrix. Then, since it makes k "calls" of det for a 
(k - 1) x (k - 1) matrix, as well as k multiplications, k - 1 additions, and 
k calls of the subroutine erase, we see that 

T(k) > kT(k - 1), 

so that T(k) > k!T(I). On a personal computer one call or operation takes 
about 10-6 seconds; on a large mainframe computer that would take more 
like 10-8 seconds. The time to compute determinants by this method is 
at least the factorial of the size of the matrix; if you were to try for a 
larger matrix, say 15 x 15, this would take 15! ~ 1.3 x 1012 calls or opera­
tions, which translates into several minutes on a large mainframe. So if this 
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program were the only way to actually compute determinants, they would 
be of theoretical interest only. But as we shall soon show, determinants 
can also be computed by row or column reduction, and this is much more 
efficient as soon as the matrix is even moderately large. 

However, the construction of the function D(A) is most convenient for 
establishing the following: 

Proof of existence for Theorem LS.l. We shall verify that the function 
D(A), the development along the first row, does indeed satisfy properties 
(1), (2); and (3) for the determinant det A. This is a messy and uninspiring 
exercise in the use of induction: 

(1) First, let us check multilinearity: Let a1, .. ' ,a.. be n vectors in lRn , 

and write Si = (3b + 'Yc. Let 

A = [ab'" ,Si,··· ,a..j, 
B = [ab"" b, ... ,a..j, 
C = [a1,'" ,c, ... ,a..j. 

We need to check D(A) = (3D(B) + 'YD(C). Just write 
n 

D(A) = ~)-I)j+1a1,jD(A1,j) 
j=l 

0+1 '"' 0+1 = (-1)' ((3b1,i + 'YC1,i)D(A1,i) + L) -I}' a1,jD(A1,j) 
#i 

°+1 °+1 = (3( -I}' b1,iD(A1,i) + 'Y( -I)' C1,iD(A1,i) 

+ (3 L( -1)j+1b1,jD(B1,j) + 'Y L( -1)j+1C1 ,jD(C1,j) 
#i #i 

= (3D(B) + 'YD(C). 

The third and fourth terms on the third line are by induction, using 
the fact that all the A 1 ,i are of size n -1, whereas one passes from the 
third to the fourth line by observing that, except for the ith column, 
the matrices A, B, and C coincide. This gives property (1). 

(2) Next we come to antisymmetry: Let A = [ab"" Si, ... , aj," ., a..l 
with j > i, and let A' be the same matrix with the ith and jth 
columns exchanged. Then 

n 

D(A) = L(-I)k+1a1,kD(A1,k) 
k=l 

°+1 °+1 = (-I)' a1,iD(A1,i) + (-I)' a1,jD(A1,j) 

+ L (-I)k+1 a1 ,kD(A1,k). 
k#i,j 
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The last term above can be dealt with by induction; if k 1= i,j, then 
ALk is obtained from Al,k by exchanging the ith and jth columns, 
and since these matrices are of size n-I, we can assume by induction 
that D{ALk) = -D{Al,k), so 

L (-I)k+1 al,kD {Al ,k) = - L (-I)k+1a~,kD{A~,k)· 
ki-i,j ki-i,j 

We will be done if we can show that 

(-I)ial,iD{Al,i) = -(-l)ja~,jD{A~,j)' 

(-I)ial,jD{Al,j) = -(-I)ja~,iD{A~,i)· 

We will show the first; the second is identical. First, al,i = a~,j. The 
relation between Al,i and A~,j is as follows: A~,j is obtained from 
Al,i by moving the jth column over into the ith position. This can 
be done by exchanging it with its neighbor j - i-I times. Again 
using induction, since these matrices are of size n - 1, each of these 
exchanges changes the sign of D, so 

(-l)ial ,iD {Al ,i) = (_I)i{ -l)j-i-la~,jD{A~,j) 

= -(-l)ja~,jD{A~,j). 

This proves property (2). 

(3) The normalization condition is much simpler: If A = [eb ... ,en], then 
only the first entry al,l on the top row is nonzero, and Al,l is the 
identity matrix one size smaller, so that D of it is 1 by induction. So 

D{A) = al,lD{Al,l) = 1, 

and we have also proved property (3). 0 

Now we know there is at least one function of a matrix A satisfying 
properties (I), (2), and (3), namely D{A). Of course, there might be oth­
ers; but we will now show that in the course of row-reducing (or rather 
column-reducing) a matrix, we simultaneously compute the determinant. 
Our discussion will use only properties (I), (2) and (3), without the function 
D{A). We will get out of it an effective method of computing determinants, 
and at the same time a proof of uniqueness. 

The effect of column operations on the determinant. We will use 
column operations (defined just like the row operations of Appendix L1) 
rather than row operations in our construction, because we defined the 
determinant as a function of the n column vectors. This convention will 
make the interpretation in terms of volumes simpler, and in any case, you 
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will be able to show in Exercise L5#4 that row operations could have been 
used just as well. 

Let us check how each of the three column operations affects the determi­
nant. It turns out that each multiplies the determinant by an appropriate 
factor fJ-: 

(a) Multiply a column through by a number m. Clearly, by property (1), 
this will have the effect of multiplying the determinant by the same 
number, so 

fJ-=m. 

(b) Exchange two columns. By property (2), this changes the sign of the 
determinant, so 

fJ- =-1. 

(c) Add a multiple of one column onto another. By property (1), this 
does not change the determinant, because 

det(al,.··, aj, ... , aj + /3a;, ... , a..) 
= det(al, ... ,a;, ... ,aj, ... ,a..) 

+ /3det(at, ... , a;, ... , a;, ... , s.n) 

and the last term is zero (since two columns are equal, so exchanging 
them both changes the sign of the determinant and leaves it un­
changed). Therefore, 

fJ-=1. 

Now any square matrix can be column-reduced until, at the end, you 
either get the identity or you get a matrix with a column of zeroes (by a 
corollary of Theorem L1.13). A sequence of matrices resulting from column 
operations can be denoted as follows, with the multipliers fJ-i atop arrows 
for each operation: 

1-'2 
~ A 1-'3 I-'n-l A 

2 ~ ••. ~ n-l 

Then, working backward by property (1), 

detAn _ 1 = (:n) detAn, 
det A n- 2 = ( 1 ) det An, 

/-Ln-lfJ-n 

! 

I-'n 
~ 

det A = det An. ( 1) 
fJ-lfJ-2 ... fJ-n-lfJ-n 

(2a) 

(2b) 

(2c) 
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Therefore, from equation (2c), 

if An = I, det An = 1 by property (3) 

1 
detA = ; 

J1.1J1.2 ... J1.n-lJ1.n 

if An =I- I, det An = 0 by property (1) 

detA = O. 
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(3) 

(4) 

Proof of uniqueness of determinant. Suppose that the function Dl (A) 
obeys properties (1), (2), and (3). Then for any matrix A, 

Dl (A) = ( 1 ) det(An) = D(A); 
J1.1J1.2··· J1.n 

i.e., Dl = D. You may object that a different sequence of row operations 
might lead to a different sequence of J1.i'S. If that were the case, it would 
show that the axioms for the determinant were inconsistent; we know they 
are consistent because of Theorem L5.1. 

We have finally finished proving Theorem L5.1. 0 

L5.2. THEOREMS RELATING MATRICES AND 

DETERMINANTS 

There are some matrices whose determinant is easy to compute: the trian­
gular matrices, both upper and lower. 

Theorem L5.3. If a matrix is triangular, then its determinant is the prod­
uct of the entries along the diagonal. 

Proof. Suppose the matrix is upper-triangular. If the entries along the 
diagonal are nonzero, then by adding multiples of the first columns to 
the others, the first row can be cleared beyond the diagonal, then adding 
multiples of the second to the third and later columns, the second row 
can be cleared, etc. We are left (Exercise L5#2) with a diagonal matrix 
with the same diagonal entries as the original matrix; such a matrix can 
be turned into the identity by dividing each column through by its entry 
on the diagonal. 

If any of the diagonal entries are zero, then the same clearing operation 
as above, carried out until you come to such a column, leaves a matrix with 
a column of zeroes and, hence, has determinant 0 (like the product of the 
diagonal entries). 

If the original matrix had been lower-triangular, the same argument 
would work, only starting with the last column, and first clearing the bot­
tom row. 0 
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Remark. It is fairly easy to prove Theorem L5.3 from the recursive defi­
nition of D, at least if the matrix is lower-triangular. Exercise L5#3 asks 
you to do so and to adapt the proof to the upper-triangular case. 

Appendix L2.5 gives several characterizations of invertible matrices; here 
are some more: 

Theorem L5.4. A matrix A is invertible if and only if its determinant is 
not zero. 

Proof. This follows immediately from the column-reduction algorithm and 
the uniqueness proof, since along the way we showed, in equations (3) and 
(4), that a matrix has a nonzero determinant if and only if it can be column­
reduced to the identity. (See Section L1.4.) 0 

A key property of the determinant, for which we will see a geometric 
interpretation later, is 

Theorem L5.5. If A and B are n x n matrices, then 

det(A) det(B) = det(AB). 

Proof. If A is invertible, consider the function det(AB)/det(A), as a func­
tion of the matrix B. As the reader will easily check, it has properties (1), 
(2), and (3), which characterize the determinant function. If A is not in­
vertible, the left-hand side of the theorem is zero; the right-hand side must 
be zero also, because 

Image(AB) C Image(A). 

Therefore, dimImage(AB) ~ dimImage(A) < n, so AB is not invertible 
either. 0 

Theorem L5.6. If a matrix A is invertible, then detA- 1 = l/detA. 

Proof. This is a simple consequence of Theorem L5.5. 0 

Theorem L5. 7. The determinant function is basis independent, that is, 

det A = det(p- 1 AP). 

Again this follows immediately from Theorem L5.5. 0 

These facts will be very important in Appendix L6 on eigenvalues and 
eigenvectors, as will be the next theorem and the next section. 

Theorem L5.8. If A is an n x n matrix and B is an m x m matrix, then 
for the (n + m) x (n + m) matrix formed with these as diagonal elements, 
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det [ :I~] = det A det B. 

The proof of Theorem L5.8 is left to the reader. 

L5.3. THE CHARACTERISTIC POLYNOMIAL OF A MATRIX 

AND ITS COEFFICIENTS 

433 

The characteristic polynomial of a square n x n matrix A is the polynomial 
det(AI - A). Such A's will playa crucial role in the next Appendix, L6. 

Example L5.9. Computing characteristic polynomials is usually just a 
grind: 

is 

The characteristic polynomial of 

[
A+ 1 

det ~ 
o 

A-I 
1 

[
-1 0 
-2 1 
o -1 -~l -1 

-;1 1 = (A + 1)2(A - 1) - 2 - 2(A + 1) 
A+l 

= A3 + A2 - 3A - 5. & 

Remark. You may encounter elsewhere the definition of the characteristic 
polynomial as det(A-AI), but you will still get essentially the same results. 
These expressions match exactly if n is even, and are of opposite sign if n 
is odd. 

The characteristic polynomial is an important application of the deter­
minant, which will really come into its own when we deal with eigenvectors 
and eigenvalues. However, in this section, we want to define and prove some 
of the properties of the trace, another important function of a matrix, and 
finding the characteristic polynomial is an easy way of going about it. 

Until now, we have behaved as if all the matrices we had were matrices 
of numbers. But AI - A is a matrix of polynomials; does our theory of 
determinants still apply? Certainly, the development according to the first 
row defined in Section L5.1 makes perfectly good sense even for a matrix 
of polynomials. Actually, the entire development works for matrices whose 
entries are any rational function. The only thing we use in row-reduction is 
the ability to do arithmetic, i.e., to add, subtract, multiply, and divide by 
everything except 0, and these operations do hold for rational functions. 
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Theorem L5.10. The characteristic polynomial is basis independent. 

Proof. Since M - p- l AP = P-l(M - A)P, by Theorem L5.7 we see that 

det(M - A) = det(M - p- l AP) 

for any invertible matrix P. 0 

Theorem L5.1O has some interesting consequences: 

Theorem L5.11. The characteristic polynomial of an n x n matrix is a 
polynomial of degree n, with leading term >.n, negative trace as coefficient 
of >.n-l, and (-l)n detA as constant term, i.e., 

det(M - A) = >.n - (tr A)>.n-l + ... + (-ltdet A. 

FUrthermore, each coefficient of the powers of >. is individually basis inde­
pendent. 

Proof. The fact that the constant term is det ( - A) = (-1) ndet A is seen 
by setting>. = 0 in the formula for the characteristic polynomial. 

The coefficient of >. n-l is actually minus the sum of the diagonal entries: 
we use this fact to define the trace of a matrix as 

tr A = Lai,i. 

Directly from this definition it is not at all clear that tr A = tr p- l AP, 
i.e., that the trace is basis independent. In fact, it is not true that tr AB = 
tr A tr B. But the basis independence does follow from the description of 
the trace in terms of the characteristic polynomial, using Theorem L5.1O. 

The other coefficients of the characteristic polynomial are important also 
but do not seem to have names. They are all basis-independent functions 
of the matrix, and it can be shown conversely that any basis-independent 
function of matrices is a function of these coefficients. All of this again 
comes from Theorem L5.1O. 0 

Example L5.12. A very useful example for constructing exercises is the 
companion matrix. Given any polynomial 

p(>.) = >.n + an_l>.n + ... + ao, 

there is a way of manufacturing a matrix with precisely p(>.) as its charac­
teristic polynomial: 

o 
o 
o 

1 
o 
o 

o 
1 
o 

o 
o 

o 
o 
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The computation showing that this is true is Exercise L5#6. An illus­
trative case is the polynomial p( A) = A 3 + 2A 2 + 3A + 4, which is the 
characteristic polynomial of 

[0 1 0] o 0 1, 
-4 -3 -2 

because 

det(M - A) = det [~~1 ~1] 
4 +3 A+2 

= A2(A + 2) + 4 + 3A = A3 + 2A2 + 3A + 4. • 

For some matrices, the characteristic polynomial is easy to compute: 

Theorem L5.13. The characteristic polynomial of a triangular matrix 
A = (ai,j) is the product n(A - ai,i)' 

Proof. If A is triangular, then so is AI - A; hence, the characteristic poly­
nomial is the product of the diagonal terms. 0 

Generally speaking, the characteristic polynomial cannot effectively be 
computed for large matrices. Using the explicit formula as in Example L5.9, 
it is already time-consuming for a 10 x 10 matrix, even on a large computer. 
There are other ways of computing it (for instance, by row-reduction); but 
we will not go into them as there are more effective ways (like the QR 
method and Jacobi's method, described in some detail in Appendices L7 
and LB, respectively) of dealing with the prime goal of the characteristic 
polynomial: eigenvalues and eigenvectors. 

L5.4. VOLUMES 

Determinants have a geometric interpretation (to be further detailed in 
Section L5.5) that really makes them important: 

Determinants measure n-dimensional volumes. 

This requires a definition of "volume." Here we will only deal with vol­
umes of k-dimensional parallelepipeds in JRn, and leave more arbitrary 
shapes to a course in multiple integrals. 

Let Vb"" vk be k vectors in JRn; the k-dimensional parallelepiped which 
they span is the space of points 



436 Appendix L 

Example L5.14. 

------------7 

I 
I 

I 

I 

I 
I 

I 

FIGURE L5.1. Right-handed systems of vectors in lR? and lR.3 with the "volumes" 
they span. • 

The k-dimensional volume of PV1 ""Vk is defined by induction: 

if k = 1, then the volume is simply the length, voh (Pv ) = IIvll; 

if k > 1, then 

where Vk-I is the subspace spanned by VI,"" vk-I, and 7rv:-L is the 
k-l 

projection on the orthogonal complement, as defined in Subsection 
L3.6. 

Note that this last formula is precisely "volume = base· height." 
Before this definition is of much use, we will need to know a few of its 

properties. The first and hardest is 

Theorem L5.15. The volume of pv" ... ,Vk does not depend on the order 
ofvl, ... ,vk. 

Proof. The heart of the proof is the case k = 2; i.e., the statement that the 
area of a parallelogram is given by base·height, and that you can choose 
either side as the base. You are asked in Exercise L5#8 to prove this for 
vectors in the plane, by classical geometric methods; even this is not abso­
lutely obvious. The notation gets messy, but we are just "algebraicizing" 
high school plane geometry. 

Let us verify by computation: 

This last expression is symmetric in VI and V2. 
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Now let us try the case k > 2. It is enough to show that the volume 
is unchanged if the last two vectors are exchanged. Indeed, by induction, 
we may assume that the volume is unchanged if the first k - 1 vectors are 
permuted (that is, written in a different order), and an arbitrary permu­
tation (or ordering) which moves the kth vector can be achieved by first 
permuting the first k - 1 so as to bring into the k - 1 position whatever 
is supposed to go in the kth position, then exchanging the last two, then 
permuting the first k - 1 again to achieve whatever permutation is desired. 

Using the definition of volume twice, we see that 

For instance, if you have a line contained in a plane in ]R3, then if you 
project first onto the plane and then onto the line, or directly onto the line, 
you get the same thing. 

The last two factors in (5) above can therefore be rewritten 

which is the volume (area, really, since voh = area) of the parallelogram 
spanned by 

By the case for two vectors above, this does not depend on the order of 
Vk-l and Vk. Hence, the theorem is proved for all k. 0 

The next proposition is easier and intuitive. 

Theorem L5.16. [fvb ... ,Vk are orthogonal, then the volume of PV"""Vk 
is the product of the lengths of Vb ... ,Vk: 

Proof. This is proved by induction. It is certainly true if k = 1; from the 
definition and by induction, 

VOlk(PV" ... ,Vk) = VOlk-l(PV" ... ,vk_J ·llll'y.L (vk)11 
k-l 

= (1Ivlll···· ·llvk-I!D ·llvkll· 

The first factor in the last expression above is equal to the first term 
in the next to last by induction, and the last terms are equal since Vk is 
already orthogonal to Vk-l, so ll'y.L (Vk) = Vk. 0 

k-l 
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One more intuitively desirable property of volumes: 

Theorem L5.17. If Q is an orthogonal matrix, then the image under Q 
of a parallelepiped has the same volume as the original parallelepiped: 

Proof. Again, this is proved by induction on k. For k = 1, it is immedi­
ate since orthogonal transformations preserve length. By the definition of 
volume, 

and we may assume by induction that 

VOlk-l (PV1 , ... ,Vk-l) = VOlk_l (PQ(Vl), ... ,Q(Vk-d)j 

the proposition will follow if we know Q(1rVk-:'l (Vk)) = '7rQ(Vk_d.L(Q(Vk)). 

This formula should be clear. 0 

L5.5. THE RELATION BETWEEN DETERMINANTS AND 

VOLUMES 

Theorem L5.18. The determinant measures volume, in the sense that its 
absolute value 

Idet[al, ... , an] 1 = vol(Palo ... ,a,,). 

Proof. Let us see how Idetl is affected by column operations. 

(i) Multiplying a column through by I-' multiplies Idetl by 11-'1. 

(ii) Exchanging two columns leaves Idetl unchanged. 

(iii) Adding a multiple of one column onto another leaves Idetl unchanged. 

Moreover, 

(iv) Idet(I)/ = 1, Idet(A)/ = 0 if a column of A is 0, 

and exactly as in Section L5.1, these four properties characterize Idetl, since 
any matrix can be column-reduced. 

However, these four properties are also true of the function 
that takes a matrix and gives the volume of the parallelepiped 
spanned by the column vectors. 
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Property (i) is clear, from the definition of volume, if the vector chosen is 
the last and is therefore true for any column by Theorem L5.15. Property 
(ii) is Theorem L5.15. Finally, Property (iii) is clear if the column being 
added to is the last, since if w is obtained by adding an arbitrary linear 
combination of VI, ... ,Vk-l to Vk, then 7rv.L w = 7rv.L (Vk). That is, (iii) 

k-l k-l 

is true of any column by (ii). As for (iv), the first part follows from the 
definition of volume, and the second part is obvious if the column is the 
last, hence once more is true for any column by (ii). 0 

Corollary L5.19. The determinant of an orthogonal matrix is ±1. 

Proof. The columns of an orthogonal matrix form an orthnormal basis, so 
the parallelepiped which they span has volume 1, by either Theorem L5.15 
or Theorem L5.17. 0 

We are finally in a position to prove the following result. It is surprising 
how hard it is to prove; we will be using just about everything developed 
up to now. 

Theorem L5.20. For any n x n matrix A, we have det(A) = det(AT ). 

Proof. By Theorem L4.3, any matrix can be written A = QR with Q 
orthogonal and R upper-triangular. Thus, AT = RTQT and det(AT ) = 
det(RT)det(QT). By Theorem L5.3, det(RT ) = det(R), since both are the 
product of their diagonal entries. Moreover, det(QT) = det(Q), since they 
are both of absolute value 1 and their product is 1. 0 

One important consequence of Theorem L5.20 is that throughout this 
text, whenever we were speaking of column operations, we could just as 
well have spoken of row operations. 

Now for the promised geometric explanation of Theorem L5.5,that 

det(AB) = det(A)det(B). 

As we have just seen, det(A) is the volume of the image under A of the unit 
cube, i.e., the image of the parallelepiped spanned by el, ... , en, which, of 
course, has volume 1. Actually, for any "body" X in IRn , det(A) measures 
the ratio of the volume of the image A(X) to the volume of X; that is, 
det(A) measures the expansion factor on volumes. 

This fact can be heuristically seen as follows: Fill X up with little disjoint 
cubes whose faces are aligned with the coordinate axes; it seems reasonable 
to define the volume of X to be the maximum of the sum of the volumes of 
such little cubes. Then the images of these little cubes under A will fill up 
A(X), but the volume of each of the image cubes is precisely the volume 
of the original little cube multiplied by Idet(A)I. 
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Now it should be clear that Idet(AB)1 = Idet(A)det(B)I, since under AB 
the unit cube is first taken to B(unit cube) with volume Idet(B)I, and then 
to A(B(unit cube», with volume Idet(A)1 Idet(B)I. 

In particular, if A is not invertible, then the column vectors are linearly 
dependent, and hence A squashes the unit cube down onto a space of lower 
dimension, by making one or more sides the zero vector. Of course, the 
volume of the image of the unit cube is then zero. 

Signed volumes. As anybody who has integrated functions knows, the 
area under the curve has to be taken negative when the curve is beneath 
the x-axis. In integration theory, it is usually much easier to deal with signed 
areas, volumes, etc., than with unsigned ones. The first step in doing this 
in n dimensions is the following definition: 

The signed volume of the parallelepiped P A spanned by the column vec­
tors of A is given by det A. 

Of course, the signed volume does depend on the order of the spanning 
vectors. The meaning of signed volume is best explained by the following 
two examples. 

Example LS.21. In 1R2, two vectors 81 and 82 in that order span a par­
allelogram of positive area if and only if the smallest angle from 81 to 82 

is counterclockwise, as shown in Example L5.14. A 

Example LS.22. In 1R3 , three vectors 8}, 82, and Sa in that order span 
a parallelepiped of positive signed volume if and only if they form a right­
handed coordinate system, as shown in Example L5.14. A 

L6 Eigenvalues and Eigenvectors 

L6.1. EIGENVALUES AND EIGENVECTORS 

Let V be a complex vector space and T: V -+ V be a linear transformation 
with matrix A. IT for some number A E C and some vector v E V, v =f 0, 

AV=AV, 

then the number A is called an eigenvalue of A, and every nonzero vector 
v for which Av = AV is called a corresponding eigenvector of A. 

Note that eigenvectors corresponding to a given eigenvalue are never 
unique: nonzero multiples of an eigenvector are eigenvectors. Note also that 
the zero vector is never, by definition, an eigenvector. However, nothing 
prevents zero from being an eigenvalue; in fact, the eigenvectors for the 
eigenvalue 0 form the kernel of A, and 0 is an eigenvalue if and only if 
ker A =f {O}. 
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Example L6.1. If A = [~ -~], the number -i is an eigenvalue and 

v = [~] is a corresponding eigenvector of A, since 

The next example is the real reason for Fourier series. It is a bit less 
straightforward but well worth poring over a bit. 

Example L6.2. Recalling Example L4.7, let V be the space of infinitely 
differentiable functions on [0,71"] which vanish at 0 and at 71". Consider the 
second derivative operator D2: V -+ V. We will describe the eigenvectors 
(often called eigenfunctions, since they live in a function space) of D2. 

The functions !k (x) = sin kx are eigenvectors of D2, with eigen­
value -k2 • 

This is nothing more or less than the fact that d2 / dx2 (sin kx) = - k2 sin kx, 
which everyone learned in elementary calculus. & 

L6.2. EIGENVALUES AND THE CHARACTERISTIC 

POLYNOMIAL 

From a theoretical point of view, the characteristic polynomial is the main 
actor in the theory of eigenvectors and eigenvalues, at least in finite-dimen­
sional vector spaces. 

Theorem L6.3. The eigenvalues of a square matrix A are the roots of its 
characteristic polynomial. 

Proof. From Appendix L2.5 and Theorem L5.4, we can state (Exercise 
L6#1) that the following four conditions are equivalent: 

(a) A has no inverse. 

(b) There exists a vector x =I- 0 such that Ax = o. 

(c) There exists a vector y that cannot be written as Ax. 

(d) detA = o. 

By part (b) of these conditions for noninvertibility, det(>.I - A) = 0 if 
and only if there exists v =I- 0 with (>.1 - A)v = 0, i.e., Av = >.v. D 

Theorem L6.3 has many corollaries: 
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Corollary L6.4. An n x n matrix has at most n eigenvalues, and at least 
one. 

Proof. The first part is immediate from Theorem L6.3; the second part is 
the fundamental theorem of algebra (see below). D 

The fundamental theorem of algebra is the following statement: 

Every polynomial of degree > 0 with complex coefficients has at 
least one complex root. 

This theorem is what guarantees that an nth degree polynomial equation 
Pn(x) = 0 has n roots, although some of them may coincide. Naming the 
root promised as rI, you divide the polynomial Pn by (x - rl) and reapply 
the theorem to the resulting new polynomial of degree n - 1. As you might 
guess from the name, the fundamental theorem of algebra is an important 
theorem. It is also hard to prove, and, more seriously, the proofs tend not 
to be constructive: they do not give an algorithm for finding the root. We 
need the statement now in this section and not before, because the subject 
of eigenvectors and eigenvalues is the first time we must solve polynomial 
equations, which are not linear; nonlinear equations cannot be treated us­
ing row reduction or anything else which uses only arithmetic (addition, 
subtraction, multiplication, division). 

Corollary L6.5. The trace of a matrix is the sum of the eigenvalues and 
the determinant is their product, each one being taken with its multiplicity. 

Proof. This follows directly from Theorem L5.11. D 

Remark. It is perfectly common for real polynomials to have complex 
roots, so there is no reason to expect that real matrices will have real 
eigenvalues. If the eigenvalues of a real matrix are complex, then so are the 
corresponding eigenvectors, and the vector space we are dealing with is en 
rather than ]Rn. Furthermore, we see that an n x n matrix has at most n 
distinct eigenvalues, and "in general" will have exactly that many, since a 
polynomial will "in general" have distinct roots. 

[0 -1] Example L6.6. If A = 1 0' then the eigenvalues are the roots of 

det [_~ ~], or >,2 + 1, so the eigenvalues are ±i. Since 

we can write the following system of linear equations: 

>'x + y = 0, 

-x + >,y = 0, 
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which is linearly dependent. The eigenvectors are the solutions to this sys­
tem, but they are determined only up to a multiplicative constant. Solving 
the system for each value of A, we find that 

[x] [1].. . h· val . VI = Y = -i IS an eIgenvector WIt elgen ue Zj 

V2 = [:] = [:] is an eigenvector with eigenvalue -i. • 

We need one more theorem to complete the general theory: 

Theorem L6.7. If A is a square matrix and VI, ... , vm are eigenvectors 
with distinct eigenvalues, then Vb ... , Vm are linearly independent. 

Proof. This result is a good deal harder to prove than the earlier results. 
We shall do it by contradiction. If Vb ... , Vm are not linearly independent, 
then there is a first vector Vj which is a linear combination of the earlier 
linearly independent ones. Thus, we can write 

where at least one of the ai is different from zero. Apply AjI - A to both 
sides to get 

Since the A'S are all different, the coefficients ai (Ai - Aj) cannot all be zero. 
Move the ith such term to the other side of the equality and divide out 
by the (nonzero) coefficient. This expresses an even earlier Vi with i < j 
as a linear combination of the Vb ... , Vj-I, which is a contradiction of the 
assumption that v j is the earliest. 0 

Putting TheorelllS L6.3 and L6.7 together yields the following result: 

Theorem L6.8. If A is a square n x n matrix whose characteristic poly­
nomial has n distinct roots, then en has a basis Vb ... , vn made of eigen­
vectors of A. 

If all the roots of the characteristic polynomial are real, then the basis 
vectors in Theorem L6.8 can also be chosen to be real, providing a basis of 
]Rn, but if any eigenvalues are not real, then there definitely will not be a 
basis of]Rn made up of eigenvectors of A. 

Theorem L6.8 describes the nicest linear transformations, which are also 
the most common ones (except in textbooks). Bases of eigenvectors are 
very important, so we invent a new word to describe them. 



444 Appendix L 

Definition L6.9. Let T: V -t V be a linear transformation. A basis 
VI, ... , Vn will be called an eigenbasis for T if each vector Vi is an eigen­
vector ofT. 

Note that Theorem L6.8 does not say that if the characteristic polyno­
mial of a matrix A has multiple roots, then there is no eigenbasis for A. 
For instance, the identity has only 1 as an eigenvalue, but every basis is an 
eigenbasis. The correct statement, of which Theorem L6.8 is a special case, 
is the following: 

Theorem L6.10. If A is a square n x n-matrix whose characteristic poly­
nomial has m ~ n distinct roots, then en has an eigenbasis for A if and 
only if, for each root A of the characteristic polynomial, the dimension of 
the eigenspace E),. for A, 

E),. = {v E en I Av = AV}, 

is equal to the multiplicity of A as a root of the characteristic polynomial. 

Proof: The proof is very similar to that of Theorem L6.8 and is left to the 
reader. 0 

L6.3. DIAGONALIZATION 

There is another way of saying that a vector space has an eigenbasis for a 
matrix: 

Theorem L6.1I. Suppose that VI, ... ,Vn is an eigenbasis of en for a 
linear transformation with matrix Ai let Ai be the eigenvalue of Vi· Let P 
be the matrix whose ith column is Vi, i.e., the change of basis matrix. Then 

The result of Theorem L6.11 is the reason for which the theory of eigen­
values and eigenvectors is frequently called diagonalization of matrices. A 
matrix A is diagonalizable if and only if there is an eigenbasis for A. 

Proof of Theorem L6.11. Let us see what p-I AP does to a standard 
basis vector ei. Well, P(ei) = Vi; so AP(ei) = AiVi, by definition of eigen­
vector and eigenvalue. Finally, p-IAP(ei) = Aiei, by undoing the first 
step. However, the diagonal matrix with Ai in the ith place on the diagonal 
is precisely the matrix that sends ei to Aiei. 0 
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Definition L6.l2 A matrix P such that p-1 AP is diagonal will be said 
to diagonalize A. 

Most square matrices can be diagonalized; the one place where this is 
not true is in the exercise sections of textbooks. More precisely, among all 
n x n matrices, those that cannot be diagonalized form a subset of a locus 
defined by a polynomial equation in the entries. 

The 2 x 2 case can be worked out explicitly. A matrix A = [~ :] is 

definitely diagonalizable if its characteristic polynomial has distinct roots, 
which happens except when its discriminant vanishes, Le., except if 

tr2 A = 4det A or (a + d)2 = 4(ad - be). 

It may happen that tr2 A = 4 det A and A is diagonalizable anyway; this 
occurs precisely if A is a multiple of the identity. If A satisfies tr2 A = 4 det A 
and if A is not already diagonal, then A is not diagonalizable, as you can 
prove in Exercise L6#2 So the set of nondiagonalizable 2 x 2 matrices is 
precisely those whose entries satisfy (a + d)2 = 4(ad - be) but for which b 
and c do not both vanish. 

Example L6.l3. The matrix A = [~ ~] is not diagonalizable. • 

The 3 x 3 case has a similar but messier analysis, which you are invited 
to provide in Exercise L6#3. 

PSEUDO-DIAGONAL MATRICES 

All the above applies to complex matrices, and even if A is real, it can 
usually not be diagonalized over the reals. There are bases WI, ... , wn of 
an such that if P = [WI."" wnl is the change of basis matrix, then p- l AP 
has many of the pleasant features of diagonal matrices. 

Theorem L6.l4. Let A be the matrix of a real linear transformation with 
eigenvalues 

with the first 2k eigenvalues not real and the last n - 2k real. Let 

be a corresponding eigenbasis of en, and we may assume that the vectors 
W2k+l, ... , Wn are real. For j = 1, ... , k set 

W2j-l = ReV2j-l and W2j = 1m V2j-l. 
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Let P be the matrix whose ith column is Wi, i.e., the change of basis matrix. 
Then 

el -"'1 
"'1 6 0 

P-1AP= ele -"'Ie 
"'Ie ele 

0 A21e+l 

An 
Again we leave the proof to the reader. We shall say that a matrix as 

above is k-pseudo-diagonal. More specifically, a matrix will be k-pseudo­
diagonal if it is the sum of a diagonal matrix and of antisymmetric matrices 
in the k leading 2 x 2 blocks along the diagonal. 

L6.4. TRIANGULARIZATION 

We have seen in the last section that most, but not all, square matrices are 
diagonalizable. That is, some matrices do not have enough eigenvectors to 
make a basis; this fact is the main nuisance of linear algebra. There are 
many ways of dealing with this nuisance, all more or less unsatisfactory. 
Most use words like "generalized eigenvector" and "Jordan canonical form" 
(commonly abbreviated as JCF). 

We have two related reasons for omitting Jordan canonical form (usu­
ally the centerpiece of a course in linear algebra). First, the JCF is not 
constructive; if you know a matrix only up to a certain precision, then you 
never know that it is not diagonalizable. Thus, the JCF is not computable. 

The second reason is actually more important. JCF is useful for studying 
one matrix at a time, especially exceptional nondiagonalizable matrices. It 
tends to put the spotlight on the behavior of these matrices for their own 
sake. We view these matrices as mainly important because you have to 
go through them to get from one generic sort to another (most often when 
going from a matrix with real eigenvalues to one with complex eigenvalues). 
We want to see these exceptional nondiagonalizable matrices in context; this 
is just what JCF does not encourage. 

We shall take a different approach, perhaps "truer to life," certainly a 
good deal easier, and correspondingly less precise: triangularization. 

Definition L6.15. A basis VI, ... , vn of a vector space V triangular­
izes a linear transformation T: V -+ V if T(Vi) is a linear combination 
of Vb ... ,Vi (but not Vi+b ... ,vn ) for all i with 1 ::; i ::; n. 

If V = lRn or en, and T has matrix A, then T is triangularizable if there 
exists a matrix P such that p-1 AP is upper-triangular; indeed, simply 
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take the vectors Vi as the columns of P, i.e., take P as the appropriate 
change of basis matrix. We will say that P triangularizes A. 

Triangularization is similar to diagonalization. In particular, recall from 
Theorem L5.13 and Exercise L6#4 or L6#5 that the diagonal terms of a 
triangular matrix are the eigenvalues. Therefore, triangularizing a matrix 
is at least as hard as finding the eigenvalues. 

The following theorem is our main tool: 

Theorem L6.16. Given any complex matrix A, there exists a unitary ma­
trix M such that M-I AM is upper-triangular. 

Equivalently, given any complex n-dimensional vector space V with an 
inner product and any linear transformation T: V ---t V, there exists an 
orthonormal basis VI, V2, ... , Vn of V such that for any i, 1 ::; i ::; n, 
the vector T(Vi) is a linear combination of Vb' .. , Vi and not the further 
vectors. 

The proof we will give is fairly simple but not very constructive: it de­
pends on the fact that any linear transformation from a vector space to 
itself has at least one (perhaps complex) eigenvector (Theorem L6.4). Re­
call that this requires the fundamental theorem of algebra, as applied to 
the characteristic polynomial; both are rather hard to compute. Moreover, 
the fundamental theorem of algebra is a result about complex numbers, 
which explains why unitary matrices, the complex analog of orthogonal 
matrices, as defined in Section L4.1, make their way into the statement. 
The corresponding statement to Theorem L6.16 with "complex" replaced 
by "real" and "unitary" replaced by "orthogonal" is simply false; we will 
see in Theorem L6.17 what replaces it. 

The QR method (Appendix L7) gives precisely the orthonormal basis 
promised by Theorem L6.16, when it converges; so, in fact, exhibiting such 
a basis is usually possible in practice. 

Proof. The equivalence of the two statements is simply the matrix char­
acterization of trianguiarizabilityj we will prove the second statement. The 
proof is by induction on n; so assume that the theorem is true for all vector 
spaces of dimension n - 1. 

Choose VI a unit eigenvector of T, let VI be the space orthogonal to VI, 

and let 11": V ---t VI be the orthogonal projection. Now let TI : VI ---t VI be 
given by TI(V) = 1I"(T(v)). Since VI has dimension n -1, we can apply the 
inductive hypothesis and find an orthonormal basis V2,"" Vn of VI such 
that TI (Vi) is a linear combination of V2, ... ,Vi for all i = 2, ... , n. 

We claim that the vectors VI,"" vn do the trick. It is an orthonormal 
set, with n elements, hence a basis. For 2 ::; i ::; n, the vector T(Vi) differs 
from TI (Vi) only by some multiple of VI. so it is a linear combination of 
Vb"" Vi. Finally, VI is an eigenvector. 0 
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When we must work with real matrices, Theorem L6.17 is often an ade­
quate substitute. Let us call a matrix k-pseudo-upper-triangular if it is the 
sum of a pseudo-diagonal matrix and a matrix with nonzero entries only 
above the k-pseudo-diagonal. In Exercise L6#6, you are asked to show that 
the characteristic polynomial of a real k-pseudo-upper-triangular matrix 
has at most k conjugate pairs of nonreal eigenvalues. 

Theorem L6.17 If A is a real n x n matrix with k conjugate pairs of non­
real eigenvalues, there exists a real invertible matrix M such that M-1 AM 
is k-pseudo-upper-triangular. 

Equivalently, given a real vector space V with an inner product and a 
linear transformation T: V -t V with k conjugate pairs of nonreal eigen­
values, there exists a basis Wl, W2, .•. ,Wn of V such that in that basis the 
matrix of T is k-pseudo-upper-triangular. 

Proof. The proof is similar to that of Theorem L6.16. Suppose the state­
ment is true for all vector spaces of dimension less than nj we may also 
suppose k > 0: if all the eigenvalues are real the proof of Theorem L6.16 
actually shows that there is a real orthonormal basis in which the matrix 
of T is upper-triangular. 

So let A = e +i1J be a nonreal eigenvalue, and v a corresponding eigenvec­
tor (necessarily complex). Let Wl and W2 be the real and imaginary parts 
of Vj note that Wl and W2 are linearly independent, since their complex 
span is the space spanned by v and v, which are linearly independent since 
they are eigenvectors for the distinct eigenvalues A and X. This is where we 
use that A is not real. 

Let W be the orthogonal of the plane spanned of Wl and W2, and con­
sider, as above, Tl = 7rw 0 Tlw. By induction, we can assume that there 
exists a basis W3," . , Wn of W such that the matrix of Tl in that basis is l­
pseudo-upper-triangular for some l. The proof that in the basis Wl,"" Wn 

the matrix of T is (l + 1 )-pseudo-upper-triangular is the same as in Theorem 
L6.16 

Since the determinant of a pseudo-upper-triangular matrix is the same 
as the determinant of the pseudo-diagonal part, we see that the eigenvalues 
of T are exactly those of Tl and A, with multiplicity. Thus, l = k - 1. 0 

As we have seen, the eigenvalues of A are precisely the diagonal entries 
of the triangular matrix. One consequence of this result is that, as we have 
been claiming all along, any matrix can be perturbed arbitrarily little so that 
its eigenvalues become distinct. Indeed, write any matrix A as MDM-l 
with D triangular, and let Dl be a slight perturbation of D, where only 
the diagonal entries have been modified to make the entries distinct. Then 
M D1M-1 is close to A and has distinct eigenvalues. 

Unfortunately, triangular matrices are not diagonal. But, as we shall 
see in Chapter 8, if we go beyond Theorem L6.16 and add a little trick 
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of allowing bases that are not orthonormal, the triangular matrix can be 
further modified to make the off-diagonal terms as small (but not zero) as 
one wishes. 

It is easy to see how to do this. Let us look at the 2 x 2 case: suppose 
that with respect to some basis VI, V2, a linear transformation T has an 
upper-triangular matrix. This means that 

so that the matrix for T is 

T(vt} = ).IVI + aVI, 
T(V2) = ).2V2 

(1) 

Note that V2 is an eigenvector and a is the off-diagonal term of the 
matrix. 

Now replace VI by WI = CVI. Equations (1) can now be written 

so that 

T(vt} = ).IWI + caV2 (we haven't touched V2) and 

T(V2) = ).2V2· 

T [ :: ] [~l~;] [::] . 
In the basis WI, V2, the matrix of T has as its only off-diagonal term ca, 

which by taking c small can be made as small as you like. (Yes, that also 
makes WI very small, but we care only about its direction, not its size.) 

Theorem L6.18. Given any n x n complex matrix A and any c > 0, 
there exists an orthogonal basis WI, W2, ... , Wn of en such that if P = 
[WI, W2, ... , Wn], then p- I AP is upper-triangular, with off-diagonal terms 
of absolute value smaller than c. 

Proof. First find an orthonormal basis Vb ... , vn such that if P = [VI, ... , 
vnl then p- I AP is upper-triangular, as above. Next let Wk = ckVk. Since 

we find 

AWk = ck(al,kvI + ... + ak,kvk) 

= al,kck-lwl + a2,kck- 2w2 + ... + ak,kwk· 

We see that in the basis WI, ... , Wn all the off-diagonal terms are multiplied 
by a positive power of c and hence can be made as small as one wishes by 
taking c sufficiently small. D 
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There is a real variant of this result. 

Theorem L6.19. Given any n x n real matrix A with k pairs of nonreal 
eigenvalues and any IE> 0, there exists a basis WI, W2,"" Wn ofRn such 
that if P = [WI, W2, ... ,Wn ], then p- l AP is k-pseudo-upper-triangular, 
with off-pseudo-diagonal terms of absolute value smaller than IE. 

The proof is analogous to the proof of L6.18 and is left to the reader 
(Exercise L6#7). 

L6.5. EIGENVALUES AND INNER PRODUCTS 

The three classes (symmetric, antisymmetric, and orthogonal) of linear 
transformations that are closely related to inner products (Sections L4.1, 
L4.2, and L4.3) have rather special eigenvalues and eigenvectors. 

We have strived so far to treat the real and the complex cases separately; 
at this point it becomes misleading to do so; so please remember that 
real antisymmetric is a special case of complex anti-Hermitian and that 
orthogonal is the real case of unitary. 

Theorem L6.20. 

( a) If A is a real symmetric or Hermitian linear transformation, then the 
eigenvalues of A are real. 

(b) If A is a real antisymmetric or anti-Hermitian linear transformation, 
then the eigenvalues of A are purely imaginary. 

(c) If A is an orthogonal or unitary linear transformation, then the eigen­
values of A are of absolute value 1. 

In all three cases, any two eigenvectors of A with distinct eigenvalues are 
orthogonal. 

Note that (c) says in particular that the only real eigenvalues an orthog­
onal matrix can have are ± 1. 

Proof. Theorem L6.20 is an easy computation, outlined in the exercises. 
The proof of Theorem L6.22 in any case will also prove Theorem L6.20 in 
the finite-dimensional case. 0 

Example L6.21. One consequence of Examples L4.7, and L6.2 and Exer­
cise L3-4#17 is that if n =f. m, then i: sin nx sin mx dx = i: cos nx sin mx dx 

= i: cosnxcosmxdx = O. 
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Indeed, the functions sin nx, sin mx, cos nx, and cos mx are eigenvectors 
of the second derivative operator with distinct eigenvalues _n2 and _m2 

as appropriate, so they are hereby shown to be orthogonal. 
You will meet these integrals when Fourier series are introduced in partial 

differential equations. We do not want to claim that the proof given here 
of their being zero is especially simple, but it is more revealing than just 
computing the integrals using trigonometric formulas. A 

The next result is really of very great importance. It is central to classi­
cal mechanics and to quantum mechanics; it is surely the most important 
mathematical contribution to chemistry, and probably to the engineering 
of structures as well. The proof we will give here, essentially a corollary 
of Theorem L6.16, is short but suffers from being nonconstructive, since 
it relies on the characteristic polynomial and the fundamental theorem of 
algebra. In application, one needs not only to know that an eigenvector ex­
ists but also how to compute it. Jacobi's method (Appendix L8) provides 
such a method, as well as a constructive proof of the theorem. 

Theorem L6.22 (Spectral Theorem). 

(a) If A is a Hermitian, anti-Hermitian, or unitary matrix, then en has 
an orthonormal eigenbasis Vb V2, ... , Vn for A. 

(b) If A is real symmetric, then the eigenvalues are real and the basis 
vectors can be chosen real so that IRn has an orthonormal eigenbasis 
for A. 

Proof. By Theorem L6.16, there exists a unitary matrix P such that 
p-1 AP is upper-triangular. However, since P is unitary, p-1 AP is still 
Hermitian, anti-Hermitian, or unitary. Clearly, for a Hermitian matrix to 
be upper-triangular, it must be diagonal with real entries on the diagonal; 
for an anti-Hermitian matrix to be upper-triangular, it must be diagonal 
with purely imaginary entries on the diagonal. Furthermore, since the in­
verse of an upper-triangular matrix is also upper-triangular, if p- 1 AP is 
unitary, then it must be diagonal, this time with entries of absolute value 
1 on the diagonal (Exercise L6#8). 

Since in all three cases p-1 AP turned out to be diagonal, the column 
vectors of P form an eigenbasis for A, which is orthonormal since P is 
unitary. The italicized statements, together with the fact that P is unitary, 
prove Theorem L6.22, part (a). 

Part (b) follows from the fact, just proved, that the eigenvalues of a 
Hermitian matrix, hence of a real symmetric matrix, are real; hence, the 
eigenvectors can be chosen real. 0 

In Exercise L6#9 we will define and prove appropriate properties of nor­
mal linear transformations. These include all three of the classes above-
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unitary, Hermitian, and anti-Hermitian-and allow a unified proof of The­
orem L6.22. 

L6.6. FACTORING THE CHARACTERISTIC POLYNOMIAL 

The characteristic polynomial has already had many uses in this section. 
The next ones are rather deeper, and techniques along these lines are the 
most powerful that linear algebra has at its disposal. On the other hand, the 
characteristic polynomial is more or less uncomputable, and so the results 
are mainly of theoretical interest. 

A first statement is the following: 

Theorem L6.23. Any matrix A satisfies its characteristic polynomial PA, 
i.e., PA(A) = O. 

Example L6.24. The characteristic polynomial of the matrix 

[ 1 0 2] 
A = -1 0 1 

010 

is PA(.~) = A3 - A2 - A + 3. If we compute PA(A) = A3 - A2 - A + 31, we 
find 

[!1 ~ ~] + [~ ~ ~] 
o 1 0 0 0 3 

A + 31 

=0. & 

Proof of Theorem L6.23. The method of proof is typical of a large class 
of proofs in this part of linear algebra. First, do it for the diagonal matrices, 
then the diagonalizable matrices, then the others by approximation. 

(i) Suppose A is diagonal, with the eigenvalues Ai along the diagonal. 
Then all Ak are also diagonal, with powers of the eigenvalues on the diag­
onal, so PA(A) is diagonal, with PA(Ai) in the ith spot on the diagonal. 
Since the eigenvalues are the roots of the characteristic polynomial, the 
result is true. 

(ii) Now suppose A is diagonalizable; say, p- I AP = Al is diagonal. Since 
by Theorem L5.1O PAl = PA, we have 



Appendix L6 453 

(iii) Now suppose A is anything. In any case, there exists a sequence 
of matrices Ai converging to A with all the Ai diagonalizable. Since A ....... 
PA(A) is a continuous function, PA(A) = limi-+OO PA; (Ai) = O. 0 

Now we come to the main idea of this section: factorizations of the char­
acteristic polynomial. We will be mainly concerned with factorizations into 
relatively prime factors, i.e., factors that have no common roots. Such a 
factorization corresponds to a grouping of the roots of the characteristic 
polynomial. This will allow the astute reader to isolate the part of the 
behavior coming from various kinds of eigenvalues. 

Theorem L6.25. Let A be an n x n matrix, with characteristic polynomial 
PA, and suppose that PA is factored: PA = PI112, with PI and 112 relatively 
prime with leading coefficient 1. Let VI = kerpl(A) and V2 = ker112(A). 
Then 

(i) Any vector x E R." can be written uniquely as x = Xl + X2, with 
Xl E VI and X2 E Vi. 

(ii) For any vector X E Vi we have A(x) E Vi. 

(iii) The eigenvectors of A with corresponding eigenvalues roots of Pi are 
in Vi. 

(iv) The characteristic polynomial of A: Vi - Vi is Pi. 

Before proceeding to the proof of this result, we make a few comments, 
insert an example, and prove a lemma. 

What does (iv) mean? After all, A: Vi - Vi is not a matrix, at least not 
until a basis has been chosen for Vi. But recall that characteristic polyno­
mials do not depend on the basis, all they require is a linear transformation 
mapping a vector space to itself; (ii) says that A: Vi - Vi is such a thing. 

Let's move to the example: 

Example L6.26. The characteristic polynomial of the matrix 

is 
PA(.~) = >.3 - 2>.2 + >. - 2 = (>.2 + 1)(>' - 2). 

So we want to examine VI = ker( A - 2/) and V2 = ker( A 2 + I). The 
space VI: ker(A - 21) contains all vectors X E R.3 such that (A - 2I)x = 0; 
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i.e., 
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-2XI +X2 = 0 
=:} -2X2 + X3 = 0 

2XI - X2 = 0 

The result for the vector x shows that with eigenvalue 2, we have but one 
parameter, a one-dimensional space of eigenvectors of A. We have shown 
that VI is a line. 

V2: ker(A2 + f) contains all vectors u E IR3 such that (A2 + f)u = 0; i.e., 

the only condition, so vectors in V2 are of the form 

The fact that we have two arbitrary constants a, b for the vector u shows 
that with eigenvalue ±i we have a two-dimensional space of eigenvectors 
of A. We have shown that V2 is a plane, described, for example, by vectors 

Of course, there are other ways to derive these results; the above method 
was chosen to most clearly show what is happening; a more efficient purely 
matrix method uses row reduction and the dimension Theorem L2.25 (see 
Exercise L6#lOa). 

Now we are ready to illustrate the conclusions of Theorem L6.25: 

(i) Any vecto, [~] in JR' can be wdtten uniquely as 
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with a correct choice of a, b, and c (from three equations in these three 
unknowns). 

(ii) 

A [2~] [~ ~~] [2~] [!~] = [2~:] , 
4c 2 -1 2 4c 8c 4c* 

where c* = 2c; hence, the resulting vector belongs to ker(A - 21), i.e., A 
maps Vl --t Vl. 

A [ !] = [~ ~~] [!] [-:] = [ !:], 
-b 2 -1 2 -b -a -b* 

where b* = a, and a* = -b; hence, the resulting vector belongs to ker(A2 + 
I), i.e., A maps lt2 --t V2 • 

Exercise L6#lOb asks you to verify properties (iii), and (iv) in similar 
fashion. & 

The lemma we need is the following, which appears to have nothing to 
do with linear algebra at all. It is known as Bezout's theorem and is an 
important result in its own right. Another proof appears as Exercise L2#17. 

Lemma L6.27 (Bezout's Theorem). Two polynomials Pl and P2 are 
relatively prime if and only if there exist polynomials ql and q2 such that 
Plql + P2q2 = 1. 

Proof. In one direction, this is clear: if q divides both Pl and P2, then it 
will also divide Plql + P2q2 for any ql and q2; so q must divide 1, which 
implies that q must be a constant. This exactly means that Pl and P2 are 
relatively prime. 

The converse is more interesting and involves an algorithm that is impor­
tant in itself: the Euclidean Algorithm. Let deg(pl) ~ deg(P2), and define 
a finite sequence of polynomials P3, P4,'" ,Pk by division with remainder 
as follows: 

Pl = q2P2 + P3 with deg(p3) < deg(P2), 

P2 = qaPa + P4 with deg(p4) < deg(Pa), 

Since the degrees of the Pi are strictly decreasing, this process must end, 
in fact, in at most deg(PI) steps. The only way in which it can end is with 
Pk+1 = 0 for some k, since 0 is the only polynomial by which you cannot 
divide. 
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Consider Pkj it divides Pk-l! and hence Pk-2, etc., and finally both PI 
and P2. As such, it must be a constant. On the other hand, all the Pi can 
be written in the form 8lPl + 82P2 for appropriate 81 and 82: 

P3 = PI - q2P2, 

P4 = P2 - q3P3 = P2 - q3(Pl - q2P2) = -q3Pl + (1 + q2q3)P2, 

This ends the proof: Pk is a constant c which can be written c = 8lPl + 
82P2j set q2 = 82/C, q2 = 82/C to find 1 = qlPl + Q2P2. 0 

Remark. Note that the proof of Lemma L6.27 actually gave a recipe for 
computing Ql and Q2 (as well as the greatest common divisor of two polyno­
mials). It can also be used to compute greatest common divisors of integers 
in precisely the same way. 

Proof of Theorem L6.25. (i) Suppose Ql('x) and Q2('x) are two polyno­
mials such that PlQl + P2Q2 = 1. Then since PI (A)Ql (A) + P2{A)Q2{A) = I, 
we have for any vector x that 

x = P2{A)Q2{A)x + PI (A)Ql{A)x. 

Now P2(A)Q2{A)x E VI since PI (A)P2(A)Q2(A) = PA(A)Q2(A) = 0 by The­
orem L6.23 and, similarly, Pl{A)Ql{A)x E V2. This shows that there is a 
decomposition as in x = Xl + X2 with Xl E VI and X2 E Viz. 

For uniqueness of the decomposition, it is enough to show VI n Viz = {O}j 
indeed, if 

X = Xl + X2 = Yl + Y2 

with Xl,Yl E VI and X2,Y2 E V2 , then Xl-Yl = Y2 -X2 is in both VI and 
in V2 • Therefore, if the intersection is 0, we have Xl = Yl and X2 = Y2. If 
X E VI n Viz, then 

so X = O. This proves (i). 
(ii) If X E VI, then PI (A)x = 0 and PI (A) Ax = ApI (A)x = o. 
(iii) Suppose Pl{'x) = 0, and Av = 'xv. Then Pl(A)v = Pl('x)V = 0, so 

vE VI. 
(iv) This part is a bit more unpleasant. If you choose a basis of VI and a 

basis of Viz, then together these form a basis of V, and since A sends each 
of these spaces into itself, in this basis A has a matrix of the form 
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By Theorem L5.8, the characteristic polynomial PA can be written qlq2, 
where ql and q2 are the characteristic polynomials of Al and A 2, respec­
tively, which in turn are simply the matrices of A: Vi - Vi with respect to 
the chosen bases of these subspaces. So we have PA = qlq2 = PlP2, and we 
need to show Pl = ql, P2 = q2. If we show that no root of ql is also a root 
of P2 and no root of q2 is also a root of Pl, we will be done. But any root 
A of ql is an eigenvalue of A: Vl - Vi. On the other hand, any eigenvalue 
of A with corresponding eigenvector in Vi is a root of Pl, hence not a root 
ofP2. 0 

L 7 Finding Eigenvalues: The QR Method 

As indicated in Chapter 7 and subsequent chapters, the main task in solving 
linear differential equations with constant coefficients, 

x' = Ax, 

is to find the eigenvectors and eigenvalues of A. 
At the end of Section 7.3, we remarked that computing the characteristic 

polynomial of A, finding the eigenvalues as its roots, and solving for the 
eigenvectors by solving linear equations turns out to be impractical as soon 
as the matrix A is at all large. The QR method (and its variants) is a differ­
ent algorithm, and it is probably the one most often used in applications, at 
least for nonsymmetric matrices. Although it is much more practical than 
the characteristic polynomial approach, it still has its problems. For one 
thing, the explanation and proof are especially lengthy and complicated. 
Finding eigenvectors and eigenvalues really is hard, and nothing will make 
it quite simple. Our presentation was inspired by a lecture by Michael Shub. 

We will begin by a description of the power method, which is a simpler 
cousin of the QR method. 

L 7 .1. THE "POWER" METHOD 

Suppose an n x n real matrix A has eigenvalues Al, ... ,An with distinct 
absolute values, and suppose IAll > IAil, i = 2, ... ,no We then call Al the 
dominant eigenvalue. 

Take from an any vector x "I 0, and consider the sequence of unit vectors 

x Axo Axk 
Xo = /lxII' Xl = IIAxoll'··· ,Xk+1 = IIAxk ll· 

It is trivial (for a computer) to compute the sequence Xk. The main point 
of the "power" method is the following result. 

Theorem L7.1. In general, the sequence of vectors X2k converges to a unit 
eigenvector of A with dominant eigenvalue Al. 
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Proof. We might as well work in a basis Vb"" Vn of unit eigenvectors of 
A. Suppose that x = ClVl + ... + CnVn , with Cl =1= 0. (This last condition 
is what "in general" means.) Then 

and the various terms have very different magnitudes. In fact, if we divide 
through by ClA~, we get 

AkX CnA~ 
--k = VI + ... + --k V n , 
ClAl ClAl 

and all the coefficients except the first tend to zero as k -t 00. 

Now Xk is a multiple of AkX, so for k large, Xk is close to one of the 
vectors +Vl or -VI' If Al > 0, then Xk+l is close to the same vector 
and the sequence Xk converges. If Al < 0, then Xk or Xk+1 is close to the 
opposite vector; in any case, the even terms X2k converge. 0 

You may wonder why we normalized Xi at each step rather than com­
puting Akx directly. The proof of Theorem L7.1 shows that the entries of 
Akx grow like A~ and will rapidly get out of hand. 

The QR method is essentially a way of teasing the other eigenvectors 
away from the voracious attraction of VI. 

Remark. It may seem strange to find the eigenvectors first and then the 
eigenvalues, but we shall see in Theorem L7.4 how it works. 

L7.2. A DESCRIPTION OF THE QR METHOD 

Begin with an invertible matrix A. 

(i) Find Ql and Rl so that A = QlRb where Ql is orthogonal; Rl is 
upper-triangular; this is done by the Gram-Schmidt algorithm, The­
orem L3.13. 

(ii) Now, reverse the orner of the factors and write Al 
repeat step (i) using Al instead of A. 

Note: A = QlRl implies QJ A = Rb which implies Al = QJ AQI = 
Q1l AQb so Al and A have the same eigenvalues, by Theorem L5.7. We 
continue, with 

Ak- l = QkRk, Ak == RkQk' 

As we will see in Section L7.7, the matrices Ak miraculously converge 
under appropriate circumstances to an upper-triangular matrix with the 
eigenvalues on the diagonal. 
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Furthermore, a computer program like MacMath's Eigenfinder will auto­
matically perform the iterations, so the actual process can be rather pain­
less. The following example illustrates how it works; the iterations continue 
until all the entries below the diagonal are zero, to within whatever toler­
ance you choose. 

Example L7.2. Fb, the matrix [-~ ~ ~], the itemtions of the QR 

method are shown in Figure L 7.1. 

Matrix after 1 iterations: Matrix after 5 iterations: 

-3.6000 -1.2294 0.16903 -3.4912 -1.6154 -0.1448 

0.37416 0.74285 -0.8583 0.00098 0.82984 -0.6142 

O.OOOOC -0.2258 -0.1428 0.00000 -0.0090 -0.3386 

Matrix after 2 iterations: Matrix after 6 iterations: 

-3.4656 1.6526C 0.3363Ji -3.4907 1.6149§ 0.1624:3 

0.06741 0.8630e -0.4648 0.00023 0.83608 -0.6014 

O.OOOOC 0.146n -0.3974 0.00000 0.00378 -0.3453 

Matrix after 3 iterations: Matrix after 7 iterations: 

-3.4974 -1.6029 -0.0871 -3.4908 -1.6153 

0.01764 0.81133 -0.6563 0.00005 0.83346 

0.00000 -0.0514 -0.3138 O.OOOOC -0.0015 

Matrix after 4 iterations: Eigenvalues: 

-3.4893 

0.00405 

0.0000_0 

1.61600 0.1875:1 

0.84385 -0.5826 

0.02271 -0.3545 

-3.4909 

0.8343 

-0.3434 

FIGURE L7.1. QR iteration of a matrix. 

-0.1551 

-0.6067 

-0.3425 
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The program stops after eight iterations because the subdiagonal ele­
ments are all less than the chosen tolerance of 0.000l. 

The eigenvalues have been boxed on the main diagonal and have rounded 
values (using more decimal places than shown on the diagonal) of -3.4909, 
0.8343, and -0.3434. ~ 

L7.3. THE MAIN CONVERGENCE RESULT 

Theorem L7.3. Suppose A has n real eigenvalues, with distinct absolute 
values. Then the matrices Ak converge as k --+ 00 to an upper-triangular 
matrix with the eigenvalues of A on the diagonal. 

The proof of Theorem L 7.3 requires laying quite a bit of groundwork, to 
which we shall shortly proceed. We will be able to explain why this result 
is true in Section L7.7. Meanwhile, we shall first make some observations. 

There is more to be said than Theorem L7.3 gives. First, the requirement 
that the eigenvalues, or for that matter the matrix A, be real is unnecessary. 
If A is complex, then Q should be chosen unitary, and Gram-Schmidt works 
exactly the same way; the reference is Appendix L3. 

Unfortunately, if A is real and has complex eigenvalues, then they never 
have distinct absolute values since they come in conjugate pairs. It turns 
out that all is still not lost: a pair of complex conjugate eigenvectors leads 
to matrices Ak with a 2 x 2 submatrix M along the diagonal. The entries 
in M do not converge as the algorithm proceeds; however, the pair of 
complex eigenvalues are then the roots of the characteristic polynomial 
of M. It turns out that this characteristic polynomial does converge even 
though the entries of the submatrix do not, and characteristic polynomials 
for 2 x 2 matrices are easy to compute: they always have the form 

)..2 _ (tr M» .. + (det M), (1) 

as discussed in Chapter 7, Section 5. We do not here prove these results for 
the complex case, but for completeness we state the theorem that explains 
how the QR algorithm extends to complex eigenvalues. 

Theorem L7.4. Suppose A has n complex (including real) eigenvalues, 
with distinct absolute values, except for complex conjugate pairs. Then the 
matrices Ak tend as k --+ 00 to almost upper-triangular matrices. The ex­
ceptions are 2 x 2 submatrices along the diagonal, which yield the nonreal 
complex eigenvalues of A in conjugate pairs, as solutions to the character­
istic polynomials of these 2 x 2 submatrices. The real eigenvalues of A lie 
on the diagonal. 
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Example L7.5. Find the eigenvalues for the matrix 

o 1 
o 0 
o 0 
o 0 
o 0 
1 1 

o 
1 
o 
o 
o 

4.25 

o 
o 
1 
o 
o 
4 

o 
o 
o 
1 
o 

.75 

corresponding to the characteristic polynomial 

o 
o 
o 
o 
1 
o 

461 

The results of the computer program Eigenfinder are shown in Figure 
L7.2. 

Original matrix: Matrix alter 20 iteralions: 

0.0000 1.00000 0.00000 0.0000 o.ooooc o.ooooc 1.9996 -0.9375 2.89401 -1.352C 1.2815 3.5409 

0.0000 0.0000 1.0000C 0.0000 O.ooooc 0.0000 0.0055 -0.0794 -1.6945 0.48031 -0.6236 -1.3997 

0.0000 o.ooooc o.OOOOC 1.0000 O.OOO~C O.ooo~ 0.0000 1.133n -0.9200 0.4226 -0.3620 -1.0748 

0.0000 o.ooooc O.OOOOC 0.0000 1.0000C 0.0000 0.0000 O.OOOOC 0.0014 -1.0001 0.4981 0.4148 

0.0000 O.OOOOC O.OOO~c 0.0000 0.0000 1.0000 O.OOOOC O.OOOOC O.OOOOC 0.0000 -0.0715 -1.3578 

1.0000 1.0000 .2500 4.0000 0.7500 0.0000 O.OOOOC O.OOOOC O.OOOOC 0.0000 O. t878 0.07151 

Matrix alter 10 Iterations: Matrix alter 30 Ilerations: (almost done) 

2.0499 -2.1280 2.3169 -1.2635 -1.3134 -3.6190 1.9999 1o.1377! 3.0334 -1.3534 -1.2800 -3.5373 
O. t504E -0.1326 1. t t63 0.t121 0.3036 0.5465E 0.0001 0.3892 1.9079 b.6033E 0.7141 1.6964 
0.00000 1.5506! -0.9219 0.5118 0.5798 1.5051 0.0000 10.92801 0.630E b.22650 0.1186 0.5124'1 
O.OOOOC 0.0000 ~.0411 -0.9960 -0.4967 -0.4104 0.0000 0.0000 0.0000 1.0000 -0.4978 0.4144 
O.OOOOC 0.0000 ~.OOOOC 0.00201 0.0705 -1.3571 0.0000 0.0000 0.0000 10.0000 -0.0715 1.357E 
0.0000 0.0000 ~.OOOO 0.0000 0.18771 0.0712E 0.0000 0.0000 0.0000 0.00000 0.1878 10.07151 

FIGURE L7.2. 

Working down the boxes of Eigenfinder's final matrix, we see, with the 
help of the trace and determinant expression (1), that the matrix A has 

a real eigenvalue 1.9999 ~ 2; 
complex eigenvalues satisfying >.2 + 0.9998>' + 2.0000 ~ >.2 + >. + 2 = 0; 
a real eigenvalue -0.9999 ~ -1; 
complex eigenvalues satisfying >.2 - 0>' + .2499 ~ >.2 + 1 = O. 

Therefore, the eigenvalues are 2, -l~v7i, -1, ±!i. These calculations, in 
fact, match Eigenfinder's numerical listing: 

2, -0.5 ± 1.3229i, -1, ±0.5i. 
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L7.4. FLAGS 

Unfortunately, although the QR method is quite easy to implement, it 
is fairly complicated to understand why it works. The key notion is the 
following: 

A flag of R.n is an ascending sequence of subspaces 

with each subspace Ui of dimension i, and therefore Un = R.n. 
A flag may appear to be a nebulous notion, but it is quite easy to work 

with in practice. For instance, if the columns a1 ••• ,an of a matrix A are 
linearly independent, they form a basis of R.nj we may consider the flag FA 
defined as above with the subspaces defined as follows: each Ui is spanned 
by a1. ... ,8ij this flag is called the flag associated to the basis. 

Of course, many bases have the same associated flag. 

Examp~ L7.6. Conmd& A ~ 0 ~ n and B ~ 0 : 
can write 

31) 
73 . We 

115 

The first and last entries in each flag are the samej if we can show that the 
middle entries each span the same plane, we will have shown that the flags 
are the same. That is, can we find numbers a and b such that 

Yes: a = 2, b = 4. Therefore, FA = FB . • 

In fact, if A is the matrix with ith column 8i, then B has the same flag 
associated to its columns as A if and only if B = AR, with R an invertible 
upper-triangular matrix. The proof of this fact involves a straightforward 
calculation in Exercise L7#2, which you should consider compulsory and 
central to getting a feel for the heart of the QR method. An essential 
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implication is the following: If you apply Gram-Schmidt to any basis, the 
vectors of the new orthonormal basis in the same order produce the same 
flag. 

We will need the following special cases of flags: 

(1) The flag associated to the standard basis is called the base flag FQ • 

(2) Let A be a square diagonalizable n x n matrix and let VI,"" vn be 
an eigenbasis of IRn for A. Then the flag associated to Vb' .. , Vn is 
called an eigenflag of A. There are lots (n!) of eigenflags, depending 
on the order in which the eigenvectors are arranged. 

(3) If the eigenvalues Ab"" An corresponding to VI,"" vn have distinct 
absolute values and are ordered from largest to smallest, i.e., 

then the associated flag AA is called the dominant eigenflag of A. If 
they are ordered from smallest to largest, we get the recessive eigen­
flag A:4. of A. 

L7.5. OPERATIONS OF LINEAR TRANSFORMATIONS ON 

FLAGS 

If F = (UI C ... C Un) is a flag of IRn and A is an invertible matrix, then 
A(Ui ) is the subspace generated by the vectors AVl, AV2,"" AVi, and 

is another flag, which we will write AF. 
Although it does not look as if it has anything to do with it, the following 

statement really explains the QR method. 

Theorem L7.7. Let A be an invertible diagonalizable matrix whose eigen­
values have distinct absolute values. If 

is any flag, then, in general, Ak F converges to AA as k ---- 00. 

Remarks. The phrase "in general" means that if 

A:4. = (W; C W; C ... ) 

is the recessive flag, then Ui n W.'::_i = 0 for all i = 1, ... , n. If any flag 
is jiggled slightly, it will satisfy this "general" requirement. Example L 7.8 
shows the geometric significance of the phrase "in general" if n = 3. 
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Example L7.8. For a 3 x 3 invertible diagonalizable matrix with distinct 
eigenvalues, the geometry of the "general" requirement is illustrated in 
Figure L7.3. 

FIGURE L7.3. 

In the case n = 3, the "general" requirement amounts to only two sentences: 

u1nw; =0, 

which means that the line U1 intersects the plane Wi only at the point 0; 
similarly, 

u2 nw; =0 

means that the plane U2 can only intersect Wi at the point O. That is, the 
plane U2 can only intersect Wi in a line =f. Wi. 

Although we will not show this, as long as the eigenvalues of A have 
distinct absolute values, then for any flag F, even without the "general" 
requirement, A k F will still converge. However, the limit will not be the 
dominant eigenflag if F fails to satisfy the condition above. 

Proof of Theorem L7.7. We might as well work in a basis Vii ... , Vn of 
eigenvectors ordered so as to give the dominant eigenflag. Choose a basis 
Xii ... ,Xn whose associated flag is F; in coordinates, 

[
Xl 'J 

X< ~ x~:: . 
The "in general" requirement says that Xi,i =f. 0, i = 1, ... ,n. In the basis 

of eigenvectors, it is easy to see what Ak F is: it is the flag associated to 
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the basis 

[ ~i::::l ' [~::::l , ... , [~i::::l' 
>'~Xn,1 >'~Xn,2 >'~xn,n 

The coordinates of the vectors above have very different magnitudes; in 
order to see this more clearly, divide the ith vector by >.fXi,i' These new 
vectors give the same flag, but this time they look like 

where * represents an entry that becomes arbitrarily small as k - 00, 

and # represents an entry that is probably very large but its magnitude is 
irrelevant. 

The flag associated to these vectors is very nearly the dominant eigenflag 
of A. The first vector nearly points in the direction of VI' The second vector 
is a large multiple of VI plus a vector which nearly points in the direction 
of V2, so the first and second vectors nearly span the subspace spanned by 
VI and V2, and so forth. 0 

We shall see in Section L 7.7 that while Theorem L 7.7 is true theoretically, 
numerically it does not lead to a productive algorithm unless the vectors 
are orthogonal. Without orthogonality, the vectors can get too wild; e.g., if 
the first # above the diagonal is huge, you could divide the second vector 
by that number and it would be very close to the first vector. 

L7.6. THE RELATION BETWEEN EIGENFLAGS AND 

EIGENVALUES 

There is a good reason for wanting to find an eigenflag for a matrix A. 

Theorem L7.9. If WI, ... , Wn is a basis ofJRn with the associated flag an 
eigenflag of A, then the matrix of A in that basis is upper-triangular with 
the eigenvalues on the diagonal. 

Proof. Let VI, ... , Vn be eigenvectors such that Wi is a linear combination 
of VI,"" Vi, say 

(2) 

Then 
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from equation (2) for the ith term .. 

In this last expression, all the terms except the last are linear combinations 
of V1, ... , Vi-l, Le., of wl, ... , Wi-1, so the ith coefficient of AVi is Ai and 
the jth coefficient is zero for j > i. Therefore, 

i i ]-1 [i 
~i A ~1 

i ... +] 

. 0 

OOOOAn 

L7.7. THE QR METHOD 

The strategy of the QR method is as follows: For a matrix A, take the base 
flag Fo, and define Fk == Ak Fo. 

For example, 

Fo = {sp{et} C sp{e1,e2} c··· c sp{el,e2, ... ,en}}, 

F1 = {sp{Aet} c SP{Ae1, Ae2} c ... c Sp{Ael, Ae2, ... , Aen }} (3) 

= {sp{at} C sp{al,a2} c··· c sp{al,a2, . .. ,an}}. 

This means that Fo and F1 both serve as flags for A, but with different bases. 
By Theorem L7.7, Fk converges to the dominant eigenflag in general. 

There is an obvious way to find the eigenflag: Fk is the flag associated 
to the columns of Ak. Unfortunately, this approach (from Theorem L7.7) 
does not work numerically, because, as we saw in Section L7.1, the entries 
of Ak get out of hand. Even if we scale the columns to be of unit length 
(this still has the same associated flag), it still does not work. All columns 
tend to multiples of the dominant eigenvector, so that although it is true 
that the plane spanned by the first two columns does tend to the plane 
of the dominant eigenflag, the spanning vectors are separated by a smaller 
and smaller angle, and it becomes difficult to tell them apart with finite 
precision. 

A more reasonable idea is to take the base flag Fo, compute 
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and then describe F1 by an orthogonal basis (from Gram-Schmidt). Con­
tinue this way, each time computing Fk by applying A to an orthonormal 
basis whose associated flag is Fk- 1 and reencoding Fk by an orthonormal 
basis. This is exactly what the QR method does, but we have to prove it: 

Theorem L1.1O. Let A = QIRI, Al = R IQ1, Al = Q2R2, .... The flag 
associated to the orthogonal matrix 

is Fk = Ak Fo, and Ak = Pk- I APk is the linear transformation A written 
in the basis formed by the columns of Pk . In particular, this means that Ak 
has the same eigenvalues as A. 

Proof. The proof is by induction on k. The base step is for k = 1 with 
PI = Ql' By Gram-Schmidt, we can write A = Q1R1, and then we see 
that 

Al = RlQl = Q1l AQI 

is actually A in a new orthonormal basis. We showed in (3) that the flags Fo 
and AFo = FI both serve as flags (by different bases) for A. The matrices 
A and Q1 have the same flag, by Exercise L7#2d. Therefore, AFo indeed 
is a flag in the orthonormal basis of Q1. 

Next suppose that the theorem is true for k - 1, that the flag for Qk-l 
is Ak-l Fo, and A k- l = Pk.!l APk-I' Writing, by the definition of Qk and 
Rk , 

A k- 1 = QkRk 

means that Qk has the same associated flag as A k- 1 ; by expressions similar 
to (3), we can show that the flags Fk and A(Fk-1) both serve (by different 
bases) for Ak • On the other hand, 

Ak = RkQk = Qkl Ak-1Qk 

shows that Ak is Ak-l written in the orthonormal basis of columns of Qk, 
so for k we indeed have that the flag Fk = Ak Fo. So when we get done, by 
Theorem L7.9, 

o 

OOOOAn 

The combination of Theorems L7.1O and L7.9 proves Theorem L7.3 at 
least if Fo satisfies the "general" condition about the recessive eigenflag of 
A, the general case. 
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L7.8. ACTUAL COMPUTATIONS WITH QR 

We have proved in Section L7.7 that the QR method will find the eigen­
values of A, at least for the usual case of distinct eigenvalues. The flags, 
which are essential for the proofs, are not used in the actual calculations. 
The computational algorithm simply is as follows: 

(i) Find Qk by Gram-Schmidt on Ak- b so that Ak- 1 = QkRk. 

(ii) Find Ak = QJ Ak-lQk, because Ak = RkQk = Qkl Ak-lQk = 
QJAk-lQk. 

(iii) Repeat steps (i) and (ii) until Ak is sufficiently upper-triangular. 

The phrase "sufficiently upper-triangular" means the following: First, 
"zero" in practice means below a preset tolerance (like 0.001), and we are 
aiming at that for all elements below the diagonal. But we must also allow 
for the possibility of complex eigenvalues, which leave 2 x 2 submatrices on 
the diagonal rather than in strictly upper-triangular form. In those cases, 
as we have already noted in Section L7.3 and Example L7.5, it is simple to 
compute the eigenvalues of a submatrix from its characteristic polynomial; 
we note here the same truth even if the eigenvalues are real. So, in practice, 
we simply continue QR until the subdiagonal of Ak has no two consecutive 
nonzero elements. Then for each 2 x 2 submatrix, we form the characteristic 
polynomial from the trace and the determinant and find its eigenvalues; any 
remaining eigenvalues will be real and already lying on the diagonal of the 
overall matrix. 

There are matrices for which QR does not work. Some examples are 
given in Exercise L7#8. One is the case of repeated eigenvalues (which 
need more eigenvectors than the method can find). Another possibility is a 
matrix with distinct eigenvalues that nevertheless have the same absolute 
value (which has the effect that none can dominate). 

Nevertheless, "in general," the QR method does its job well. Moreover, 
there is yet an extra twist that enormously improves the computational 
efficiency of the QR algorithm-the use of Hessenberg matrices. This is 
what the program Eigenfinder actually does, and the remaining sections of 
this appendix will explain it. 

L7.9. HESSENBERG MATRICES IN QR 

Each iteration of the QR method involves doing Gram-Schmidt to the 
columns of a square n x n matrix, and multiplying two n x n matrices. A 
bit of checking will show that each of these computations takes Cn3 oper­
ations, where C is a constant not depending on n (and actually only well 
defined after a unit has been chosen). In this section, we will describe a 
trick to reduce each of these operations to be of order n2 • The underlying 
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mathematics is not actually very different, but the efficiency of the calcu­
lation is so much greater that many numerical analysts would say this is 
the heart of the QR method. 

As we described the QR method, we started with an invertible matrix 
A and the standard flag Fo, and considered the images FI = A(Fo), F2 = 
A(Fd, ... , claiming that it converged in general to the dominant eigenflag. 
The idea behind the Hessenberg calculation is to start with a flag HA better 
adapted to the situation. 

A Hessenberg matrix is a matrix that has nonzero entries only on or 
above the subdiagonal, the diagonal line beneath the main diagonal. 

The neat thing is that a Hessenberg matrix can be reduced to an upper­
triangular matrix R efficiently. You can remove the sub diagonal elements 
one at a time by carefully chosen rotations; the product of these rotations 
gives the Q in Q R. 

Furthermore, everything we do with a Hessenberg matrix will remain 
Hessenberg: QR and RQ, so if we can just get HA to start, we can continue 
to find all Qk by the simple product-of-rotations process just mentioned. 

Product-Rotation Algorithm 

Given a Hessenberg matrix H on which to perform the QR method, we 
can focus on R = Q-I H = QT H and find QT by a product of rotations 
that gradually lead to the required upper-triangular form for R. We shall 
find that 

where 

Q T H = 8(n - 1, On-I) ..... 8(1, OdH, 

1 0 
o 1 

o 0 
o 0 

o 0 

i i + 1 

0 0 
0 0 

cosO -sinO 
sinO cosO 

0 0 

0 
0 

1 

0 

0 
0 
0 
0 i 
0 i+1 
0 

1 

That is 8(i,Oi) represents the rotation by Oi in the (i,i + 1) plane. In 
particular, 8(i,Oi) is orthogonal, and (8(i,Oi))-1 = (8(i,Oi))T = 8(i, -Oi). 

The product-rotation algorithm begins with i = 1 and proceeds through 
i = n - 1, at which point all the sub diagonal elements will have been 
cleared. 

The idea is to use 8( i, Oi) to cancel the ith term on the subdiagonal, 
after the first i-I terms on the sub diagonal of H have vanished. You 
can accomplish this by solving for Oi whatever equation results from the 
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multiplication for that particular ith entry on the subdiagonal (and you 
can choose either of the two solutions that occur), or by more formally 
setting 

-b· . 
cos () = ---r=="=' == 

A careful look at Figure L7.4 should convince the reader that the product 
8(i, (}i)H is indeed one step closer to upper-triangular form, with the first 
i terms on the subdiagonal vanishing. 

c=cose 

s = sin e 

H , 
'l -, 

diagonal # /I: /I 
subdiagonal 0 # # 

# 

e is carefully chosen 
to ZUQ the l th 
subdiagonal entry 

o ,-,0;.+-#,:-+..."...; 
o 0 0 

o 0: 0 ~+::+...::~ 

l 
l +, 

o 0, 0 , 
S (i. 9,) H : , , 

1 0 0 0 0 0 # #:# #:# # 
o 1 0 0 0 0 0 #'# #'# # 
o 0 1 0 0 0 0 0:# #:# # 

-6-0--0--6"--8--0- -5-o-'-0-#-'·:f-i--

-Ot! - -00- _00- _SO- - 50- -1Q. - _Q - _O_:_Q. li::L#_ -~-o 0'0 0,# # , , , , 

FIGURE L7.4. A step in the middle of QR for a Hessenberg matrix H. 

Theorem L 7 .11. Given H an n x n matrix in H essenberg form, there 
exists a sequence of rotations QT = 8(n - 1, (}n-I) .... ·8(1, (}I) as defined 
above such that QT H is an upper-triangular matrix R and the matrix 
H = RQ = QT HQ is also Hessenberg. 

Proof. The first half of the theorem is proven by the construction of the 
rotations 8(i, (}i) as described above; the second half is left to the reader. 
See Exercises L7#5 and L7#7. 0 

Note that we never actually find Q; we keep the 8(i, (}i). It is faster to 
multiply by all the 8( i, (}i) than it is to multiply them together. 

Thus, once we start with a Hessenberg matrix, the entire QR method 
gives a sequence H k of Hessenberg matrices, for which it is very much easier 
to find Q's. The product-rotation algorithm is far more efficient than Gram­
Schmidt, which we have already noted will take an order of n3 calculations 
to compute for each Qk. 
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Theorem L7.12. Multiplying an n x n matrix by a matrix of the form 
8(i,Oi), on the right or on the left, requires 4n multiplications. 

The proof is left to the reader. Note how much smaller 4n is than n 3 • 

Theorem L7.13. Given H an n x n matrix in Hessenberg form, the se­
quence of rotations 8(n - 1, On-l) .... ·8(1, OI) as defined above such that 
QT H is an upper-triangular matrix R can be found using on the order of 
n2 operations. 

We leave the proof as Exercise L7#6. 
The final thing we need to do is to get a Hessenberg matrix to start. 

Hessenberg Algorithm 

We must find a basis hl, ... ,hn such that A(hi ) is in the span of hl, ... , 
hi+l for all i = 1, ... , n. We will, in fact, find an orthonormal basis with 
this property. The Hessenberg algorithm to do this is very similar to the 
Gram-Schmidt process, Theorem L3.13. 

(1) Start with any unit vector hl, for instance the standard basis vector 

U2 = A(hd - (A(hd . hl)hl, 
U3 = A(h2) - (A(h2) . hl)hl - (A(h2) . h2)h2' 

h2 = u2/llu21i, 
h3 = U3/li u31i, 

until either you have a basis, which will usually be the case, or until some 
Ui = O. If this happens, actually something rather nice has happened, 
namely, the subspace spanned by hl, ... , h i - l is sent into itself by A and 
that part, which has lower dimension, can be studied separately. In any 
case, we then get to freely choose another vector, say e2, which we must 
then make orthogonal to all those chosen so far. If this leads to 0 again (Le., 
if e2 was also in the span of h l , .. . , hi-d, then try e3, and so forth. You 
will certainly find a vector not in this span eventually, since any i vectors 
in the span of hl, ... ,hi - l are linearly dependent, and the standard basis 
vectors are linearly independent. 

(2) Let P be the change-of-basis matrix with the hi as columns and set 

HA = P-lAP. 

You now have a Hessenberg matrix H A , which has the same eigenvalues 
as A. Performing QR on HA is efficient. The summary of Section L7.8 
becomes (in Eigenfinder) as follows: 

(i) Find HA by the Hessenberg algorithm giving P = (hl' h 2, ... ,hn ), 

HA = P-lAP. 
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(ii) Find Ql = Sen - 1,6n - 1 ) ••••• S(I, ( 1) by the product-rotation 
algorithm; this makes an upper-triangular Rk = Ql Hk- b so that 
Hk-l = QkRk. (Start with Rl = Qi HA.) 

(iii) Find Hk = Ql Hk-lQk = RkQk, 

(iv) Repeat steps (ii) and (iii) until Hk is sufficiently upper-triangular. 

L8 Finding Eigenvalues: Jacobi's Method 

Jacobi's method is a reasonably efficient algorithm for finding eigenvalues 
for a symmetric matrix, it is not as hard to understand as the QR algorithm, 
and it provides a constructive proof of the Spectral Theorem L6.22. We 
restate it here for the case we shall discuss. 

Theorem LS.1 (Spectral Theorem). If A is a real symmetric ma­
trix, the eigenvalues are real. Furthermore, R.n has an orthonormal basis 
Vb V2, ••• , Vn of eigenvectors of A. 

The algorithm is not everybody else's method of choice at present. We 
choose it because it is fairly easy to analyze, and it corresponds to op­
erations that can be geometrically motivated. We suspect also that with 
the advent of parallel computation, it will regain favor in large-scale com­
putations and may become the method of choice in the not too distant 
future. 

LB.l. JACOBI'S METHOD: THE 2 X 2 CASE 

Lemma LS.2. If A is the symmetric 2 x 2 matrix [: :] and 

then 

2b 
tan 26 = --d' 

a-

Q(-6)AQ(6) = [~1 ~2]' 
that is, a diagonal matrix, with the eigenvalues >'1, >'2 along the diagonal. 

The proof of Lemma LB.2 consists of carrying out the multiplication 
Q( -6)AQ( 6) and observing that if 6 satisfies the condition of the theorem, 
the off-diagonal terms of the product vanish. Exercise LB#1 shows how the 
computer deals with this calculation. 
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L8.2. JACOBI'S METHOD: THE n X n CASE 

1. l'he basic step. 

Lemma L8.3. Let A be now any n x n symmetric matrix, with entries ai,j, 
and let Q( i, Bi ) = 

i j 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 cos B 0 - sinB 0 0 ... i 

0 0 0 0 
0 0 0 0 0 1 0 0 0 

0 0 0 
0 0 0 sin B 0 0 0 cosB 0 0 ... j 

0 0 0 0 0 0 0 0 1 0 

0 
0 0 0 0 0 0 0 0 0 1 

be the matrix of rotation by angle B in the plane containing the ith and jth 
standard basis vectors. 

Choose any i, j with i < j, and choose B so that tan 2B = 2ai,j / (ai,i -aj,j). 
If 

B = Q. ·(-B)AQ· ·(B) 'I.,J t,J' 

then 

( a) B is symmetric; 

(b) if bk,l is the (k, f) -entry of B, then bi,j = bj,i = 0; 

(c) the sum of the squares of the off-diagonal terms of B is the sum of 
the squares of the off-diagonal terms of A, decreased by the squares 
of the terms just killed; i. e., 

L b%,l = L a%,l - 2a~,j' 
k# k-f-l 

Proof. 

(a) For this part, Qi,j(B) could be any orthogonal matrix Q: 

BT = (QT AQ)T = QT AT Q = QT AQ = B. 
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(b) This is exactly the computation in the 2 x 2 case of Lemma LS.2. 
You can show as Exercise LS#2 that for n > 2 the resulting relevant 
computations involve just the ith and jth rows and columns, which 
is just like the 2 x 2 case. 

(c) This is where the real content of Jacobi's method is. Let ek be the 
standard basis vectors and Wk be the orthonormal basis vectors form­
ing the columns of Qi,j((J)j in particular, ek = Wk if k =f i,j. Note 
that 

and 

Aet 
~ 

lth column of A , 
'" kth component of lth column of A 

bk,t = ek . Bet = ek . Q-l AQel = Wk . AWL. 

This restates that B is the matrix of A in the basis of the Wi'S. 

Now we will look at 2:k;ll b~,l and 2:k;ll a~,l' considering the three dif­
ferent possibilities for k and l: 

(i) If neither index is an i or a j, then bk,l = ak,l, so the corresponding 
squares are certainly equal (k =f i,jj l =f i,jj k =f l). 

ii) On the other hand, if exactly one index is an i or a j, we will handle 
the entries in pairs (k =f i,j): The quantity 

a~,i + a~,j = (Aek . ei)2 + (Aek . ej)2 

is the squared length of the projection of Aek onto the plane spanned by 
ei and ej. Since the same plane is spanned by Wi and Wj, we see that 

bk2 • + b2k • 
,'l ,3 

is also the squared length of the projection of AWk = Aek onto that plane, 
so that 

a~,i + aL = b~,i + bL· 

The same argument applies to indices (i, k) and (j, k) with k =f i, j. 

(iii) Lastly, if both indices are from the off-diagonal term i, j or j, i, then 

b~ . + b~ . = 2b~ . = 0 '&,3 3,1. '&,3 ' 

though 
a~ . + a2 . = 2a~ . ...J. O. '&,3 3," 'I.,) -;-

Summing up the contributions from (i), (ii), and (iii), we have 

L: btl = L: b~,l + 2 L: (bL + b~,j) + 0 
k# k;li,j;l;li,j;k# k;li,j 
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= L atl + 2 L (a%,i + a%,j) 
kt-i,j,Ut-i,j kt-i,j 

= ~ ak2 • - (a~ . + a~.) 0 L.-J ,-t. ',3 J,'t 

k,l 

2. Completion of Jacobi's method. In conjunction with Lemmas LS.2 and 
LS.3, the following argument completes the proof of the Spectral Theorem. 

Proof of Theorem 8.1, continued. Let A be a symmetric matrix. Choose 
i, j with i =F j so that lai,j I is maximal, and () so that if 

Al = Qi,j( -(})AQi,j«(}), 

then the (i,j)th term of Al is O. Define PI = Qi,j«(})' 
Continue this way, killing on the next move the largest off-diagonal term 

of Al by conjugating Al by Qil,jl «(}l), setting 

A2 = Qit.i1 (-(}1)A1Qil,i1 «(}l) and P2 = PI Qit.i1 «(}t}, 

and so on. Note that the (i,j) term, which had been killed in AI. may 
come back to life in A 2 • However, at each stage, the sum of the squares of 
the off-diagonal terms is decreased by the square of the largest off-diagonal 
term; in that sense, the An are becoming more and more diagonal. 

At this point, a rather unpleasant point needs to be brought up. In 
general, the sequence of An and the sequence of Pn will converge; in fact, 
we have never seen a case where they do not. But there is trouble in showing 
that this is so. However, it is easy to show that a subsequence of the Pn 

converges, because these form a sequence in the orthogonal group, which 
is compact. Let Qm be such a subsequence, so that the sequence 

Am = Q;;'; AQm 

converges also. Then Q = limm ..... oo Qm is orthogonal and Q-l AQ is diag­
onal. 0 

L8.3. GEOMETRIC SIGNIFICANCE OF JACOBI'S METHOD 
IN ]R3 

A symmetric 3 x 3 matrix A represents a quadratic form (or quadratic func­
tion) x TAx on IR3, as described in Appendix L4.5. The equation x TAx = O! 

represents a quadric surface. We shall be particularly interested in the cases 
where O! = 1 or O! = -1. Some are illustrated in Examples LS.4 for the cases 
where the axes of the surface coincide with the coordinate axes. In IR2, the 
basic types are ellipses or hyperbolas; in IR3 , the basic types are ellipsoids or 
hyperboloids (of one or two sheets); in both cases, there are also degenerate 
examples. 
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Examples LS.4. In ]R2 we see conic sections such as in Figure L8.1. 

-2.0 

1I'.4v'·1 ~-[!~ 
ellipse 

2.0 

1I'-4V'·1 ~-[!..:] 
hyperbola 

FIGURE LB.1. Conic sections in ]R2. 

In ]R3 we see quadric surfaces such as in Figure L8.2. 

1I'.y'.z'.1 
ellipsoid 

[ 1 00] L.- 0 1 0 
001 

1I'.y'-Z'.1 
hyperboloid of 

on[~ s~ee~] 
L.- 0 1 0 

00-1 

1I'-II'-z'.1 
hyperboloid of 

two[r:et~] 
L.- 0 -1 0 

o 0-1 

FIGURE LB.2. Quadric surfaces in ]R3. A 

Notice that all the matrices of Examples LS.4 are diagonal matrices; this 
is no coincidence, as you can tell from the equations. If a symmetric matrix 
is not diagonal, there will be cross-terms in the equation, and the quadric 
surface it represents will be rotated, with respect to the x, y, and z axes. 
A 

Example LS.5. For 3x2 + 2y2 + 5z2 - 2xy + 4xz - 4yz = 1, or 

-1 2] [X] 2 -2 Y 
-2 5 z 

= 1, 
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the quadric surface is an ellipsoid. Figure L8.3 shows it by the elliptical 
intersections of each coordinate plane with the surface; admittedly, this 
picture is not so easy to interpret. 

FIGURE LS.3. 

Figure L8.4 shows the same ellipsoid, in the same position, but with the 
coordinate axes rotated to lie along the axes of the ellipsoid; now you can 
see it more easily. 

FIGURE LS.4. 

Remark. Without the arrows on the axes it can be hard to interpret what 
is in front and what is behind. However, if you remember that we draw 
right-handed systems, you can see that the arrow on the z-axis is in the 
front of the picture (but high). & 

The question now is "how do we get from a drawing like Figure L8.3 
to one like Figure L8.4?" The answer is, by Jacobi's method! Each step of 
Jacobi's method represents a rotation of the axes in one coordinate plane. 
The program JacobiDraw does this for you. 

Example L8.6. The sequence of pictures from JacobiDraw in Figure L8.5 
shows all the steps used in going from Figure L8.3 to Figure L8.4: 
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1[·" 70: .~:: .::::] 
2.000 -2000 5.000 

Itenllon I Rotation of -31" dlgrees In the Xl plane 

1['- 0'00 00 ] 
0200 2000 -2.227 

00 -2.221 6.236 

n.ratlon2 Rot,tlonol 2JJ dlgra.s In the VZ plen, 

1[ '7.' 0.' •• -0079] 

0.1114 1044 00 

-0079 00 7191 

. ! 

ItlAtlon J RotatIonal Il6d1grl" In lhe XV pI.", 

pnlClss'ng 

Jacobi 's dOn.I Hwnblr of HtrlUons 6 
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1[
'000 00 

00 1000 

-0.077 0018 

1['·' 
0000 

0000 1000 

-0.0 0016 

-.. 077] 
00'8 

7191 

00 ] 
0.016 

7192 

1[ ~:07 '000 -:: ] 

00 -00 7192 

FIGURE L8.5. Action of Jacob's method on a quadratic form representing an 
ellipsoid. 

The matrix at the right of each picture represents the start of each step 
(and therefore the end of the last step), highlighting the off-diagonal ele­
ment to be zeroed in the current step. 

The tolerance for this series of iterations was set at 0.0001 for determin­
ing whether an off-diagonal entry has become zero; you can change that 
tolerance. 
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The eigenvalues are 1.807, 1.000, and 7.192. 

[ 
.882] 

The eigenvectors are .210, 
-.420 

[ 0 ] [.470] .894 ,and - .394 , 
.447 .789 

as can be read off the eigenvector matrix displayed by JacobiDmw. In Ex­
ercise L8#5 you can confirm that the eigenvectors form an orthonormal 
basis as stated in the Spectral Theorem L8.1. ~ 

A line through the origin is a principal axis for a quadratic form if it 
intersects the level surfaces for that quadratic form orthogonally. When a 
symmetric matrix A becomes diagonal in an orthonormal basis, then the 
lines through the basis vectors appear to be principal axes for the quadratic 
form. This is, in fact, true in general and explains the alternate name 
Principal Axis Theorem for the Spectrol Theorem L6.22. Jacobi's method 
tries to approximate the basis of principal axes by successively rotating in 
one plane at a time toward the principal axis in that plane. 

Example L8.7 shows JacobiDmw in action for a hyperboloid of one sheet. 

Example L8.7. For the matrix 

H -1 2] o -2 
-2 5 

Jacobi's method is illustrated geometrically as shown in Figure L8.6. 

The eigenvalues are 1.777, -0.728, and 6.950. 

[ 
.886] 

The eigenvectors are .069, 
-.494 

[
.094] [.490] .949 ,and -.305 . 
.298 .816 
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[

3.000 ., 000 2 .••• ) 

-1.000 00 -2000 

2.000 -2.000 5.000 

[

"63 

0200 

00 

0200 00 ) 
00 -2.221 

-2.227 6236 
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1[ 1.763 •. , ••• 006') 

0.19l -0.713 -00 

-0061 00 6.949 

I[ ~:: .:: .:: ) 
00 00 6950 

FIGURE L8.6. Jacobi's method on a hyperboloid. A 

We show in Example LS.S what happens in a degenerate case, where one 
of the eigenvalues is zero. 

Example L8.8. The matrix [~~ ~l represents a degenerate case of 
3 0 -1 

a quadric surface, because, as you can see, one of the eigenvalues is zero. 
JacobiDraw gives the representation of the resulting hyperbolic cylinder in 
Figure LS.7. 
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1[::00:: ::00) 
3.000 00 -,000 

) 

1[30.4 00 -00 ) 
0,0 00 0.0 

-00 00 -2854 

It .... tlan I Rotatlonof 318dlgre ... nlh,lIlplenl Jacobi II don,1 Number of tteratlon, I 

FIGURE L8.7. Jacobi's method on a degenerate case, a hyperbolic cylinder. 

The eigenvalues are 3.854,0, -2.854. 

[ .850] [0] [-.525] The eigenvectors are ° , 1, ° . 
. 525 0 .850 

L8.4. RELATIONSHIP BETWEEN EIGENVALUES AND 

SIGNATURES 
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Finally, we close this appendix with a reprise of another aspect of quadratic 
forms-their signatures, as discussed in Theorem L4.19. If a symmetric 
matrix A has a signature (k, i), then its quadratic form x TAx can be 
written as the sum of the squares of linearly independent linear expressions, 
k of them with plus signs and i of them with minus signs. 

Geometrically the signature tells whether a form is elliptic (all plus signs, 
so i = 0) , hyperbolic (a mixture of plus and minus signs, so k "# 0, i "# 0), 
or not graphable at all (all negative signs, so k = 0). For 1R3 , 

signature (3,0) represents an ellipsoid; 
signature (2,1) represents an hyperboloid of one sheet; 
signature (1,2) represents an hyperboloid of two sheets; 
signature (0,3) has no graph at all. 

Theorem L8.9. If a symmetric matrix A has signature (k, i), then k eigen­
values are positive, and i eigenvalues are negative. 

Proof. A diagonal matrix represents a quadratic form for which the sim­
plest decomposition is Al x~ + A2X~ + ... + AnX~, making the eigenvalues the 
coefficients of the squared terms. Furthermore, Theorem L4.19 says that 
for any decomposition of a quadratic form into a sum of squares of linearly 
independent linear functions, k and i remain unchanged. So the numbers k 
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and i of the signature correspond to the numbers of positive and negative 
eigenvalues, respectively. 0 

Recall that a positive definite quadratic form is one for which the signa­
ture is (n, 0); we now see that this corresponds to all the eigenvalues of the 
associated matrix being positive. 

Appendix L Exercises 

Exercises Ll Theory of Linear Equations: In 
Practice 

Ll#l. Perform the following matrix multiplications: 

(a) [1 2 3J [7 8] 4 5 6 9 0 
I 2 

(b) [~ ~] [-! :] [-~ !] 
[~: -1 

~] H 1 ~~] (c) 0 1 
-1 1 0 -2 

(d) H i] [~:J 
Ll#2. Show that any row operation can be undone by another row oper­
ation. Note the importance of the word "nonzero" in the algorithm for row 
reduction. 

Ll#3. For each of the three matrices in Examples L1.5, find (and label) 
row operations that will bring them to echelon form. 

Ll#4. For each of the following matrices, find (and label) row operations 
that will bring them to echelon form: 
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[1 2 3] 
[! 

3 -1 

~l (a) 456 (d) 2 1 
7 1 

[-: -1 

~l [~ 
1 1 

~l (b) 0 (e) -3 3 
-1 1 -4 2 

[1 2 3 -!l (c) 2 3 0 
o 1 2 

Ll#5. For Example L1.7, analyze precisely where the troublesome errors 
occur. 

Ll#6. Solve the following systems of equations using row operations: 

2x + 13y - 3z = -7 
(a) x + y = 1 

x+ 7z = 22 

x - 2y - 12z = 12 
(b) 2x + 2y + 2z = 4 

2x+3y+4z = 3 

x+y+z=5 
(c) x-y-z=4 

2X6Y + 6z = 12 

(d) 

(e) 

x+3y+z=4 
-x-y+z =-1 
2x+4y = 0 

x + 2y + z - 4w + v = 0 
x + 2y - z + 2w - v = 0 
2x + 4y + z - 5w + v = 0 
x + 2y + 3z - lOw + 2v = 0 

Ll#7. Draw a sketch to verify each of the following geometric interpreta­
tions of systems of linear equations. Then for each of the parts (a)-(d) of 
Exercise Ll#6, give the geometric interpretation of the solutions. 

i. An equation ax + by = d represents a line in ]R2 (and a vertical plane 
in ]R3). 

An equation ax + InJ + cz = d represents a plane in ]R3. 

11. A system of two linear equations in ]R2 represents the intersection of 
two lines, aix + biy = di , for i = 1,2. 

The equations are incompatible if and only if one line is parallel 
(but not equal) to the other. 

The equations have infinitely many solutions if and only if the 
lines coincide. 
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iii. A system of three linear equations in 1R3 represents the intersection 
of three planes, aiX + biy + CiZ = d i , for i = 1,2,3. 

Ll#8. 

The equations are incompatible if either at least two of the 
planes are parallel, or the line of intersection of any two planes 
is parallel to the third. 

The equations have infinitely many solutions if either at least 
two of the planes coincide and the third is not parallel, or all 
three planes intersect in a common line. 

(a) Derive from Theorem L1.3 the fact that only square matrices can 
have inverses. 

(b) Construct an example where AB = I, but BA:f:. I. 

Ll#9. For Example L1.12: 

(a) Confirm by matrix multiplication that A-I A = AA-I = I. 
(b) Use A-I to solve the system of Example L1.3. 

Ll#10. Find the inverse, or show it does not exist, for each of the following 
matrices: 

[~ -~] [~ 
2 

-i] (a) (d) 1 
3 

[! ~] [1 
0 -:] (b) (e) 1 
1 -1 

(e) U H] 
Ll#l1. Prove Theorem L1.17, that (AB)T = BT AT. 

Exercises L2 Theory of Linear Equations: 
Vocabulary 

L2#1. Fo, Example L2.2, ""'iCy that the 'estrieted set of veeto", [~] 
such that 2x - 3y + 2z = 0 satisfies all ten of the rules for a vector space. 
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L2#2. Show that a subset W of a vector space V is a subspace if the 
following two statements are true for any elements Wi, Wi of W: 

Wi + Wi E Wj aWi E W for any real number a. 

That is, show that this short two rule checklist automatically invokes the 
longer list of ten rules for a vector space when you know W is a subset of 
a vector space. 

L2#3. Show that the following two statements are equivalent to saying 
that a set of vectors Vl, ... ,Vk is linearly independent: 

i. The only way to write the zero vector 0 as a linear combination of 
the viis to use only zero coefficients. 

ii. None of the Vi is a linear combination of the others. 

L2#4. Show that the standard basis vectors el, ... ,ek E IRk are linearly 
independent. 

L2#5. ~nmder the fullowffig vreOOrn' m. [~]. and [!]. 
(a) For what values of a are these three vectors linearly dependent? 

(b) Show that for each such a the three vectors lie in the same plane and 
give an equation of the plane. 

L2#6. Let {Vb ... , Vk} be a set of vectors of a vector space V. Show that 
the following three conditions are equivalent: 

i. The set is a maximal linearly independent set. 

ii. The set is a minimal spanning set. 

iii. The set is a linearly independent spanning set. 

L2#7. 

(a) For Figure L2.3 in Example L2.19, confirm both geometrically and 
trigonometrically the vector expressions for the higher point. 

(b) Take the triangle with vertices at (1,1), (2,4), and (5,3) and find the 
new vertices when the triangle is rotated by 30° about the origin. 

(c) Confirm the necessity of rotating about the origin in order to make a 
linear transformation. Hint: look at what would happen to the origin. 
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L2#8. In Example L2.12, write the identification with JR2 induced by the -= Ul and Hl as a baffis oflhe plane x+y+z ~ o. 

L2#9. Let VI = [~] and V2 = [!]. Let x and y be the coordinates with 

respect to the standard basis {ell e2} and let u and v be the coordinates 
with respect to {Vb V2}. Write the equations to translate from (x, y) to 

(u, v) and back. Use these equations to write the vector [ _:] in terms of 

VI and V2. 

L2#10. Let Vb ... , V n be vectors of a vector space V and let p[vJ: JRn ~ V 
be given by 

(a) Show that VI, ... , Vn are linearly independent if and only if the map 
P[v] is one-to-one. 

(b) Show that Vb ... , Vn span V if and only if P[v] is onto. 

(c) Show that Vb ... , vn is a basis of V if and only if p[vJ is one-to-one 
and onto. 

L2#11. Suppose Vb ... ,Vn is a basis of V and that Wb ... , Wm is another 
basis of V. Using the quantity p[vJ defined in Exercise L2#1D, show that 
p[~JI(WI)' ... ' P[~{(Wn) is then a basis of JRn. Use this to show that n = m. 

L2#12. Show that the mapping from JRn to JRm described by the product 
Av (multiplying a vector V in JRn by an m x n matrix A, as in Example 
L2.9) is indeed linear. 

L2# 13. For the mapping from the vector space P2 of polynomials of degree 
at most two, given by Example L2.15, 

T(p)(x) = (x2 + l)p"(x) - xp'(x) + 2p(x) 

(a) Verify linearity. 

(b) Show that in the basis [! 1 ' the matrix [~ ~ ~l gives T. 
x 2 0 0 2 

(c) Compute the matrices of the same differential operator, on P3 , P4 , ••• , 

Pn (polynomials of degree at most 3, 4, and n). 
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L2#14. Confirm that in general the procedure suggested in Section L2.5 
for finding a basis of the kernel from n linearly dependent columns of an 
m x n matrix A leads to n automatically linearly independent m-vectors. 

L2#15. For each of the following matrices, find a basis for the kernel and 
a basis for the image, using Theorem L2.9: 

(a) [~ ~ !] 
(b) [-~ ~ ~] 

-1 4 5 

(c) [~ ~ !] 
234 

L2#16. Decompose the following into partial fractions, as requested, being 
explicit in each case about the system of linear equations involved and 
showing that its matrix is invertible: 

(a) Write 

(b) Write 

x+x2 

(x + 1)(x + 2)(x + 3) 
as 

ABC --+--+--. 
x+l x+2 x+3 

(x + 1)2(x - 1)3 
Ax + B Cx2 + Dx + F 

as (x + 1)2 + (x _ 1)3 

L2#17. Given PI and P2 polynomials of degree kl and k2 respectively, 
consider the mapping 

T: (qt, q2) -+ Plql + P2q2, 

where ql and q2 are polynomials of degrees k2 - 1 and kl - 1, respectively, 
so that 

PI ql + P2q2 is of degree ~ kl + k2 - 1. 

Note that the space of such (ql, q2) is of dimension kl + k2' and the space 
of polynomials of degree kl + k2 - 1 is also of dimension kl + k 2. 

(a) Show that ker T = {O} if and only if PI and P2 are relatively prime. 

(b) Use Theorem L2.1O to show that if PI and P2 are relatively prime, 
then there exist unique ql and q2 as above such that 

Plql + P2q2 = 1. 

This procedure gives a proof of Bezout's Theorem, which you will see 
as Theorem L6.14. 
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Exercises L3-4 The Inner Product 

L3-4#1. Prove Theorem L3.1 and its extension to en, to show that 

ATy·w=y·Aw. 

L3-4#2. Prove Theorem L3.2. 

L3-4#3. 

(a) Prove Schwarz's inequality, Theorem L3.3, in ]R2 for the standard 
inner product by direct computation, i.e., show that for any numbers 
Xl, X2, Ylo and Y2, we have 

(b) Prove Schwarz's inequality for Hermitian inner products. (Hint: the 
proof for real inner products almost goes over to the complex case.) 

L3-4#4. Calculate the angles between the following pairs of vectors: 

L3-4#5. 

(a) Show that [ll Hl U 1 m an orthogonal - of R'. 

(h) Use Themem L3.11 to express [i las a linear comhinat;on of theoe 

vectors. 
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L3-4#6. 

(a) Prove algebraically that the Gram-Schmidt construction gives or­
thogonal vectors, to complete the proof of Theorem L3.13. 

(b) Describe geometrically what the Gram-Schmidt algorithm does. Hint: 
Use Example L3.14 to begin. 

L3-4#7. 

(a) Apply Gram-Schmidt to the vectors 

Wl= [~], W2= [~] where (x,y) =xTKy for K= U ~]. 
(b) Let {u!, U2} be the resulting orthonormal basis. Let T be defined by 

T(x) = K-l Hx for 

H=[!~]. 
Show that the matrix of T with respect to {u!, U2} is symmetric. 

L3-4#8. Using the Gram-Schmidt process, obtain an orthonormal basis 
for 1R3 with the standard inner product from the vectors 

L3-4#9. Let V be the space of polynomials of degree at most three. Let 

(f,g) = 11 f(t)g(t)dt. 

Apply the Gram-Schmidt process to the basis {I, t, t2 , t3}. 

L3-4#1O. For the inner product (p, q) = Jooo p(t)q(t) ctdt 

(a) Find an orthonormal basis of the space P3 of polynomials degree at 
most three, that is, with elements Po(t), Pl(t), P2(t), and P3(t), by 
applying Gram-Schmidt to {I, X, x 2 , x3 }. 

(b) Write t2 + t3 as a linear combination of Po ( t), ... , P3 ( t ), using Lemma 
L3.11. 

L3-4#1l. 

( a) What is the angle between the vectors [:~] and [:~] for the inner 

product (a, b) = albl + 2a2b2? 
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(b) Find a geometric construction that will change the angle to a standard 
one. 

L3-4#12. Show that the projection operator 1Tw gives a decomposition 
of]Rn into the kernel and image of 1Tw. That is, show that 

Wl. = ker1Tw 

and that 

L3-4#13. Prove Theorem L3.9 for the complex case. That is, for vectors 
v E en, with vectors WI, W2, ... , Wn forming a basis, show that 

and then finish the proof. 

L3-4#14. For each of the following matrices, determine whether it is 
Hermitian, anti-Hermitian, unitary, or none of these: 

(a) [ Ii] 
-i 0 (d) [ cosO 

sinO 
sin 0] 
cosO 

(b) (e) [ e~l e~2 ] 

[~61 0 0 

161 ] 
-sto 

cos O2 - sin O2 

sin O2 cos O2 

0 0 COS Ol 

(c) [ i 1] 
-1 2i (f) 

L3-4#15. Write each of the following matrices in the form QR, where Q 
is orthogonal and R is upper-triangular (Theorem L4.3): 

(a) [~ i] 
L3-4#16. Show that the matrices of Example L4.2 are exactly the vertices 
forming 0(2), the orthogonal group in two dimensions. 

L3-4#17. Consider Example L4.7. 

(a) Show that the derivative operater D operating on the space CJ [a, bj 
of continuously differentiable functions on [a, bj, vanishing at a and 
b, is antisymmetric or anti-Hermitian, as a result of the fact that the 
eigenvalues are purely imaginary. Find the eigenvectors. Then show 
that D2 is symmetric. 
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(b) Do the same for the space of functions satisfying I (a) = I (b), I' (a) = 
/,(b). 

(c) Show that D2 is symmetric, operating on the space of functions which 
vanish at a and whose derivatives vanish at b. 

(d) Do the same as in part (c) for the space of functions such that I(a) = 
I'(a) and I(b) = /,(b). 

(e) For any numbers 0: and (3 not both zero, and any numbers 'Y and 6 
not both zero, do the same as in part (c) for the space of functions I 
such that 

0:/(0) + (3/'(0) = 0 

'YI(7r) + 6/,(7r) = o. 

L3-4#18. For the quadratic form of Example L4.16, 

x 2 + 2xy - 4xz + 2yz - 4Z2 

(a) Show that completing the square starting with the z terms, then the y 
term, and finally the x terms leads to x 2+(x+y/2)2 - (x-y/2+2z)2, 
as stated in the example. 

(b) Find the decomposition by completing the square if you start with 
the y terms, then do the x terms, and finally the z terms. 

L3-4#19. Decompose each of the following quadratic forms by completing 
squares, and determine its signature. 

(a) x 2 + xy _ y2 

(b) x 2 + 2xy _ y2 

(c) x 2 +xy+yz 

(d) xy+yz 

L3-L4#20. Consider Example L4.17 

q(x) = xy - xz + yz. 

(a) Verify that the decomposition 

(x/2 + y/2)2 - (x/2 - y/2 + Z)2 + Z2 

is indeed composed of linearly independent functions. 

(b) Decompose q(x) with a different choice of u, to support the statement 
that u = x - y was not a magical choice. 
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L3-4#21. Check that the following quadratic forms are degenerate. 

(a) x2 + 4xy + 4y2 on ]R2. 

(b) x2 + 2xy + 2y2 + 2yz + z2 on ]R3. 

(c) 2x2 + 2y2 + z2 + w2 + 4xy + 2xz - 2xw - 2yw on ]R4. 

L3-4#22. On R4 88 described by M = [: ~ ], consider the quadratic 

form q(M) = det M. What is its signature? 

L3-4#23. On W 88 described by H = [b ~ ic b ~ ic ], the space of 

Hermitian 2 x 2 matrices, consider the quadratic form q(H) = det H. What 
is its signature? 

L3-4#24. For any real n x n matrix M 

(a) Show that M can be written uniquely 88 a sum of a symmetric matrix 
and an antisymmetric matrix. (Hint: M + MT is symmetric.) 

(b) Consider the quadratic form on the vector space of symmetric matri­
ces Ms given by qs(Ms) = tr(M~). Show that qs is positive definite. 

(c) Consider the quadratic form on the vector space of antisymmetric 
matrices MA given by qA(MA) = tr(Ml). Show that qA is negative 
definite. 

(d) Find the signature of q, defined by q(M) = tr(M2). 

L3-4#25. For any complex n x n matrix M, find the signature of q, the 
Hermitian quadratic form defined by q(M) = tr(M M). 

L3-4#26. Consider again q( M) = tr{ M2), operating on the space of upper 

triangular matrices described by M = [~ : ] . 

(a) What kind of surface in ]R3 do you get by setting q(M2) = 1? 

(b) What kind of surface in]R3 do you get by setting q(MMT) = 1? 

L3-4#27. 

(a) Show that the function 

([:~], [:~]) = 11
(a1 +a2x)(b1 +b2x)dx 

defines an inner product on ]R2, and compute its matrix. 
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(b) There is an obvious generalization of part a to IR3 , using second degree 
polynomials. Do the corresponding problem. 

L3-4#28. Show that a 2 x 2 matrix G = [: ~] represents an inner 

product on IR2 if and only if G is symmetric, det G > 0, and tr G > O. 

Exercises L5 Determinants and Volumes 

L5#1. Compute the determinants of the following matrices according to 
development by the first row: 

[
1 23] (a) 4 01 
5 -12 

[
1 -12] 

(b) 0 34 
2 10 

[
1 2 3 4] o 1-1 2 

(c) 3 0 1-1 
1-1 2 0 

L5#2. In the proof of Theorem L5.3, show that the specified row opera­
tions give a diagonal matrix with the same diagonal entries as the original 
matrix. 

L5#3. For Theorem L5.3, 

(a) Give an alternate proof direct from the recursive definition of D for 
the case where the matrix is lower triangular. 

(b) Adapt the proof in part (a) to the case where the matrix is upper­
triangular . 

L5#4. For a matrix A, we defined the determinant D(A) recursively by 
development according to the first row. Show that it could have equally 
well been defined, with the same result, as development according to the 
first column. 

L5#5. For the matrix A = [! ~ ] 
(a) Compute the characteristic polynomial and find its roots. 

(b) With the change of basis matrix P = [~ ! ] , compute the charac­

teristic polynomial of p-1 AP and find its roots, thus confirming the 
basis independence of the characteristic polynomial. 

L5#6. As stated in Example L5.12, prove that given a polynomial p(A), 
you can easily construct a matrix that has p(A) as its characteristic polyno­
mial. You simply need to show that the stated general "companion" matrix 
M (or its transpose) indeed has the stated p(A) as detlAI - MI. 
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L5#7. Referring to change-of-basis as introduced in Section L2.4, prove 
the part of Theorem L5.15 that states the trace is also basis independent. 

L5#8. Using classical geometry, show that for a parallelogram you can use 
either side as a base and still get the same area, confirming Theorem L5.15 
for k = 2. 

L5#9. To get a better feeling for the relation between volumes and de­
terminants, make a drawing in the plane illustrating that property (iii) of 
Theorem L5.18 is true for areas of parallelograms. That is, show that the 
"before" and "after" parallelograms have the same area = base x height. 
(Hint: use a dissection argument.) 

Remark: The general case is analogous, using volume = base x height. 

L5#10. Find and identify geometrically the volumes of the solids spanned 
by the following sets of vectors: 

(a) [~], [=~] 

(b) [~], [~] 

(c) [j], [=:] , [~] 
(d) m, [~~], m 

Exercises L6 Eigenvalues and Eigenvectors 

L6#1. Show that for a square matrix A the following four statements are 
equivalent, thus confirming the proof of Theorem L6.1: 

i. A has no inverse. 

ii. There exists a vector x =I 0 such that Ax = O. 

iii. There exists a vector y that cannot be written as Ax. 

IV. detA = O. 

L6#2. Prove that if a 2 x 2 matrix A has only one eigenvalue and is not 
already diagonal, then A is not diagonalizable. 

L6#3. For a 3 x 3 matrix A, derive the more complicated conditions and 
results for diagonalizability. You might refer to Exercise 9.6#14. 

L6#4. Prove that if A is a triangular matrix, the eigenvalues of A are the 
diagonal entries, by applying Theorem L5.3 to >"1 - A. 
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L6#5. Prove that if A is a triangular matrix with entries aij, the eigen­
values of A are the diagonal entries, by showing that there exists a non­
trivial solution to the equation Av = .xv if and only if .x = aii for some 
i = 1,2, ... ,no 

L6#6. Show that the characteristic polynomial of a real k-pseudo-upper­
triangular matrix has at most k/2 conjugate pairs of nonreal eigenvalues. 

L6#7. Prove Theorem L6.19. This may be done analogously to the proof 
given for Theorem L6.18. 

L6#8. Show that an upper-triangular orthogonal (or unitary) matrix must 
be diagonal. 

L6#9. A normal linear transformation is one for which AA T = AT A. 

(a) Show that Hermitian, anti-Hermitian, and unitary matrices are all 
normal. 

(b) Show that if P is a unitary matrix and A is a normal matrix, then 
p-l AP = B is a normal matrix. 

(c) Show by Theorem L6.16 that there exists (for A normal) a P such 
that B = p- l AP is normal and upper-triangular. 

(d) Show that if a matrix B is normal and upper-triangular, then B is 
diagonal. 

L6#10. Consider Example L6.26 where the matrix A = 0 0 1 ,and [0 1 0] 
2 -1 2 

we want to examine VI = ker(A - 2J) and V2 = ker(A2 + I). An alternative 
and faster way to find the Vi is by row reduction as follows: 

A-2I= 

2-dimensional image 
.u. 

I-dimensional kernel 
by Theorem L2.25 

'" V, i, one-dimensional and x E V, 100,", Illre [~]. 
(a) By a similar analysis, find V2 • 



496 Appendix L 

(b) Verify properties (iii) and (iv) of Theorem L6.25 to finish Example 
L6.26. 

L6#11. Apply the Euclidean algorithm to the following pairs of relatively 
prime numbers PI and 1'2 to verify Bezout's Theorem L6.27. That is, find 
a pair of numbers a and b such that PIa + P2b = 1: 

(a) 21,16. (b) 537,791. 

Exercises L 7 Finding Eigenvalues, Eigenvectors: 
QR Method 

:f7t:l~~~:: [1genfinl(O'T::::~ha7nh::~n~:h:h:=~: 
6 -11 6 

polynomial, its roots are indeed the eigenvalues found by QR. 

L1#2. For the heart of the QR method, you should provide the following 
proofs and examples: 

(a) Verify the following lemma: For any n x n matrix 

A = [~I ~2 . .. ~ 1 ' 
!! ! 

where we label the ith column as a vector a;, and any n x n upper­
triangular matrix R, the product AR is given by 

[ 

iii 

Tl,la1 (Tl,2al + T2,2a2) (Tl,3al + T2,3a2 + T3,383) ... 

111 

(t t ,<,j.,) ]. 
3=1 ,=1 

1 

(b) Use the lemma in part (a) to prove the following theorem: 

Invertible matrices B and A have the same flag if and only 
if there exists an R such that B = AR. 

(c) Use the theorem in part (b) to show the core statement: 

If you apply Gmm-Schmidt to any basis, the vectors of the 
new orthonormal basis in the same order produce the same 
flag. 
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(d) As an example, consider 

[
1 1 

A= 0 0 
o 1 
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-1] [1 2 3] 2 and R = 0 4 5 . 
o 006 

For B = AR, show that the flag FA associated with the column 
vectors of A as a basis is the same flag FE associated with the column 
vectors of B as a basis. 

L7#3. Confirm the second step of the induction proof for Theorem L7.1O 
by showing explicitly that A 2 Fo is a flag associated with Ql Q2' 

L7#4. Explain the reasons for each step in the proof of Theorem L7.12. 

L7#5. For Figure L7.4 in the Product-Rotation Algorithm (Section L7.4) 

(a) Verify that each zero is indeed zero. 

(b) Show that this procedure works if you begin with [~ -g] in the 

upper left corner and end with [~ -g] in the lower right corner, 

but not if you try to cancel nonzero entries by working up the matrix 
starting at the lower right. In other words, the order is important. 

L7#6. Show that the count of operations in Theorem L7.13 is indeed of 
order n2 . 

L7#7. Prove Theorem L7.11 using a manner similar to Figure L7.4. That 
is, show that RQ; = R8(1, 01 ) T 8(2,02 ) T ... 8(n - 1, On-I) T works to fill 
the sub diagonal with nonzero terms, from the top down but leaves all zeroes 
below the subdiagonal. 

L7#8. Confirm that for the following matrices, QR gets hung up. The 
reason is that the eigenvalues do not have distinct absolute values (for 
different reasons, which you should explain). 

(b) [~ j !] 
Exercises L8 Finding Eigenvalues, Eigenvectors: 
Jacobi's Method 

L8#1. Let A be the symmetric 2 x 2 matrix [~ ~ ] . Then Jacobi's method 

will multiply by a rotation matrix Q(O), where tan20 = 2b/(a - d), in 
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order to eliminate the off-diagonal terms. Find formulas for cos () and sin () 
directly from a, b, and d, so as not to have to calculate (). Note that there 
are four choices for () (two for 2(), and from each of those, two for ()); take 
the smallest. 

L8#2. Show that for n > 2, the multiplication Q~AQij involves just the 
ith and jth rows and columns. 

L8#3. Sketch the quadric surfaces for the quadratic forms x T Ax repre-
sented by the following matrices: 

[-~ ~] [~ 
0 

~] (a) (e) 2 
0 

[~ ~] [~ 
0 J] (b) (f) 0 
0 

[~ 
0 

~] [~ 
0 

~] (c) -1 (g) 2 
0 0 

[-~ 
0 J] [-I 0 J] (d) 1 (h) o 0 
0 o 0 

L8#4. Either by hand or with the computer program Eigenfinder, find 
the eigenvalues for the following matrices, then the eigenvectors. Use these 
to sketch the quadric surfaces for the quadratic forms x T Ax represented 
by the following matrices. Use the program JacobiDraw to confirm your 
sketches, and label the axes in the computer printout. 

(a) [-.! -.~ =:!] 
-.3 -.4 3 (c) U! =~] 

(b) [-~ j -~] (d) [-~ =~ -~] 
-3 0 0 

L8#5. For the following examples, confirm that the eigenvectors found by 
the program JacobiDraw do indeed form an orthonormal basis of JR3: 
(a) Example L8.2j (b) Example L8.3j (c) Example L8.4. 

L8#6. Identify and sketch the conic sections and quadric surfaces repre­
sented by the quadratic forms defined by the following matrices: 
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[i ;] [! 
1 !l (a) (d) 2 
1 

[-~ ~] [ 2 4 -~] (b) (e) 4 1 
-3 3 -1 

[~ !] [~ 
0 j] (c) (f) 0 
0 

L8#7. Determine the signature of each of the following quadratic forms. 
Where possible, sketch the curve or surface represented by the equation. 

(a) x 2 + xy - y2 = 1 (c) x2 + xy + yz = 1 

(d) xy+yz=1 

Compare results with Exercise L3-4#19. 

L8#8. Show that the property of being a principal axis is equivalent to 
being an eigenvector of the original matrix A. 

Appendix L Summary 

Ll Summary: Basic Tools for Solving Systems of 
Linear Equations 

Given vectors, as columns, and matrices, with multiplication, we can write 

as 

Given a matrix A, a row operation on A is one of the following three 
operations: 
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(I) multiplying a row by a nonzero mumber; 

(2) adding a multiple of a row onto another row; 

(3) exchanging two rows. 

A matrix is in echelon form if 

(a) for every row, the first nonzero entry is a 1; called a leading 1; 

(b) the leading 1 of a lower row is always to the right of that of a higher 
row; 

(c) for every column containing a leading 1, all other entries are O. 

Given any matrix A, there exists a unique matrix A * in echelon form which 
can be obtained from A by row operations. (Th. L 1.6) 

Row Reduction. The algorithm for bringing a matrix to echelon form is as 
follows: 

(I) Look down the first column until you find a nonzero entry (called a 
pivot). If you don't find one, then look in the second column, etc. 

(2) Move the row containing the pivot to the first row, divide that row 
by the pivot to make the leading entry 1. 

(3) Add appropriate multiples of this row onto the other rows to cancel 
the entries in the first column of each of the other rows. 

For a system of linear equations Ax = b, with the matrix [A, b]: 

If the matrix [A', b'] is obtained fom [A, b] by row operations, then 
the set of solutions of a'x' = b' coincides with the set of solutions of 
Ax = b. (Th. L 1.2) 

If [A, b] row reduces to echelon form [A*, b*], then (Th. L 1.9) 

(a) If A* is the identity matrix, then x = b* is the unique solution. 

(b) If b* contains a leading 1, then there are no solutions. 

(c) If b* does not contain a leading 1, and if A* is not the identity, 
then there are infinitely many solutions. 

A matrix A may have an inverse A-l such that AA-l = A-l A = I; this 
inverse, if there is one, may be found by row-reducing (A I I) to (I I A -1). 
Ax = b # x = A-lb. (Th. L 1.13) 

The transpose AT of a matrix A interchanges the rows and the columns. 
{AB)T = BT AT. (Th. L 1.17) 
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L2 Summary: Vocabulary for Theory of Linear 
Equations 
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One of the "hard" facts for the novice about linear algebra is simply that 
there are so many different ways to say anyone thing. In the text of the 
Appendix, we've tried to mention a lot of them; here we try to be brief 
rather than comprehensive in that sense. 

A vector space V is a set with two operations, addition and multiplication 
by scalars, satisfying ten basic axioms regarding identities, inverses, and 
algebraic laws. 

For vectors VI, V2, ••• , Vn E V, a linear combination V = E:=l aiVi; 

the span is the set of linear combinations, SP{Vb V2, •.. , Vk}; 

the Vi are linearly independent if no Vi can be written in terms of the 
others. 

A basis is a set of Vi that spans and is linearly independent. 

In an, n + 1 vectors are never linearly independent; 

n linearly independent vectors always span; 

(Th. L 2.6) 

n - 1 vectors never span, even if they are linearly independent; 

every basis has exactly n elements; (Th. L 2.9) 

the standard basis is el, e2, ... , en, where ei is an n-dimensional vec­
tor with 1 in the ith place and zeros elsewhere. 

Any V with finite dimension n has n elements in any basis; (Th. L 2.10) 

can be identified to an. (Princ. L 2.11) 

Infinite-dimensional V's also exist (e.g., spaces of functions, as in Examples 
L 2.13, 2.15, 2.16). 

A linear transformation T : V - W is a mapping satisfying T(avI + 
bv2 } = aT(vI} + bT(v2}. 

For a finite-dimensional V, there is a matrix A corresponding to T. 
(Ex. L 2.14) 

T : an _ am is given by an m x n matrix A, with ith column T( ei}: 
T(v} = Av. (Th. L 2.18) 
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Rotation by a counterclockwise angle 0 in the x, y-plane is given by 
matrix (Ex. L 2.19) 

8 = (COSO -SinO) 
9 sin 0 cos 0 

Change of basis: (Th. L 2.23) 

If P = matrix whose columns are n basis vectors of an, 
Q = matrix whose columns are m basis vectors of am, 
A = matrix giving T with respect to the old basis, then 

Q-l AP = matrix giving T with respect to the new basis. 

Trace, determinant, and characteristic poynomial are all basis­
independent. (See Appendix L5, Theorems L 5.7, 5.10, 5.11) 

Composition T(S(v» corresponds to matrix multiplication: 
MT(s) = MTMS' (Th. L 2.21) 

Matrix multiplication is associative: (AB)C = A(BC). (Th. L 2.22) 

For an infinite-dimensional V, some of the different possibilities for T(f)(x) 
are as follows: 

or 

or 

a differential operator acting on the functions f (x) E V; 
(Ex. L 2.15) 

an integral, analogous to a matrix; (Ex. L 2.17) 

if a function can be expressed with a finite number of parameters, a 
finite-dimensional V. (Ex. L 2.15, 2.20) 

For T: V --+ W, 
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the kernel ker(T) = {v I T(v) = O}j 

the image Im(T) = {w I T(v) = w}. 

For linear equations: 

ker(T) is a set of solutions x to T(x) = OJ 
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Im(T) is a set of vectors b for which a solution exists to T(x) = b. 

For finite-dimensional V, any W, and linear transformation T : V ~ 
W, then 

dim(ker(T)) + dim(Im(T)) = dim(V) (Th. L 2.25) 

If V and W have the same dimension, then 

equation T(x) = b has solution for any b if and only if T(x) = 0 

has only the solution x = o. (Th. L 2.26) 

L3-4 Summary: Inner Products 

An inner product on a vector space V takes two vectors a and b and 
gives a number (a, b), satisfying the following rules (with bar for complex 
conjugate): 

(i) (a, b) = (b, a) 

(ii) (aal + f3a2, b) = a(aI, b) + f3(a2, b) 

(iii) (a, a) > 0 if a =I- o. 
(ATv,w) = (v,Aw) 

(v, W)' = (v', w) + (v, w') 

symmetric 

linear 

positive definite 

(Th. L 3.6) 

(Th. L 3.7) 

standard inner product or dot product on ]Rn, a· b = L~=l aibi 

norm of a vector a with respect to an inner product is lIall = v(a, a). 

Schwarz's inequality: I (a, b) I ~ lIalillbll, with equality iff a = cb, for some 
number c. (Th. L 3.9) 

The angle a between two vectors v and w satisfies cos a = (II~~I'I~II)' for 

0~a~1r. 

Two vectors v and w are orthogonal if (v, w) = OJ orthonormal if also 
IIvll = IIwll = 1. 
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A set of nonzero orthogonal vectors is linearly independent. 
(Th. L 3.10) 

With an orthogonal basis Ul. U2, ... , Un of V, then any 

a = t (a, Ui) Ui. (Th. L 3.11) 
i=1 (lli, lli) 

For an orthonormal basis W1,"" Wn of V with a = E aiwi; 
b = E biWi, then (a, b) = E aibi' (Th. L 3.12) 

Gram-Schmidt orthogonalization: For Ul. U2,"" Um linearly independent 
vectors of V with inner product, this algorithm constructs an orthonormal 
set Wl. ... ,Wm with the same span: (Th. L 3.13) 

a1 =U1 
a2 = U2 - (U2 - W1}W1 
83 = U3 - (U3, W1}W1 - (U3, W2}W2 

W1 = a1//la1/1 
W2 = a2//la2/1 
W3 = 83//183/1 

8m = U1 - E 1:S;j<n-1 (Urn, Wj}Wj 

Gram-Schmidt implies: 

Any finite-dimensional V with inner product has an orthonormal ba-
sis. 

(Th. L 3.15) 

Any matrix A can be written as Q R, with 

Q orthogonal transformation, (defined below) 

R upper-triangular. (Th. L 4.3, App. L 7) 

For W a finite-dimensional subspace of an inner product space V: 

orthogonal projection 71'w (v) = unique vector W in W that is closest 
to v. 

If Wi form an orthonormal basis of W, 71'w(v) = Ei(V, Wi}Wi 
(Th. L 3.16) 

orthogonal complement Wl. = {v E V I (v, w) = 0 for all W E W}. 

Any vector v E V can be written uniquely v = 71'w(v) +7I'w.l. (v) 
and /lv/l2 = /l7I'W(v)/l2 + /l7I'w.l.(v)/l 2 • (Th. L 3.19) 

For linear transformations T : V --+ V with matrix A and any vectors 
Vi, V2 of V, (L 4) 

for real A for complex A 
if (AVI, AV2) = (VI, V2), transformation is orthogonal unitary 
if (AVI, V2) = -(VI, AV2)' transformation is antisymmetric anti-Hermitian 
if (AVI, V2) = (v!, AV2), transformation is symmetric Hermitian 
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A linear transformation T : JR.n --+ JR.n with standard inner product is 
orthogonal if and only if for matrix Q of T 

the column vectors of Q form an orthonormal basis; 

Q satisfies QT Q = I, so QT = Q-l and is orthogonal also. 

(These last two lines are equivalent; the inner product is preserved.) 
(Th. L 4.1) 

A linear transformation T : JR.n --+ JR.n with standard inner product is 
antisymmetric if and only if the matrix A of T is antisymmetric; that is, 
AT = -A. (Th. L 4.5) 

A linear transformation T : JR.n --+ JR.n with standard inner product is 
symmetric if and only if the matrix A of T is symmetric; that is, AT = A. 

(Th. L 4.6) 

Antisymmetric linear transformations are infinitesimal orthogonal trans­
formations. For Q(t), a family of orthogonal matrices Q-l(t)Q'(t) is anti­
symmetric. (Th. L 4.4) 

Orthogonal transformations form a group. 

A quadratic form on a finite-dimensional vector-space V is a quadratic 
function q : V --+ JR., homogeneous in the coordinates of V, with respect 
to any basis. 

Symmetric linear transformations and quadratic forms correspond 
bijectively: 

For any quadratic form q, there exists a unique symmetric linear 
transformation Lq : V --+ V such that for any v E V, q( v} = 
(v, Lq(v}). (Th. L 4.13) 

Any quadratic form q(x} : JR.n --+ JR. can be decomposed into a sum 
of squares of linearly independent linear functions, 

q(x} = ±a~(x} ± a~(x} ± ... ± a~(x}, 

and the number of plus and minus signs appearing will be the same 
for any two such decompositions of q(x). (Th. L 4.15, 4.19) 

m = rank; if m = n, q(x} is nondegenerate. 

If n signs are +, q(x) and its symmetric matrix are positive definite. 

If n signs are -, q(x} and its symmetric matrix are negative definite. 
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If k signs are + and £ signs are -, q(x) has signature (k, f). 

An often quicker way to determine the signature of a symmetric ma­
trix is by the signs of its eigenvalues (Appendix L 6). In Appendix L 
8.3 we discuss that, for a positive definite matrix, all the eigenvalues 
are positive, and, more generally, that a matrix of signature (k, £) will 
have k positive eigenvalues and i negative eigenvalues. 

For ( , ) an inner product on ]Rn, and G, the symmetric matrix with entries 

Gi,j = (ei,ej), 

the given inner product can be written in terms of the standard dot product: 

(a, b) = a· Gb. 

Conversely, if G is a positive definite symmetric matrix, then (*) defines 
an inner product on ]Rn. (Th. L 4.8) 

L5 Summary: Determinants 

The determinant function det A satisfies three properties, exists, and is 
unique: (Th. L 5.1) 

(1) det(ab ... , 8i-b (au + ,Bw), 8i+l, ... , 8n) 
= adet(al, ... ,8i-l,U,8i+l, ... ,8n) 

+ ,Bdet(al, ... ,8i-l, W,8i+l, ... ,8n). (multilinearity) 

(2) det(al, ... , 8i, ... , aj, ... , 8n) 
= -det(al, ... ,aj, ... ,8i, ... ,8n) ( antisymmetry) 

(3) detI = det(el,e2, ... ,en) = 1, where ei is the ith standard unit basis 
vector. ( normalization) 

Construction of the determinant function can be done either by 

(i) development according to the first row: D(A) given by computer pro­
gram; 

(ii) column operations: Each of the three column operations multiplies 
the determinant by an appropriate factor /-l: 

(a) Multiply a column through by a number m. 
(b) Exchange two columns. 

(c) Add a multiple of one column onto another. 

Any square matrix can be column-reduced until 

/-l=m. 
/-l =-l. 

/-l=l. 
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where either An = I, and det A = 1-'11-'2 .. . l-'n-1I-'n; 
or An = 0, and detA = O. 

Theorems: 
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If A is triangular, det A = product of diagonal entries; (Th. L 5.3) 

characteristic polynomial: det(AI - A) = n('x - au). (Th. L 5.13) 

For A,B both n x n, detAdetB = detAB. (Th. L 5.5) 

For A, B both square matrices, det [ :I~] = det A det B. 

(Th. L 5.8) 

A is invertible {=::} det A -:f:. 0, and then det A -1 = (1/ det A). 
(Th. L 5.6) 

The following are all basis independent: 

determinant, det A because det A = det p-1 AP (Th. L 5.7) 

trace, tr A == sum of diagonal entries, but tr A tr B -:f:. tr AB 
(Th. L 5.11) 

characteristic polynomial, det(AI - A) (Th. L 5.10) 

The k-dimensional volume of PV1 , ... ,v/c is defined by induction: 

if k = 1, then the volume is simply the length: voh(Pv = IIvlI; 

if k > 1, then volk{Pvt, ... ,v/e) = VOlk-I{Pvt, ... ,v/e_J . 117rv:.L (Vk) II, /c-1 
where Vk-I is the subspace spanned by Vb"" Vk-1. 

The volume of PV1 , ... ,v/c does not depend on the order of Vb"" Vk. 
(Th. L 5.15) 

IfVb···,Vk are orthogonal, then volk{Pvt, ... ,v,,) = IIVIII· ... ·IIVkll. 
(Th. L 5.16) 

If Q is an orthogonal matrix, then the image under Q of a parallelepiped 
has the same volume as the original parallelepiped: (Th. L 5.17) 

VOlk(PQ(v1), ... ,Q(v,,») = VOlk{Pv1 , ... ,v/c). 

The volume of PV1 , ... ,v/c is measured by det{vb"" Vk). 

The determinant of an orthogonal matrix is ± 1. 

For any n x n matrix A, detA = detAT. 

(Th. L 5.18) 

(Cor. L 5.19) 

(Th. L 5.20) 
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L6 Summary: Eigenvalues and Eigenvectors 

For an n x n matrix A, if there exist A E e and nonzero v E en such that 
AV = Av, then A is an eigenvalue of A and v is its associated eigenvector. 

A is an eigenvalue if and only if it is a root of the chamcteristic polynomial: 

or, 

det(.>.I - A) = 0, (Th. L 6.3) 

(Th. L 5.11) 

The characteristic polynomial, and hence the set of eigenvalues, is 
independent of change of basis. Thus A and p-1 AP have the same 
eigenvalues. (Th. L 6.10) 

The matrix A has at least one and at most n eigenvalues. 
(Th. L 6.4) 

( dtr tAA= sum d t} of eigenvalues, each taken with its multiplicity. 
e = pro uc 

(Th. L 6.5) 

Eigenvectors with distinct eigenvalues are linearly independent. 
(Th. L 6.7) 

If n Ns are distinct, then en has an eigenbasis (basis of eigenvectors). 
(Th. L 6.8) 

If m A'S are distinct, for m ::; n, then en has an eigenbasis for A if 
and only if dim (eigenspace E>. of eigenvectors) = multiplicity of A in 
the characteristic polynomial. (Th. L 6.10) 

If P is an invertible matrix whose columns are eigenvectors, then we can 
diagonalize: 

(
AI 

P-1AP = 0 ... 0), 
An 

with all eigenvalues of A along the diagonal. (Th. L 6.11) 

Most matrices can be diagonalizedj all can be triangularizedj the eigenvalues 
of a triangular matrix will be along the diagonal. 

There exists unitary matrix M such that M- 1 AM is upper-triangular. 
(Th. L 6.16) 

For any A and any c > 0, there exists a matrix M with orthogonal 
columns (but not normalized) such that M- 1 AM is upper-triangular 
with off-diagonal terms of absolute value < c. 

(Th. L 6.17,6.18,6.19) 
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For a linear transformation with n x n matrix A: (Th. L 6.20) 

(a) if A is real symmetric or Hermitian, then the eigenvalues of A are 
real; 

(b) if A is real antisymmetric or anti-Hermitian, then the eigennvalues of 
A are purely imaginary; 

(c) if A is real orthogonal or unitary, then the eigenvalues of A are of 
absolute value 1; 

In all three cases, any two eigenvectors of A with distinct eigenvalues 
are orthogonal. 

Spectral Theorem: (Th. L 6.22) 

For A Hermitian, anti-Hermitian, or unitary, en has an orthonormal 
eigenbasis for A; 

If A is real symmetric, the eigenvalues are real, and the basis vectors 
can be chosen real (meaning that p-l AP is diagonal and the entries 
are the eigenvalues.) 

Appendix L 8, Jacobi's method, gives a constructive proof and dis­
cusses for quadratic forms (Appendix L 4.4) the fact that the signa­
ture (k, i) is given by the signs of the eigenvalues of the symmetric 
matrix associated with the quadratic form: the matrix will have k 
positive eigenvalues and i negative eigenvalues; a positive definite 
matrix has all positive eigenvalues. 

Factoring the characteristic polynomial PA for an n x n matrix A: 

PA(A) = o. (Th. L 6.23) 

If PA = PIP2, where PI and P2 are relatively prime with leading coef­
ficient 1, and Vi = ker Pi(A), then (Th. L 6.25) 

(i) any vector x E lRn can be written uniquely as Xl + X2, where 
Xi E Vi; 

(ii) for any vector Xi E Vi, AXi E Vi; 
(iii) if an eigenvalue Ai is a root of Pi, its corresponding eigenvectors 

E Vi; 
(iv) the characteristic polynomial of A: Vi --+ Vi is Pi' 

This is proved using Bezout's Theorem: (Th. L 6.27) 

Two polynomials PI and P2 are relatively prime if and only if 
there exist polynomials ql and q2 such that PI ql + P2q2 = 1. 

Appendices L 7 and L8 each elaborate on a single result, and so are not 
summarized here. 
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Key Theorems and Definitions 
from Parts I and III 
FOR A FIRST ORDER DIFFERENTIAL EQUATION 

x' = f(t,x). 

Definition 1.3.1 (Lower fence). For the differential equation x' = f (t, x), 
we call a continuous and continuously differentiable function a(t) a lower 
fence if a/(t) :5 f(t, a(t» for all tEl. 

lower fence 

Definition 1.3.2 (Upper fence). For the differential equation x' = 
f(t, x), we call a continuous and continuously differentiable function f3(t) 
an upper fence if f(t,f3(t» :5 f3'(t) for all tEl. 

upper fence 

An intuitive idea is that a lower fence pushes solutions up, an upper fence 
pushes solutions down. 

Definition 1.4.1 (Funnel). If for the differential equation x' = f(t, x), 
over some t-interval I, a(t) is a lower fence and f3(t) an upper fence, and if 
a(t) < f3(t), then the set of points (t,x) for tEl with a(t) :5 x :5 f3(t) is 
called a funnel. 

funnel 

Once a solution enters a funnel, it stays there. (See Theorem 4.7.2.) 
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Definition 1.4.3 (Antifunnel). Iffor the differential equation x, = I(t, x), 
over some t-interval I, aCt) is a lower lence and f3(t) a upper lence, and if 
aCt) > f3(t), then the set of points (t, x) for tEl with aCt) ~ x ~ f3(t) is 
called an anti funnel. 

Solutions are, in general, leaving an antifunnel. But at least one solution 
is trapped inside the anti funnel, as is guaranteed by Theorems 4.7.3, 4.7.4, 
and 4.7.5. 

antifunnel 

SHARPENING THE THEORY 

Definition 4.3.1 (Lipschitz Constant). A number K is a Lipschitz con­
stant with respect to x for a function I(t,x) defined on a region A of R.2 

(the t, x-plane) if 

(9) 

for all (t, xt), (t, X2) in A. We call this inequality a Lipschitz condition in 
x. 

A differential equation x' = I(t, x) admits a Lipschitz condition if the 
function I admits a Lipschitz condition. What makes a Lipschitz condition 
important is that 

the Lipschitz constant K bounds the rate at which solutions can 
pull apart, 

as the following computation shows. If in the region A, Ul(t) and U2(t) are 
two solutions to the differential equation x' = I(t, x), then they pull apart 
at a rate 

So in practice we will want the smallest possible value for K. 
As we will see, such a number K also controls for numerical solutions of 

a differential equation the rate at which errors compound. 
The existence of a Lipschitz condition is often very easy to ascertain, if 

the function in question is continuously differentiable. 
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Theorem 4.3.2. If on a rectangle R = [a, b] x [e, dJ a function f(t, x) is 
differentiable in x with continuous derivative of lax, then f(t, x) satisfies 
a Lipschitz condition in x with the best possible Lipschitz constant equal to 
the maximum value of laf laxl achieved in R. That is, 

x 

K == sup 1 of I. 
(t,z)ER ax 

I 

{ 
I (tl. X2) 

I 
• (tl. X·) 
I 

y(h.XI) 

I 
I 

FIGURE 4.3.1. (From Part I.) 

Theorem 4.4.1 (Fundamental Inequality). If, on a rectangle R = 
[a, b] x [c, dJ, the differential equation x' = f(t, x) satisfies a Lipschitz con­
dition with respect to x, with Lipschitz constant K =F 0, and if Ul (t) and 
U2 ( t) are two approximate solutions, piecewise differentiable, satisfying 

lu~(t) - f(t,ul(t))1 ~ Cl 

lu~(t) - f(t, U2(t)) I ~ C2 

for all t E [a, b] at which Ul (t) and U2 (t) are differentiable; and if for some 
to E [a,b] 

then for all t E [a, b], 

where g = Cl + C2. See Figure 4.4.1 on the next page. 
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d '- / 
I 

/ / / / 

------ ---- t / / / / / 
--- ~ / / / / / 

I U1 (I). with slopes -- --+- ~ / /' / 
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J- -- --- ~ ~ I 
I 
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I 
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--- --l--.. ~ "" '" '\ I 
I 

"" '" \ \ --- ------- 1---- U2(1). with slopes 
I wilhin £2 of f(l.x) 

/' "- \ \ \ c 
a 10 b 

FIGURE 4.4.1. Slope field for x' = f(t,x). (From Part I.) 

Theorem 4.5.1 (Uniqueness). Consider the differential equation x' = 
f(t, x), where f is a function satisfying a Lipschitz condition with respect to 
x on a rectangle R = [a, bj x [c, d] in the tx-plane. Then for any given initial 
condition (to, xo), if there exists a solution, there is exactly one solution u( t) 
with u(to) = Xo. 

Theorem 4.7.2 (Funnel Theorem). Let a(t) and (3(t), a(t) :::; (3(t) be 
two fences defined for t E [a, b), where b might be infinite, defining a funnel 
for the differential equation x' = f(t,x). Jilurthermore, let f(t, x) satisfy a 
Lipschitz condition in the funnel. 

Then any solution x = u(t) that starts in the funnel at t = a remains in 
the funnel for all t E [a, b). 
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___ __"",_"-<: _-- 13 (t) = upper fence 
~ -.:...,. --'-.--,,"-"'--..... - -"<. --......... -"" 

J_-r-~ 
,/_-r 

~--/--__ r 

--r-~--- a (t) = lower fence 
_-/ __ /--r 

FIGURE 4.7.2. Funnel. (From Part I.) 
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Theorem 4.7.3 (Antifunnel Theorem; Existence). Let a(t) and f3(t) , 
f3(t) ~ a(t), be two fences defined for t E [a, b), where b might be infi­
nite, that bound an antifunnel for the differential equation x' = f( t, x). 
FUrthermore, let f (t, x) satisfy a Lipschitz condition in the anti funnel. 

Then there exists a solution x = u(t) that remains in the antifunnel for 
all t E [a, b) where u(t) is defined. 

---;;.0<' 
-~--.r--/--r--7"'--~--/--/--r-~--- a (t) = lower fence 

FIGURE 4.7.3. Antifunnel. (From Part I). 

The really interesting results about antifunnels are the ones which give 
properties which ensure that the solutions which stay in them are unique. 
We will give two such properties; the first is a special case of the second, 
but is so much easier to prove that it seems worthwhile to isolate it. 

Theorem 4.7.4 (First uniqueness criterion for antifunnels). Let 
a(t) and f3(t), f3(t) ~ a(t), be two fences defined for t E [a, b) that bound 
an antifunnel for the differential equation x' = f(t,x). Let f(t,x) satisfy 
a Lipschitz condition in the antifunnel. FUrthermore, let the antifunnel be 
narrowing, with 

lim(a(t) - f3(t» = o. 
t-+b 

If of / ax 2: 0 in the antifunnel, then there is a unique solution that stays 
in the antifunnel. 
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Theorem 4.7.5 (Second uniqueness criterion for antifunnels). Let 
aCt) and (J(t), (J(t) ~ aCt), be two fences defined for t E [a, b) that bound 
an antifunnel for the differential equation x' = f(t,x). Let f(t,x) satisfy 
a Lipschitz condition in the antifunnel. FUrthermore, let the antifunnel be 
narrowing, with 

lim(a(t) - (J(t» = O. 
t-+b 

If (8f/8x)(t, x) ~ wet) in the antifunnel, where wet) is a function satis­
fying 

lb w(s)ds > -00, 

then there is a unique solution which stays in the antifunnel. 

Note that the first uniqueness criterion is a special case of the second, 

with wet) = 0, since J: Ods = 0> -00. 

NUMERICAL METHODS 

Our numerical methods for solving a differential equation x' = f(t,x) are 
based on the same idea as Euler's method, in that using intervals of step 
size h, 

ti+l = ti + h and Xi+! = Xi + hm, where m = slope. 

1. Euler. For Euler's method we simply use the slope, f(ti, Xi), available 
at the point where we begin to "follow our noses," the left endpoint of the 
interval. 

(I, ,X, ) X, ________________ *_ 
/1 

// 1 

// 1 
/ 1 

/7If' 1 h f (to ,xo ) 
// 1 

// 1 
/ 1 

// 1 
Xo ----~-----------::;I--

to I 10+ h 
h 

FIGURE 3.1.1. Euler's method. Single step, starting at (to, xo). (From Part I.) 
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For fancier methods we "sniff ahead," and then can do a better job of 
"following." 

2. Midpoint Euler. For the midpoint Euler method (also called modified 
Euler) we use the slope mM at the midpoint of the segment we would have 
obtained with Euler's method, as shown in Figure 3.2.1. 

x 

(li+1 .xi+1) 
I midpoinl Euler 

I 
_ -t (I 1+1.x l+1) 

--- I Euler 

I 
I 
I 

FIGURE 3.2.1. Midpoint slope = mM = f(ti +~, Xi + ~f(ti'Xi»' (From Part 
I.) 

3. Runge-Kutta. For the Runge-Kutta method we use slope mRK, a 
weighted average of beginning, midpoint, and ending slopes. The result 
is a much better convergence with fewer steps. 

x line wilh 
slope m, 

-------
Xi----~~_~_=-----------+--------------+----~ 

1 i - - _ 1 i + h/2 1 i +h 
........................ line with ---_...,:;Iope m3 --- slope m4 

(li+1. Xi+1) 

FIGURE 3.2.2. Runge--Kutta makes a linear combination of these four slopes 

using mRK = U) (ml + 2m2 + 2m3 + m4)' (From Part I.) 
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slope at beginning of interval 

slope at midpoint of a segment 
with slope ml 

slope at midpoint of a segment 
with slope m2 

slope at end of a segment 
with slope m3 

Theorem 4.5.2 (Bound on slope error, Euler's method). Consider 
the differential equation x' = I(t,x), where I is a continuous function on a 
rectangle R = [a, bJ x [c, d] in the tx-plane. Let Uh be the Euler approximate 
solution with step h. Then 

(i) lor every h there is an Ch such that Uh satisfies 

at any point where Uh is differentiable (and the inequality holds for 
lejt- and right-hand derivatives elsewhere); 

(ii) Ch --+ as h --+ 0; 

(iii) if furthermore I is a function on R with continuous derivatives with 
respect to x and t, with the following bounds over R: 

then there is a specific bound on Ch: 

lu~(t) - f(t, uh(t»1 ~ h(P + KM). 

Theorem 4.6.1 (Bound on slope error, midpoint Euler method). 
Consider the differential equation x' = f(t,x), where I is a continuously 
differentiable function on a rectangle R = [a, bJ x [c, d] in the tx-plane. 
Consider also the midpoint Euler approximate solution Uh, with step h. 
Then there is an Ch such that Uh satisfies 

at any point where Uh is differentiable (or has lejt- and right-hand deriva­
tives elsewhere), and Ch --+ 0 as h --+ o. 
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Furthermore, if f is a function on R with continuous derivatives up to 
order two with respect to x and t, then there is a constant BM such that 

lu;'(t) - f(t, uh(t»1 ::; BMh2 . 

This computation is not too difficult if you don't insist on knowing B M, 
which is a fairly elaborate combination of sup's of the second order partial 
derivatives. 

FROM MULTIVARIABLE CALCULUS 

Theorem 13.6.4 (Implicit Function Theorem). Let U = V x W be 
an open set in IRn x 1R7n , f: U ---- 1R7n a differentiable mapping, and (xo, Yo) 
a point in U such that f(xo, Yo) = o. If the square m x m matrix of partial 
derivatives 8f/8y(xo,yo) is invertible, and if 8f/8y satisfies the Lipschitz 
condition 

118f/8y(x,yt} - 8f/8y(X,Y2)11 ::; KYI - Y211 

on U for some K, then the equation f(x, y) = 0 expresses Y locally as an 
implicit function of x near Xo. 

More precisely, there exists a neighborhood VI of Xo in IRn and a dif­
ferentiable function g: VI ---- 1R7n with g(xo) = Yo and f(x,g(x» = o. 
This function can be computed as follows: Choose x and solve the equation 
f(x, y) = 0 for Y by Newton's method, starting at Yo, i.e., set 

Yn+1 = Yn - [Of/8y(x,Yn)-ljf(x,Yn). 

Then if x is chosen sufficiently close to xo, this sequence will converge to a 
limit which depends of course on x; if you set g(x) equal to this limit, then 
g will be the required implicit function. 

Moreover, the function g computed this way is differentiable at Xo, with 
derivative 

Corollary 13.6.5 (Inverse Function Theorem). Let U C 1R7n be an 
open neighborhood of 0, and f: U ---- 1R7n a continuously differentiable func­
tion, with dxf satisfying a Lipschitz condition 

Idx1 f - dX1 fl ::; Klxl - x21 

for some constant K. If dof is invertible, there exist neighborhoods U1 C U 
and VI of 0 in 1R7n and a continuously differentiable mapping g: VI ---- U1 

such that g 0 f is the identity of U1 and fog is the identity of VI. The 
derivative of g at the origin is given by 

dog = (dof)-l. 
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Answers to Selected Problems 

Solutions for Exercises 6.1 

6.1#2. (b) 

dx 
-=x+2-y 
dt 
dy 2 
- =X -yo 
dt 

Vertical isocline: line y = x+2. Horizontal isocline: parabola y = x 2 • Notice 
that in Example 6.1.5 the only difference is the sign of x'; however, the two 
phase planes do not look at all alike. 

x 

7 

Note: This drawing captures most of the vital character of the phase 
plane for this system, which is all we can expect without the further study 
provided in Section 8.6. If you make a computer drawing, you will see that 
the "spirals" actually close up into ellipses. But without knowing about 
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area-preserving systems, you could not predict that fine point in a hand 
sketch. 

6.1#2. (g) 

Vertical isoclines: x = 0 and y = 1 - ~x. Horizontal isoclines: y = 0 and 
y = 2 - x. 

y 

4 

isocline of 
horizontal slope 

x 

6 

isocline of 
vertical slope 

6.1#4. (c) The vertical isoclines are the 2 circles: (x - 2)2 + y2 = 1 and 
x2 + y2 = 9. The horizontal isocline is the circle (x - 1)2 + y2 = 4. 
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Solutions for Exercises 6.2 

6.2#1. To prove the Fundamental Inequality, let 

Then 

and differentiation with respect to t gives 

2-y(th'(t) = 2(UI(t) - U2(t), u~(t) - u~(t») 

therefore, by the Schwarz Inequality, 

l-y(th'(t)I $IIUI(t) - u2(t)lIlIu~(t) - u~(t)1I 

-y(t)I-y'(t)1 $ -y(t)lIu~(t) - u~(t)lI, since -y(t) ~ 0 for all t. 

If -y(t) = 0, on some t-interval, then UI(t) = U2(t) and hence ui = ua in 
that interval. Where -y(t) i 0, the above equation says 

l-y'(t)I $lIu~(t) - u~(t)1I 
= IIf(t, UI(t» + el - f(t, U2(t» - e211 

$lIf(t, UI(t» - f(t, U2(t» II + e 

$ kllul(t) - U2(t) II + e, by the Lipschitz condition. 

Therefore, -y'(t) $ k-y(t) + e, and the proof in Part I applies. Suppose 

[2t_+t 1], UI and U2 are piecewise linear functions, for example UI(t) = 

IIUI (t) - u2(t)1I = II [ -0·~~1~ 0.1] II 
= J(-O.lt + 0.1)2 + (O.lt)2 = JO.02t2 - 0.02t + 0.01 

is not a linear function, but the proof still works because of the Schwarz 
Inequality. 

6.2#8. (a) The rate of change of the function F along a solution curve is 

dF aF dx aF dy 
- = - - + - - =2x(y)+2y(-x) =0. 
dt ax dt 8y dt 

Therefore, the trajectories of the solutions in the phase plane are circles 
x2 +y2 =c. 
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(b) Solving the system by Euler's method is equivalent to iterating the 
equations 

In matrix form, 

X n+l =xn+hx~ =xn+hYn 

Yn+1 = Yn + hy~ = Yn - hxn· 

If the initial conditions are x = Xo, Y = Yo, Euler's method will produce 

the sequence of points H ( :~ ), H2 (:~) , ... ,Hn (:~ ). The matrix 

v'1~h2) =v'I+h2 ( c~O SinO) 
_1_ -smO cosO ' 
~ 

where () = sin-1 (v'I~h2)' and (~~::O ~::) is rotation by an angle () 

in the clockwise direction. Hence the nth power of H is 

Hn = (I + h2)n/2 (c~{n()) sin{n()) ) . 
- sm{ n()) cos{ n()) 

Thus, at each step the vector (::) is rotated by a fixed angle, but also 

multiplied by VI + h2 > 1, so the Euler solution will spiral as shown below: 
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Solutions for Exercises 6.3 

6.3#2. (a) For x and y both positive, F(x, y) = Ixlblylae-(fo:+cy) is contin­
uous and differentiable. Any maximum must occur either on the boundary 
(positive x or y axes) or at an interior point where ~; = ~~ = O. With 
a, b, c and f all positive, F -+ 0 as x -+ 0 or y -+ 0, and the exponential 
approaches 0 if either x or y -+ 00. Since F is positive in the interior of the 
positive quadrant, its maximum must occur where 

That is, x = b/ f and y = a/c. 
(b) If a level curve of F comes very close to the origin, it will also have 

to travel very far away. This would mean that if a population became very 
swall, at some point in the cycle it would have to become very large. When 
the populations get away from their equilibrium value, they tend to oscillate 
wildly. 

Solutions for Exercises 6.4 

6.4#2. Equation (a) is x" + 3x' + 5x = 0, which has solution 

as you will see, using the methods of Chapter 7. If you let y = :' y' = y~, 
then 

x" = -3x' - 5x 
dy 

y dx = -3y - 5x 

can be solved by letting v = ~ or y = xv and ~ = x: + v. Then 

dy = x dv + v = -3 _ ~ 
dx dx v 

and you need to solve 

v2 + 3v + 5 dv vdv dx 
v = -x dx or v2 + 3v + 5 = x 
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for v = ~, then solve the resulting equation with y replaced by ~. This is 
definitely the hard way-you can forget it. 

For equation (b), x" +3tx' = t, letting y = x' and y' = x", then y' +3ty = 
t and ¥t = t(1 - 3y). Therefore, J l~~Y = J tdt by separation of variables, 
and 

In 11 - 3YI _ t 2 C 
-3 - 2 + 

lIt2 1- 3y = ae- 2 

1 ,_lIt2 dx 
or y = - - a e 2" ==-. 

3 dt 

This leads to x(t) = ~t + Cl J; e-!s2 ds + C2, which is about as good a 
solution as you can get by any method. 

For equation (c), x"-xx' = 0, replacing x' by y and x" by y*, y*-xy = 

o => either y = 0 so that x(t) = Ct, or * -x = 0 so y = ;2 + C2, or 

~~ = "'; + C3, which can be solved by separation of variables ",1~c = dt. 

ifc>O: ~tan-l(Jc) =t+k=>x=yCtan(~ +k1) 

if c < 0: let c = _a2 • Then J 22dx 2 = dt 
x -a 

1 1 
=> - In Ix - al - -In Ix + al = t + kl 

a a 

and therefore 

In -- =at+k2 • Ix-al 
x+a 

Solving this for x{t) gives 

if c = 0: ~ = "'22 can be solved by writing ~ = ~dt 

1 1 
--=-t+k 

x 2 
2 

X=---. 
t+2k 
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Solutions for Exercises 6.5 

6.5#3. The graph shows the potential function V(x) = x4_X2 = x 2(x2-1) 
and below it the phase plane of the system 

x' = y 

I aV 3 
y = -- = -4x + 2x ax 

EO= - 0.2 

E = ~y2 + x4 - x2 = constant Eo, so y = ±J2(x2 - x4 + Eo) gives curves 
in the phase plane. 

Minimum of V (x) occurs when 

4x3 - 2x = 2x(2x2 - 1) = 0 

~ x=±/I. 
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Maximum of V(x) is at x = 0. 

Therefore the equilibria are at (0,0), (±4,0). 
If Eo < 0, the particle oscillates back and forth about one of the two 

equilibrium points (±4, 0). 
If Eo = 0, the particle either sits at (0,0), or moves on a trajectory which 

takes infinite time to go between -1 and ° or ° and 1. 
If Eo > 0, the particle oscillates infinitely between ±xmax, where Ixmaxl > 

1. To get a good idea of the motion, imagine moving along a wire shaped like 
the function V(x), rolling down to the first minimum, over the maximum 
(hump) at x = 0, back to the minimum and up the other side, and repeating 
infinitely often. 

(b) The phase plane for x' = y, y' = -4x3 + 2x - 0.2y shows that 
any trajectory spirals in and eventually ends up at one of the two points 

( ±4, 0). The origin is still a saddle point, so if the particle starts at (0,0) 
it will remain there. 

-------- -5 

--- -------' 

6.5#7. To have V(x, y) constant along solutions of x' = x 2 - 1, y' = 
x 2 (3 - 2y), we need 

dV BV dx BV dy 2 2 
dt = dx . dt + By . dt = Vx(x - 1) + VyX (3 - 2y) == o. 

There is no unique way to find v from this equation, so try letting 

V(x, y) = F(x) + G(y). 

Then Vx = F' (x) and Vy = G' (y) are ordinary derivatives of functions of a 
single variable. Therefore, 

(x2 - I)F'(x) + x2(3 - 2y)G'(y) = ° 
(x2X: 1) F'(x) = -(3 - 2y)G'(y) 

implies that both sides must be equal to the same constant, since each side 
depends on a different variable. 
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Therefore, assume ( x:; 1 ) F'(x) = 2 = (2y - 3)G'(y). F'(x) = X~~1 can be 

integrated to give F(x) = 2x+ln 1 :+~ I· G'(y) = 2Y~3 ~ G(y) = In 12y-31· 

Then V(x, y) = 2x + In 1 :+~ 1 + In 12y - 31 is constant along trajectories of 

the system. (It goes to 00 on the lines y = ~ and x = ±1.) 

6.5#10. (a) The equation is equivalent to the system 

x'=y 

y' = -cosx - 2ax 

(b) The conserved quantity is 

E = ~(X')2 + V(x) = ~y2 + sin x + ax2 = const . 

Phase planes are given for a = 0.01,0.1,0.5 and 1.0. 

a=1.0 a=O.5 

•• 

a=O.1 a=O.01 
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(c) The easiest way to describe the equilibria as functions of 0 is to look 
at the zeros of y' = - cos x - 20x. The equilibria consist of all intersections 
of f(x) = cos x with g(x) = -20x. 

-2ax 

~~~~1=~~~b±~~~x 
41t a = 0.02 

For 0 = 1 and 0.5 there is only one equilibrium at (xo,O) with Xo small 
and negative. That will be true for any 0 < it where it is the value of 0 

such that y = - 20x is tangeTlt to the graph of cos x at a value ~ < x < 11". 

cos X 

At x, - 20 = d~ (cos x) = - sin x (slope of line and curve are equal) and 
- 20x = cos x (two curves intersect). 

cos X . _ 1 
=} -- = -SIllX or tan x = --. x x 

Using Newton's method, x ~ 2.798 and it = c~J:) ~ 0.168. Notice that 
for 0 = 0.1 there are 3 equilibria, and for 0 = 0.01 there are a lot. Using 
methods you will learn in Chapter 7, it can be shown that when there is 
more than one equilibrium, they will be alternately stable and unstable (as 
in Fig. 6.5.4). 
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Solutions for Exercises 6.6 

6.6.#2. (a) 

r x r' = (xi + yj + zk) x (x'i + y'j + z'k) 

== (yz' - zy')i + (zx' - xz')j + (xy' - yx')k (def. of cross product) 

!!..(r x r') = (yz" + y'z' - z'y' - zy")i + (zx" + z'x' - x'z' - xz")j 
dt 

+(xy" + x' y' - y' x' - yx")k) 

(product rule for differentiation) 

= (yz" - zy")i + (zx" - xz")j + (xy" - yx")k 

== r x r" (def. of cross product). 

Using equation (26), r" = IIr(r)II r states that r" is a constant multiple of 
mr 

r, hence parallel to r. 
Therefore, r x r" = 0 (Cross product of parallel vectors is 0). 

(b) Let n = r(to) x r'(to), the normal vector to the plane spanned by 
r(to) and r'(to). From part (a), since !t(r(t) x r'(t)) = 0, the cross product 
of ret) and r'(t) at any point along the trajectory will also be n. That is, 
ret) always lies in the plane with normal n, the plane spanned by r(to) and 
r'(to). 

. (X(t)) (r(t)COSO(t)) 
(c) In polar coordmates, r = yet) = r(t)sinO(t) and 

r' = (r'(t) cos OCt) - r(t)O'(t) sin O(t)) . 
r'(t) sinO(t) + r(t)O'(t) cosO(t) 

r x r' = (rc~t rs1nt ~O) 
r' cos 0 - rO' sin 0 r' sin 0 + rO' cos 0 

= i(O) - j(O) + k[rr' cos 0 sin 0 + r20' cos2 0 

- r sin 0 r' cos 0 + r 20' sin2 OJ 

= r 20' (cos2 0 + sin2 O)k 

and IIr x r'lI = IIr20'kll = Ir20'1 == the angular momentum M. 

Solutions for Exercises 6.7 

6.7#2. Using Newton's law F = rna, the differential equations for Xl, X2, 

and X3 are: 
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The center of gravity X = m 1Xl±m2X2±maXa. Therefore 
ml±m2±ma ' 

1 
X" = (m x" + m x" + m x") + + I I 2 2 3 3 ml m2 m3 

= 1 [Gmlm2(X2 - Xl) + Gmlm3(x3 - xt) 
ml + m2 + m3 IX2 - xl13 IX3 - xl13 

Gmlm2(xl - X2) Gm2m3(x3 - X2) + +_--c'-----'-':........:...-=-----'-
IXI - x213 IX3 - x213 

Gmlm3(xl - X3) Gm2m3(x2 - X3)] - 0 
+ IXI-X313 + IX2 -x313 =. 

Since X"(t) == 0, X'(t) = b, a constant vector. 

Therefore X(t) = a + bt, 

which says X moves in a straight line. 

6.7#4. (a) The equations for a central force field (in polar coordinates) 
are: 

{ r" - r(O')2 = f(r) 
2r' 0' + rO" = 0 

and using the fact that (r20')' = 2rr'O' +r20" = r(2r'O' +rO") = 0, so that 
M = r20' is constant, the first equation in (*) becomes 

"M2 ( ) r --=fr. 
r3 

The force f(r) was defined as the multiplier of r/r in the equation 

x" = f(r) [~~::], so for this problem 1 f(r) == -~ I· 

(36) becomes " M2 k 
r --

r3 r 

(37) becomes 
" M2 k dW 

r =---
r3 r dr 

so that 

(38) becomes W(r) = - ! (~-~) dr = _ (M~~-2 - klnr) 

M2 
W(r) = 2r2 + k lnr 
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The necessary condition for bounded solutions is that W(r) have a local 
maximum or minimum for r > O. 

But dd~ = ~ - ~ = 0 has one solution M2r - kr3 = r(M2 - kr2) = 0, 
so that r = 0c is a minimum. (M and k are both assumed to be positive 
constants.) Ex: If M = k = 1, the graph of W(r) has a minimum at r = 1. 

-1 .0 

I 
W(r) 

v = r' 

Solutions for Exercises 6.8 

r 

6.8#6. (a) x' = x3 = I(x). The solution, by separation of variables, is 

x(t) = V 1 2 , 
c- t 

1 1 
x(O) = y'C ::::} c = (x(O) )2' 

Therefore x(t) = xo/../1- 2tx~. The flow is cPf(t,x) = x/'J1- 2tx2 , with 
the condition tx2 < ~. Domain of 4> f: 
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t 

1 
x=---

{2t 

(b) x' = x3 - X = f(x). 

J ~=J(-.!.+ 1/2 + 1/2 )dX=Jdt 
x3 - x X x-I x + 1 

1 1 
-In Ixl + "2 In Ix - 11 + "2 In Ix + 11 = t + c 

-21n Ixl + In Ix2 - 11 = 2t + c' 

CX2x~ 11) = a 2e2t (a> 0) 

Ix2 - 11 = a 2e2t x 2 

x(O) = 1 => a = Jlx5 - 11 
VI - a 2 Xo 

x u ~ 
</>f(t,x) = , with the condition e < Ix2 -11· 

Jx2 - (x2 - l)e2t 

For -1 ~ x ~ 1, solutions are defined for all t (x == ±1 are constant 

solutions). If Ixl > 1, the requirement is that e2t < X:~l' Le., Ixl < v'e~:-l· 
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Solutions for Exercises 7.1-7.2 

7.1-7.2#1. (i) 

(a) A(t) = (~ ~), g(t) = (~). 

(b) A(t) ~ Gin, g(t) ~ m 
(ii) 

(c) (:,~t2»)' = (~5 !) (:,w») + (t~ ). 
(d) (;W»)' = (c!t ~) (;W») + (~). 

7.1-7.2#2. 

(a) x(t) = cle(2+v'3)t + C2e(2-v'3)t. 

(b) x(t) = e 2t (cl cos(2t) + C2 sin(2t». 

(c) x(t) = e-6t ( -2 - 15t). 

(d) x(t) = (~ __ 1_) e(!-~)t + (~+ _1_) e(!+~)t. 
2 2J5 2 2J5 
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t 
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7.1-7.2#3. 

(a) x{t)=J3etsin(~). 

7.1-7.2#4. 

(a) x{ t) = CI/t + C2/t2. 

(b) Solutions are defined for t > 0 or for t < 0, depending on where the 
initial conditions are given. 

• 1+2V5 1-V5 
(c) The cookbook method produces the solutlOn x{t) = CIt +C2t---r-. 

(d) The solution in (c) is defined for t > O. For t < 0, x{t) = CI (-t) 1+2V5 + 
C2{-t)¥ is a solution of the differential equation. Therefore, the 

most general solution is x{t) = cIltI 1\V5 + c2ItI 1- 2V5 , which holds for 
t ¥= o. 

7.1-7.2#7. Schwarz's Inequality says: Given vectors x and y, l(x,y)1 ~ 
IIxlillyll· 

A ~)(~)' ::~ V(l:::r)':: 0: ~:~::: :~:t ~, 
a,. (a,., x) 

IIAxll2 = (al,x)2 + (a2,x)2 + ... + (a,.,x)2 

= ~)a;,x)2 ~ L 1Ia;1I211x1l2 (by Schwarz Inequality) 

= IIxl1 2 L IlBill2 = IIxll211AI12 
i 

(if IIAII is defined by Vr..i,; lai;12). 

Therefore II Ax II ~ IIxliliAIl by taking the square root. 
(b) x' = Ax satisfies a Lipschitz condition on a x an if there exists a 

real number k such that IIA(x - y)11 ~ kllx - yll for all X,y E an. 
(c) From part (a), IIA{x-y)1I ~ IIAllllx-yll, where IIAII = Jr-r..-i,-;(-a'-"j)-2 ~ 

k, since the elements of A are bounded. Therefore, the linear system always 
satisfies a Lipschitz condition. 
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(d) For x = [~ ;] x, the constant k could be taken to be 

v'02 + 12 + 12 + 22 = v'6. 
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Note: other norms for A can be defined. The one used here does not 
give the "best" Lipschitz constant k. 

Solutions for Exercises 7.3 

7.3#1. (i) 

(a) Al = -1, U1 = C (~) A2 = 2, U2 = C (~). 

(b) A = 2, U = C ( ~ ). 

(c) A1,2 = -2 ± i, eigenvectors (!), (2i). 

(d) A, ~ 1, u, ~ UJ 
A, ~ 2 with 2 line.dy mdependent eigenvecto'" G) and G)-

(e) A, ~ -1, u, ~ c ( ~1 ); A, ~ 1, u, ~ c UJ 
Aa ~ 5, Ua ~ em· 

(f) Al = 3, U1 = C ( ~ ) j A2 = 1 - 2V2j U2 = C ( -~ ) j 
-5 -2 + V2 

A3 = 1 + 2V2, U3 = C ( ~ ) • 

-2 - V2 

(g) A, ~ -3, u, ~ c ( ~1 } 

A2,3 = 4 ± v7 i, U2,3 = ( ~ ) ± i ( J.r ) . 
-13 5v7 
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(b) The 3 eigenveclo," Me (~) corresponding 10 ~ ~ ?'ii, - W±,='. 

7.3#3. 

y 

-2.0 

7.3#4. 

(a) G1:D ~ e-' ( ~1 ) +e-" ( ~2 ) + e" m 
(b) G1lD ~ c,e' UJ He-' ( ~2 ) he" ( ~2 ) 
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7.3#5. 

(a) A basis for ]R2 is VI = ( 1~; ), V2 = ( H~y'5 ). 

(b) A basis for ]R2 is Vl = (~), V2 = ( ! 1 ) . 

7.3#6. (a) The eigenvalues and eigenvectors in C3 are 

'>'1 = 0, Ul = (~) j '>'2 = 3i, U2 = (-1 ~ 3~) j 

2 -1- 3~ 

'>'3 = -3i, U3 = (-1 ~ 3i) 
-1 +3i 

Ul! U2, U3 form a basis for C3 • 

541 

(b) To get real solutions, use e 3it (-1 ~ 3i) and take real and imagi­
-1-3i 

nary parts. 

e3
" (=:~=) ~ [amat+i&n~l [( ;:) +i (!a)] 

U .. 

~ .(=~) [ ;:]- (~n~) [ ~J 

+i!~at (;:) :cm~ Ua}). 
Therefore, the general solution is 

(
X(t») (1) ( 4cos3t ) ( 4sin3t ) y(t) =CleOt 2 +C2 -cos3t-3sin3t +C3 -sin3t+ 3cos3t . 
z(t) 2 -cos3t + 3sin3t -sin3t-3cos3t 
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Therefore, the solution with x(O) ~ 0) is 

x(t) = ~ (~) + ~ (-cos~~~~tsin3t) + ~ (_sin!:i~;tCOS3t) 
3 2 6 _ cos 3t + 3 sin 3t - sin 3t - 3 cos 3t 

= t + t(coS3t - 2sin3t) . [
! + ~ (cos 3t + sin 3t) ] 

3 + 3( -2 cos 3t + sin3t) 

(d) The solutions cycle periodically (period 2;) about the fixed point 

7.3#8. If A has n distinct eigenvalues, then it has a basis of eigenvectors 
and hence is diagonalizable. 

DeC: A is diagonalizable when the eigenvectors of A form a basis for IRn 

(or en). 

(a) For [~1 ;], 

det [=~ 2 ~ >.] = ->'(2 - >.) + a = >.2 - 2>' + a = ° 

>. = 2 ± v'4=4li = 1 ± vT=a 2 . 

Case (i). Suppose a :f:. 1. Then there are two unequal eigenvalues. There­
fore, the matrix is diagonalizable. 

Case (ii). Suppose a = 1, so >. = 1. 

[0-1 1 ][U]=[-l l][U]=[O]=>{-U+v:o 
-1 2 -1 v -1 1 v ° v - U 

Then there is only one eigenvector c ( ! ). Therefore, the matrix is not 

diagonalizable for a = 1. 
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(b) 

[
1- A 

det ~ 
o 

I-A 
o 

~ 1 = (1 - A)(1 - A)(b - A) = OJ 
b-A 

so the eigenvalues are 1, 1 and b. 
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Case (i): Suppose b 1: 1. Then there are distinct eigenvectors for A = 1 
and A = bj what about the number of eigenvectors for A = I? If A = 1, 

(0 0 0) (U) (0) { u+w=O 
~ ~ b ~ 1 : = ~ =? (b - l)w = 0 

The<efo"', w ~ 0 and • ~ O. So v ~ G) ;" the only eigenvector £0, the 

double eigenvalue. Hence if b 1: 1, the matrix is not diagonalizable. 
Case (ii): If b = 1, then 

So the", Me only two line.dy "'dependent e;genvee_, given by c, (!) 
and c, ( i 1) , hence th"", ;" no bas .. of e;gen"",torn. 

Conclusion: A is n[o~ d~ago;lalizable for any value of b. 

(c) For the matrix 1 0 c 
c 1 0 

[
-A COl 

det 1 -A C 

C 1 -A 

Roots are equal only if (-2)2/4 + (-2c)3 /27 = c3(c3/4 - 8/27) = 0, i.e., 
if C = 0 or 25/ 3 /3. 

Case (i). If C = 0, A = 0, and 
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"" there ;" only one e\genvecto, (~), 
Case (ii). If c = 25/ 3 /3, then ,\ = 2c/~, -c/~, -c/~. For the 

double root, ,\ = -c/ ~ = _24/ 3 /3. 

(2r 
25 / 3 
-3-

2 5 / 3 
-3-
24 / 3 
-3-

1 

"" ( ~F) ;" the only eigenvect",, 

::~::~: m(ar ; dt)g~naHZahle except when c ~ ° 0' 2
5

/
3
/3, 

c02 

det (1 ~,\ 2 ~ ,\ ~) = (2 _ ,\)[,\2 - 3'\ + 2 - ac] = O. 
c 0 2-,\ 

Therefore, the eigenvalues are ,\ = 2, 3±~. 
If either a or c is 0, ,\ = 2 is a double eigenvalue. 
If 4ac = -1, ,\ = ~ is a double eigenvalue. 
Case (i): a = 0, ,\ = 2. 

01 ~ ~)(n ~ (~) 
If bolO, the'e ;" only one eigenvecto, (!), 
If b ~ 0, m and m are both ~genvecto~, 
Similarly, for c = 0, ,\ = 2. 
Case (ii): If 4ac = -1, so ,\ = 3/2 is a double eigenvalue: 

C{a i i)(~)~Cf:.:~:)~m=>{::~a2~ 
and ( ~b) is the only eigenvectm, Therefore, the matdx ;" not diago­

nalizable. 
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Conclusion: This matrix is diagonalizable unless a = 0 (with b =I- 0), 
c = 0 (with b =I- 0) or 4ac = -1 (arbitrary b). 

Solutions for Exercises 7.4 

7.4#6. Write x" + 3x' + 2x = 0 as a system 

{
X' =y 
y' = -2x - 3y. 

Then (~)' = (~2 !3) (~) and we need to find eAt where A = 

(~2 !3). The eigenvalues and eigenvectors of A are Al = -1, Ul = 

( !1) and A2 = -2, U2 = ( !2)· Therefore, 

At (1 1) (e- t 0) (1 1)-1 
e = -1 -2 0 e-2t -1-2 

( 
2e-t _ e-2t e-t _ e-2t ) 

= -2e-t + 2e-2t _e-t + 2e-2t . 

The solution of the differential equation with initial condition (~g~?) = 

Xo is given by u(t) = eA(t-to)xo. If you let t = to and (~) = x(O), then 

( -t) (-2t) can be put in the form Cl ~e-t + C2 ;:-2t by letting Cl = 20 + {3 

and C2 = 0 + {3. 

7.4#11. (a) Any 2 x 2 matrix with trace = 0 can be written as 

A = (a b), det A = _(a2 + bc) 
C -a 

A2 = (a b) (a b) 
e -a c-a 

( a2 + be 0) 2 = 0 a2+be =(a + be) I = (-detA)I. 
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(b) 

tA t2 2 t3 3 t 4 4 e = 1+ tA + - A + -A + -A + ... 
2! 3! 4! 

= I + tA - C; det A ) I - (~~ det A ) A + ~ (det A)2 I + ... 

= 1[1- ~~ detA + ~~ (detA)2 - ~~ (detA)3 + ... J 

+ A [t - t~ det A + t~ (detA)2 - ... J = a(t)I + ,B(t)A. 
3. 5. 

(c) If detA > 0, then 

If det A < 0, then 

{ 
a(t) = cos(JdetA· t) 

,B(t) = ~sin(v'detA.t) 
detA 

{ 
a(t) = cosh( vi det AI t) 

,B(t) = 1 sinh( vi det AI . t). 
vldetAI 

Solutions for Exercises 7.5 

7.5#3. Given x' = Ax with trace A = 0, let 

x' = (a b) x. 
c -a 

Then ~~ = ax + by and !fit = ex - ay. To see that the equation 

dy ex - ay 

dx ax+by 

is exact, write it in the form P(x, y)dx + Q(x, y)dy = 0 and check that 
oP/oy = oQ/ox. From (*), (ex - ay)dx - (ax + by)dy = ° = Pdx + Qdy 

OP oQ 
-=-a=-
oy ax' 

Integrating P and Q partially with respect to x and y gives 

ex2 by2 
V(x, y) = 2 - axy - 2 = const. 
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(To check: ~~ = ex - ay = P and t = -ax - by = Q.) The level curves 
of V are trajectories in the phase plane. 

7.5#7. If A is real and A is a complex eigenvalue, then X is also an eigen­
value. Furthermore, if 

Aw = AW (w is the complex eigenvector corresponding to A), 

then taking complex conjugates: 

Aw = AW. 

Since A is real (A = ..4), this says Aw = Xw. That is, w is the eigenvector 
corresponding to X. 

Since A and X are distinct eigenvalues, W and w are linearly independent. 
Now suppose W = W1 + iW2 and W1 and W2 are not linearly independent. 
Then W1 = c· W2 for some scalar c. But this implies that 

W1+iW2=CW2+iW2=(C+i)W2} . (C+i) . 
~ W1 + ZW2 = --. (W1 - ZW2) 

WI - iW2 = CW2 - iW2 = (c - i)W2 C - Z 

which contradicts the linear independence of W and w. Therefore, W1 and 
W2 must be linearly independent. 

7.5.#8. If x' = (: :) x, and the trajectories spiral, then detA = ad­

be> 0 and trace A = a + d satisfies (trace A)2 < 4(detA), i.e., 

(a + d)2 < 4(ad - bc). 

The polar angle O( t) = tan -1 (~), and the direction of the trajectories 

will be clockwise if dO / dt < 0 and counterclockwise if dO / dt > O. 
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y 

x 

dJ} d ( -1 Y) xy' - yx' 
dt = dt tan ;; = X2 + y2 • 

Therefore sign(~n = sign(xy' - yx'). But 

xy' - yx' = x(cx + dy) - y(ax + by) 
= cx2 + (d - a)xy _ by2 

Therefore, sign(~n = sign(xy' - yx') = sign(c). 

Solutions for Exercises 7.6 

7.6#5. (a) The origin (0, 0) is always a singular point of the linear equation 
x' = Ax since AO = 0 implies x' = O. With 

A= (-1 1) 
o 0 ' 

traceA=:T= -1+0 

detA =: D = -20. 

Solving for D as a function of T: 

D = -20 = -2(T + 1). 
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In the (trace, det) plane, this line can be plotted. 

T 

-5.83 
.................... 1 

t node sinks ___ ---'t saddles 

Points of intersection are where -2(T + 1) = ~2 

(b) For a = 1, 

T 2 +8T+8=0 
T = -4 ± 2V2 ~ -6.83, -1.17 

a = T + 1 ~ -5.83, -0.17. 

det(,\l- A) = det (A + 1 -1) = A2 - 2 = O. 
-1 A-I 

A = ±J2 are eigenvalues. 

For A = J2, eigenvector is (1 +1 V2 ) . 

For A = -v'2, eigenvector is (1 _1 J2). 
(Note that A is symmetric, so the eigenvectors are orthogonal.) 

549 
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x 

Phase plane for x' = ( ~ 1 ~ ) x. 

Solutions for Exercises 7.7 

and 

,= t(a+ct)+ t(c)= t[(a+c)+ct] 
x e b + dt e d e (b + d) + dt 

x+ e =e 1 ) (t) t t [2(a+ct)+(b+dt)+t] 
-4 0 -5(a + ct) - 4(b + dt) 

t [ (2a+b)+(2c+d+l)t ] 
= e ( -5a - 4b) + ( -5c - 4d)t . 

The equations for a, b, c and d are 

a+c=2a+b 

c= 2c+d+ 1 
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In matrix form: 

b+d= -5a- 4b 
d= -5c- 4d. 

551 

Adding 5 times equation 2 to equation 4 shows that these equations are 

inconsistent. Instead, let x = (;::: ~ 1t: ) et • Then 

, t(a+bt+ct2+b+2ct) 
x = e d + et + ft2 + e + 2ft 

== [( _~ !4) (;:::: 1t: ) + ( ~ ) ] et . 

Therefore 

[ (a+b)+t(b+2C)+ct2 ] _ [ (2a+d)+t(2b+e+1)+t2(2c+J) ] 
(d+e)+t(e+2J)+ft2 = (-5a-4d)+t(-5b-4e)+t2(-5c-4J) . 

The resulting six equations in a, b, ... , f can be solved to get: 

1 
b=--

16 
5 

c= -
8 
5 

e = 16 
5 

f=--
8 
1 

a+d= -16' 

Therefore, a possible solution is 

7.7#4. In both equations we can let 

{ 
x(t) = Cl sinwt + C2 coswt 

x'(t) = ClwcosWt - c2wsinwt 
x"(t) = -CIW2 sinwt - C2W2 coswt 
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For x" + x' + x = sin(wt): 

(Cl sinwt + C2 coswt) + (CIW coswt - C2W sinwt) 

+ (-Cl w2 sin wt - C2W2 cos wt) 

= sinwt(cl - C2W - Clw2) + coswt(C2 + CIW - C2w2) 

1· sinwt + O· coswt 

which says 

This gives 

( 1-W2 ) ( w ) x(t) = (1 _ w2)2 + w2 sinwt - (1 _ W2)2 + w2 coswt 

= sinwt 1 [1 -w2 

J(l - w2)2 + w2 J(l- w2)2 + w2 

- coswt W ] 
J(l- w2)2 + w2 

= R(w)[coscpsinwt - sin cp coswt] 

where 

(b) Adding the homogeneous solution, 

R(w) sin(wt - cp) 
, ' ... 

x(t) = e-!t (ACOS ~t + Bsin ~t) + 

steady state solution with 
amplitude R(w) = 1jJ(1-w2)2 +w2 

(Note: R(w) is called the gain.) 

, ~ 

'" transient solution 
--+ 0 as t --+ 00 

(c) For x" + 2x = sinwt 

(-CIW2 sinwt - C2w2 coswt) + 2(Cl sinwt + C2 coswt) 

= 1 - sin wt + 0 . cos wt 

Therefore, (2 - W2)Cl = 1, (2 - W2)C2 = 0 =? C2 

(w =I- v'2). 
o and Cl 1 

2-w2 
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The full solution is x(t) = A cos J2t + Bsin J2t+ 2!w2 sinwt if w =F J2. 
For w = J2, write the equation in the form 

{
X' =y 
y'=-2x+sinJ2t j 

that is, (:)' = (~2 ~) (:) + (sin~t) = Ax+ g(t). 

A2 = (~2 ~) (~2 ~) = (~2 ~2) = -21 

At t2 2 t3 3 e = 1 + tA + -A + -A + ... 
2! 3! 
t2 t3 t4 t5 

= 1 + tA + -(-21) + -(-2A) + -(41) + -(4A) + ... 
2! 3! 4! 5! 

= 1 (1- (J2t)2 + (J2t)4 _ ... ) 
2! 4! 

+ ~ (J2t _ (J2t)3 + (J2t)5 _ ... ) 
J2 3! 5! 

= cos(v2t)1 + sin(J2t) A = ( cosJ2t 
J2 -J2 sin J2t 

The variation of parameters formula gives: 

u(t) = etAx(O) + lot e<t-s)Ag(s)ds 

= ----v"2. x(O) ( cosJ2t ~) 
- J2 sin J2t cos J2t 

~). 
cosJ2t 

ft ( cos(J2(t - s» Sin(~-S») ( 0 ) 
+ 10 -J2sin(J2(t-s» cos(J2(~-s» sinJ2s ds 

= v'2 x(O) (
COS J2t sin VZt ) 

-J2 sin J2t cos J2t 

+ ft ( ~ sin( J2s) sin( J2(t - S») ds. 
10 sin( J2s) cos( J2(t - s» 

Finally, we get (noting that the integration is very messy) 

u(t) = x(O) ( -~st::nt ) + x'(O) ( c:~t ) 
+ (! sin(J2t) _ tco;~t») . 

tsin(v'2t) 
2 
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7.7#9. To solve x" + w2x = g(t) = 1. ",,00_ sin«2n-l)t) let 
11" wn-l 2n-l ' 

00 

x(t) = 2: an sin(nt) 
n=l 

00 

x'(t) = 2: nan cos(nt) 
n=l 

00 

x"(t) = - 2: n 2an sin(nt) 
n=l 

then - Z=:=l n 2a n sin(nt) + w2 Z=:=l an sin(nt) 
1 sin(3t) + ... ). Therefore, 

~(sint + 0 . sin(2t) + 

n positive odd integer 
n positive even integer 

Therefore an = n11"(wLn2) if n is odd, and 0 if n is even. 
This works if, and only if, w is not an odd integer. It gives the solution 

1 2:00 sin((2n - l)t) x t --
( ) - 7r n=l (2n - 1)[w2 - (2n - 1)2] 

which obviously converges as n -+ 00. 

If w is an odd integer, there is a zero in the denominator, and the solution 
above is not well defined. Suppose w = 2m - 1 for some integer m > O. 
Then we need to solve separately the equation 

and the equations 

"( )2 1 sin(2m - l)t x + 2m -1 x = ---'----'-
7r 2m-l 

" ( _)2 _.!. sin(2n - l)t 
x + 2m 1 x - 2 1 ' 7r n-

for n -I- m. 

The second set of equations are solved as above, but the first is the resonant 
case, and to solve it by undetermined coefficients, one must try a solution 
of the form 

x(t) = Atsin(2m -1)t+ Btcos(2m-l)t+C sin(2m -1)t+ Dcos(2m -1)t. 

Differentiating twice and substituting in the equation leads to 

A=O, 
1 

B = ---, C,D arbitrary. 
2m7r 

Thus in that case the general solution of the equation is 
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1 "" sin((2n - l)t) 
x(t) =:;r ~ (2n _ 1)[(2m - 1)2 - (2n - 1)2] 

n#m 

- tCOS~;":-l)t + Csin((2m - l)t + Dcos((2m - l)t) 

where C, D are arbitrary constants, to be determined by the initial condi­
tions. 

x 

10 

Solutions for Exercises 8.1 

8.1#1. (a) (i) Singularities of {x; = y. 3 are at (k7r,O), k any 
y = -smx - y 

integer. 

~ 

J=(t 
8x 

~) (0 1 ) ~~ = 3 with trace J = -3, det J = cos x. =- -cosx-
8y 

If k is even, J = (~1 !3)' which shows a node sink and if k is odd, 

J = (~ !3)' which shows a saddle, as you can see in the figure. 
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(ii) 

Singularity Eigenvalues Eigenvectors 

(2k1r,0) 
-3 + v'5 (0.934, -0.357) 

2 

-3 - v'5 
(-0.357,0.934) 

2 

((2k + 1)11",0) .303 (0.957,0.290) 
-3.303 (-0.290,0.957) 

Phase plane with trajectories 
y 

Separatrices and eigenvectors at one sink and one saddle 
y 

Basin of the sink at the origin 
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{
Xi =y 

8.1#3. (b) To find the zeros of I (4 + 4 3 2 4 + )/8' we have y = X X -x - x y 
that y = 0, and x is a zero of x{x3 + 4x2 - X - 4) = x{x -l){x + l){x + 4). 

Therefore, the zeros are at (O,O), (1,0), (-I, 0) and (-4, 0). 

J-( ° - {2x3 + 6x2 - X - 2)/4 
-1 ) (O,O) and (-4,0) are saddles 
1/8 =? (-1,0) and (1,0) are spiral sources. 

(ii") Singularity Eigenvalues 

(O,O) -0.647 
0.772 

(1,0) 0.625 ± 1.116i 

(-1,0) 0.625 ± 0.864 

(-4,0) -2.677 
2.802 

dxlctt(x,y,a,b)=-y 
dy/dt(x,y ,a,b )=(x"4+4xA3-xA2-4x+y)/8 

a=O.OOOOOOO 

b=O.OOOOOOO 

Eigenvectors 

( -0.839, -0.543) 
(0.839, -0.648) 

(-0.05 ± 0.893i, 1) 

(-0.08 ± 1.152i, 1) 

( -0.350, -0.937) 
(0.336, -0.942) 

x 

4 
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8.1#5. (i) The Jacobian matrix J is 

( 2 - 12x2 - 4y2 
-3sin(x - 2y) - 3xcos(x - 2y) - 4xy 

cosy - 8xy ) 
cosy + 6xcos(x - 2y) - 2X2 - 6y2 . 

At the singular point (0,0), J = (~ ~), with eigenvalue .A = 1,2. 

Therefore (0,0) is a node source. 

The differential 
equation in the 
range 

-4 < x < 4 2 

-4 < Y <4 

The same differential 
equation in the range 

-.1 < x < .1 0.1 

-.I < Y <.I 

The linearization 
of the differential 
equation near (0,0) 

y 

2 

·0.1' 

0.1 
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8.1#9. (a) The singularities of {x; = Y 2 2 1 are at (1,0) and (-1,0). 
y = -x +y + 

( 0 1) (0 1). J = -2x 2y . Therefore, J(l,O) = -2 0 IS a center. 

J( -1,0) = (~ ~), so (-1,0) is a saddle, with Al = y'2, Ul = ( ~); 

A2 = -y'2, U2 = (_~). 
We can conclude that (-1,0) is a saddle of the nonlinear system, but we 

cannot tell from this linearization what happens at (1,0). 
(b) The only vertical isocline is y = 0, i.e., the x-axis. The horizontal 

isoclines are the two branches of the hyperbola x 2 - y2 = 1. The line 

(:) = ( ~1 ) + T ( ~) is the line through the saddle point (-1,0), in 

the direction of the unstable manifold. 

3 

y 

3 

-3 

.. -
(u(O),-v(O)) 

x 

3 

~" 
/ 
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Along this line x' =y = Y2r,y' = _X2+y2+1 = -(-1+r)2+{Y2r)2+1 = 
r{r + 2). Therefore, ~ = {r + 2)/Y2. 

(c) If (x, y) = (u(t), v(t)) is a solution, then u'{t) = v{t), v'{t) = -u2(t)+ 
v2{t) + 1. Let (e,.,,) = (u{ -t), -v{ -t)). Then ~ = - du~~t) = -v{ -t) = ." 
~d . 

d." = _ (_ dV) = -u2{-t) +v2(-t) + 1 = -e +.,,2 = 1 
dt dt 

so (e,.,,) is also a solution. Using this symmetry, it is clear that the trajec­
tory through (u{O), v{O» in the first quadr~t has a symmetric part through 
(u{O), -v{O)) ~d these two pieces form a periodic tmjectory, with vertical 
slope on the x-axis. 

(d) 

, , 

3 3 

, , 
, 

~----------------------~--~------------.----~-

dxldt(x,y ,a,b )=y a=O.OOOOOOO 
dy/dt(x,y ,a,b )=-x"2+Y"2+ 1 b=O.OOOOOOO 

Solutions for Exercises 8.2-8.3 

( x)' (-x-Xy) dy y-x2 
8.2-8.3#2. Let = 2 ~d dx = = f{x, y). y y-x -x-xy 

( -1- y -x) 2 (a) J = -2x 1 . Critical points are where y = x ~d -x -

x(x2) = 0 or -x{1 + x2) = O. Therefore, (0,0) is the only equilibrium. 
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J(O,O) = (~1 ~), so (0,0) is a saddle. The eigenvectors are along the 

x- and y-axes. 

1 Y 

x 
1 

To show that W defines a funnel for dy/dx = (y - x2)/( -x - xy), we 
need to show that the vector field for the differential equation enters W 
along y = ±x2 • On the curve y = x 2 , 

dy x 2 - x 2 
= == o. 

dx -x - x 3 

For uniqueness, we need a narrowing antifunnel with ~ > 0 inside the 
antifunnel. 

Certainly, y = x2 and y = _x2, for x > 0, narrow to 0 as x -t 0 (starting 
from x > 0). 

~(f(x, y» = ~ ( y - x2 ) = (-x - xy)(I) - (y - x 2)( -x) 
8y 8y -x - xy (x + xy)2 

-x - x 3 -(x + x 3 ) 
= -;------;:-:;-

(x + xy)2 (x + xy)2 . 

Since we are reversing x (the time variable) this will make ~ (x, y) > 0 
inside the antifunnel. 

(c) From part (b), one can conclude that there exist exactly two bounded 
solutions of the system (i), which both approach 0 as t -t OJ all other 
solutions must tend to ±oo. 
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8.2-8.3#3. There exists a basis WI,"" wn of IRn such that 

al -bl 1::13 

b l al 1::23 

a2 

b 2 

A= 

0 

where 

[a, bl 

D= 

and 

1::14 

1::24 
-b2 

a2 

-bl 

al 

0 

I:: In 

-bn 
=D+E 

an 

bn an 

>'2k+1 

An 

:1 pseudo-diagonal 

upper triangular, every term having 
absolute value < 1::. 

Then Ax·x = (D+ E)x· x = Dx· x+ Ex ·x. 

alXI - b l X 2 Xl 

blXl + alx2 X2 

a2x3 - b2X 4 X3 

b2X3 + a2 X 4 X4 

Dx·x= 

A2k+I X 2n+1 X2k+l 

AnXn Xn 

= (alX~ - blXIX2 + blXlX2 + aIX~) + (a2X~ - b2X3X4 + b2X3X4 + a2X~) 
+ ... + A2k+1X~k+1 + ... + AnX~ 

= al(X~ + X~) + a2(X~ + X~) + ... + >'2k+1X~k+1 + ... + AnX~ 
::; Allxl1 2 where A = max (Real part of eigenvalues of A) 
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II Ell = ~ e~. < v'n2e2 = ne. ~ ']-

Therefore, Ax· x:5 (A + ne)lIxIl2. 

8.2-8.3#9. If 

{
X' = -ax + P(x,y) 
y' = -ay + Q(x, y) 
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with a > 0 then (0,0) is a node sink and we know that for IIxli < p, 
IIx(t)1I2 :5 IIx(0)1I 2e-c1t for some constant Cl > O. 

In polar coordinates, x = rcos8, y = rsin8, 8 = tan-1(y/x) and 

d8 xy'-x'y x(-ay + Q(x,y» -y(-ax+P(x,y)) 
= = 

dt x2 +y2 x2 +y2 
r cos 8Q(r cos 8, r sin 8) - r sin 8(P(r cos 8, r sin 8» 

= r2 
cos 8Q(r cos 8, r sin 8) - sin 8P(r cos 8, r sin 8) 

=--~~--~----~----~--~~--~ 
r 

Since P and Q start with quadratic terms, for r small enough 

P(rcos 8, r sin 8) < r2(Mt + el(r» } 
Q(r cos 8, r sin 8) < r2(M2 +e2(r)) 

where ei(r) --t 0 as r --t 0 
if i = 1,2. 

Therefore, I ~~ I :5 k;2 = kr :5 kllxolle-c1t/ 2 for small enough r, where k is 
a constant. 

Thus the solutions do not spiral infinitely as (x, y) --t (0,0). 

8.2-8.3#11. Let JLX = P(x,y), where P is a quadratic or higher-order 
form. Then the Implicit Function Theorem shows that this defines a curve 
x = x(y) passing through x = 0 at y = O. The derivative ~ can be obtained 
by implicit differentiation with respect to y: 

dx d fJp dx fJP 
JL dy = dy (P(x, y» = fJx dy + fJy 

dx fJP/fJy 
dy = JL - (fJP/fJx)' 
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Since P(x, y) = ax2 + f3xy + 'Yy2 + ... 
oP 
ox = 2ax + f3y + ... 

is 0 at x = y = O. Similarly, ~~ 1(0,0) = O. Therefore, 

dxl = _0_ =0. 
dy (0,0) J1- - 0 

This says the function x(y) is tangent to the y-axis. To show x(y) is twice 
differentiable at (0,0): 

d2x d (dX ) 
J1- dy2 = dy Px dy + Py 

d2x dx d d 
= Px dy2 + dy . dy (Px) + dy (Py) 

d2x dx (dY dX) (dY dX) = Px dy2 + dy Pxy dy + Pxx dy + Pyy dy + Pyx dy 

d2x Pyy + 2Pyx~ + Pxx(~)2 
dy2 '" - Px 

which is also defined since J1- - Px(x, y) = J1- =1= 0 at (0,0). 

Solutions for Exercises 8.4 

8.4#3. Changing to polar coordinates: 

{ 
r:: ~(xx' +yy') ~ ~(x' +y')r',;" (:,) ~ hin (:,) ~ i(r) 

() --1. 



Answers to Selected Problems 

The equation in r(t) has equilibria at ~ = mr, n any positive integer. 

J'(r) = 5r4 sin (:2) + r5 . cos (r12 ) . ~; 

= r2 [5r2 sin (r12 ) - 2 cos (r12 ) ] . 

At the points ~ = mr, sin ~ = 0 and 

J'( ) 2 2 ( ) {Positive if n odd r = - r cos n7!" = .. 
negative If n even 
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Therefore, 'Y = vk:, vh-, ... are stable equilibrium points and J:;r, .An:, ... 
are unstable. 

The system of equations will have infinitely many limit cycles which are 
circles of radius h, where those with n even will be stable limit cycles, 

v n ". 
those with n odd will be unstable. 

Solutions for Exercises 8.5 

8.5#1. Assume J: [a, b] --+ [a, b] is continuous. Let g(x) = J(x) - x. If 
J(a) = a we are done, otherwise J(a) > a. If J(b) = b we are done, 
otherwise J(b) < b. 

Assuming J(a) > a and J(b) < b, the function g(x) is continuous on [a, b] 
and satisfies g(a) = J(a) - a > 0 and g(b) = J(b) - b < O. Therefore, by 
the Intermediate Value Theorem, 9 must take on the value 0 at some x*, 
a < x* < b. That is, g(x*) = J(x*) - x* = 0 which proves that x* is a fixed 
point for J. 
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y 

b 

f(a) 

a 

a 
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x* b x 

8.5#4. Let the vector field be given by 

dy = -x + (1 - x 2 )y = (1 _ x 2 ) _ ::. 

dx y y 

Since there is symmetry, we can consider one half of the annulus as shown 
in the drawing. 

Around the circle, the vector field will point into the region if (x, y) . 

(~~, ~) ~ 0. 

( ) ( dx dy ) ( 2 2 2 x,Y· dt'dt =xy+y(-x- x -l)y)=-(x -l)y. 

If Ixl < 1, this is positive except where y = 0. Let Cc be the circle of radius 
1- c. At (1 - 10,0) and (-1 + 10,0) the vector field is vertical, but it does 
point into the annulus. Let a1 (t) be y = 2x + 2i, - ~ S; x S; 1. Along this 
line the slope of the vector field is 1 - x 2 - 2x+(~1/5) < 2 for - ~ S; x S; l. 
Along the horizontal line from x = 1 to x = 2, the vector field points in 
the negative y-direction. 

Let a2 be a line of slope -3. Then a2: Y = -3x + 651, and for 2 < x < 
4.0666, the slope of the vector field along a2 is < -3, and tends to -00 as 
y --+ 0. 

Then if a3 is a line with very large negative slope from (4.066 ... ,0) to 
a point on the O-isocline y = 1~x2' the vector field will be entering on 0:3 

and also on the O-isocline (which has positive slope). The annulus can then 
be completed by symmetry. 
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y=2Xf-21/5 

y=-3x+61/5 

m=O 

-7 
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Solutions to Exercises 8.6 

8.6#1. (a) 

x' = x - y 

y' = X 2 _ Y 

y = x is the vertical isocline 

y = x 2 is the horizontal isocline 

J = (2~ =~) 
(b) The equilibria are (0,0) and (1,1). 

At (0,0), J = (~ =~) shows a saddle with eigenvalues and vectors 

A=l A=-l 

At (1,1), J = (; =~). with trace J = 0 and detJ = 1 (a center for 

the linear system). 
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The equation is exact: 

V'" VII 
dy x2 -y 

= 
dx x-y 
~ ------so _(X2 - y) dx + (x - y) dy = 0, 

which integrates to V(x,y) = xy-f-"'; = C. This can be solved explicitly 

by writing as a quadratic in y: f - xy + (C + "';) = 0 

y = x ± J x 2 - 2(c + ~) 

y~x (l± x' - !~'-2C ~ x (l± V1 - ~X-2:,) (*) 

For C = 0, y = x (1 ± Jl - ~x) describes both the stable and unstable 

manifolds for the saddle point (0,0). 
(c) Level curves of (*) with 0 < c < 1 define the cycles about (1,1), 

within the homoclinic separatrix. 

8.6#3. Let u' = Au be the linearization of x' = f(x) at a zero Xo. Then 
the matrix 

~ ... ~) !lh. 
8"'2 

!!b. 
8"'n (X=Xo) 

is the Jacobian evaluated at the singularity Xo. Therefore, trace(A) = 
L:~=l ~ IXo = div f(Xo). 

Suppose a vector field x' = f(x) has a source or sink at Xo. Then it has 
been shown that the eigenvalues of A must have all positive real parts (or 
all negative real parts). Trace(A) = L:~=l Ai = L:~=l R(Ad (since complex 
Ai come in conjugate pairs). Therefore, trace(A) will be strictly positive (or 
strictly negative) at Xo. But this would say div f(Xo) =1= 0, and therefore the 
differential equation is not area preserving. If the field is area preserving, 
div f(x) = 0 at every point x. Thus any singularities cannot be sinks or 
sources. 
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Solutions for Exercises 8.7 

8.7#2. The function f(x,y,z) = px2 + ay2 + a(z - 2p)2 = a defines a 
family of concentric ellipsoids with center at (0,0, 2p). 

(O,..JaiG,O) 

(a) The region is clearly bounded by -If, ~ x ~ If" -~ ~ y ~ ~ 
and 2p - ~ ~ z ~ 2p + ~. 

(b) Along a trajectory of 

Therefore 

{
X' = a(y - x) df of dx of dy of dz 
y' = px - y - xz , dt = ox dt + {)y dt + oz dt· 
z' = -(3z+xy 

df 
dt = 2pax(y - x) + 2ay(px - y - xz) + 2a(z - 2p)( -(3z + xy) 

= -2a[px2 + y2 + (3z2 - 2p{3z]. 

(c) If there exists a number a such that everywhere, outside of the surface 
f(x, y, z) = a, i < 0, then all trajectories must enter the ellipsoid. No 
trajectory can exit it, since this would imply f was increasing at the point 
of exit, i.e., * > o. 

To make * < 0, we need px2+y2+{3z2_2p{3z > O. This defines another 
ellipsoid E: px2 + y2 + {3(z - p)2 = (3p2. If a can be chosen so E is interior 
to f(x, y, z) = a, we are done. 

Since E is centered at (0,0, p), it is only necessary to choose a so that 
the cross-section of E at z = p is inside the cross-section of f = a at z = p, 
and 2p - ~ < 0 (on the ellipse E, 0 < z < 2p). 
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!(X.Y." = a 

x 

At z = p, f(x, y, p) = px2 + uy2 + up2 = a is the two-dimensional ellipse 
px2 +uy2 = a-up2. Therefore, a must satisfy {3p2 < a_;p2 and {3p < a_;p2 
and a > 4up2, i.e., a> max(u({3 + 1)p2, ({3 + u)p2, 4up2) will satisfy all of 
the requirements. 
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Solutions for Exercises 8.8 

8.8#1. (a) The phase portraits show the following: 

a critical points det trace 

-6 -0.3542 5.2916 -0.2916 spiral sink 
-5.6457 -5.2916 10.2916 saddle 

-4.5 -0.5 3.5 0 center 
-4 -3.5 7 saddle 

-3.5 -0.7192 2.0616 0.4384 spiral source 
-2.7808 -2.0616 4.5616 saddle 

0 no critical points 

3.5 2.7808 2.0616 -6.5616 node sink 
+0.7192 -2.0616 -2.4384 saddle 

10 9.7958 9.5917 -20.5917 node sink 
0.2042 -9.5917 -1.4083 saddle 

x 

10 

·10 saddle 

spiral sinks 10 a 

·10 
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dx/dt = y-xA2 
- - - -

dy/dt = a*x-2-y 
-20 < X < 15 
-10 < Y < 100 

a=-3.5 

a=-6 

a=3.5 a=10 
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Solutions for Exercises 9.1 

9.1#2. (c) To find saddle-node bifurcations, write equations (i) and (ii) 
for the equilibria and (iii), which says det J = O. 

(i) y - x 3 + xy = 0 

(ii) 4x - y - a = 0 

(iii) 3x2 - y - 4 - 4x = 0 

J _ (-3x2 + y 1 + x) 
- 4 -1 

From (iii), y = 3x2 - 4x - 4. Inserting this into (i) gives 

(iv) 2x3 - x 2 - 8x - 4 = 0, which gives x-values of the equilibria. 

There are three real roots of (iv), x = 2.45819, -0.59828, and -1.35991. 
The following table gives the corresponding bifurcation values of a. 

x y = 3x2 - 4x - 4 a = 4x - y 
2.458 4.295 5.537 

-0.598 -0.533 -1.860 
-1.360 6.988 -12.427 

Using intermediate values a = 10, 0, -10, -20, the equilibria for each 
of these values of a are found from the equation (ii), which becomes x3 -

4x2 + (a - 4)x + a = O. 

equilibria 3x2 - y - 4 - 4a y - 3x2 -1 
a x y=4x-a detJ trace J 

10 -0.940 -13.76 16.17 -17.41 sink 

-0.828 -3.314 4.686 -6.373 sink 
0 0 0 -4 -1 saddle 

4.828 19.314 27.314 -51.628 sink 

-10 6.422 35.69 58.36 -89.05 sink 

-2.456 10.175 13.747 -8.922 sink 
-20 -1.080 15.678 -11.854 11.176 saddle 

7.537 50.146 86.107 -121.25 sink 
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For each value of a, the equilibrium points are the intersection of the two 
curves (i) y = lx:.z and (ii) y = 4x - a. Note that each bifurcation value 

of a produces a line y = 4x - a that is tangent to the curve y = lx:.z at a 
different point. 

{X' = a - x2 (-2X 0) 9.1#5. Let y' = _y . J = ° -1' and the system undergoes 

a saddle-node bifurcation when a = 0, at (x,y) = (0,0). 
For a = 0, the equations can be solved: 

J dx 1 Xo 
_X2 = dt => x(t) = t + (l/xo) = 1 + xot 

and 
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4 

y=o 
exceptional solution 

y 

-4 

x 

4 

a=O 

These curves give a classical picture of the ponytail, with y == 0 defining 
both the exceptional solution and the special hair in the ponytail. 

{
X' = 1- x2 

For a = 1, the equations I can also be solved analytically. 
y =-y 

Let y = yoe-t , and solve for et = ~ as follows: f 1~~2 = f dt gives 

In (I !tl. I) = 2t + C or 1!tl.1 = ae2t = a~. 1-", , 1-", tr 

Co FI-xi 11+xol y(t) = yoyay I~I where a = 1- Xo . 
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There is a saddle at (-1,0), with J(-I,O) = (~ ~1) and a node sink 

at (1,0). For Xo == ±1, x' = 0 and y decreases if Yo > 0 and increases if 
Yo < O. If Yo = 0, the trajectory moves along the x-axis as shown by the 
arrows. All other trajectories are given by (*). 

For 0: = -1, tan- 1 x = -t + C, so t = tan-1 Xo - tan-1 x and 

(**) 

x 

4 

There are no equilibria; y == 0 is still a solution; the other trajectories all 
lie along the curves (**). 

9.1#12. Let 

dy -y + q20x2 + ql1XY + ... - = G(x, y) = -----:::--~­
dx Pl1XY + P02y2 + P30X3 + ... 

and assume q20Pl1 + P30 =J O. 

g(x,y) 

I(x,y) 

(a) If UAt.A2 = {(x,y) I q20x2 +AIX3 < y < q20x2 +A2x3}, for Al < A2, 
then in U Ai ,A2 : 

I(x, y) = Pl1X(q20x2 + Ax3) + P02(Q2ox2 + AX3)2 + P30x3 + ... 
= (PllQ20 + P30)X3 + O(X4) Al :s; A :s; A2 

so for x small enough, I(x, y) = (Pl1Q20 + P30 + c(x))x3 =J O. 
(b) Along any curve of the form y = ,(x) = Q20x2 + Ax3, 

G(x ,(x)) _ -(Q20x2 + Ax3) + Q20x2 + Ql1 X(Q2ox2 + Ax3) + ... 
, - Pl1X(Q2ox2 + Ax3) + P02(Q2ox2 + Ax3)2 + P30x3 + O(x4) 

= X3(Ql1Q20 - A) + O(x4) = Q1lQ20 - A + O(x) 
X3(pUQ20 + P30) + O(X4) PllQ20 + P30 . 
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Therefore for small enough x, G{x,'Y{x» has the sign of Ql1920;A • 
Pl1Q20 P30 

Assume C = q20Pll + P30 > o. 
If Al < Qllq20 < A2 and a{x) = Q20x2 + AlX3 and {3{x) = Q20x2 + A2x3, 

then for x small enough, G{x, a{x)) > 0, G{x, {3{x)) < 0 and a' and {3' 
can be made as close to 0 as necessary by taking x small. This defines a 
backward anti funnel. 

If C < 0, it is a backward funnel. 

(c) To show a unique solution in the antifunnel, note first that it narrows 
to o. 

f2{X, y) . : = (puxy + P02y2 + P30x3 + ... )( -1 + Qux) 

- {-y + Q20x2 + QllXY + .. ·)(pux + 2po2y + 3P30x2 + ... ) 
= -(p30 + Q20PU)X3 + O{x4). 

Therefore, if C < 0 and x is small enough, 8G / 8y ~ O. This proves there 
exists a unique solution staying in the antifunnel as x -+ o. 
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Solutions for Exercises 9.2 

9.2#2. (a) There will be a Hopf bifurcation for the system 

{
X,=y-x3 +xy 

y'=4x-y-a 

at values of a where: 

(i) y - x3 - xy = 0 } 
==> (x, y) is an equilibrium point 

(ii) 4x - y - a = 0 

(iii) -3x2 + y - 1 = 0 ==> trace(J) = O. 

Solving (i) for y = x 3 /(1 + x) and substituting into (iii) gives a cubic 
equation for x: 

2x3 +3x2 +x+ 1 = 0 

which has only one root x = -1.39816. For this value of x, y = x3 / (1 +x) = 
6.86456 and a = 4x - Y = -12.457. Therefore, there is only one Hopf 
bifurcation, at a = -12.457. 

(b) Putting this together with the results of Exercise 9.1#2(c) gives the 
following bifurcation diagram: 

Hopi saddle-node saddle-node saddle-node 

sink sink sink 

saddle saddle ~ 
sink t 

..... source sink 
(l 

-12.457 -12.427 -1.86 5.537 

{ X' = (1 + a)x - 2y + x2 
9.2#1. (a) The system , has Jacobian matrix y =x-y 

J ( 1 + a + 2x - 2 ) Th ... ·l·b . J: I f = 1 -1· e OrIgm IS an eqUl 1 rlUm lor any va ue 0 a. 

(1 -2) If a = 0, J(O, 0) = 1 -1 has trace 0, so (0,0) is a center. 

(b) To bring the matrix to the desired form, we need to find the eigen­
values and eigenvectors of A where 

( x)' = (1 -2) (x) + (X2) = Ax+ (f(X,y)). 
y 1 -1 Y 0 g(x,y) 
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( 1- A 
det(A - AI) = det 1 -2) 2 . -I-A =A +1=O~A=±z. 

The eigenvector for i is w = (1 ~ i) = (~) + i (~). So let P 

(~ ~), with p-l = (~ !1)' Make the linear change of variables 

( :) = p ( ~ ), (~) = p-l (:) = (x ~ y). Then 

u' = y' = X - Y = v 

Vi = x' - y' = (x - 2y + x 2) - (x - y) = -y + x 2 = -u + (u + V)2 

( U ) I (0 1) (u) + ( 0 ) . { u' = V 
V = -1 0 v (u + v)2 j l.e., Vi = -u + u 2 + 2uv + v 2 

V20 = 1, Vll = 2, V02 = 1, all other coefficients = O. Therefore, the Liapunov 
coefficient is 

L = VllV02 + VllV20 = 2(1) + 2(1) = 4> O. 

By Theorem 9.2.3, if L > 0 the equation will have an unstable limit cycle 
for all values of Q near Q = 0 for which the zero is a sink. If Q = ~, 

_ (3/2 -2) ( ) ( ). f _ 1 ( )_ J - 1 -1 at 0, 0 ,so 0, 0 IS a source. I Q - - 2' J 0, 0 -

(1{2 =~) so (0,0) is a sink. Therefore, you would expect to find unstable 

limit cycles for small negative values of Q. 
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Solutions for Exercises 9.3 

9.3#4. 

=-0.24 

=-0.28 

x' = y - x + axy - 0.4 

y' = 0.8y - X 3 + 3x 

4. 

a=-0.26 

a=-O.30 

(a) The homoclinic saddle connection occurs between a =- 0.26 and 
a = -0.28. 

4. 



582 Answers to Selected Problems 

(b) The global behavior illustrated by the computer pictures follows this 
pattern: 

a =- 0.26 a* at bifurcation 

The limit cycle is for the a-value < a*. 

Solutions for Exercises 9.4 

9.4#1. (c) For 

x' = ax + y + (3(x2 + y2) 

y'=X+y2+ y3 

a = - 0.28 

we find the following phase plane and parameter picture. 

0448 
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dxIdt(x,y,a,b)=ax+y+b(xI\2+yI\2) 
dy/dt(x,y ,a,b )=x+yI\2+Y"3 

a=0.2954417 

b=1.4124448 

.54631 

583 

x 

-1.2064 

Inside the dark band between two limit cycles is a spiral source at (-0.145, 
-0.721), as can be confirmed by evaluating the trace (::::i .00298) and de­
terminant (::::i 1.023) of the Jacobian matrix there. 

9.4#2. One possible way to perturb the equations is 

x' = y + xy2 + a + fix 
y' = -x + xy _ y2. 

The phase plane shows a dark annulus composed of a trajectory between 
two limit cycles-the outer one is attracting, the inner one is repelling 
(toward a spiral sink at the center). 
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b 1 

2 limit cycles 1 limit cycle 

• 

The accompanying figure shows the location of the parameter point (a, {3) = 
(0.0657, -0.1391) in the parameter plane, along with various bifurcation 
loci. In this case, we found the proper place to look for the semi-stable 
limit cycle locus after finding a limit cycle on the ''wrong'' side of the Hopf 
bifurcation. 

trajectory spiralling out 

trajectory spiraling In (to sink) 

-2.7_7 
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Solutions for Exercises 9.5 

9.5#3. (a) 

{
X1 =Y-X3 +3X 

y' =x+o _ y2 

585 

has singularities where the vertical isocline y = x3 - 3x and the horizontal 
isocline x = y2 - 0 intersect. 

(i) The graph of y = x3 - 3x is independent of o. The parabola x = y2 - 0 

is shown for several values of o. 

5.0 

y 

-5.0 

y = x3-3x 

a =5 

a = 2 

a =0 

a = -2 

a = -1 

a = 1 

a=3 
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a number of zeros 
-2 0 

-J3 1 
-1 2 
0 3 
1 4 

J3 5 
2 6 
3 5 
4 4 
5 3 
6 2 

(ii) Saddle node bifurcations occur where the two isoclines have a point 
of tangency, i.e., at a = -J3, 0, J3, 3 and 5. 

(iii) No saddle connections occur. 

(iv) For a Hopf bifurcation to occur, the trace (-3X2 + 3 1) = 
1 -2y 

3(1 - x2) - 2y must be 0, and det J = 2y(3x2 - 3) - 1 > 0 at a critical 
point (xo, Yo). Using the above equations for Xo and Yo, Xo would have to 
be a root of x 3 + ~X2 - 3x - ~ = o. At each of the three roots, det J < O. 
Therefore, no Hopf bifurcations occur. 

(b) If the formulas for x' and y' are interchanged, so that 

{
X' =x+a _ y2 
y'=y-x3 +3x 

(i), (ii) the intersection of the horizontal and vertical isoclines are exactly 
the same as in #3(a), so number of zeros and saddle node bifurcations 
do not change. However, the phase portrait does change. The trace and 

determinant of J = (3 _13x2 -;y) are entirely different. Det J = 1 + 
2y(3 - 3x2) and trace J = 2. 

(iii) Saddle connections occur at a = 2.37765,3.02866,0.4527. 
(iv) Because the tr J == 2, there can be no Hopf bifurcations. 

Solutions for Exercises 9.6 

9.6#8. (a) The Euler equation x" + TX' + .g.x = 0, t > 0, can be solved 
analytically by making the change of independent variable eU = t. Letting 
y(u) = x(t), the equation becomes 

y"(u) + (a - l)y'(u) + (3y(u) = O. 
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The characteristic polynomial for this constant coefficient equation is r2 + 
(0: - 1)r + (3 = 0, which has roots 

(1 - 0:) ± V(1 - 0:)2 - 4(3 
r= 2 . 

The general solutions for the three cases, in terms of x(t) are: 

(i) x(t) = cltr1 + C2tr2 

(ii) x(t) = Cltr + C2tr In t 

(iii) x(t) = tA(Cl cos (J.dn t) + C2 sin(JL In t)) 

(the complex roots r = A ± JLi). 

if 4(3 < (0: - 1)2 

if 4(3 = (0: - 1)2 

if 4(3 > (0: - 1)2. 

(b) Using this information and the fact that (3 = product of roots, 0: - 1 
= sum of roots and A = 12"", the following bifurcation diagram can be 
drawn to show the dimension of the space of solutions that tend to 0 as 
t --+ 0: 

(c) If (3 = 0, there will be a one-parameter family of constant solutions. 
(If 0: = 1 and (3 > 0, the solutions will oscillate infinitely as t --+ 0.) 
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9.6#12. 

~2:J ~':J 
~';J r ' ~ .. ~I. Connections ,', 

1 0 

~2:J ~':J 



Index 

A 
Abato, Michael ix 
acceleration 23 
addition 

of matrix exponentials 87 
of vectors 501 

adjoint linear transformation 404 
affine space 78 
algorithm 369 

Gram-Schmidt 407 
Hessenberg 471 
Jacobi's 473 
product rotation 469 
QR 471-472 

Allen, Richard C., Jr. 521 
Andronov, A.A. 203, 245, 247, 288 
Andronov-Hopfbifurcation 266,270, 

288-298, 315, 319 
angular momentum 38-40, 43, 44, 

46,47,63 
annihilation of equilibria 271, 324 
annulus form ofPoincare-Bendixson 

Theorem 162-167, 197 
use of 309 

Anosov's theorem 181 
antifunnel theorem 515 
antifunnels 151-155,157-159,192-

194, 198, 284, 285, 347, 
355, 363, 512 

anti-Hermitian matrices 90 
anti-Hermitian operator 416 
anti-Hermitian transformation 414, 

415,450,451,504,509 
antisymmetric matrices 90-91 
antisymmetric transformation 414, 

450, 504, 505, 509 
antisymmetry for determinant 425, 

428, 506 
approximation 12-14, 54-55 
arclength 181 

area dilation and contraction 165, 
170-172 

area-preserving 168, 170-174, 197-
199 

Arnold, V.I. 521 
Artigue, Michele ix, 521 
associated homogeneous equations 

74,76 
associativity 

for vector space 384 
of matrix multiplication 395 

astronomy 41 
asymptotic development 222 
attracting cycles 177 
attracting fixed point 177 
attracting limit cycle 160-161 
attracting saddle connection 303, 

304 
Australia 22 
autonomous 2, 7, 15, 49, 131, 142 

B 
Back, Allen ix, 328-329 
Bailey, Graeme x 
Baranova, Yelena ix 
Barber, Frederick ix 
basin 139, 141, 187, 190, 195 

boundary 203 
basis 80, 104, 117, 369, 387, 388, 

406, 486, 501 
for image 398-400 
for kernel 399-400 
for linear transformations 395 
independence 397,433-434,502, 

507 
bead on wire 34-35, 62-63 
behavior vii 
Bekele, Fassil ix 
Bendixson, I. 162 



590 Index 

Bernoulli equation 207 
Bezout's theorem 455-456,487,496, 

509 
bifurcation vii, 125-126, 265 

summary 270 
bifurcation diagram 267-269, 327 
bijective correspondence 505 
Birkhoff, Garrett 91 
Birkhoff, George 91, 245, 521 
Blanchard, Paul ix 
Borrelli, Robert 521 
Bott, Raoul 245, 246 
boundary conditions 15-17 
bounds, on slope error 518 
Boyce, William E. 521 
Brahe, Tycho 41 
Branner, Bodil ix 
Brown, Daniel ix 

C 
calculus of variations 245 
Campbell, Douglas ix 
Cantor set 181,236, 262 
capacitance 71-72 
capsule 317-319,327,339,343,358-

359 
cardboard model of Lorenz equa-

tion 176-177 
cat flow 48 
center of mass 42, 47 
centers 94-95, 106, 142, 144, 191, 

193, 199 
central force 38-40, 65 
change of basis 80-83, 396, 502 

in matrix exponentials 89 
matrix for 446 

change of variables 138 
chaos 132, 199-200, 203, 236-237 

in higher dimensions 174-181 
characteristic equation 73, 100 
characteristic polynomial 84-85, 118, 

121, 433-435, 443, 452-
457, 493, 495 

in summary 502, 507, 508, 509 

chemistry 451 
Christensen, Marc ix 
circuit, electrical 71-72 
classical mechanics 451 
coalescence 

of three limit cycles 322, 334 
of two limit cycles 309-314 

cobasin 139, 141, 187, 190 
codimension 183-184, 320, 365 
Coleman, Courtney 521 
column operations 425-427, 429-

431,506 
combat model 57-58 
commutativity for vector space 384 
companion matrix 434-435,493 
competition 56-57 
complement, orthogonal 409-411, 

504 
complex basis 142 
complex eigenvalues 93-95, 200 

and eigenvectors 83-84, 442 
complex inner product 403 
composition of linear transforma­

tions 395, 502 
computation 369 
computer program for determinant 

425-427 
configuration space 23 
conic sections 476 
conjugacy of flows 206, 229, 259 
conjugate-symmetric property for 

inner products 403 
conservation laws 37-40, 42, 43, 

47, 63-65, 529-531 
constant coefficients 69-129 
continuous functions for vector space 

385, 391, 403, 416 
continuously differentiable function 

512 
contraction 165, 170-172 
control parameter 292, 301 
convergence of matrix exponen-

tials 87 
cookbook method 73, 114, 119 
Copernicus 41 



creation of equilibria 324 
curvature 181 
cusp in parameter plane 332-334 
cycle 22-23, 159, 177-180, 200 

at infinity 342 
cylinder 

D 

for labyrinth 262-263 
for mapping differential equa­

tion 314 

d'Ancona, Umberto 17-23 
damped harmonic oscillator 147 
damped oscillator 161 
damped pendulum 134-135 
damping 70-71 
DDT 22 
decomposition 

of]Rn 490 
of quadratic forms 419-422, 

505 
decoupling 79-83, 115-118, 361 
definitions, from Parts I and III 

511-519 
degenerate bifurcation 320-334 
degenerate cases 98, 106, 138, 183-

184 
of Jacobi's method 480-481 

degenerate limit cycle 266, 267 
degenerate saddle connections 341 
degenerate saddle-node 288,367 
degrees of freedom 29, 109 
density theorem 252-258 
determinant 369, 424-440, 493, 502, 

506-508 
as product of eigenvalues 442 
development according to first 

row 425-427 
diagonal matrix 86 
diagonal section 219 
diagonalizability 369, 453 
diagonalizable matrices 102, 104, 

542-545 
diagonalization 444, 508 

Index 591 

Dieudonne, Jean 521 
differentiability of flow 210-213 
differentiable conjugacy 206-207, 

259-260 
differentiable functions for vector 

space 385, 416, 441 
differential operator 79, 392, 441, 

486 
for vector space 502 

differentiation of matrix exponen­
tials 88-89 

dilation 165, 170-172 
dimension 25-26,369,503 

formula 399-400 
of vector space 389, 391 

DiPrima, R.C. 521 
discriminant 332, 365 

for inner product 405 
dissipative 199 
distributivity for vector space 384 
divergence 165, 171, 198 
dot product 372 
Douady, Adrien ix, 218, 221 
Douady, proof of theorem 220-223 
double eigenvalue 96-98 
double pony tail 321, 333 
double saddle connection 322 
driven oscillator 161 
driving force 161 
driving functions 106-110 
dynamical plane 6 
dynamical systems 369 

section mapping 228-229 

E 
Earle, Clifford ix 
echelon form 375-376, 482, 500 
eigenbasis 80-81, 117, 156, 444 
eigendirections 150 
Eigenfinder program 459, 461, 468 
eigenflag 465-466 
eigenfunctions 441 
eigenvalue 

double 96-98 



592 Index 

zero 98, 106, 320, 321 
eigenvalues vii, 79, 187-189, 369, 

370, 440-482 
and eigenvectors 494-499,508-

509 
and global behavior 101-106, 

124-126 
and signatures 481-482, 505 
by Jacobi's method 472-482 
by QR 457-472 
complex 83-84, 93-95, 200 
finding 84-85 
imaginary 106, 137-138 
real 92 

eigenvector, generalized 446 
eigenvectors vii, 79-83, 187-189, 

369, 370, 440-481 
and decoupling 79-83,115-118 
computing matrix exponen-

tials 90 
electrical circuit 71-72 
ellipsoid 476-480 
elliptical orbits 45-47 
energy 46,47, 529-531 
engineering 451 
entomology 22 
equations of motion 1 
equilibrium 8, 19-21,31, 133, 137, 

141 
error 13 

slope 518 
essential size 36-40, 63 
Euclidean norm 402 
Euler equation 586 
Euler's method 12-13, 54-55, 516, 

518,526 
evolution 80 
exact differential equation 172 
exceptional cases 95-98, 106 
exceptional equations 183-185 
exceptional solution 139, 154 
exceptional trajectories 347 
existence vii, 2, 14, 131 
exponentials of matrices 85-91, 118-

120 

F 
families of differential equations 

183-186, 267 
one-parameter 314-318 
two-parameter 318-343 

Felsager, BjlZlrn ix 
fence 144, 155, 511 
fence argument 308 
Fields medal 246 
finite-dimensional vector space 389, 

399-400, 501-504 
first nondegeneracy condition 279-

280,320 
first order, one-dimensional differ­

ential equation 511-519 
fishing 21-22 
fixed point, attracting or repelling 

177 
flag 462-466, 496 
flow times 219-223 
flow 

differentiability 210-213 
geodesic 181 
scattering theory 215-216 

flows 47-51, 67-68, 165, 170, 210 
conjugate 206 
continuity 51 

force 26 
central 38-40, 65 
gravitational 27 
restoring 147 

Fourier coefficients 406 
Fourier series 106, 110, 128, 406, 

416,451 
Fourier transform 106, 110-111 
fractal attractor 203 
friction 31, 147, 191 
fundamental inequality 2, 14, 75, 

212-213, 513, 525 
fundamental theorem of algebra 

442 
funnel 151-155, 163-165, 192,284, 

285, 347, 363, 511 
funnel theorem 514 



G 
gain 552 
Galileo 41 
Gautheron, Veronique ix, 521 
general solution 74-75, 127 
generalized eigenvector 446 
generator 71-72 
generic behavior 156, 178 
geodesic 181 
global behavior 139-140 

and eigenvalues 101-106, 124-
126 

global bifurcations 266, 298-314, 
315, 325-339 

Gollwitzer, Herman 522 
Gram-Schmidt orthogonalization 

370, 407, 413, 458, 467, 
468, 489, 496, 504 

grand example for bifurcation 334-
343 

graphical representation 3-11 
gravitation 42 
gravitational force 27 
group of orthogonal transforma­

tions 412, 505 
Guckenheimer, John ix, 176, 255, 

362,521 
guerilla troops 58 

H 
Hale, Jack 521 
Hamiltonian equations 172-173 
Hamiltonian function 172-173 
Hamiltonian operator 415 
harmonic oscillation 70-71, 109-

110, 128, 147 
Hermitian inner product 403 
Hermitian transformation 415, 450, 

451, 504, 509 
Hessenberg algorithm 471 
Hessenberg matrices 468-472 
heteroclinic saddle connection 184-

185, 299, 300, 318 

Index 593 

higher dimensional Hamiltonian 
equations 172 

higher dimensions, and chaos 174-
181, 199-200 

higher order differential equations 
23-26, 73-74 

higher terms of Taylor polynomial 
184 

Hill, Linda x 
Hinkle, Ben ix, 522 
Hirsch, Morris W. 521 
Holmes, Philip 176, 362, 521 
homeomorphism 204-206, 258-261 
homoclinic loop or trajectory 179, 

302, 304, 305, 353, 361 
double 322 

homoclinic saddle connection 184-
185, 299, 300, 311, 320, 
321, 325-326, 330-332 

serious explanation 303-309 
homoclinic saddle-node 286-288, 

323, 338 
homoclinic separatrix 198 
homoclinic tangle 180 
homogeneous function 418,505 
homogeneous linear equation 74, 

76,399 
homogeneous polynomial 294 
Hopfbifurcation 138,145,320,321, 

323-325,330-332,348-351 
hunting example 313-314 
in grand example 337 

horseshoes, Smale 181-182 
Hubbard, Alexander ix 
Hubbard, John H. 522 
hyperbolic cylinder 481 
hyperbolic functions 120 
hyperboloid 479-480 

I 
Icerya purchasi 22 
identities for vector space 383-384, 

501 
identity matrix 380 
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image 294,397-400,487,490,495, 
503 

imaginary eigenvalues 106,137-138, 
183 

implicit function theorem 26, 209, 
213-214, 519, 563 

indefinite quadratic form 422 
inductance 71-72 
infinite-dimensional vector space 

391, 501, 502 
infinitesimal unitary operator 416 
initial conditions 14, 15, 17, 49 
inner product 402-424, 488-493, 

503-506 
inner product space 369,402-411 
integral 

for vector space 502 
in linear transformations 392 

intersection of planes 484 
invariant subspace 369 
invariants, in capsules 236, 317, 

327 
inverse 

for vector space 384 
of a matrix 380-382, 484, 500, 

507 
of orthogonal transformation 

412 
inverse function theorem 213,307, 

519 
inverse square law 42 
invertible matrices 108, 397, 432 
irrational variables, effects of 241 
isoclines 8, 189, 315 
isomorphism 294 
iteration 236, 241 

of period mapping 227 

J 
Jacobian or linearization matrix 

137, 307 
Jacobi's Method 85, 370, 451, 472-

482, 497-499, 509 
jaggies 13-

Jones, Trey ix 
Jordan canonical form 446 

K 
Kaplansky, Irving 79, 521 
Kepler's Laws 44-47, 65-66, 72 
Kepler, Johannes 41 
kernel 294, 397-400, 440, 487,490, 

495,502 
Khibnik, Alexander 522 
kinetic energy 29 
K~ak, Huseyn 521, 522 
Kyner, Walter T. 521 

L 
labyrinth 240-242, 262 
ladybird beetles 22 
Laplace operator 415 
Laplace transform 106, 110, 128-

129 
LaSalle, J.P. 521 
leading one 375-378, 500 
leaky bucket 114-115 
Lefschetz, Solomon 521 
Levitin, V.V. 522 
Liapunov, Aleksandr Mikhailovich 

145 
Liapunov coefficient 292, 311, 321, 

328, 341, 349, 350, 360, 
580 

second 328-329 
Liapunov function 145-146, 193, 

230,293 
Liapunov test, in Hopf bifurcation 

292 
Lienard's equation 147 
limit 147 
limit cycle 

in homoclinic saddle connec­
tion 299 

in Hopf bifurcation 289-290 
in saddle-node bifurcation 286-

288 
stable or attracting 160-161 



unstable or repelling 160-161 
limit cycles 140, 141, 146, 159-

162, 165, 266 
attracting and repelling 230 
neighborhood 230-233 
semi-stable 184 196 266 270 , , , , 

309-314, 341 
structural stability of 182-183, 

224-236 
structural stability theorem 

233-236 
three coalescing 322, 334 
two 329 

limit sets 237-239, 241, 243, 262 
linear algebra 369-511 

summary 501-511 
linear approximation 131, 306 
linear attraction 183 
linear combination 78, 371 
linear differential equations vii, 69-

129 
linear equations 369-401 
linear independence 150, 369, 371, 

386, 387, 443, 484-487, 
501 

linear transformations 397-400 
of orthogonal vectors 504 

linear momentum 42,47,64-65 
linear property for inner products 

402, 403, 504 
linear transformation 78-79 294 , , 

371, 391-401, 501, 504 
inner product 411-424 

linearity 74, 78 
linearization vii, 132, 133-138, 187-

191 
Jacobean matrix 137 
of turned vector field 366 

linearly attracting limit cycle 366 
linearly independent vectors 406 
Lipschitz 213, 243 
Lipschitz condition 15 51 75 115 , , , , 

512-516, 519, 538 
Lipschitz constant 512 , 539 
Livesay, G.R. ix 
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local behavior 133-138 
local bifurcations 266 
Lorenz attractor 10, 11, 194, 240, 

242 
Lorenz equation 174-177, 199-200 
Lorenz, Edward N. 10, 11, 521 
lower-triangular matrix 431 
Luo, Jaiqi ix 

M 
MacMath 459 
Malo, Salvador 230 
Maple, use of CAS 328-329 
Marcham, Anne x 
Marsden, Jerrold 521 
matrices 73, 372 

diagonalizable 102, 104 
exponentiating 85-91, 118-120 
upper-triangular 103 

matrix function 69 
matrix multiplication 372, 395, 502 
matrix, invertible 108 
McCracken, M. 521 
mechanical system 26-36, 60-63 
midpoint Euler method 13 516 

518 " 
Milnor, John 245-246 
minuet 369 
Monotonicity Lemma 242, 243 
Morrison, Kristi x 
Morse theory 245-246 
Morse, Marston 245-246 
Morse-Smale vector field 245-247 
multilinearity for determinant 425 

428,506 
multiplication 

of matrices 499, 502 
of vectors by scalar 501 

multivariable calculus 519 

N 
negative definite matrix 417 
negative definite quadratic form 

422, 505 

, 
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negative real parts 102-106, 124-
126, 142 

neighborhood 
of limit cycle 230-233 
of sink 171 

Newton, Isaac 41, 42, 46 
node sinks and sources 92-93, 150-

155 
nonautonomous 2,7 
nondegeneracy 191 
nondegeneracy conditions 347 
nondegeneracy hypothesis 320 
nondegenerate quadratic forms 505 
nonhomogeneous linear differen-

tial equations 74-78, 106-
113, 126-129 

nonlinear differential equations vii, 
72, 131-201 

Noonburg, Anne ix, x 
Noonburg, Derek ix 
norm of vector 402, 504 
normal linear transformation 495 
normalization for determinant 425, 

429, 506 
null space 397-400 
nullcline 8, 189 
numerical approximation 2,12-14, 

54-55 
numerical methods 516-518 

o 
Oberste-Vorth, Ralph ix 
one-parameter families 314-319 
operator, differential 79 
orbit 22-23, 181 
orbits, planetary 45 
order 1, 2, 23, 73-74 
order (as opposed to chaos) 180-

181 
orthogonal basis 406 
orthogonal complement 409-411, 

504 
orthogonal matrices 90-91, 495, 507 

determinant 439 

in QR method 458 
orthogonal projection 408-411,504 
orthogonal transformation 411-413, 

414, 450, 504, 505, 509 
orthogonal vectors 406, 504 

volume 437 
orthogonalization, Gram-Schmidt 

370 
orthonormal basis 369, 406 
orthonormal matrices 91,472 
orthonormal transformations 411 
orthonormal vectors 406,407,504 
oscillation 31, 180 

harmonic 109-110, 128 
oscillator 

p 

damped harmonic 70-71,147 
Van der Pol 161 

Palmer, Thomas ix 
Papadopol, Peter ix 
parallelepiped 507 
parameter 265 
parameter line 316, 317, 319 
parameter plane 327 
parameter: one-parameter families 

314-319 
parameter: two-parameter families 

318-335 
Park, Heather x 
Parmet, Marc ix 
partial fractions 400-401, 487 
particular solution 75-76 
Peixoto, M.M. vii, 203, 521 
Peixoto, M.M., density theorem 

252-258 
pendulum 26-32, 72, 128, 191,357 

nonlinear damped 134-135 
rotating 346 

period mapping 164, 224, 227 
periodic cycle 542 
periodic differential equations 313-

314 
periodic orbit 22-23, 236 



periodic points 180-181 
perturbation 31, 138,208,303-305, 

321,329 
in exercises 349, 351, 353 
of limit cycles 224-236, 298, 

311 
of matrix 448-449 
of saddles 247-252 
of sinks and sources 215-218 

phase plane 6-9, 131, 132, 141 
phase space 10-11, 23 
pitchfork bifurcation 288, 346 
pivot 376, 500 
planar system 6-9 
planar systems program 338, 342, 

362 
Planck's constant 415 
planets 41, 66-67 
Poincare, Henri 162, 245 
Poincare...Bendixson theorem vii, 

140, 162-167, 196-197, 203, 
236-237, 288, 289, 296, 
309, 329, 366 

corollary 247 
statements 163, 239 
why it rules out chaos in the 

plane 236-245, 262 
Poincare section 224, see also sec­

tion mapping 
polar coordinates 361 
polynomial, characteristic 452-457, 

493, 495, 502, 507, 508, 
509 

polynomial equations 442 
polynomials 294, 295, 401, 509 

relatively prime 455-456 
vector space 486,487,489 

Pontryagin, L. vii, 203, 245, 247 
pony tail 272, 273, 275, 281, 286, 

345,576 
double 321, 333 

population 
interacting 17-23, 56-58, 72 
single 313-314 

Porter, Dawn x 
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positive definite matrix 417 
positive definite property for in­

ner products 402, 403, 504 
positive definite quadratic forms 

422, 505 
positive real parts 102-106, 124-

126,200 
potential, electrical 71-72 
potential energy 27-29, 301 
potential function 27, 191, 346, 

357, 529-530 
power method 457-458 
power series 120 
predator-prey 17-23, 56, 72 
principal axis 479, 499 
principal axis theorem 479 
product-rotation algorithm 469, 497 
product rule for inner products 

404 
projection 6 

orthogonal 408-411, 504 
projection operator 490 
proof 371 
properties of matrix exponentials 

87-89 
pseudo-diagonal 143, 192,445-446, 

562 
pseudo-upper-triangular matrix 143, 

192,448 

Q 
QR method vii, 85, 370, 457-472, 

496-497, 504 
quadratic forms 369, 417-424, 475, 

492, 498-499, 505 
quadric surface 476, 498 
quantum mechanics 415, 451 

R 
rank, for quadratic forms 422, 505 
real eigenvalues 92 
repelling cycles 177 
repelling fixed point 177 
repelling limit cycle 160-161 
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repelling saddle connection 303, 
304 

resistance 71-72 
resonance 108-110 
restoring force 147 
resultant 8 
RLC circuit 71-72 
Rodolia cardinalis 22 
Roessler, O.E. 53, 521 
Rota, G.C. 521 
rotated vector field 230-232, 336, 

365-366, 367 
rotation 

in Jacobi's method 473 
in QR method 13 

rotation matrix 497,502 
rotation transformations 393-394, 

413 
row operations 482-483, 499-500 
row reduction 370, 371, 373-380, 

500 
algorithm 375-376 
and linear independence 387 
for inverse 381 

Runge-Kutta 13, 517 

S 
saddle connection 173,184-185,266, 

270,298-309,315-319,338, 
340-341, 351-353 

heteroclinic 184-185, 299, 300, 
315, 318 

homoclinic 184-185, 299, 300, 
311, 315, 320, 321, 325-
326, 330-332 

serious explanation of homo­
clinic 303-309 

saddle-node 138, 266, 270, 271-
288, 314, 320, 323-324, 
333, 336-337, 344-347 

degenerate 367 
homoclinic 286-288, 323, 338 

saddles 31, 93, 155-159, 192-195, 
199 

and eigenvalues 104-106,124-
126 

structural stability of 182-183 
Sanchez, David A. 521 
sardines 17-23, 56 
scalar product 374 
scale insects 22 
scaling for determinant 425 
scattering theory 215-216, 229, 234-

236 
Schleicher, Dierk ix 
Schrodinger equation 415 
Schwarz's inequality 115, 405, 504, 

525,538 
second nondegeneracy condition 

321 
section mapping 177-180, 200, 224-

230 
derivative 229-230 

semi-stable limit cycle 184, 196, 
266, 270, 309-314, 320, 
330-332, 334, 339, 343, 
353-355 

sensitive dependence on initial con­
dition 203 

separatrices 31, 139, 141, 156, 178-
181, 189, 195, 200, 347, 
348, 355, 365 

series 120 
Fourier 106, 110, 128,406, 416, 

451 
sharks 17-23, 56 
Siegel, Carl Ludwig 245 
signature 

and eigenvalues 481-482 
for quadratic forms 422-424, 

491, 492, 499, 505 
signed volume 440 
Simmons, George F. 521 
singular point 8, 133 
singularities 133 
sink 142, 146, 148-155, 192-195, 

199 
structural stability of 182-183, 

215-218, 259-260 



weak, in Hopf bifurcation 292-
297 

sinks and sources 
and eigenvalues 102-106, 124-

126 
node 92-93 
spiral 94-95 

Sisson, Peter ix 
slope 516 
slope error 518 
Smale horseshoes 181-182 
Smale, Stephen ix, 181-182, 245, 

247, 521, 522 
solving linear equations 294, 377-

380 
source 142, 148-155, 192-195, 199 

structural stability of 182-183, 
215-280, 259-260 

weak, in Hopf bifurcation 292-
297 

span 369, 386, 387, 486, 501 
of vectors forming parallelepiped 

435-436,438,440 
Sparrow, C. 176, 522 
spectral theorem 451, 509 

proof 472-482 
spiral 122 
spiral sinks and sources 94-95,148-

150 
spring 70-71 
spurious solution 13 
square matrices 507 
square wave 128 
stability vii, see also structural sta-

bility 
stable equilibrium 31 
stable limit cycle 141, 160-161 
stable separatrix 178-181 
standard basis 388, 501 
standard dot product 417 
standard inner product 402, 403, 

504 
standard norm 402 
state space 6, 23 
steady state solution 127, 552 

Index 599 

stepsize 13, 516 
Strogatz, Steven H. 522 
structural stability 180-186, 200-

202, 203-263 
definition 210 
of limit cycles 224-236, 262 
of saddles 247-252 
of sinks and sources 215-218, 

259-260 
structural stability theorem 247-

252,317 
subcritical bifurcation 292 
subdiagonal469 
subspace 384 
supercritical bifurcation 292 
superposition 74, 77, 78, 107, 110 
symmetric linear transformation 

418,419 
symmetric matrix 472, 475 

signature 481-482 
symmetric property for inner prod­

ucts 402, 504 
symmetric saddle node 288 
symmetric transformation 415,450, 

451,504,505, 509 
symmetries 39, 168-169, 173, 193, 

197-199 
symphony 369 
system 1, 2 

T 
tadpoles 241, 262 
tangent bifurcation loci 327, 330-

331 
tangent isoclines 315 
tangential approach 151-155, 156-

159 
Taylor polynomial 133-134, 137 
Terrell, Robert ix 
theorems, from Parts I and III 511-

519 
Thorn, Rene ix 
Thomas, Katrina x 
three limit cycles coalesce 322,334 
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time for computer calculation 427 
time-dependence 7 
topological conjugacy 206, 208, 260 
topological equivalence 204 
total energy 29-31, 60, 62, 63 
trace 171, 198, 502, 507, 508 

as sum of eigenvalues 442 
trace/determinant plane 95-100, 

121-122, 134, 184 
track 6 
trajectories 132 
trajectory 6, 8, 9 
transformation, linear 78-79, 501 
transient solution 552 
transpose 

of a matrix 383, 484, 500 
of orthogonal transformation 

412 
transversal 177, 304 
triangular matrix 431, 435, 446, 

506-508 
trigonometric functions 120 
trigonometric solution of cubic 364 
turned vector field 230-232, 336, 

365-366, 367 
two body problem 41-47 
two-parameter families 318-323 

U 
undetermined coefficients 76, 106-

111, 127-129 
uniqueness 

in antifunnel 165, 192, 198, 
363, 515-516 

of solutions vii, 2, 14, 131, 
514 

unitary matrices 90,447,495 
unitary operator 416 
unitary transformation 450, 451, 

504, 509 
unstable equilibrium 31 
unstable limit cycle 141, 160-161 
unstable separatrix 178-181 

upper-triangular matrices 103, 413, 
431, 447, 451, 492, 495, 
508 

V 

in QR method 458, 460, 468, 
470-472 

Van der Pol equation 161, 166-
167, 197 

Van der Pol oscillator 232, 290 
variation of parameters 76, 106, 

112-113, 127, 312, 522 
vector 1, 12, 14, 371 
vector field 132, 141, 170, 186 

rotating or turning 230-232, 
336 

vector function 69, 78 
vector inverse 501 
vector space 77-78, 131,369,371, 

383-385,484-487,501-503 
and inner product 402-411 
of differential operators 486 
of polynomials 486,487,489 

voltage 71-72 
Volterra, Vito 17-23 
volume 435-440,494,507 

dilation and contraction 165, 
170-172 

volume-preserving 168, 170-174 

W 
Wang, John ix 
warfare model 58 
weak sink or source 145, 292-297 
weak weak sink 328-330 
weather 10, 11 
Weierstrass approximation theo-

rem 263 
West, Beverly H. 522 
West, James E. ix 
Whitney umbrella 101 
Whitney, Hassler 101 
Williams, R.F. 176, 522 
Wittner, Ben ix 



World War I 17-23 
World War II 22 

y 
Van, Anthony ix 
Yan, Thomas ix 
Ye, Yan-Qian 312, 522 

Z 
zero eigenvalue 98, 106, 183, 320, 

321 
double 183-184 

zeroes 8, 131, 132, 137, 140, 146, 
187-191, 199 

structural stability of 182-183 
Zhang, Zhi-fen 312-313 
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