
EECS 598: Statistical Learning Theory, Winter 2014 Topic 3

Hoeffding’s Inequality
Lecturer: Clayton Scott Scribe: Andrew Zimmer

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

Suppose we are given training data (Xi, Yi)
i.i.d.∼ PXY and a classifier h : X → Y. Define the empirical risk

of h to be

R̂n(h) :=
1
n

n∑
i=1

1{h(Xi) 6=Yi}.

Notice that nR̂n(h) ∼ binom(n,R(h)) and so E
[
R̂n(h)

]
= R(h). We would like to understand how accurate

R̂n(h) is as an estimate of R(h). Thankfully there are many well known concentration inequalities that
provide us with quantitative answers to this question. The goal of this lecture is to establish one such
bound: Hoeffding’s inequality [2]. This inequality was originally proved in the 1960’s and will imply that

Pr
(∣∣∣R̂n(h)−R(h)

∣∣∣ ≥ ε) ≤ 2e−2nε2 . (1)

Along the way we will prove Markov’s inequality, Chebyshev’s inequality, and Chernoff’s bounding method.
A key point to notice is that the probability in (1) is with respect to the draw of the training data.

2 Markov’s Inequality

Proposition 1. If U is a non-negative random variable on R, then for all t > 0

Pr (U ≥ t) ≤ 1
t
E [U ] .

Proof. Notice that

Pr (U ≥ t) = E
[
1{U≥t}

]
≤ E

[
U

t
1{U≥t}

]
=

1
t
E
[
U1{U≥t}

]
≤ 1
t
E [U ]

where both inequalities use the fact that U is nonnegative.

2.1 Chebyshev’s Inequality

Our first concentration inequality is an easy consequence of Markov’s inequality.

Corollary 1. If Z is a random variable on R with mean µ and variance σ2 then

Pr (|Z − µ| ≥ σt) ≤ 1
t2
.
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Proof. If we apply Markov’s inequality to the random variable (Z − µ)2 we obtain:

Pr (|Z − µ| ≥ σt) = Pr
(

(Z − µ)2 ≥ σ2t2
)
≤ 1
σ2t2

E
[
(Z − µ)2

]
=

σ2

σ2t2
=

1
t2
.

Since nR̂n(h) ∼ binom(n,R(h)), we see that R̂n(h) is a random variable with mean µ = R(h) and
variance σ2 = R(h)(1−R(h))/n. So applying Chebyshev’s inequality to R̂n(h) we obtain:

Pr
(∣∣∣R̂n(h)−R(h)

∣∣∣ ≥ ε) ≤ R(h)(1−R(h))
nε2

.

This is nice, but as mentioned in the introduction we can actually get exponential decay as a function of n.

2.2 Chernoff’s Bounding Method

A second corollary of Markov’s inequality is known as Chernoff’s bounding method [1]. We will use this to
prove Hoeffding’s inequality.

Corollary 2. Let Z be a random variable on R. Then for all t > 0

Pr (Z ≥ t) ≤ inf
s>0

e−stMZ(s)

where MZ is the moment-generating function of Z.

Proof. For any s > 0 we can use Markov’s inequality to obtain:

Pr (Z ≥ t) = Pr (sZ ≥ st) = Pr
(
esZ ≥ est

)
≤ e−stE

[
esZ
]

= e−stMZ(s).

Since s > 0 was arbitrary the corollary follows.

3 Hoeffding’s Inequality

Theorem 1. Let Z1, . . . , Zn be independent random variables on R such that ai ≤ Zi ≤ bi with probability
one. If Sn =

∑n
i=1 Zi then for all t > 0

Pr (Sn − E [Sn] ≥ t) ≤ e−2t2/
P

(bi−ai)
2

and

Pr (Sn − E [Sn] ≤ −t) ≤ e−2t2/
P

(bi−ai)
2
.

Remark. By combining the two bounds we obtain:

Pr (|Sn − E [Sn]| ≥ t) ≤ 2e−2t2/
P

(bi−ai)
2
.

Remark. If Zi
i.i.d.∼ Ber(p) then ai = 0, bi = 1, and Sn ∼ binom(n, p). Since E[Sn] = np, Hoeffding’s

theorem specializes to Chernoff’s bound

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Zi − p

∣∣∣∣∣ ≥ ε
)
≤ 2e−2nε2 .

There are actually several Chernoff bounds, and all of apply Chernoff’s bounding method in different ways.
Some of the bounds additionally incorporate the variance of the random variable, which allows for tighter
bounds. In our case, the variance involves p = R(f) which is unknown, making the bound not computable.
See the expository article [3] for more on Chernoff bounds.
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The proof of Hoeffding’s theorem will use Chernoff’s Bounding Method and the next lemma:

Lemma 1. Let V be a random variable on R with E [V ] = 0 and suppose a ≤ V ≤ b with probability one.
Then for all s > 0

E
[
esV
]
≤ es

2(b−a)2/8.

Proof. If x ∈ [a, b] then the convexity of the function x→ esx implies that

esx ≤ x− a
b− a

esb +
b− x
b− a

esa.

Using the fact that E[V ] = 0 we then obtain the bound:

E
[
esV
]
≤ b

b− a
esa − a

b− a
esb. (2)

Now let p = b/(b− a) and u = (b− a)s and consider the function:

ϕ(u) = log
(
pesa + (1− p)esb

)
? = sa+ log

(
p+ (1− p)es(b−a)

)
= (p− 1)u+ log (p+ (1− p)eu) .

This function is smooth and hence by Taylor’s theorem for any u ∈ R there exists ξ = ξ(u) ∈ R such that

ϕ(u) = ϕ(0) + ϕ′(0)u+
1
2
ϕ′′(ξ)u2.

Now ϕ(0) = 0 and

ϕ′(u) = (p− 1) +
(1− p)eu

p+ (1− p)eu
= (p− 1) + 1− p

p+ (1− p)eu
.

Hence ϕ′(0) = 0 and

ϕ′′(u) =
p(1− p)eu

(p+ (1− p)eu)2
.

Using calculus one can then show that ϕ′′(ξ) ≤ 1/4 and so

ϕ(u) ≤ u2/8 = s2(b− a)2/8. (3)

Combining the bounds in Eqns. (2) and (3) completes the proof of the lemma.

Proof of Theorem 1. First apply Chernoff’s bounding method to the random variable Sn − E[Sn] to obtain

Pr (Sn − E[Sn] ≥ t) ≤ min
s>0

e−stE
[
es(Sn−E[Sn])

]
.

Since the Zi are independent we have:

e−stE
[
es(Sn−E[Sn])

]
= e−st

n∏
i=1

E
[
es(Zi−E[Zi])

]
and so, by applying the lemma above,

Pr (Sn − E[Sn] ≥ t) ≤ min
s>0

e−st+(s2/8)
P

(bi−ai)
2
.

Since the function s → −st + (s2/8)
∑

(bi − ai)2 describes a parabola we know that the minimizer is at
s = 4t/

∑
(bi − ai)2 and hence

Pr (Sn − E [Sn] ≥ t) ≤ e−2t2/
P

(bi−ai)
2
.

To obtain the second bound simply apply the first bound to the random variables −Z1, . . . ,−Zn.
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4 KL divergence and hypothesis testing

In this final section we will apply Hoeffding’s inequality to hypothesis testing. The set up is as follows: let
Y = {0, 1} and assume PXY is a distribution on X × Y. In addition let’s assume that

• the prior probabilities πy = PY (Y = y) are equal,

• PX|Y=y has known density py,

• The supports of p0 and p1 are the same, i.e., {x : p0(x) > 0} = {x : p1(x) > 0},

• 0 < α ≤ py(x) ≤ β < +∞ for all x such that py(x) > 0, y = 0, 1.

Now suppose we observe X1, . . . , Xn
i.i.d.∼ py where y ∈ {0, 1} is unknown. Can we determine y? How good

will our guess be?
We can think of this as a classification problem where (X1, . . . , Xn) is the feature vector. The density of

this vector is
∏n
i=1 py(Xi). The optimal classifier is given by the likelihood ratio test (see previous notes):

ĥn(x) =

{
1 if

Qn
i=1 p1(Xi)Qn
i=1 p0(Xi)

≥ π0
π1

= 1
0 otherwise

Since the natural logarithm is strictly increasing, this optimal classifier can be expressed

ĥn(x) =
{

1 if Ŝn(X1, . . . , Xn) ≥ 0
0 otherwise

where

Ŝn(X1, . . . , Xn) =
n∑
i=1

log
p0(Xi)
p1(Xi)

.

Now for a classifier h : Xn → Y and y ∈ {0, 1} define

Ry(h) = Pr(h(X) 6= y|Y = y).

Then

π0R0(ĥn) + π1R1(ĥn)

is the probability that our classifier returns the wrong answer after n observations.
It turns out that we can use Hoeffding’s inequality to bound this probability. Let Zi := log p0(Xi)

p1(Xi)
. Then

log
α

β
≤ Zi ≤ log

β

α

with probability one (with respect to either probability measure). Moreover,

R0(ĥn) = Pr
(
Sn ≥ 0

∣∣∣Y = 0
)

= Pr
(
Sn − E [Sn|Y = 0] ≥ −E [Sn|Y = 0]

∣∣∣Y = 0
)

and

E [Sn|Y = 0] = nE [Z1|Y = 0] = n

∫
log
(
p1(x)
p0(x)

)
p0(x)dx = −n

∫
log
(
p0(x)
p1(x)

)
p0(x)dx = −nD(p0||p1)
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where D(p0||p1) is the Kullback-Leibler divergence of p0 from p1. Finally applying Hoeffding’s inequality
gives the following bound:

R0(ĥn) ≤ e−2nD(p0||p1)2/c2 where c = 4 (log β − logα)2 .

A similar analysis gives an exponential bound on R1(ĥn) and thus we see that the probability that our clas-
sifier returns the wrong answer after n observations decays to zero exponentially and the rate of exponential
decay depends on D(p0||p1), D(p1||p0), and α, β. The Kullback-Leibler divergence measures how close two
probability distributions are, so our bound makes intuitive sense: the more distinct the two distributions,
the easier it should be to determine the distribution being observed.

Remark. The Kullback-Leibler divergence belongs to a family of functions Df defined on certain pairs of
probability distributions. Given a convex function f : R→ R with f(0) = 1 and two densities p and q, define
the f -divergence of q from p to be

Df (q||p) =
∫
f

(
p(x)
q(x)

)
q(x)dx.

Notice that the Kullback-Leibler divergence is the special case when f(x) = − log(x) and that we can repeat
the above argument to obtain exponential bounds in terms of Df (p0||p1) and Df (p1||p0).

Exercises

1. (a) Apply Chernoff’s bounding method to obtain an exponential bound on the tail probability Pr(Z ≥
t) for a Gaussian random variable Z ∼ N (µ, σ2).

(b) Appealing to the central limit theorem, use part (a) to give an approximate bound on the binomial
tail. This should not only match the exponential decay given by Hoeffding’s inequality, but also
reveal the dependence on the variance of the binomial.

2. Can you remove the assumption in Section 4 that 0 < α ≤ py(x)? Consider other restrictions on py,
other concentration inequalities, or other f -divergences.
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