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Given a convex body C ⊂ R
d containing the origin in its interior and a real number τ > 1,

we seek to construct a polytope P ⊂ C with as few vertices as possible such that C ⊂ τ P .

Our construction is nearly optimal for a wide range of d and τ . In particular, we prove

that if C = −C , then for any 1 > ε > 0 and τ = 1 + ε one can choose P having roughly ε−d/2

vertices and for τ = √
εd one can choose P having roughly d1/ε vertices. Similarly, we

prove that if C ⊂ R
d is a convex body such that −C ⊂ μC for some μ ≥ 1, then one can

choose P having roughly ((μ + 1)/(τ − 1))d/2 vertices provided (τ − 1)/(μ + 1) � 1.

1 Introduction and Main Results

We discuss how well convex bodies (compact convex sets with nonempty interior) can

be approximated by polytopes (convex hulls of finite sets of points). There is, of course,

vast literature on the topic, as there are many different notions of approximation, see

surveys [5, 9]. Our setup is as follows. Let C ⊂ R
d be a convex body containing the origin

in its interior. We seek to construct a polytope P ⊂ R
d with as few vertices as possible,

so that

P ⊂ C ⊂ τ P ,

for some given τ > 1.

Received July 25, 2012; Revised February 24, 2013; Accepted April 8, 2013

Communicated by Prof. Assaf Naor

c© The Author(s) 2013. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2014/16/4341/795407 by Access provided by H
EAL-Link (U

niversity of Athens) user on 23 O
ctober 2021



4342 A. Barvinok

Our first main result concerns symmetric convex bodies C for which C = −C and

τ measures the Banach–Mazur distance between P and C .

Theorem 1.1. Let k and d be positive integers and let τ > 1 be a real number such that

(τ −
√

τ 2 − 1)k + (τ +
√

τ 2 − 1)k ≥ 6
(

d+ k

k

)1/2

.

Then for any symmetric convex body C ⊂ R
d, there is a symmetric polytope P ⊂ R

d with

N vertices such that

N ≤ 8
(

d+ k

k

)

and

P ⊂ C ⊂ τ P . �

In fact (see Remark 3.1), we can replace
(

d+k
k

)
throughout the statement of

Theorem 1.1 by a slightly smaller number

D(d, k) =
�k/2	∑
m=0

(
d+ k − 1 − 2m

k − 2m

)
. (1)

For example, taking d= 20 and k= 3, we conclude that any 20-dimensional symmetric

convex body can be approximated within a factor of τ = 3.18 by a symmetric polytope

with at most 12, 480 vertices.

Tuning up the parameter k in Theorem 1.1, we obtain different asymptotic

regimes relating the dimension d, the number N of vertices of the approximating poly-

tope, and the quality τ of the best approximation. Since the first version of this paper

appeared as a preprint, in [11], the following compact formula describing the relation

between τ , d, and N was deduced from Theorem 1.1:

τ ≤ γ max

{
1,

√
d

ln N
· ln

d

ln N

}
,

for an absolute constant γ > 0. If τ is close to 1, the above bound can be essentially

sharpened.

Corollary 1.2. For any

γ >
e

4
√

2
≈ 0.48,
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Thrifty Approximations of Convex Bodies by Polytopes 4343

there exists ε0 = ε0(γ ) > 0 such that for any 0 < ε < ε0 and for any symmetric convex body

C ⊂ R
d, there is a symmetric polytope P ⊂ R

d with N vertices such that

N ≤
(

γ√
ε

ln
1

ε

)d

and

P ⊂ C ⊂ (1 + ε)P . �

The well-known volumetric argument (see, e.g., [13, Lemma 4.10]) produces poly-

topes with roughly (3/ε)d vertices which approximate a given symmetric d-dimensional

convex body within a factor of 1 + ε. Hence, for small ε > 0, the estimate of Corollary 1.2

gives us roughly the square root of the number of vertices required by the volumetric

bound.

Dudley [7] and, independently, Bronshtein and Ivanov [6] considered how well a

given convex body can be approximated in the Hausdorff metric. They proved that for

any convex body C contained in the unit ball in R
d and for any ε > 0, there is a polytope

P with N ≤ (γ /ε)(d−1)/2 vertices which approximates C within distance ε in the Haus-

dorff metric, where γ > 0 is an absolute constant. To convert such an approximation

into a (1 + ε)-approximation in the Banach–Mazur distance considered in Corollary 1.2,

one would need, generally speaking, to increase N roughly by a factor of dd/4 (since a

symmetric convex body C inscribed in the unit ball can be rather thin, with the radius

of the largest inscribed ball no bigger than d−1/2).

For a given convex body C with a C2-smooth boundary, the asymptotic of the

number N of vertices of the best approximating polytope (both in the Hausdorff and

in the Banach–Mazur metrics) as ε −→ 0 was obtained by Gruber [10], see also [3] for

sharpening. In this case, for any 0 < ε < ε0(C ), we have N ≤ (γ /ε)(d−1)/2 for some absolute

constant γ > 0 and the bound is attained when C is the Euclidean ball (note that the

upper bound for ε depends on the convex body C ). No such results appear to be known

for nonsmooth bodies C .

Summarizing, the estimate of Corollary 1.2 is the first bound improving the vol-

umetric bound uniformly over all symmetric convex bodies C of all dimensions d.

Next, we consider approximations for which we want to keep the number of

vertices of the polytope polynomial in the dimension of the ambient space.

Corollary 1.3. For any

γ >

√
e

2
≈ 0.82,
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4344 A. Barvinok

there is a positive integer k0 = k0(γ ) such that for any k> k0 and for any symmetric convex

body C ⊂ R
d of a sufficiently large dimension d> d0(k) there is a symmetric polytope

P ⊂ R
d with N vertices such that

N ≤ 8
(

d+ k

k

)

and

P ⊂ C ⊂ γ

√
d

k
P . �

In other words, for any fixed 0 < ε < 1, any d-dimensional symmetric convex body

C can be approximated within a factor of τ = √
εd by a polytope P with roughly d1/ε

vertices. A simple computation shows that if C is the d-dimensional Euclidean ball and

P has at most dk vertices for some fixed k, then P cannot approximate C better than

within a factor of τ = γ

√
d

k ln d
as d grows, where γ > 0 is an absolute constant, see [1].

Finally, we consider approximations of not necessarily symmetric convex bodies.

We prove the following main result, generalizing Theorem 1.1. The quality of approxima-

tion depends on the symmetry coefficient of the convex body C , that is, on the smallest

μ ≥ 1 such that −C ⊂ μC (recall that the convex bodies we consider contain the origin in

their interior).

Theorem 1.4. Let d and k be positive integers. For τ, μ ≥ 1, let us define

λ = λ(τ, μ) = 2

μ + 1
τ + μ − 1

μ + 1
≥ 1.

If

(λ −
√

λ2 − 1)k + (λ +
√

λ2 − 1)k ≥ 6
(

d+ k

k

)1/2

,

then for any convex body C ⊂ R
d containing the origin in its interior and such that −C ⊂

μC , there is a polytope P ⊂ R
d with N vertices such that

N ≤ 8
(

d+ k

k

)

and

P ⊂ C ⊂ τ P . �

We also obtain the following extension of Corollary 1.2.
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Thrifty Approximations of Convex Bodies by Polytopes 4345

Corollary 1.5. (1) For τ, μ ≥ 1, let us define

δ = δ(τ, μ) = 2(τ − 1)

μ + 1
.

For any

γ >
e

4
√

2
≈ 0.48,

there exists δ0 = δ0(γ ) > 0 such that as long as δ(τ, μ) < δ0, for any convex body C ⊂ R
d

such that −C ⊂ μC there exists a polytope with N vertices such that

N ≤
(

γ√
δ

ln
1

δ

)d

and

P ⊂ C ⊂ τ P .

(2) For any

γ >
e

8
≈ 0.34,

there exists ε0 = ε(γ ) > 0 such that for any 0 < ε < ε0 and for any convex body

C ⊂ R
d such that −C ⊂ μC for some μ ≥ 1 there exists a polytope P ⊂ R

d with

N vertices such that

N ≤
(

γ

√
μ + 1

ε
ln

1

ε

)d

and

P ⊂ C ⊂ (1 + ε)P . �

As a function of the symmetry coefficient μ, the number of vertices of P grows

roughly as μd/2 as long as the ratio τ/μ is small enough. One can deduce from results

of Gruber [10] that if the boundary of C is C2-smooth, then for all sufficiently small 0 <

ε < ε0(C ) one can construct a polytope P with not more than μd/2(γ /ε)(d−1)/2 vertices for

some absolute constant γ which approximates C within a factor of 1 + ε. The estimates

of Corollary 1.5 are uniform over all convex bodies C of all dimensions d.

The plan of the paper is as follows. In Section 2, we collect some facts needed

for the proofs of Theorems 1.1 and 1.4. We recall the classical result on the John decom-

position of the identity operator and the minimum volume ellipsoid of a convex body,

a recent result of Batson et al. [2] which allows one to obtain certain “sparsification”
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4346 A. Barvinok

of the John decomposition, the standard construction of tensor product from multilin-

ear algebra which allows us to translate polynomial relations among vectors into linear

identities among tensors, and the classical construction of the Chebyshev polynomials

which solve a relevant extremal problem. As it turns out, the vertices of the approximat-

ing polytopes P are picked up by certain algebraic conditions.

We complete the proofs in Section 3.

2 Preliminaries

2.1 Chebyshev polynomials

For a positive integer k, let Tk(t) be the Chebyshev polynomial of degree k, see, for

example, [4, Section 2.1]. Thus, for real t the polynomial Tk(t) can be defined by

Tk(t) = cos(karccos t) provided − 1 ≤ t ≤ 1

and

Tk(t) = 1
2 (t −

√
t2 − 1)k + 1

2 (t +
√

t2 − 1)k provided |t| ≥ 1.

In particular,

|Tk(t)| ≤ 1 provided |t| ≤ 1. (2)

Writing Tk(t) in the standard monomial basis, we obtain

Tk(t) = k

2

�k/2	∑
m=0

(−1)m (k − m − 1)!

m!(k − 2m)!
(2t)k−2m.

In particular,

T1(t) = t, T2(t) = 2t2 − 1, T3(t) = 4t3 − 3t, T4(t) = 8t4 − 8t2 + 1.

We note that Tk(−t) = Tk(t) if k is even and Tk(−t) = −Tk(t) if k is odd. We also note that

the polynomial Tk(t) is strictly increasing for t ≥ 1.

In particular,

|Tk(t)| > (τ − √
τ 2 − 1)k + (τ + √

τ 2 − 1)k

2
provided |t| > τ ≥ 1. (3)
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Thrifty Approximations of Convex Bodies by Polytopes 4347

The polynomial Tk(t) has the following extremal property relevant to us: for any t0 /∈
[−1, 1], the maximum value of |p(t0)|, where p is a polynomial of deg p≤ k such that

|p(t)| ≤ 1 for all t ∈ [−1, 1], is attained for p= Tk, see, for example, [4, Section 5.1].

2.2 Tensor power

Let V be Euclidean space with scalar product 〈·, ·〉. For a positive integer k, let

V⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

be the kth tensor power of V . We consider V⊗k as Euclidean space endowed with scalar

product 〈·, ·〉 such that

〈x1 ⊗ · · · ⊗ xk, y1 ⊗ · · · ⊗ yk〉 =
k∏

i=1

〈xi, yi〉,

for all x1, . . . , xk; y1, . . . , yk ∈ V . The space V⊗2 is naturally identified with the space of all

linear operators on V .

The symmetric part Sym(V⊗k) of V⊗k is the subspace spanned by the tensors

x⊗k = x ⊗ · · · ⊗ x︸ ︷︷ ︸
k times

,

for x ∈ V . The space Sym(V⊗k) is naturally identified with the space of all homogeneous

polynomials p : V −→ R of degree k. In particular, Sym(V⊗2) can be identified with the

space of quadratic forms on V and also with the space of all symmetric operators on V .

We have

dim Sym(V⊗k) =
(

dim V + k − 1

k

)
.

Let us consider the direct sum

W = R ⊕ V ⊕ V⊗2 ⊕ · · · ⊕ V⊗k,

as Euclidean space with the standard scalar product, which we also denote by 〈·, ·〉. For

a real univariate polynomial a(t) and a vector x ∈ V , we denote by a⊗(x) ∈ W the vector

a⊗(x) = α0 ⊕ α1x ⊕ α2x⊗2 ⊕ · · · ⊕ αkx⊗k where a(t) =
k∑

m=0

αmtm. (4)
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4348 A. Barvinok

It is then easy to check that for any x, y∈ V and any polynomials a(t) and b(t), we have

〈a⊗(x), b⊗(y)〉 = c(〈x, y〉),

provided a(t) =
k∑

m=0

αmtm, b(t) =
k∑

m=0

βmtm, and c(t) =
k∑

m=0

(αmβm)tm. (5)

2.3 The ellipsoid of the minimum volume

As is known, for any compact set C ⊂ R
d, there is a unique ellipsoid of the minimum

volume among all ellipsoids centered at the origin and containing C . If the minimum-

volume ellipsoid is the unit ball

B = {x ∈ R
d : ‖x‖ ≤ 1},

where ‖ · ‖ is the Euclidean norm, the contact points xi ∈ C ∩ ∂ B provide a certain decom-

position of the identity operator I , called the John decomposition (recall that x ⊗ x for

x ∈ R
d is interpreted as a d× d symmetric matrix). We need the following result, see, for

example, [1].

Theorem 2.1. Let C ⊂ R
d be a compact set that spans R

d and let B ⊂ R
d be the unit ball.

Suppose that C ⊂ B and that B has the smallest volume among all ellipsoids centered at

the origin and containing C . Then there exist points x1, . . . , xn ∈ C ∩ ∂ B and nonnegative

real α1, . . . , αn such that
n∑

i=1

αi(xi ⊗ xi) = I,

where I is the identity operator on R
d. Equivalently,

n∑
i=1

αi〈xi, y〉2 = ‖y‖2,

for every y∈ R
d. �

2.4 Sparsification

We need a recent result of Batson, Spielman, and Srivastava on a certain “sparsification”

of the conclusion of Theorem 2.1, see also [12]. Namely, we want to be able to choose the

number n of points in Theorem 2.1 linear in the dimension d at the cost of a controlled

corruption of the identity operator I .
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If A and B are d× d symmetric matrices, we say that A� B if B − A is positive

semidefinite. The following result is from [2].

Theorem 2.2. Let γ > 1 be a number and let x1, . . . , xn be vectors in R
d such that

n∑
i=1

xi ⊗ xi = I,

or equivalently,
n∑

i=1

〈xi, y〉2 = ‖y‖2,

for all y∈ R
d. Then there is a subset J ⊂ {1, . . . , n} with |J| ≤ γ d and β j > 0 for j ∈ J such

that

I �
∑
j∈J

β j(xj ⊗ xj) �
(

γ + 1 + 2
√

γ

γ + 1 − 2
√

γ

)
I,

or equivalently,

‖y‖2 ≤
∑
j∈J

β j〈xj, y〉2 ≤
(

γ + 1 + 2
√

γ

γ + 1 − 2
√

γ

)
‖y‖2,

for all y∈ R
d. �

3 Proofs

We start with a lemma (a similar result was recently obtained by similar methods by

Gluskin and Litvak, see [8, Lemma 4.2]).

Lemma 3.1. Let C ⊂ R
d be a compact set. Then there is a subset X ⊂ C of

|X| ≤ 4d,

points such that for any linear function 
 : R
d −→ R we have

max
x∈X

|
(x)| ≤ max
x∈C

|
(x)| ≤ 3
√

dmax
x∈X

|
(x)|. �

Proof. Without loss of generality, we assume that C spans R
d. Applying a linear trans-

formation, if necessary, we may assume that C is contained in the unit ball B and

that B is the minimum-volume ellipsoid among all ellipsoids centered at the origin
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4350 A. Barvinok

and containing C . By Theorem 2.1, there exist vectors x1, . . . , xn ∈ C ∩ ∂ B and numbers

α1, . . . , αn ≥ 0 such that
n∑

i=1

αi(xi ⊗ xi) = I.

Applying Theorem 2.2 with γ = 4 to vectors
√

αixi, we conclude that for some J ⊂
{1, . . . , n} and β j > 0 for j ∈ J we have

I �
∑
j∈J

α jβ j(xj ⊗ xj) � 9I, (6)

and |J| ≤ 4d. We let

X = {xj : j ∈ J}.

In particular, xj ∈ C and ‖xj‖ = 1 for all j ∈ J. Comparing the traces of the operators in

(6), we get

d≤
∑
j∈J

α jβ j ≤ 9d. (7)

A linear function 
 : R
d −→ R can be written as 
(x) = 〈y, x〉 for some y∈ R

d. It follows by

(6) that ∑
j∈J

(α jβ j)〈y, xj〉2 ≥ ‖y‖2,

and then by (7) it follows that

|〈y, xj〉| ≥ 1

3
√

d
‖y‖ for some j ∈ J.

Since C ⊂ B, we have

max
x∈C

|〈y, x〉| ≤ ‖y‖,

and the proof follows. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let us denote V = R
d and let us consider the space

W = R ⊕ V ⊕ V⊗2 ⊕ · · · ⊕ V⊗k,

see Section 2.2. Let us define a continuous map φ : V −→ W by

φ(x) = 1 ⊕ x ⊕ x⊗2 ⊕ · · · ⊕ x⊗k for x ∈ V.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2014/16/4341/795407 by Access provided by H
EAL-Link (U

niversity of Athens) user on 23 O
ctober 2021



Thrifty Approximations of Convex Bodies by Polytopes 4351

We consider the compact set

Ĉ = {φ(x) : x ∈ C }, Ĉ ⊂ W.

We note that Ĉ lies in the subspace

R ⊕ V ⊕ Sym(V⊗2) ⊕ · · · ⊕ Sym(V⊗k).

In particular,

dim span(Ĉ ) ≤ 1 + d+
(

d+ 1

2

)
+ · · · +

(
d+ k − 1

k

)
=
(

d+ k

k

)
.

Applying Lemma 3.1 to Ĉ , we conclude that there is a set X ⊂ C such that

|X| ≤ 4
(

d+ k

k

)
,

such that for any linear function L : W −→ R we have

max
x∈X

|L(φ(x))| ≤ max
x∈C

|L(φ(x))| ≤ 3
(

d+ k

k

)1/2

max
x∈X

|L(φ(x))|. (8)

We define P as the convex hull

P = conv(X ∪ −X).

Clearly, P ⊂ C and P has at most 8
(d+k

k

)
vertices. To conclude that P approximates C with

the desired accuracy, we compare the maxima of linear functions 
 : R
d −→ R on C and

on P .

Suppose that


(x) = 〈y, x〉 for some y∈ V.

Let us define a linear function L : W −→ R by

L(w) = 〈T⊗
k (y), w〉 for all w ∈ W,

where Tk is the Chebyshev polynomial of degree k, see Section 2.1 and (4). Then by (5), we

have

L(φ(x)) = Tk(〈y, x〉).
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4352 A. Barvinok

Hence, from (8) we obtain

max
x∈X

|Tk(
(x))| ≤ max
x∈C

|Tk(
(x))| ≤ 3
(

d+ k

k

)1/2

max
x∈X

|Tk(
(x))|. (9)

Suppose that 
(x) ≤ 1 for all x ∈ P and hence |
(x)| ≤ 1 for all x ∈ X. Then by (2) we have

|Tk(
(x))| ≤ 1 for all x ∈ X. If for some x ∈ C , we have 
(x) > τ, then by (3) we have

|Tk(
(x))| > (τ − √
τ 2 − 1)k + (τ + √

τ 2 − 1)k

2
≥ 3

(
d+ k

k

)1/2

,

which contradicts (9). Therefore,

max
x∈P


(x) ≤ max
x∈C


(x) ≤ τ max
x∈P


(x), (10)

for every linear function 
 : R
d −→ R, which proves that C ⊂ τ P . �

3.1 Remarks

One can sharpen the bounds somewhat by noticing that the polynomial Tk is even for

even k and odd for odd k. Consequently, the map φ : V −→ W can be replaced by

φe(x) = 1 ⊕ x⊗2 ⊕ · · · ⊕ x⊗k−2 ⊕ x⊗k,

for even k and by

φo(x) = x ⊕ x⊗3 ⊕ · · · ⊕ x⊗k−2 ⊕ x⊗k,

for odd k. This allows us to replace
(d+k

k

)
by D(d, k) defined by (1) throughout the state-

ment of Theorem 1.1.

Instead of using Theorem 2.2, one can choose a random sparsification of the

John decomposition as in [14]. This will produce a slightly weaker bound for N in

Theorem 1.1 by introducing an extra logarithmic factor but may appear to be useful

for some applications.

Proof of Theorem 1.4. As in the proof of Theorem 1.1, we construct the space W, the

map φ, the set Ĉ , and the subset X ⊂ C so that (8) holds. We then define P as the convex

hull

P = conv(X ∪ (−1/μ)X).
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Clearly, P ⊂ C and P has at most 8
(d+k

k

)
vertices. To conclude that P approximates C with

the desired accuracy, we compare the maxima of linear functions 
 : R
d −→ R on C and

on P .

Let Tk be the Chebyshev polynomial of degree k. We define a polynomial Sk by

Sk(t) = Tk

(
2

μ + 1
t + μ − 1

μ + 1

)
.

Hence, deg Sk(t) = k. Moreover,

|Sk(t)| ≤ 1 provided − μ ≤ t ≤ 1 (11)

and

|Sk(t)| > (λ − √
λ2 − 1)k + (λ + √

λ2 − 1)k

2
provided t > τ. (12)

Given a linear function 
 : R
d −→ R,


(x) = 〈y, x〉 for some y∈ V,

we define a linear function L : W −→ R by

L(w) = 〈S⊗
k (y), w〉 for all w ∈ W.

Then

L(φ(x)) = Sk(〈y, x〉).

Hence, from (8) we obtain

max
x∈X

|Sk(
(x))| ≤ max
x∈C

|Sk(
(x))| ≤ 3
(

d+ k

k

)1/2

max
x∈X

|Sk(
(x))|. (13)

Suppose that 
(x) ≤ 1 for all x ∈ P . Then, necessarily, 1 ≥ 
(x) ≥ −μ for all x ∈ X and hence

by (11) we have |Sk(
(x))| ≤ 1 for all x ∈ X. If for some x ∈ C , we have 
(x) > τ, then by (12)

|Sk(
(x))| > (λ − √
λ2 − 1)k + (λ + √

λ2 − 1)k

2
≥ 3

(
d+ k

k

)1/2

,

which contradicts (13). Hence, (10) holds for every linear function 
 : R
d −→ R and, there-

fore, C ⊂ τ P . �
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Proof of Corollary 1.2. Let us choose τ = 1 + ε in Theorem 1.1. We use the standard

estimate (
d+ k

k

)
≤
(

d+ k

k

)k(d+ k

d

)d

≤ ed

(
1 + k

d

)d

. (14)

Let us choose

k=
⌈

βd√
ε

ln
1

ε

⌉
, (15)

where β > 0 is a constant. Then

1

k
ln

(
6
(

d+ k

d

)1/2
)

≤
√

ε

4β
(1 + o(1)), (16)

where “o(1)” stands for a term that converges to 0 uniformly on d as ε −→ 0.

On the other hand,

ln(τ +
√

τ 2 − 1) =
√

2ε(1 + o(1)),

where “o(1)” stands for a term that converges to 0 as ε −→ 0. Then, as long as

β >
1

4
√

2
,

the condition of Theorem 1.1 is satisfied for all sufficiently small 0 < ε < ε0(β). The proof

now follows by (14). �

Proof of Corollary 1.5. To prove Part (1), we observe that λ = 1 + δ, and hence,

ln(λ +
√

λ2 − 1) =
√

2δ(1 + o(1)), (17)

where “o(1)” stands for a term that converges to 0 as δ −→ 0. In Theorem 1.4, let us

choose k defined by (15) with ε replaced by δ. Comparing (16) with ε replaced by δ and

(17), we conclude the proof as in the proof of Corollary 1.2.

To prove Part (2), in Theorem 1.4, we choose τ = 1 + ε and k defined by (15). Then

ln(λ +
√

λ2 − 1) = 2
(

ε

μ + 1

)1/2

(1 + o(1)), (18)

where “o(1)” stands for a term that converges to 0 uniformly on μ ≥ 1 as ε −→ 0. Com-

paring (18) and (16), we conclude that the condition of Theorem 1.4 is satisfied for all
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sufficiently small 0 < ε < ε0(β) as long as

β >

√
μ + 1

8
.

The proof now follows by (14). �

Proof of Corollary 1.3. Let us choose τ = γ
√

d/k in Theorem 1.1, where γ > 0 is a con-

stant. Using Stirling’s formula, we conclude that for each k

lim
d−→∞

1√
d

61/k

(
d+ k

d

)1/2k

=
√

e

k
(1 + o(1)),

where “o(1)” stands for a term that converges to 0 as k grows.

On the other hand, for each k

lim
d−→∞

τ + √
τ 2 − 1√
d

= 2γ√
k
.

The proof now follows by Theorem 1.1. �
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