already seen hﬂw periodic solutions in planar dynamical sy=tems play
role in electrical circuit theory. In fact the periodic solution m Van
uation, coming from the simple circuit equation in the previous chapter,
that go well beyond circuit theory. This periodic solution = 3 “hmit
t we make precise in this chapter.
t Bendixson theorem gives a criterion for the detection of Bmit
pe: thiscriterion could have been used 1o find the Van der Polosailla-
or hand, this approach would have missed the uniqueness.
idixson is a basic tool for understanding planar dynamiesl systems
atial equations in higher dimensions it has no generalizstion or
us after the first two rather basic sections, we restrict ourselves to
al systems. The first section gives some properties of the Emiting
it on the level of abstract topologicsl dynamics while in the next
vze the flow near nonequilibrium points of dynamical system.
yout this chapter we consider & dynamical system on an open Set Wimna
e E, that is, the flow ¢. defined by a C? vector field - W—E

- W is an w-itmit point of < W
. L=:..Theﬁtaf§]lu.-—limit
and the a-limit set L(¥)
s limif sef we

e o Chapter 9, Section 3 that ¥
. 'I.l-‘ t.—‘ k. Euch thﬂt linli—::_ﬁl--ll: ..I‘
e w-limit set L.(y). We define o-limit poinis 3! _
. — = with t, — — = 1 the above definition. By
s form L.(y) or L.(¥)- rcally stable uthb-
3 e = is symptotically st &q

. examples of limit sets. I &35 At g 9. Section 2). Any¥
e & imit set of everyv p()iﬂt in its basin | =€ Chapter ¥, JeE -
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sithough they sre not eany 1o deseribe. In the plane, however ="
#hnple. In It Vig. B is typiesl, in that one can show that 2 1~ —
fhonad orth or exqllibriens is made wp of equiibria and trsjvc v .
| sk theorem ssys thet if & compact i =
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h‘b—'-(l}—gl’
then l'znhm large n

v € L.(z),and $ul(z) = 2 He.(z) —y,

‘and ﬁ.(l) --
D-I g l € I....{:],
h (b).

p-:tl:nut set 18 connected (that is, not the union of two disjoint

'ﬁ C* having two complex coordinates (w, z), and consider the

w = 2xw,

l Z = 2xhz,

) is an irrational real number.

it @ = & and show that the set [a*|n =1, 2, ...| is dense in the

it circle C = [z € C||z| = 1).
it ¢; be the flow of (+). Show that for n an integer,

é.(w, 2) = (v, a*2).
2) belong to the torus C X C C C*. Use (a), (b) to show that
Lo (s, 2) = La(1s, 2) = C X C.
LlndL.ofanarbmu}*pmntqu’
system on R* = C* such that if a belongs to the k-torus
ﬂCC‘ then
- L.(a) = La(a) = C~
wwmahm, Identify L. and L, of every

- Suppose
-"_‘:._Jlrl R— uplﬂiﬂwt*tf C‘dmﬂlm
O tocl that is, X contains no compact invariant nonempty propet
rove the following: s
ry trajectory in X is dense in J;._
) = X; eﬁ;% X, there is s number P > 0 such tIh:
sy € X t.e)n here exists { such that ¢:(2) € Uand [ £=
" ’ . 2

E
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8 C H is n section at 0 and ¢ > 0. In this case we sometimes
¥(Y) _I-nd call V, a flow bor at (or about) 0 in %. See Fig. A. An
toperty of a flow box is that if = € V,, then ¢i(z) € 8 for ﬂmqm .
nition of W it follows that if ¥ (p) = (s, y), then ¥1(g.(p)) =
fficiently small | s |, | ¢|. '
At & flow box can be defined about any nonequilibrium point z.
jﬂmt. %y = 0 is no real restriction since if z, is any point, one can
J(z — zy) to convert the point to 0,
seal section, the trajectory through a point z, (perhaps far from S) may
) & certain time 4y; see IYig. B. We show that in a certain local sense, fy
ous function of zo. More precisely :

D = ?rﬂ{&-’u]

— e

FIG. B

tion at 0 as above, and suppose ¢y(2z0) = 0. There

. Let 8 be a local sec que Cmap 7: U — R such that r(z) =

tsel U/ C W containing 2o and a 1wnr

drn (7) € 5

. E—R be a linear map whose kernel H is the hyperplane con-

h(f(0)) # 0. The function
Gz, t) = hélz)
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FIG. B

uence of points may be on the intersection of & solution curve and a segment
; . ) ‘na monotone along the solution curve but not along the segment, Or

Fig. A. However, this is impossible if the segment is a local section.
' B shows an example; we suggest the reader experiment with paper and

ior 1 Let S be a local section of a C* planar dynamical system and yo, Y,
quence of distinct points of S thal are on the same solution curve C. If the

ce 18 -almg C, it 1s also monotone along S.

. Tt suffices to consider three points Yo, Y1, Y2 Let = be the simple closed

up of the part B of C between yo and ¥1 and the segment T C S between |

et D be the closed bounded region bounded by =. We suppose that the

of yy leaves D at 1 (Fig. C); if it enters, the argumentlls Eumlar

1t at any point of T the trajectory leaves D. For it either leaves or
being transverse t0 the flow, it crosses the boundary of D. The

’ open subset T_ C T, by

in T whose trajectory leaves D is a nonempty

| II ¥

FIG. C






d=1zeRf 1<) <)

be 8 C* vector field on a neighborhood of A which points inward along
p0 boundary circles of A. Suppose also that every radial segment of A

' action (Fig. E). Prove there is a periodic trajectory in A.

| T = {2y € S for a
- jial segment. Show that if z € S then ¢,(z
;ﬁ é:(h;! :- 0. Consider the map S — 8 given by z— @un (2).)

it L = L(z 3
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b S ES for ha<t<t, n=12....
b = $u.(%). By Proposition 1, Section 3, z, — 2 monotonically in §.

B an upper bound for the set of positive numbers f,;; — t.. For sup-
(#) = 2,1 > 0. Then for z. sufficiently near z, ¢x(z.) € V. and hence
E ‘H-l{.z-]' ES
pme ¢ € [—e¢, ). Thus
ka—L<\ite
'“ﬂ.thhaptﬂS,thmeﬁstaE}Uauchthatitlx.——ul{ln:d

- ¢ then | $:(z.) — ¢:(u)| <B.
be 80 large that | z. — z| < & forall n 2 n,. Then

! | #lza) —@u(2) | <B
{] <A+ eandn > ne. Nowlett 2 b, Letn 2 ne be such that

T

'P'- <t < b

R

d($:(z), Y) < | &:lz) — é-.(2)]
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FIG. B

i ¥

ly invariant, as is the set B = A — +. It is easy to see that $:(y) spirals

y for all y € B. A useful consequence of this is :
:

sition 1 Lel v be an w-limit cycle. If v = L.(z), z & v then z has a neighbor-
;:_.:.'{f"-" = L.(y) for all y € V. In other words, the sel

. A={ylr=Ly)} — v
.
of. For sufficiently large ¢ > 0, ¢:(z) is in the interior of the set A described

. Hence ¢.(y) ¢ A for y sufficiently close to z. This implies the proposition.

' A mﬂymmmdeﬂdﬁmMywwmyw
‘a limit eycle or an equilibrium.

of. Suppose for example that K 8 pps'ttivelyinvn:innt. If z € K, then L.(z)
onempty subset of K; apply Poincaré—Bendixson.

‘next result exploits the spiraling property of limit cycles.

that the domain W of the dynamical

0 2 mvunmm@dnwh_ﬁ e i

includes the whole open region U enclosed
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b & fixed point (that bs, 112 = 7 flon somse 7).,

.,“MN-Q‘ summing that { is (3
L vietor field g(z) = f(z) — 4, I 7, by linding e expiliorings Sor

we Browwer's theore, for n = 2 ust .
B the uniform limit of ' maps, =

"‘“ vector field on a neighborhood of the s

| " A-EI"R*'I:":"'::»:;_

. "9 J has no zeros and that f is traneverse 1o the bousdary, points

,, s there is a closed orbit. (Notice that the hypothesis is wesker than

-1'.'-:'?' lem 1, Bection 3. )
e are exactly seven closed orbits, show that one of them ks arbats

iraling toward it from both sides.

l.ﬂ-ll’be a (" vector field with no zeros. Buppose the Sow ¢, generated
Ve arm{thatia,if;ginanyr;penﬂ,themdﬁf&ishw
that every trajectory is & closed set.

mmﬁﬂdmanﬁgbmmdtﬁem&dﬁﬂhi
ose that for every boundary point z, f(z) is & nonzero veclor tamgent o

g be C! vector fields on R*
'.,_" I .l, GVE thﬂtl ﬂl hﬂs 8 ZET0.

f be a ! vector field on an open set w
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DH(z)f(z) =0






