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Abstract

We give an algorithm to obtain formulae and values for minors of Hadamard matrices. One
step in our algorithm allows th@ — j) x (n — j) minors of a Hadamard matrix to be given
in terms of the minors of a/2'1 x 2/~1 matrix. In particular we illustrate our algorithm by
finding explicitly all the (n — 4) x (n — 4) minors of a Hadamard matrix. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

A Hadamard matrixd of ordern is ann x n matrix with elementst1 and
HHT = nl. For more details and construction methods of Hadamard matrices we
refer the interested reader to the books [1,2]. Hadamard matrices ofrondee de-
terminant of absolute valug'/2. Sharpe [3] observed that all tite — 1) x (n — 1)
minors of an Hadamard matrix of orderare zero om®/2-1 and that all the
(n — 2) x (n — 2) minors are zero or?"/?-2_and all the(n — 3) x (n — 3) minors
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are zero or 47/2=3 We note that the maximum determinant corresponds to having
the submatrix

1 1 1
H _1} or 1 1 -
1 - 1

in the upper left-hand corner of the Hadamard matrix/fer 2 andn — 3, respec-
tively. We give a useful method for finding tike— 3 andn — 4 minors which points
the way to finding other minors such as the- j minor.

Notation 1. We write
Jb1,b,....b:

for the all ones matrix with diagonal blocks of siziesx b1, by x ba, ..., b, x b;.
Write

aijJpy,by,....b.
for the matrix for which the elements of the block with corn@rs- b1 + b2 + - - - +
bj_1,i+bi+bo+---+bi_1), (+br+ba+---+bj_1,b1+ba+---+Db),
(br+ba+---+bj,i +b1+ba+---+bi-1), (br+ba+---+bj,br+ba+ -
+ b;) areq;; an integer.
Write

(k — aii)Ipy by,....b,

Z

for the direct sumk — a11)Ip, + (k — a22)Ip, + - - + (k — az) I, .
See Appendix A for examples.

Notation 2. We use— for —1 in matrices in this paper. Also, when we say the
determinants of a matrix we mean the absolute values of the determinants.

Remark 1. We note that the determinant of any matdix= (4;;) is the same as the
determinant obtained by finding the element of maximum absolute value in each row
i, sayb; = maxa;;, and dividing each element of roiby b; so every element in

that row has absolute value 1, and then multiplying the determinant by, That is

detA = b1b, - - - b, detA’ where every element of’ has absolute valug 1. Call

det A’ the determinant on the unit disk.

2. Preliminary results

We first note a very useful lemma as it allows us to obtain bounds on the column
structure of submatrices of a Hadamard matrix.
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Lemma 1 (The distribution lemma).et H be any Hadamard matrix, of order n > 2.
Then for every triple of rows of H there are precisely n/4 columns which are
@@L or (-, - )7,

(b) (1,1, 5T or (=, =, DT,

©@ - Dlor (-1,

@, - -"or (1,17

Proof. Let the following rows represent three rows of an Hadamard métrof
ordern.

ui u u3s usq us ue uyz usg
1---1 1--v1 1---1 1---1 —+iim i e o
1--.17 1---1 —v..—- —vei - 1--v1 1--1 —...— ...
1...1 —voo—- 1--41 —veo— 1--41 —vei— 1--41 —...—

whereus, us, ..., ug are the numbers of columns of each type. Then from the order

and the inner product of rows we have

U1+ u2 +u3+ug+ us+ueg+uy+ug =n,
U1+ up —u3 —ugq —us —ug+u7+ug =0, (l)
U1 — U2 +u3 —ugs —us+ug—u7+ug =0,
U1 —up —uz +ua+us —ue —uy+ug=0.

Solving we haver; +ug = uz +u7 =uz+ue =ug+us=7. 0O

We now note that without any loss of generality the rows and columns of a Had-
amard matrixH, may be multiplied through by 1. Hence the first row can be chosen
to be all ones. Further, also without loss of generality, the columns of the Hadamard
matrix can be sorted until they are in lexicographical order.

If we are considering thé: — j) x (n — j) minors, then the firgtrows, ignoring
the upper left-hang x j matrix, have 2~1 potentially different firsj elements in

each column. LefigJrl be the vectors containing the binary representation of each
integerg +2/~"1for g =0,...,2/~1 — 1. Replace all zero entries %H by —1

and define thg x 1 vectors
Up = Xoj-1_k41> k= 1,...,2].71.

Letu, indicate the number of columns beginning with the vecigrs = 1, .. .,
21,
We note

2/-1

Zuizn—j. (2

i=1

We writeU; for all the j x (n — j) matrix in whichu, occursu; times. So
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uq up Upj—1_4 Uyj—1
— — — —

Example 1. For example forj = 3. Here there are four numbers from 3 to 0. Their
binary representations give columns beginning

111", @¢1-1", @-1,17, @€ -1,-n"

So we consider the matrix with first three rows in the form

ui u us Uug
et T e N N
1 1 1 1

1 — —
— 1 —

Uz = 1
1
Wherer=l u; = n — 3. We note that foj < 3, we can solve uniquely for eaaf.
Similarly for j = 4, there are eight numbers from 7 to 0. Their binary representations
lead us to consider the matrix with four rows in the form

U1 U2 U3 U4 U5 U U7 U

1 1 1 1 1 1 1 1
1 1 1 - - - -
1 - - 1 1 - -
-1 - 1 - 1 -

Uy =

N

where Z?:l ui =n —4. For j > 4, we cannot solve uniquely for eachut we
know u; > 0 and many inequalities such as + u2 < n/4, us + u4 < n/4 can be
deduced from the orthogonality of the Hadamard matrix.

In fact we note ifn = 4¢, the orthogonality of the rows of the Hadamard matrix
gives

t—j<ugi-3p g+ tugi-2<t,
[—j<M2j—2+l+"'+uzj—2+2j73<t,

t —] < M2j—2+2j—3+1+ +M2j—1 < t.
Each of these equations can be rewritten so the constraints become

O0<r—up—up—-+—up-3<j,
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0<t—upj-ag—- - —up-2< ],
0<r— Ugj-249 — +++ — Ugj-242j-3 < j7 (4)
0<l‘—uzj—2+2j—3+1_"'_u2j*1 <J

In practice we expect each ~ [1/2/=3], where [] means the integer part.

3. Thematrix D

We write
H= [M Y ] (5)

for the Hadamard matrix of order The coefficients in théz — j) x (n — j) matrix
CCT obtained by removing the firgtows and columns of the Hadamard matrix can
be permuted to appear in the form

CCT =(n-— j)lul,uz,...,uz + aikJul,uz,...,qu 7= 2j_17

where(a;x) = (—u; - u;), with - the inner product. By the determinant simplification
theorem (see Appendix A)

detcCT = n"? " ~idetD,
whereD, of order 21, is given by

n—jul  upal2  u3aiz ---  Uzai;
uiaz1  no— jup u3azz -+ Uzaz;
D=
uiazi uzaz2 u3a;z -+ n— jug

If the number of columns with the vectay isu, = 0, then the symmetry afCT
will force D to have its order reduced by 1 for each= 0.

Next we apply a mathematical package such as Mathematica, Matlab or Maple
to obtain an explicit formula for d@, and thus de€ CT, in terms ofu, , j, u, . .
Upj-1.

We gave five constraints on these variables above. We note we have in fact far
more constraints as the orthogonality of pairs of rowdHpfplus the order oH
means we hav@)ﬂ constraints in total from the rows plus thé2 constraints,

0<u; <t,foralli=1,2,...,2/71,

Thus we wish to find the values of the dtand especially the maximum val-
ue of the debD, the object function, subject t%;(j2 — j +2) + 2/~ equations or
inequalities. This is of course a straightforward linear programming problem. The
nature of the constraints, obtained from orthogonality and simple counting, is such
that the constraints form a convex hull. Now the simplex method for solving a linear
programming problem, noting that the extremal values of the object function occur

L)
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at a vertex of the convex hull, moves from one vertex to another, seeking to optimize
the object function. All other values of the object function occur at interior lattice
points of the convex hull.

We note each variable; can take at most+ 1 values and there at most 2
suchu;. Hence there arg + 1)2/~1 possible vertices. We test each of these possible
vertices against the constraints to see which possible vertices are actual vertices. We
then test each of these actual vertices in the object function to see which real square
integers occur as solutions, det= s2.

Then deC = n/20=i-2"h,

Let A; be the 2-1 x j matrix of entriest1 obtained by writing the binary num-
bers 0to 2-1 — 1 as rows and then replacing all the zeros by 1 and oneslby

Example 2.
1 1
.] = 27 A] = -1 _:| ’
[1 1 1
1 1 -
j=3 Ai=11 -
_1 - -

We now give a lemma which allows us to describe the distribution of coefficients
inD.

Lemma?2. LetB = AjA]T. = (b;¢). Then the element j occurs oncein each row and

columnofBand j — 2i,i =0, ..., j — 1 occursin each rowandcolumnofB(-fjl)
times.

Proof. For j =2, 2 occurs once and 0 occurs once in each row and column. For
j = 3, 3 occurs once, 1 occurs twice ard occurs once in each row and column.
For j = 4, 4 occurs once, 2 occurs three times, 0 occurs three times 2amacurs
once in each row and column.

We now proceed by induction. We have the lemma is true for small valugs of
We assume that the lemma is true forakl k. We now proceed to prove the lemma
is true for casé& + 1.

Now let the rows ofA; be the vectors (in 1—1 notation)él,éz, .. .,ﬁzk_l.
We note that the rows ofd;,1 are the vectorsy; = (1, ﬁi), and yy-1,; =

(17 _EZk—l—i+1)’ i = lv ey 2k_1-
SinceAkAZ is symmetric with the same distribution of elements in each row and
column it suffices to consider the inner product of the first rowd pf; with each of

the other rows. We first note the inner product of the first row with itséif4s1 and
with the last row is 1- k as required by the lemma.



C. Koukouvinos et al. / Linear Algebra and its Applications 330 (2001) 129-147 135

In the first row ofA; a coefficientk — 2i,i # 0, occurrec(kl-.l) times meaning
exactly(k N 1) rows inA; had inner produdt — 2i with the first row. These same rows

will have inner product & k — 2i if the row is in the first 21 rows of A;;1 and
1 — k + 2i if the rows were in the second 2! rows of Ay 1. That means % k — 2i
occurs(k N 1) from the first 2 rows and(ﬁ:}) times between the first row and rows

of the second half ofi;41. Thus the coefficients + 1 — 2i occurs

k—1 k—1\ _ k(k—=D! [k
i )T \ke—i Nk =i\

as required.
Hence the lemma was true for smialland being true foj = k£ meant it was true
for j = k + 1. Hence we have the proof by inductiorn]

However, our definitions of the coefficienig, of the matrixD described above
give that the coefficient@ix, az, . . ., azx), z = 2/~ are, as given in the last lemma
(j—2i) occurring(-/’;1 ,i=1,...,j—1,times as the coefficiepbccurs down the
diagonal. Thus the sum of the squares of the elements in cdlofiD is

j—1
(n— jui)® +uf Y (7 — 2%
i=1
We illustrate the algorithm foy = 3 andj = 4.

4, (n —3) x (n — 3) minorsof Hadamard matrices

Theorem 1. The (n — 3) x (n — 3) minors of an Hadamard matrix of order n are
zero or 4n(/2=3,

Proof. Assume the first row and column of the Hadamard matrix have been normal-
ized to be all ones. This does not alter the determinant.

Assume the first three rows of the Hadamard matrix, ignoring the upper left-hand
3 x 3 matrix for which we are calculating the minor, are:

where the columns have been permuted so that the ficsilumns contairil, 1, 1T,
thenuy columns with(1, 1, —)T, thenusz columns with(1, —, 1)T and lastus col-
umns with(1, —, —)T.
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Further assume that the rows have been permuted so that the first three columns
contain firstuy rows with (1, 1, 1), thenu’, rows with (1, 1, —), thenu} rows with
(1, —. 1) and lastu, rows with(1, —, —).

We now remove the first three rows and columns from the original, permuted
Hadamard matrix, and the remainiog— 3) x (n — 3) matrix is calledC. We write
k for n — 3 and3 for —3. In this cas& C T is

- uq u us ua T
kK 3 31 1 11 1 1 1 1 1
3 % 31 1 11 1 1 1 1 1
3 3 k1 1 1 1 1 11 1 1
1 1 1 k& 3 31 1 11 1 1
11 1 3 % 31 1 1 1 1 1
ceTo |11 1 3 3 k11 1 1 1 1
11 1 1 1 1 k 3 31 1 1
11 11 1 1 3 % 3 11 1
11 11 1 1 3 3 k1 1 1
11 11 1 11 1 1 k& 3 3
11 1 1 1 11 1 1 3 k% 3
11 .- 111 ... 111 1 3 3 k_
Then, we have detCT = n"~'detD, where
n—3u1 —us —u3 U4
—u1 n—3up u3 —Uq
D= ,
—u1 u n—3us —Uq
ui —u —us3 n—3ua

wheren = 4f,u1 +us+uz+ug=4—-3,0<r—u; <3,i=1,2,3,4and

detD=u1(n — 4uz)(n — 4uz)(n — 4ug)
F+uo(n — dur)(n — 4uz)(n — 4uy)
4+ uz(m — dur)(n — 4u)(n — 4uy)
+ua(n —4u1)(n — 4u)(n — 4uz)
4+ (n —4u1)(n — 4uo)(n — 4uz)(n — dug).
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or
4

4 4
detD = Z u; 1_[ (n—4uy) ¢ + H(n — du;).

i=1 k=1,k+i i=1
We now choose all possible choices o, up, uz andua S0 u1, up, uz, us €
{t,t,t,t —3yore{t,t,t — 1 t—2ore{tr,t —1,¢t—1,¢t— 1}. All choices from
the first two sets give zero determinant. The third set give®det16n.
The minors are 47/2-3 and 0 as def CT = (detC)%. O

5. (n —4) x (n — 4) minors of Hadamard matrices

Theorem 2. The (n — 4) x (n — 4) minors of an Hadamard matrix of order n are
zero, 8n"/2~4 or 16n/2—4,

Proof. We proceed as in the previous proof but now we use the first four rows and
columns and ignore the upper left-hanc 4t matrix for which we are calculating

the minor.
LetZ?:1 u; =n —4,whereus, up, ..., ug correspond to the number of columns

with entries

U1 U2 U3 U4 U5 U U7 U§

11 1 1 1 1 1 1
11 1 1 - - - -
11 - - 1 1 - -
1 -1 - 1 - 1 -

in the first four rows, respectively, after thex44 principal submatrix has been re-
moved. Also above, we assume that the rows have also been permuted, so the ele-
ments of the first four columns are grouped similarly.

We now remove the first four rows and columns from the original, permuted Had-
amard matrix, and the remainirig — 4) x (n — 4) matrix is calledC. In this case

CCT = (k — aij) Iy,

.....

where
k=n—-4, a;=-4, aip=-2, aiz=-2, as=0,
ais=—-2, aie=0, a17=0, aig=2, az3=0,
aza= -2, axp=0, ax=-2, ax=2, azg =0,
azga=—2, azxs=0, azx=2, az7=—2, azg=0,
ass =2, ase=0, as7=0, asg= —2, asg= —2,

as7=—2, asg=0, ag7=0, asg = —2, arg= —2.

Then, withk = 4r — 4, detCCT = n"~12detD, whereD is the following matrix:
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rdt —4uqy —2un —2u3 0 —2usg 0 0 2ug ]
—2u1 4t —4du 0 —2ug 0 —2ug 2u7 0
—2uq 0 4 — dujy —2u4 0 2ug —2u7 0
0 —2uy —2u3z At —duy 2us 0 0 —2ug
—2uq 0 0 Zug 4t — 4dusg —2ug —2u7 0
0 —2uy 2u3 0 —2ug 4t — dug 0 —2ug
0 2up —2u3 0 —2us 0 4 —4uy;  —2ug
L 2uq 0 0 —2ug 0 —2ug —2u7 4t —4ug

In this particular case, as we have worked by hand, we have used the properties
of determinants to further simplify our determinants before turning to the computer.
However a computer program can work from this point straightforwardly. Divide the
elements of each column by 2 so we have @ef = 28:"~1%detE, where

E =
r2t—2uq —u —us3 0 —usg 0 0 ug ]
—u1 2t — 2uo 0 —ug 0 —ug u7 0
—uq 0 2t — 2u3z —ug 0 ug —u7y 0
0 —u —us3 2t — 2ugy usg 0 0 —ug
—u1 0 0 us4 2t — 2usg —ug —u7 0
0 —un us 0 —ug 2t — 2ug 0 —ug
0 us —u3 0 —ug 0 2t — 2u7 —ug
L uq 0 0 —ug 0 —ug —uy 2t — 2ug |

Now, add twice the 8th row to the first; add twice the 7th row to the second; add
the 8th row to the second, third and fifth rows; and add the 7th row to the first, fourth,
and sixth rows. Take row four from rows one, two, three and half row four from row
seven. Divide rows 1, 2, 3, 4, 5 and 6 by 2 and dlin2o the determinant multiplier.
Take row 6 from rows 1,2,5 and 7 and divide rows 1, 2, 3 and 6y putr* into
the determinant multiplier. Now we have d&€ " = 26,"~8detF, where

1 0 0 -1 0 -1 -1 2
0 1 0 -1 0 -1 0 1
0 0 1 -1 0 0 -1 1
F 0 O —u3z t—uq4 0 0 t—uy —usg
~10 O 0 0 1 -1 -1 1
0 0 0 0 —us t—ug t—uy —usg
0 u 0 —t + uUg 0 —t + ug 0 usg
ul 0 0 —Uq 0 —Ug —uy 2t — Zug_

Add us times row 5 to row 6, takes times row 1 from row 8, take, times row 2
from row 7 and addi3 times row 3 to row 4. Now expand the determinant to obtain
2%7"-8detG, whereG is given by

I —u3—ua 0 t—u3—uy u3z —usg

G— 0 t—us—ug t—us—uy us — ug

T —tdusdtus —t+up+ug 0 ug — u
UL — Ug Ui — Ug Ul — U7 2t — 2uy1 — 2ug
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Hence def = 23:(/27—4 /detG. We now use
1+ up 4+ u3z 4+ ug+ us + ue + u7 +ug = 4t — 4,
0<t—u1—up <4, wui+tup+ax=t,
0<t—uz—us<4, uzstus+as=t,

0

N

t—us—ug <4, us+ustas=t,
4

O0<t—ur—ug<4, ur+ug+ag=t,

where 0< a2, aa, as, ag < 4 are the slack variables and + a4 + ag + ag = 4.
So the determinant becomes

as 0 as t—u4—ug
_ 0 a a t—ug—1u
26(4t)n 8 6 8 6 8
—daz —az az + asg uz —ug

t—up—u4 t—uUp—ug Up—ug 2t —Up—Uq—Ug— U8

We have evaluated the determinant of the theorem for all different valugs of
by computer, and obtained the results in Table 1.

We have chosen to work with the slack variadsle€ather than tha;’s as this leads
to simpler expressions for calculating by hand.

Forthe cases = 1,a4 = 1,a6 = 1,ag = 1 we take the constraints; + u; 11 =
t—1fori =1, 3,5, 7 and find the expressioiX4- (t — up — us) — (t —up —
ug)2 — (t — usg — ug)?® — (t — ug — ug)? — (uz — ug)® — (us — ug)? for the determi-
nant. We now evaluate this at the vertices of the convex(yllus, ues, ug) where
exactly two of the variable@:7, ug) or (u4, ug) arer — 1 and two are zero to get the
value 4. All the other vertices, except 12 which give determinant 1, give non-positive
values for the determinant. (We found the 12 cases by exhaustive enumeration of
the cases.) However, the determinantC@ " must be a square and so the negative
values are impossible. Hence the maximum determinant is 4.

For the convex hull where exactly one of theis t — 2, exactly one is — 1 and
two are zero and two of the correspondingare 1, one is 2 and one is zero. We get
the maximum determinantis 1. Without loss of generality, as the expressions in Table
1 are symmetric in the variables in the sense that i+ — 2 andu; = 0, theny;
occurs in all four terms of the expression andoccurs in the termsgu; — Mj)z or
(t — u; — u;)? which have coefficient 1.

We now have two cases corresponding to different expressions. For the first case
the expression for the determinant is

4 —2u; —2u; — 2up — 2up — (u; — uj)2
—2(t — ui — w)® = 2t — ui — ug). (6)

Then the determinantis 1 if; =0,a; =2, ar =1, ar =1, u; =t —1,u; =
t—2,ur =0,uy =0s0ou;_1 = l,uj_]_ =0up_1=t—1up_1=1t-—1.
In the other case the expression for the determinant is
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Table 1
ap ag ag ag Value of determinant

X =2t —up—ug—ug—ug
0
0
0
—3(uz — ug)?
—3(t —up — u5)2
—4(uz — ug)?

K — 2(up —ug)® — 2t —up — ug)? — (t — up — ug)?
—4(t —up — u5)2

—3(uz — ug)?

K — 2(up —ug)? — (t —up — ug)® — 2(t — up — ug)?
X — (up — ug)2 —2(t —up — u5)2 —2(t —up — u4)2
—3(t —up — u5)2

—3(t —up — u4)2

—4(t —up — u4)2

—3(t —up — u4)2

0

—3(t —ugq — ug)2

—3(ug — ug)?

—A(t —ug — ug)2

X — 2(ug — ue)2 —2(t —ug — ug)2 —(t—up— u4)2
—A(ug — ug)?

—3(t —ugq — ug)2

X — (ug — u5)2 —2(t —ug — ug)2 —2(t —up — u4)2
K — 2(ug — ug)? — (t —ug —ug)® — 2t — up — ug)?
—3(ug — ug)?

—3(t —ug — ”8)2

—4(t —ug — ”8)2

X — 2(ug — ue)2 —(t—ux— u5)2 —2(t —ug — ug)2
—3(t —ug — ”8)2

K — (ug — ug)® — 2t — ug — ug)®> — 2(t — up — ug)?
X — 2(ug — ue)2 —(t —ug — ug)2 —2(t —up — ue)2
X — (ug — up)? — 2t —ug — ug)® — 2(t — ug — ug)®
K — 2(up — ug)® — 2(t —ug — ug)® — (t — ug — ug)®
X — 2(up — ug)2 —(t —ug — ug)2 —2(t —ug — ug)2
& — (1 —up — ug)® — (t —up — ug)® — (t —ug — ug)?
—(t — ug — ug)? — (uz — ug)? — (ugq — ug)?

P RPRPNRPEPRPNNORPRPRPENNMNNOWOPMNOOODOOOO0OODODOOOOOO
PRPNPFPRPNWOPRPNMNPOOOOOOOOOO0OOO0OORRFPRFRPENNMNMNWWOOAM
P NPPOOOOOOORFRPRNWORLRNORFRPORPNWORPRNWORLRNOPRPROPMDO
P OOONRPRORFRPROOWNRPEPONRPOPRPROOWNREPWNRPEPONRPORLOMOO

4 —2u; —2uj — 2ux — 2up — 2(u; — Mk)z
—(t —ui —uj)? =20t —u; —up). (7

The determinantis1#; = 0,a; =2,axr =1,a¢ =L,u; =t —1,u; =0,u =
t—2,ur =0S0u;_1 = l,uj,1=t—2,uk,1= lug_1=1t—1.
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We now form a 4x (n — 4) matrix by choosing the appropriate columns given at
the beginning of this proof using the valuesiaf uz, us, - - -, ug found in the two
cases. If we choose the first row and first column as all ones, which we can always
do, there is at most one way, up to permutation of columns 2, 3 and 4 to complete
the 4x (n — 4) matrix to form a Hadamard matrix.

We now have to systematically look through all the possible @ — 4) subma-
trices which can be formed satisfying Eqgs. (6) and (7). Some of them could have
no completion to a Hadamard matrix and some could have only one completion. In
practice we found a single completion in each case.

We first consider an example of a solution to equation (6). For

At — 2uo — 2ug — 2ug — 2ug — (u2 — u8)2
—2(t — up — ug)®> — 2(t — uz — ug)?,

the determinantis 1ifp =0,as =1,a6 =1,a8 =2, up =t — 1,us =0,ug =0,
ug=1t—2s0ou1 =1,uz3=t—1,us=t—1,u7=0.
This gives the 4« (n — 4) submatrix:

t—1 t—1 t—1 t—2
—_ = =

——
1 1 1 1 1
1 1 1 — -
1 1 — 1 -
1 - 1 1 -

By considering the inner products of these rows (the first with the other 3 is 2
and the other pairs are orthogonal) we find that this can be extended to a Hadamard
matrix by using the 4 4 submatrix (or a column permutation thereof)

1 1 1 1
- - =1
1 — — =
- 1 - =
as the upper left-hand corner (or lower right-hand corner) of the Hadamard matrix.

We note that this 4« 4 matrix has determinant 8. We now consider an example of a
solution to Eq. (7). For the determinant expression

At — 2u2 — 2us4 — 2ug — 2ug — 2(ug4 — u6)2
—(t — up — ug)® — 2(t — ug — ug)?,

the determinantis 1 ifip =2,a4=1,a6=0,a8=1,u2 =0, us =1t — 2, ug =
t—1lug=0sou1=t—2,uzs=1,us=1,u7=1t—1.

We find, similarly, this has a unique solution up to permutation of the samd 4
submatrix.
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The calculations for all other submatrices are similar. In each casesthé gub-
matrix had determinant 8.

Hence we have thé: — 4) x (n — 4) minors of an Hadamard matrix of order
are zero, 8"/2-4 or 1624,

6. (n— j) x (n — j) minorsof Hadamard matrices

We now outline the method to evaluate tive— 5), (n — 6), ..., (n — j) minors.
For the(n — j) x (n — j) minors we evaluate

detcCT = "2 " ~idetD, 8)

whereD is the 2-1 x 2/~1 matrix given in Section 2.

The Algorithmfor (n — j) x (n — j) minorsof ann x n Hadamard matrix, H

Sep 1. Generatek1 matricedM, of orderj with first row and column al1.

Sep 2. Form the general matriyy = [M Uj], of sizej x n for the firstj rows
of ann x n Hadamard matrixd, whereU; is given in (3).

Sep 3. For eactM consider all({;,) subsets of three rows dfand use the distribu-

tion lemma withzf:ll u; = n — j to form four equations in the variablas, . . .,
upi-1 for each subset. A total number ofi equations from which3) + 1 are
different.

Sep 4. For eachM search for all feasible solutions to the different equations
generated at Step 3.

Sep 5. For eachM and for each feasible solution found in Step 4 use the matrix
D to find all possible values of the — j) x (n — j) minors.

I mplementation of the algorithm

How to efficiently generate the set of equations

We note that any triple of rows d¥ «a, b, ¢ and the equatiorzl?g1 uj=n-—j
allows us to see that, writing the inner product of rews$, c in N allows us to obtain
four equations

urtuzx+...+ug-1=n-—j,

ma 'mb +Ll(ulv"'7u2j*1) =O’ (9)
ma : mC + LZ(ul, ceey uzj—l) = 07
my, -m.+ L3(ui, ..., upi-1) =0,

whereLj, L and L3 are the linear combinations of, . .., uy;-1. Solving Eq. (9)

will allow bounds on sums of subsets of at mokt3uy in terms ofn, - m,,m,, - m,.,
my, - m, andn/4.
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Example 3. Letn = 16 andj = 5. We write the first five rows dfl as

ui uz uz uq us U uy ug ug U0 U1l uU12 U13 U4 U15 U16
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M 1 1 1 1 1 1 1 1 - — = = - - - =
1 1 1 1 - - — — 1 1 1 U —
11 - - 1 1 - - 1 1 — — 1 1 — —
i1 -1 -1 -1 - 1 - 1 - 1 - 1 -

recalling thatuq, uo, . .., u1s are the number of columns of the kind indicatbtis

the 5x 5 submatrix that will be removed in forming thie — 5) x (n — 5) minors.
From the order we have

16
D ui =11 (10)
i=1

We first see by the distribution lemma that
O0<u; <4 (12)

Also we have the constraints:
4—utiaj —uppaj —uspsj —uspa; <5, j=0,1,23

By careful counting, we see that if the first row and colummvbére+1, there
are 50 matriceM with distinct inner product vectors.
The inner product of rowsandj of N plus (10) are

U1 t+up+uz+us+us+ues+uy+ug+ug+uio
+uir+uiz +u1z+uis+uis+uie =11,

(my -my) +us+uz+u3+us+us+ue+uz+ug —ug — uip
—u11—u1p2 — u13— u14 — uis — uie = 0,

(mq-mg) +ug +uz+uz+us—us —ue — uy — ug + ug + u1o
+u11+u12 — u13 — uig — uis — uie = 0,

(my-mg) +us+up+u3+ug—us —ue — uy — ug — ug — U1
—u11—u12+u1z+uia+uis+uie =0,

(mq-my) +ug+uz —uz —ua+us+ue — uy —ug + ug + uio
—u11—ui2+u13+ui4 — uis — uie = 0,

(my-my) +us+up —uz —ug+us+ue —uy —ug — ug — Ui
+u11+uiz —u13 — uis+uis+uie =0,

(m3-my) +ug+uz —uz —ua —us — ue +u7 +ug + ug + u1o
—u11—ui2+u13+ui4 — uis — uie = 0,

(my -mg) +us —up+u3 —ug+us —ue+uy —ug+ug — uip
+u11 —u12+u13 — uia+uis — uie = 0,

(my - mg) +u1 —uz +uz — ug +us — ug + uy — ug — ug + uU10
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—u11+uiz2 —u13+ui4 — uis +uie =0,

(mg-mg) +u1 —uz +uz — ug — us +ue — u7 + ug + ug — U1
+u11 —uiz —u13+uis — uis +uie =0,

(my-mg) +us —up —uz+ug+us—ue —uy +ug+ug — uip
—u11+uiz2 +u13— ui4 — uis+uie = 0.

This can of course be simplified analytically but as we propose using a computer
package this is not necessary. All possible solutions of these inequalities should be
used in the determinant of the corresponding mdirito obtain numerical results.

In this caseD is, writingm = n — 5,
(m -3 -3 -1 -3 -1 -1 1 -3 -1 -1 1 -1 1 1 3]
m -1 -3 -1 -3 1 -1 -1 -3 1 -1 1 -1 3 1
m -3 -1 1 -3 -1 -1 1 -3 -1 1 3 -1 1
m 1 -1 -1 -3 1 -1 -1 -3 3 1 1 -1
m -3 -3 -1 -1 1 1 3 -3 -1 -1 1
m -1 -3 1 -1 3 1 -1 -3 1 -1
m -3 1 3 -1 1 -1 1 -3 -1
m 3 1 1 -1 1 -1 -1 -3
m -3 -3 -1 -3 -1 -1 1
m -1 -3 -1 -3 1 -1
m -3 -1 1 -3 -1
m 1 -1 -1 -3
m -3 -3 -1

m -1 -3
m -3
m

where every constant in columiof D is multiplied byu;, the diagonals becoming
m = n — 5u;, andD is, in fact, symmetric.

Appendix A

A.1. Determinant simplification theorems

ExampleA.1.
CCT = (k=)L + 1y (A.1)
is thev x v matrix
k A A
Ak by
A A

cct= | >
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LemmaA.l. Suppose C isa matrix of order v x v satisfying CCT = (k — 1)1, +

AJy givenin (A.1). Then, detCCT = (k4 (v — D)A)(k — )P~ L.
Proof. Use the determinant simplification theorent.]

Example A.2.
CCT = (k — ai) Iy + aij Ju.v,

where

b
(aij) = [Z a}

isthe(u + v) x (u + v) matrix

_ u v _
k a a b b b

a k a b b b
cc'=a a k b b b
b b k a a

b b b a k a

b b -+ b a a --- k]

(A.2)

LemmaA.2. Suppose C is a matrix of order (u + v) x (u +v), where n =
u + v, satisfying CCT = (k — a;;) Ly + aij Ju» givenin (A.2). Then, detCcCT =

(k — a)"2detD, where

D k+ (u—1Da ub
- vb k+w—=21al"

Then, detCCT = (k — a)"2((k — a)?2 + an(k — a) + uv(a? — b?)).
Proof. Use the determinant simplification theorem and exgand(]

Example A.3.
CCT =(k— aii)]u,v,w,x + aij-]u,v,w,xv

where

(aij) =

€ Qo o8
% - 0 8 &
o Q o O
ISR SR

isthe(u + v+ w + x) x (u + v+ w + x) matrix

(A.3)
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~ u v w X —_
k a -+ a b b --- b ¢ ¢ -+ ¢ d d - d
a k -~ a bbb -« b ¢ ¢ - c d d - d
a a k b b b ¢ c c d d d
b b b k a a I f f
b b b a k a f f f
ccl=|p » b a a k e e e f f f
c ¢ c e e e k a a g g g
c ¢ c a k a g g g
c ¢ c e e e a a k g g g
d d d f f f g & g k a --- a
d d d f f f g g g k a
d d -~ d f f -~ f g g -+ g a a - ko

LemmaA.3. SupposeCisamatrixof order (u + v+ w + x) x (u + v+ w + x),
where n = u + v + w + x, satisfying CCT = (k — a;;) Lu,v,wx + aij Ju,v,w,x GiVEN
by (A.3). Then

detCC' = (k — a)"“detD,

where
k+ (u—1a vb wce xd
D ub k+ (v—1a we xf
- uc ve k+ (w—Da xg
ud vf wg k+(x —Da

(A.4)
Proof. Use the determinant simplification theorent.]

Theorem A.1 (Determinant simplification theorem)et

<<<<<<<<<

Then

z
detCCT = [ [tk — a;i)" ~*detD, (A.5)
i=1
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where
k+ (b1 — Darr boai2 bzaiz - bzay;
5 biaz1 k+ (b2 —Dazz bzazz --- bza;
bia;1 boazo bzazz -+ k+ (b; —Dag,

Proof. We note the matri CT hask down the diagonal and elsewhere the elements
are defined by the block of elemeats.

We start with the first row and subtract it from the 2nd to tath row. Then take
the first row of the 2nd block (thk; + 1st row) and subtract it from thig + 2th to
b1 + both rows. We continue this way with each new block.

Now the first column hasa1y — k b1 — 1 times, therup1 followed by by — 1
rows of zero, thems; followed bybs — 1 rows of zero, and so on until we hawg
followed by b, — 1 rows of zero. We now add columns 249 to the first column:
each of the columns; + 2nd tobs + - - - + bath to theb; + 1st column; and so on
until finally add each of the columrig + - -- + b,_1 + 2nd toby + - - - + b,_1th to
theby + - -+ + b,—1 + 1st column.

The rows which contain zero in the first column will have- a;; on the diagonal
and all other elements zero. They can then be used to zero every element in their
respective columns.

We now expand the determinant, taking into the coefficient those rows and col-
umns which contaitt — a;; as required. The remaining matrix to be evaluated is
given in the enunciation. O
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