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ifTrA-O.mdthatinthiscasetheo" ' i
) i Ngin 13 not a sink or a source. (Hint:
An operator 15 area-preserving if and only if the determinant is 4+1.) (

12. Describe in words the phase portraits of ¢’

= Az for
2 07 "2 0
A= -]
(a) 0 2] (b) A @ &
@ 4=['° @ [
5 -0 2- ) A = l-.-l 2-

13. BUPPDB? Ais an n X n matrix with n distinct eigenvalues and the real part of
every eigenvalue is less than some negative number a. Show that for every

solution to 2’ = Az, there exists ¢, > 0 such that
[z() | <et if 1>
14. Let T be an invertible operator on R", n odd. Then 2’ = Tz has a nonperiodic
solution.

15. Let A = [ /] have nonreal eigenvalues. Then b 5 0. The nontrivial solutions
curves to ' = Az are spirals or ellipses that are oriented clockwise if b > 0
and counterclockwise if b < 0. (Hint: Consider the sign of

j—jarc tan(z,(t) /z,(1)).)

§5. A Nonhomogeneous Equation

We consider a nonhomogeneous nonautoncmous linear differential equation
(1) ' = Az + B(1).

Here A is an operator on R" and B: R — R" is a continuous map. This equation is
called nonhomogeneous because of the term B(t) which prevents (1) from being
strictly linear; the fact that the right side of (1) depends explicitly on ¢ makes it
nonawtonomous. It is difficult to interpret solutions geometrically.

We look for a solution having the form

(2) z(t) = e'4f(D),

where f: R — R is some differentiable curve. (This method of solution is called
“variation of constants,” perhaps because if B(f) = 0, f(¢) is a constant.) Every
solution can in fact be written in this form since e*4 is invertible.

Differentiation of (2) using the Leibniz rule yields

' (1) = Ae'f(t) + e4f (D).
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. : be '
Since z is assumed t0 Az(t) + ¢4 (D)

or f(t) = e*4B(1).

By integration '
f(8) = / «4B(s) ds + K,
0

so as a candidate for a golution of (1) we have
(3) z(l) = e4! [f e4B(s) ds + K], K € R~
0

Let us examine (3) to see that it indeed mnkes sense. The integrand in (3) 'gnd
the previous equation is the vector-valued function § = €~ 4'B(s) mapping R into
R*. In fact, for any continuous map g of the reals into a vector space R", the integrs
can be defined as an element of R*. Given a basis of R", this integral is a vector
whose coordinates are the integrals of the coordinate functions of g.

The integral as a function of ite upper limit ¢ is 8 map from R into R". For each
t the operator acts on the integral to give an element of R". So t — z(t) is a wel-
defined map from R into E.

To check that (3) is a solution of (1), we differentiate z(¢) in (3):

z/(t) = B(t) + Ae4! [f. e4'B(s) ds + K]
o ’

= B(t) + Az(¢).
Thus (3) is indeed a solution of (1).
That every solution of (1) must be of the form 3 follows. Let
¥:R"— E be a second solution of (1). Then il eatberseuios 10

e e il
80 that from Section 1 V=A@-y)

| T=v=e“K, for some K, in R,
This implies that y is of the form (3) (with pPerhaps a different, constant K € R

We remark that if B in (1) j ,
R, then by the above method),:‘ only defined on some interval, instead of on gl of

interval. We obtain a solution z(t) defined for ¢ in that &8
We obtain furth, insight i
form N “into (1) by rewriting the general solution (3) I° the

z(t) = u(p) 4 eltK,

O = [ eup g
7]
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1)
that u(?) is also a solution t AR
mﬁoﬂ 0 (l) ’ whlll! e K na mlutinn to the h“".uwm
(4) Vo= Ay

obtained from (1) by replacing B() with 0. In fact, if v(¢) § \

; ' ', {
and y(t) any solution t’“ (4), then clearly z = ¢ 4 Y in n.)m:h.;y:lit:r:lu? ffll)j
Hence the gel:]m] :-‘01’:1"10“ to (1) is obtained from a particular solution by mddmg
to it the general solution of the corresponding homogeneous equation. In summary

Theorem Let u(t) be a particular solution of the nonhomogeneous linear differential
equalion
(1) ' = Az + B(1).

Then every solution of (1) has the form u(t) + v(t) where v(t) is a solution of the
homogeneous equation

(4") z = Az
Conversely, the sum of a solution of (1) and a solution of (4') ts a solution of (1).
If the function B(¢) is at all complicated it will probably be impossible to replace
the integral in (3) by a simple formula; sometimes, however, this can be done.
Example. Find the general solution to
(5) = —o,

L7 w0l

[ cos 8 sin a]
g - ;
—gins coss

Here
Hence

and the integral in (3) is

[ mare- (020

—gins co0838
[sint—!coul ]
= Leost + teint — 1
To compute (3) we set

o[} w [l
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hence the general solution 18

(1) cos t —f;inl!:“:siint*—-tcoat-|-}(I
[z,(t)] - [sint costJLcost + tsint — 1+K,]'
Performing the matrix multiplication and gimplifying yields
n(l) = —t+ Kicost + (1 — K3) sin¢,
n(t) =1 — (1 — Kiy) cost + K, sint.
This is the solution whose value at ¢t = 0 is

7(0) = K), 722(0) = K.

PROBLEMS

1. Find all solutions to the following equations or systems:
(8) =’ — 4z — cost = 0; (b) 2’ —4z—t=0; (¢) =

]
OS

L . |
[

d) =y, () z=z+y+z2

2’ = 22 4+ sint.

Suppose T: R*— R" is an invertible linear operator and ¢ € E is a noozr
constant vector. Show there is a change of coordinates of the form

I=Py—|—-b’ beRu'

transforming the nonhomog

eneous 1 e . omogeneey
form ' = equation z' = Tz + ¢ into homog

Sy. Find P, b, and S. (Hint- Where is z’ = 0?)
Solve Problem 1(c) using the change of coordinates of Problem 2.

Consider a linear different; ) o
a derivative higher than r.heuf?,l,:q"”‘“‘m with constant coefficients which "

; for example
(1) , -

volve®




