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Preface to the Third Edition

The title of this book indicates a dual purpose. Our first aim is to introduce
fundamental ideas of algebraic numbers. The second is to tell one of the
most intriguing stories in the history of mathematics—the quest for a proof
of Fermat’s Last Theorem. We use this celebrated theorem to motivate
a general study of the theory of algebraic numbers, from a reasonably
concrete point of view. The range of topics that we cover is selected to allow
students to make early progress in understanding the necessary concepts.

‘Algebraic Number Theory’ can be read in two distinct ways. One is
the theory of numbers viewed algebraically, the other is the study of al-
gebraic numbers. Both apply here. We illustrate how basic notions from
the theory of algebraic numbers may be used to solve problems in number
theory. However, our main focus is to extend properties of the natural
numbers to more general number structures: algebraic number fields, and
their rings of algebraic integers. These structures have most of the stan-
dard properties that we associate with ordinary whole numbers, but some
subtle properties concerning primes and factorization sometimes fail to
generalize.

A Diophantine equation (named after Diophantus of Alexandria, who—
it is thought—lived around 250 and whose book Arithmetica systematized
such concepts) is a polynomial equation, or a system of polynomial equa-
tions, that is to be solved in integers or rational numbers. The central
problem of this book concerns solutions of a very special Diophantine
equation:

xn + yn = zn

where the exponent n is a positive integer. For n = 2 there are many integer
solutions—in fact, infinitely many—which neatly relate to the theorem of

ix
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x Preface

Pythagoras. For n ≥ 3, however, there appear to be no integer solutions.
It is this assertion that became known as Fermat’s Last Theorem. (It is
equivalent to there being no rational solutions—try to work out why.)

One method of attack might be to imagine the equation xn + yn = zn

as being situated in the complex numbers, and to use the complex nth root
of unity ζ = e2πi/n to obtain the factorization (valid for odd n)

xn + yn = (x+ y)(x+ ζy) . . . (x+ ζn−1y).

This approach entails introducing algebraic ideas, including the notion of
factorization in the ring Z[ζ] of polynomials in ζ. This promising line of
attack was pursued for a time in the 19th century, until it was discovered
that this particular ring of algebraic numbers does not possess all of the
properties that it ‘ought to’. In particular, factorization into ‘primes’ is
not unique in this ring. (It fails, for instance, when n = 23, although this
is not entirely obvious.) It took a while for this idea to be fully understood
and for its consequences to sink in, but as it did so, the theory of algebraic
numbers was developed and refined, leading to substantial improvements
in our knowledge of Diophantine equations. In particular, it became pos-
sible to prove Fermat’s Last Theorem in a whole range of special cases.
Subsequently, geometric methods and other approaches were introduced to
make further gains, until, at the end of the 20th century, Andrew Wiles
finally set the last links in place to establish the proof after a three hundred
year search.

To gain insight into this extended story we must assume a certain
level of algebraic background. Our choice is to start with fundamental
ideas that are usually introduced into algebra courses, such as commuta-
tive rings, groups and modules. These concepts smooth the way for the
modern reader, but they were not explicitly available to the pioneers of
the theory. The leading mathematicians in the 19th and early 20th cen-
turies developed and used most of the basic results and techniques of linear
algebra—for perhaps a hundred years—without ever defining an abstract
vector space. There is no evidence that they suffered as a consequence of
this lack of an explicit theory. This historical fact indicates that abstraction
can be built only on an already existing body of specific concepts and rela-
tionships. This indicates that students will profit from direct contact with
the manipulation of examples of number-theoretic concepts, so the text is
interspersed with such examples. The algebra that we introduce—which
is what we consider necessary for grasping the essentials of the struggle to
prove Fermat’s Last Theorem—is therefore not as ‘abstract’ as it might be.
We believe that in mathematics it is important to ‘get your hands dirty’.
This requires struggling with calculations in specific contexts, where the
elegance of polished theory may disguise the essential nature of the math-
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Preface xi

ematics. For instance, factorization into primes in specific number fields
displays the tendency of mathematical objects to take on a life of their own.
In some situations something works, in others it does not, and the reasons
why are often far from obvious. Without experiencing the struggle in per-
son, it is quite impossible to understand why the pioneers in algebraic
number theory had such difficulties. Of such frustrating yet stimulating
stuff is the mathematical fabric woven.

We therefore do not begin with later theories that have proved to be
of value in a wider range of problems, such as Galois theory, valuation rings,
Dedekind domains, and the like. Our purpose is to get students involved
in performing calculations that will enable them to build a platform for
understanding the theory. However, some algebraic background is neces-
sary. We assume a working knowledge of a variety of topics from algebra,
reviewed in detail in Chapter 1. These include commutative rings and
fields, ideals and quotient rings, factorization of polynomials with real coef-
ficients, field extensions, symmetric polynomials, modules, and free abelian
groups. Apart from these concepts we assume only some elementary results
from the theory of numbers and a superficial comprehension of multiple
integrals.

For organizational reasons rather than mathematical necessity, the book
is divided into four parts. Part I develops the basic theory from an algebraic
standpoint, introducing the ring of integers of a number field and exploring
factorization within it. Quadratic and cyclotomic fields are investigated
in more detail, and the Euclidean imaginary fields are classified. We then
consider the notion of factorization and see how the notion of a ‘prime’
p can be pulled apart into two distinct ideas. The first is the concept
of being ‘irreducible’ in the sense that p has no factors other than 1 and
p. The second is what we now call ‘prime’: that if p is a factor of the
product ab (possibly multiplied by units—invertible elements) then it must
be a factor of either a or b. In this sense, a prime must be irreducible,
but an irreducible need not be prime. It turns out that factorization into
irreducibles is not always unique in a number field, but useful sufficient
conditions for uniqueness may be found. The factorization theory of ideals
in a ring of algebraic integers is more satisfactory, in that every ideal is a
unique product of prime ideals. The extent to which factorization is not
unique can be ‘measured’ by the group of ideal classes (fractional ideals
modulo principal ones).

Part II emphasizes the power of geometric methods arising from Min-
kowski’s theorem on convex sets relative to a lattice. We prove this key
result geometrically by looking at the torus that appears as a quotient of
Euclidean space by the lattice concerned. As illustrations of these ideas
we prove the two- and four-squares theorems of classical number theory; as
the main application we prove the finiteness of the class group.
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xii Preface

Part III concentrates on applications of the theory thus far developed,
beginning with some slightly ad hoc computational techniques for class
numbers, and leading up to a special case of Fermat’s Last Theorem that
exemplifies the development of the theory by Kummer, prior to the final
push by Wiles.

Part IV describes the final breakthrough, when—after a long period
of solitary thinking—Wiles finally put together his proof of Fermat’s Last
Theorem. Even this tale is not without incident. His first announcement
in a lecture series in Cambridge turned out to contain a subtle unproved
assumption, and it took another year to rectify the error. However, the
proof is finally in a form that has been widely accepted by the mathematical
community. In this text we cannot give the full proof in all its glory.
Instead we discuss the new ingredients that make the proof possible: the
ideas of elliptic curves and elliptic integrals, and the link that shows that
the existence of a counterexample to Fermat’s Last Theorem would lead
to a mathematical construction involving elliptic integrals. The proof of
the theorem rests upon showing that such a construction cannot exist. We
end with a brief survey of later developments, new conjectures, and open
problems.

There follow two appendices which are of importance in algebraic num-
ber theory, but do not contribute directly to the proof of Fermat’s Last The-
orem. The first deals with quadratic residues and the quadratic reciprocity
theorem of Gauss. It uses straightforward computational techniques (de-
ceptively so: the ideas are very clever). It may be read at an early stage—
for example, right at the beginning, or alongside Chapter 3 which is rather
short: the two together would provide a block of work comparable to the
remaining chapters in the first part of the book. The second appendix
proves the Dirichlet Units Theorem, again a beacon in the development of
algebraic number theory, but not directly required in the proof of Fermat’s
Last Theorem.

A preliminary version of Parts I–III of the book was written in 1974
by Ian Stewart at the University of Tübingen, under the auspices of the
Alexander von Humbolt Foundation. This version was used as the basis of
a course for students in Warwick in 1975; it was then revised in the light
of that experience, and was published by Chapman and Hall. That edition
also benefited from the subtle comments of a perceptive but anonymous
referee; from the admirable persistence of students attending the course;
and from discussions with colleagues. The book has been used by successive
generations of students, and a second edition in 1986 brought the story up
to date—at that time—and corrected typographical and computational
errors.
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Preface xiii

In the 1980s a proof of Fermat’s Last Theorem had not been found.
In fact, graffiti on the wall of the Warwick Mathematics Institute declared
‘I have a proof that Fermat’s Last Theorem is equivalent to The Four
Colour Theorem, but this wall is too small for me to write it.’ Since that
time, both Fermat’s Last Theorem and the Four Colour Theorem have
fallen, after centuries of effort by the mathematical community. The final
conquest of Fermat’s Last Theorem required a new version that would
give a reasonable idea of the story behind the complete saga. This new
version, brought out with a new publisher, is the result of further work
to bring the book up to date for the 21st century. It involved substantial
rewriting of much of the material, and two new chapters on elliptic curves
and elliptic functions. These topics, not touched upon in previous editions,
were required to complete the final solution of the most elusive conundrum
in pure mathematics of the last three hundred years.

Coventry, February 2001. Ian Stewart
David Tall
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Preface to the Fourth Edition

There are three main changes to this fourth edition.
We provide up-to-date information on what is known about unique

prime factorization for real quadratic number fields, especially Malcolm
Harper’s proof that Z(

√
14) is Euclidean.

We have added one very important new result: Preda Mihăilescu’s stun-
ning proof of the Catalan Conjecture of 1844. This states the only non-
trivial consecutive integer powers are 8 (= 23) and 9 (= 32). We discuss the
history of this problem and sketch the current version of the proof, which
is an extensive technical application of cyclotomic integers Z(ζ) where ζ is
a complex root of unity.

Chapter 14 of the previous edition has been split into two separate
chapters for reasons of length. Chapter 14 now covers classical ideas about
modular functions. Chapter 15 sketches the new ideas of Frey, Wiles and
others that led to the long-sought proof of Fermat’s Last Theorem. Section
15.4 on recent developments has been updated.

We have also corrected known typographical errors, extended and cor-
rected the index, improved several figures, updated the bibliography and
the further reading list, clarified a few historical remarks, and made many
small stylistic changes, usually to conform to current practice. Among
them is the replacement of boldface symbols such as R by ‘blackboard
bold’ symbols R.

Coventry and Kenilworth, May 2015. Ian Stewart
David Tall
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∂p Degree of polynomial p
b|a b divides a
Df Formal derivative of f
L : K Field extension
[L : K] Degree of field extension
K(α1, . . . , αn) Field obtained by adjoining α1, . . . , αn to K
R(α1, . . . , αn) Ring generated by R and α1, . . . , αn

sr(t1, . . . , tn) rth elementary symmetric polynomial in t1, . . . , tn
N/M Quotient module
〈X〉R R-submodule generated by X
det (A) Determinant of A
(aij) Matrix
Zn Set of n-tuples with integer entries

Ã Adjoint of matrix A

xvii
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xviii Index of Notation

|X | Cardinality of set x
A Algebraic numbers
fα(t) Field polynomial of α
pα(t) Minimum polynomial of α

ω 1
2 (−1 + i

√
3)

∆[α1, . . . , αn] Discriminant of a basis
B Algebraic integers
O Ring of integers of number field
OK Ring of integers of number field K
NK(α) Norm of α
TK(α) Trace of α
N(α) Norm of α
T(α) Trace of α
∆G Discriminant of α1, . . . , αn when this generates G
(

j
i

)

Binomial coefficient

U(R) Groups of units of R
a, b, c, p, etc. Ideals
a−1 Inverse of a fractional ideal
a | b a divides b: equivalently, a ⊇ b

N(a) Norm of a
Br[x] Closed ball centre x, radius r
‖x− y‖ Distance from x to y in Rn

S Circle group
Tn Nn/Zn, the n-dimensional torus
v(X) Volume of X
v Natural homomorphism RN → Tn

Lst Rs × Ct

s Number of real monomorphisms K → C
t Half number of complex monomorphisms K → C
σ Map K → Lst

F Group of fractional ideals
P Group of principal ideals
H Class-group F |P
h(O) Class-number
h Class-number
a ∼ b Equivalence of fractional ideals modulo principal ideals
[a] Equivalence class of a
∆ Discriminant of K
Mst Minkowski constant ( 4π )

t(s+ 2t)−s−2t(s+ 2t)!

I Ideal of Z(ζ) generated by 1− ζ where ζ = e2πi/p
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Index of Notation xix

λ 1− ζ
z̄ Complex conjugate of z
Bk kth Bernouilli number
l Map Lst → Rs+t

U Group of units of O
φ(x) Euler function

RP2 Real projective plane
P The plane {(x, y, z) : z = 1}
Q The plane {(x, y, z) : z = 0}
CP2 Complex projective plane
∼ Equivalence relation for homogeneous coordinates
g2, g3 Coefficients in Weierstrass normal form of a cubic
O Specific rational point on an elliptic curve
G Set of rational points on an elliptic curve
P ∗Q Geometric construction on elliptic curve
P +Q Group operation on elliptic curve
F (k, v) Elliptic integral of the first kind
sn u Elliptic function
cn u Elliptic function
dn u Elliptic function
ω1, ω2 Periods of an elliptic function
Lω1,ω2

Lattice generated by ω1, ω2

℘ Weierstrass ℘-function
P ⊕Q Renaming of P +Q for clarity
C ∪ {∞} Riemann sphere
SL2(Z) Special linear group
PSL2(Z) Projective special linear group
H Upper half-plane in C
D Modular domain
X0(N) Modular curve of level N
F Frey elliptic curve
P (N) Power function of N
P (A,B,C) Power of (A,B,C)
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The Origins of

Algebraic Number Theory

Numbers have fascinated the human race for millennia. The Pythagoreans
studied many properties of the natural numbers 1, 2, 3, . . . , and the famous
theorem of Pythagoras, though geometrical, has a pronounced number-
theoretic content. Earlier Babylonian civilizations had noted empirically
many so-called Pythagorean triples, such as 3, 4, 5 and 5, 12, 13. These
are natural numbers a, b, c such that

a2 + b2 = c2. (1)

A clay tablet from about 1500 BC includes the triple 4961, 6480, 8161,
demonstrating the sophisticated techniques of the Babylonians.

The Ancient Greeks, though concentrating on geometry, continued to
take an interest in numbers. Around 250 AD, Diophantus of Alexandria
wrote a highly influential treatise on polynomial equations which studied
solutions in fractions. Particular cases of these equations with natural
number solutions have been called Diophantine equations to this day.

The study of algebra developed over the centuries, too. Indian and Chi-
nese mathematicians dealt with increasing confidence with negative num-
bers and zero. Meanwhile the Rashidun Caliphate conquered Alexandria
in the 7th century, sweeping across north Africa and Spain. The ensuing
civilization brought an enrichment of mathematics with Muslim ingenuity
grafted on to Greek and Hindu influence. The word ‘algebra’ itself derives
from the Arabic title ‘al jabr w’al muqābalah’ (literally ‘restoration and
equivalence’) of a book written by the Persian Al-Khowarizmi in about
825. By the 13th century, peaceful coexistence of Islam and Christianity
led to most Greek and Arabic classics being available in Latin translations.

1
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2 The Origins of Algebraic Number Theory

In the 16th century, Girolamo Cardano used negative and imaginary
solutions in his famous book Ars Magna (The Great Art), and in succeed-
ing centuries complex numbers were used with greater understanding and
flexibility.

Meanwhile the theory of natural numbers was not neglected. One of the
greatest number theorists of the 17th century was Pierre de Fermat (1601–
1665). His fame rests on his correspondence with other mathematicians, for
he published very little. He would set challenges in number theory based
on his own calculations; and at his death he left a number of theorems
whose proofs were known, if at all, only to himself. The most notorious of
these was a marginal note in his own personal copy of Diophantus, written
in Latin, which translates:

To resolve a cube into [the sum of] two cubes, a fourth power into
fourth powers, or in general any power higher than the second into
two of the same kind, is impossible; of which fact I have found a
remarkable proof. The margin is too small to contain it.

More precisely, Fermat asserted that, in contrast to the case of Pytha-
gorean triples, the equation

xn + yn = zn (2)

has no integer solutions x, y, z (other than the trivial ones with one or more
of x, y, z equal to zero).

In the years following Fermat’s death, almost all of his stated results
were furnished with a proof. An exception was his claim that Fn = 22

n

+1
is prime for all positive integers n. In a letter to Pierre de Carcavi in
1659 he claimed a proof of this conjecture, but it was subsequently shown
that he was wrong: for instance, F5 is divisible by 641. Even the great
Fermat could make mistakes. But one by one, his other assertions were
furnished with proofs, until by the mid-19th century only one elusive jewel
remained. A proof of his statement about the non-existence of solutions of
(2) for n ≥ 3 exceeded the powers of all 19th century mathematicians. This
beguiling and infuriating assertion, so simple to state, yet so subtle in its
labyrinthine complexity, became known as ‘Fermat’s Last Theorem’. This
romantic epithet is in fact doubly inappropriate for, without a proof, it was
not a ‘theorem’, neither was it the last result that Fermat studied—only
the last to remain unproved by other mathematicians.

Given that a proof is so elusive, is it really credible that Fermat could
have possessed a genuine proof—a clever way of looking at the problem,
which eluded later generations? Or had he made a subtle error, which
passed unnoticed, so that his ‘theorem’ had no proof at all? No one knows
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The Origins of Number Theory 3

for sure, but there is a strong consensus that if he did have what he thought
was a proof, it would not survive modern scrutiny. Consensus and certainty
are not the same thing, however.

Be that as it may, during the late 19th and early 20th centuries the
name stuck, with its glow of romanticism—somehow lacking in the more
appropriate title ‘Fermat Conjecture’. It has the two classic ingredients of
a problem that can capture the imagination of a wider public—a simple
statement that can be widely understood, but a proof that defeats the
greatest intellects.

Another classic problem of this type—the impossibility of trisecting
an angle using only ruler and compasses—took two thousand years to be
solved. This problem was posed by the Greeks in their study of geometry;
it was solved in the early 19th century using algebraic techniques. In the
same way the advancement in the solution of Fermat’s Last Theorem has
moved away from the original domain, the theory of natural numbers, to
a different area of mathematical study, algebraic numbers. By the 19th
century the developing theory of algebra had matured to a state where it
could usefully be applied in number theory.

As it happened, Fermat’s Last Theorem was not the main problem being
attacked by number theorists at the time; for example, when Kummer made
the all-important breakthrough that we are to describe in this text, he was
working on a different problem: ‘higher reciprocity laws’. At this stage
it is worth making a minor diversion to look at this subject, for it was
here that algebraic numbers entered number theory in the work of Carl
Friedrich Gauss. In 1796 the eighteen-year-old Gauss had given the first
proof of a remarkable fact observed empirically by Leonhard Euler in 1783.
Euler had investigated when an integer q is congruent to a perfect square
modulo a prime p,

x2 ≡ q (mod p).

If so, q is a quadratic residue of p. Euler concentrated on the case when
p, q are distinct odd primes and noted: if at least one of the odd primes
p, q is of the form 4r+ 1, then q is a quadratic residue of p if and only if p
is a quadratic residue of q; on the other hand, if both p, q are of the form
4r + 3, then precisely one is a quadratic residue of the other. However, he
failed to find a proof.

Because of the reciprocal nature of the relationship between p and q,
this result was known as the quadratic reciprocity law. Adrien-Marie Leg-
endre attempted a proof in 1785 but assumed that certain arithmetic series
contain infinitely many primes—a theorem whose proof turned out to be far
deeper than the quadratic reciprocity law itself. Legendre also introduced
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4 The Origins of Algebraic Number Theory

the symbol

(q/p) =

{

1 if q is a quadratic residue of p
−1 if not,

in terms of which the law becomes

(q/p)(p/q) = (−1)(p−1)(q−1)/4.

We now call this the Legendre symbol. It is commonly written

(

q

p

)

but (q/p) is more convenient typographically.
Gauss gave the first proof of the law of quadratic reciprocity in 1796, but

he was dissatisfied because his method did not seem a natural way to attack
so seemingly simple a theorem. He went on to give several more proofs,
two of which appeared in his book Disquisitiones Arithmeticae (1801), a
definitive text on number theory which still remains in print, Gauss [32].
His second proof depends on a numerical criterion that he discovered, and
we give a computational proof depending on this criterion in Appendix A.

Between 1808 and 1832 Gauss continued to look for similar laws for
powers higher than squares. This entailed looking for relationships be-
tween p and q so that q is a cubic residue of p (x3 ≡ q (mod p)) or a
biquadratic residue (x4 ≡ q (mod p)), and so on. He found some partial
results about higher reciprocity laws, and in doing so he discovered that his
calculations were simplified by working over the Gaussian integers a + bi
(a, b ∈ Z, i =

√
−1), rather than the integers alone. This led him to de-

velop a theory of prime factorization for Gaussian integers. He proved that
decomposition into primes is unique in that context, and from that he de-
veloped a law of biquadratic reciprocity. In the same way, he considered
cubic reciprocity by using numbers of the form a+ bω where ω = e(2πi)/3.
These higher reciprocity laws do not have the same striking simplicity as
quadratic reciprocity, and we shall not study them in this text. But Gauss’s
use of these new types of number is of fundamental importance for Fermat’s
Last Theorem, and the study of their factorization properties is a deep and
fruitful source of methods and problems.

The numbers concerned are all examples of a particular type of complex
number, namely one that is a solution of a polynomial equation

anx
n + . . .+ a1x+ a0 = 0

where all the coefficients aj are integers. Such a complex number is said
to be algebraic; if further an = 1 it is called an algebraic integer. Examples
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The Origins of Number Theory 5

of algebraic integers include i (which satisfies x2 + 1 = 0),
√
2 (x2 − 2 = 0)

and more complicated examples, such as the roots of x7 − 265x3 + 7x2 −
2x+ 329 = 0. The number 1

2 i (satisfying 4x2 + 1 = 0) is algebraic but not
an integer. On the other hand, there are complex numbers which are not
algebraic, such as e or π, although proofs of those statements are difficult.

In the wider setting of algebraic integers, we can factorize a solution of
Fermat’s equation xn + yn = zn (if one exists) by introducing a complex
nth root of unity ζ = e2πi/n and writing (2) as

(x+ y)(x+ ζy) . . . (x+ ζn−1y) = zn. (3)

If Z[ζ] denotes the set of algebraic integers of the form a0+a1ζ+ . . .+arζ
r

where each ar is an ordinary integer, then this factorization takes place in
the ring Z[ζ].

In 1847 the French mathematician Gabriel Lamé announced a proof
of Fermat’s Last Theorem. In outline his proposal was to show that only
the case where x, y have no common factors need be considered, and then
deduce that in this case x + y, x + ζy, . . . , x + ζn−1y have no common
factors, that is, they are relatively prime. He then argued that a product
of relatively prime numbers in (3) can equal an nth power only if each
factor is an nth power. So

x+ y = un1
x+ ζy = un2

...
x+ ζn−1 = unn

(4)

On this basis Lamé derived a contradiction.
Announcing a proof does not imply that it is one. Joseph Liouville im-

mediately pointed out that the deduction of (4) from (3) assumes unique-
ness of factorization in a subtle manner. Liouville’s fears were confirmed
when he later received a letter from Ernst Kummer, who had shown that
uniqueness of factorization fails in some cases, the first being n = 23. Over
the summer of 1847 Kummer went on to devise his own proof of Fermat’s
Last Theorem for certain exponents n, surmounting the difficulties of non-
uniqueness of factorization by introducing the theory of ‘ideal’ complex
numbers. In retrospect this theory can be viewed as introducing numbers
from outside Z[ζ] to use as factors when factorizing elements within Z[ζ].
These ‘ideal factors’ restore a version of unique factorization.

Subsequently the theory began to take on a different form from that in
which Kummer had left it, but the key concept of an ‘ideal’—a reformu-
lation by Richard Dedekind of Kummer’s ‘ideal number’—gave the theory
a major boost. By using his theory of ideal numbers, Kummer proved
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6 The Origins of Algebraic Number Theory

Fermat’s Last Theorem for a wide range of prime powers—the so-called
‘regular’ primes. He also evolved a powerful machine with applications to
many other problems in mathematics. In fact a large part of classical num-
ber theory can be expressed in the framework of algebraic numbers. This
point of view was urged most strongly by David Hilbert in his Zahlbericht
(Number Report) of 1897, which had an enormous influence on the devel-
opment of number theory, see Reid [63].

As a result, algebraic number theory today is a flourishing and impor-
tant branch of mathematics, with deep methods and insights, and—most
significantly—applications not only to number theory, but also to group
theory, algebraic geometry, topology, and analysis. It was these wider links
that eventually led to the final proof of Fermat’s Last Theorem, establish-
ing it once and for all as a theorem, not a conjecture. The eventual proof
was made possible by various significant inroads, which were made using
techniques from elliptic functions, modular forms, and Galois representa-
tions.

The breakthrough, as indicated above, was made by Andrew Wiles.
As a teenager, fascinated by the simplicity of the statement of the theo-
rem, Wiles had begun a long and mostly solitary journey in search of a
proof. The event that triggered his final push was a conjecture put forward
by two Japanese mathematicians, Yutaka Taniyama and Goro Shimura,
who hypothesized a link between elliptic curves and modular forms. Their
ideas were later refined by André Weil. This proposal became known as
the Taniyama–Shimura–Weil Conjecture, and it was discovered that if this
conjecture could be proved, then Fermat’s Last Theorem could be deduced
from it. At this point, Wiles leaped into action. He worked in solitude for
seven years before he convinced himself that he had proved a special case of
the Taniyama–Shimura–Weil Conjecture that was strong enough to imply
Fermat’s Last Theorem. He announced his result in a lecture in Cambridge
on 23 June 1993.

When his proof was being checked, a query from a colleague revealed a
gap, and Wiles accepted that some details required attention. It took him
so long to do this that some questioned whether he had ever been close to
the proof at all. However, in the autumn of 1994, working with his former
student Richard Taylor, he finally realised that he could complete the proof
satisfactorily. He released the proof for scrutiny in October 1994 and it was
published in May 1995.

Fermat’s Last Theorem probably has the distinction of being the theo-
rem with the greatest number of false ‘proofs’, so the proof was scrutinized
very carefully. However, this time the ideas fitted together so tightly that
experts in the mathematical community agreed that all was well. In the
ensuing period nothing has happened to change this opinion: Fermat’s Last
Theorem has at last been declared true. However, the proof uses techniques
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The Origins of Number Theory 7

far beyond what would have been available to Fermat. So when he stated
that he had found a proof that could not be fitted into the margin of his
book, had he truly found a perceptive insight that has been missed by
mathematicians for over 350 years? Or was it, as observed by the historian
Dirk Struik [81], that ‘even the great Fermat slept sometimes’?
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Algebraic Background

Fermat’s Last Theorem is a special problem in the general theory of Dio-
phantine equations—integer solutions of polynomial equations. To place
the problem in context, we move to the wider realm of algebraic numbers,
which arise as the real or complex solutions of polynomials with integer
coefficients; we focus particularly on algebraic integers, which are solutions
of polynomials with integer coefficients where the leading coefficient is 1.
For example, the equation x2 − 2 = 0 has no integer solutions, but it has
two real solutions, x = ±

√
2. The leading coefficient of the polynomial

x2 − 2 is 1, so ±
√
2 are algebraic integers.

To operate with such numbers, it is useful to work in subsystems of the
complex numbers that are closed under the usual operations of arithmetic.
Such subsystems include subrings (which are closed under addition, sub-
traction and multiplication) and subfields (closed under all four arithmetic
operations including division). Thus along with ±

√
2 we consider the ring

of all numbers a + b
√
2 for a, b ∈ Z, and the field of all numbers p + q

√
2

for p, q ∈ Q.
In this chapter we lay the foundations for algebraic number theory by

considering some fundamental facts about rings, fields, and other alge-
braic structures, including abelian groups and modules, which are relevant
to our theoretical development. We expect the reader to be acquainted
with elementary properties of groups, rings and fields, and to have a basic
knowledge of linear algebra over an arbitrary field, up to simple properties
of determinants. Familiar results at this level will be stated without proof;
results that we think may be less familiar to some readers are proved in full
or in outline as appropriate. References are given for results not proved
in full, in case the reader wishes to pursue them in greater depth. Useful

11
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12 1. Algebraic Background

general references on abstract algebra, with emphasis on rings and fields,
are Fenrick [27], Fraleigh [28], Jacobson [44], Lang [47], Sharpe [74], and
Stewart and Tall [79]. For group theory, see Burn [12], Humphreys [42],
Macdonald [49], Neumann et al. [61], and Rotman [69].

First we set up the ring-theoretic language, in particular the notion of
an ideal, which proves to be so important. Then we consider factorization
of polynomials over a ring, which in this book is often a subring of the
complex numbers. Topics of central importance at this stage are factoriza-
tion of a polynomial over an extension field, and the theory of elementary
symmetric polynomials. Module-theoretic language helps us to clarify cer-
tain points later. Results concerning finitely generated abelian groups are
proved because they are vital in describing the additive group structure of
the subrings of the complex numbers that occur.

1.1 Rings and Fields

Unless explicitly stated to the contrary, the term ring in this book will
always mean a commutative ring R with identity element 1 (or 1R). If
such a ring has no zero-divisors (so that in R, a 6= 0, b 6= 0 implies ab 6= 0),
and if 1 6= 0 in it, then it is called a domain. (Another common term is
integral domain, but we omit ‘integral’ throughout.) An element a in a
ring R is called a unit if there exists b ∈ R such that ab = 1. Suppose
ab = ac = 1. Then c = 1c = abc = acb = 1b = b. The unique b such that
ab = 1 is denoted by a−1, and ca−1 is also denoted by c/a. If 1 6= 0 in R
and every non-zero element in R is a unit, then R is called a field.

We use standard notation N for the set of natural numbers 0, 1, 2, . . ., Z
for the integers, Q for the rationals, R for the reals and C for the complex
numbers. Under the usual operations Q,R,C are fields, Z is a domain, and
N is not even a ring. For n ∈ N, n > 0, we denote the ring of integers
modulo n by Zn. If n is composite, then Zn has zero divisors, but for n
prime, then Zn, is a field; see Fraleigh [28] p. 217.

Our convention is that a subring S of a ring R is required to contain
1R. We can check that S is a subring by demonstrating that 1R ∈ S, and
if s, t ∈ S then s+ t,−s, st ∈ S. The subset S then forms a ring in its own
right under the operations restricted from R. In the same way, if K is a
field, then a subfield F of K is a subset that is a field under the operations
restricted fromK. We can check that F is a subfield ofK by demonstrating
that 1k ∈ F , and if s, t ∈ F (s 6= 0) then s+ t, −s, st, s−1 ∈ F .

The concept of an ideal is of central importance in this text. Recall
that an ideal is a non-empty subset I of a ring R such that if r, s ∈ I, then
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1.1. Rings and Fields 13

r − s ∈ I, and if r ∈ R, s ∈ I then rs ∈ I. We also require the concept of
the quotient ring R/I of R by an ideal I. The elements of R/I are cosets
I + r of the additive group of I in R, with addition and multiplication
defined by

(I + r) + (I + s) = I + (r + s)

(I + r)(I + s) = I + rs

for all r, s ∈ R. For example, if nZ is the set of integer multiples of n ∈ Z,
then Z/nZ is isomorphic to Zn.

A homomorphism f : R1 → R2, where R1 and R2 are rings, is a function
such that

f(1R1
) = 1R2

f(r + s) = f(r) + f(s)

f(rs) = f(r)f(s)

for all r, s ∈ R1. A monomorphism is an injective (1–1) homomorphism
and an isomorphism is a bijective (1–1 and onto) homomorphism.

The kernel and image of a homomorphism f are defined in the usual
way:

ker f = {r ∈ R1 | f(r) = 0}
im f = {f(r) ∈ R2 | r ∈ R1}.

The kernel is an ideal of R1; the image is a subring of R2; and the isomor-
phism theorem states that there is an isomorphism from R1/kerf to imf .
For details, see Fraleigh [28], Jacobson [44], or Sharpe [74].

If X and Y are subsets of a ring R we write X + Y for the set of
all elements x + y (x ∈ X, y ∈ Y ), and XY for the set of all finite sums
Σxiyi (xi ∈ X, yi ∈ Y ). When X and Y are both ideals, so are X + Y and
XY .

The sum X+Y of two subsets can be generalized to an arbitrary collec-
tion {Xi}i∈I by defining Σi∈IXi to be the set of all finite sums xi1+. . .+xin
of elements xij ∈ Xij .

We make the customary compression of notation with regard to {x}
and x, writing for example xY for {x}Y , x+ Y for {x}+ Y , and 0 for {0}.

The ideal generated by a subset X of R is the smallest ideal of R con-
taining X ; we denote this by 〈X〉. If X = {x1, . . . , xn}, we write 〈X〉 as
〈x1, . . . , xn〉. (Some writers use (X) where we have written 〈X〉, but then
the last-mentioned simplification of notation would reduce to the notation
for an n-tuple (x1, . . . , xn), so 〈X〉 is to be preferred.)
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14 1. Algebraic Background

A simple calculation shows that

〈X〉 = XR =
∑

x∈X

xR.

The identity element 1R is crucial in this equation. In a commutative
ring without identity we would also have to add on to Σx∈X xR, and to
XR, the additive group generated by X .

If there exists a finite subset X = {x1, . . . , xn} of R such that I = 〈X〉,
then we say that I is finitely generated as an ideal of R. If I = 〈x〉 for an
element x ∈ R we say that I is the principal ideal generated by x.

Example 1.1. Let R = Z, X = {4, 6}. Then 〈4, 6〉 is finitely generated. In
fact 〈4, 6〉 contains 2 · 4 − 6 = 2 and it easily follows that 〈4, 6〉 = 〈2〉, so
this ideal is principal. More generally, every ideal of Z is of the form 〈n〉
for some n ∈ N , hence principal.

Example 1.2. Let R be the set Q under the usual operation of addition,
but define a non-standard multiplication on R by setting xy = 0 for all
x, y ∈ R. The ideal 〈X〉 for a subset X ⊆ R is then equal to the abelian
group generated by X under addition. Now R is an ideal of R, but is not
finitely generated. To see this, suppose that R is generated as an abelian
group by elements p1/q1, . . . , pn/qn. Then the only primes dividing the
denominators of elements of R will be those dividing q1, . . . , qn, which is a
contradiction.

If K is a field and R is a subring of K then R is a domain. Conversely,
every domain D can be embedded in a field L; and there exists such an
L consisting only of elements d/e where d, e ∈ D and e 6= 0. Such an L,
which is unique up to isomorphism, is called the field of fractions or field
of quotients of D. See Fraleigh [28] Theorem 26.1 p. 239.

Theorem 1.3. Every finite domain is a field.

Proof: Let D be a finite domain. Since 1 6= 0, then D has at least 2
elements. For 0 6= x ∈ D the elements xy, as y runs through D, are
distinct; for if xy = xz then x(y − z) = 0 and so y = z since D has no
zero-divisors. Hence, by counting, the set of all elements xy is D. Thus
1 = xy for some y ∈ D, so D is a field. �

Every field has a unique minimal subfield, the prime subfield, and this
is isomorphic either to Q or to Zp where p is a prime number: see Fraleigh
[28] Theorem 29.7 p. 260. Correspondingly, we say that the characteristic
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1.2. Factorization of Polynomials 15

of the field is 0 or p. In a field of characteristic p we have px = 0 for every
element x, where as usual we write

px = (1 + 1 + . . .+ 1)x

where there are p summands 1; moreover, p is the smallest positive integer
with this property. In a field of characteristic zero, if nx = 0 for some
non-zero element x and integer n, then n = 0. Our major concern in the
sequel will be subfields of C (the complex numbers), which of course have
characteristic zero, but fields of prime characteristic arise naturally from
time to time.

We use without further comment the fact that C is algebraically closed:
given any polynomial p over C there exists x ∈ C such that p(x) = 0. For
a proof of this see Stewart [78] p. 22–25. Different proofs using analysis
or topological considerations are in Hardy [37] p. 492 and Titchmarsh [85]
p. 118.

1.2 Factorization of Polynomials

Later we consider factorization in a more general context. Here we concen-
trate on factorizing polynomials. First, a few general remarks.

In a ring S, if we can write a = bc for a, b, c ∈ S, then we say that b, c
are factors of a. We also say that ‘b divides a’, and write

b | a.

For any unit e ∈ S we can always write

a = e(e−1a),

so, trivially, a unit is a factor of all elements in S. If a = bc where neither
b nor c is a unit, then b and c are called proper factors and a is said to be
reducible. In particular 0 = 0 · 0 is reducible.

Note that if a is itself a unit and a = bc, we have

1 = aa−1 = bca−1,

so b and c are both units. A unit cannot have a proper factorization. We
therefore concentrate on factorization of non-units. A non-unit a ∈ S is
said to be irreducible if it has no proper factors.

Now we turn our attention to the case S = R[t], the ring of polynomials
in an indeterminate t with coefficients in a ring R. The elements of R[t]
are expressions

rnt
n + rn−1t

n−1 + . . .+ r1t+ r0
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16 1. Algebraic Background

where r0, r1, . . . , rn ∈ R and addition and multiplication are defined in the
obvious way. (For a formal treatment of polynomials, and why not to use
it, see Fraleigh [28] pp. 263–265.)

Given a non-zero polynomial

p = rnt
n + . . .+ r0,

define the degree of p to be the largest value of n for which rn 6= 0, and
write it ∂p. Polynomials of degree 0, 1, 2, 3, 4, 5, . . ., are often referred to as
constant, linear, quadratic, cubic, quartic, quintic,. . . , polynomials respec-
tively. In particular a constant polynomial is just a (non-zero) element of
R.

If R is a domain, then

∂pq = ∂p+ ∂q

for non-zero p, q soR[t] is also a domain. If p = aq in R[t], then ∂p = ∂a+∂q
implies that

∂q ≤ ∂p.

When R is not a field, then it is perfectly possible to have a non-trivial
factorization in which ∂p = ∂q. For example

3t2 + 6 = 3(t2 + 2)

in Z[t], where neither 3 nor t2+2 is a unit. This is because of the existence
of non-units in R. However, if R is a field, then all (non-zero) constants
in R[t] are units and so if q is a proper factor of p for polynomials over a
field, then ∂q < ∂p.

Concentrate first on polynomials over a field K. Here we have the
division algorithm which states that if p, q 6= 0 then

p = qs+ r

where either r = 0 or ∂r < ∂q. The proof is by induction on ∂p and in
practice is no more than long division of p by q leaving remainder r, which
is either zero (in which case q | p) or of degree lower than q.

The division algorithm is used repeatedly in the Euclidean algorithm,
which is a particularly efficient method for finding the highest common
factor d of non-zero polynomials p, q. This is defined by the properties:

(a) d | p, d | q,
(b) If d′ | p and d′ | q then d′ | d.
These define d uniquely up to non-zero constant multiples. To calculate

d we first suppose that p, q are named so that ∂p ≥ ∂q; then divide q into
p to get

p = qs1 + r1 ∂r1 < ∂q ≤ ∂p,
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1.2. Factorization of Polynomials 17

and continue in the following way:

q = r1s2 + r2 ∂r2 < ∂r1
r1 = r2s3 + r3 ∂r3 < ∂r2

...
rn−2 = rn−1sn + rn ∂rn < ∂rn−1

until we arrive at a zero remainder:

rn−1 = rnsn+1.

The last non-zero remainder rn is the highest common factor. (From the
last equation rn | rn−1, and working back successively, rn is a factor of
rn−2, . . . , r1, p, q, verifying (a). If d′ | p, d′ | q, then from the first equation,
d′ is a factor of r1 = p− qs1, and successively working down the equations,
d′ is a factor of r2, r3, . . . , rn, so d′ | rn, verifying (b).) Beginning with
the first equation, and substituting in those which follow, we find that
ri = aip + biq for suitable ai, bi ∈ K[t], and in particular the highest
common factor d = rn is of the form

d = ap+ bq for suitable a, b ∈ K[t]. (1.1)

A useful special case is when d = 1, when p, q are called coprime and (1.1)
gives

ap+ bq = 1 for suitable a, b ∈ K[t].

This technique for calculating the highest common factor can also be used
to find the polynomials a, b.

Example 1.4. p = t3 + 1, q = t2 + 1 ∈ Q[t].
Then

t3 + 1 = t(t2 + 1) + (−t+ 1),

t2 + 1 = (−t− 1)(−t+ 1) + 2,

−t+ 1 = (− 1

2
t+ 1

2
)2.

The highest common factor is 2, or up to a constant factor, 1, so p and q
are coprime, and substituting back from the second equation,

1 = 1

2
(t2 + 1) + 1

2
(t+ 1)(−t+ 1).

Then substituting for −t+ 1 using the first equation:

1 = 1

2
(t2 + 1) + 1

2
(t+ 1)((t3 + 1)− t(t2 + 1))

= (− 1

2
t2 − 1

2
t+ 1

2
)(t2 + 1) + ( 1

2
t+ 1

2
)(t3 + 1).
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18 1. Algebraic Background

Factorizing a single polynomial p is by no means as straightforward as
finding the highest common factor of two. It is known that every non-zero
polynomial over a field K is a product of finitely many irreducible factors,
and these are unique up to the order in which they are multiplied and
up to constant factors: see Fraleigh [28] Theorem 31.8 p.284; Stewart [78]
Theorem 3.12 p. 37 and Theorem 3.16 p. 38. Finding these factors is very
much an ad hoc matter. Linear factors are easiest, since (x − α) | p if and
only if p(α) = 0.

If p(α) = 0, then α is called a zero of p. If (t − α)m | p where m ≥ 2,
then α is a repeated zero and the largest such m is the multiplicity of α.

To detect repeated zeros we use a method which, like much in this
chapter, was more familiar at the turn of the century than it is now. Given
a polynomial

f =

n
∑

i=0

rit
i

over a ring R we define

Df =
n
∑

i=0

irit
i−1,

called for obvious reasons the formal derivative of f . It is not hard to check
directly that

D(f + g) = Df +Dg

D(fg) = (Df)g + f(Dg).

This enables us to check for repeated factors. A factor q of a polynomial p
is repeated if qr | p for some r ≥ 2. In particular q is repeated if its square
divides p.

Theorem 1.5. Let K be a field of characteristic zero. A non-zero polynomial
f over K is divisible by the square of a polynomial of degree > 0 if and
only if f and Df have a common factor of degree > 0.

Proof: First suppose f = g2h. Then

Df = g2Dh+ 2g(Dg)h

and so f and Df have g as a common factor.
Now suppose that f has no squared irreducible factor. For any irre-

ducible factor g of f we have

f = gh
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1.2. Factorization of Polynomials 19

where g and h are coprime, otherwise g would be a factor of h and would
occur as a squared factor in gh. If f and Df have a common factor
g, which we take to be irreducible, then on differentiating formally we
obtain

Df = (Dg)h+ g(Dh)

So g is a factor of (Dg)h, hence of Dg because g and h are coprime. But
Dg is of lower degree than g, hence it can only have g as a factor if Dg = 0.
Since K has characteristic zero, by direct computation, this implies g is
constant, so f and g can have no non-trivial common factor. �

If the field has characteristic p > 0, then the first part of Theorem 1.5,
that f having a squared factor implies f and Df have a common factor, is
still true, and the proof is the same as above.

A result we need later is:

Corollary 1.6. An irreducible polynomial over a subfield K of C has no
repeated zeros in C.

Proof: Suppose f is irreducible over K. Then f and Df must be co-
prime, because a common factor would be a squared factor of f by (1.5),
but f is irreducible. Thus there exist polynomials a, b over K such that
af + bDf = 1, and the same equation interpreted over C shows f and Df
to be coprime over C. By Theorem 1.5, f has no repeated zeros. �

We often consider factorization of polynomials over Q. When such
a polynomial has integer coefficients it turns out that we need consider
only factors with integer coefficients. This fact is enshrined in a result of
Gauss:

Lemma 1.7. (Gauss’s Lemma.) Let p ∈ Z[t] and suppose that p = gh where
g, h ∈ Q[t]. Then there exists λ ∈ Q, λ 6= 0, such that λg, λ−1h ∈ Z[t].

Proof: Multiplying by the product of the denominators of the coefficients
of g, h we rewrite p = gh as

np = g′h′

where g′, h′ are rational multiples of g, h respectively, n ∈ Z and g′, h′ ∈
Z[t]. Therefore n divides the coefficients of the product g′h′. We now divide
the equation successively by the prime factors of n. We shall establish that
if k is a prime factor of n, then k divides all the coefficients of g′ or all
those of h′. Whichever it is, we can divide that particular polynomial by k
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20 1. Algebraic Background

to give another polynomial with integer coefficients. After dividing in this
way by all the prime factors of n, we are left with

p = gh

where g, h ∈ Z[t] are rational multiples of g, h respectively. Putting g = λg
for λ ∈ Q, we obtain h = λ−1h and the result will follow.

It remains to prove that if

g′ = g0 + g1 + . . .+ grt
r

h′ = h0 + h1 + . . .+ hst
s

and a prime k divides all the coefficients of g′h′, then k must divide all the
gi or all the hj . But if a prime k does not divide all the gi and all the hj ,
we can choose the first of each set of coefficients, say gm, hq, that are not
divisible by k. Then the coefficient of tm+q in g′h′ is

g0hm+q + g1hm+q−1 + . . .+ gmhg + . . . gm+qh0.

Since every term in this expression is divisible by k except hqgm, the whole
coefficient is not divisible by k, a contradiction. �

We need methods to prove irreducibility for various specific polynomials
over Z. The first of these is Eisenstein’s criterion, named after Gotthold
Eisenstein:

Theorem 1.8. (Eisenstein’s Criterion.) Let

f = a0 + a1t+ . . .+ ant
n

be a polynomial over Z. Suppose there is a prime q such that

(a) q ∤ an,

(b) q | ai, (i = 0, 1, . . . , n− 1),

(c) q2 ∤ a0.

Then, apart from constant factors, f is irreducible over Z, and hence irre-
ducible over Q.

Proof: By Lemma 1.7 it is enough to show that f can have only constant
factors over Z.

If not, then f = gh where

g = g0 + g1t+ . . .+ grt
r

h = h0 + h1t+ . . .+ hst
s
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1.2. Factorization of Polynomials 21

with all gi, hj ∈ Z and r, s > 1, r + s = n.

Now g0h0 = a0, so (b) implies q divides one of g0, h0 while (c) implies
that it cannot divide both. Without loss of generality, suppose q divides
g0 but not h0. Not all gi are divisible by q because this would imply that q
divides an, contrary to (a). Let gm be the first coefficient of g not divisible
by q. Then

am = g0hm + . . .+ gmh0

where m ≤ r < n. All the summands on the right are divisible by q except
the last, which means that am is not divisible by q, contradicting (b). �

A second useful method is reduction modulo n, as follows. Suppose
0 6= p ∈ Z[t], with p reducible: say p = qr. The natural homomorphism
Z → Zn gives rise to a homomorphism Z[t] → Zn[t]. Using bars to denote
images under this map, we have p = qr. If ∂p = ∂p, then clearly ∂q = ∂q,
∂r = ∂r, and p is also reducible. This proves:

Theorem 1.9. If p ∈ Z[t] and its image p ∈ Zn[t] is irreducible, with ∂p = ∂p,
then p is irreducible as an element of Z[t]. �

In practice we take n to be prime, though this is not essential. The
point of reducing modulo n is that Zn being finite, there are only a finite
number of possible factors of p to be considered.

Examples.

(1) The polynomial t2 − 2 satisfies Eisenstein’s criterion with q = 2.

(2) The polynomial t11−7t6+21t5+49t−56 satisfies Eisenstein’s criterion
with q = 7.

(3) The polynomial t5 − t + 1 does not satisfy Eisenstein’s criterion for
any q. Instead we try reduction modulo 5. There is no linear factor
since none of 0, 1, 2, 3, 4 yield 0 when substituted for t, so the only
possible way to factorize is

t5 − t+ 1 = (t2 + αt+ β)(t3 + γt2 + δt+ ǫ)

where α, β, γ, δ, ǫ take values 0, 1, 2, 3 or 4 (mod 5). This gives a
system of equations on comparing coefficients: there are only a finite
number of possibilities all of which are easily eliminated. Hence the
polynomial is irreducible mod 5, so irreducible over Z.
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22 1. Algebraic Background

1.3 Field Extensions

When finding the zeros of a polynomial p over a fieldK, it is often necessary
to pass to a larger field L that contains K. In these circumstances, L is
called a field extension of K. For example, p(t) = t2 +1 has no zeros in R,
but considering p as a polynomial over C, it has zeros±i and a factorization

p(t) = (t+ i)(t− i).

Field extensions often arise in a slightly more general context as a
monomorphism j : K → L where K and L are fields. It is customary
in these cases to identify K with its image j(K), which is a subfield of L;
then a field extension is a pair of fields (K,L) where K is a subfield of L.
We talk of the extension

L : K

of K. Most field extensions we encounter involve two subfields of C.
If L : K is a field extension, then L has a natural structure as a vector

space over K (where vector addition is addition in L and scalar multiplica-
tion of λ ∈ K on v ∈ L is just λv ∈ L). The dimension of this vector space
is called the degree of the extension, or the degree of L over K, written

[L : K]

The degree has an important multiplicative property:

Theorem 1.10. If H ⊆ K ⊆ L are fields, then

[L : H ] = [L : K][K : H ].

Proof: We sketch this. Details are in Stewart [78], Theorem 6.4 p. 68. Let
{ai}i∈I be a basis for L over K, and {bj}j∈J a basis for K over H . Then

{aibj}(i,j)∈I×J is a basis for L, over H . �

If [L : K] is finite we say that L is a finite extension of K.
Given a field extension L:K and an element α ∈ L, there may or may

not exist a polynomial p ∈ K[t] such that p(α) = 0, p 6= 0. If not, we
say that α is transcendental over K. If such a p exists, we say that α
is algebraic over K. If α is algebraic over K, then there exists a unique
monic polynomial q of minimal degree subject to q(α) = 0, and q is called
the minimum polynomial of α over K. (A monic polynomial is one with
highest coefficient 1.) It is easy to prove that the minimum polynomial of
α is irreducible over K, see Stewart [78] p. 58–62.
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1.3. Field Extensions 23

If α1, . . . αn ∈ L, we write

K(α1, . . . , αn)

for the smallest subfield of L containing K and the elements α1, . . . , αn.
In an analogous way, if S is a subring of a ring R and α1, . . . , αn ∈ R,

we write
S[α1, . . . , αn]

for the smallest subring of R containing S and the elements α1, . . . , αn.
Clearly S[α1, . . . , αn] consists of all polynomials in α1, . . . , αn with coeffi-
cients in S. For instance S[α] consists of all polynomials

s0 + s1α+ . . .+ smα
m (si ∈ S).

The structure of the field K(α) depends on α in an interesting way. If
α is transcendental over K, then for km 6= 0 we have

k0 + k1α+ . . .+ kmα
m 6= 0 (ki ∈ K).

In this case K(α) must include all rational expressions

s0 + s1α+ . . .+ snα
n

k0 + k1α+ . . .+ kmαm
(sj , ki ∈ K, km 6= 0)

and clearly consists precisely of these elements.
However, for α algebraic, we have:

Theorem 1.11. If L : K is a field extension and α ∈ L, then α is alge-
braic over K if and only if K(α) is a finite extension of K. In this case,
[K(α):K] = ∂p where p is the minimum polynomial of α over K, and
K(α) = K[α].

Proof: Once more we sketch the proof, given in full in Stewart [78] The-
orem 5.12 p. 62. If [K(α) : K] = n < ∞ then the powers, 1, α, α2, . . . , αn

are linearly dependent over K, whence α is algebraic. Conversely, suppose
α algebraic with minimum polynomial p of degree m. We claim that K(α)
is the vector space over K spanned by 1, α, . . . , αm−1. This space, call it
V , is certainly closed under addition, subtraction, and multiplication by α;
for the last statement note that αm = −p(α) + αm = q(α) where ∂q < m.
Hence V is closed under multiplication, and so forms a ring. All we need
prove now is that if 0 6= v ∈ V then 1/v ∈ V . Now v = h(α) where h ∈ K[t]
and ∂h < m. Since p is irreducible, p and h are coprime, so there exist
f, g ∈ K[t] such that

f(t)p(t) + g(t)h(t) = 1.
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24 1. Algebraic Background

Then
1 = f(α)p(α) + g(α)h(α) = g(α)h(α)

so that 1/v = g(α) ∈ V as required. But it follows at once that [K(α) :K] =
dimKV = m. �

If we specify in advance K and an irreducible monic polynomial p(t) ∈
K[t] then there exists up to isomorphism a unique extension field L such
that L contains an element α with minimum polynomial p, and L = K(α).
This can be constructed as K[t]/〈p〉. It is customary to express this con-
struction by the phrase ‘adjoin to K an element α with p(α) = 0’ and
to write K(α) for the resulting field. This, and much else, is discussed in
Stewart [78] Chapter 17, p. 177–190.

1.4 Symmetric Polynomials

Let R[t1, t2, . . . , tn] denote the ring of polynomials in indeterminates
t1, t2, . . . , tn with coefficients in a ring R. Let Sn denote the symmetric
group of permutations on {1, 2, . . . , n}. For any permutation π∈Sn and
any polynomial f ∈ R[t1, . . . , tn] define the polynomial fπ by

fπ(t1, . . . , tn) = f(tπ(1), . . . , tπ(n)).

For example if f = t1 + t2t3 and π is the cycle (123) then fπ = t2 + t3t1.
The polynomial f is symmetric if fπ = f for all π ∈ Sn. For example
t1+. . .+tn is symmetric. More generally we have the elementary symmetric
polynomials

sr(t1, . . . , tn) (1 ≤ r ≤ n)

defined to be the sum of all possible distinct products of r distinct ti’s.
Thus

s1(t1, . . . , tn) = t1 + t2 + . . .+ tn,

s2(t1, . . . , tn) = t1t2 + t1t3 + . . .+ t2t3 + . . .+ tn−1tn,

...

sn(t1, . . . , tn) = t1t2 . . . tn.

These arise in the following circumstances. Consider a polynomial of degree
n over a subfield K of C:

f = ant
n + . . .+ a0.
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1.4. Symmetric Polynomials 25

Resolve it into linear factors over C:

f = an(t− α1) . . . (t− αn).

Expand the product:

f = an(t
n − s1t

n−1 + . . .+ (−1)nsn),

where si denotes si(α1, . . . , αn).
A polynomial in s1, . . . , sn can clearly be rewritten as a symmetric

polynomial in t1, . . . , tn. The converse is also true, a fact first proved by
Isaac Newton:

Theorem 1.12. Let R be a ring. Then every symmetric polynomial in
R[t1, . . . , tn] is expressible as a polynomial with coefficients in R in the
elementary symmetric polynomials s1, . . . , sn.

Proof: We demonstrate a specific technique for reducing a symmetric
polynomial into elementary ones. First we order the monomials tα1

1 . . . tαn
n

by a ‘lexicographic’ order in which tα1

1 . . . tαn
n precedes tβ1

1 . . . tβn
n if the first

nonzero αi − βi is positive. Given a polynomial p ∈ R[t1, . . . , tn] we or-
der its terms lexicographically. If p is symmetric, then for every monomial
atα1

1 . . . tαn
n occurring in p, there occurs a similar monomial with the expo-

nents permuted. Let α1 be the highest exponent occurring in monomials
of p: then there is a term containing tα1

1 . The leading term of p in lexico-
graphic ordering contains tα1

1 , and among all such monomials we select the
one with the highest occurring power of t2 and so on. In particular, the
leading term of a symmetric polynomial is of the form atα1

1 . . . tαn
n where

α1 ≥ . . . ≥ αn. For example, the leading term of

sk1

1 . . . skn

n = (t1 + . . .+ tn)
k1 . . . (t1 . . . tn)

kn

is

tk1+...+kn

1 tk2+...+kn

2 . . . tkn

n .

By choosing k1 = α1 − α2, . . . , kn−1 = αn−1 − αn, kn = αn (which is
possible because α1 ≥ . . . ≥ αn) we can make this the same as the leading
term of p. Then

p− asα1−α2

1 . . . s
αn−1−αn

n−1 sαn

n

has a lexicographic leading term

btβ1

1 . . . tβn
n (β1 ≥ . . . ≥ βn)
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which comes after atα1

1 . . . tαn
n in the ordering. But only a finite number of

monomials tγ1

1 . . . tγn
n satisfying γ1 ≥ . . . ≥ γn follow tα1

1 . . . tαn
n lexicograph-

ically, and so a finite number of repetitions of the given process reduce p
to a polynomial in s1, . . . , sn. �

Example 1.13. The symmetric polynomial

p = t21t2 + t21t3 + t1t
2
2 + t1t

2
3 + t22t3 + t2t

2
3

is written lexicographically. Here n = 3, α1 = 2, α2 = 1, α3 = 0 and the
method tells us to consider

p− s1s2.

This simplifies to give
p− s1s2 = 3t1t2t3.

The polynomial 3t1t2t3 is visibly 3s3, but the method, using α1 = α2 =
α3 = 1, also leads us to this conclusion.

This result about symmetric functions proves to be extremely useful in
the following instance:

Corollary 1.14. Suppose that L is an extension of the field K, p ∈ K[t],
∂p = n and the zeros of p are θ1, . . . , θn ∈ L. If h(t1, . . . , tn) ∈ K[t1, . . . , tn]
is symmetric, then h(θ1, . . . , θn) ∈ K.

1.5 Modules

Let R be a ring. By an R-module we mean an abelian group M (written
additively), together with a function α : R ×M → M , for which we write
α(r,m) = rm (r ∈ R,m ∈M), satisfying

(a) (r + s)m = rm+ sm,
(b) r(m+ n) = rm+ rn,
(c) r(sm) = (rs)m,
(d) 1m = m

for all r, s ∈ R, m,n ∈M .
Although (d) is always obligatory in this text, be warned that in other

parts of mathematics it may not be required to be so.
The function α is called an R-action on M .
If R is a field K, then an R-module is the same thing as a vector space

over K. In this sense we can think of an R-module as a generalization of a
vector space, but because division need not be possible in R, many of the
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results and techniques of vector space theory do not carry over unchanged
to R-modules. The basic theory of modules may be found in Fraleigh
[28] section 37.2, p. 338. In particular we define an R-submodule of M
to be a subgroup N of M (under addition) such that if n ∈ N , r ∈ R,
then rn ∈ N . We may then define the quotient module M/N to be the
corresponding quotient group, with R-action

r(N +m) = N + rm (r ∈ R,m ∈M).

If X ⊆ M,Y ⊆ R, we define Y X to be the set of all finite sums
∑

i yixi
where yi ∈ Y, xi ∈ X .

The submodule of M generated by X , which we write

〈X〉R,
is the smallest submodule containing X . This is equal to RX . If N =
〈x1, . . . , xn〉R then we say that N is a finitely generated R-module.

A Z-module is nothing more than an abelian group M (written addi-
tively), and conversely, given an additive abelian group M we can make it
into a Z-module by defining

0m = 0, 1m = m (m ∈M)

then inductively

(n+ 1)m = nm+m (n ∈ Z, n > 0)

and
(−n)m = −nm (n ∈ Z, n > 0).

We discuss this case further in the next section.
More generally there are several natural ways in which R-modules can

arise, of which we distinguish three:

(1) Suppose that R is a subring of a ring S. Then S is an R-module with
action

α(r, s) = rs (r ∈ R, s ∈ S)

where the product is just that of elements in S.

(2) Suppose that I is an ideal of the ring R. Then I is an R-module
under

α(r, i) = ri (r ∈ R, i ∈ I)

where the product is that in R.

(3) Suppose that J ⊆ I is another ideal. Then J is also an R-module.
The quotient module I/J has the action

r(J + i) = J + ri (r ∈ R, i ∈ I).
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28 1. Algebraic Background

1.6 Free Abelian Groups

The study of algebraic numbers involves subfields and subrings of C. A
typical instance is the subring

Z[i] = {a+ bi ∈ C | a, b ∈ Z}.

The additive group of Z[i] is isomorphic to Z × Z. More generally the
additive groups of those subrings of C that we study are usually isomorphic
to the direct product of a finite number of copies of Z. In this section we
study such abelian groups, for later use.

Let G be an abelian group. In this section we use additive notation for
G, so the group operation is denoted by +, the identity by 0, the inverse
of g by −g and powers of g by 2g, 3g, . . . . In later chapters we encounter
cases where multiplicative notation is more appropriate.

If G is finitely generated as a Z-module, so there exist g1, . . . , gn ∈ G
such that every g ∈ G is a sum

g = m1g1 + . . .+mngn (mi ∈ Z)

then G is a finitely generated abelian group.
Generalizing the notion of linear independence in a vector space, we

say that elements g1, . . . , gn in an abelian group G are linearly independent
(over Z) if any equation

m1g1 + . . .+mngn = 0

with m1, . . . ,mn ∈ Z implies m1 = . . . = mn = 0. A linearly independent
set that generates G is a basis (Z-basis for emphasis). If {g1, . . . , gn} is a
basis, every g ∈ G has a unique representation in the form

g = m1g1 + . . .+mngn (mi ∈ Z)

because an alternative expression

g = k1g1 + . . .+ kngn (ki ∈ Z)

implies
(m1 − k1)g1 + . . .+ (mn − kn)gn = 0

and linear independence implies that mi − ki = 0, that is, mi = ki(1 ≤ i ≤
n).

If Zn denotes the direct product of n copies of the additive group of
integers, it follows that a group with a basis of n elements is isomorphic to
Zn.
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1.6. Free Abelian Groups 29

To show that two different bases ofG have the same number of elements,
let 2G be the subgroup of G consisting of all elements of the form g + g
(g ∈ G). If G has a basis of n elements, then G/2G is a group of order 2n.
Since the definition of 2G does not depend on any particular basis, every
basis must have the same number of elements.

An abelian group with a basis of n elements is called a free abelian group
of rank n. If G is free abelian of rank n and {x1, . . . , xn}, {y1, . . . , yn} are
both bases, then there exist integers aij , bij such that

yi =
∑

j

aijxj xi =
∑

j

bijyj .

If we consider the matrices

A = (aij) B = (bij)

then AB = In, the identity matrix. Hence

det(A)det(B) = 1

and since det(A) and det(B) are integers,

det(A) = det(B) = ±1.

A square matrix over Z with determinant ±1 is unimodular. We have:

Lemma 1.15. Let G be a free abelian group of rank n with basis {x1, . . . , xn}.
Suppose (aij) is an n× n matrix with integer entries. Then the elements

yi =
∑

j

aijxj

form a basis of G if and only if (aij) is unimodular.

Proof: The ‘only if’ part has already been dealt with. Now suppose
A = (aij) is unimodular. Since det(A) 6= 0 the yj are linearly independent.
We have

A−1 = (det(A))−1Ã

where Ã is the adjoint matrix and has integer entries. Hence A−1 = ±Ã
has integer entries. Putting B = A−1 = (bij) we obtain xi =

∑

j bijyj ,
demonstrating that the yj generate G. Thus they form a basis. �

The central result in the theory of finitely generated free abelian groups
concerns the structure of subgroups:
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30 1. Algebraic Background

Theorem 1.16. Every subgroup H of a free abelian group G of rank n is free
of rank s ≤ n. Moreover there exists a basis u1, . . . , un for G and positive
integers α1, . . . , αs such that α1u1, . . . , αsus is a basis for H.

Proof: We use induction on the rank n of G. For n = 1, G is infinite cyclic
and the result is a consequence of the subgroup structure of the cyclic
group. If G has rank n, pick any basis w1, . . . , wn of G. Every h ∈ H is of
the form

h = h1w1 + . . .+ hnwn.

Either H = {0}, in which case the theorem is trivial, or there exist non-zero
coefficients hi for some h ∈ H . From all such coefficients, let λ(w1, . . . , wn)
be the least positive integer occurring. Now choose the basis w1, . . . , wn,
to make λ(w1, . . . , wn) minimal. Let α1 be this minimal value, and number
the wi in such a way that

v1 = α1w1 + β2w2 + . . .+ βnwn

is an element of H in which α1 occurs as a coefficient. Let

βi = α1qi + ri (2 ≤ i ≤ n)

where 0 ≤ ri < α1, so that ri is the remainder on dividing βi by α1. Define

u1 = w1 + q2w2 + . . .+ qnwn.

Then it is easy to verify that u1, w2, . . . , wn is another basis for G. (The
appropriate matrix is clearly unimodular.) With respect to the new basis,

v1 = α1u1 + r2w2 + . . .+ rnwn.

By the minimality of α1 = λ(w1, . . . , wn) for all bases we have

r2 = . . . = rn = 0.

Hence
v1 = α1u1.

With respect to the new basis, let

H ′ = {m1u1 +m2w2 + . . .+mnwn | m1 = 0}.

Clearly H ′∩V1 = {0}, where V1 is the subgroup generated by v1. We claim
that H = H ′ + V1. For if h ∈ H then

h = γ1u1 + γ2w2 + . . .+ γnwn
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1.6. Free Abelian Groups 31

and putting

γ1 = α1q + r1 (0 ≤ r1 < α1)

it follows that H contains

h− qv1 = r1u1 + γ2w2 + . . .+ γnwn

and the minimality of α1 once more implies that r1 = 0. Hence h−qv1 ∈ H ′.
It follows that H is isomorphic to H ′ × V1 and H ′ is a subgroup of the
group G′ which is free abelian of rank n − 1 with generators w2, . . . , wn.
By induction, H ′ is free of rank ≤ n − 1, and there exist bases u2, . . . , un
of G′ and v2, . . . , vs of H ′ such that vi = αiui for positive integers αi. �

From the above two results we deduce a useful theorem about orders of
quotient groups. In its statement we use |X | to denote the cardinality of
the set X , and |x| to denote the absolute value of the real number x. No
confusion need arise.

Theorem 1.17. Let G be a free abelian group of rank r, and H a subgroup
of G. Then G/H is finite if and only if the ranks of G and H are equal.
If this is the case, and if G and H have Z-bases x1, . . . , xr and y1, . . . , yr
with yi =

∑

j aijxj , then

|G/H | = | det(aij)|.

Proof: Let H have rank s. Use Theorem 1.16 to choose Z-bases u1, . . . , ur
of G and v1, . . . , vs of H with vi = αiui for 1 ≤ i ≤ s. Clearly G/H is the
direct product of finite cyclic groups of orders α1, . . . , αs and r− s infinite
cyclic groups. Hence |G/H | is finite if and only if r = s, and in that case

|G/H | = α1 . . . αr.

Now

ui =
∑

j

bijxj vi =
∑

j

cijuj yi =
∑

j

dijvj

where the matrices (bij) = B and (dij) = D are unimodular by Lemma
1.15, and

C = (cij) =











α1

α2 0

0
. . .

αr










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32 1. Algebraic Background

Clearly if A = (aij) then A = BCD, so

det(A) = det(B)det(C)det(D).

Therefore

|det(A)| = | ± 1||det(C)|| ± 1| = |α1 . . . αr| = |G/H |

as claimed. �

For example, if G has rank 3 and Z-basis x, y, z, and if H has Z-basis

3x+ y − 2z,

4x− 5y + z,

x + 7z,

then |G/H | is the absolute value of

∣

∣

∣

∣

∣

∣

3 1 −2
4 −5 1
1 0 7

∣

∣

∣

∣

∣

∣

,

namely 142.
Suppose now that G is a finitely generated group, and let its generators

be w1, . . . , wn where the latter need not be independent. Then we can
define a map f : Zn → G by:

f (m1, . . . ,mn) = m1w1 + . . .+mnwn.

This is surjective, so G is isomorphic to Zn/H where H is the kernel of f .
We can use Theorem 1.16 to choose a new basis u1, . . . , un of Zn so that
α1u1, . . . , αsus is a basis for H . Let A be the subgroup of Zn generated by
u1, . . . , us and B be the subgroup generated by us+1, . . . , un. Clearly G is
isomorphic to (A/H)×B, so is the direct product of a finite abelian group
A/H and a free group B on n− s generators. Putting n− s = k, we have
proved:

Proposition 1.18. Every finitely generated abelian group with n generators is
the direct product of a finite abelian group and a free group on k generators
where k ≤ n. �

If K is any subgroup of a finitely generated abelian group G, then
writing G = F × B where F is finite and B is finitely generated and free,
we find K ∼= (F ∩ K) × H where H ⊆ B. Then F ∩ K is finite and (by
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Theorem 1.16) H is finitely generated and free, so we find K is finitely
generated. Hence we have:

Proposition 1.19. A subgroup of a finitely generated abelian group is finitely
generated. �

Of course the results in this section are not the best possible that can
be proved in finitely generated abelian group theory. Refinements may be
found in Fraleigh [39] Chapter 9 pp. 86–93. The results we have established
are ample for our needs, so we can now make a start on the substance of
algebraic number theory.

1.7 Exercises

1. Show that Theorem 1.3 becomes false if the word ‘finite’ is omitted
from the hypotheses.

2. Which of the following polynomials over Z are irreducible?

(a) x2 + 3

(b) x2 − 169

(c) x3 + x2 + x+ 1

(d) x3 + 2x2 + 3x+ 4

3. Write down some polynomials over Z and factorize them into irre-
ducibles.

4. Does Theorem 1.5 remain true over a field of characteristic p > 0?

5. Find the minimum polynomial over Q of

(i) (1 + i)/
√
2

(ii) i+
√
2

(iii) e2πi/3 + 2

6. Find the degrees of the following field extensions:

(a) Q(
√
7) : Q

(b) C(
√
7) : C

(c) Q(
√
5,
√
7,
√
35) : Q

(d) R(θ) : R where θ3 − 7θ + 6 = 0 and θ /∈ R

(e) Q(π) : Q (Hint: You may assume that π is transcendental.)
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7. Let K be the field generated by the elements e2πi/n (n = 1, 2, . . .).
Show that K is an algebraic extension of Q, but that [K : Q] is not
finite. (Hint: It may help to show that the minimum polynomial of
e2πi/p for p prime is tp−1 + tp−2 + . . .+ 1.)

8. Express the following polynomials in terms of elementary symmetric
polynomials, where possible.

(a) t21 + t22 + t23 (n = 3)
(b) t31 + t32 (n = 2)
(c) t1t

2
2 + t2t

2
3 + t3t

2
1 (n = 3)

(d) t1 + t22 + t33 (n = 3)

9. A polynomial belonging to Z[t1, . . . , tn] is antisymmetric if it is in-
variant under even permutations of the variables, but changes sign
under odd permutations. Let

∆ =
∏

i<j

(ti − tj) .

Show that ∆ is antisymmetric. If f is any antisymmetric polynomial,
prove that f is expressible as a polynomial in the elementary sym-
metric polynomials, together with ∆. (Hint: Show that ∆ divides f
and consider f/∆.)

10. Find the orders of the groups G/H where G is free abelian with
Z-basis x, y, z and H is generated by:

(a) 2x, 3y, 7z

(b) x+ 3y − 5z, 2x− 4y, 7x+ 2y − 9z

(c) x

(d) 41x+ 32y − 999z, 16y + 3z, 2y + 111z

(e) 41x+ 32y − 999z

11. Let K be a field. Show that M is a K-module if and only if it is a
vector space over K. Show that the submodules of M are precisely
the vector subspaces. Do these statements remain true if we do not
use convention (d) of Section 1.5 for modules?

12. Let Z be a Z-module with the obvious action. Find all the submod-
ules.

13. Let R be a ring, and letM be a finitely generatedR-module. Is it true
that M necessarily has only finitely many distinct R-submodules? If
not, is there an extra condition on R which will lead to this conclu-
sion?



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 35 — #51
✐

✐

✐

✐

✐

✐

1.7. Exercises 35

14. An abelian group G is said to be torsion-free if g ∈ G, g 6= 0 and
kg = 0 for k ∈ Z implies k = 0. Prove that a finitely generated
torsion-free abelian group is a finitely generated free group.

15. By examining the proof of Theorem 1.16 carefully, or by other means,
prove that if H is a subgroup of a free group G of rank n then there
exists a basis u1, . . . , un for G and a basis v1, . . . , vs for H where
s ≤ n and vi = αiui (1 ≤ i ≤ s) where the αi are positive integers
and αi divides αi+1 (1 ≤ i ≤ s− 1).
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Algebraic Numbers

In this chapter we introduce the algebraic numbers as solutions of polyno-
mial equations with integer coefficients. Among these numbers, the major
players are the solutions of equations with integer coefficients whose lead-
ing coefficient is 1. These are the algebraic integers. We develop a theory
of factorization of algebraic integers, analogous to factorization of whole
numbers. In many ways the theories are alike, but in at least one essential
way—uniqueness of factorization—there are differences.

The most important of these is that in many rings of algebraic integers,
factorization into irreducibles is not unique. We postpone discussion of this
issue until Chapter 4.

Here we observe a simpler issue: factorization into irreducibles depends
on the ring in which factorization is performed. In Z the number 5 is
irreducible. The only ways to write it as a product are trivial: multiply
±5 and ±1. However, in Z[

√
5] it can be written as the non-trivial product

5 =
√
5 ·

√
5; moreover, it turns out that

√
5 cannot be further factorized in

this ring. Thus 5 is irreducible in Z, yet reducible in Z[
√
5]. It is therefore

essential to specify the ring in which factorization is carried out.
The natural context is a ring of algebraic integers, contained in its asso-

ciated algebraic number field. We begin with algebraic number fields that
obey a finiteness condition: they are finite-dimensional as vector spaces
over the rationals. We prove that such a field is of the form Q[θ] for a
single algebraic number θ.

We introduce the conjugates of an algebraic number and the discrim-
inant of a basis for Q[θ] over Q, using the conjugates of θ to show that
the discriminant is always a non-zero rational number. Algebraic integers
are defined and shown to form a ring. The ring of algebraic integers in a

37
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38 2. Algebraic Numbers

number field is shown to have an integral basis whose discriminant is an
integer. This integer is independent of the choice of integral basis and is
called the discriminant of the number field.

Finally, we introduce the norm and trace of an algebraic number, which
are ordinary integers when the algebraic number is an algebraic integer.
Using the norm and trace in later chapters we can translate statements
about algebraic integers into statements about ordinary integers, which
are easier to handle.

2.1 Algebraic Numbers

A complex number α is algebraic if it is algebraic overQ, that is, it satisfies a
non-zero polynomial equation with coefficients in Q. Equivalently, clearing
out denominators, we may assume the coefficients are in Z. Let A denote
the set of algebraic numbers. In fact A is a field:

Theorem 2.1. The set A of algebraic numbers is a subfield of the complex
field C.

Proof: We use Theorem 1.11, which in this case says that α is algebraic if
and only if [Q(α) : Q] is finite. Suppose that α, β are algebraic. Then

[Q (α, β) : Q] = [Q (α, β) : Q (α)] [Q (α) : Q]

Since β is algebraic over Q it is certainly algebraic over Q(α), so the first
factor on the right is finite; and the second factor is also finite. Hence
[Q(α, β) : Q] is finite. But each of α+ β, α − β, αβ, and (for β 6= 0) α/β
belongs to Q(α, β). So all of these are in A, and the theorem is proved. �

The whole field A is not as interesting, for us, as certain of its subfields.
We define a number field to be a subfield K of C such that [K : Q] is
finite. This implies that every element of K is algebraic, so K ⊆ A. The
trouble with A is that [A : Q] is not finite (see Chapter 1, Exercise 7,
or Stewart [78], Exercise 4.8, p. 55). If K is a number field then K =
Q(αi, . . . , αn) for finitely many algebraic numbers α1, . . . , αn (for instance,
a basis for K as vector space over Q). We can strengthen this observation
considerably:

Theorem 2.2. If K is a number field then K = Q(θ) for some algebraic
number θ.
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Proof: Arguing by induction, it is sufficient to prove that if K = K1(α, β)
where K1 is a subfield of K, then K = K1(θ) for some θ. Let p and q
respectively be the minimum polynomials of α, β over K1, and suppose
that over C these factorize as

p (t) = (t− α1) . . . (t− αn),

q(t) = (t− β1) . . . (t− βm),

where we choose the numbering so that α1 = α, β1 = β. By Corollary 1.6
the αi are distinct, as are the βj . Hence for each i and each k 6= 1 there is
at most one element x ∈ K1 such that

αi + xβk = α1 + xβ1.

Since there are only finitely many such equations, we may choose c 6= 0 in
K1, not equal to any of these x’s, and then

αi + cβk 6= α1 + cβ1

for 1 ≤ i ≤ n, 2 ≤ k ≤ m. Define

θ = α+ cβ.

We prove that K1(θ) = K1 (α, β). Obviously K1(θ) ⊆ K1(α, β), and it
suffices to prove that β ∈ K1(θ) since α = θ − cβ.

Observe that

p(θ − cβ) = p(α) = 0.

Define the polynomial

r(t) = p(θ − ct) ∈ K1(θ)[t]

Now β is a zero of both q(t) and r(t) as polynomials over K1(θ). These
polynomials have only one common zero, for if q(ξ) = r(ξ) = 0 then ξ is
one of β1, . . . , βm and also θ−cξ is one of α1, . . . , αn. Our choice of c forces
ξ = β. Let h(t) be the minimum polynomial of β over K1(θ). Then h(t) |
q(t) and h(t) | r(t). Since q and r have just one common zero in C we have
∂h = 1, so

h(t) = t+ µ

for µ ∈ K1(θ). Now 0 = h(β) = β+µ so that β = −µ ∈ K1(θ) as required.
�
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Example 2.3. Q(
√
2, 3

√
5).

We have
α1 =

√
2, α2 = −

√
2,

β1 =
3
√
5, β2 = ω

3
√
5, β3 = ω2 3

√
5

where
ω = 1

2
(−1 +

√
−3)

is a complex cube root of 1. The number c = 1 satisfies

αi + cβk 6= α+ cβ

for i = 1, 2, k = 2, 3; since the number on the left is not real in any of the
four cases, whereas that on the right is. Hence Q(

√
2, 3

√
5) = Q(

√
2 + 3

√
5).

The expression of K as Q(θ) is, of course, not unique; for Q(θ) =
Q(−θ) = Q(θ + 1) = . . . and so on.

2.2 Conjugates and Discriminants

IfK = Q(θ) is a number field there are, in general, several distinct monomor-
phisms σ : K → C. For instance, if K = Q(i) where i =

√
−1 then the

possibilities are

σ1(x+ iy) = x+ iy,

σ2(x+ iy) = x− iy,

for x, y ∈ Q. The full set of such monomorphisms plays a fundamental role
in the theory, so we begin with a description.

Theorem 2.4. Let K = Q(θ) be a number field of degree n over Q. Then
there are exactly n distinct monomorphisms σi : K → C (i = 1, . . . , n). The
elements σi(θ) = θi are the distinct zeros in C of the minimum polynomial
of θ over Q.

Proof: Let θ1, . . . , θn be the (by Corollary 1.3 distinct) zeros of the mini-
mum polynomial p of θ. Then each θi also has minimum polynomial p (it
must divide p, and p is irreducible) and so there is a unique field isomor-
phism σi : Q(θ) → Q(θi) such that σi(θ) = θi. In fact, if α ∈ Q(θ) then
α = r(θ) for a unique r ∈ Q[t] with ∂r < n, and

σi(α) = r(θi).
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See Garling [31] Corollary 2 to Theorem 7.4, p. 66 or Stewart [78] Theorem
3.8, p. 43.

Conversely if σ : K → C is a monomorphism then σ is the identity on
Q. Now

0 = σ(p(θ)) = p(σ(θ))

so σ(θ) is one of the θi, hence σ is one of the σi. �

Keep this notation, and for each α ∈ K = Q(θ) define the field polyno-
mial of α over K to be

fα(t) =

n
∏

i=1

(t− σi(α)).

As it stands, this is in K[t]. In fact more is true:

Theorem 2.5. The coefficients of the field polynomial are rational numbers,
so that fα(t) ∈ Q[t].

Proof: We have α = r(θ) for r ∈ Q[t], ∂r < n. The field polynomial takes
the form

fα(t) =
∏

i

(t− r(θi))

where the θi run through all zeros of the minimum polynomial p of θ, whose
coefficients are in Q. It is easy to see that the coefficients of fα(t) are of
the form

h(θ1, . . . , θn)

where h(t1, . . . , tn) is a symmetric polynomial in Q[t1, . . . , tn]. Now use
Corollary 1.14. �

The elements σi(α) for i = 1, . . . , n are theK-conjugates of α. Although
the θi are distinct (and are the K-conjugates of θ) it is not always the case
that the K-conjugates of α are distinct: for instance σi(1) = 1 for all i.
The precise situation is given by:

Theorem 2.6. With the above notation,
(a) The field polynomial fα is a power of the minimum polynomial pα.
(b) The K-conjugates of α are the zeros of pα in C, each repeated n/m

times where m = ∂pα is a divisor of n.
(c) The element α ∈ Q if and only if all of its K-conjugates are equal.
(d) Q(α) = Q(θ) if and only if all K-conjugates of α are distinct.
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42 2. Algebraic Numbers

Proof: The main point is (a). Now q = pα is irreducible and α is a zero of
f = fα, so f = qsh where q and h are coprime and both are monic. (This
follows from factorizing f into irreducibles.) We claim that h is constant.
If not, some αi = σi(α) = r(θi) is a zero of h, where α = r(θ). Therefore
if g(t) = h(r(t)) then g(θi) = 0. Let p be the minimum polynomial of θ
over Q, hence also of each θi. Then p|g, so that g(θj) = 0 for all j, and in
particular g(θ) = 0. Therefore, h(α) = h(r(θ)) = g(θ) = 0, so q divides h,
a contradiction. Hence h is constant and monic, so h = 1 and f = qs.

(b) is an immediate consequence of (a) by the definition of the field
polynomial.

To prove (c), it is clear that α ∈ Q implies σi(α) ∈ Q. Conversely, if all
σi(α) are equal then since the zeros of q = pα are distinct and fα = qs, we
have ∂q = 1 so α ∈ Q.

Finally for (d): if all σi(α) are distinct then ∂pα = n, so [Q(α) : Q] = n
= [Q(θ) : Q]. ThusQ(α) = Q(θ). Conversely if Q(α) = Q(θ) then ∂pα = n
so the σi(α) are distinct. �

Warning. The K-conjugates of α need not be elements of K. Even the θi
need not be elements of K. For example, let θ be the real cube root of 2.
Then Q(θ) is a subfield of R. The K-conjugates of θ, however, are θ, ωθ,
ω2θ, where ω = 1

2 (−1+
√
−3). The last two of these are nonreal, hence do

not lie in Q(θ).

Still with K = Q(θ) of degree n, let {αi, . . . , αn} be a basis of K (as
vector space over Q). Define the discriminant of this basis to be

∆ [α1, . . . , αn] = {det[σi(αj)]}2. (2.1)

If we pick another basis {β1, . . . , βn} then

βk =

n
∑

i=1

cikαi (cik ∈ Q)

for k = 1, . . . , n, and

det(cik) 6= 0.

The product formula for determinants, and the fact that the σi are monomor-
phisms, hence the identity on Q, shows that

∆[β1, . . . , βn] = [det(cik)]
2∆[α1, . . . , αn]. (2.2)

Theorem 2.7. The discriminant of any basis for K = Q(θ) is rational and
non-zero. If all K-conjugates of θ are real then the discriminant of any
basis is positive.
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Proof: Pick a basis that makes computations straightforward: the obvious
one is {1, θ, . . . , θn−1}. If the conjugates of θ are θ1, . . . , θn then

∆[1, θ, . . . , θn−1] = (det θji )
2.

A determinant of the form D = det(tji ) is called a Vandermonde determi-
nant, and has value

D =
∏

1≤i<j≤n

(ti − tj). (2.3)

To see this, think of everything as lying insideQ[t1, . . . , tn]. Then for ti = tj
the determinant has two equal rows, so vanishes. Hence D is divisible by
each (ti − tj). To avoid repeating such a factor twice we take i < j.
Then comparison of degrees easily shows that D has no other non-constant
factors; comparing coefficients of t1t

2
2 . . . t

n
n gives (2.3).

Hence

∆ = ∆[1, θ, . . . , θn−1] =
(

∏

(θi − θj)
)2

.

Now D is antisymmetric in the ti, so D
2 is symmetric. By the usual ar-

gument about symmetric polynomials, Corollary 1.14, ∆ is rational. Since
the θi are distinct, ∆ 6= 0.

Now let {β1, . . . , βn} be any basis. Then

∆[β1, . . . , βn] = (det cik)
2∆

for certain rational numbers cik, and det(cik) 6= 0, so

∆[β1, . . . βn] 6= 0

and is rational. Clearly if all θi are real then ∆ is a positive real number,
hence so is ∆[β1, . . . , βn]. �

With the above notation, ∆ vanishes if and only if some θi is equal to
another θj . Hence the non-vanishing of ∆ lets us ‘discriminate’ among the
θi, which motivates calling ∆ the discriminant.

2.3 Algebraic Integers

A complex number θ is an algebraic integer if there is a monic polynomial
p(t) with integer coefficients such that p(θ) = 0. In other words,

θn + an−1θ
n−1 + . . .+ a0 = 0

where ai ∈ Z for all i.
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For example, θ =
√
−2 is an algebraic integer, since θ2 + 2 = 0; τ =

1
2 (1 +

√
5) is an algebraic integer, since τ2 − τ − 1 = 0. But φ = 22/7

is not. It satisfies equations like 7φ − 22 = 0, but this is not monic; or
like φ− 22/7 = 0, whose coefficients are not integers; but it can be shown
without difficulty that φ does not satisfy any monic polynomial equation
with integer coefficients.

We write B for the set of algebraic integers. One of our aims is to prove
that B is a subring of A. We prepare for this by proving:

Lemma 2.8. A complex number θ is an algebraic integer if and only if the
additive group generated by all powers 1, θ, θ2, . . . is finitely generated.

Proof: If θ is an algebraic integer, then for some n

θn + an−1θ
n−1 + . . .+ a0 = 0 (2.4)

where the ai ∈ Z. We claim that every power of θ lies in the additive
group generated by 1, θ, . . . , θn−1. Call this group Γ. Then (2.4) shows
that θn ∈ Γ. Inductively, if m ≥ n and θm ∈ Γ then

θm+1 = θm+1−nθn = θm+1−n(−an−1θ
n−1 − . . .− a0) ∈ Γ.

This proves that every power of θ lies in Γ, which gives one implication.

For the converse, suppose that every power of θ lies in a finitely gen-
erated additive group G. The subgroup Γ of G generated by the pow-
ers 1, θ, θ2, . . . must also be finitely generated by Proposition 1.19. Let
v1, . . . , vn be generators. Each vi is a polynomial in θ with integer coeffi-
cients, so θvi is also such a polynomial. Hence there exist integers bij such
that

θvi =
n
∑

j=1

bijvj .

This leads to a system of homogeneous equations for the vi of the form

(b11 − θ)v1 + b12v2 + . . .+ b1nvn = 0

b21v1 + (b22 − θ)v2 + . . .+ b2nvn = 0

...

bn1v1 + bn2v2 + . . .+ (bnn − θ)vn = 0.
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Since there exists a solution v1, . . . , vn ∈ C, not all zero, the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 − θ b12 . . . b1n
b21 b22 − θ . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn − θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

is zero. Expand to see that θ satisfies a monic polynomial equation with
integer coefficients. �

Theorem 2.9. The algebraic integers form a subring of the field of algebraic
numbers.

Proof: Let θ, φ ∈ B. We have to show that φ+ θ and θφ ∈ B. By Lemma
2.8 all powers of θ lie in a finitely generated additive subgroup Γθ of C, and
all powers of φ lie in a finitely generated additive subgroup Γφ. But now
all powers of θ + φ and of θφ are integer linear combinations of elements
θiφj which lie in ΓθΓφ ⊆ C. But if Γθ has generators v1, . . . , vn and Γφ

has generators w1, . . . , wm, then ΓθΓφ is the additive group generated by
all viwj for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Hence all powers of θ + φ and of θφ lie
in a finitely generated additive subgroup of C, so by Lemma 2.8 θ+ φ and
θφ are algebraic integers. Hence B is a subring of A. �

A simple extension of this technique lets us prove a useful theorem:

Theorem 2.10. Let θ be a complex number satisfying a monic polynomial
equation whose coefficients are algebraic integers. Then θ is an algebraic
integer.

Proof: Suppose that

θn + ψn−1θ
n−1 + . . .+ ψ0 = 0

where ψ0, . . . , ψn−1 ∈ B. Then these generate a subring Ψ of B. The
argument of Lemma 2.8 shows that all powers of θ lie inside a finitely
generated Ψ-submodule M of C, spanned by 1, θ, . . . , θn−1. By Theorem
2.9, each ψi and all its powers lie inside a finitely generated additive group
Γi with generators γij (1 ≤ j ≤ ni). Therefore M lies inside the additive
group generated by all elements

γ1j1 , γ2j2 , . . . , γn−1,jn−1
θk

(1 ≤ ji ≤ ni, 0 ≤ i ≤ n− 1, 0 ≤ k ≤ n− 1), which is a finite set. So M is
finitely generated as an additive group. �
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Theorems 2.9 and 2.10 let us construct many new algebraic integers
from known ones. For instance,

√
2 and

√
3 are clearly algebraic integers.

Then Theorem 2.9 says that numbers such as
√
2 +

√
3, 7

√
2 − 41

√
3,

(
√
2)5(1 +

√
3)2 are also algebraic integers. And Theorem 2.10 says that

zeros of polynomials such as

t23 − (14 +
5
√
3)t9 + (

3
√
2)t5 − 19

√
3

are algebraic integers. It would not be easy, particularly in the last instance,
to compute explicit polynomials over Z of which these algebraic integers are
zeros; although it can in principle be done by using symmetric polynomials.
In fact Theorems 2.9 and 2.10 can be proved this way.

The Ring of Integers of a Number Field

We have given this topic its own heading because the ideas involved are
absolutely central to the entire book.

For any number field K write

O = K ∩ B,

and call O the ring of integers of K. The symbol ‘O’ is traditional but
confusing. It look a bit like a letter D, but actually it is a Gothic (often
called ‘Fraktur’) capital O (for ‘order’, the old terminology, in German).
In cases where it is not immediately clear which number field is involved,
we write more explicitly OK . Since K and B are subrings of C it follows
that O is a subring of K. Further Z ⊆ Q ⊆ K and Z ⊆ B so Z ⊆ O.

The following lemma is easy to prove:

Lemma 2.11. If α ∈ K then cα ∈ O for some non-zero c ∈ Z.

Corollary 2.12. If K is a number field then K = Q(θ) for an algebraic
integer θ.

Proof: By Theorem 2.2, K = Q(φ) for an algebraic number φ. By Lemma
2.11, θ = cφ is an algebraic integer for some 0 6= c ∈ Z. Clearly Q(φ) =
Q(θ). �

Warning. For θ ∈ C, write Z[θ] for the set of elements p(θ) for polynomials
p ∈ Z[t]. If K = Q(θ) where θ is an algebraic integer then certainly O

contains Z[θ] since O is a ring containing θ. However, O need not equal
Z[θ]. For example, Q(

√
5) is a number field and

√
5 an algebraic integer.
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But

1 +
√
5

2

is a zero of t2 − t− 1, hence an algebraic integer; and it lies in Q(
√
5) so it

belongs to O. It does not belong to Z[
√
5].

There is a useful criterion, in terms of the minimum polynomial, for a
number to be an algebraic integer:

Lemma 2.13. An algebraic number α is an algebraic integer if and only if
its minimum polynomial over Q has coefficients in Z.

Proof: Let p be the minimum polynomial of α over Q, and recall that this
is monic and irreducible in Q[t]. If p ∈ Z[t] then α is an algebraic integer.
Conversely, if α is an algebraic integer then q(α) = 0 for some monic
q ∈ Z[t], and p|q. By Gauss’s Lemma 1.7 it follows that p ∈ Z[t], because
some rational multiple λp lies in Z[t] and divides q, and the monicity of q
and p implies λ = 1. �

To avoid confusion about the word ‘integer’ we adopt the following
convention: a rational integer is an element of Z, and a plain integer is
an algebraic integer. (The aim is to reserve the shorter term for the con-
cept most often encountered.) Any remaining possibility of confusion is
eliminated by:

Lemma 2.14. An algebraic integer is a rational number if and only if it is
a rational integer. Equivalently, B ∩Q = Z.

Proof: Clearly Z ⊆ B ∩ Q. Let α ∈ B ∩ Q; since α ∈ Q its minimum
polynomial over Q is t− α. By Lemma 2.13 the coefficients of this are in
Z, hence −α ∈ Z, hence α ∈ Z. �

2.4 Integral Bases

Let K be a number field of degree n (over Q). A basis (or Q-basis for
emphasis) of K is a basis for K as a vector space over Q. By Corollary
2.11 we have K = Q(θ) where θ is an algebraic integer, so the minimum
polynomial p of θ has degree n and {1, θ, . . . , θn−1} is a basis for K.

The ring O of integers of K is an abelian group under addition. A
Z-basis for (O,+) is called an integral basis for K (or for O). Thus
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{α1, . . . , αs, } is an integral basis if and only if all αi ∈ O and every el-
ement of O is uniquely expressible in the form

a1α1 + . . .+ asαs

for rational integers a1, . . . , as. It is obvious from Lemma 2.11 that any
integral basis for K is a Q-basis, so s = n. But we have to verify that
integral bases exist. In fact they do, but they are not always what naively
we might expect them to be.

For instance, K = Q[θ] (which equals Q(θ)) for an algebraic integer θ
by Corollary 2.12, so {1, θ, . . . , θn−1} is a Q-basis for K which consists of
integers. However, it does not follow that {1, θ, . . . , θn−1} is an integral
basis, because some elements in Q[θ] with non-integer coefficients may also
be (algebraic) integers. As an example, consider K = Q(

√
5). We saw that

1
2 + 1

2

√
5 satisfies the equation

t2 − t+ 1 = 0,

so is an integer in Q(
√
5), but it is not an element of Z[

√
5].

Our first problem, therefore, is to show that integral bases exist. That
they do is equivalent to the statement that (O, + ) is a free abelian group
of rank n. To prove this we first establish:

Lemma 2.15. If {α1, . . . , αn} is a basis of K consisting of integers, then the
discriminant ∆[α1, . . . , αn] is a rational integer, not equal to zero.

Proof: By Theorem 2.7, ∆ = ∆[α1, . . . , αn] is rational. It is an integer
since the αi are. Hence by Lemma 2.14 it is a rational integer. By Theorem
2.7, ∆ 6= 0. �

Theorem 2.16. Every number field K possesses an integral basis, and the
additive group of O is free abelian of rank n equal to the degree of K.

Proof: We have K = Q(θ) for θ an integer. Hence there exist bases for K
consisting of integers: for example {1, θ, . . . , θn−1}. We have already seen
that such Q-bases need not be integral bases. However, the discriminant of
a Q-basis consisting of integers is always a rational integer (Lemma 2.15),
so what we do is to select a basis {ω1, . . . , ωn} of integers for which

|∆[ω1, . . . , ωn]|

is least. We claim that this is in fact an integral basis. If not, there is an
integer ω of K such that

ω = a1ω1 + . . .+ anωn
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for ai ∈ Q, not all in Z. Choose the numbering so that a1 /∈ Z. Then
a1 = a+ r where a ∈ Z and 0 < r < 1. Define

ψ1 = ω − aω1, ψi = ωi (i = 2, . . . , n).

Then {ψ1, . . . , ψn} is a basis consisting of integers. The determinant rele-
vant to the change of basis from the ω’s to the ψ’s is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 − a a2 a3 . . . an
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r,

so
∆[ψ1, . . . , ψn] = r2∆[ω1, . . . , ωn].

Since 0 < r < 1 this contradicts the choice of {ω1, . . . , ωn} making
|∆[ω1, . . . , ωn]| minimal.

It follows that {ω1, . . . , ωn} is an integral basis, and so (O, + ) is free
abelian of rank n. �

This raises the question of finding integral bases in cases such as Q(
√
5)

where the Q-basis {1,
√
5} is not an integral basis. We consider a more

general case in the next chapter, but this particular example is worth a
brief discussion here.

An element of Q(
√
5) is of the form p + q

√
5 for p, q ∈ Q, and has

minimum polynomial

(t− p− q
√
5)(t− p+ q

√
5) = t2 − 2pt+ (p2 − 5q2).

Then p + q
√
5 is an integer if and only if the coefficients 2p, p2 − 5q2 are

rational integers. Thus p = 1
2P where P is a rational integer. For P even,

we have p2 a rational integer, so 5q2 is a rational integer also, implying q
is a rational integer. For P odd, a straightforward calculation (performed
in the next chapter in greater generality) shows q = 1

2Q where Q is also an
odd rational integer.

From this it follows that O = Z[ 12 + 1
2

√
5] and an integral basis is

{1, 12 + 1
2

√
5}.

We can prove this by another route using the discriminant. The two
monomorphisms Q(

√
5) → C are

σ1(p+ q
√
5) = p+ q

√
5,

σ2(p+ q
√
5) = p− q

√
5.
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Hence the discriminant ∆[1, 12 + 1
2

√
5] is

∣

∣

∣

∣

1 1
2 + 1

2

√
5

1 1
2 − 1

2

√
5

∣

∣

∣

∣

2

= 5.

Define a rational integer to be squarefree if it is not divisible by the square
of a prime. For example, 5 is squarefree, as are 6, 7, but not 8 or 9. Given a
Q-basis of K consisting of integers, we compute the discriminant and then
we have:

Theorem 2.17. Suppose that α1, . . . , αn ∈ O form a Q-basis for K. If
∆[α1, . . . , αn] is squarefree then {α1, . . . , αn} is an integral basis.

Proof: Let {β1, . . . , βn} be an integral basis. Then there exist rational
integers cij such that αi = Σcijβj , and

∆[α1, . . . , αn] = (det cij)
2∆[β1, . . . , βn].

Since the left-hand side is squarefree, det cij = ±1, so (cij) is unimodular.
Hence by Lemma 1.15 {α1, . . . , αn} is a Z-basis for O, that is, an integral
basis for K. �

For example, the Q-basis {1, 12 + 1
2

√
5} for Q(

√
5) consists of integers

and has discriminant 5 (calculated above). Since 5 is squarefree, this is
an integral basis. Later we show that there exist integral bases whose
discriminants are not squarefree, so the converse of Theorem 2.17 is false.

For two integral bases {α1, . . . , αn}, {β1, . . . , βn} of an algebraic number
field K, we have

∆[α1, . . . , αn] = (±1)2∆[β1, . . . , βn] = ∆[β1, . . . , βn],

because the matrix corresponding to the change of basis is unimodular.
Hence the discriminant of an integral basis is independent of which integral
basis we choose. This common value is called the discriminant of K (or
of O). It is always a non-zero rational integer. Obviously, isomorphic
number fields have the same discriminant. The important role played by
the discriminant will become apparent as the drama unfolds.

2.5 Norms and Traces

These important concepts often let us transform a problem about algebraic
integers into one about rational integers. As usual, let K = Q(θ) be a
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number field of degree n and let σ1, . . . , σn be the monomorphisms K → C.
The field polynomial is a power of the minimum polynomial by Theorem
2.6(a), so by Lemma 2.13 and Gauss’s Lemma 1.7 it follows that α ∈ K is
an integer if and only if the field polynomial has rational integer coefficients.
For any α ∈ K define the norm

NK(α) =

n
∏

i=1

σi(α)

and trace

TK(α) =

n
∑

i=1

σi(α).

Where the field K is clear from the context, we abbreviate the norm and
trace of α to N(α) and T(α) respectively.

Since the field polynomial is

fα(t) =

n
∏

i=1

(t− σi(α))

The remark above implies that if α is an integer then the norm and trace
of α are rational integers. Since the σi are monomorphisms it is clear that

N(αβ) = N(α)N(β) (2.5)

and if α 6= 0 then N(α) 6= 0. If p, q are rational numbers then

T(pα+ qβ) = pT(α) + qT(β). (2.6)

For instance, if K = Q(
√
7) then the integers of K are O = Z[

√
7], see

Theorem 3.2. The maps σi are

σ1(p+ q
√
7) = p+ q

√
7,

σ2(p+ q
√
7) = p− q

√
7.

Hence

N(p+ q
√
7) = p2 − 7q2,

T(p+ q
√
7) = 2p.

Since norms are not too hard to compute (they can always be found
from symmetric polynomial considerations, often with short-cuts) whereas
discriminants involve complicated work with determinants, the following
result is sometimes useful:
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Proposition 2.18. Let K = Q(θ) be a number field where θ has minimum
polynomial p of degree n. The Q-basis {1, θ, . . . , θn−1} has discriminant

∆
[

1, . . . , θn−1
]

= (−1)n(n−1)/2N(Dp(θ))

where Dp is the formal derivative of p.

Proof: The proof of Theorem 2.7 yields:

∆ = ∆[1, θ, . . . , θn−1] =
∏

1≤i<j≤n

(θi − θj)
2

where θ1, . . . , θn are the conjugates of θ. Now

p(t) =

n
∏

i=1

(t− θi)

so

Dp(t) =

n
∑

j=1

n
∏

i=1
i6=j

(t− θi)

and therefore

Dp(θj) =

n
∏

i=1
i6=j

(θj − θi).

Multiply all these equations for j = 1, . . . , n:

n
∏

j=1

Dp(θj) =

n
∏

i,j=1
i6=j

(θj − θi).

The left-hand side is N(Dp(θ)). On the right, each factor (θi− θj) for i < j
appears twice, once as (θi− θj) and once as (θj − θi). The product of these
two factors is −(θi − θj)

2. Multiplying up, we get ∆ multiplied by (−1)s

where s is the number of pairs (i, j) with 1 ≤ i < j ≤ n, namely:

s = 1

2
n(n− 1).

�
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We close this chapter by noting the following simple identity linking the
discriminant and trace:

Proposition 2.19. If {α1, . . . , αn} is any Q-basis of K, then

∆[α1, . . . , αn] = det(T(αiαj)).

Proof: T(αiαj) =
∑n

r=1 σr(αiαj) =
∑n

r=1 σr(αi)σr(αj). Hence

∆[α1, . . . , αn] = (det(σi(αj)))
2

= (det(σj(αi)))(det(σi(αj)))

= det(

n
∑

r=1

σr(αi)σr(αj))

= det(T(αiαj)). �

2.6 Rings of Integers

We now discuss how to find the ring of integers of a given number field.
With the methods available to us, this involves moderately heavy calcu-
lation, but by taking advantage of short cuts the technique can be made
reasonably efficient. In particular Example 2.3 shows that not every num-
ber field has an integral basis of the form {1, θ, . . . , θn−1}.

The method is based on the following result:

Theorem 2.20. Let G be an additive subgroup of O of rank equal to the degree
of K, with Z-basis {α1, . . . , αn}. Then |O/G|2 divides ∆[α1, . . . , αn].

Proof: By Theorem 1.16 there exists a Z-basis forO of the form {β1, . . . , βn}
such that G has a Z-basis {µ1β1, . . . , µnβn} for suitable µi ∈ Z. Now

∆[α1, . . . , αn] = ∆[µ1β1, . . . , µnβn]

since by Lemma 1.15 a basis-change has a unimodular matrix. The right-
hand side is

(µ1 . . . µn)
2∆[β1, . . . , βn] = (µ1 . . . µn)

2∆

where ∆ is the discriminant of K and so lies in Z. But

|µ1 . . . µn| = |O/G| .
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Therefore

|O/G|2 divides ∆ [α1, . . . , αn] . �

In the above situation we use the notation

∆G = ∆[α1, . . . , αn].

We then have a generalization of Theorem 2.17:

Proposition 2.21. Suppose that G 6= O. Then there exists an algebraic
integer of the form

1

p
(λ1α1 + . . .+ λnαn) (2.7)

where 0 ≤ λi ≤ p− 1, λi ∈ Z, and p is a prime such that p2 divides ∆G.

Proof: If G 6= O then |O/G| > 1. Therefore (by the structure theory for
finite abelian groups) there exists a prime p dividing |O/G| and an element
u ∈ O/G such that g = pu ∈ G. By Theorem 2.20, p2 divides ∆G. Further,

u =
1

p
g =

1

p
(λ1α1 + . . .+ λnαn)

since {αi} forms a Z-basis for G. �

Note that this really is a generalization of Theorem 2.17: if ∆G is
squarefree then no such p exists, so that G = O.

We may use Proposition 2.21 as the basis of a trial-and-error search for
algebraic integers in O but not in G, because there are only finitely many
possibilities (6). The idea is:

(a) Start with an initial guess G for O.

(b) Compute ∆G.

(c) For each prime p whose square divides ∆G, test all numbers of the
form (2.6) to see which are algebraic integers.

(d) If any new integers arise, enlarge G to a new G′ by adding in the
new number (and divide ∆G by p2 to get ∆G′).

(e) Repeat until no new algebraic integers are found.
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Example 2.22. Find the ring of integers of Q( 3
√
5).

Let θ ∈ R, θ3 = 5. The natural first guess is that O has Z-basis
{1, θ, θ2}. Let G be the abelian group generated by this set. Let ω = e2πi/3

be a cube root of unity. Compute

∆G =

∣

∣

∣

∣

∣

∣

1 θ θ2

1 ωθ ω2θ2

1 ω2θ ωθ2

∣

∣

∣

∣

∣

∣

2

= θ6

∣

∣

∣

∣

∣

∣

1 1 1
1 ω ω2

1 ω2 ω

∣

∣

∣

∣

∣

∣

2

= 52 · (ω2 + ω2 + ω2 − ω − ω − ω)2

= 52 · 32 · (ω2 − ω)2

= 32 · 52 · (−3)

= −33 · 52.

By Proposition 2.21 we must consider two possibilities.

(a) Can α = 1
3 (λ1+λ2θ+λ3θ

2) be an algebraic integer, for 0 ≤ λi ≤ 2?

(b) Can α = 1
5 (λ1+λ2θ+λ3θ

2) be an algebraic integer, for 0 ≤ λi ≤ 4?

Consider case (b), which is harder. First use the trace: we have

T(α) = 3λ1/5 ∈ Z

so that λ1 ∈ 5Z. Then

α′ =
1

5
(λ2θ + λ3θ

2)

is also an algebraic integer.
Now compute the norm of α′. (It is easier to do this for α′ than for α

because there are fewer terms, which is why we use the trace first.) We
have

N(aθ + bθ2) = (aθ + bθ2)(aωθ + bω2θ2)(aω2θ + bωθ2)

= ω · ω2(aθ + bθ2)(aθ + ωbθ2)(aθ + ω2bθ2)

= (aθ)3 + (bθ2)3

= 5a3 + 25b3.
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Thus in order for α to be an algebraic integer, we must have N(α′) ∈ Z.
But N(α′) = (5λ32 + 25λ33)/125 = (λ32 + 5λ33)/25. One way to finish the
calculation is just to try all cases:

λ2 λ3 λ32 + 5λ33 Divisible by 25?
0 1 5 No
0 2 40 No
0 3 135 No
0 4 320 No
1 0 1 No
1 1 6 No
1 2 41 No
1 3 136 No
1 4 321 No
2 0 8 No
2 1 13 No
2 2 48 No
2 3 143 No
2 4 328 No
3 0 27 No
3 1 32 No
3 2 67 No
3 3 162 No
3 4 347 No
4 0 64 No
4 1 69 No
4 2 104 No
4 3 199 No
4 4 384 No

Whichever argument we use, we have shown that if there are no better
ideas, brute force can suffice. But here it is not hard to find a better idea.
Suppose λ32 + 5λ33 ≡ 0 (mod 25). If λ3 ≡ 0 (mod 5), then we must also
have λ2 ≡ 0 (mod 5). If not, we have 5 ≡ (−λ2/λ3)3 (mod 25). Therefore
5 is a cubic residue (mod 25), that is, is congruent to a cube. The factor
5 shows that we must have 5 ≡ (5k)3 (mod 25), but then 5 ≡ 0 (mod 25),
an impossibility.

Whichever argument we use, we have shown that no new α′ occurs in
case (b). The analysis in case (a) is similar, and left as Exercise 6 in this
chapter.
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Note that it is necessary for N(α) and T(α) to be rational integers, in
order for α to be an algebraic integer; but it may not be sufficient. If the
use of norms and traces produces a candidate for a new algebraic integer,
we still have to check that it is one—for example, by finding its minimum
polynomial. However, our main use of N(α) and T(α) is to rule out possible
candidates, so this step is not always needed.

Example 2.23. (a) Find the ring of integers of Q( 3
√
175).

(b) Show that it has no Z-basis of the form {1, θ, θ2}.

(a) Let t = 3
√
175 = 3

√

(52 · 7). Consider also u =
3
√
5 · 72 = 3

√
245. Now

ut = 35

u2 = 7t

t2 = 5u.

Let O be the ring of integers of K = Q( 3
√
175). We have u = 35/t ∈ K.

But u3− 245 = 0 so u ∈ B. Therefore u ∈ B∩K = O. A good initial guess
is that O = G, where G is the abelian group generated by {1, t, u}.

To see if this is correct, compute ∆G. The monomorphisms K → C are
σ1, σ2, σ3 where σ1(t) = t, σ2(t) = ωt, σ3(t) = ω3t. Since tu = 35, which
must be fixed by each σi, we have σ1(u) = u, σ2(u) = ω2u, σ3(u) = ωu.
Therefore

∆G =

∣

∣

∣

∣

∣

∣

1 t u
1 ωt ω2u
1 ω2t ωu

∣

∣

∣

∣

∣

∣

2

which works out as −33 · 52 · 72.
There are now three primes to try: p = 3, 5, or 7.
If p = 5 or 7 then, as in Example 2.22, use of the trace lets us assume

that our putative integer is 1
p (at+ bu) for a, b,∈ Z. Now

N(at+ bu) = 175a3 + 245b3

and we must see whether this can be congruent to 0 (mod 53 or 73) for a,
b not congruent to zero.

Suppose 175a3 + 245b3 ≡ 0 (mod 125), that is, 35a3 + 49b3 ≡ 0 (mod
25). Write this as 10a3 − b3 ≡ 0 (mod 25). If a ≡ 0 (mod 5) then also
b ≡ 0 (mod 5). If not, 10 ≡ (b/a)3 (mod 25) is a cubic residue; but then
10 ≡ (5k)3 (mod 25), hence 10 ≡ 0 (mod 25) which is absurd. The case
p = 7 is dealt with in the same way.

When p = 3 the trace is no help, and we must compute the norm of

1

3
(a+ bt+ cu)
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for a, b, c ∈ Z. The calculation is more complicated, but not too bad since
we only have to consider a, b, c = 0, 1, 2. No new integers occur.

Therefore O = G as we hoped.

(b) Now we have to show that there is no Z-basis of the form {1, θ, θ2},
where θ = a + bt + cu. Note that {1, θ, θ2} is a Z-basis if and only if
{1, θ+1, (θ+1)2} is a Z-basis, so without loss of generality we may assume
that a = 0. Now

(bt+ cu)2 = b2t2 + 2bctu+ c2u2

= 5b2u+ 70bc+ 7c2t.

Therefore {1, bt+ cu, (bt+ cu)2} is a Z-basis if and only if the matrix

∣

∣

∣

∣

∣

∣

1 0 0
0 b c

70bc 7c2 5b2

∣

∣

∣

∣

∣

∣

is unimodular; that is,
5b3 − 7c3 = ± 1.

Consider this modulo 7. Cubes are congruent to 0, 1, or −1 (mod 7), so
5(−1, 0, or 1) ≡ ± 1 (mod 7), a contradiction. Hence no such Z-basis
exists.

Example 2.24. Find the ring of integers of Q(
√
2, i).

In this example our initial guess turns out not to be good enough, illus-
trating how to continue the analysis when this unfortunate event occurs.

The obvious guess is {1,
√
2, i, i

√
2}. Let G be the group these generate.

We have ∆G = −64, so O may contain elements of the form 1
2g (and then

possibly 1
4g or 1

8g) for g ∈ G. The norm is

N(a+ b
√
2 + ci+ di

√
2) = (a2 − c2 − 2b2 + 2d2)2 + 4(ac− 2bd)2.

We must find whether this is divisible by 16 for a, b, c, d = 0 or 1, and not
all zero. By trial and error the only case where this occurs is b = d = 1,
a = c = 0. So

α = 1

2
(θ + θi)

may be an integer (where θ =
√
2). In fact

α2 = i

so that
α4 + 1 = 0

and α is an integer.
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We therefore revise our initial guess to

G′ = {1, θ, i, θi, 1

2
θ(1 + i)}.

Since 2 · 1

2
θ(1 + i) = θ + θi this has a Z-basis

{1, θ, i, 1

2
θ(1 + i)}.

Now

∆G′ = −64/22 = −16.

A recalculation of the usual kind shows that nothing of the form 1
2g (where

we may now assume that the term in 1
2θ(1 + i) occurs with nonzero coeffi-

cient) has integer norm. So no new integers arise and O = G′.

2.7 Exercises

1. Which of the following complex numbers are algebraic? Which are
algebraic integers?

(a) 355/113

(b) e2πi/23

(c) eπi/23

(d)
√
17 +

√
19

(e) (1 +
√
17)/(2

√
−19)

(f)
√

(1 +
√
2) +

√

(1 −
√
2)

2. Express Q(
√
3, 3
√
5) in the form Q(θ).

3. Find all monomorphisms Q( 3
√
7) → C.

4. Find the discriminant of Q(
√
3,
√
5).

5. Let K = Q( 4
√
2). Find all monomorphisms σ : K → C and the

minimum polynomials (over Q) and field polynomials (over K) of
(a) 4

√
2 (b)

√
2 (c) 2 (d)

√
2 + 1. Compare with Theorem 2.6.

6. Complete Example 2.22 by discussing the case p = 3.

7. Complete Example 2.23 by discussing the case p = 3.
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8. Compute integral bases and discriminants of

(a) Q(
√
2,
√
3)

(b) Q(
√
2, i)

(c) Q( 3
√
2)

(d) Q( 4
√
2)

9. Let K = Q(θ) where θ ∈ OK . Among the elements

1

d
(a0 + . . .+ aiθ

i)

(0 6= ai; a0, . . . , ai ∈ Z), where d is the discriminant, pick one with
minimal value of |ai| and call it xi. Do this for i = 1, . . . , n = [K : Q]
show that {x1, . . . , xn} is an integral basis.

10. If α1, . . . , αn are Q-linearly independent algebraic integers in Q(θ),
and if

∆[α1, . . . , αn] = d

where d is the discriminant of Q(θ), show that {αi, . . . , αn} is an
integral basis for Q(θ).

11. If [K : Q] = n, α ∈ Q, show

NK(α) = αn,

TK(α) = nα.

12. Give examples to show that for fixed α, NK(α) and TK(α) depend
on K. (This is to emphasize that the norm and trace must always be
defined in the context of a specific field K; there is no such thing as
the norm or trace of α without a specified field.)

13. The norm and trace may be generalized by considering number fields
K ⊇ L. Suppose K = L(θ) and [K : L] = n. Consider monomor-
phisms σ : K → C such that σ(x) = x for all x ∈ L. Show that there
are precisely n such monomorphisms σ1, . . . , σn and describe them.
For α ∈ K, define

NK/L(α) =

n
∏

i=1

σi(α),

TK/L(α) =
n
∑

i=1

σi(α).
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(Compared with our earlier notation, we have NK = NK/Q, TK =
TK/Q.) Prove that

NK/L(α1α2) = NK/L(α1)NK/L(α2),

TK/L(α1 + α2) = TK/L(α1) + TK/L(α2).

Let K = Q( 4
√
3), L = Q(

√
3). Calculate NK/L(

√
α), TK/L(α) for

α = 4
√
3 and α = 4

√
3 +

√
3.

14. For K = Q( 4
√
3), L = Q(

√
3), calculate NK/L(

√
3) and NK/Q(

√
3).

Deduce that NK/L(α) depends on K and L (provided that α ∈ K).
Do the same for TK/L.
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3

Quadratic and

Cyclotomic Fields

In this chapter we investigate two special types of number field in the
light of our previous work. The quadratic fields are those of degree 2, and
are especially important in the study of quadratic forms. The cyclotomic
fields are generated by pth roots of unity, and we consider only the case p
prime; these fields are central to Kummer’s approach to Fermat’s Last The-
orem and play a substantial role in all subsequent work, including Wiles’s
proof. We return to both types of field at later stages. For the moment
we content ourselves with finding the rings of integers, integral bases, and
discriminants.

3.1 Quadratic Fields

A quadratic field is a number field K of degree 2 over Q. Then K = Q(θ)
where θ is an algebraic integer, and θ is a zero of

t2 + at+ b (a, b ∈ Z).

Thus

θ =
−a±

√

(a2 − 4b)

2
.

63
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Let a2 − 4b = r2d where r, d ∈ Z and d is squarefree. (That this is always
possible follows from prime factorization in Z.) Then

θ =
−a± r

√
d

2

and so Q(θ) = Q(
√
d). This proves:

Proposition 3.1. The quadratic fields are precisely those of the form Q(
√
d)

for d a squarefree rational integer. �

Next we determine the ring of integers of Q(
√
d), for squarefree d. The

answer, it turns out, depends on the arithmetic properties of d.

Theorem 3.2. Let d be a squarefree rational integer. Then the integers of
Q(

√
d) are:

(a) Z[
√
d] if d 6≡ 1 (mod 4),

(b) Z[ 12 + 1
2

√
d] if d ≡ 1 (mod 4).

Proof: Every element α ∈ Q(
√
d) is of the form α = r + s

√
d for r, s ∈ Q.

Hence

α =
a+ b

√
d

c

where a, b, c ∈ Z, c > 0, and no prime divides all of a, b, c. Now α is an
integer if and only if the coefficients of the minimum polynomial

(

t−
(

a+ b
√
d

c

))(

t−
(

a− b
√
d

c

))

are integers. Thus
a2 − b2d

c2
∈ Z, (3.1)

2a

c
∈ Z. (3.2)

If c and a have a common prime factor p then (3.1) implies that p divides
b (since d is squarefree) which contradicts our previous assumption. Hence
from (3.2) c = 1 or 2. If c = 1 then α is an integer of K in any case, so we
may concentrate on the case c = 2. Now a and b must both be odd, and
(a2 − b2d)/4 ∈ Z. Hence

a2 − b2d ≡ 0 (mod 4).
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Now an odd number 2k + 1 has square 4k2 + 4k + 1 ≡ 1 (mod 4), hence
a2 ≡ 1 ≡ b2 (mod 4), and this implies d ≡ 1 (mod 4). Conversely, if d ≡ 1
(mod 4) then for odd a, b we have α an integer because (3.1) and (3.2)
hold.

To sum up: if d ≡ 1 (mod 4) then c = 1 and so (a) holds; whereas if
d ≡ 1 (mod 4) we can also have c = 2 and a, b odd, whence easily (b)
holds. �

The monomorphisms K → C are

σ1(r + s
√
d) = r + s

√
d,

σ2(r + s
√
d) = r − s

√
d.

We can therefore compute discriminants:

Theorem 3.3. (a) If d 6≡ 1 (mod 4) then Q(
√
d) has an integral basis of the

form {1,
√
d} and discriminant 4d. (b) If d ≡ 1 (mod 4) then Q(

√
d) has

an integral basis of the form {1, 12 + 1
2

√
d} and discriminant d.

Proof: The assertions regarding bases are clear from Theorem 3.2. Com-
pute discriminants:

∣

∣

∣

∣

1
√
d

1 −
√
d

∣

∣

∣

∣

2

= (−2
√
d)2 = 4d,

∣

∣

∣

∣

1 1
2 + 1

2

√
d

1 1
2 − 1

2

√
d

∣

∣

∣

∣

2

= (−
√
d)2 = d.

�

Since the discriminants of isomorphic fields are equal, the fields Q(
√
d)

are not isomorphic for distinct squarefree d. This completes the classifica-
tion of quadratic fields.

A special case, of historical interest as the first number field to be stud-
ied as such, is the Gaussian field Q(

√
−1) or Q(i). Since −1 6≡ 1 (mod 4)

the ring of integers is Z[
√
−1] or Z(i), known as the ring of Gaussian inte-

gers, and the discriminant is −4.

Incidentally, these results show that Theorem 2.17 is not always appli-
cable: an integral basis can have a discriminant that is not squarefree. For
instance, the Gaussian integers themselves.

For future reference we note the norms and traces:

N(r + s
√
d) = r2 − ds2,

T(r + s
√
d) = 2r.
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66 3. Quadratic and Cyclotomic Fields

We also note some useful terminology. A quadratic field Q(
√
d) is said to

be real if d is positive, imaginary if d is negative. (A real quadratic field
contains only real numbers, an imaginary quadratic field contains proper
complex numbers as well.)

3.2 Cyclotomic Fields

A cyclotomic field is one of the form Q(ζ) where ζ = e2πi/m is a primitive
complex mth root of unity. (The name means ‘circle-cutting’ and refers
to the equal spacing of powers of ζ around the unit circle in the complex
plane.) We consider only the case m = p, a prime number. Further, if
p = 2 then ζ = −1 so that Q(ζ) = Q, hence we ignore this case and assume
p odd.

Lemma 3.4. The minimum polynomial of ζ = e2πi/p, p an odd prime, over
Q is

f(t) = tp−1 + tp−2 + . . .+ t+ 1.

The degree of Q(ζ) is p− 1.

Proof: We have

f(t) =
tp − 1

t− 1
.

Since ζ − 1 6= 0 and ζp = 1 it follows that f(ζ) = 0, so all we need prove is
that f is irreducible. This we do by a standard piece of trickery. We have

f(t+ 1) =
(t+ 1)p − 1

t
=

p
∑

r=1

(

p
r

)

tr−1.

Now the binomial coefficient
(

p
r

)

is divisible by p if 1 ≤ r ≤ p − 1, and
(

p
1

)

= p is not divisible by p2.

Hence by Eisenstein’s criterion (Theorem 1.8) f(t + 1) is irreducible.
Therefore f(t) is irreducible, and is the minimum polynomial of ζ. Since
∂f = p− 1 we have [Q(ζ) : Q] = p− 1 by Theorem 1.11. �
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The powers ζ, ζ2, . . . , ζp−1 are also pth roots of unity, not equal to 1,
and so by the same argument have f(t) as minimum polynomial. Clearly

f(t) = (t− ζ)(t− ζ2) . . . (t− ζp−1) (3.3)

so the conjugates of ζ are ζ, ζ2, . . . , ζp−1. Therefore the monomorphisms
from Q(ζ) to C are

σi(ζ) = ζi (1 ≤ i ≤ p− 1).

Because the minimum polynomial f(t) has degree p − 1, a basis for Q(ζ)
over Q is 1, ζ, . . . , ζp−2, so for a general element

α = a0 + a1ζ + . . .+ ap−2ζ
p−2 (ai ∈ Q)

we have

σi(a0 + ζ + . . .+ ap−2ζ
p−2) = a0 + ζi + . . .+ ap−2ζ

i(p−2).

From this formula the norm and trace may be calculated using the basic
definitions

N(α) =

p−1
∏

i=1

σi(α),

T(α) =

p−1
∑

i=1

σi(α).

In particular
N(ζ) = ζ · ζ2 . . . ζp−1.

Now ζ and ζi(1 ≤ i ≤ p− 1) are conjugates, so have the same norm, which
can be calculated by putting t = 0 in (3.3) to give

N(ζ) = N(ζi) = (−1)p−1

and since p is odd,
N(ζi) = 1 (1 ≤ i ≤ p− 1). (3.4)

The trace of ζi can be found by a similar argument. We have

T(ζi) = T(ζ) = ζ + ζ2 + . . .+ ζp−1,

and since
f(ζ) = 1 + ζ + . . .+ ζp−1 = 0

we find
T(ζi) = −1 (1 ≤ i ≤ p− 1). (3.5)
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68 3. Quadratic and Cyclotomic Fields

For a ∈ Q we trivially have

N(a) = ap−1

T(a) = (p− 1)a.

Since ζp = 1, we can use these formulas to extend (3.4) and (3.5) to

N(ζs) = 1 for all s ∈ Z (3.6)

and

T(ζs) =

{

−1 if s 6≡ 0 (mod p)
p− 1 if s ≡ 0 (mod p).

(3.7)

For a general element of Q(ζ), the trace is easily calculated:

T

(

p−2
∑

i=0

aiζ
i

)

=

p−2
∑

i=0

T(aiζ
i)

= T(a0) +

p−2
∑

i=1

T(aiζ
i)

= (p− 1)a0 −
p−2
∑

i=0

ai

so

T

(

p−2
∑

i=0

aiζ
i

)

= pa0 −
p−2
∑

i=1

ai. (3.8)

The norm is more complicated in general, but a useful special case is

N(1 − ζ) =

p−1
∏

i=1

(1 − ζi)

which can be calculated by putting t = 1 in (3.3) to obtain

p−1
∏

i=1

(1− ζi) = p, (3.9)

so
N(1 − ζ) = p. (3.10)

We can put these computations to good use, first by showing that the
integers of Q(ζ) are what one naively might expect:

Theorem 3.5. The ring O of integers of Q(ζ) is Z[ζ].
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Proof: Suppose α = a0 + a1ζ + . . . + ap−2ζ
p−2 is an integer in Q(ζ).

We must demonstrate that the rational numbers ai are actually rational
integers.

For 0 ≤ k ≤ p− 2 the element

αζ−k − αζ

is an integer, so its trace is a rational integer. But

T(αζ−k − αζ)

= T(a0ζ
−k + . . .+ ak + . . .+ ap−2ζ

p−k−2 − a0ζ − . . .− ap−2ζ
p−1)

= pak − (a0 + . . .+ ap−2)− (−a0 − . . .− ap−2)

= pak.

Hence bk = pak is a rational integer.

Put λ = 1− ζ. Then

pα = b0 + b1ζ + . . .+ bp−2ζ
p−2

= c0 + c1λ+ . . .+ cp−2λ
p−2 (3.11)

where, substituting ζ = 1− λ and expanding,

ci =

p−2
∑

j=i

(−1)i
(

j
i

)

bj ∈ Z.

Since λ = 1− ζ we also have, symmetrically,

bi =

p−2
∑

j=i

(−1)i
(

j
i

)

cj . (3.12)

We claim that all ci, are divisible by p. By induction we may assume this
for all ci with i ≤ k− 1, where 0 ≤ k ≤ p− 2. Since c0 = b0 + . . .+ bp−2 =
p(−T(α) + b0), we have p|c0, so it is true for k = 0. Now by (3.9)

p =
∏p−1

i=1 (1− ζi)

= (1 − ζ)p−1
∏p−1

i=1 (1 + ζ + . . .+ ζi−1)
= λp−1κ

(3.13)

where κ ∈ Z[ζ] ⊆ O. Consider (3.11) as a congruence modulo the ideal
〈

λk+1
〉

of O. By (3.13)

p ≡ 0 (mod
〈

λk+1
〉

).
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so the left-hand side of (3.11) and the terms up to ck−1λ
k−1 vanish. Fur-

ther, the terms from ck+1λ
k+1 onwards are multiples of λk+1 and also

vanish. There remains:

ckλ
k ≡ 0 (mod

〈

λk+1
〉

).

This is equivalent to

ckλ
k = µλk+1

for some µ ∈ O, from which we obtain

ck = µλ.

Take norms:

cp−1
k = N(ck) = N(µ)N(λ) = pN(µ),

since N(λ) = p by (3.10). Hence p|cp−1
k , so p|ck. By induction p|ck for all

k, and then (3.12) shows that p|bk for all k. Therefore ak ∈ Z for all k. �

Now we can compute the discriminant.

Theorem 3.6. Let p be an odd prime and ζ = e2πi/p. The discriminant of
Q(ζ) is

(−1)(p−1)/2 · pp−2.

Proof: By Theorem 3.5 an integral basis is {1, ζ, . . . , ζp−2}. By Proposition
2.18 the discriminant is

(−1)(p−1)(p−2)/2 · N(Df(ζ))

with f(t) as above. Since p is odd the first factor reduces to (−1)(p−1)/2.
To evaluate the second, recall that

f(t) =
tp − 1

t− 1
,

so

Df(t) =
(t− 1)ptp−1 − (tp − 1)

(t− 1)2

whence

Df(ζ) =
−pζp−1

λ
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where λ = 1− ζ as before. Hence

N(Df(ζ)) =
N(p)N(ζ)p−1

N(λ)

=
(−p)p−11p−1

p

= pp−2.
�

The case p = 3 deserves special mention, for Q(ζ) has degree p− 1 = 2,
so it is a quadratic field. Since

e2πi/3 =
−1 +

√
−3

2

it is equal to Q(
√
−3). As a check on our discriminant calculations: Theo-

rem 3.3 gives−3 (since−3 ≡ 1 (mod 4)), and Theorem 3.6 gives (−1)2/231 =
−3 as well.

3.3 Exercises

1. Find integral bases and discriminants for:

(a) Q(
√
3)

(b) Q(
√
−7)

(c) Q(
√
11)

(d) Q(
√
−11)

(e) Q(
√
6)

(f) Q(
√
−6)

2. Let K = Q(ζ) where ζ = e2πi/5. Calculate NK(α) and TK(α) for the
following values of α:

(a) ζ2 (b) ζ + ζ2 (c) 1 + ζ + ζ2 + ζ3 + ζ4.

3. Let K = Q(ζ) where ζ = e2πi/p for a rational prime p. In the ring of
integers Z[ζ], show that α ∈ Z[ζ] is a unit if and only if NK(α) = ± 1.

4. If ζ = e2πi/3, K = Q(ζ), prove that the norm of α ∈ Z[ζ] is of the
form 1

4 (a
2+3b2) where a, b are rational integers which are either both

even or both odd. Using the result of Exercise 3, deduce that there
are precisely six units in Z[ζ] and find them all.
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5. If ζ = e2πi/5, K = Q(ζ), prove that the norm of α ∈ Z[ζ] is of the
form 1

4 (a
2−5b2) where a, b are rational integers. (Hint: in calculating

N(α), first calculate σ1(α)σ4(α) where σi(ζ) = ζi. Show that this is
of the form q+ rθ+ sφ where q, r, s are rational integers, θ = ζ + ζ4,
φ = ζ2 + ζ3. In the same way, establish σ2(α)σ3(α) = q + sθ + rφ.)
Using Exercise 3, prove that Z[ζ] has an infinite number of units.

6. Let ζ = e2πi/5. For K = Q(ζ), use the formula

NK(a+ bζ) = (a5 + b5)/(a+ b)

to calculate the following norms:

(a) NK(ζ + 2) (b) NK(ζ − 2) (c) NK(ζ + 3).

Using the fact that if αβ = γ, then NK(α)NK (β) = NK(γ), deduce
that ζ + 2, ζ − 2, ζ + 3 have no proper factors (that is, factors that
are not units) in Z[ζ].

Factorize 11, 31, 61 in Z[ζ].

7. If ζ = e2πi/5, as in Exercise 6, calculate

(a) NK(ζ + 4) (b) NK(ζ − 3).

Deduce that any proper factors of ζ + 4 in Z[ζ] have norm 5 or 41.
Given ζ − 1 is a factor of ζ +4, find another factor. Verify that ζ − 3
is a unit times (ζ2 + 2)2 in Z[ζ].

8. Show that the multiplicative group of non-zero elements of Z7 is
cyclic with generator the residue class of 3. If ζ = e2πi/7, define
the monomorphism σ : Q(ζ) → C by σ(ζ) = ζ3. Show that all other
monomorphisms from Q(ζ) to C are of the form σi(1 ≤ i ≤ 6) where
σ6 = 1. For any α ∈ Q(ζ), define c(α) = ασ2(α)σ4(α), and show
N(α) = c(α) · σc(α). Demonstrate that c(α) = σ2c(α) = σ4c(α).
Using the relation 1 + ζ + . . . + ζ6 = 0, show that every element
α ∈ Q(ζ) can be written uniquely as

∑6
i=1 aiζ

i(ai ∈ Q). Deduce
that c(α) = a1θ1 + a3θ2 where θ1 = ζ + ζ2 + ζ4, θ2 = ζ3 + ζ5 + ζ6.
Show that θ1 + θ2 = −1 and calculate θ1θ2. Verify that c(α) may
be written in the form b0 + b1θ1 where b0, b1 ∈ Q, and show that
σc(α) = b0 + b1θ2. Deduce that

N(α) = b20 − b0b1 + 2b21.

Now calculate N(ζ + 5ζ6).

9. Suppose that p is a rational prime and ζ = e2πi/p. Given that the
group of non-zero elements of Zp is cyclic (see Appendix 1, Proposi-
tion 6 for a proof) show that there is a monomorphism σ : Q(ζ) → C
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such that σp−1 is the identity and all monomorphisms from Q(ζ)
to C are of the form σi(1 ≤ i ≤ p − 1). If p − 1 = kr, define
ck(α) = ασr(α)σ2r(α) . . . σ(k−1)r(α). Show that

N(α) = ck(α) · σck(α) . . . σr−1ck(α).

Prove that every element of Q(ζ) is uniquely of the form
∑p−1

i=1 aiζ
i,

and by demonstrating that σr(ck(α)) = ck(α), deduce that ck(α) =
b1η1 + . . .+ bkηk, where

η1 = ζ + σr(ζ) + σ2r(ζ) + . . .+ σ(k−1)r(ζ)

and ηi+1 = σi(η1).

Interpret these results in the case p = 5, k = r = 2, by showing
that the residue class of 2 is a generator of the multiplicative group
of non-zero elements of Z5. Demonstrate that c2(α) is of the form
b1η1 + b2η2 where η1 = ζ + ζ4, η2 = ζ2 + ζ3.

Calculate the norms of the following elements in Q(ζ):

(a) ζ + 2ζ2 (b) ζ + ζ4 (c) 15ζ + 15ζ4 (d) ζ + ζ2 + ζ3 + ζ4.

10. In Z[
√
−5], prove that 6 factorizes in two ways:

6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5)

Verify that 2, 3, 1+
√
−5, 1−

√
−5 have no proper factors in Z[

√
−5].

(Hint: Take norms and note that if γ factorizes as γ = αβ, then
N(γ) = N(α)N(β) is a factorization of rational integers.) Deduce
that it is possible in Z[

√
−5] for 2 to have no proper factors, yet 2

divides a product αβ without dividing either α or β.
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Factorization into Irreducibles

Now we turn to the vexed but vital question of uniqueness of factorization
in the ring of integers of an algebraic number field. Historically, experience
with unique factorization of integers and polynomials over a field led to
a general intuition that factorization of algebraic integers should also be
unique. In the early days of algebraic number theory many experts, in-
cluding Euler, simply assumed uniqueness without perceiving any need for
a proof, and used it implicitly to ‘prove’ results that were later found to be
based on a false assumption.

The reason for this misconception is subtle, and has its origins in the
definition of a prime number. Two distinct properties can serve as a defi-
nition. The most familiar is that a prime number cannot be factorized into
the product of two integers other than itself and 1. For a prime p, this
property may be written more generally as:

(a) If p = ab then one of a or b must be a unit.

In Z the only units are ±1, so this reduces to the usual definition. However,
there is a second property of prime numbers that is also of interest, namely
that if a prime number p divides a product of two numbers then it must
divide one or the other:

(b) If p|ab then p|a or p|b.
What fooled our predecessors was that although these properties are equiv-
alent in the ring of integers—and even in some algebraic number rings—
they are not equivalent in all cases. Of deeper psychological significance
is that the more familiar property (a) turns out to be less powerful than
property (b). Property (b) can be shown in general to imply (a); moreover,
it is property (b) that guarantees uniqueness of factorization, not the more

75
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76 4. Factorization into Irreducibles

comfortable property (a). In contrast, property (a) does not imply (b), and
(a) turns out to be inadequate to give uniqueness of factorization.

The way out of this dilemma is to use the less familiar (b) for the
definition of a prime. An element p satisfying the weaker assumption (a)
is no longer called a prime: it is said to be irreducible. (We have used that
word in the same sense earlier in this text.) It can then be proved that if
factorization into primes (defined in the new sense) is possible, then it is
unique. In contrast, factorization into irreducibles may not be unique even
when it is possible. For instance, if we work in Z[

√
−6], then there are two

factorizations 6 = 2 ·3 and 6 =
√
−6·

√
−6. Here the elements 2, 3,

√
−6 are

all irreducible (because they cannot be written as a product of nontrivial
factors in Z[

√
−6]); however, they are not prime. For instance,

√
−6 is a

factor of 6 = 2 · 3, but it is not a factor of either 2 or 3 in the ring Z[
√
−6].

We must therefore proceed with care, and an awareness of precisely
what we are doing. For instance, if we attempt to factorize an element x
in a domain D, it is natural to seek proper factors x = ab (meaning that
neither a nor b is a unit). If either of these factors is further reducible, we
factorize it, and so on, seeking a factorization

x = a1a2 . . . an

into factors that cannot be reduced any further. Reflecting on what we
are doing, we see that if this search for a factorization terminates, then it
naturally leads to elements that are irreducible, definition (a), rather than
what we now call primes, definition (b). So initially we concern ourselves
with factorization into irreducibles.

In general factorization into irreducibles may not be possible because
the procedure may continue indefinitely, but it is possible in the ring O

of integers of any number field. To prove this we introduce the notion
of a noetherian ring, and show that factorization is always possible if the
domain D is noetherian; we then demonstrate that O is noetherian.

Even though factorization into irreducibles is always possible in O, we
give an extensive list of examples where such a factorization is not unique.
In other cases, however, the existence of a generalized version of the divi-
sion algorithm (which we term a ‘Euclidean function’) implies that every
irreducible is prime. We see that factorization into primes is unique, so
some rings O possess unique factorization. In particular we characterize
such O for the fields Q(

√
d) with d a negative rational integer: there are

exactly five of them, corresponding to d = −1,−2,−3,−7,−11. We also
prove the existence of a Euclidean function for some fields Q(

√
d) with d

positive. In later chapters we see that O may have unique factorization
without possessing a Euclidean function.
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To begin the chapter we consider a little history, and look at an example
of the intuitive use of unique factorization, to motivate the ideas.

4.1 Historical Background

In the 18th century and the first part of the 19th there were varying stan-
dards of rigour in number theory. Euler, the most prolific mathematician of
the 18th century, was primarily interested in obtaining results, and some-
times used intuitive methods of proof which the hindsight of history has
shown to be incorrect. For instance, in his famous textbook on algebra, he
made several elegant applications of unique factorization to ‘prove’ number
theoretic results in cases where unique factorization is false. Gauss, on the
other hand, found it necessary to demonstrate rigorously that the so-called
‘Gaussian integers’ Z[i] did factorize uniquely. In 1847, Lamé announced
to a meeting of the Paris Academy that he had proved Fermat’s Last The-
orem, but his proof was seen to depend on uniqueness of factorization and
was shown to be inadequate. Kummer had, in fact, published a paper
three years earlier that demonstrated the failure of unique factorization
for cyclotomic integers, thus destroying Lamé’s proof. This result, which
formed part of his habilitation thesis and was published as a pamphlet,
went unnoticed at the time.

Eisenstein put his finger on the property that characterizes unique fac-
torization in a letter of 1844 which translates

If one had the theorem which states that the product of two complex
numbers can be divisible by a prime number only when one of the
factors is—which seems completely obvious—then one would have
the whole theory at a single blow; but this theorem is totally false.

By ‘the whole theory’ he was referring to consequences of unique fac-
torization, which in particular is relevant to Fermat’s Last Theorem.

In Eisenstein’s letter, ‘prime’ meant definition (a) of this chapter, and
his comment translated into the terminology of this book is ‘if every irre-
ducible is prime, then unique factorization holds’. It is also clear from his
comment that he knew instances of irreducibles that are not prime, lead-
ing to non-unique factorization. All this must have seemed very confusing
to average 19th century mathematicians, who were accustomed to using
intuitive ideas about factorization.

To give the reader an idea of what this style of mathematical ‘proof’
was like, before we develop a rigorous theory of unique factorization, we
exhibit a concocted, fallacious, but plausible proof of a statement of Fermat
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using this intuitive approach. Fermat’s proof has not survived, and we are
not suggesting that it resembled our faulty but instructive attempt below.
Indeed it is not hard to reconstruct a rigorous proof using ideas that were
known to Fermat: see Weil [80].

A Statement of Fermat. The equation y2 + 2 = x3 has only the integer
solutions y = ±5, x = 3.

Intuitive ‘Proof’. Clearly y cannot be even, for then the right-hand side
would be divisible by 8, but the left-hand side only by 2. Factorize in the
ring Z[

√
−2], consisting of all a+ b

√
−2 for a, b ∈ Z, to obtain

(y +
√
−2)(y −

√
−2) = x3.

A common factor c + d
√
−2 of y +

√
−2 and y −

√
−2 would also divide

their sum 2y and their difference 2
√
−2. Taking norms,

c2 + 2d2|4y2, c2 + 2d2|8,

hence c2 + 2d2|4. The only solutions of this relation are c = ±1, d = 0,
or c = 0, d = ±1, or c = ±2, d = 0. None of these give proper factors of
y +

√
−2, so y +

√
−2 and y −

√
−2 are coprime. Now the product of two

coprime numbers is a cube only when each is a cube, so

y +
√
−2 = (a+ b

√
−2)3,

and comparing coefficients of
√
−2,

1 = b(3a2 − 2b2)

for which the only solutions are b = 1, a = ±1. Then x = 3, y = ±5. �

The flaw in this intuitive ‘proof’, as it stands, is that we are carrying
over the language of factorization of integers to factorization in Z[

√
−2]

without checking that the usual properties actually hold in Z[
√
−2]. In

this chapter we develop the appropriate theory and investigate when it
generalizes to a ring of integers in a number field.

4.2 Trivial Factorizations

If u is a unit in a ring R, then any element x ∈ R can be trivially factorized
as

x = uy
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where y = u−1x. An element y is called an associate of x if x = uy for a
unit u. Recall that a factorization of x ∈ R, x = yz is ‘proper’ if neither
y nor z is a unit. If a factorization is not proper, in which case we call
it trivial, it is clear that one of the factors is a unit and the other is an
associate of x. Before going on to proper factorizations we therefore look
at elementary properties of units and associates. We denote the set of units
in a ring R by U(R).

Proposition 4.1. The units U(R) of a ring R form a group under multipli-
cation. �

Examples 4.2.

(1) R = Q. The units are U(Q) = Q\{0}, which is an infinite group.

(2) R = Z. The units are ±1, so U(Z) is cyclic of order 2.

(3) R = Z[i], the Gaussian integers, a+ ib (a, b ∈ Z). The element a+ ib
is a unit if and only if there exists c+ id (c, d ∈ Z) such that

(a+ ib)(c+ id) = 1.

This implies ac − bd = 1, ad + bc = 0, whence c = a/(a2 + b2),
d = −b/(a2+b2). These have integer solutions only when a2+b2 = 1,
so a = ±1, b = 0, or a = 0, b = ±1. Hence the units are {1,−1, i,−i}
and U(R) is cyclic of order 4.

By using norms, we can extend the results of Example 4.2 to the more
general case of the units in the ring of integers of Q(

√
d) for d negative and

squarefree:

Proposition 4.3. The group of units U of the integers in Q(
√
d) where d is

negative and squarefree is as follows:
(a) For d = −1, U = {±1,±i}.
(b) For d = −3, U = {±1,±ω,±ω2} where ω = e2πi/3.
(c) For all other d < 0, U = {±1}.

Proof: Suppose α is a unit in the ring of integers of Q(
√
d) with inverse

β. Then αβ = 1, so taking norms

N(α)N(β) = 1.

But N(α), N(β) are rational integers, so N(α) = ±1. Writing α = a+ b
√
d

(a, b ∈ Q), then we see that N(α) = a2 − db2 is positive (for negative d), so
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N(α) = +1. Hence we are reduced to solving the equation

a2 − db2 = 1.

If a, b ∈ Z, then for d = −1 this reduces to

a2 + b2 = 1

which has the solutions a = ±1, b = 0, or a = 0, b = ±1, already found
in Example 4.2.This gives (a). For d < −3 we immediately conclude that
b = 0 (otherwise a2 − db2 would exceed 1), so the only rational integer
solutions are a = ±1, b = 0. If d 6≡ 1 (mod 4), then a, b ∈ Z, so the only
solutions are those discovered. For d ≡ 1 (mod 4), however, we must also
consider the additional possibility a = A/2, b = B/2 where both A and B
are odd rational integers. In this case

A2 − dB2 = 4.

For d < −3, we deduce B = 0 and there are no additional solutions. This
completes (c). For d = −3, we find additional solutions A = ±1, B = ±1.
The case A = 1, B = 1 gives

α = 1

2
(−1 +

√
−3) = e2πi/3

which we have denoted by ω. The other three cases give −ω, ω2,−ω2.
These allied with the solutions already found give (b). �

The general case of units in a ring of integers in a number field will be
postponed until Appendix B. We now return to simple properties of units
and associates.

Proposition 4.1 easily implies that ‘being associates’ is an equivalence
relation on R. The only associate of 0 is 0 itself. Recall that a non-unit
x ∈ R is called an irreducible if it has no proper factors. The zero element 0
= 0.0 has factors, neither of which is a unit, so in particular an irreducible
is non-zero. We now list a few elementary properties of units, associates,
and irreducibles. To prove some of these we require the cancellation law,
so we must take the ring to be an integral domain.

Proposition 4.4. For a domain D,
(a) An element x is a unit if and only if x|1.
(b) Any two units are associates and any associate of a unit is a unit.
(c) Elements x, y are associates if and only if x|y and y|x.
(d) An element x is irreducible if and only if every divisor of x is an

associate of x or a unit.
(e) An associate of an irreducible is irreducible.
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Proof: Most of these follow straight from the definitions. We prove (c)
which requires the cancellation law. Suppose x|y and y|x; then there exist
a, b ∈ D such that y = ax, x = by. Substituting,

x = bax.

Now either x = 0, in which case y = 0 also and they are associates, or
x 6= 0 and we cancel x to find

1 = ba,

so a and b are units. Hence x, y are associates. The converse is trivial. �

Some of these concepts may usefully be expressed in terms of ideals:

Proposition 4.5. If D is a domain and x, y are non-zero elements of D then

(a) x|y if and only if 〈x〉 ⊇ 〈y〉.
(b) x and y are associates if and only if 〈x〉 = 〈y〉.
(c) x is a unit if and only if 〈x〉 = D.

(d) x is irreducible if and only if 〈x〉 is maximal among the proper
principal ideals of D.

Proof: (a) If x|y then y = zx ∈ 〈x〉 for some z ∈ D, hence 〈y〉 ⊆ 〈x〉 .
Conversely, if 〈y〉 ⊆ 〈x〉 then y ∈ 〈x〉, so y = zx for some z ∈ D.

(b) is immediate from (a).

(c) If x is a unit then xv = 1 for some v ∈ D, hence for any y ∈ D we
have y = xvy ∈ 〈x〉 and D = 〈x〉. If D = 〈x〉 then since 1 ∈ D, 1 = zx for
some z ∈ D and x is a unit.

(d) Suppose x is irreducible, with 〈x〉 $ 〈y〉 $ D. Then y|x but is
neither a unit, nor an associate of x, contradicting Proposition 4.4(d).
Conversely, if no such y exists, then every divisor of x is either a unit or
an associate, so x is irreducible. �

4.3 Factorization into Irreducibles

In a domain D, if a non-unit x is reducible, we can write it as

x = ab.
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82 4. Factorization into Irreducibles

If either of a or b is reducible, we can express it as a product of proper
factors; then carry on the process, seeking to write

x = p1p2 . . . pm

where each pi is irreducible. We say that factorization into irreducibles is
possible in D if every x ∈ D, not a unit nor zero, is a product of a finite
number of irreducibles. In general such a factorization may not be possible;
and an example is ready to hand, namely the ring B of all algebraic integers.
For if α is not zero or a unit, neither is

√
α. Since α =

√
α · √α and

√
α is

an integer, it follows that α is not irreducible. Thus B has no irreducibles
at all, but it does have non-zero non-units, so factorization into irreducibles
is not possible.

This trouble does not arise in the ring O of integers of a number field—
another reason why we concentrate on such rings instead of the whole of
B. We prove the possibility of factorization in O by introducing a more
general notion which makes the arguments involved more transparent. We
define a domain D to be noetherian if every ideal in D is finitely generated.
The adjective commemorates Emmy Noether (1882–1935) who introduced
the concept. Having demonstrated the possibility of factorization in any
noetherian ring, we will show that O is noetherian, so factorization is pos-
sible here also.

Two useful properties, which we will see are each equivalent to the
noetherian condition are:

The Ascending Chain Condition. Given an ascending chain of ideals:

I0 ⊆ I1 ⊆ . . . ⊆ In ⊆ . . . (4.1)

then there exists some N for which In = IN for all n ≥ N . That is, every
ascending chain stops.

The Maximal Condition. Every non-empty set of ideals has a maximal el-
ement, that is an element which is not properly contained in every other
element.

This maximal element need not contain all the other ideals in the given
set: we require only that there is no other element in the set that contains
it.

Proposition 4.6. The following conditions are equivalent for an integral
domain D:

(a) D is noetherian.

(b) D satisfies the ascending chain condition.

(c) D satisfies the maximal condition.



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 83 — #99
✐

✐

✐

✐

✐

✐

4.3. Factorization into Irreducibles 83

Proof: Assume (a). Consider an ascending chain as in (4.1). Let I =
∪∞
n=1In. Then I is an ideal, so finitely generated: say I = 〈x1, . . . , xm〉.

Each xi belongs to some In(i). If we let N = maxi n(i), then we have
I = IN and In = IN for all n ≥ N , proving (b).

Now suppose (b) and consider a non-empty set S of ideals. Suppose
for a contradiction that S does not have a maximal element. Pick I0 ∈ S.
Since I0 is not maximal we can pick I1 ∈ S with I0 $ I1. Inductively,
having found In, since this is not maximal, we can pick In+1 ∈ S with
In $ In+1. But now we have an ascending chain that does not stop, which
is a contradiction. So (b) implies (c). (The reader who wishes to may
ponder the use of the axiom of choice in this proof.)

Finally, suppose (c). Let I be any ideal, and let S be the set of all
finitely generated ideals contained in I. Then {0} ∈ S, so S is non-empty
and thus has a maximal element J . If J 6= I, pick x ∈ I \ J . Then 〈J, x〉 is
finitely generated and strictly larger than J , a contradiction. Hence J = I
and I is finitely generated. �

Theorem 4.7. If a domain D is noetherian, factorization into irreducibles
is possible in D.

Proof: Suppose that D is noetherian, but there exists a non-unit x 6= 0 in
D which cannot be expressed as a product of a finite number of irreducibles.
Choose x so that 〈x〉 is maximal subject to these conditions on x, which is
possible by the maximal condition. By definition, x is not irreducible, so
x = yz where y and z are not units. Then 〈y〉 ⊇ 〈x〉 by Proposition 4.4(a).
If 〈y〉 = 〈x〉 then x and y are associates by Proposition 4.4(b), but this is
not the case because it implies that z is a unit. So 〈y〉 % 〈x〉, and similarly
〈z〉 % 〈x〉. By maximality of 〈x〉,

y = p1 . . . pr,

z = q1 . . . qs,

where each pi and qj is irreducible. Multiply these together to express x
as a product of irreducibles, a contradiction. Hence the assumption that
there existed a non-unit 6= 0 that is not a finite product of irreducibles is
false, and factorization into irreducibles is always possible. �

We are now in business:

Theorem 4.8. The ring of integers O in a number field K is noetherian.

Proof: We prove that every ideal I of O is finitely generated. Now (O,+)
is free abelian of rank n equal to the degree of K by Theorem 2.16. Hence
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(I,+) is free abelian of rank s ≤ n by Theorem 1.16. If {x1, . . . , xs} is a
Z-basis for (I,+), then clearly 〈x1, . . . , xs〉 = I, so I is finitely generated
and O is noetherian. �

Corollary 4.9. Factorization into irreducibles is possible in O. �

To get very far in the theory, we need an easy way to detect units and
irreducibles in O. The norm proves to be a convenient tool:

Proposition 4.10. Let O be the ring of integers in a number field K, and let
x, y ∈ O. Then

(a) x is a unit if and only if N(x) = ±1.
(b) If x and y are associates, then N(x) = ±N(y).
(c) If N(x) is a rational prime, then x is irreducible in O.

Proof: (a) If xu = 1, then N(x)N(u) = 1. Since N(x),N(u) ∈ Z, we have
N(x) = ±1. Conversely, if N(x) = ±1, then

σ1(x)σ2(x) . . . σn(x) = ±1

where the σi are the monomorphisms K → C. One factor, without loss in
generality σ1(x), is equal to x; all the other σi(x) are integers. Put

u = ±σ2(x) . . . σn(x).

Then xu = 1, so u = x−1 ∈ K. Hence u ∈ K ∩ B = O, and x is a unit.
(b) If x, y are associates, then x = uy for a unit u, so N(x) = N(uy) =

N(u)N(y) = ±N(y) by (a).
(c) Let x = yz. Then N(y)N(z) = N(yz) = N(x) = p, a rational prime;

so one of N(y) and N(z) is ±p and the other is ±1. By (a), one of y and z
is a unit, so x is irreducible. �

We have not asserted converses to parts (b) and (c) because these are
generally false, as examples in the next section reveal.

4.4 Examples of Non-Unique Factorization

into Irreducibles

Factorization in a domain D is unique if, whenever

p1 . . . pr = q1 . . . qs
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where every pi and qj is irreducible in D, it follows that

(a) r = s.

(b) There is a permutation π of {1, . . . , r} such that pi and qπ(i) are
associates for all i = 1, . . . , r.

In view of our earlier remarks about trivial factorizations, this is the best
we can hope for. It says that a factorization into irreducibles (if it exists)
is unique except for the order of the factors and the possible presence of
units. Variation to this extent is necessary, since even in Z we have, for
instance,

3 · 5 = 5 · 3 = (−3)(−5) = (−5)(−3).

Unfortunately, factorization into irreducibles need not be unique in a ring
of integers of an algebraic number field. Examples are easy to come by,
and to drive the point home we give quite a lot of them. They are drawn
from quadratic fields, and we state them as positive theorems. The easiest
come from imaginary quadratic fields:

Theorem 4.11. Factorization into irreducibles is not unique in the ring of
integers of Q(

√
d) for (at least) the following values of d: −5, −6, −10,

−13, −14, −15, −17, −21, −22, −23, −26, −29, −30.

Proof: In Q(
√
−5) we have the factorizations

6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5).

We claim that 2, 3, 1 +
√
−5 and 1−

√
−5 are irreducible in the ring O of

integers of Q(
√
−5). Since the norm is

N(a+ b
√
−5) = a2 + 5b2

their norms are 4, 9, 6, 6, respectively. If 2 = xy where x, y ∈ O are
non-units, then 4 = N(2) = N(x)N(y) so that N(x) = ±2, N(y) = ±2.
Similarly non-trivial divisors of 3 must, if they exist, have norm ±3, and
non-trivial divisors of 1 ±

√
−5 have norm ±2 or ±3. Since −5 6≡ 1 (mod

4), the integers in D are of the form a+ b
√
−5 for a, b ∈ Z (Theorem 3.2)

so

a2 + 5b2 = ±2 or ± 3 (a, b ∈ Z).

Now |b| ≥ 1 implies
∣

∣a2 + 5b2
∣

∣ ≥ 5, so the only possibility is |b| = 0; but
then we have a2 = ±2 or ±3, which is impossible in integers. Thus the
putative divisors do not exist, and the four factors are all irreducible. Since
N(2) = 4, N(1±

√
−5) = 6, by Proposition 4.10(b), 2 is not an associate of

1 +
√
−5 or 1−

√
−5, so factorization is not unique.
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The other stated values of d are dealt with in exactly the same way
(with a few slight subtleties noted at the end of the proof) starting from
the following factorizations:

Q(
√
−6) : 6 = 2 · 3 = (

√
−6)(−

√
−6)

Q(
√
−10) : 14 = 2 · 7 = (2 +

√
−10)(2 −

√
−10)

Q(
√
−13) : 14 = 2 · 7 = (1 +

√
−13)(1 −

√
−13)

Q(
√
−14) : 15 = 3 · 5 = (1 +

√
−14)(1 −

√
−14)

Q(
√
−15) : 4 = 2 · 2 =

(

1+
√
−15
2

)(

1−
√
−15
2

)

Q(
√
−17) : 18 = 2 · 3 · 3 = (1 +

√
−17)(1 −

√
−17)

Q(
√
−21) : 22 = 2 · 11 = (1 +

√
−21)(1 −

√
−21)

Q(
√
−22) : 26 = 2 · 13 = (2 +

√
−22)(2 −

√
−22)

Q(
√
−23) : 6 = 2 · 3 =

(

1+
√
−23
2

)(

1−
√
−23
2

)

Q(
√
−26) : 27 = 3 · 3 · 3 = (1 +

√
−26)(1 −

√
−26)

Q(
√
−29) : 30 = 2 · 3 · 5 = (1 +

√
−29)(1 −

√
−29)

Q(
√
−30) : 34 = 2 · 17 = (2 +

√
−30)(2 −

√
−30).

In cases −15 and −23, note that d ≡ 1 (mod 4) and be careful. For −26
it is easy to prove 3 irreducible. For 1 −

√
−26 we are led to the equation

N(x)N(y) = 27, so N(x) = ±9, N(y) = ±3, or the other way round. This
leads to a2 + 26b2 = ±9 or ±3. There is a solution for ±9, but not for ±3,
and the latter is sufficient to show 1 +

√
−26 is irreducible. �

Examining this list, we see that in the ring of integers of Q(
√
−17) there

is an example to show that even the number of irreducible factors may differ;
the case Q(

√
−26) shows that the number of distinct factors may differ and

that even a (rational) prime power may factorize non-uniquely.

For real quadratic fields there are similar results, but these are harder
to find. Also, since the norm is a2−db2, it is harder to prove given numbers
irreducible. With the same range of values as in Theorem 4.11 we find:

Theorem 4.12. Factorization into irreducibles is not unique in the ring of
integers of Q(

√
d) for (at least) the following values of d:

10, 15, 26, 30.

Proof: In the integers of Q(
√
10) we have factorizations:

6 = 2 · 3 = (4 +
√
10)(4 −

√
10).
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We prove 2, 3, 4 ±
√
10 irreducible. Looking at norms this amounts to

proving that the equations

a2 − 10b2 = ±2 or ± 3

have no solutions in integers a, b. It is no longer helpful to look at the size
of |b|, because of the minus sign. However, the equation implies

a2 ≡ ±2 or ± 3 (mod 10)

or equivalently
a2 = 2, 3, 7 or 8 (mod 10).

The squares (mod 10) are, in order, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1; by a seem-
ingly remarkable coincidence, the numbers we are looking for are precisely
those that do not occur. Hence no solutions exist and the four factors are
irreducible. Now 2 and 4 ±

√
10 are not associates, since their norms are

4, 6 respectively.
Similarly:

Q(
√
15) : 10 = 2 · 5 = (5 +

√
15)(5 −

√
15)

Q(
√
26) : 10 = 2 · 5 = (6 +

√
26)(6 −

√
26)

Q(
√
30) : 6 = 2 · 3 = (6 +

√
30)(6−

√
30)

The reader will find it instructive to do their own calculations. �

The values of d considered in Theorems 4.11 and 4.12 have not, despite
appearances, been chosen at random. If we try similar tricks with other d
in the range −30 to 30, nothing seems to work. Thus in Q(

√
−19) we get

(

1 +
√
−19

2

)(

1−
√
−19

2

)

= 5

but all this shows is that 5 is reducible.
Trying another obvious product in the integers of Q(

√
−19), we find

(2 +
√
−19)(2−

√
−19) = 23

which just tells us that 23 is also reducible. The case

(

3 +
√
−19

2

)(

3−
√
−19

2

)

= 7

shows 7 is reducible. After more of these calculations we may alight on

35 = 5 · 7 = (4 +
√
−19)(4−

√
−19).
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Will this prove non-uniqueness? No, because neither 5 nor 7 is irreducible,
as we have seen; and neither is 4±

√
−19.

The complete factorization of 35 is

(

1 +
√
−19

2

)(

3 +
√
−19

2

)(

1−
√
−19

2

)(

3−
√
−19

2

)

and the two apparently distinct factorizations come from different group-
ings of these in pairs. Eventually we are led to conjecture that the integers
of Q(

√
−19) have unique factorization. This is indeed true, but we shall

not be able to prove it until Chapter 10. In fact the ring of integers of
Q(

√
d) for negative squarefree d has unique factorization into irreducibles

if and only if d takes one of the values:

−1,−2,−3,−7,−11,−19,−43,−67,−163.

Numerical evidence available in the time of Gauss pointed to this result.
In 1934 Heilbronn and Linfoot [40] showed that at most one further value
of d can occur, and that if it does then |d| is very large. In 1952 Heegner
[39] offered a proof but it was thought to contain a gap. In 1967 Stark [76]
found a proof, as did Baker [3] soon after. Finally Birch [6], Deuring [23]
and Siegel [75] filled in the gap in Heegner’s proof. The methods of this
book are not appropriate to give any of these proofs, but we will prove in
Chapter 10 that for these nine values factorization is unique.

The situation for positive d is not at all well understood. Factorization
is unique in many more cases, for instance 2, 3, 5, 6, 7, 11, 13, 14, 17, 19,
21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69,
71, 73, 77, 83, 86, 89, 93, 94, 97, . . . , these being all for d less than 100.
Gauss conjectured (in the context of his work on quadratic forms) a result
equivalent to there being infinitely many real quadratic fields with unique
factorization, but this has neither been proved nor disproved. Henri Cohen
and Hendrik Lenstra have given a heuristic (that is, plausible but non-
rigorous) argument suggesting that about 75.446% of real quadratic fields
Q(

√
p) for prime p have unique factorization. Computational experiments

agree with this prediction, see Cohen [17] and te Riele and Williams [83].

4.5 Prime Factorization

So far we have not proved uniqueness of factorization for the ring of integers
in any number fields (apart from Z). We now introduce a criterion for
factorization to be unique, stated in terms of a special property of the
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irreducibles. We have already noted that an irreducible p in Z satisfies the
additional property

p|mn implies p|m or p|n.

In this section we show that this property characterizes uniqueness of fac-
torization.

In a domain D an element x is said to be prime if it is not zero or a
unit and

x|ab implies x|a or x|b.
Note that the zero element satisfies the given property in a domain, but we
exclude it to correspond with the definition of prime in Z, where 0 is not
usually considered a prime. This convention allows us to state:

Proposition 4.13. A prime in a domain D is always irreducible.

Proof: Suppose that D is a domain, x ∈ D is prime, and x = ab. Then
x|ab, so x|a or x|b.

If x|a, then a = xc (c ∈ D), so

x = xcb

and cancelling x (which is non-zero), we see that

1 = cb

and b is a unit. In the same way, x|b implies a is a unit. �

The converse of this result is not true, as Eisenstein lamented in 1844;
in many domains there exist irreducibles that are not primes. For example
in Z[

√
−5]

6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5),

but 2 does not divide either of 1 +
√
−5 or 1 −

√
−5, as shown in the

proof of Theorem 4.11. So 2 is an irreducible in Z[
√
−5], but not prime.

The factorizations in the proofs of Theorems 4.11 and 4.12 readily yield
other examples. The next theorem tells us that such examples are entirely
typical—every domain with non-unique factorization contains irreducibles
that are not prime:

Theorem 4.14. In a domain in which factorization into irreducibles is pos-
sible, factorization is unique if and only if every irreducible is prime.
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90 4. Factorization into Irreducibles

Proof: Let D be the domain. It is convenient to rephrase the possibility
of factorization for all non-zero x ∈ D as

x = up1 . . . pr

where u is a unit and p1, . . . , pr are irreducibles. When r = 0 this can then
be interpreted as x = u is a unit and when r ≥ 1, then up1 is an irreducible,
so x is a product of the irreducibles up1, p2, . . . , pr.

Now for the proof. Suppose first that factorization is unique and p is
an irreducible. We must show p is prime.

If p|ab, then pc = ab (c ∈ D).

We need consider only the non-trivial case a 6= 0, b 6= 0 which implies c 6= 0
also.

Factorize, a, b, c into irreducibles:

a = u1p1 . . . pn

b = u2q1 . . . qm

c = u3r1 . . . rs

where each ui is a unit and pi, qi and ri are irreducible. Then

p(u3r1 . . . rs) = (u1p1 . . . pn)(u2q1 . . . qm),

and unique factorization implies p is an associate (hence divides) one of the
pi or qj , so divides a or b. Hence p is prime.

Conversely, suppose that every irreducible is prime. We demonstrate
that if

u1p1 . . . pm = u2q1 . . . qn (4.2)

where u1, u2 are units and the pi, qj , are irreducibles, then m = n and
there is a permutation π of {1, . . . ,m} such that pi and qπ(i) are associates
(1 ≤ i ≤ m).

This is trivially true for m = 0.
For m ≥ 1, if (4.2) holds, then pm |u2q1 . . . qn. But pm is prime, so by

induction on n, pm|u2 or pm|qj for some j. The first of these possibilities
implies that pm is a unit by Proposition 4.4(a), so pm|qj . Renumber so
that j = n. Then pm|qn and qn = pmu where u is a unit, so

u1p1 . . . pm = u2q1 . . . qn−1upm.

Cancel pm:
u1p1 . . . pm−1 = (u2u)q1 . . . qn−1.

By induction we may suppose thatm−1 = n−1 and there is a permutation
of 1, . . . ,m − 1 such that pi, qπ(i) are associates (1 ≤ i ≤ m − 1). We can
then extend π to {1, . . . ,m} by defining π(m) = m. �
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A domain D is a unique factorization domain if factorization into ir-
reducibles is possible and unique. In a unique factorization domain all
irreducibles are primes, so we may speak of a factorization into irreducibles
as a ‘prime factorization’. Theorem 4.14 tells us that a prime factorization
is unique in the usual sense.

We can immediately generalize many ideas on factorization to any
unique factorization domain. For instance, if a, b ∈ D, the highest com-
mon factor h of a, b is defined to be an element that satisfies

(1) h|a, h|b,
(2) If h′|a, h′|b, then h′|h.
If a is zero, the highest common factor of a, b is b. For a, b 6= 0, in a

unique factorization domain we can write

a = u1p
e1
1 . . . penn

b = u2p
f1
1 . . . pfnn

where u1, u2 are units and the pi are distinct (that is, non-associate) primes
with non-negative integer exponents ei, fi. Then it is easy to show that

h = upm1

1 . . . pmn

n

where u is any unit and mi is the smaller of ei, fi (1 ≤ i ≤ n). The highest
common factor is unique up to multiplication by a unit. We can say that
a, b are coprime if their highest common factor is 1 (or any other unit).

In the same way we define the lowest common multiple l of a, b to satisfy

(3) a|l, b|l,
(4) If a|l′, b|l′, then l|l′.

For non-zero a, b this is

l = upk1

1 . . . pkn

n

where ki is the larger of ei, fi in the factorizations noted above.

Without uniqueness of factorization we can no longer guarantee the
existence of highest common factors and lowest common multiples. (See
Exercise 9 in this chapter.) The language of factorization of integers can
be carried over sensibly only to a unique factorization domain.

In the next section we see that if a domain has a property analogous
to the division algorithm, then every irreducible is prime and factorization
is unique. In later chapters we develop more advanced techniques which
prove unique factorization for a wider class of domains that do not have
this property.
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4.6 Euclidean Domains

The crucial property in the usual proofs of unique factorization in Z or
K[t] for a field K is the existence of a division algorithm. A reasonable
generalization of this is the following:

Definition 4.15. Let D be a domain. A Euclidean function for D is a
function φ : D \ {0} → N such that

(1) If a, b ∈ D\{0} and a|b then φ(a) ≤ φ(b).
(2) If a, b ∈ D\{0} then there exist q, r ∈ D such that a = bq+ r where

either r = 0 or φ(r) < φ(b).

Thus for Z the function φ(n) = |n| and for K[t], φ(p) = ∂p (the degree
of the polynomial p) are Euclidean functions.

If a domain has a Euclidean function we call it a Euclidean domain.
We prove that a Euclidean domain has unique factorization by showing
that every irreducible is prime. The route is this: first we show that in a
Euclidean domain every ideal is principal (a domain with this property is
called a principal ideal domain). Then we show that the latter property
implies all irreducibles are primes.

Theorem 4.16. Every Euclidean domain is a principal ideal domain.

Proof: Let D be Euclidean, I an ideal of D. If I = 0 it is principal, so
we may assume there exists a non-zero element x of I. Further choose x
to make φ(x) as small as possible. If y ∈ I then by (2) y = qx + r where
either r = 0 or φ(r) < φ(x). Now r ∈ I so we cannot have φ(r) < φ(x)
because φ(x) is minimal. This means that r = 0, so y is a multiple of x.
Therefore I = 〈x〉 is principal. �

Theorem 4.17. Every principal ideal domain is a unique factorization do-
main.

Proof: Let D be a principal ideal domain. Since this implies D is noethe-
rian, factorization into irreducibles is possible by Theorem 4.7. To prove
uniqueness we show that every irreducible is prime.

Suppose p is irreducible, then 〈p〉 is maximal amongst the principal
ideals of D by Proposition 4.5(d), but since every ideal is principal, this
means that 〈p〉 is maximal amongst all ideals.

Suppose p|ab but p ∤ a. The fact that p ∤ a implies 〈p, a〉 % 〈p〉, so by
maximality, 〈p, a〉 = D. Then 1 ∈ 〈p, a〉 , so

1 = cp+ da (c, d ∈ D).
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Multiply by b:

b = cpb+ dab.

Since p|ab, we find that p|(cpb+ dab), so p|b. This proves p is prime. �

Theorem 4.18. A Euclidean domain is a unique factorization domain. �

4.7 Euclidean Quadratic Fields

(This subsection may be omitted if desired.)

In order to apply Theorem 4.18 it is necessary to exhibit some number
fields for which the ring of integers is Euclidean. We restrict ourselves to
the simplest case of quadratic fields Q(

√
d) for squarefree d, beginning with

the easier situation when d is negative.

Theorem 4.19. The ring of integers O of Q(
√
d) is Euclidean for d =

−1,−2,−3,−7,−11, with Euclidean function

φ(α) = |N(α)|.

Proof: To begin with we consider the suitability of the function φ defined
in the theorem. For this to be a Euclidean function, the following two
conditions must be satisfied for all α, β ∈ O \ 0:

(a) If α|β then |N(a)| ≤ |N(β)|.
(b) There exist γ, δ ∈ O such that α = βγ + δ where either δ = 0 or

|N(δ)| < |N(β)|.
It is clear that (a) holds, for if α|β then β = λα for λ ∈ O and then

|N(β)| = |N(aλ)| = |N(α)N(λ)| = |N(α)||N(λ)|

with rational integer values for the various norms.
To prove (b), we consider the alternative statement:
(c) For any ǫ ∈ Q(

√
d) there exists κ ∈ O such that

|N(ǫ − κ)| < 1.

We prove that (c) is equivalent to (b). First, suppose (b) holds. By Lemma
2.11, cǫ ∈ O for some c ∈ Z. Applying (b) with α = cǫ, β = c we get two
possibilities:

(1) δ = 0 and cǫ = cγ for γ ∈ O. Then ǫ = γ ∈ O and we may take
κ = ǫ.
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(2) cǫ = cγ + δ where |N(δ)| < |N(c)|. Now c 6= 0, so this implies

|N(δ/c)| < 1

which is the same as

|N(ǫ − γ)| < 1

so we may take κ = γ. Hence (b) implies (c). To prove that (c) implies (b)
we put ǫ = α/β and argue similarly.

This allows us to concentrate on condition (c), which is relatively easy
to handle: in spirit it says that everything in Q(

√
d) is ‘near to’ an integer.

Suppose ǫ = r + s
√
d (r, s ∈ Q). If d 6≡ 1 (mod 4) we have to find

κ = x+ y
√
d (x, y ∈ Z) with

|(r − x)2 − d(s− y)2| < 1.

For d = −1,−2 we may do this by taking x and y to be the rational integers
nearest to r and s respectively, for then

∣

∣(r − x)2 − d(s− y)2
∣

∣ ≤
∣

∣

∣

(

1

2

)2
+ 2

(

1

2

)2
∣

∣

∣
= 3

4
< 1.

The remaining three values of d to be considered have d ≡ 1 (mod 4). In
this case we must find

κ = x+ y

(

1 +
√
d

2

)

(x, y ∈ Z)

such that

|(r − x− 1

2
y)2 − d(s− 1

2
y)2| < 1.

Certainly we can take y to be the rational integer nearest to 2s, so that
|2s − y| ≤ 1

2 ; and then we may find x ∈ Z so that |r − x − 1
2y| ≤ 1

2 . For
d = −3,−7, or −11 this means that

|(r − x− 1

2
y)2 − d(s− 1

2
y)2| ≤

∣

∣
1

4
+ 11

16

∣

∣ = 15

16
< 1.

The theorem is proved. �

To complete the picture for negative d we have:

Theorem 4.20. For squarefree d < −11 the ring of integers of Q(
√
d) is not

Euclidean.
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Proof: Let O be the ring of integers of Q(
√
d) and suppose for a con-

tradiction that there exists a Euclidean function φ. (We do not assume
φ = |N|.) Choose α ∈ O such that α 6= 0, α is not a unit, and φ(α) is
minimal subject to this. Let β be any element of O. Now there exist γ, δ
such that β = αγ + δ with δ = 0 or φ(δ) < φ(α). By choice of α the latter
condition implies that either δ = 0 or δ is a unit.

For d < −11, Proposition 4.3 shows that the only units of Q(
√
d) are

±1. Hence for every β ∈ O we have β ≡ −1, 0, or 1 (mod 〈α〉) and so
|O/ 〈α〉 | ≤ 3.

Now we compute |O/ 〈α〉 | using Theorem 1.17. By Theorem 2.16 (O,+)
is free abelian of rank 2. If d 6≡ 1 (mod 4) a Z-basis for 〈α〉 is {α, α

√
d}

since a Z-basis for O is {1,
√
d}. If α = a+ b

√
d (a, b ∈ Z) the Z-basis for

〈α〉 is
{a+ b

√
d, db + a

√
d}.

Hence by Theorem 1.17

|O/ 〈α〉| =
∥

∥

∥

∥

a b
db a

∥

∥

∥

∥

=
∣

∣a2 − db2
∣

∣ = |N(α)| .

Similar calculations apply for d ≡ 1 (mod 4) with the same end result.
(These calculations are a special case of Corollary 5.10). It follows that
|N(α)| ≤ 3. Thus if d 6≡ 1 (mod 4) we have |a2 − db2| ≤ 3 with a, b ∈ Z. If
d ≡ 1 (mod 4) then a = A/2, b = B/2, for A,B ∈ Z; and then |A2−dB2| ≤
12. Since d < −11 the only solutions are a = ±1, b = 0; so |N(α)| = 1 and
hence α is a unit. This contradicts the choice of α. �

These two theorems together show that for negative d the ring of inte-
gers of Q(

√
d) is Euclidean if and only if d = −1,−2,−3,−7,−11. Further,

when it is Euclidean it has as Euclidean function the absolute value of the
norm. For brevity call such fields norm-Euclidean.

The determination of the norm-Euclidean quadratic fields with d pos-
itive has been a long process involving many mathematicians. Leonard
Dickson proved Q(

√
d) Euclidean for d = 2, 3, 5, 13, mistakenly asserting

there are no others. Oskar Perron added 6, 7, 11, 17, 21, 29 to the list.
Oppenheimer, Robert Remak, and László Rédei added 19, 33, 37, 41, 55,
73. Rédei claimed 97 as well but this was disproved by Eric Barnes and
Peter Swinnerton-Dyer. Hans Heilbronn proved the list finite in 1934, and
the problem was finished off by Harold Chatland and Harold Davenport
[15] in 1950 (and independently Kustaa Inkeri [43] in 1949) who proved:

Theorem 4.21. The ring of integers of Q(
√
d), for positive d, is norm-

Euclidean if and only if d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37,
41, 55, 73.
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We cannot prove this theorem here. A good survey of the problem and
related questions, with references, is given by Narkiewicz [59].

Unlike the case d < 0, a real quadratic field Q(d) can be Euclidean but
not norm-Euclidean, as Clark [16] proved in 1994 for d = 69. Samuel [71]
suggested that Z(

√
14) might also have such properties. Malcolm Harper

proved this in his PhD thesis in 2000, and published a proof [38] in 2004.
Using similar methods he also proved that for positive d, whenever the
discriminant of Q(

√
d) is less than or equal to 500, the ring of integers is

Euclidean if and only if it is a principal ideal domain, that is, has unique
prime factorization.

4.8 Consequences of Unique Factorization

When the integers in a number field have unique factorization, we can
carry over many arguments of the type used in the factorization of integers
(taking a little care at first). For example, the proof of the statement of
Fermat in Section 4.1 makes it clear that, since Z[

√
−2] (the ring of integers

in Q(
√
−2)) has unique factorization, the intuitive ‘proof’ given there is,

in fact, valid. We now prove another example of the same sort of thing,
again a statement of Fermat:

Theorem 4.22. The only integer solutions of the equation

y2 + 4 = z3 (4.3)

are y = ±11, z = 5 and y = ±2, z = 2.

Proof: First suppose y odd, and work in the ring Z[i], which is a unique
factorization domain by Theorem 4.17. Then (4.3) factorizes as

(2 + iy)(2− iy) = z3.

A common factor a + ib of 2 + iy, 2 − iy is also a factor of their sum, 4,
and difference, 2y, so taking norms

a2 + b2|16, a2 + b2|4y2,

implying
a2 + b2|4.

The only solutions of this relation are a = ±1, b = 0, or a = 0, b = ±1,
or a = ±1, b = ±1, none of which turn out to give a proper factor a+ ib of
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2 + iy. Hence 2 + iy, 2 − iy are coprime. By unique factorization in Z[i],
if their product is a cube then one is ǫα3 and the other is ǫ−1β3 where ǫ
is a unit, and α, β ∈ Z[i]. By Proposition 4.3 the units in Z[i] are ±i, ±1,
which are all cubes, so

2 + iy = (a+ ib)3

for some a, b ∈ Z. Taking complex conjugates,

2− iy = (a− ib)3.

Adding the two equations,

4 = 2a(a2 − 3b2)

so

a(a2 − 3b2) = 2.

Now a divides 2, so a = ±1 or ±2; and the choice of a determines b. It is
easy to see that the only solutions are a = −1, b = ±1, or a = 2, b = ±1.
Then

z3 = ((a+ ib)(a− ib))3 = (a2 + b2)3,

so z = a2 + b2 = 2, 5 respectively. Then y2 + 4 = 8, 125, so y = ±2, ±11.
This gives the solutions with y = ±11 as the only ones for y odd.

Now suppose y even, so that y = 2Y . Then z is even as well, say
z = 2Z, and

Y 2 + 1 = 2Z3.

Then Y must be odd, say Y = 2k+1. The highest common factor of Y + i
and Y − i divides the difference 2i = (1 + i)2. Now 1+ i divides Y + i and
Y − i but (1 + i)2 does not, so the highest common factor of Y + i and
Y − i is 1 + i. But

(1 + iY )(1− iY ) = 2Z3

and the common factor 1+ i occurs twice on the left (bearing in mind that
1+ iY = i(Y − i), 1− iY = −i(Y + i)). Hence there must be a factorization

1 + iY = (1 + i)(a+ ib)3

whence as before

1 = (a+ b)(a2 − 4ab+ b2)

so a = ±1, b = 0, or a = 0, b = ±1. These imply y = ±2, which correspond
to the other two solutions stated. �
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4.9 The Ramanujan-Nagell Theorem

We now give a more intricate and impressive example of how unique fac-
torization properties of algebraic number fields are used to prove theorems
on Diophantine equations. Using uniqueness of factorization in Q(

√
−7)

Nagell verified a conjecture of Ramanujan:

Theorem 4.23. The only solutions of the equation

x2 + 7 = 2n (4.4)

in integers x, n are:

± x = 1 3 5 11 181
n = 3 4 5 7 15.

Proof: Work in Q(
√
−7), whose ring of integers has unique factorization

by Theorem 4.17. Clearly a solution for x is odd, and we suppose x is
positive.

Assume first that n is even. Then we have a factorization of integers:

(2n/2 + x)(2n/2 − x) = 7

so that
2n/2 + x = 7, 2n/2 − x = 1.

Now
21+n/2 = 8

and n = 4, x = 3.
Let n > 3 be odd. We have the factorization into primes:

2 =

(

1 +
√
−7

2

)(

1−
√
−7

2

)

.

Now x is odd, x = 2k + 1, so x2 + 7 = 4k2 + 4k + 8 is divisible by 4. Put
m = n− 2 and rewrite (4.4) as

x2 + 7

4
= 2m

so that

(

x+
√
−7

2

)(

x−
√
−7

2

)

=

(

1 +
√
−7

2

)m(
1−

√
−7

2

)m
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where the right-hand side is a prime factorization. Neither (1 +
√
−7)/2

nor (1 −
√
−7)/2 is a common factor of the terms on the left because

such a factor would divide their difference,
√
−7, which is impossible by

taking norms. Comparing the two factorizations, since the only units in
the integers of Q(

√
−7) are ±1, (Proposition 4.2), we must have

x±
√
−7

2
= ±

(

1±
√
−7

2

)m

from which we derive

±
√
−7 =

(

1 +
√
−7

2

)m

−
(

1−
√
−7

2

)m

.

We claim that the positive sign cannot occur. For, putting
(

1+
√
−7

2

)

=

a,
(

1−
√
−7

2

)

= b, we have

am − bm = a− b.

Then
a2 ≡ (1− b)2 ≡ 1 (mod b2)

since ab = 2, so

am ≡ a(a2)(m−1)/2 ≡ a (mod b2)

whence
a ≡ a− b (mod b2),

a contradiction.
Hence the sign must be negative, and expanding by the binomial theo-

rem

−2m−1 =

(

m

1

)

−
(

m

3

)

7 +

(

m

5

)

72 . . .±
(

m

m

)

7(m−1)/2

so
−2m−1 ≡ m (mod 7). (4.5)

Now 26 ≡ 1 (mod 7) and it follows easily that the only solutions of (4.5)
are

m ≡ 3, 5, or 13 (mod 42).

We prove that only m ≡ 3, 5, 13 can occur. It suffices to show that we can-
not have two solutions of the original equation that are congruent modulo
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42. So let m, m1 be two such solutions, and let 7l be the largest power of
7 dividing m−m1. Then

am1 = amam1−m = am
(

1

2

)m1−m
(1 +

√
−7)m1−m. (4.6)

Now
(

1

2

)m1−m
=
[

(

1

2

)6
](m1−m)/6

≡ 1 (mod 7l+1),

(since 2 is prime to 7l+1 the fraction 1

2
has a unique meaning here). More-

over,
(

1 +
√
−7
)m1−m ≡ 1 + (m1 −m)

√
−7 (mod 7l+1)

(first raise to powers 7, 72, . . . , 7l, then (m−m1)/7
l). Since

am ≡ 1 +m
√
−7

2m
(mod 7)

substituting in (4.6) gives

am1 ≡ am +
m1 −m

2m
√
−7 (mod 7l+1)

and

bm1 = bm − m1 −m

2m
√
−7 (mod 7l+1).

But
am − bm = am1 − bm1

so
(m−m1)

√
−7 ≡ 0 (mod 7l+1).

Since m and m1 are rational integers,

m ≡ m1 (mod 7l+1)

which contradicts the definition of l. �

4.10 Exercises

1. Which of the following elements of Z[i] are irreducible (i =
√
−1):

1 + i, 3− 7i, 5, 7, 12i, −4 + 5i?

2. Write down the group of units of the ring of integers of: Q(
√
−1),

Q(
√
−2), Q(

√
−3), Q(

√
−5), Q(

√
−6).
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3. Is the group of units of the integers in Q(
√
3) finite?

4. Show that a homomorphic image of a noetherian ring is noetherian.

5. Find all ideals of Z which contain 〈120〉.
Show that every ascending chain of ideals of Z starting with 〈120〉
stops, by direct examination of the possibilities.

6. Find a ring that is not noetherian.

7. Check the calculations required to complete Theorems 4.10, 4.11.

8. Is 10 = (3 + i)(3 − i) = 2 · 5 an example of non-unique factorization
in Z[i]? Give reasons for your answer.

9. Show that 6 and 2(1 +
√
−5) both have 2 and 1 +

√
−5 as factors,

but do not have a highest common factor in Z[
√
−5]. Do they have

a least common multiple? (Hint: Consider norms.)

10. Let D be any integral domain. Suppose an element x ∈ D has a
factorization

x = up1 . . . pn

where u is a unit and p1, . . . , pn are primes. Show that given any
factorization

x = vq1 . . . qm

where v is a unit and q1, . . . , qm are irreducibles, thenm = n and there
exists a permutation π of {1, . . . , n} such that pi, qπ(i) are associates
(1 ≤ i ≤ n).

11. Show in Z[
√
−5] that

√
−5|(a + b

√
−5) if and only if 5|a. Deduce

that
√
−5 is prime in Z[

√
−5]. Hence conclude that the element

5 factorizes uniquely into irreducibles in Z[
√
−5], although Z[

√
−5]

does not have unique factorization.

12. Suppose D is a unique factorization domain, and a, b are coprime
non-units. Deduce that if

ab = cn

for c ∈ D, there exists a unit e ∈ D such that ea and e−1b are nth
powers in D.

13. Let p be an odd rational prime and ζ = e2πi/p. If α is a prime element
in Z[ζ], prove that the rational integers which are divisible by α are
precisely the rational integer multiples of some prime rational integer
q. (Hint: α|N(α), so α divides some rational prime factor q of N(α).
Now show α is not a factor of any m ∈ Z prime to q.)
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14. Prove that the ring of integers of Q(e2πi/5) is Euclidean.

15. Prove that the ring of integers of Q(
√
2, i) is Euclidean.

16. Let Q2 be the set of all rational numbers a/b, where a, b ∈ Z and b
is odd. Prove that Q2 is a domain, and that the only irreducibles in
Q2 are 2 and its associates.

17. Generalize Exercise 16 to the ring Qπ, where π is a finite set of
ordinary primes, this being defined as the set of all rationals a/b with
b prime to the elements of π.

18. The following purports to be a proof that in any number field K the
ring of integers contains infinitely many irreducibles. Find the error.

AssumeO has only finitely many irreducibles p1, . . . , pn. The number
1+ p1 . . . pn must be divisible by some irreducible q, and this cannot
be any of p1, . . . , pn. This is a contradiction. Of course the argument
breaks down unless we can find at least one irreducible in O; but since
not every element of O is a unit this is easy: let x be any non-unit
and let p be some irreducible factor of x.

(Hint: The ‘proof’ does not use any properties of O beyond the exis-
tence of irreducible factorization and the fact that not every element
is a unit. Now Q2 has these properties . . . )

19. Give a correct proof of the statement in Exercise 18.
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Ideals

After the somewhat traumatic realization that factorization into irreduci-
bles is unique in some rings of integers but not in others, we seek some
way to minimize the damage. Kummer, and then Dedekind, took steps
to develop more insightful theories. Kummer had the bright idea that
if he could not factorize a number uniquely in a given ring of integers,
then perhaps he could extend the ring to a bigger one in which further
factorization might be not only possible, but unique. For example, we
pointed out in Chapter 4 that there are two factorizations 6 = 2 · 3 =√
−6 ·

√
−6 in Z[

√
−6], but

√
−6 does not divide 2 or 3 in this ring. In

fact, 2/
√
−6 =

√

−2/3, and 3/
√
−6 =

√

−3/2, neither of which belongs to
Z[
√
−6]. Kummer’s idea: throw them into the pot to create a larger ring.

He called the new elements introduced in this way ‘ideal numbers’.
Dedekind looked at the same ideas from a different direction, introduc-

ing the notion of an ‘ideal’ in ring theory: a special kind of subring. The
word referred to the reformulation of Kummer’s notion of ideal numbers.
Dedekind showed that although unique factorization may fail for numbers,
a simple and elegant theory of unique factorization can be developed for
ideals. In this theory, the essential building blocks are ‘prime ideals’, which
are defined by adapting the definition of a prime element from the previous
chapter.

Just as it is often easier to work with both a ring of integers and its corre-
sponding field of quotients, we generalize the concept of ideal to ‘fractional
ideal’; this generalization has the advantage that the non-zero fractional
ideals form a group under multiplication. From this the uniqueness of fac-
torization into prime ideals follows easily. Several standard consequences
of unique factorization are easily deduced.

103
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104 5. Ideals

We define the norm of an ideal as a generalization of the norm of an
element and prove that the new norm has the corresponding multiplicative
property. We use this to show that every ideal can be generated by at most
two elements. This tightens the noose around the neck of non-uniqueness of
factorization. In the previous chapter we saw that factorization of elements
is unique in a principal ideal domain (where every ideal is generated by a
single element). We refine this result to show that factorization of elements
into irreducibles is unique in a ring of integers if and only if every ideal is
principal.

5.1 Historical Background

To motivate Kummer’s introduction of ideal numbers and Dedekind’s re-
formulation of this concept in terms of ideals, we look more closely at some
examples where unique factorization fails, in the hope that some pattern
may emerge.

Many previous examples exhibit no obvious pattern, but others seem
to have significant features. For instance, consider:

Q
(√

15
)

: 2 · 5 = (5 +
√
15)(5−

√
15)

Q
(√

30
)

: 2 · 3 = (6 +
√
30)(6−

√
30)

Q
(√

−10
)

: 2 · 7 = (2 +
√
−10)(2 −

√
−10).

In these we see a curious phenomenon: there is a prime p occurring on
the left, and on the right a factor a+ b

√
d where a and d are multiples of

p. It looks as though
√
p is somehow a common factor of both sides—but√

p does not lie in the given number field. As a specific case, consider the

first example; here
√
5 looks a likely candidate for a common factor but

√
5

is not an element of Q(
√
15). Leaving aside the niceties for the moment,

introduce
√
5 into the factorization to get

5 +
√
15 =

√
5(
√
5 +

√
3)

5−
√
15 =

√
5(
√
5−

√
3).

Multiply and cancel the 5 to get

2 = (
√
5 +

√
3)(

√
5−

√
3).

We now see that the two given factorizations of 10 are obtained by grouping
the factors in

(
√
5)(

√
5)(

√
5 +

√
3)(

√
5−

√
3)

in two different ways.
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Perhaps by introducing new numbers, such as
√
5, we can restore unique

factorization. Can our problem be that we are not factorizing in the right
context? In other words, if factorization of some element in the ring of
integers of the given number field K is not unique, can we extend K to a
field L where it is? In our example to factorize the element 10 we extended
Q(

√
15) to Q(

√
3,
√
5). What about the others? The factorizations of 14

in Q(
√
−10) can be found by extending to Q(

√
2,
√
−5) to get two possible

groupings of the factors in

14 = (
√
2)(

√
2)(

√
2 +

√
−5)(

√
2−

√
−5).

The case of 6 in Q(
√
30) is even more interesting: we have

6 = (
√
2)(

√
2)(

√
3)(

√
3)(

√
6 +

√
5)(

√
6−

√
5),

and the last two factors are units because (
√
6+

√
5)(

√
6−

√
5) = 6−5 = 1.

This is one way to view Kummer’s theory. Start with a number field
K and extend to a field L. Then OK ⊆ OL. Neither of these rings of
integers need have unique factorization, but an element inOK may factorize
uniquely into elements in OL.

At the outset Kummer did not describe the theory in this way. His
method involved detailed computations, described in Edwards [24, 25], and
a radically new notion of ‘ideal’ prime factors for elements that have no
prime factors in OK . These extra ‘ideal’ numbers may be interpreted as
elements introduced from OL for factorization purposes, but Kummer’s
description was more mysterious: things that behaved like numbers but
were not.

A simpler and more natural formulation of the theory by Dedekind in
terms of ideals clarified matters. To motivate this approach, consider a
factorization

x = ab

in a ring R. Recall from Chapter 1 that the product of ideals IJ is just the
set of finite sums

∑

xiyi (xi ∈ I, yi ∈ J). Therefore the ideal generated by
x is the product of the ideals generated by a and by b:

〈x〉 = 〈a〉 〈b〉 .

More generally a product
x = p1 . . . pn

of elements in R corresponds to a product of principal ideals

〈x〉 = 〈p1〉 . . . 〈pn〉 .
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When considering unique factorization, the formulation in terms of ideals
is marginally better, for if we replace p1 by up1 where u is a unit, the
ideals 〈p1〉 and 〈up1〉 are the same, see Proposition 4.4(b). Thus, when
the factors are unique up to multiplication by units and order, the ideals
〈p1〉 , . . . , 〈pn〉 are unique (up to order). So passing to ideals eliminates the
problems introduced by units.

How does this tie in with the earlier discussion? First consider the
example

10 = (
√
5)(

√
5)(

√
5 +

√
3)(

√
5−

√
3)

in the integers of Q(
√
3,
√
5). Let K = Q(

√
15), L = Q(

√
3,
√
5); then this

factorization holds in the ring of integers OL. In this ring we also have the
corresponding factorization of principal ideals:

〈10〉 = 〈
√
5〉〈

√
5〉〈

√
5 +

√
3〉〈

√
5−

√
3〉.

We may intersect the ideals in this factorization with OK , and once more
we get ideals in OK , but these ideals need not be principal, and in this case
they are not. For instance, let I =

〈√
5 +

√
3
〉

∩OK . Then
√
3(
√
5+

√
3) =√

15 + 3 ∈ I, and
√
5(
√
5 +

√
3) = 5 +

√
15 ∈ I, so their difference

(5 +
√
15)− (3 +

√
15) = 2 ∈ I.

If I were principal, say I =
〈

a+ b
√
15
〉

, then 2 would be a multiple of

a+ b
√
15, and taking norms,

a2 − 15b2|4.

Suppose that I is principal, say I = 〈k〉. Now N(5 +
√
15) = 10 and

N(3 +
√
15) = −6, so N(k)|2. We know that N(k) 6= ±1 since I is proper.

If N(k) = ±2 then there exist a, b ∈ Z with a2 − 15b2 = ±2. But, taken
modulo 5, this leads to a contradiction. So I is not principal.

The moral is now clear. If we wish to factorize the principal ideal 〈x〉
in a ring of integers OK , we might get a unique factorization of ideals,

〈x〉 = I1 . . . In,

but the ideals I1, . . . , In might not be principal.

Factorization into ideals proves to be most useful, however; for the ideals
in OK are not far off being principal, having (as we shall see) at most two
generators.
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5.2 Prime Factorization of Ideals

Throughout this chapter O is the ring of integers of a number field K of
degree n. We use small Gothic letters a, b, c, . . . to denote ideals (and later
‘fractional ideals’) of O. We are interested in two special types of ideal,
which we define in a general context as follows. Let R be a ring. Then an
ideal a of R is maximal if a is a proper ideal of R and there are no ideals
of R strictly between a and R. The ideal a 6= R of R is prime if, whenever
b and c are ideals of R with bc ⊆ a, then either b ⊆ a or c ⊆ a.

We can see where the latter definition comes from by considering the
special case where all three ideals concerned are principal, say a = 〈a〉,
b = 〈b〉, c = 〈c〉. Since x|y is equivalent to 〈y〉 ⊆ 〈x〉 by Proposition 4.5(a),
the statement

bc ⊆ a implies either b ⊆ a or c ⊆ a

translates into

a|bc implies either a|b or a|c.

If R is an integral domain, then the zero ideal is prime, and here we find 〈p〉
is prime if and only if p is a prime or zero. (See Exercise 5 in this chapter.)
Excluding 0 from the list of prime elements but including 〈0〉 as a prime
ideal is a quirk of historical development. Elements came first and 0 was
excluded from the list of primes of Z. On the other hand, the definition we
have given for a prime ideal implies the following simple characterizations:

Lemma 5.1. Let R be a ring and a an ideal of R. Then
(a) a is maximal if and only if R/a is a field.

(b) a is prime if and only if R/a is a domain.

Proof: The ideals of R/a are in bijective correspondence with the ideals
of R lying between a and R. Hence a is maximal if and only if R/a has no
non-zero proper ideals. Now it is easy to show that a ring S has no non-zero
proper ideals if and only if S is a field. Taking S = R/a proves (a).

To prove (b), first suppose a is prime. If x, y ∈ R are such that in R/a
we have

(a+ x)(a + y) = 0

and then xy ∈ a, so 〈x〉 〈y〉 ⊆ a. Hence either 〈x〉 ⊆ a or 〈y〉 ⊆ a, so either
x ∈ a or y ∈ a. Hence one of (a+x) or (a+ y) is zero in R/a, and therefore
R/a has no zero-divisors so it is a domain. Conversely suppose R/a is a
domain. Then |R/a| 6= 1 so a 6= R. Suppose if possible that bc ⊆ a but
b * a, c * a. Then we can find elements b ∈ b, c ∈ c, with b, c /∈ a but
bc ∈ a. This means that (a+ b) and (a+ c) are zero-divisors in R/a, which
is a contradiction. �
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Corollary 5.2. Every maximal ideal is prime. �

Next we list some important properties of the ring of integers of a
number field:

Theorem 5.3. The ring of integers O of a number field K has the following
properties:

(a) It is a domain, with field of fractions K.
(b) It is noetherian.
(c) If α ∈ K satisfies a monic polynomial equation with coefficients in

O then α ∈ O.
(d) Every non-zero prime ideal of O is maximal.

Proof: Part (a) is obvious. For part (b) note that by Theorem 2.16 the
group (O,+) is free abelian of rank n. It follows by Theorem 1.16 that if
a is an ideal of O then (a, +) is free abelian of rank ≤ n. Now any Z-basis
for (a, +) generates a as an ideal, so every ideal of O is finitely generated
and O is noetherian. Part (c) is immediate from Theorem 2.10. To prove
part (d) let p be a prime ideal of O. Let 0 6= α ∈ p. Then

N = N(α) = α1, . . . αn ∈ p

(the αi being the conjugates of α) since α1 = α. Therefore 〈N〉 ⊆ p, so
O/p is a quotient ring of O/NO which, being a finitely generated abelian
group with every element of finite order, is finite. Since O/p is a domain
by Lemma 5.1(b) and is finite, it is a field by Theorem 1.5. Hence p is a
maximal ideal by Lemma 5.1 (a). �

Part (d) of Theorem 5.3 is by no means typical of general rings. For
example if R = R[x, y], the ring of polynomials in indeterminates x, y with
real coefficients, the ideal 〈x〉 is prime but not maximal because R/〈x〉 ∼=
R[y] is a domain but not a field. A ring that satisfies conditions 5.3(a)–(d)
is called a Dedekind ring. The proof of unique factorization of ideals, which
we give shortly, is valid for all Dedekind rings—although in applications
we require only the special case when the ring is a ring O of integers in a
number field.

To prove uniqueness we need to study the ‘arithmetic’ of non-zero ideals
of O, especially their behaviour under multiplication. Clearly this multipli-
cation is commutative and associative with O itself as an identity. However,
inverses need not exist, so we do not have a group structure. It turns out
that we can capture a group if we spread our net wider. Note that an ideal
may be described as an O-submodule of O, so we look at O-submodules of
the field K. The particular submodules of interest to give the group struc-
ture we desire will turn out to be characterized by the following property:
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an O-submodule a of K is called a fractional ideal of O if there exists some
non-zero c ∈ O such that ca ⊆ O. In other words, the set b = ca is an ideal
of O, and a = c−1b; thus the fractional ideals of O are subsets of K of the
form c−1b where b is an ideal of O and c is a non-zero element of O. (This
explains the name.)

Example 5.4. The fractional ideals of Z are of the form rZ where r ∈ Q.

Of course if every ideal of O is principal, then the fractional ideals are
of the form c−1 〈d〉 = c−1dO where d is a generator. By Theorem 5.3(a)
this means the fractional ideals in a principal ideal domain O are just αO
where α ∈ K. The interest in fractional ideals is greater because O need
not be a principal ideal domain.

In general, an ideal is clearly a fractional ideal and, conversely, a frac-
tional ideal a is an ideal if and only if a ⊆ O. The product of fractional
ideals is once more a fractional ideal. In fact, if a1 = c−1

1 b1, a2 = c−1
2 b2

where b1, b2, are ideals and c1, c2 are non-zero elements of O, then
a1a2 = (c1c2)

−1b1b2. The multiplication of fractional ideals is commu-
tative and associative with O acting as an identity.

Theorem 5.5. The non-zero fractional ideals of O form an abelian group
under multiplication.

It is convenient to prove this result along with the main theorem of the
chapter:

Theorem 5.6. Every non-zero ideal of O can be written as a product of
prime ideals, uniquely up to the order of the factors.

Proof: We prove Theorems 5.5 and 5.6 together in a series of nine steps.
(1)Let a 6= 0 be an ideal of O. Then there exist prime ideals p1, . . . , pr

such that p1 . . . pr ⊆ a.
For a contradiction, suppose not. By Theorem 5.3(b) O is noetherian,

so we may choose a to be maximal subject to the non-existence of such p’s.
Then a is not prime (since we could then take p1 = a), so there exist ideals
b, c of O with bc ⊆ a, b * a, c * a. Let

a1 = a+ b, a2 = a+ c.

Then a1a2 ⊆ a, a1 % a, a2 % a. By maximality of a there exist prime ideals
p1, . . . , ps, ps+1, . . . , pr such that

p1 . . . ps ⊆ a1,
ps+1 . . . pr ⊆ a2.
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Hence

p1 . . . pr ⊆ a1a2 ⊆ a

contrary to the choice of a.

(2) Definition of what will turn out to be the inverse of an ideal:

For each ideal a of O, define

a−1 = {x ∈ K|xa ⊆ O}.

It is clear that a−1 is an O-submodule. If a 6= 0 then for any c ∈ a,
c 6= 0, we have ca−1 ⊆ O, so a−1 is a fractional ideal. Clearly O ⊆ a−1, so
a = aO ⊆ aa−1. From the definition,

aa−1 = a−1 a ⊆ O.

Therefore the fractional ideal aa−1 is actually an ideal. Our aim will be to
prove aa−1 = O.

A further useful fact for ideals p, a is that a ⊆ p implies O ⊆ p−1 ⊆ a−1.

(3) If a is a proper ideal, then a−1 % O.

Since a ⊆ p for some maximal ideal p, whence p−1 ⊆ a−1, it is sufficient
to prove p−1 6= D for p maximal. We must therefore find a non-integer in
p−1. We start with any a ∈ p, a 6= 0. Using step (1) we choose the smallest
r such that

p1 . . . pr ⊆ 〈a〉

for p1, . . . , pr prime. Since 〈a〉 ⊆ p and p is prime (remember maximal
implies prime), some pi ⊆ p. Without loss of generality p1 ⊆ p. Hence
p1 = p since prime ideals in O are maximal by Theorem 5.3 (d). Moreover,

p2 . . . pr * 〈a〉

by minimality of r. Hence we can find b ∈ p2 . . . pr \ 〈a〉. But bp ⊆ 〈a〉
so ba−1p ⊆ O and ba−1 ∈ p−1. But b /∈ aO and so ba−1 /∈ O, whence
p−1 6= O.
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(4) If a is a non-zero ideal and aS ⊆ a for any subset S ⊆ K, then
S ⊆ O.

We must show that if aθ ⊆ a for θ ∈ S, then θ ∈ O. Because O is
noetherian, a = 〈a1, . . . , am〉, where not all the ai are zero. Then aθ ⊆ a

implies

a1θ = b11a1 + . . .+ b1mam
... . . . (bij ∈ D)

amθ = bm1a1 + . . .+ bmmam.

The equations

(b11 − θ)x1 + . . .+ b1mxm = 0

...

bm1x1 + . . .+ (bmm − θ)xm = 0

have a non-zero solution x1 = a1, . . . , xm = am, so, as in Lemma 2.8,
the determinant of the array of coefficients is zero. This gives a monic
polynomial equation in θ with coefficients in O, so θ ∈ O by Theorem
5.3(c). (We could short-cut part of this proof by noting, as in the proof of
Lemma 2.8, that the bij may be taken to be rational integers which gives
θ ∈ O directly.)

We are now in a position to take an important step in the proof of
Theorem 5.5:

(5) If p is a maximal ideal, then pp−1 = O.
From (2), pp−1 is an ideal where p ⊆ pp−1 ⊆ O. Since p is maximal,

pp−1 is equal to p or O. But if pp−1 = O, then (4) would imply p−1 ⊆ O,
contradicting (3). So pp−1 = O.

We can now extend (5) to any ideal a:

(6) For every ideal a 6= 0, aa−1 = O.
If not, choose a maximal subject to aa−1 6= O. Then a ⊆ p where p is

maximal. From (2), O ⊆ p−1 ⊆ a−1, so

a ⊆ ap−1 ⊆ aa−1 ⊆ O.

In particular, ap−1 ⊆ O implies ap−1 is an ideal. Now we cannot have
a = ap−1, for that would imply p−1 ⊆ O by (4), contradicting (3) once
more. So a $ ap−1 and the maximality condition on a implies that ap−1

satisfies

ap−1
(

ap−1
)−1

= O.
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By the definition of a−1 this implies:

p−1
(

ap−1
)−1 ⊆ a−1.

Thus

O = ap−1
(

ap−1
)−1 ⊆ aa−1 ⊆ O

from which the result follows.

(7) Every fractional ideal a has an inverse a−1 such that aa−1 = O.

The set F of fractional ideals is already known to be a commutative
semigroup, so given a fractional ideal a, we only need to find another frac-
tional ideal a′ such that aa′ = O, then a′ will be the required inverse. But
there exists an ideal b and a non-zero element c ∈ O such that a = c−1b.
Let a′ = cb−1, then aa′ = O as required.

This, of course, proves Theorem 5.5.

(8) Every non-zero ideal a is a product of prime ideals.

If not, let a be maximal subject to the condition of not being a product
of prime ideals. Then a is not prime, but we will have a ⊆ p for some
maximal (hence prime) ideal, and as in (6),

a $ ap−1 ⊆ O.

By the maximality condition on a,

ap−1 = p2 . . . pr

for prime ideals p2, . . . , pr, whence

a = pp2 . . . pr.

(9) Prime factorization is unique.

By analogy with factorization of elements, for ideals a, b we say that a
divides b (written a|b) if there is an ideal c such that b = ac. This condition
is equivalent to a ⊇ b since we may then take c = a−1b. The definition
of prime ideal p shows that if p|ab then either p|a or p|b. If we now have
prime ideals p1, . . . , pr, q1, . . . , qs with

p1 . . . pr = q1 . . . qs,

then p1 divides some qi, so by maximality p1 = qi. Multiplying by p−1
1

and using induction we obtain uniqueness of prime factorization up to the
order of the factors.

This proves Theorem 5.6. �
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In fact, the fractional ideals also factorize uniquely if we allow negative
powers of prime ideals. Namely, if a is a fractional ideal with 0 6= c ∈ O

such that ca is an ideal, we have

〈c〉 = p1 . . . pr, ca = q1 . . . qs,

so that
a = p−1

1 . . . p−1
r q1 . . . qs.

One result in the proofs of Theorems 5.5 and 5.6, which is worth iso-
lating, occurs in step (9):

Proposition 5.7. For ideals a, b of O,

a|b if and only if a ⊇ b. �

This tells us that in O the factors of an ideal b are precisely the ideals
containing b. The definition of a prime ideal p also translates into a notation
directly analogous to that of a prime element:

p|ab implies p|a or p|b.

Extended Worked Example. Factorization of the ideal 〈18〉 in Z[
√
−17].

Theorem 4.11 displays the factorization

18 = 2 · 3 · 3 = (1 +
√
−17)(1−

√
−17).

Consider the ideal p1 =
〈

2, 1 +
√
−17

〉

whose generators are both factors
of 18. Clearly 18 ∈ p1, so 〈18〉 ⊆ p1, which means that p1 is a factor of
〈18〉. In fact we also have

1−
√
−17 = 2− (1 +

√
−17) ∈ p1

so
18 = (1 +

√
−17)(1 −

√
−17) ∈ p21

which means that 〈18〉 ⊆ p21 and p21 is a factor of 〈18〉. Now the elements
of p1 are of the form

2(a+ b
√
−17) + (1 +

√
−17)(c+ d

√
−17)

= (2a+ c− 17d) + (2b+ c+ d)
√
−17

= r + s
√
−17

where
r − s = 2a− 2b− 18d,
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which is always even. Clearly r may be taken to be any integer and then
s may be any integer of the same parity (odd or even). This implies p1
is not the whole ring Z[

√
−17]. On the other hand, p1 is maximal, for if

m+n
√
−17 is any element not in p1 then one of m, n is even and the other

odd, so
〈

p1,m+ n
√
−17

〉

= Z
[√

−17
]

.

Similarly, considering

p2 =
〈

3, 1 +
√
−17

〉

,

we find that an element of p2 is of the form

r + s
√
−17 = (3a+ c− 17d) + (3b+ c+ d)

√
−17

where r − s = 3(a+ b − 6d). Thus r, s can be any integers subject to the
constraint

r ≡ s (mod 3).

Once more we find p2 maximal and 18 = 2 · 3 · 3 ∈ p22, so p22 is a factor
of 〈18〉.

Finally, considering

p3 =
〈

3, 1−
√
−17

〉

,

we get another prime ideal such that p23 is a factor of 〈18〉, and a calculation
similar to the previous ones shows that r + s

√
−17 ∈ p3 if and only if

r + s ≡ 0 (mod 3).

Using the factorization theory of Theorem 5.6, we find that

p21p
2
2p

2
3 ⊇ 〈18〉 .

The final step, to show that 〈18〉 = p21p
2
2p

2
3, is best performed using a

counting argument. Since every element in Z[
√
−17] is either in p1 or of

the form 1 + x for x ∈ p1, the number of elements in the quotient ring
Z[−17]/p1 is

|Z[
√
−17]/p1| = 2.

Similarly

|Z[
√
−17]/pr| = 3 (r = 2, 3).
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In the next section we call
|O/p|

the norm of the ideal p and write it as N(p). The crucial property of this
new type of norm is that it is multiplicative:

N(ab) = N(a)N(b).

Granted this fact, we deduce that

N(p21p
2
2p

2
3) = 22 · 32 · 32 = 182.

Now the norm of the ideal 〈18〉 is

N (〈18〉) = |Z[
√
−17]/ 〈18〉 |

and since every element of Z[
√
−17] is uniquely of the form

a+ b
√
−17 + x

where a, b are integers in the range 0 to 17 and x ∈ 〈18〉, we find 18 choices
each for a, b so

N (〈18〉) = 182.

Suppose 〈18〉 factorizes as

〈18〉 = p21p
2
2p

2
3a

for some ideal a. Then taking norms and using the multiplicative property,
we find N(a) = 1, so a is the whole ring and

〈18〉 = p21p
2
2p

2
3. (5.1)

If we consider the factorization of elements 18 = 2 · 3 · 3, we obtain

〈2〉 〈3〉2 = p21p
2
2p

2
3. (5.2)

By unique factorization for ideals, both 〈2〉, 〈3〉 are products of prime ideals
from the set {p1, p2, p3}. Now 2 ∈ p1 but 2 /∈ p2, 2 /∈ p3, so p1| 〈2〉 , p2 ∤ 〈2〉,
p3 ∤ 〈2〉, thus

〈2〉 = p
q
1.

Similarly 3 /∈ p1, 3 ∈ p2, 3 ∈ p3 implies

〈3〉 = pr2p
s
3.

Substitute in Equation (5.2) to get

p
q
1p

2r
2 p2s3 = p21p

2
2p

2
3.
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Unique factorization of ideals implies that

q = 2, r = s = 1,

〈2〉 = p21, 〈3〉 = p2p3. (5.3)

(The reader may find it instructive to check these by direct calculation.)
A similar argument using

〈18〉 =
〈

1 +
√
−17

〉 〈

1−
√
−17

〉

= p21p
2
2p

2
3 (5.4)

where 1+
√
−17 ∈ p1, p2; 1+

√
−17 /∈ p3; 1−

√
−17 ∈ p1, p3; 1−

√
−17 /∈ p2

gives
〈

1 +
√
−17

〉

= pm1 pn2 ,
〈

1−
√
−17

〉

= pr1p
s
3.

Substitute in (5.4) to get m = r = 1, n = s = 2, so

〈

1 +
√
−17

〉

= p1p
2
2,

〈

1−
√
−17

〉

= p1p
2
3. (5.5)

By (5.3) and (5.5) the two alternative factorizations of the element 18
come from alternative groupings of the ideals:

〈18〉 =
(

p21
)

(p2p3)
2
= 〈2〉 〈3〉2

=
(

p1p
2
2

) (

p1p
2
3

)

=
〈

1 +
√
−17

〉 〈

1−
√
−17

〉

.

We define the norm of an ideal and prove its multiplicative property
in the next section, once we have dealt with some simple consequences of
unique factorization. Later on we develop other properties of the norm
which will help streamline the calculations in the above example.

5.3 The Norm of an Ideal

Once unique factorization is proved, several useful consequences follow in
the usual way. In particular, any two non-zero ideals a and b have a
greatest common divisor g and a least common multiple l with the following
properties:

g|a, g|b and if g′ has the same properties then g′|g,
a|l, b|l and if l′ has the same properties then l|l′.

In fact, suppose we factorize a and b into primes as:

a =
∏

peii , b =
∏

p
fi
i
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with distinct prime ideals pi. Then we clearly have

g =
∏

p
min(ei,fi)
i

l =
∏

p
max(ei,fi)
i .

There are useful alternative expressions:

Lemma 5.8. If a and b are ideals of O and g, l are their greatest common
divisor and least common multiple, respectively, then

g = a+ b, l = a ∩ b.

Proof: By Proposition 5.7 x|a if and only if x ⊇ a. Therefore g is the
smallest ideal containing a and b, and c is the largest ideal contained in a

and b. The rest is obvious. �

The proof of Theorem 5.3 shows that if a is a non-zero ideal of O then
the quotient ring O/a is finite. Define the norm of a to be

N(a) = |O/a|.

Then N(a) is a positive integer. There is no reason to confuse this norm
with the old norm of an element N(a) since it applies only to ideals. But in
fact there is a connection between the two norms, as we see in a moment.

Theorem 5.9. (a) Every ideal a of O with a 6= 0 has a Z-basis {α1, . . . , αn}
where n is the degree of K.

(b) We have

N(a) =

∣

∣

∣

∣

∆ [α1, . . . , αn]

∆

∣

∣

∣

∣

1/2

where ∆ is the discriminant of K.

Proof: By Theorem 2.16 (O,+) is free abelian of rank n. Since O/a is
finite, Theorem 1.17 implies that (a,+) is free abelian of rank n, hence has
a Z-basis {α1, . . . , αn}. This proves (a).

For part (b) let {ω1, . . . , ωn} be a Z-basis for O, and suppose that
αi =

∑

cijωj . By Theorem 1.17,

N(a) = |O/a| = | det cij |.

By equation (2.2) before Theorem 2.7

∆ [α1, . . . , αn] = (det cij)
2
∆ [ω1, . . . , ωn]

= (N(a))
2
∆.
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Now take square roots and remember that N(a) is positive. �

Corollary 5.10. If a = 〈a〉 is a principal ideal then N(a) = |N(a)|.

Proof: A Z-basis for a is given by {aω1, . . . , aωn}. The result follows from
the definition of ∆[α1, . . . , αn] and Theorem 5.9. �

This corollary helps us to perform a straightforward calculation of the
norm of a principal ideal.

Example 5.11. If O is the ring of integers of Q(
√
d) for a squarefree rational

integer d, then

N(
〈

a+ b
√
d
〉

) =
∣

∣a2 − bd2
∣

∣ .

In particular in O = Z[
√
−17]

N (〈18〉) = 182.

The new norm, like the old, is multiplicative:

Theorem 5.12. If a and b are non-zero ideals of O, then

N(ab) = N(a)N(b).

Proof: By uniqueness of factorization and induction on the number of
factors, it is sufficient to prove

N(ap) = N(a)N(p) (5.6)

where p is prime.
We establish

|O/ap| = |O/a| |a/ap| (5.7)

and

|a/ap| = |O/p| . (5.8)

Then (5.6) follows immediately from (5.7, 5.8), and the definition of the
norm.

Equation (5.7) is a consequence of the isomorphism theorem for rings.
Define φ : O/ap → O/a by

φ(ap + x) = a+ x
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then φ is a surjective ring homomorphism with kernel a/ap; Lagrange’s
theorem (applied to the additive groups) gives Equation (5.7).

To establish Equation (5.8), first note that unique factorization implies
a 6= ap, so a % ap. Now we show that there is no ideal b strictly between a

and ap, for if

a ⊇ b ⊇ ap,

then, as fractional ideals,

a−1a ⊇ a−1b ⊇ a−1ap,

so

O ⊇a−1b ⊇ p.

Since a−1b ⊆ O, we see that it is actually an ideal, and since p is maximal
by Theorem 5.3 (d),

a−1b = O or a−1b = p

so

b = a or b = ap.

This means that for any element a ∈ a\ap,

ap+ 〈a〉 = a. (5.9)

Fix such an a and define θ : O → a/ap by

θ(x) = ap + ax.

Then θ is an O-module homomorphism, surjective by (5.9), whose kernel
is an ideal satisfying

p ⊆ ker θ.

Now ker θ 6= O (for that would mean a/ap ∼= O/ ker θ = 0, which would
contradict a 6= ap), and p is maximal, so

ker θ = p.

Hence O/p ∼= a/ap as O-modules, leading to (5.8). �

Example 5.13. If D = Z[
√
−17], p1 =

〈

2, 1 +
√
−17

〉

, p2 =
〈

3, 1 +
√
−17

〉

,

p3 =
〈

3, 1−
√
−17

〉

, then

N(p21p
2
2p

2
3) = 22 · 32 · 32 = 182.
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This particular calculation completes the details of the extended example
in the previous section.

It is convenient to introduce yet another usage for the word ‘divides’.
If a is an ideal of O and b an element of O such that a| 〈b〉, then we also
write a|b and say that a divides b. It is clear that a|b if and only if b ∈ a;
however, the new notation has certain distinct advantages. For example,
if p is a prime ideal and p| 〈a〉 〈b〉, then we must have p| 〈a〉 or p| 〈b〉. Thus
for p prime,

p|ab implies p|a or p|b.
This new notation allows us to emphasize the correspondence between fac-
torization of elements and principal ideals which would otherwise be less
evident.

Theorem 5.14. Let a be an ideal of O, a 6= 0.

(a) If N(a) is prime, then so is a.
(b) N(a) is an element of a, or equivalently a|N(a).
(c) If a is prime it divides exactly one rational prime p, and then

N(a) = pm

where m ≤ n, the degree of K.

Proof: For part (a) write a as a product of prime ideals and equate norms.
For part (b) note that since N(a) = |O/a| it follows that for any x ∈ O we
have N(a)x ∈ a. Now put x = 1. For part (c) we note that by part (b)

a|N(a) = pm1

1 . . . pmr

r

so, considering principal ideals in place of the pi, we have a|pi for some
rational prime pi. If p and q are distinct rational primes, both divisible by
a, we can find integers u, v such that up + vq = 1, so a|1 and a = O, a
contradiction. Then

N(a)|N(〈p〉) = pn

so N(a) = pm for some m ≤ n. �

Example 5.15. If O = Z[
√
−17], p1 =

〈

2, 1 +
√
−17

〉

, then because N(p1) =
2 we immediately deduce that p1 is prime. Note that N(p1) = 2 ∈ p1, as
asserted by Theorem 5.14(b).

Example 5.16. A prime ideal a can satisfy

N(a) = pm
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where m > 1, which means that the norm of a prime ideal need not be
prime. For instance O = Z[i], a = 〈3〉. Here 3 is irreducible in Z[i],
hence prime because Z[i] has unique factorization. It is an easy deduction
(Exercise 1 at the end of this chapter) that if an element is prime, so is the
ideal it generates. Hence 〈3〉 is prime in Z[i], but

N (〈3〉) = 32.

The next theorem collects together several useful finiteness assertions:

Theorem 5.17. (a) Every non-zero ideal of O has a finite number of divisors.
(b) A non-zero rational integer belongs to only a finite number of ideals

of O.
(c) Only finitely many ideals of O have given norm.

Proof: (a) is an immediate consequence of prime factorization, (b) is a
special case of (a), and (c) follows from (b) using Theorem 5.14 (b). �

Example 5.18. Consider our earlier calculation

〈18〉 = p21p
2
2p

2
3

in Z[
√
−17] where p1 =

〈

2, 1 +
√
−17

〉

, p2 =
〈

3, 1 +
√
−17

〉

, and

p3 =
〈

3, 1−
√
−17

〉

. We find that the only prime divisors of 〈18〉 are
p1, p2, p3. If 18 belongs to some ideal a, then 〈18〉 ⊆ a, whence a| 〈18〉, so
a|p21p22p23 and a = p

q
1p

r
2p

s
3 where q, r, s are 0, 1, or 2. Thus 18 belongs only

to a finite number of ideals.
How many ideals a have norm 18? By Theorem 5.14 (b) this can happen

only when a|18, so
a = p

q
1p

r
2p

s
3

which implies
N(a) = 2q · 3r · 3s.

This norm is 18 only when q = 1 and r + s = 2, which means that a is
p1p

2
2, p1p2p3 or p1p

2
3.

We know that every ideal of O is finitely generated. In fact, two gener-
ators suffice. First, we prove:

Lemma 5.19. If a, b are non-zero ideals of O, there exists α ∈ a such that

αa−1 + b = O.
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Proof: First note that if α ∈ a we have a|α so that αa−1 is an ideal and
not just a fractional ideal. Now αa−1 + b is the greatest common divisor
of αa−1 and b, so it is sufficient to choose α ∈ a so that

αa−1 + pi = O (i = 1, . . . , r)

where p1, . . . , pr are the distinct prime ideals dividing b. This follows if

pi ∤ αa−1

since pi is a maximal ideal. So it is sufficient to choose α ∈ a \ api for all
i = 1, . . . , r.

If r = 1 this is easy, for unique factorization of ideals implies a 6= api.
For r > 1 let

ai = ap1 . . . pi−1pi+1 . . . pr.

By the case r = 1 we can choose

αi ∈ ai \ aipi.

Define

α = α1 + . . .+ αr.

Then each αi ∈ ai ⊆ a, so α ∈ a. Suppose if possible that α ∈ api. If j 6= i
then αj ∈ aj ⊆ api, so

αi = α− α1 − . . .− αi−1 − αi+1 − . . .− αr ∈ api.

Hence api| 〈αi〉. On the other hand ai| 〈αi〉. We have aipi| 〈αi〉. This
contradicts the choice of αi.

Theorem 5.20. Let a 6= 0 be an ideal of O, and 0 6= β ∈ a. Then there exists
α ∈ a such that a = 〈α, β〉.

Proof: Let b = βa−1. By Lemma 5.19 there exists α ∈ a such that

αa−1 + b = αa−1 + βa−1 = O,

hence

(〈α〉+ 〈β〉) a−1 = O,

so that

a = 〈α〉+ 〈β〉 = 〈α, β〉 . �
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This theorem demonstrates that the earlier extended example, where
each ideal considered has at most two generators, is typical.

We are now in a position to characterize those O for which factorization
of elements into irreducibles is unique:

Theorem 5.21. Factorization of elements of O into irreducibles is unique if
and only if every ideal of O is principal.

Proof: If every ideal is principal, then unique factorization of elements
follows by Theorem 4.17. To prove the converse, if factorization of elements
is unique, it is enough to prove that every prime ideal is principal, since
every other ideal, being a product of prime ideals, is then principal.

Let p 6= 0 be a prime ideal of O. By Theorem 5.14(b) there exists a
rational integer N = N(p) such that p|N . We can factorize N as a product
of irreducible elements in O, say

N = π1 . . . πs.

Since p|N and p is a prime ideal, it follows that p|πi, or equivalently, p| 〈πi〉.
But factorization being unique in O, the irreducible πi is actually prime
by Theorem 4.14, and then the principal ideal 〈πi〉 is prime (Exercise 1 at
the end of the chapter). Thus p| 〈πi〉, where both p, 〈πi〉 are prime, and by
uniqueness of factorization,

p = 〈πi〉
so p is principal. �

Using this theorem we can nicely round off the relationship between
factorization of elements and ideals. To do this, consider an element π that
is irreducible but not prime. Then the ideal 〈π〉 is not prime, so it has a
proper factorization into prime ideals:

〈π〉 = p1 . . . pr.

None of these pi can be principal, for if pi = 〈a〉 then 〈a〉 | 〈π〉, implying
a|π. Since π is irreducible, a is either a unit, contradicting 〈a〉 being prime,
or an associate of π, whence 〈π〉 = pi, contradicting 〈π〉 having a proper
factorization.

Tying up the loose ends, we see that if O has unique factorization of ele-
ments into irreducibles then these irreducibles are all primes, and factoriza-
tion of elements corresponds precisely to factorization of the corresponding
principal ideals. On the other hand, if O does not have unique factoriza-
tion of elements, then not all irreducibles are prime, and any non-prime
irreducible generates a principal ideal which has a proper factorization into



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 124 — #140
✐

✐

✐

✐

✐

✐

124 5. Ideals

non-principal ideals. We may add in the latter case that such non-principal
ideals have precisely two generators.

Example 5.22. In Z[
√
−17], the elements 2, 3 are irreducible (proved by

considering norms) and not prime, with

〈2〉 =
〈

2, 1 +
√
−17

〉2

〈3〉 =
〈

3, 1 +
√
−17

〉 〈

3, 1−
√
−17

〉

.

5.4 Non-Unique Factorization in Cyclotomic Fields

We mentioned in the introductory section that unique prime factorization
fails in the cyclotomic field of 23rd roots of unity. (The failure, rather
than the precise value n = 23, is the crucial point!) In this (optional)
section we use the tools developed in this chapter to demonstrate this
result. The calculations are somewhat tedious and have been abbreviated
where feasible: the energetic reader may care to check the details. A few
tricks, inspired by the structure of the group of units of the ring Z23, are
used, but we lack the space to motivate them. For further details see the
admirable book by Edwards [25].

Let ζ = e2πi/23, and let K = Q(ζ). By Theorem 3.5 the ring of integers
OK is Z[ζ]. The group of units of Z23 is generated by −2, whose powers in
order are

1,−2, 4,−8,−7, 14,−5, . . . . (5.10)

For reasons that will emerge later we introduce two elements

θ0 = ζ + ζ4 + ζ−7 + ζ−5 + . . .

θ1 = ζ−2 + ζ−8 + ζ14 + . . . .

The powers that occur are alternate elements in the sequence (5.10). We
have

θ0 + θ1 = ζ + ζ2 + . . .+ ζ22 = −1,

θ0θ1 = 6.

The norm of a general element f(ζ), with f a polynomial over Z of degree
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≤ 22, can be broken up as

N(f(ζ)) =

22
∏

j=1

Nf(ζj)

=
∏

j even

Nf(ζj) ·
∏

j odd

Nf(ζj)

= G(ζ2)G(ζ−2) (5.11)

where

G(ζ) = f(ζ)f(ζ4)f(ζ−7)f(ζ−5)f(ζ3)f(ζ−11)f(ζ2)f(ζ8)f(ζ9)f(ζ−10)f(ζ6).

By definition, G(ζ) is invariant under the linear mapping α sending ζi

to ζ4j . But it is easy to check that an element fixed by α must be of the
form a + bθ0 for a, b ∈ Z. (Either use Galois theory, or a direct argument
based on the linear independence over Q of {1, ζ, . . . , ζ22}.)

We pull out of a hat the element

µ = 1− ζ + ζ21 = 1− ζ + ζ−2,

which Kummer found by a great deal of (fairly systematic) experimenta-
tion. Using (5.10) and a lot of paper and ink we eventually find that

N(µ) = (−31 + 28θ0)(−31 + 28θ1) = 6533 = 47 · 139.
By Theorem 5.14 the principal ideal m = 〈µ〉 cannot be prime, hence it
must be nontrivial product of prime ideals, say

m = pq.

Taking norms we must (without loss of generality) have N(p) = 47, N(q) =
139. If K has unique factorization then every ideal, in particular p, is
principal by Theorem 5.21. Hence p = 〈v〉 for some v ∈ Z[ζ]. Clearly
N(v) = ± 47 by Corollary 5.10.

We claim this is impossible. We have already observed that G(ζ) can
always be expressed in the form a+ bθ0 (a, b ∈ Z); and then G(ζ−2) must
be equal to a+ bθ1. Set f(ζ) = v:

±47 = (a+ bθ0)(a+ bθ1) = a2 − ab+ 6b2.

Multiplying by 4 and regrouping,

(2a− b)2 + 23b2 = ± 188.

The sign must be positive. A simple trial-and-error analysis (involving
only two cases) shows that 188 cannot be written in the form P 2 + 23Q2.
This contradiction establishes that prime factorization of elements cannot
be unique in OK .
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5.5 Exercises

1. In a domain D, show that a principal ideal 〈p〉 is prime if and only if
p is prime or zero.

2. In Z[
√
−5], define the ideals

p =
〈

2, 1 +
√
−5
〉

,

q =
〈

3, 1 +
√
−5
〉

,

r =
〈

3, 1−
√
−5
〉

.

Prove that these are maximal ideals, hence prime. Show that

p2 = 〈2〉 , qr = 〈3〉 ,
pq =

〈

1 +
√
−5
〉

, pr =
〈

1−
√
−5
〉

.

Show that the factorizations of 6 given in the proof of Theorem 4.11
come from two different groupings of the factorization into prime
ideals 〈6〉 = p2qr.

3. Calculate the norms of the ideals mentioned in Exercise 2 and check
multiplicativity.

4. Prove that the ideals p, q, r of Exercise 2 cannot be principal.

5. Show the principal ideals 〈2〉, 〈3〉 in Exercise 2 are generated by
irreducible elements but the ideals are not prime.

6. In Z[
√
−6] we have

6 = 2 · 3 = (
√
−6)(−

√
−6).

Factorize these elements further in the extension ring Z[
√
2,
√
−3] as

6 = (−1)
√
2
√
2
√
−3

√
−3.

Show that if J1 is the principal ideal in Z[
√
2,
√
−3] generated by

√
2,

then

p1 = J1 ∩ Z[
√
−6] =

〈

2,
√
−6
〉

.

Demonstrate that p1 is maximal in Z[
√
−6], hence prime, and find

another prime ideal p2 in Z[
√
−6] such that

〈6〉 = p21p
2
2.
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7. Factorize 14 = 2 · 7 = (2 +
√
−10)(2−

√
−10) further in Z[

√
−5,

√
2]

and by intersecting appropriate ideals with Z[
√
−10], factorize the

ideal 〈14〉 into prime (maximal) ideals in Z[
√
−10].

8. Suppose that p, q are distinct prime ideals in O. Show that p+q = O

and p ∩ q = pq.

9. If O is a principal ideal domain, prove that every fractional ideal is
of the form {αφ|α ∈ O} for some φ ∈ K. Does the converse hold?

10. Find all fractional ideals of Z and of Z[
√
−1].

11. In Z[
√
−5], find a Z-basis {α1, α2} for the ideal

〈

2, 1 +
√
−5
〉

. Check
the formula

N
(〈

2, 1 +
√
−5
〉)

=

∣

∣

∣

∣

∆[α1, α2]

d

∣

∣

∣

∣

1/2

of Theorem 5.9.

12. Find all the ideals in Z[
√
−5] that contain the element 6.

13. Find all the ideals in Z[
√
2] with norm 18.

14. If K is a number field of degree n with integers O, show that if m ∈ Z
and 〈m〉 is the ideal in O generated by m, then

N (〈m〉) = |m|n .

15. In Z[
√
−29]

30 = 2 · 3 · 5 = (1 +
√
−29)(1−

√
−29)

Show that 〈30〉 ⊆
〈

2, 1 +
√
−29

〉

and verify that p1 =
〈

2, 1 +
√
−29

〉

has norm 2 and is thus prime. Check that 1−
√
−29 ∈ p1 and deduce

〈30〉 ⊆ p21. Find prime ideals p2, p
′
2, p3, p

′
3 with norms 3 or 5 such

that 〈30〉 ⊆ pip
′
i (i = 2, 3). Deduce that p21p2p

′
2p3p

′
3| 〈30〉 and by

calculating norms, or otherwise, show that

〈30〉 = p21p2p
′
2p3p

′
3.

Comment on how this relates to the two factorizations:

〈30〉 = 〈2〉 〈3〉 〈5〉 ,
〈30〉 =

〈

1 +
√
−29

〉 〈

1−
√
−29

〉

.

16. Find all ideals in Z[
√
−29] containing the element 30.
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Geometric Methods
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6

Lattices

At this stage we take a radical new view of the theory, turning from purely
algebraic methods to techniques inspired by geometry. This approach re-
quires a different attitude of mind from the reader, in which formal ideas
are built on a visual foundation. We begin with basic properties of lattices:
subsets of Rn which in some sense generalize the way Z is embedded in R.
We characterize lattices topologically as the discrete subgroups of Rn. We
introduce the fundamental domain and quotient torus corresponding to a
lattice and relate the two concepts. Finally we define a concept of volume
for subsets of the quotient torus.

6.1 Lattices

Let e1, . . . , em be a linearly independent set of vectors in Rn (so that
m ≤ n). The additive subgroup of (Rn,+) generated by e1, . . . , em is called
a lattice of dimension m, generated by e1, . . . , em. Figure 6.1 shows a lat-
tice of dimension 2 in R2, generated by (1, 2) and (2,−1). (Do not confuse
this with any other uses of the word ‘lattice’ in algebra.) Obviously, as
regards the group-theoretic structure, a lattice of dimension m is a free
abelian group of rank m, so we can apply the terminology and theory of
free abelian groups to lattices.

We now give a topological characterization of lattices. Let Rn be
equipped with the usual metric (à la Pythagoras), where ||x− y|| denotes
the distance between x and y, and denote the (closed) ball centre x radius

131
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e
1

0 e
2

Figure 6.1. The lattice in R2 generated by e1 = (1, 2) and e2 = (2,−1).

r by Br[x]. Recall that a subset X ⊆ Rn is bounded if X ⊆ Br[0] for some
r. We say that a subset of Rn is discrete if and only if it intersects every
Br[0] in a finite set.

Theorem 6.1. An additive subgroup of Rn is a lattice if and only if it is
discrete.

Proof: Suppose L is a lattice. By passing to the subspace spanned by L
we may assume L has dimension n. Let L be generated by e1, . . . , en; then
these vectors form a basis for the space Rn. Every v ∈ Rn has a unique
representation

v = λ1e1 + . . .+ λnen (λi ∈ R).

Define f : Rn → Rn by

f(λ1e1 + . . .+ λnen) = (λ1, . . . , λn).

Then f(Br[0]) is bounded, say

||f(v)|| ≤ k for v ∈ Br[0].

If
∑

aiei ∈ Br[0] (ai ∈ Z), then certainly ||(a1, . . . , an)|| ≤ k. This implies

|ai| ≤ ||(a1, . . . , an)|| ≤ k. (6.1)

The number of integer solutions of (6.1) is finite and so L ∩Br[0], being a
subset of the solutions of (6.1), is also finite, and L is discrete.
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Conversely, let G be a discrete subgroup of Rn. We prove by induction
on n that G is a lattice. Let {g1, . . . , gm} be a maximal linearly indepen-
dent subset of G, let V be the subspace spanned by {g1, . . . , gm−1}, and
let G0 = G ∩ V. Then G0 is discrete so, by induction, is a lattice. Hence
there exist linearly independent elements h1, . . . , hm′ generating G0. Since
the elements g1, . . . , gm−1 ∈ G0 we have m′ = m − 1, and we can replace
{g1, . . . , gm−1} by {h1, . . . , hm−1}, or equivalently assume that every ele-
ment of G0 is a Z-linear combination of g1, . . . , gm−1. Let T be the subset
of all x ∈ G of the form

x = a1g1 + . . .+ amgm

with ai ∈ R, such that

0 ≤ ai < 1 (i = 1, . . . ,m− 1)

0 ≤ am ≤ 1.

Then T is bounded, hence finite since G is discrete, and we may therefore
choose x′ ∈ T with smallest non-zero coefficient am, say

x′ = b1g1 + . . .+ bmgm.

Certainly {g1, . . . , gm−1, x
′} is linearly independent. Now starting with any

vector g ∈ G we can select integer coefficients ci so that

g′ = g − cmx
′ − c1g1 − . . .− cm−1gm−1

lies in T , and the coefficient of gm in g′ is less than bm, but non-negative.
By choice of x′ this coefficient must be zero, so g′ ∈ G0. Hence
{x′, g1, . . . , gm−1} generates G, and G is a lattice. �

If L is a lattice generated by {e1, . . . , en} we define the fundamental
domain T to consist of all elements

∑

aiei (ai ∈ R) for which

0 ≤ ai < 1.

Note that this depends on the choice of generators.

Lemma 6.2. Each element of Rn lies in exactly one of the sets T + l for
l ∈ L.

Proof: Chop off the integer parts of the coefficients. �

Figure 6.2 illustrates the concept of a fundamental domain, and the
result of Lemma 6.2, for the lattice of Figure 6.1.
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0

T

T+1

l

Figure 6.2. A fundamental domain T for the lattice of Figure 6.1, and a translate
T + l. Dotted lines indicate omission of boundaries.

6.2 The Quotient Torus

Let L be a lattice in Rn, and assume to start that L has dimension n. We
study the quotient group Rn/L.

Let S denote the set of all complex numbers of modulus 1. Under
multiplication S is a group, called for obvious reasons the circle group.

Lemma 6.3. The quotient group R/Z is isomorphic to the circle group S.

Proof: Define a map φ : R → S by

φ(x) = e2πix.

Then φ is a surjective homomorphism with kernel Z. �

Next let Tn denote the direct product of n copies of S, and call this the
n-dimensional torus. For instance, T2 = S × S is the usual torus (with a
group structure) as sketched in Figure 6.3.

$ $
2

Figure 6.3. The Cartesian product of two circles is a torus.
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Theorem 6.4. If L is an n-dimensional lattice in Rn then Rn/L is isomor-
phic to the n-dimensional torus Tn.

Proof: Let {e1, . . . , en} be generators for L. Then {e1, . . . , en} is a basis
for Rn. Define φ : Rn → Tn by

φ(a1e1 + . . .+ anen) = (e2πia1 , . . . , e2πian).

Then φ is a surjective homorphism, and the kernel of φ is L. �

Lemma 6.5. The map φ defined above, when restricted to the fundamental
domain T , yields a bijection T → Tn. �

Geometrically, Tn is obtained by ‘gluing’ (that is, identifying) opposite
faces of the closure of the fundamental domain, as in Figure 6.4.

nT

Figure 6.4. The quotient of Euclidean space by a lattice of the same dimension
is a torus, obtained by identifying opposite edges of a fundamental domain.

If the dimension of L is less than n, we have a similar result:

Theorem 6.6. Let L be an m-dimensional lattice in Rn. Then Rn/L is
isomorphic to Tm × Rn−m.

Proof: Let V be the subspace spanned by L, and choose a complement W
so that Rn = V ⊕W . Then L ⊆ V, V/L ∼= Tm by Theorem 6.4,W ∼= Rn−m.

�

For example, R2/Z ∼= T1 × R, which geometrically is a cylinder as in
Figure 6.5.

The volume v(X) of a subset X ⊆ Rn is defined in the usual way: for
precision we take it to be the value of the multiple integral

∫

X

dx1 . . . dxn
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Figure 6.5. The quotient of Euclidean space by a lattice of smaller dimension is
a cylinder.

where (x1, . . . , xn) are coordinates. Of course the volume exists only when
the integral does.

Let L ⊆ Rn be a lattice of dimension n, so that Rn/L ∼= Tn. Let T be
a fundamental domain of L. We have noted the existence of a bijection

φ : T → Tn.

For any subset X of Tn we define the volume v(X) by

v(X) = v(φ−1(X))

which exists if and only if φ−1(X) has a volume in Rn.
Let ν : Rn → Tn be the natural homomorphism with kernel L. It

is intuitively clear that ν is ‘locally volume-preserving’, that is, for each
x ∈ Rn there exists a ball Bǫ[x] such that for all subsets X ⊆ Bǫ[x] for
which v(X) exists we have

v(X) = v(ν(X))

It is also intuitively clear that if an injective map is locally volume-preserving
then it is volume-preserving. We prove a result that combines these two
intuitive ideas:

Theorem 6.7. If X is a bounded subset of Rn and v(X) exists, and if
v(ν(X)) 6= v(X), then ν|X is not injective.

Proof: Assume ν|X is injective. Now X , being bounded, intersects only
a finite number of the sets T + l, for T a fundamental domain and l ∈ L.
Put

Xl = X ∩ (T + l).

Then
X = Xl1 ∪ . . . ∪Xln .
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For each li define

Yli = Xli − li,

so that Yli ⊆ T . We claim that the Yli are disjoint. Since ν(x− li) = ν(x)
for all x ∈ Rn this follows from the assumed injectivity of ν. Now

v(Xli) = v(Yli)

for all i. Also

ν(Xli) = φ(Yli)

where φ is the bijection T → Tn. Now we compute:

v(ν(X)) = v
(

ν
(

⋃

Xli

))

= v
(

⋃

Yli

)

=
∑

v(Yli) by disjointness

=
∑

v(Xli)

= v(X),

a contradiction. �

The idea of the proof is illustrated in Figure 6.6.

Figure 6.6. Proof of Theorem 6.7: if a locally volume-preserving map does not
preserve volume globally, then it cannot be injective. The volume-preserving case
is illustrated here; the parts of the cat do not overlap.
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6.3 Exercises

1. Let L be a lattice in R2 with L ⊆ Z2. Prove that the volume of a
fundamental domain T is equal to the number of points of Z2 lying
in T .

2. Generalize the previous exercise to Rn and link this to Lemma 9.3 by
using Theorem 1.17.

3. Sketch the lattices in R2 generated by:

(a) (0, 1) and (1, 0).

(b) (−1, 2) and (2, 2).

(c) (1, 1) and (2, 3).

(d) (−2,−7) and (4,−3).

(e) (1, 20) and (1,−20).

(f) (1, π) and (π, 1).

4. Sketch fundamental domains for these lattices.

5. Hence show that the fundamental domain of a lattice is not uniquely
determined until we specify a set of generators.

6. Verify that nonetheless the volume of a fundamental domain of a
given lattice is independent of the set of generators chosen.

7. Find two different fundamental domains for the lattice in R3 gener-
ated by (0, 0, 1), (0, 2, 0), (1, 1, 1). Show by direct calculation that
they have the same volume. Can you prove this geometrically by
dissecting the fundamental domains into mutually congruent pieces?
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7

Minkowski’s Theorem

The aim of this chapter is to prove a marvellous theorem due to Hermann
Minkowski in 1896. This asserts the existence, within a suitable set X , of
a non-zero point of a lattice L, provided the volume of X is sufficiently
large relative to that of a fundamental domain of L. The idea behind the
proof is deceptive in its simplicity: X cannot be squashed into a space
whose volume is less than that of X , unless X is allowed to overlap itself.
Minkowski discovered that this essentially trivial observation has many
non-trivial and important consequences, and used it as a foundation for an
extensive theory of the ‘geometry of numbers’. As immediate and accessible
instances of its application we prove the two- and four-squares theorems of
classical number theory.

7.1 Minkowski’s Theorem

A subset X ⊆ R
n is convex if whenever x, y ∈ X then all points on the

straight line segment joining x to y also lie in X . In algebraic terms, X is
convex if, whenever x, y ∈ X , the point

λx + (1− λ)y

belongs to X for all real λ, 0 ≤ λ ≤ 1.
For example a circle, a square, an ellipse, or a triangle is convex in

R
2, but an annulus or crescent is not (Figure 7.1). A subset X ⊆ R

n

is (centrally) symmetric if x ∈ X implies −x ∈ X . Geometrically this

139
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Figure 7.1. Convex and non-convex sets. The circular disc, square, ellipse, and
triangle are convex; the annulus and crescent are not. The circle, square, ellipse,
and annulus are centrally symmetric about *; the triangle and crescent are not.

means that X is invariant under reflection in the origin. Among the sets
in Figure 7.1, assuming the origin to be at the positions marked with an
asterisk, the circle, square, ellipse, and annulus are symmetric, but the
triangle and crescent are not.

We may now state Minkowski’s theorem.

Theorem 7.1. (Minkowski’s Theorem.) Let L be an n-dimensional lattice in
R

n with fundamental domain T , and let X be a bounded symmetric convex
subset of Rn. If

v(X) > 2nv(T )

then X contains a non-zero point of L.

Proof: Double the size of L to obtain a lattice 2L with fundamental domain
2T of volume 2nv(T ). Consider the torus

T
n = R

n/2L.

By definition,
v(Tn) = v(2T ) = 2nv(T ).

Now the natural map ν : Rn → T
n cannot preserve the volume of X , since

this is strictly larger than v(Tn): since ν(X) ⊆ T
n we have

v(ν(X)) ≤ v(Tn) = 2nv(T ) < v(X).
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By Theorem 6.7 ν|X is not injective, so there exist x1 6= x2, x1, x2 ∈ X
such that ν(x1) = ν(x2), or equivalently

x1 − x2 ∈ 2L. (7.1)

But x2 ∈ X , so −x2 ∈ X by symmetry; and now by convexity

1

2
(x1) + 1

2
(−x2) ∈ X,

that is,
1

2
(x1 − x2) ∈ X.

But by (7.1)
1

2
(x1 − x2) ∈ L.

Therefore
0 6= 1

2
(x1 − x2) ∈ X ∩ L

as required. �

Figure 7.2. Proof of Minkowski’s theorem. Expand the original lattice (◦) to
double the size (⊕) and form the quotient torus. By computing volumes, the
natural quotient map is not injective when restricted to the given convex set.
From point x1 and x2 with the same image we may construct a non-zero lattice
point 1

2
(x1 − x2).
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The geometrical reasoning is illustrated in Figure 7.2. The decisive step
in the proof is that since Tn has smaller volume than X it is impossible to
squash X into T

n without overlap: the ancient platitude of quarts and pint
pots. That such olde-worlde wisdom becomes, in the hands of Minkowski,
a weapon of devastating power, was the wonder of the 19th century and a
lesson for the 21st. We unleash this power at several crucial stages in the
forthcoming battle. (Our original Thespian metaphor has been abandoned
in favour of a military one, reinforcing the change of viewpoint from that
of the algebraic voyeur to that of the geometric participant.) As a more
immediate affirmation, we now give two traditional applications to number
theory: the ‘two-squares’ and ‘four-squares’ theorems.

7.2 The Two-Squares Theorem

We use Minkowski’s method to prove a wonderful theorem of Fermat:

Theorem 7.2. (Two-Squares Theorem.) If p is prime of the form 4k+1 then
p is a sum of two integer squares.

Proof: The multiplicative group G of the field Zp is cyclic; see Garling
[31] Corollary 1 to Theorem 12.3, p. 105 or Stewart [78] Corollary 20.9, p.
230. It has order p− 1 = 4k. It therefore contains an element u of order 4.
Then u2 ≡ −1 (mod p) since −1 is the only element of order 2 in G.

Let L ⊆ Z
2 be the lattice in R

2 consisting of all pairs (a, b) (a, b ∈ Z)
such that

b ≡ ua (mod p).

This is a subgroup of Z2 of index p (an easy verification left to the
reader) so the volume of a fundamental domain for L is p. By Minkowski’s
theorem any circle, centre the origin, of radius r, which has area

πr2 > 4p

contains a non-zero point of L. This is the case for r2 = 3p/2. So there
exists a point (a, b) ∈ L, not the origin, for which

0 6= a2 + b2 ≤ r2 = 3p/2 < 2p.

But modulo p
a2 + b2 ≡ a2 + u2a2 ≡ 0.

Therefore a2 + b2 is a multiple of p lying strictly between 0 and 2p, so it
must equal p. �
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The reader should draw the lattice L and the appropriate circle in a
few cases (p = 5, 13, 17) and check that the relevant lattice point exists and
provides suitable a, b.

Theorem 7.2 goes back to Fermat, who stated it in a letter to Marin
Mersenne in 1640. He sent a sketch proof, quite different from the geometric
one given here, to Pierre de Carcavi in 1659. Euler gave a complete proof
in 1754.

7.3 The Four-Squares Theorem

Refining this argument leads to another famous theorem, first proved by
Lagrange:

Theorem 7.3. (Four-Squares Theorem.) Every positive integer is a sum of
four integer squares.

Proof: We prove the theorem for primes p, and then extend the result to
all integers. Now

2 = 12 + 12 + 02 + 02

so we may suppose p is odd. We claim that the congruence

u2 + v2 + 1 ≡ 0 (mod p)

has a solution u, v ∈ Z. This is because u2 takes exactly (p+ 1)/2 distinct
values as u runs through 0, . . . , p− 1; and −1− v2 also takes on (p+ 1)/2
values. For the congruence to have no solution, all these values, p + 1 in
total, are distinct, but then p+ 1 ≤ p which is absurd.

For such a choice of u, v consider the lattice L ⊆ Z
4 consisting of

(a, b, c, d) such that

c ≡ ua+ vb, d ≡ ub− va (mod p).

Then L has index p2 in Z
4 (another easy computation) so the volume of a

fundamental domain is p2. Now a 4-dimensional sphere, centre the origin,
radius r, has volume

π2r4/2

and we choose r to make this greater than 16p2; say r2 = 1.9p.
There exists a lattice point 0 6= (a, b, c, d) in this 4-sphere, so

0 6= a2 + b2 + c2 + d2 ≤ r2 = 1.9p < 2p.
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Modulo p, it is easy to verify that a2 + b2 + c2 + d2 ≡ 0, hence as before it
must equal p.

To deal with an arbitrary integer n, it suffices to factorize n into primes
and then use the identity

(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2)

= (aA− bB − cC − dD)2 + (aB + bA+ cD − dC)2

+(aC − bD + cA+ dB)2 + (aD + bC − cB + dA)2.

�

Theorem 7.3 also goes back to Fermat. Euler spent 40 years trying to
prove it, and Lagrange succeeded in 1770.

7.4 Exercises

1. Which of the following solids are convex? Sphere, pyramid, icosahe-
dron, cube, torus, ellipsoid, parallelepiped.

2. How many different convex solids can be made by joining n unit cubes
face to face, so that their vertices coincide, for n = 1, 2, 3, 4, 5, 6;
counting two solids as different if and only if they cannot be mapped
to each other by rigid motions? What is the result for general n?

3. Verify the two-squares theorem on all primes less than 200.

4. Verify the four-squares theorem on all integers less than 100.

5. Prove that not every integer is a sum of three squares.

6. Prove that the number µ(n) of pairs of integers (x, y) with x2+y2 < n
satisfies µ(n)/n→ π as n→ ∞.
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8

Geometric Representation of

Algebraic Numbers

The purpose of this chapter is to develop a method for embedding a number
field K in a real vector space of dimension equal to the degree of K, in such
a way that ideals in K map to lattices in this vector space. This clever idea
opens the way to applications of Minkowski’s theorem. The embedding is
defined in terms of the monomorphismsK → C, and we have to distinguish
between those that map K into R and those that do not.

8.1 The Space Lst

LetK = Q(θ) be a number field of degree n, where θ is an algebraic integer.
Let σ1, . . . , σn be the set of all monomorphisms K → C (see Theorem 2.4).
If σi(K) ⊆ R, which happens if and only if σi(θ) ∈ R, we say that σi, is
real; otherwise σi is complex. As usual denote complex conjugation by bars
and define

σ̄i(α) = σi(α).

Since complex conjugation is an automorphism of C it follows that σ̄i is a
monomorphism K → C, so equals σj for some j. Now σi = σ̄i if and only if
σi is real, and σi = σi, so the complex monomorphisms come in conjugate
pairs. Hence

n = s+ 2t

145
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146 8. Geometric Representation of Algebraic Numbers

where s is the number of real monomorphisms and 2t is the number of
complex ones. We standardize the numeration in such a way that the
system of all monomorphisms K → C is

σ1, . . . , σs;σs+1, σ̄s+1, . . . , σs+t, σ̄s+t,

where σ1, . . . , σs are real and the rest complex.
Further define

Lst = Rs × Ct,

the set of all (s+ t)-tuples

x = (x1, . . . , xs;xs+1, . . . , xs+t)

where x1, . . . , xs ∈ R and xs+1, . . . , xs+t ∈ C. Then Lst is a vector space
over R, and a ring (with coordinatewise operations): in fact it is an R-
algebra. As vector space over R it has dimension s+ 2t = n.

For x ∈ Lst, define the norm

N(x) = x1 . . . xs|xs+1|2 . . . |xs+t|2 . (8.1)

(There is no confusion with other uses of the word ‘norm’, and we will see
why it is desirable to use this apparently overworked word in a moment.)
The norm has two obvious properties:

(a) N(x) is real for all x,
(b) N(xy) = N(x)N(y).
Define a map

σ : K → Lst

by
σ(α) = (σ1(α), . . . , σs(α);σs+1(α), . . . , σs+t(α))

for α ∈ K. Clearly

σ(α + β) = σ(α) + σ(β)
σ(αβ) = σ(α)σ(β)

(8.2)

for all α, β ∈ K, so σ is a ring homomorphism. If r is a rational number
then

σ(rα) = rσ(α)

so σ is a Q-algebra homomorphism. Furthermore,

N(σ(α)) = N(α) (8.3)

since the latter is defined to be

σ1(α) . . . σs(α)σs+1(α)σ̄s+1(α) . . . σs+t(α)σ̄s+t(α)



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 147 — #163
✐

✐

✐

✐

✐

✐

8.1. The Space Lst 147

which equals the former.
For example, let K = Q(θ) where θ ∈ R satisfies

θ3 − 2 = 0.

Then the conjugates of θ are θ, ωθ, ω2θ where ω is a complex cube root of
unity. The monomorphisms K → C are given by

σ1(θ) = θ, σ2(θ) = ωθ, σ̄2(θ) = ω2θ.

Hence s = t = 1.
An element of K, say

x = q + rθ + sθ2

where q, r, s ∈ Q, maps into L1,1 according to

σ(x) = (q + rθ + sθ2, q + rωθ + sω2θ2).

The kernel of σ is an ideal of K since σ is a ring homomorphism. Since
K is a field, σ is either identically zero or injective. But

σ(1) = (1, 1, . . . , 1) 6= 0

so σ must be injective. Much stronger is the following result:

Theorem 8.1. If α1, . . . , αn is a basis for K over Q then σ(α1), . . . , σ(αn)
are linearly independent over R.

Proof: Linear independence over Q is immediate since σ is injective, but
we need more than this. Let

σk(αl) = x
(l)
k (k = 1, . . . , s)

σs+j(αl) = y
(l)
j + iz

(l)
j (j = 1, . . . , t)

where x
(l)
k , y

(l)
k , z

(l)
k are real. Then

σ(αl) = (x
(l)
1 , . . . , x(l)s ; y

(l)
1 + iz

(l)
1 , . . . , y

(l)
t + iz

(l)
t ),

and it is sufficient to prove that the determinant

D =

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 . . . x

(1)
s y

(1)
1 z

(1)
1 . . . y

(1)
t z

(1)
t

...
...

...
...

...
...

x
(n)
1 . . . x

(n)
s y

(n)
1 z

(n)
1 . . . y

(n)
t z

(n)
t

∣

∣

∣

∣

∣

∣

∣

∣
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is non-zero. Put

E =

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 . . . x

(1)
s y

(1)
1 + iz

(1)
1 y

(1)
1 − iz

(1)
1 . . .

...
...

...
...

...

x
(n)
1 . . . x

(n)
s y

(n)
1 + iz

(n)
1 y

(n)
1 − iz

(n)
1 . . .

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

σ1(α1) . . . σs(α1) σs+1(α1)σ̄s+1(α1) . . .
...

...
...

...
σ1(αn) . . . σs(αn) σs+1(αn)σ̄s+1(αn) . . .

∣

∣

∣

∣

∣

∣

∣

.

Then

E2 = ∆[α1, . . . , αn]

by definition of the discriminant, and E2 6= 0 by Theorem 2.7. Now ele-
mentary properties of determinants (column operations) yield

E = (−2i)tD

so D 6= 0 as required. �

Corollary 8.2. Q-linearly independent elements of the number field K map
under σ to R-linearly independent elements of Lst. �

Corollary 8.3. Suppose that G is a finitely generated subgroup of (K,+)
with Z-basis {α1, . . . , αm}. Then the image of G in Lst is a lattice with
generators σ(α1), . . . , σ(αm). �

The ‘geometric representation’ of K in Lst defined by σ, in combination
with Minkowski’s theorem, provides the key to several of the deeper parts
of the theory in Chapters 9, 10, and Appendix B. For these applications
we need a notion of ‘distance’ on Lst. Since Lst is isomorphic to Rs+2t as a
real vector space, the natural idea is to transfer the usual Euclidean metric
from Rs+2t to Lst. This amounts to choosing a basis in Lst and defining an
inner product with respect to which this basis is orthonormal. The natural
basis to pick is
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

































































(1, 0, . . . , 0; 0, . . . , 0)
(0, 1, . . . , 0; 0, . . . , 0)

...
(0, 0, . . . , 1; 0, . . . , 0)

(0, 0, . . . , 0; 1, 0, . . . , 0)
(0, 0, . . . , 0; i, 0, . . . , 0)

...
(0, 0, . . . , 0; 0, 0, . . . , 1)
(0, 0, . . . , 0; 0, 0, . . . , i).

(8.4)

With respect to this basis, the element

(x1, . . . , xs; y1 + iz1, . . . , yt + izt)

of Lst has coordinates

(x1, . . . , xs, y1, z1, . . . , yt, zt).

Changing notation slightly, if we take

x = (x1, . . . , xs+2t)

x′ = (x′1, . . . , x
′
s+2t)

with respect to the new coordinates (8.4), then the inner product is defined
by

(x, x′) = x1x
′
1 + . . .+ xs+2tx

′
s+2t.

The length of a vector x is then

||x|| =
√

(x, x)

and the distance between x and x′ is ||x− x′|| .
Referred to our original mixture of real and complex coordinates, any

element

x = (x1, . . . , xs; y1 + iz1, . . . , yt + izt)

has length

||x|| =
√

(x21 + . . .+ x2s + y21 + z21 + . . .+ y2t + z2t ).
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8.2 Exercises

1. Find the monomorphisms σi : K → C for the following fields. Deter-
mine the number s of the σi satisfying σi(K) ⊆ R, and the number t
of distinct conjugate pairs σi, σj such that σ̄i = σj .

(i) Q(
√
5)

(ii) Q(
√
−5)

(iii) Q( 4
√
5)

(iv) Q(ζ) where ζ = e2πi/7

(v) Q(ζ) where ζ = e2πi/p for a rational prime p

2. For K = Q(
√
d) where d is a squarefree integer, calculate σ : K →

Lst, distinguishing the cases d < 0, d > 0. Compute N(x) for x ∈ Lst

and by direct calculation verify

N(α) = N(σ(α)) (α ∈ K)

3. Let K = Q(θ) where the algebraic integer θ has minimum polynomial
f . If f factorizes over R into irreducibles as

f(t) = g1(t) . . . gq(t)h1(t) . . . hr(t)

where gi is linear and hj quadratic, prove that q = s and r = t in the
notation of the chapter for s, t.

4. Let K = Q(θ) where θ ∈ R and θ3 = 3. What is the map σ in this
case? Pick a basis for K and verify Theorem 8.1 for it.

5. Find a map from R2 to itself under which Q-linearly independent sets
map to Q-linearly independent sets, but some R-linearly independent
set does not map to an R-linearly independent set.

6. If K = Q(θ) where θ ∈ R and θ3 = 3, verify Corollary 8.3 for the
additive subgroup of K generated by 1 + θ and θ2 − 2.
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Class-Group and Class-Number

We now use the geometric ideas that we have developed to build further
insight into the property of unique factorization. We already know that in
the ring of integers of any number field, factorization into primes is unique
if and only if every ideal is principal. We now refine this statement to give
a quantitative measure of how non-unique factorization can be. To do this
we use the fractional ideals introduced in Chapter 5. The class-group of a
number field is defined to be the quotient of the group of fractional ideals by
the (normal) subgroup of principal fractional ideals; the class-number is the
order of this group. This gives the required measure: factorization in a ring
of integers is unique if and only if the corresponding class-number is 1. If
the class-number is greater than 1, factorization is non-unique. Intuitively,
the larger the class-number is, the more complicated the possibilities for
non-uniqueness are. In a sense, prime factorization becomes ‘less unique’
as the class-number increases.

It turns out that the class-number is always finite, an important fact
which we prove using Minkowski’s theorem. Simple group-theoretic con-
siderations then yield useful conditions for an ideal to be principal. These
conditions lead to a proof that every ideal becomes principal in a suitable
extension field, which is one formulation of the basic idea of Kummer’s
‘ideal numbers’ within the ideal-theoretic framework.

The importance of the class-number can only be hinted at here. It is
crucial in the proof of Kummer’s special case of Fermat’s Last Theorem
in Chapter 11. Many deep and delicate results in the theory of numbers
are related to arithmetic properties of the class-number, or to algebraic
properties of the class-group.
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9.1 The Class-Group

As usual let O be the ring of integers of a number field K of degree n.
Theorem 5.21 tells us that prime factorization in O is unique if and only if
every ideal of O is principal. Our aim here is to find a way of measuring
how far prime factorization fails to be unique in the case where O contains
non-principal ideals, or equivalently how far away the ideals of O are from
being principal.

To this end we use the group of fractional ideals defined in Chapter 5.
Say that a fractional ideal of O is principal if it is of the form c−1a where
a is a principal ideal of O. Let F be the group of fractional ideals under
multiplication. It is easy to check that the set P of principal fractional
ideals is a subgroup of F . We define the class-group of O to be the quotient
group

H = F/P
The class-number h = h(O) is defined to be the order of H.

Since each of F ,P is an infinite group we have no immediate way of
deciding whether h is finite. In fact it is, and we develop a proof of this
deep and important fact. We begin by reformulating the definition of the
class-group in terms of ideals rather than fractional ideals.

Say that two fractional ideals are equivalent if they belong to the same
coset of P in F , or in other words if they map to the same element of F/P .
If a and b are fractional ideals we write

a∼b

if a and b are equivalent, and use

[a]

to denote the equivalence class of a.
The class-group H is the set of these equivalence classes.
If a is a fractional ideal then a = c−1b where c ∈ O and b is an ideal.

Therefore
b = ca = 〈c〉 a

and since 〈c〉 ∈ P this means that a ∼ b. In other words, every equivalence
class contains an ideal.

Now let x and y be equivalent ideals. (These symbols are Gothic x and
y, despite appearances.) Then x = cy where c is a principal fractional ideal,
say c = d−1e for d ∈ O, e a principal ideal. Therefore

x 〈d〉 = ye.

Conversely if xb = ye for b, e principal ideals then x ∼ y.
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This leads to an alternative description of H: on the set F of all ideals,
define a relation ∼ by x ∼ y if and only if there exist principal ideals b, e
with xb = ye. This is an equivalence relation, andH is the set of equivalence
classes [x] with group operation

[x][y] = [xy].

This is why H is called the class-group.
The significance of the class-group is that it captures the extent to which

factorization is not unique. In particular:

Theorem 9.1. Factorization in O is unique if and only if the class-group H
has order 1, or equivalently the class-number h = 1.

Proof: By Theorem 5.21, factorization is unique if and only if every ideal of
O is principal, which is true if and only if every fractional ideal is principal,
which is equivalent to F = P , which is equivalent to |H| = h = 1. �

The rest of this chapter proves that h is finite, and deduces a few useful
consequences. In the next chapter we develop some methods whereby h,
and the structure of H, may be computed: such methods are an obvious
necessity for applications of the class-group in particular cases.

9.2 An Existence Theorem

The finiteness of h rests on an application of Minkowski’s theorem to the
space Lst. It is, in fact, possible to give a more elementary proof that h is
finite, Lang [47], but Minkowski’s theorem gives a better bound, and is in
any case needed elsewhere. In this section we state and prove the relevant
result, leaving the finiteness theorem to the next section.

Lemma 9.2. If M is a lattice in Lst of dimension s+2t having fundamental
domain of volume V , and if c1, . . . , cs+t are positive real numbers whose
product

c1 . . . cs+t >

(

4

π

)t

V

then there exists a non-zero x = (x1, . . . , xs+t) ∈M such that

|x1| < c1, . . . , |xs| < cs;

|xs+1|2 < cs+1, . . . , |xs+t|2 < cs+t.
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Proof: Let X be the set of all points x ∈ Lst for which the conclusion
holds. Compute

v(X) =

∫ c1

−c1

dx1 . . .

∫ cs

−cs

dxs ×
∫∫

y2
1+z2

1<cs+1

dy1dz1 . . .

×
∫∫

y2
t+z2

t<cs+t

dytdzt

= 2c1 · 2c2 . . . 2cs · πcs+1 . . . πcs+t

= 2sπtc1 . . . cs+t.

Now X is a cartesian product of line segments and circular discs, so X is
bounded, symmetric, and convex. Minkowski’s theorem yields the required
result provided

2sπtc1 . . . cs+t > 2s+2tV,

that is

c1 . . . cs+t >

(

4

π

)t

V. �

Let K be a number field of degree n = s + 2t as usual, with ring of
integers O; and let a be an ideal of O. Then (a,+) is a free abelian group
of rank n by Theorem 2.16, so by Corollary 8.3 its image σ(a) in Lst is a
lattice of dimension n. To apply Lemma 9.2 we must know the volume of
a fundamental domain for σ(a). A useful general result is:

Lemma 9.3. Let L be an n-dimensional lattice in Rn with basis {e1, . . . , en}.
Suppose that

ei = (a1i, . . . , ani).

Then the volume of the fundamental domain T of L defined by this basis is

v(T ) = | det aij |.

Proof: The volume is

v(T ) =

∫

T

dx1 . . . dxn.

Define new variables by

xi =
∑

j

aijyj.
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The Jacobian of this transformation is det aij , and T is the set of points
∑

aijyi with 0 ≤ yi < 1. By the transformation formula for multiple
integrals, Apostol [2] p. 271.

v(T ) =

∫

T

|det aij | dy1 . . . dyn

= |det aij |
∫ 1

0

dy1 . . .

∫ 1

0

dyn

= |det aij | . �

Given a lattice L there exist many different Z-bases for L, hence many
distinct fundamental domains. However, since distinct Z-bases are related
by a unimodular matrix, Lemma 9.3 implies that the volumes of these
distinct fundamental domains are all equal.

Theorem 9.4. Let K be a number field of degree n = s + 2t as usual, with
ring of integers O, and let 0 6= a be an ideal of O. Then the volume of a
fundamental domain for σ(a) in Lst is

2−tN(a)
√

|∆|

where ∆ is the discriminant of K.

Proof: Let {α1, . . . , αn} be a Z-basis for a. Then, in the notation of
Theorem 8.1, a Z-basis for σ(a) in Lst is

(x
(1)
1 , . . . , x

(1)
s , y

(1)
1 , z

(1)
1 , . . . , y

(1)
t , z

(1)
t ),

...

(x
(n)
1 , . . . , x

(n)
s , y

(n)
1 , z

(n)
1 , . . . , y

(n)
t , z

(n)
t ).

By Lemma 9.3, if T is a fundamental domain for σ(a) then v(T ) = |D|,
where D is as in Theorem 8.1. In the notation of that theorem,

D = (−2i)−tE

so that
|D| = 2−t |E| .

Now E2 = ∆[α1, . . . , αn] and

N(a) =

∣

∣

∣

∣

∆[α1, . . . , αn]

∆

∣

∣

∣

∣

1/2

by Theorem 5.9. �
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Lemma 9.2 and Theorem 9.4 now yield the important:

Theorem 9.5. If a 6= 0 is an ideal of O then a contains an integer α with

|N(α)| ≤
(

2

π

)t

N(a)
√

|∆|

where ∆ is the discriminant of K.

Proof: For fixed but arbitrary ǫ > 0 choose positive real numbers c1, . . . , cs+t

with

c1 . . . cs+t =

(

2

π

)t

N(a)
√

|∆|+ ǫ.

By Lemma 9.2 and Theorem 9.4 there exists 0 6= α ∈ a such that

|σ1(α)| < c1, . . . , |σs(α)| < cs

|σs+1(α)|2 < cs+1, . . . , |σs+t(α)|2 < cs+t.

Multiply all these inequalities together:

|N(α)| < c1 . . . cscs+1 . . . cs+t =

(

2

π

)t

N(a)
√

|∆|+ ǫ.

Since a lattice is discrete, the set Aǫ of such α is finite. Also Aǫ 6= ∅, so
A = ∩ǫAǫ 6= ∅. It we pick α ∈ A then

|N(α)| ≤
(

2

π

)t

N(a)
√

|∆|.

�

Corollary 9.6. Every non-zero ideal a of O is equivalent to an ideal whose
norm is ≤ (2/π)t

√

|∆|.

Proof: The class of fractional ideals equivalent to a−1 contains an ideal c,
so ac ∼ O. Use Theorem 9.5 to find an integer γ ∈ c such that

|N(γ)| ≤
(

2

π

)t

N(c)
√

|∆|.

Since c|γ we have

〈γ〉 = cb
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for some ideal b. Since N(b)N(c) = N(bc) = N(〈γ〉) = |N(γ)|,

N(b) ≤
(

2

π

)t
√

|∆|.

We claim that b ∼ a. This is clear since c ∼ a−1 and b ∼ c−1. �

An Explicit Computation. lf K = Q(
√
−5), then O = Z[

√
−5] does

not have unique factorization, so h > 1. Because the monomorphisms
σi : K → C are σ1, σ2 where σ1 6= σ2 and σ̄1 = σ2, we have t = 1. The
discriminant ∆ of K is ∆ = −20, so

(

2

π

)t
√

|∆| = 2
√
20

π
< 2.85.

Every ideal of O is then equivalent to an ideal of norm less than 2.85, which
means a norm of 1 or 2. An ideal of norm 1 is the whole ring O, hence
principal. An ideal a of norm 2 satisfies a|2 by Theorem 5.14 (b), so a is a
factor of 〈2〉. But

〈2〉 =
〈

2, 1 +
√
−5
〉2

where
〈

2, 1 +
√
−5
〉

is prime and has norm 2. So
〈

2, 1 +
√
−5
〉

is the only

ideal of norm 2. Hence every ideal of O is equivalent to O or
〈

2, 1 +
√
−5
〉

which are themselves inequivalent (since
〈

2, 1 +
√
−5
〉

is not principal),
proving that h = 2.

9.3 Finiteness of the Class-Group

Theorem 9.7. The class-group of a number field is a finite abelian group.
The class-number h is finite.

Proof: Let K be a number field of discriminant ∆ and degree n = s+ 2t
as usual. The class-group H = F/P is abelian, so it remains to prove H
finite. This is true if and only if the number of distinct equivalence classes
of fractional ideals is finite. Let [c] be such an equivalence class. Then
[c] contains an ideal a, and by Corollary 9.6, a is equivalent to an ideal
b with N(b) ≤ (2/π)t

√

|∆|. Since only finitely many ideals have a given
norm (Theorem 5.17 (c)) there are only finitely many choices for b. Since
[c] = [a] = [b] (because c ∼ a ∼ b) there are only finitely many equivalence
classes [c], whence H is a finite group and h = |H| is finite. �

From simple group-theoretic facts we obtain the useful:
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Proposition 9.8. Let K be a number field of class-number h, and a an ideal
of the ring of integers O. Then

(a) ah is principal.

(b) If q is prime to h and aq is principal, then a is principal.

Proof: Since h = |H| we have [a]h = [O] for all [a] ∈ H, because [O]
is the identity element of H. Hence [ah] = [a]h = [O], so ah ∼ O, so
ah is principal. This proves (a). For (b) choose u and v ∈ Z such that
uh+ vq = 1. Then [a]q = [O], so

[a] = [a]
uh+vq

=
(

[a]h
)u

([a]q)v

= [O]u[O]v

= [O]

and again a is principal. �

9.4 How to Make an Ideal Principal

(This section and the next are not required elsewhere and may be omitted.)

Given an ideal a in the ring O of integers of a number field K, we
already know that a has at most two generators

a = 〈α, β〉 (α, β ∈ O).

In this section we demonstrate that there exists an extension number field
E ⊇ K with integers D′, such that the extended idealO′a in O′ is principal.
As standard notation we retain the symbols 〈α〉, 〈α, β〉 to denote the ideals
in O generated by α and by α, β ∈ O. We write the ideal in O′ generated
by S ⊆ O′ as O′S. For example O′κ denotes the principal ideal in O′

generated by κ ∈ O′.

Lemma 9.9. If S1, S2 are subsets of O′, then

O′(S1S2) = (O′S1)(O
′S2).

Proof: Trivial (remembering 1 ∈ O′). �

The central result is:
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Theorem 9.10. Let K be a number field, a an ideal in the ring of integers
O of K. Then there exists an algebraic integer κ such that if O′ is the ring
of integers of K(κ), then

(a) O′κ = O′a.
(b) (O′κ) ∩O = a.
(c) If B is the ring of all algebraic integers, then (Bκ) ∩K = a.
(d) If O′′γ = O′′a for any γ ∈ B, and any ring O′′ of integers, then

γ = uκ where u is a unit of B.

Proof: By Proposition 9.8, ah is principal, say ah = 〈ω〉. Let κ = ω1/h ∈ B,
and consider E = K(κ). Let O′ = B∩E be the ring of integers in E; clearly
κ ∈ O′. Since ah = 〈ω〉 Lemma 9.9 implies that

(O′a)h = O′(ah) = O′ω = O′κh = (O′κ)h.

Uniqueness of factorization of ideals in O′ easily yields

O′a = O′κ,

proving (a).
Since (c) implies (b), we now consider (c). The inclusion a ⊆ Bκ∩K is

straightforward. Conversely, suppose γ ⊆ Bκ ∩K. Then

γ = λκ (λ ∈ B)

and we must show that γ ∈ a. First note that, since γ ∈ K, κ ∈ E, we
have λ = γκ−1 ∈ E, so λ ∈ E ∩ B = O′. This gives

γh = λhκh = λhω (γ ∈ K,λ ∈ O′, ω ∈ O)

so γh ∈ B, and by Theorem 2.10, γ ∈ B. Thus γ ∈ B∩K = O. Considering
the equation γh = λhω again, we find

λh = γhω−1 ∈ K

so λh ∈ K ∩ B = O. Thus we finish up with

γh = λhω (γ, λh, ω ∈ O).

Taking ideals in O,

〈γ〉h =
〈

λh
〉

〈ω〉 =
〈

λh
〉

ah.

Unique factorization in O implies that
〈

λh
〉

= bh for some ideal b, so

〈γ〉h = bhah.
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Unique factorization once more implies that

〈γ〉 = ba,

so γ ∈ a as required.
To prove (d), observe that by Theorem 5.20, a = 〈α, β〉 for α, β ∈ O.

Substituting in (d) gives

O′′γ = O′′ 〈α, β〉 .

Thus
γ = λα+ µβ

where λ, µ ∈ O′′, so certainly λ, µ ∈ B. From (a), α, β ∈ O′κ, so

α = ηκ, β = ζκ (η, ζ ∈ O′ ⊆ B).

Hence γ = ληκ + µζκ and κ|γ in B. Finally, interchange the roles of γ, κ
to prove (d). �

Theorem 9.10 can be improved, for as it stands the extension ring O′ in
whichO′a is principal depends on a. We can actually find a single extension
ring in which the extension of every ideal is principal. This depends on the
following lemma and the finiteness of the class-number:

Lemma 9.11. If a, b are equivalent ideals in the ring O of integers of a
number field and O′a is principal, then so is O′b.

Proof: By the definition of equivalence, there exist principal ideals d, e of
O such that ad = be. Hence

(O′a)(O′d) = (O′b)(D′e)

where now O′a, O′d, O′e are all principal. Since the set P of principal
fractional ideals of O′ is a group, O′b is a principal fractional ideal which
is also an ideal, so O′b is a principal ideal. �

Theorem 9.12. Let K be a number field with integers OK. Then there exists
a number field L ⊇ K with ring OL of integers such that for every ideal a
in OK :

(a) OLa is a principal ideal.
(b) (OLa) ∩OK = a.

Proof: Since h is finite, select a representative set of ideals a1, . . . , ah,
one from each class. Choose algebraic integers κ1, . . . , κh such that Oiai is
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principal where Oi is the ring of integers of K(κi). Let L = K(κ1, . . . , κh);
its ring of integers OL contains all the Oi. Hence each ideal OLai is prin-
cipal in OL. Since every ideal a in O is equivalent to some ai, the ideal
OLa is principal by Lemma 9.11. That is, for some α ∈ B

OLa = OLα.

This proves (a).

Clearly a ⊆ (OLa) ∩OK . For the converse inclusion, Theorem 9.10(d)
implies that α = uκ where u is a unit in B. Now

(OLa) ∩OK = (OLα) ∩OK

⊆ (Bα) ∩K
= (Bκ) ∩K
= a

by Theorem 9.10(c). �

For many years it was an open question, going back to David Hilbert,
whether every number field can be embedded in one with unique factor-
ization. However, in 1964 Golod and Šafarevič [35] showed that this is not
always possible, citing the explicit example

Q(
√

(−3 · 5 · 7 · 11 · 13 · 17 · 19)).

The proof is ingenious rather than hard, but it uses ideas we have not
developed.

9.5 Unique Factorization of Elements
in an Extension Ring

The results of the last section can be translated from principal ideals back
to elements to give the version of Kummer’s theory alluded to in the in-
troduction to Chapter 5. There we considered examples of non-unique
factorization such as

10 = 2 · 5 = (5 +
√
15)(5 −

√
15)

in the ring of integers ofQ(
√
15). Viewing this as an equation inQ(

√
3,
√
5),

we saw that the factors can be further reduced as
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2 = (
√
5 +

√
3)(

√
5−

√
3)

5 =
√
5
√
5

5 +
√
15 =

√
5(
√
5 +

√
3)

5−
√
15 =

√
5(
√
5−

√
3)

and the two factorizations of 10 found above are just regroupings of the
factors

10 =
√
5
√
5(
√
5 +

√
3)(

√
5−

√
3).

We now show that a similar phenomenon occurs for all non-unique prime
factorizations in all rings of integers.

Theorem 9.13. Suppose K is a number field with integers OK . Then there
exists an extension field L ⊇ K with integers OL such that every non-zero,
non-unit a ∈ OK has a factorization

a = p1 . . . pr (pi ∈ OL)

where the pi are non-units in OL, and the following property is satisfied.
Given any factorization in OK :

a = a1 . . . as

where the ai are non-units in OK , there exist integers

1 ≤ n1 < . . . < ns = r

and a permutation π of {1, . . . , r} such that the following elements are
associates in OL:

a1, pπ(1) . . . pπ(n1)

...

as, pπ(ns−1+1) . . . pπ(ns).

Remark. What this theorem says in plain language is that the factorizations
of elements into irreducibles inOK may not be unique, but all factorizations
of an element in OK come from different groupings of associates of a single
factorization in OL. In this sense elements in OK have unique factorization
into elements in OL.
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Proof: There is a unique factorization of 〈a〉 into prime ideals in OK , say

〈a〉 = p1 . . . pr.

Since a is a non-unit, r ≥ 1. Let OL be a ring of integers as in Theorem
9.12 where every ideal of OK extends to a principal ideal, and suppose that

OLpi = OLpi (pi ∈ OL).

Then a = up1 . . . pr where u is a unit in OL, and since r ≥ 1, we may
replace p1 by up1 ∈ OLp1 to get a factorization of the form

a = p1 . . . pr.

Given any factorization of elements

a = a1 . . . as

where the ai are non-units in OK , we obtain

〈a〉 = 〈a1〉 . . . 〈as〉 ,

where all the 〈ai〉 are proper ideals. Unique factorization in OK gives us
the integers ni and the permutation π such that

〈a1〉 = pπ(1) . . . pπ(n1)

...

〈as〉 = pπ(ns−1+1) . . . pπ(ns).

Now take ideals in OL generated by these ideals. �

Example 9.14. From the explicit computation of Section 2, if
K = Q(

√
−5), then h = 2 and a representative set of ideals is O, and

〈

2, 1 +
√
−5
〉

where
〈

2, 1 +
√
−5
〉2

= 〈2〉. Hence we may take L = K(
√
2) =

Q(
√
−5,

√
2). Theorem 9.13 tells us that every element of Z[

√
−5] factor-

izes uniquely in the integers of Q(
√
−5,

√
2). The case of the factorization

of the element 6 is dealt with in Exercise 7 at the end of this chapter, where

6 =
√
2
√
2( 1

2

√
2 + 1

2

√
−10)( 1

2

√
2− 1

2

√
−10).

That 1

2

√
2 ± 1

2

√
−10 really are integers may be dealt with by computing

the explicit minimum polynomials of these elements over Q. Granted this,
it is an easy matter to check that the two alternative factorizations

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)
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in Z[
√
−5] are just different groupings of the factors in the integers of

Q(
√
−5,

√
2). (Do it!)

The above example underlines a basic problem when factorizing ele-
ments in an extension ring. We have not given a general method for com-
puting the integers of a number field. To date we have explicitly calculated
only the integers in quadratic and cyclotomic fields—and even those cal-
culations were not trivial. There is also another weakness when factorizing
elements in an extension ring. The elements pi occurring in the factoriza-
tion of a in Theorem 9.13 need not be irreducible. (For instance we might
work in a slightly larger ring OL′ containing

√
pi; the method of adjoining

κ = ω1/h may very well add such roots.) However, the proof of Theorem
9.13 tells us that the factorization of the element a in OL which gives the
unique factorization properties is given by the factorization of the ideal
〈a〉 in the ring OK . For this reason we may just as well stick to ideals
in the original ring rather than embellish the situation by factorizing ele-
ments outside. Our computations in future will be concerned mainly with
ideals—unique factorization of ideals proves so much easier to handle!

9.6 Exercises

1. Let K = Q(
√
−5), and let p, q, r be the ideals defined in Exercise 2

of Chapter 5 (page 126). Let H be the class group. Show that in H

[p]2 = [O], [p][q] = [O], [p][r] = [O],

and hence show that p, q, r are equivalent.

2. Verify by explicit computation that p, q, r are equivalent.

3. Using Corollary 9.6, show that for K = Q(
√
−6) every ideal is equiv-

alent to one of norm at most 3. Verify that

〈2〉 =
〈

2,
√
−6
〉2
,

〈3〉 =
〈

3,
√
−6
〉2
,

and conclude that the only ideals of norm 2, 3 are
〈

2,
√
−6
〉

,
〈

3,
√
−6
〉

.

Deduce h ≤ 3 and using
〈

2,
√
−6
〉2

= 〈2〉, or otherwise, show h = 2.

4. Find principal ideals a, b in Z[
√
−6] such that

a
〈

2,
√
−6
〉

= b
〈

3,
√
−6
〉

.
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5. Find all squarefree integers d in −10 < d < 10 such that the class-
number of Q(

√
d) is 1. (Hint: look up a few theorems!)

6. Using methods similar to Exercise 3, calculate the class-number of
Q(

√
d) for d squarefree and −10 ≤ d ≤ 10.

7. Suppose K = Q(
√
−5), p =

〈

2, 1 +
√
−5
〉

. Let O′ be the ring of

integers of Q(
√
−5,

√
2). Show O′p = O′√2. Find explicit integers

a, b ∈ O′ such that

2 =
√
2a, 1 +

√
−5 =

√
2b,

and verify that a, b are integers by computing the monic polynomials
which they satisfy over Q. Using the notation of Exercise 1, find
κ1, κ2 ∈ O′ such that

O′κ1 = O′q, O′κ2 = O′r

and use the factorization 〈6〉 = p2qr to factorize the element 6 in O′.
Explain how this factorization relates to

6 = 2 · 3 = (1 +
√
−5)(1 +

√
−5)

in Z[
√
−5].

8. In Z[
√
−10] we have the factorizations into irreducibles

14 = 2 · 7 = (2 +
√
−10)(2−

√
−10).

Find an extension ringOL of Z[
√
−10] and a factorization of 14 in OL

such that the given factorizations are found by different groupings of
the factors.

9. Factorize 6 = 2·3 = (4+
√
10)(4−

√
10) ∈ Z[

√
10] in an extension ring

to exhibit the given factors as different groupings of the new ones.

10. Relate the factorization

10 =
√
5
√
5(
√
5 +

√
3)(

√
5−

√
3)

in the integers of Q(
√
3,
√
5) to the factorization of 〈10〉 into prime

ideals in the integers of Q(
√
15). Explain how this gives rise to the

different factorizations

10 = 2 · 5 = (5 +
√
15)(5 −

√
15)

into irreducibles in the integers of Q(
√
15).



This page intentionally left blankThis page intentionally left blank



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 167 — #183
✐

✐

✐

✐

✐

✐

III

Number-Theoretic

Applications



This page intentionally left blankThis page intentionally left blank



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 169 — #185
✐

✐

✐

✐

✐

✐

10

Computational Methods

The results of this chapter, although apparently diverse, all have a strong
bearing on the question of practical computation of the class-number,
within the limits of the techniques now at our command. We focus on com-
putations performed by hand. For complicated calculations, mathemati-
cians and computer scientists have developed many software packages for
algebraic computations. The website numbertheory.org provides a lengthy
list of specialized packages, along with links to other useful information
such as tables.

In the first section we study a special case of how a rational prime breaks
up into prime ideals in a number field. The second section supplements this
by showing that the distinct classes of fractional ideals may be found from
the prime ideals dividing a finite set of rational primes, this set being in
some sense small provided the degree of K and its discriminant are not
too large. Several specific cases are studied, especially quadratic fields: in
particular we complete the list of fields Q(

√
d) with negative d and with

class-number 1. We do not prove this list is complete, however, because
the methods required are beyond the scope of this book.

10.1 Factorization of a Rational Prime

If p is a prime number in Z, it is not generally true that 〈p〉 is a prime ideal
in the ring of integers O of a number field K. For instance, in Q(

√
−1) we

169
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have the factorization
〈2〉 =

〈

1 +
√
−1
〉2
.

It is obviously useful to compute the prime factors of 〈p〉. In the case
where the ring of integers is generated by a single element, which includes
quadratic and cyclotomic fields, the following theorem of Dedekind is de-
cisive.

Theorem 10.1. Let K be a number field of degree n with ring of integers
O = Z[θ] generated by θ ∈ O. Given a rational prime p, suppose the
minimum polynomial f of θ over Q gives rise to the factorization into
irreducibles over Zp:

f̄ = f̄e1
1 . . . f̄er

r

where the bar denotes the natural map Z[t] → Zp[t]. Then if fi ∈ Z[t] is
any polynomial mapping onto f̄i, the ideal

pi = 〈p〉+ 〈fi(θ)〉

is prime and the prime factorization of 〈p〉 in O is

〈p〉 = pe11 . . . perr .

Proof: Let θi be a root of f̄i in Zp[θi] ∼= Zp[t]/
〈

f̄i
〉

. There is a natural
map νi : Z[θ] → Zp[θi] given by

νi(p(θ)) = p̄(θi).

The image of νi is Zp[θi], which is a field, so ker νi is a prime ideal of
Z[θ] = O. Clearly

〈p〉+ 〈fi(θ)〉 ⊆ ker νi.

But if g(θ) ∈ ker νi, then ḡ(θi) = 0, so ḡ = f̄ih̄ for some h̄ ∈ Zp[t]; this
means that g − fih ∈ Z[t] has coefficients divisible by p. Thus

g(θ) = (g(θ)− fi(θ)h(θ)) + fi(θ)h(θ) ∈ 〈p〉+ 〈fi(θ)〉 ,

showing that
ker νi = 〈p〉+ 〈fi(θ)〉 .

Let
pi = 〈p〉+ 〈fi(θ)〉 .

Then for each f̄i the ideal pi is prime and satisfies 〈p〉 ⊆ pi, that is, pi| 〈p〉.
For any ideals a, b1, b2,

(a + b1)(a + b2) ⊆ a+ b1b2,
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so by induction

pe11 . . . perr ⊆ 〈p〉+ 〈f1(θ)e1 . . . fr(θ)er 〉
⊆ 〈p〉+ 〈f(θ)〉
= 〈p〉 .

Thus 〈p〉 |pe11 . . . perr , and the only prime factors of 〈p〉 are p1, . . . , pr, show-
ing that

〈p〉 = pk1

1 . . . pkr

r (10.1)

where

0 < ki ≤ ei (1 ≤ i ≤ r). (10.2)

The norm of pi is, by definition, |O/pi|, and the isomorphisms

O/pi = Z[θ]/pi ∼= Zp[θi]

imply that

N(pi) = |Zp[θi]| = pdi

where di = ∂f̄i, or equivalently di = ∂fi. Also

N (〈p〉) = |Z[θ]/ 〈p〉)| = pn,

so, taking norms in Equation (10.1),

pn = N(〈p〉) = N(p1)
k1 . . .N(pr)

kr = pd1k1+...+drkr ,

which implies that

d1k1 + . . .+ drkr = n = d1e1 + . . .+ drer. (10.3)

Equation (10.2) leads to ki = ei (1 ≤ i ≤ r). �

This result is not always applicable, since in general O need not be
of the form Z[θ]: see Section 2.6 Example 2.23. But for quadratic or
cyclotomic fields we have already shown that O = Z[θ], so the theorem
applies in these cases—and in many others. It also has the advantage of
computability. Since there is only a finite number of polynomials over Zp

of given degree, the factorization of f̄ can be performed in a finite number
of steps. A little native wit helps, but, if the worst comes to the worst,
there is only a finite number of polynomials of lower degree than f̄ to try
as factors.
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For example, in Q(
√
−1) we have O = Z[θ] where θ has minimum

polynomial
t2 + 1.

To find the factorization of 〈2〉 we look at this polynomial (mod 2), where

t2 + 1 = (t+ 1)2.

Hence 〈2〉 = p2 where

p = 〈2〉+
〈√

−1 + 1
〉

=
〈

1 +
√
−1
〉

(because 2 = (1 +
√
−1)(1 −

√
−1)), and we recover the example noted at

the beginning of this section.
More generally, consider the factorization in Z[

√
−1] of a prime p ∈ Z.

There are three cases to consider:
(1) t2 + 1 irreducible (mod p)
(2) t2+1 ≡ (t−λ)(t+λ)(mod p), (where λ2 ≡ −1 (mod p)) and λ 6≡ −λ

(i.e. p 6= 2)
(3) t2 + 1 ≡ (t+ 1)2 (mod 2) when p = 2
In case (1) 〈p〉 is prime; in case (2) 〈p〉 = p1p2 for distinct prime ideals

p1, p2; in case (3) 〈p〉 = p21 for a prime ideal p1.
The distinction between cases (1) and (2) is whether −1 is congruent

to a square (mod p). In Appendix A on quadratic residues we show that
(1) applies if p is of the form 4k − 1 (k ∈ Z), and (2) applies if p is of the
form 4k + 1 (k ∈ Z).

The results in this section are, in fact, the tip of the iceberg of a large
and significant portion of algebraic number theory. Given a prime ideal
p in the ring OK of integers in a number field K, we may consider the
extension ideal OLp in the ring of integers OL of an extension algebraic
number field. We find

OLp = qe11 . . . qerr

where q1, . . . , qr are distinct prime ideals in OL.

10.2 Minkowski Constants

The proof of Theorem 9.5 leaves room for improvement, because it is based
on Lemma 9.2, which is far stronger than we really need. What we want
is a point α such that

|σ1(α)| . . . |σs(α)| |σs+1(α)|2 . . . |σs+t(α)|2 < c1 . . . cs+t, (10.4)
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but what we actually find is a point α satisfying the considerably stronger
restriction

|σ1(α)| < c1, . . . , |σs(α)| < cs,

|σs+1(α)|2 < cs+1, . . . , |σs+t(α)|2 < cs+t.
(10.5)

Certainly the inequalities (10.5) imply (10.4), but not the reverse.

The reason for using (10.5) is that we wish to employ Minkowski’s the-
orem. For (10.5) the relevant set of points in Lst is convex and symmetric,
so the theorem applies; but for (10.4) the relevant set, though symmetric,
is not convex. This means we cannot use (10.5) directly. The gap between
(10.4) and (10.5) is so great, however, that we might hope to find another
set of inequalities, corresponding to a convex subset of Lst, and implying
(10.4): this would lead to improved estimates in Theorem 9.5 and Corollary
9.6.

To do this, we use the well-known inequality between arithmetic and
geometric means:

(a1 . . . an)
1/n ≤ 1

n
(a1 + . . .+ an) . (10.6)

The result is:

Theorem 10.2. If a 6= 0 is an ideal of O then a contains an element α with

|N(α)| ≤
(

4

π

)t

· n!
nn

√

|∆|N(a),

where n is the degree of K and ∆ is the discriminant.

Proof: Let Xc be the set of all x ∈ Lst such that

|x1|+ . . .+ |xs|+ 2
√

(y21 + z21) + . . .+ 2
√

(y2t + z2t ) < c,

where c is a positive real number. Then Xc is convex and centrally sym-
metric, and it is a routine though non-trivial exercise to compute

v(Xc) = 2s
(π

2

)t

· 1

n!
cn

using induction and a change to polar coordinates. For details see Lang
[47] page 116.
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By Minkowski’s theorem, Xc contains a point α 6= 0 of σ(a) provided
that

v(Xc) > 2s+2tv(T ),

where T is a fundamental domain for σ(a). By Theorem 9.4

v(T ) = 2−tN(a)
√

|∆|

so the condition on Xc becomes

2s
(π

2

)t

· 1

n!
cn > 2s+2t2−tN(a)

√

|∆|,

which is

cn >

(

4

π

)t

n!N(a)
√

|∆|.

For such an α

|N(α)| = |σ1(α) . . . σs(α)σs+1(α)
2 . . . σs+t(α)

2| ≤
( c

n

)n

by the inequality between arithmetic and geometric means.

Using ǫ’s as in Theorem 9.5, we may assume that α can be found for

cn =

(

4

π

)t

n!N(a)
√

|∆|

and then

|N(α)| ≤
(

4

π

)t

· n!
nn

N(a)
√

|∆|.

�

The geometric considerations involved in the choice of Xc in this proof
are illustrated in Figure 10.1 for the case n = 2, s = 2, t = 0. The three
regions

A: |xy| ≤ 1

B: |x|+|y|
2 ≤ 1

C: |x| ≤ 1, |y| ≤ 1

correspond respectively to the inequality (10.4), the region chosen in the
proof of Theorem 10.2, and the inequality (10.5). Note that A is not convex,
although B, C are; that C ⊆ B ⊆ A; and that B is much larger than C
(which is why it leads to a better estimate).
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A

B

C

Figure 10.1. Geometry suggests the choice of Xc in the proof of Theorem 10.2,
here illustrated for n = s = 2, t = 0. Region B is convex, lies within region A, and
is larger than the more obvious region C. Therefore the use of B, in conjunction
with Minkowski’s theorem, yields a better bound.

Corollary 10.3. Every class of fractional ideals contains an ideal a with

N(a) ≤
(

4

π

)t

· n!
nn

√

|∆|.

Proof: As for Corollary 9.6. �

This result suggests the introduction of Minkowski constants

Mst =

(

4

π

)t
(s+ 2t)!

(s+ 2t)s+2t
.

For future use, we give a short table of their values, taken from Lang [47].
The numbers in the last column have all been rounded upwards in the third
decimal place, to avoid underestimates.
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n s t Mst

2 0 1 0.637
2 2 0 0.500
3 1 1 0.283
3 3 0 0.223
4 0 2 0.152
4 2 1 0.120
4 4 0 0.094
5 1 2 0.063
5 3 1 0.049
5 5 0 0.039

Table 10.1. Table of Minkowski constants.

We can now give a criterion for a number field to have class-number 1,
for which the calculations required are often practicable.

Theorem 10.4. Let O be the ring of integers of a number field K of degree
n = s + 2t, and let ∆ be the discriminant of K. Suppose that for every
prime p ∈ Z with

p ≤Mst

√

|∆|,

every prime ideal dividing 〈p〉 is principal. Then O has class-number h = 1.

Proof: Every class of fractional ideals contains an ideal a with N(a) ≤
Mst

√

|∆|. Now
N(a) = p1 . . . pk

where p1, . . . , pk ∈ Z and pi ≤Mst

√

|∆|. Further, a|N(a), so a is a product
of prime ideals, each dividing some pi. By hypothesis these prime ideals
are principal, so a is principal. Therefore every class of fractional ideals is
equal to [O], and h = 1. �

Specific numerical applications of this theorem, and related methods,
are given in the next section.

10.3 Some Class-Number Calculations

Theorem 10.4 combines with Theorem 10.1 to provide a useful computa-
tional technique for fields of small degree and with small discriminant. The
following examples show what is meant by ‘small’ in these circumstances.
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1. Q(
√
−19): The ring of integers is Z[θ] where θ is a zero of

f(t) = t2 − t+ 5,

and the discriminant is −19. Then Mst

√

|∆| ≤ 0.637
√
19 so The-

orem 10.4 applies if we know the factors of primes ≤ 2. Now we
use Theorem 10.1: modulo 2, f(t) is irreducible, so 〈2〉 is prime in O

(and hence every prime ideal dividing 〈2〉 is equal to 〈2〉 so is princi-
pal); modulo 3, f(t) is also irreducible, so 〈3〉 is prime and the same
argument applies.

2. Q(
√
−43): This is similar, but now

f(t) = t2 − t+ 11

andMst

√

|∆| ≤ 0.637
√
43 which involves looking at primes ≤ 4. But

f(t) is irreducible modulo 2 or 3.

3. Q(
√
−67): For this,

f(t) = t2 − t+ 17

andMst

√

|∆| ≤ 0.637
√
67 which involves looking at primes ≤ 5. But

f(t) is irreducible modulo 2, 3, or 5.

4. Q(
√
−163): Now

f(t) = t2 − t+ 41

and Mst

√

|∆| ≤ 0.637
√
163 which involves looking at primes ≤ 8.

But f(t) is irreducible modulo 2, 3, 5, or 7.

Combining these results with Theorem 4.17 (or using the above methods
for the other values of ∆) we have:

Theorem 10.5. The class-number of Q(
√
d) is equal to 1 for d = −1,−2,

−3,−7,−11,−19,−43,−67,−163. �

As remarked in Section 4.3, these are in fact the only values of d < 0
for which Q(

√
d) has unique factorization, or equivalently class-number 1.

Comparing with Theorem 4.18 we obtain the interesting:
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Corollary 10.6. There exist rings with unique factorization that are not Eu-
clidean; for example, the rings of integers of Q(

√
d) for d = −19,−43,−67,

−163. �

We can also deal with a few cyclotomic fields by the same method. If
K = Q(ζ) where ζp = 1, p prime, then the degree of K is p − 1, and the
ring of integers is Z[ζ]. For p = 3, K = Q(

√
−3) and we already know

h = 1 in this case.

5. Q(ζ) where ζ5 = 1: Here n = 4, s = 0, t = 2; and ∆ = 125 by
Theorem 3.6. Hence Mst

√

|∆| ≤ 0.152
√
125 so we must look at

primes ≤ 1. Since there are no such primes, Theorem 10.4 applies at
once to give h = 1.

6. Q(ζ) where ζ7 = 1: Here n = 6, s = 0, t = 3, and ∆ = −75. We have
to look at primes ≤ 3. The ring of integers is Z[ζ] where ζ is a zero
of

f(t) = t6 + t5 + t4 + t3 + t2 + t+ 1.

Modulo 2, this factorizes as

(t3 + t2 + 1)(t3 + t+ 1)

so 〈2〉 = p1p2 where p1, p2 are distinct prime ideals, by Theorem 10.1.
In fact

(ζ3 + ζ2 + 1)(ζ3 + ζ + 1)ζ4 = 2,

so we have

〈2〉 =
〈

ζ3 + ζ2 + 1
〉 〈

ζ3 + ζ + 1
〉

and p1, p2 are principal.

Modulo 3, f(t) is irreducible (by trying all possible divisors, or more
enlightened methods), so 〈3〉 is prime.

Hence by Corollary 10.4, h = 1.

Similar methods often allow us to compute h, even when it is not 1.

7. Q(
√
10): The discriminant d = 40, n = 2, s = 2, t = 0. Every class

of ideals contains one with norm

≤M2,0

√

|∆| ≤ 0.5
√
40
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so we must factorize the primes ≤ 3. Now O = Z[θ] where θ is a zero
of

f(t) = t2 − 10.

f(t) ≡ (t+1)(t− 1) (mod 3), so 〈3〉 = g1g2 where g1 =
〈

3, 1 +
√
10
〉

,

g2 =
〈

3, 1−
√
10
〉

. Modulo 2, f(t) = t · t, so 〈2〉 = p2 for a prime

ideal p. If p is principal, say p =
〈

a+ b
√
10
〉

, then the equation

N(p)2 = N(〈2〉) = 4

implies that N(p) = 2. Hence

a2 − 10b2 = ± 2.

The latter, considered modulo 10, is impossible; hence p is not prin-
cipal.

We have pg1 =
〈

−2 +
√
10
〉

and [g1] = [p]−1. Therefore every class
of fractional ideals either contains a principal ideal or p, hence equals
[O] or [p]. Since p is not principal, these two classes are distinct, so
h = 2. The class-group is cyclic of order 2, and as verification

[p]2 = [p2] = [〈2〉] = [O].

As we said in Section 4.4, all the imaginary quadratic fields Q(
√
d) with

unique factorization are now known, verifying a conjecture of Gauss. But
Gauss also stated a more general conjecture, the Class Number Problem.
This states that for any given class number h, the set of d < 0 for which
Q(

√
d) = h is finite. It was proved in 1934 by Hans Heilbronn. A stronger

result was proved in 1983 by Dorian Goldfeld, Benedict Gross, and Don
Zagier, and is described in a masterly survey by Goldfeld [33].

10.4 Table of Class-Numbers

To give an idea of how irregularly the class-number of Q(
√
d) depends

upon d, we give a short table (Table 10.2) showing, for squarefree d with
0 < d < 100, the class-numbers h of Q(

√
d) and h′ of Q(

√
−d).

Methods more suited to such computations than ours above exist, es-
pecially analytic methods which are beyond our present scope. See Borevič
and Šafarevič [8] p. 342 onwards.
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d h h′ d h h′ d h h′

1 - 1 34 2 4 69 1 8
2 1 1 35 2 2 70 2 4
3 1 1 37 1 2 71 1 7
5 1 2 38 1 6 73 1 4
6 1 2 39 2 4 74 2 10
7 1 1 41 1 8 77 1 8
10 2 2 42 2 4 78 2 4
11 1 1 43 1 1 79 3 5
13 1 2 46 1 4 82 4 4
14 1 4 47 1 5 83 1 3
15 2 2 51 2 2 85 2 4
17 1 4 53 1 6 86 1 10
19 1 1 55 2 4 87 2 6
21 1 4 57 1 4 89 1 12
22 1 2 58 2 2 91 2 2
23 1 3 59 1 3 93 1 4
26 2 6 61 1 6 94 1 8
29 1 6 62 1 8 95 2 8
30 2 4 65 2 8 97 1 4
31 1 3 66 2 8
33 1 4 67 1 1

Table 10.2. Class-numbers h of Q(
√
d) and h′ of Q(

√
−d).

10.5 Exercises

1. Let K = Q(
√
3). Use Theorem 10.1 to factorize the following princi-

pal ideals in the ring O of integers of K:

〈2〉 , 〈3〉 , 〈5〉 , 〈10〉 , 〈30〉 .

2. Factorize the following principal ideals in the ring of integers ofQ(
√
5):

〈2〉 , 〈3〉 , 〈5〉 , 〈12〉 , 〈25〉 .

3. Factorize the following ideals in Z[ζ] where ζ = e2πi/5:

〈2〉 , 〈5〉 , 〈20〉 , 〈50〉 .

4. Compute the volume integral quoted in the proof of Theorem 10.2.
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5. If K is a number field of degree n, prove that

|∆| ≥
(π

4

)n
(

nn

n!

)2

,

where ∆ is the discriminant.

6. Prove that there exist only finitely many number fields with any given
discriminant.

7. Using the methods of this chapter, compute the class-numbers of
fields Q(

√
d) for −20 ≤ d ≤ 20.
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Kummer’s Special Case of

Fermat’s Last Theorem

We now have sufficient machinery at our disposal to tackle Fermat’s Last
Theorem in a special case, namely when the exponent n in the equation
xn + yn = zn is a so-called ‘regular prime’, and when n does not divide
any of x, y, or z. We begin with a short historical survey to set this version
of the problem in perspective. Following this we show how elementary
methods dispose of the case n = 4 and reduce the problem to odd prime
values of n. In this chapter we do not deal with the case where one of x, y,
or z is divisible by n, neither do we deal with irregular prime n. These
cases are described in Chapter 14. In a final discursive section we discuss
the regularity property and some related matters.

11.1 Some History

The origins of Fermat’s Last Theorem have been explained in the Intro-
duction. Useful references for background reading are Stewart [77] and
Ribenboim [64]. Fermat himself is considered to have disposed of the cases
n = 3, 4, because he issued these specific cases as mathematical challenges
to others. In fact he produced only one written proof in the whole of
his mathematical career. This states that the area of a right-angled tri-
angle with rational sides cannot be a perfect square. Algebraically, this
statement translates to the assertion that there are no (non-zero) integer

183
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solutions x, y, z of the equation x2 + y2 = z2 where xy/2 is a square. From
this it is easy to deduce Fermat’s Last Theorem for n = 4.

Euler (1706-1783) produced his own proof for the case n = 3 in his
Algebra of 1770. However, his proof contained a subtle error. He needed
to find cubes of the form p2 + 3q2, and ingeniously showed that, for any
integers a and b, if we define

p = a3 − 9ab2 q = 3(a2b− b3)

then
p2 + 3q2 = (a2 + 3b2)3.

However, he then tried to show the reverse process also works, namely,
if p2 + 3q2 is a perfect cube, then there exist integers a, b satisfying the
above relationships. Here he worked with algebraic numbers of the form
x + y

√
−3, with x, y integers, believing that these numbers possess the

same properties as ordinary integers—including uniqueness of factorization.
(As it happens, factorization is unique in this case, but Euler did not
realise that this needed proving.) This omission went unnoticed at the
time. However, other results that Euler published gave an alternative proof
for n = 3, without logical gaps, thus justifying giving him full credit for this
case.

Sophie Germain (1776–1831) was one of the very few women doing re-
search in mathematics at this time. As a woman, she was unable to attend
the École Polytechnique when it opened in Paris in 1794. Instead she as-
sumed the identity of a student, ‘Monsieur Antoine-Auguste Le Blanc’, who
had left the course without giving formal notice. So elegant and insightful
were her written solutions of weekly problems that her ability was noted
by Lagrange. He insisted on a meeting, which revealed her subterfuge.
He gave her positive encouragement, and she developed a serious interest
in Fermat’s Last Theorem. Early in her work, she found it convenient to
divide the problem into two cases:

(1) None of x, y, z is divisible by n.

(2) Only one of x, y, z is divisible by n.

If two of x, y, z are divisible by n then all three are, and if all three are,
then the common factor nn can be divided out, so only these cases are
needed for a proof. Legendre credits her with a proof of the ‘first case’
if there exists an auxiliary prime satisfying two technical conditions, and
states that she verified these conditions for all n ≤ 97. Thus she proved
the first case of Fermat’s Last Theorem for all n in that range.

Attention then turned to case (2). A partial proof of this case for n = 5
was presented to the Paris Academy by Dirichlet in July 1825. Legendre
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filled in the other details in September 1825, hence completing the full proof
for n = 5. Dirichlet continued to work on the case n = 7, only to realise
that the closely related case n = 14 was more amenable to his methods. He
published the proof for n = 14 in 1832. The case n = 7 was finally proved
in 1839 by Lamé (1796–1870). It required far more subtle computations
than those of earlier cases and gave the impression that further progress
would be unlikely unless a completely different line of attack was found.
But the next major step forward was followed by an immediate retreat.

On 1 March 1847, Lamé addressed the Paris Academy and announced
a complete proof of Fermat’s Last Theorem. He outlined a proof which
introduced the complex nth roots of unity and factorized the equation
xn + yn = zn into linear terms

xn + yn = (x+ y)(x + ζy) . . . (x+ ζn−1y)

where ζ = e2πi/n and n is odd. Lamé acknowledged that he was indebted
to Liouville for this idea.

Then Liouville took the stage. He acknowledged his contribution, but
pointed out that the argument used depended on uniqueness of factor-
ization, and he suspected that this property might fail. Immediately the
focus turned to unique factorization. A fortnight later Pierre Wantzel an-
nounced a proof of unique factorization for some cases, providing arguments
for n = 2, 3, 4. He also stated that his method of proof failed for n = 23
(see Cauchy [13] p. 308). On 24 May Liouville informed the Academy
that Kummer had already shown the failure of unique factorization three
years before, but had developed a technical alternative that worked by
introducing what he called ‘ideal numbers’.

In 1850 Kummer produced his sensational proof of Fermat’s Last Theo-
rem for what he termed ‘regular’ primes, including all primes less than 100
except for 37, 59, 67. Kummer asserted that there is an infinite number
of regular primes, but this has never been proved (although Johan Jensen
proved that there is an infinite number of irregular primes in 1915). The
same year, Kummer attended to the three cases 37, 59, 67, but made errors
that went unnoticed until Harry Vandiver found them in 1920. A proof for
n = 37 was given by Dimitri Mirimanoff in 1893, and he extended this as
far as n ≤ 257 in 1905. Vandiver laid down methods that made a compu-
tational approach possible, which led to proofs for n ≤ 25, 000 by Selfridge
and Pollock [73], then n ≤ 125, 000 by Wagstaff [86]. By 1993 the record
was n ≤ 4, 000, 000, Buhler et al. [11].

The proof by Kummer therefore occupies a pivotal position in the devel-
opment of Fermat’s Last Theorem. It changed the focus from increasingly
complicated ways of dealing with small values of n, using a variety of meth-
ods, before 1850, towards a more general proof for a wide variety of values
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of n in the late 19th and 20th centuries. Before moving on to entirely new
techniques, it is therefore worth taking a detailed look at Kummer’s proof
and the methods behind it.

11.2 Elementary Considerations

We first consider what can be said about the Fermat equation

xn + yn = zn (11.1)

from an elementary point of view. If a solution to Equation (11.1) exists
then there must exist one solution in which x, y, z are coprime in pairs.
For if a prime q divides x and y, then x = qx′, y = qy′,

qn(x′n + y′n) = zn

so that q also divides z, say z = qz′, and then x′n + y′n = z′n. Similarly
if q divides x and z, or y and z. In this way we can remove all common
factors from x, y, z.

Next note that if Equation (11.1) is impossible for an exponent n then
it is impossible for all multiples of n. For if xmn + ymn = zmn then
(xm)n +(ym)n = (zm)n. Now any integer ≥ 3 is divisible either by 4 or by
an odd prime. Hence to prove (or disprove) the conjecture it is sufficient
to consider the cases n = 4 and n an odd prime.

We start with Fermat’s proof for n = 4. It is based on the (well known)
general solution of the Pythagorean equation x2 + y2 = z2, given by:

Lemma 11.1. The solutions of x2 + y2 = z2 with pairwise coprime integers
x, y, z are given parametrically by

±x = 2rs

±y = r2 − s2

±z = r2 + s2

(or with x, y interchanged) where r, s are coprime and exactly one is odd.

Proof: We give the classical proof. It is sufficient to consider x, y, z
positive. They cannot all be odd, for this gives the contradiction ‘odd +
odd = odd’. Since they are pairwise coprime, precisely one is even. It
cannot be z, for then z = 2k, x = 2a + 1, y = 2b + 1 where k, a, b are
rational integers, and

(2a+ 1)2 + (2b+ 1)2 = 4k2.
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This cannot occur since the left-hand side is clearly not divisible by 4 whilst
the right-hand side is. So one of x, y is even. We can suppose that this is
x. Then

x2 = z2 − y2 = (z + y)(z − y).

Because x, z + y, z − y are all even and positive, we can write x = 2u,
z + y = 2v, z − y = 2w, whence

(2u)2 = 2v · 2w,

or

u2 = vw. (11.2)

Now v, w are coprime, for a common factor of v, w would divide their sum
v + w = z and their difference v − w = y, which have no proper common
factors. Factorizing u, v, w into prime factors, we see that (11.2) implies v,
w are both squares, say v = r2, w = s2. Moreover r, s are coprime because
v, w are.

Thus

z = v + w = r2 + s2,

y = v − w = r2 − s2.

Because y, z are both odd, precisely one of r, s is odd. Finally

x2 = z2 − y2 = (r2 + s2)2 − (r2 − s2)2 = 4r2s2,

so

x = 2rs.

�

Now we can prove a theorem even stronger than the impossibility of
Equation (11.1) for n = 4, namely:

Theorem 11.2. The equation x4 + y4 = z2 has no integer solutions with
x, y, z 6= 0.

Proof: First note that this is stronger, since if x4 + y4 = z4 then x, y, z2

satisfy the above equation.
Suppose a solution of

x4 + y4 = z2 (11.3)

exists. We may assume x, y, z are positive. Among such solutions there
exists one for which z is smallest: assume we have this one in (11.3). Then
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x, y, z are coprime (or we can cancel a common factor and make z smaller)
and so by Lemma 11.1

x2 = r2 − s2, y2 = 2rs, z = r2 + s2,

where x, z are odd and y is even. The first of these implies

x2 + s2 = r2

with x, s coprime. Hence by Equation (11.1) again, since x is odd

x = a2 − b2, s = 2ab, r = a2 + b2.

But now we substitute back to get

y2 = 2rs = 2 · 2ab(a2 + b2)

so y is even, say y = 2k, and

k2 = ab(a2 + b2).

Since a, b and a2 + b2 are pairwise coprime

a = c2, b = d2, a2 + b2 = e2,

so that

c4 + d4 = e2.

This is an equation of type (11.3), but e ≤ a2 + b2 = r < z, contradicting
minimality of z. �

11.3 Kummer’s Lemma

This section begins the build-up to the solution of a special case of Fermat’s
Last Theorem, with a detailed study of the fieldK = Q(ζ) where ζ = e2πi/p

for an odd prime p. As in Chapter 3 we write

λ = 1− ζ.
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Further we define
l = 〈λ〉 ,

the ideal generated by λ in the ring of integers Z[ζ] of K. We start with
some properties of l.

Lemma 11.3. (a) l p−1 = 〈p〉.
(b) N(l) = p.

Proof: For j = 1, . . . , p − 1 the numbers 1 − ζ and 1 − ζj are associates
in Z[ζ]. Clearly 1 − ζ|1 − ζj . But if we choose t such that jt ≡ 1 (mod p)
then 1− ζ = 1− ζjt so that 1− ζj |1− ζ. Hence they are associates.

Now equation (3.9) of Chapter 3 leads to

〈p〉 =
p−1
∏

j=1

〈

1− ζj
〉

but the above remarks show that
〈

1− ζj
〉

= 〈1− ζ〉 = l, so

〈p〉 = l p−1

and (a) is proved. Part (b) is immediate on taking norms. �

Part (b) has a useful consequence. It implies that |Z[ζ]/l| = p, from
which it follows (on looking at the natural homomorphism
Z[ζ] → Z[ζ]/l) that every element of Z[ζ] is congruent modulo l to one
of 0, 1, 2, . . . , p− 1.

The main aim of the rest of this section is to give a useful, though
incomplete, description of the units of Z[ζ]. We start by finding which
roots of unity occur, showing that there are no ‘accidental’ occurrences:

Lemma 11.4. The only roots of unity in K are ±ζs for integers s.

Proof: First we show i /∈ K by arguing for a contradiction. If, on the
contrary, i ∈ K, then 2 = i(1− i)2, so

〈2〉 = 〈1− i〉2 .

Hence when 〈2〉 is resolved into prime factors in Z[ζ] it has repeated factors.
Theorem 10.1 implies that the polynomial

f(t) =
tp − 1

t− 1
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has a repeated irreducible factor modulo 2, hence that tp−1 has a repeated
irreducible factor modulo 2. Then the remark following Theorem 1.5 tells
us that tp−1 and D(tp−1) = ptp−1 are not coprime. However, p is odd, so
these polynomials modulo 2 take the form tp +1, tp−1 which are obviously
coprime. This is a contradiction.

In exactly the same way we can show that for an odd prime q 6= p,

e2πi/q /∈ K.

We just use

〈q〉 =
〈

1− e2πi/q
〉q−1

.

Next we remark that
e2πi/p

2

/∈ K

because e2πi/p
2

satisfies tp
2 − 1 = 0, but not tp − 1 = 0, so it is a zero of

f(t) = (tp
2 − 1)/(tp − 1) =

p−1
∑

r=0

trp.

Applying Eisenstein’s criterion to f(t + 1), a little arithmetic shows that
f(t+1), hence also f(t), is irreducible. Thus f is the minimum polynomial

of e2πi/p
2

. Since [K : Q] = p − 1, Theorems 1.10 and 1.11 imply that

e2πi/p
2

/∈ K.
Suppose now that e2πi/m ∈ K for an integer m. Then the above results

show that
4 ∤ m, q ∤ m, p2 ∤ m.

Hence m|2p which leads at once to the desired result. �

Lemma 11.5. For each α ∈ Z[ζ] there exists a ∈ Z such that

αp ≡ a (mod l p).

Proof: We have already remarked on the existence of b ∈ Z such that
α ≡ b (mod l ). Now

αp − bp =

p−1
∏

j=0

(α− ζjb)

and since ζ ≡ 1 (mod l) each factor on the right is congruent to α− b ≡ 0
(mod l). Multiplying up, αp − bp ≡ 0 (mod l p).
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Next comes a curious result about polynomials and roots of unity:

Lemma 11.6. If p(t) ∈ Z[t] is a monic polynomial, all of whose zeros in C
have absolute value 1, then every zero is a root of unity.

Proof: Let α1, . . . , αk be the zeros of p(t). For each integer l > 0 the
polynomial

pl(t) = (t− αl
1) . . . (t− αl

k)

lies in Z[t] by the usual argument on symmetric polynomials. Now if

pl(t) = tk + ak−1t
k−1 + . . .+ a0

then

|aj | ≤
(

k
j

)

(j = 0, . . . , k − 1)

by estimating the size of elementary symmetric polynomials in the αj and
using |αj | = 1. But only finitely many distinct polynomials over Z can
satisfy this system of inequalities, so for some m 6= l we must have

pl(t) = pm(t).

Hence there exists a permutation π of {1, . . . , k} such that

αl
j = αm

π(j)

for j = 1, . . . , k. Inductively,

αlr

j = αmr

πr(j).

Since πk!(j) = j, we have αlk!

j = αmk!

j so

α
(lk!−mk!)
j = 1.

Since lk! 6= mk! it follows that αj is a root of unity. �

Now we may prove the main result of this section, known as Kummer’s
lemma:

Lemma 11.7. Kummer’s Lemma. Every unit of Z[ζ] is of the form rζg

where r is real and g is an integer.

Proof: Let ǫ be a unit in Z[ζ]. There exists a polynomial e(t) ∈ Z[t] such
that ǫ = e(ζ). For s = 1, . . . , p− 1 the elements

ǫs = e(ζs)
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are conjugate to ǫ. Now 1 = ± N(ǫ) = ± ǫ1 . . . ǫp−1, so each ǫs is also a
unit. Further, if bars denote complex conjugation,

ǫp−s = e(ζp−s) = e(ζ−s) = e(ζs) = e(ζs) = ǫs.

Therefore
ǫsǫp−s = |ǫs|2 > 0.

Then
±1 = N(ǫ) = (ǫ1ǫp−1)(ǫ2ǫp−2) . . . > 0

so N(ǫ) = 1.
Now each ǫs/ǫp−s is a unit, of absolute value 1, and by a symmetric

polynomial argument
p−1
∏

s=1

(t− ǫs/ǫp−s)

has coefficients in Z. By Lemma 11.6 its zeros are roots of unity. Lemma
11.4 yields

ǫ/ǫp−1 = ±ζu

for integer u. Since p is odd either u or u+ p is even, so

ǫ/ǫp−1 = ±ζ2g (11.4)

for 0 < g ∈ Z.
The crucial step now is to find out whether the sign in (11.4) is positive

or negative. To do this we work out the left-hand side modulo l, as follows.
We know that for some v ∈ Z

ζ−gǫ ≡ v (mod l).

Taking complex conjugates,

ζgǫp−1 ≡ v (mod
〈

λ̄
〉

).

But λ̄ = 1− ζp−1 is an associate of λ, so in fact
〈

λ̄
〉

= l. Eliminate v to get

ǫ/ǫp−1 ≡ ζ2g (mod l).

A negative sign in Equation (11.4) leads to

l|2ζ2g.
Taking norms,

N(l)|2p−1

which contradicts Lemma 11.3(b). So the sign in (11.4) is positive. Hence

ζ−gǫ = ζgǫp−1.

The two sides of this equation are complex conjugates, so are in fact real.
Therefore ζ−gǫ = r ∈ R. �
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11.4 Kummer’s Theorem

In order to state Kummer’s special case of Fermat’s Last Theorem, we
need a technical definition. A prime p is regular if it does not divide the
class-number of Q(ζ), where ζ = e2πi/p. By Section 10.3, p = 3, 5, 7 are
regular. Further discussion of the regularity property is postponed until
Section 11.5, for we are now in a position to state and prove:

Theorem 11.8. If p is an odd regular prime then the equation

xp + yp = zp

has no solutions in integers x, y, z satisfying

p ∤ x, p ∤ y, p ∤ z.

Proof: Consider instead the equation

xp + yp + zp = 0 (11.5)

which exhibits greater symmetry. Since we can pass from this to the Fermat
equation by changing z to −z, it suffices to work on (11.5). Assume, for a
contradiction, that there exists a solution (x, y, z) of (11.5) in integers prime
to p. We may as usual assume further that x, y, z are pairwise coprime.
Factorize (11.5) in Q(ζ) to obtain

p−1
∏

j=0

(

x+ ζjy
)

= −zp

and pass to ideals:
p−1
∏

j=0

〈

x+ ζjy
〉

= 〈z〉p . (11.6)

First we establish that all factors on the left of this equation are pairwise
coprime. For suppose p is a prime ideal dividing

〈

x+ ζky
〉

and
〈

x+ ζly
〉

with 0 ≤ k < l ≤ p− 1. Then p contains

(x+ ζky)− (x+ ζly) = yζk(1− ζl−k).

Now 1 − ζl−k is an associate of 1 − ζ = λ, and ζk is a unit, so p contains
yλ. Since p is prime either p|y or p|λ. In the first case p also divides z by
(11.6). Now y and z are coprime integers, so there exist a, b ∈ Z such that
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az + by = 1. But y, z ∈ p so 1 ∈ p, a contradiction. On the other hand,
since N(l) = p, Theorem 5.14(a) implies that l is prime, so if p|λ then p = l.
Then l|z so

p = N(l)|N(z) = zp−1

and p|z contrary to hypothesis.
Uniqueness of prime factorization of ideals now implies that each factor

on the left of Equation (11.6) is a pth power of an ideal, since the right-
hand side is a pth power and the factors are pairwise coprime. In particular
there is an ideal a such that

〈x+ ζy〉 = ap.

Thus ap is principal. Regularity of p means that p ∤ h, the class-number of
Q(ζ), and then Proposition 9.8(b) tells us that a is principal, say a = 〈δ〉.
Therefore

x+ ζy = ǫδp

where ǫ is a unit.
Now we use Lemma 11.7 to conclude that

x+ ζy = rζgδp

where r is real. By Lemma 11.5 there exists a ∈ Z such that

δp ≡ a (mod l p).

Hence
x+ ζy ≡ raζg (mod l p).

Lemma 11.3 (a) shows that 〈p〉 | l p, so

x+ ζy ≡ raζg (mod 〈p〉).

Now ζ−g is a unit, so

ζ−g(x+ ζy) ≡ ra (mod 〈p〉).

Take complex conjugates:

ζg(x+ ζ−1y) ≡ ra (mod 〈p〉).

Eliminate ra to obtain the important congruence

xζ−g + yζ1−g − xζg − yζg−1 ≡ 0 (mod 〈p〉). (11.7)

Observe that 1 + ζ is a unit (put t = −1 in Equation (3.3)). We
investigate possible values for g in Equation (11.7).
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Suppose g ≡ 0 (mod p). Then ζg = 1, the terms with x cancel, and
(11.7) becomes

y(ζ − ζ−1) ≡ 0 (mod 〈p〉 )
so

y(1 + ζ)(1 − ζ) ≡ 0 (mod 〈p〉 ).
Since 1 + ζ is a unit,

yλ ≡ 0 (mod 〈p〉 ).

Now 〈p〉 = 〈λ〉p−1
and p − 1 ≥ 2, so we have λ|y. Taking norms, p|y,

contrary to hypothesis. Hence g 6≡ 0 (mod p). A similar argument shows
that g 6≡ 1 (mod p).

Rewrite (11.7) in the form

αp = xζ−g + yζ1−g − xζg − yζg−1

for some α ∈ Z[ζ]. By the previous paragraph no exponent −g, 1−g, g, g−1
is divisible by p. Now

α =
x

p
ζ−g +

y

p
ζ1−g − x

p
ζp − y

p
ζg−1. (11.8)

Moreover, α ∈ Z[ζ] and {1, ζ, . . . , ζp−2} is a Z-basis. Hence if all four expo-
nents are incongruent modulo p we have x/p ∈ Z, contrary to hypothesis.
So some pair of exponents must be congruent modulo p. Since g 6≡ 0, 1
(mod p) the only possibility left is that 2g ≡ 1 (mod p).

But now (11.8) can be rewritten as

αpζg = x+ yζ − xζ2g − yζ2g−1

= (x− y)λ.

Taking norms we get p|(x− y), so

x ≡ y (mod p).

By the symmetry of (11.5),

y ≡ z (mod p)

and hence

0 ≡ xp + yp + zp ≡ 3xp (mod p).

Since p ∤ x we must have p = 3.
It remains to deal with the possibility p = 3. Note that modulo 9, cubes

of numbers prime to p (namely 1, 2, 4, 5, 7, 8) are congruent either to 1
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or to −1. Hence modulo 9 a solution of (11.5) in integers prime to 3 takes
the form

±1± 1± 1 ≡ 0 (mod 9)

which is impossible. Hence finally p 6= 3, a contradiction. �

A complete solution of Fermat’s Last Theorem (for regular primes!) is
thus reduced to the case where one of x, y, or z is a multiple of p. Kummer’s
proof of this case also depends heavily on ideal theory and, although long,
would be accessible to us at this stage, except for one fact. We need to
know that (still for p regular) if a unit in Q(ζ) is congruent modulo p to a
rational integer, then it is a pth power of another unit in Q(ζ). The proof
of this requires new methods. It seems best to refer the reader to Borevič
and Šafarevič [8] pages 378–81 for the missing details.

11.5 Regular Primes

Theorem 11.8 is, of course, useless without a test for regularity. There is,
in fact, quite a simple test, but once more the proofs are far beyond our
present methods. We nonetheless sketch what is involved, and again refer
the reader to Borevič and Šafarevič [8] for details.

Everything rests on a remarkable gadget known as the analytic class-
number formula. Let K be a number field, and define the Dedekind zeta-
function

ζK(x) =
∑

N(a)−x

where a runs through all ideals of the ring of integers O of K, and for the
moment 1 < x <∞. The key formula is

lim
x→1

(x − 1)ζK(x) =
2s+tπtR

m
√

|∆|
h

in which s and t are the number of real, or complex conjugate pairs of,
monomorphisms K → C; m is the number of roots of unity in K; ∆ is the
discriminant of K; R is a new constant called the regulator of K; and h is
the class-number.

The point is that nearly everything on the right, except h, is quite easy
to compute, though R is much harder than the rest. If we could evaluate
the limit on the left we could then work out h. To evaluate this limit
we first extend the definition of ζK(x) to allow complex values of x, and
then use powerful techniques from complex function theory. These involve
another gadget known as a Dirichlet L-series.
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In the case K = Q(ζ) for ζ = e2πi/p, p prime, the analysis leads to an
expression for h in the form of a product

h = h1h2.

In this, h2 is the class-number of the related number field Q(ζ + ζ−1), and
h1 is a computable integer. This would not be very helpful, except that it
can be proved that if h1 is prime to p, then so is h2. Therefore h is prime
to p, or equivalently p is regular, if and only if h1 is prime to p.

Analysis of h1 leads to a criterion: h1 is divisible by p if and only if one
of the numbers

Sk =

p−1
∑

n=1

nk (k = 2, 4, . . . , p− 3)

is divisible by p2.
The numbers Sk have long been associated with the Bernoulli numbers

Bk defined by the series expansion

t

et − 1
= 1 +

∞
∑

m=1

Bm

m!
tm.

Their values behave very irregularly: for m odd 6= 1 they are zero, for
m = 1 we have B1 = − 1

2 , and for even m the first few are:

B2 = 1
6 B4 = − 1

30 B6 = 1
42 B8 = − 1

30

B10 = 5
66 B12 = − 691

2730 B14 = 7
6 B16 = − 3617

510

The connection between the Sk and the Bk may be shown to give:

Criterion 11.9. A prime p is regular if and only if it does not divide the
numerators of the Bernoulli numbers B2, B4, . . . , Bp−3. �

The first 10 irregular primes, found from this criterion, are 37, 59, 67,
101, 103, 131, 149, 157, 233, 257. As a check, it is possible to compute the
number h1, with the results in Table 11.1. Observe that h1 is divisible by
p exactly in the cases p = 37, 59, 67 (marked in bold type) as expected.

11.6 Exercises

1. If x, y, z are integers such that x2 + y2 = z2, prove that at least one
of x, y, z is a multiple of 3, at least one is a multiple of 4, and at
least one is a multiple of 5.
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p h1 p h1
3 1 43 211
5 1 47 5 · 139
7 1 53 4889
11 1 59 3 · 59 · 233
13 1 61 41 · 1861
17 1 67 67 · 12739
19 1 71 72 · 79241
23 3 73 89 · 134353
29 23 79 5 · 53 · 377911
31 32 83 3 · 279405653
37 37 89 113 · 118401449
41 112 97 577 · 3457 · 206209

Table 11.1. Values of the class-number h1.

2. Show that the smallest value of z for which there exist four distinct
solutions to x2 + y2 = z2 with x, y, z pairwise coprime (not counting
sign changes or interchanges of x, y as distinct) is 1105, and find the
four solutions.

3. Show that there exist no solutions in non-zero integers to the equation
x3 + y3 = 3z3.

4. Show that the general solution in rational numbers of the equation

x3 + y3 = u3 + v3

is

x = k(1− (a− 3b)(a2 + 3b2)),

y = k((a+ 3b)(a2 + 3b2)− 1),

u = k((a+ 3b)− (a2 + 3b2)2),

v = k((a2 + 3b2)2 − (a− 3b)),

where a, b, k are rational and k 6= 0; or x = y = 0, u = −v; or
x = u, y = v, or x = v, y = u. (Hint: write x = X − Y , y = X + Y ,
u = U − V , v = U + V , and factorize the resulting equation in
Q(

√
−3).)

5. For p an odd prime, show that if ζ = e2πi/p, then
√

(

1− ζs

1− ζ
· 1− ζ−s

1− ζ−1

)
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is a real unit in Q(ζ) for s = 1, 2, . . . , p− 1.

6. Let p be an odd prime, ζ = e2πi/p. Kummer’s lemma says that
the units of Z[ζ], thought of in the complex plane C, lie on equally
spaced radial lines through the origin, passing through the vertices
of a regular p-gon (namely the powers ζs). Now 1 + ζ is a unit, so
why does Figure 11.1 not contradict Kummer’s lemma?

Figure 11.1. Why doesn’t this contradict Kummer’s lemma?
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12

The Path to the

Final Breakthrough

In the late 19th and early 20th centuries, the study of Fermat’s Last Theo-
rem built mainly on Kummer’s methods, with the notion of ideal numbers
being supplanted by Dedekind’s theory of ideals in a commutative ring.
The techniques required a high degree of mathematical and computational
facility, and were applied to more and more special cases. For instance, in
1905 Mirimanoff extended Kummer’s results as far as n ≤ 257. In 1908
Dickson generalized the theories of Germain and Legendre by investigating
xn + yn = zn in the case where (n is prime and) none of x, y, z is divisible
by n. Fermat’s Last Theorem was proving to have a nasty sting in its
tail. Despite the apparently simple statement of the problem, the proofs
of special cases were becoming ever more complex, requiring the highly
specialized activity of mathematical experts.

12.1 The Wolfskehl Prize

In 1908 the situation changed dramatically, and the problem was opened
up to other mathematicians and to a wider world of amateurs. The agent
of change was Paul Friedrich Wolfskehl, the son of a wealthy Jewish banker;
he was born in Darmstadt in 1856. He first studied medicine, obtaining

201
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his doctorate in 1880. However, debilitating multiple sclerosis made it
impossible for him to practice surgery, and in 1880 he turned instead to
mathematics. He began this activity in Bonn, but moved to Berlin the fol-
lowing year, where he attended the lectures of the 72-year old Kummer. So
fascinated did Wolfskehl become with the still unproved Last Theorem of
Fermat that he left 100,000 marks in his will, to be awarded to the first per-
son either to prove the theorem or to give a counterexample, see Barner [4].
In today’s currency, this would have been worth around $1.7 million. The
prize was announced by the Royal Society of Science in Göttingen, on 13
September 1908, exactly two years after Wolfskehl’s death: it was to be
claimed on or before 13 September 2007. Although hyperinflation in Ger-
many in the 1920s greatly diminished the value of the bequest, it was still
valued at 75,000 Deutsche marks in modern currency at the end of the 20th
century, thanks to judicious investment. (The mark was replaced by the
euro and euro banknotes were first available in 2002.)

Wolfskehl’s act of altruism proved a mixed blessing to the mathemati-
cal community. In the first year alone, 621 solutions were submitted, and
although the frequency slowly decreased, attempted solutions continued to
flow in for the next ninety years. The total number sent to the Göttingen
Academy has been estimated at over 5,000, and each attempt had to be
read and considered by one of the judges. The endless succession of ‘proofs’
of Fermat’s Last Theorem kept the staff and assistants involved continually
busy. Not only did they have to deal with problems regularly: they could
also become involved in protracted correspondence in addition to the initial
reply. One correspondence on record extended to over sixty communica-
tions.

Other universities did not escape the burden. At the Royal Society
of Science in Berlin the numerous attempted proofs were dealt with by a
single individual, Albert Fleck, who courteously replied to each aspirant,
highlighting the error in the manuscript and succinctly explaining the mis-
take.

Sometimes the solutions were put forward by eminent mathematicians.
Ferdinand Lindemann (1852–1939), who is famous for his proof of the tran-
scendence of π, published a fallacious proof of Fermat’s Last Theorem in
1901. He soon withdrew it, but he continued his efforts with a 64-page
paper in 1908. Fleck showed him his error on pages 23 and 24, render-
ing the remainder of the enterprise worthless. Fleck was a true ‘amateur’
who loved his work: his ‘Fermat Clinic’ at the Berlin Academy consisted
solely of himself, at his desk in his room in the Mathematics Department.
For these efforts, Fleck was awarded the Leibniz silver medal of the Berlin
Mathematical Society in 1915, and he continued in this task until his death
in 1943. As a Jew in Nazi Germany, his final years were blighted by per-
secution and humiliation. As the 20th century continued, the volume of
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solutions diminished, but they continued to arrive at intervals from all
corners of the world. When the Berlin wall was removed, the number of
solutions from Eastern Europe suddenly increased, because academics from
the former Soviet Union were once more able to communicate freely with
the West.

Despite the large number of attempted proofs, the actual advances in
the early 20th century were prosaic and highly technical. In 1909, Wieferich
focused on the case where p has no factors in common with x, y, z, and
proved that if there is a solution then the condition

2p−1 ≡ 1 (mod p2)

must be satisfied. Relationships like this became much more useful with the
arrival of computers in the middle of the 20th century, because it was then
practical to check them for large p. The American mathematician Harry
Schultz Vandiver (1882–1973) introduced methods that made a computa-
tional approach to the full theorem possible for any specific p (not too
large). He had little formal education, and left school early to work in his
father’s firm. In 1904 he collaborated with the 20-year old George Birkhoff
in a paper on the factorization of integers of the form an − bn, becoming
yet another in the long line of amateurs who were fascinated with number
theory. He took a university appointment in 1919, and worked extensively
on Fermat’s Last Theorem: he was awarded the Cole Prize of the American
Mathematical Society in 1931 for this work. His findings built on the work
of Kummer, and were particularly amenable to computation. In 1952, at
the age of seventy, he used a computer to prove Fermat’s Last Theorem
for n ≤ 2, 000. The value of n continued to be raised at intervals over the
years. In 1976, Wagstaff proved the theorem for n ≤ 125, 000, and by 1993
subsequent computations by others had raised this to n ≤ 4, 000, 000, see
Buhler et al. [11].

The methods continued to involve heavy calculations, making painful
step-by-step progress without any simple fundamental insight that ad-
dressed the whole problem in a truly conceptual way. The proof was re-
markably elusive. It seemed that the Wolfskehl Prize would be unclaimed
in the few years left before time ran out in 2007.

12.2 Other Directions

Meanwhile, mathematics was continung to grow in other directions, which
seemed at the time to have nothing whatsoever to do with Fermat’s Last
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Theorem. However, history is littered with cases where mathematicians
attempting to solve one problem ended up formulating and proving some-
thing quite different. Indeed, Kummer’s original breakthrough in his proof
of many cases of Fermat’s Last Theorem occurred when he was working
on a totally different problem in the generalized theory of quadratic reci-
procity. In the same manner, the ingredients that were to lead Wiles to the
final proof of Fermat’s Last Theorem arose in areas which, at first, seemed
to have no possible link with it.

In the last decade of the 19th century, Henri Poincaré developed the new
theory of algebraic topology in his book Analysis Situs (1895). He invented
ways to translate topological problems into algebraic form. He classified
surfaces in terms of their ‘fundamental group’ which, among other things,
gives information about the number of ‘holes’ in the surface and relates
this number to an integer called the ‘genus’. A sphere with no holes has
genus 0, a torus has genus 1, and other surfaces with ‘more holes’ have
genus g ≥ 2.

Initially, this idea seemed to have no relationship with Fermat’s Last
Theorem. However, there is a connection. An integer solution of Fermat’s
equation, say an+bn = cn, corresponds to the rational solution x = a/c, y =
b/c of the polynomial equation

xn + yn − 1 = 0. (12.1)

Therefore Fermat’s Last Theorem is equivalent to showing that this poly-
nomial equation has no rational solutions. The Cambridge mathematician
Louis Mordell had the bright idea of looking not only at the rational solu-
tions of a polynomial equation Q(x, y) = 0 with rational coefficients, but
also at its complex solutions. Topologically, the complex solutions of (12.1)
are related to a surface whose genus happens to be (n − 1)(n − 2)/2. For
n ≥ 4, the genus is therefore 2 or more. In 1922 Mordell formulated what
is now called the Mordell Conjecture: a polynomial equation Q(x, y) = 0
with rational coefficents and genus g ≥ 2 has only finitely many rational
solutions. If this could be proved, then it would immediately follow that
the Fermat equation an + bn = cn (n ≥ 4) has at most a finite number of
integer solutions.

At first this seemed not to carry the Fermat quest very far forward. To
start with, it was an unproved conjecture. Even if it were proved, it would
only show that the equation has a finite number of solutions, when what
we actually wish to show is that there are none. Nevertheless, the Mordell
Conjecture turned out to be an important step towards the final proof of
Fermat’s Last Theorem. Early work of Weil [87] led to significant progress
in special cases, and the full Mordell Conjecture was finally proved by
Gerd Faltings in 1983, see Bloch [7]. The proof was immediately followed
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by new results. In 1985, two different papers were published to confirm
that Fermat’s Last Theorem is true for ‘almost all’ n. Andrew Granville
and ‘Roger’ Heath-Brown showed that the proportion of those n for which
Fermat’s Last Theorem is true tends to 1 as n becomes large. It is a
remarkable result, but still not the full proof that was so eagerly being
sought.

12.3 Modular Functions and Elliptic Curves

Other ideas of Poincaré also proved to be seminal in the proof of Fermat’s
Last Theorem, although again the link was not obvious when they were
first introduced. As a visual thinker, Poincaré loved to study systems that
have symmetry. An area of particular interest was that of symmetries in
complex function theory. The context for this work requires:

Definition 12.1. Let a, b, c, d ∈ C with ad− bc 6= 0. The function

g(z) =
az + b

cz + d

is called a Möbius map or bilinear map.

Classically these maps are also called Möbius transformations or bilinear
transformations.

Poincaré studied complex functions f(z) that remain invariant when
their domains are operated on by a Möbius map (12.1) for integers a, b, c, d.
That is, functions such that

f

(

az + b

cz + d

)

= f(z) ∀z.

It can be checked that these maps form a group under composition.
When z = −d/c, the image under the transformation is infinite, so that to
obtain a more satisfactory theory, it is best to adjoin the point at infinity
to the complex plane to give a surface that is topologically like the surface
of a sphere. Functions that are invariant under a countably infinite group
of Möbius maps are called automorphic.

Poincaré went further, and considered those functions transforming the
upper half plane (z = x + iy where y > 0) to itself that remain invariant
under the same kinds of map. Adding one or two technical conditions,
he developed a theory of modular functions. These will be discussed in
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Chapter 13. For the moment, it is sufficient to know that modular functions
have properties that eventually made them a pivotal idea in the proof of
Fermat’s Last Theorem.

The introduction of complex numbers into the study of Fermat’s Last
Theorem—particularly the study of polynomial equations with rational
coefficients, as in the Mordell Conjecture—played another important role.
This relates to elliptic curves—curves defined by the formula

y2 = Ax3 +Bx2 + Cx+D

where A,B,C,D are all rational. The trick that opens up a route to a
proof of Fermat’s Last Theorem can be formulated as follows: imagine
this equation for complex x and y, and to attempt to parametrize it with
functions x = f(z), y = g(z) satisfying the equation

g(z)2 = Af(z)3 +Bf(z)2 + Cf(z) +D.

However, this point of view on the ideas involved is a fairly recent one:
the early formulations were stated in more technical ways. See Rubin and
Silverberg [70].

12.4 The Taniyama–Shimura–Weil Conjecture

In 1955, a highly significant step was taken by two Japanese mathemati-
cians who were planning a conference in Tokyo on algebraic number the-
ory. Yutaka Taniyama was interested in elliptic curves. He had a powerful
intuitive grasp of mathematics but was prone to making errors. But his
friend Goro Shimura, a much more formal mathematician, realised that
Taniyama had an instinctive ability to imagine new relationships that were
not available to more careful thinkers. At their conference they presented
a number of problems for consideration by the participants. Four of these,
proposed by Taniyama, dealt with possible relationships between elliptic
curves and modular functions. From these developed what became known
as the Taniyama–Shimura–Weil Conjecture. This conjecture hypothesized
that every elliptic curve can be parametrized by modular functions. (Its
technical statement was different, and only much later was it reinterpreted
in this way as a result of other discoveries in the area.)

At the time this was a surprising idea to most workers in the field, who
saw elliptic curves and modular functions as inhabiting quite different parts
of mathematics, so at first the conjecture was not taken seriously. Shimura
left Tokyo for Princeton in 1957, resolving to return in two years to continue
work with his colleague. His plans were not realised: in November 1958
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Taniyama committed suicide. A letter left beside his body explained that
he did not really know why he had decided on this action: simply that he
was in a frame of mind where he had lost confidence in his future. He was
due to be married within a month. A few weeks later his fiancée also took
her own life. They had promised each other they would never be parted
and she chose to follow him in death.

Shimura reacted to this double tragedy by devoting his energies to
understanding the relationship between elliptic curves and modular func-
tions. Over the years he gathered so much supporting evidence that the
Taniyama–Shimura–Weil Conjecture became more widely appreciated. It
occupies a pivotal position between two different areas of mathematics.
Both of these areas had been studied intensely, but had remained separate.
If the conjecture were true, then unsolved problems in one area could be
translated into the language and concepts of the other, and perhaps solved
by the novel methods available there.

In the 1960s and 1970s, hundreds of mathematical papers appeared
which showed that if the Taniyama–Shimura–Weil Conjecture were true,
then other—very important—results would follow. A whole mathematical
industry was being built on a principle that still eluded proof.

12.5 Frey’s Elliptic Equation

In the depths of the Black Forest in Germany, near the town of Ober-
wolfach, is a retreat for mathematical researchers, where they can gather
in a relaxed environment to share their ideas. In the summer of 1984 a
group of number theorists assembled to discuss their latest ideas on elliptic
equations. In a lecture at the meeting Gerhard Frey, from Saarbrucken,
formulated an idea that forever changed the landscape in the search for a
proof of Fermat’s Last Theorem.

In common with almost all of the great breakthroughs in number theory,
Frey’s idea depended on an ingenious calculation. He made the assumption
that a genuine solution to Fermat’s equation exists, so that an + bn = cn

where a, b, c are integers and n > 2. Such a solution would, of course, be
a counterexample to Fermat’s Last Theorem. He then wrote the following
elliptic equation on the board:

y2 = x(x + an)(x− bn)

= x3 + (an − bn)x2 − anbnx

which later became known as the Frey curve. He explained that this equa-
tion has very special properties. For instance, the ‘discriminant’ of such an
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equation is defined to be

(x1 − x2)
2(x2 − x3)

2(x3 − x1)
2

where x1, x2, x3 are the roots of the right-hand side. In this case x1 =
0, x2 = −an, x3 = bn, so the discriminant is

(−an − bn)2(bn − 0)2(0− (−a)n)2 = c2nb2na2n = (abc)2n

(using an + bn = cn). Frey remarked that it is highly unusual for a dis-
criminant to be a perfect power in this way, and went on to suggest that
the equation has other equally strange properties which mean that it con-
tradicts the Taniyama–Shimura–Weil Conjecture. He was unable to prove
this in full, but he offered convincing evidence for such a connection. So,
if the Taniyama–Shimura–Weil Conjecture is true, then there cannot be
any solution of the Fermat equation . . . so Fermat’s Last Theorem must
be true.

12.6 The Amateur who Became a Model Professional

Andrew Wiles now enters the story. His love of mathematics dated from his
childhood in Cambridge. As he recalled in the BBC Television Programme
Horizon on 27 September 1997:

I was a 10-year-old, and one day I happened to be looking in my local
public library and I found a book on math and it told a bit about
the history of this problem—that someone had resolved this problem
300 years ago, but no one had ever seen the proof, no one knew if
there was a proof, and people ever since have looked for the proof.
And here was a problem that I, a 10-year-old, could understand,
but none of the great mathematicians in the past had been able to
resolve. And from that moment of course I just tried to solve it
myself. It was such a challenge, such a beautiful problem.

This problem was Fermat’s Last Theorem. It became an obsession. As
a teenager, Wiles reasoned that Fermat would have had only limited re-
sources, which did not include the more subtle theories that came after
him. Wiles therefore felt that it was worthwhile to attack Fermat’s Last
Theorem using only the knowledge that he already had from school. As his
interest developed, though, he began to read the literature on the subject,
and to delve more and more deeply into it.

In 1971 he went to Merton College, Oxford, to study mathematics. Af-
ter graduating in 1974 he moved to Clare College, Cambridge, to study for
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a doctorate. At the time he wanted to pursue his quest for a proof of Fer-
mat’s Last Theorem, but his PhD supervisor John Coates advised against
this, because it was possible to spend many years working on the prob-
lem but getting nowhere. Instead, Wiles worked in his supervisor’s area of
expertise which happened to be the Iwasawa theory of elliptic curves—a
fortuitous choice, given how the story would later turn out.

Wiles was a Junior Research Fellow at Clare College from 1977 to 1980,
spending a period during this time at Harvard. In 1980 he was awarded his
doctorate, and then he spent a time at Bonn before taking a post at the
Princeton Institute for Advanced Study in 1981. He became a professor at
Princeton University in 1982. He was awarded a Guggenheim Fellowship
to visit the Institut des Hautes Études Scientifiques and the École Normale
Supérieure in Paris during 1985–86, and it was here that events occurred
which were to change his life.

In 1986, Ken Ribet completed a chain of arguments that began with the
Frey curve and used ideas of Jean-Pierre Serre on modular Galois groups, to
prove Frey’s contention that the Taniyama–Shimura–Weil Conjecture im-
plies Fermat’s Last Theorem. Wiles took this as an opportunity to begin
work in earnest. If he could prove the Taniyama–Shimura–Weil Conjec-
ture, then he would finally crack the problem that had defeated the entire
mathematical community for nearly three hundred and fifty years.

He soon learned that so many people continued to have an interest in
Fermat’s Last Theorem that talking about it would lead to wide-ranging
discussions that would use up valuable time. So for the next seven years
he worked on the problem in secret. As he worked, only his wife, and
later his young children and his Head of Department, were aware of what
he was doing. He spent his life on his mathematics and with his family.
When he got stuck, he took a walk down the road to the lake near the
Princeton Institute. Sometimes the combination of relaxation and deep
incubation of ideas would suddenly come together in a new revelation. He
found it necessary always to have a pencil and paper with him, to write
down anything that occurred before it slipped his mind.

In 1988 he was stunned to see an announcement in the Washington Post
and the New York Times that Fermat’s Last Theorem had been proved by
Yoichi Miyaoka of Tokyo University. Miyaoka also translated the number-
theoretic problem into one in another area of mathematics, but he related
the problem to differential geometry, not elliptic curves. He presented the
first outline of his proof at a seminar in Bonn. Two weeks later he released
a five-page algebraic proof, and close scrutiny by other mathematicians
began. But soon his ‘theorem’ was seen to contradict a result in geometry
that had been proved conclusively several years before. A fortnight later,
Gerd Faltings pinpointed the fatal flaw in Miyaoka’s proof. Within two
months the consensus was that Miyaoka had failed. Wiles could breathe
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again and continue his work.
In the next three years he made considerable progress with various parts

of the proof. As he explained later,

Perhaps I can best describe my experience of doing mathematics in
terms of a journey through a dark unexplored mansion. You enter
the first room of the mansion, and it’s completely dark. You stumble
around bumping into the furniture, but gradually you learn where
each piece of furniture is. Finally, after six months or so, you find
the light switch, you turn it on, and suddenly it’s all illuminated.
You can see exactly where you were. Then you move into the next
room and spend another six months in the dark. So each of these
breakthroughs, while sometimes they’re momentary, sometimes over
a period of a day or so, they are the culmination of—and couldn’t
exist without—the many months of stumbling around in the dark
that preceded them.

He tried to use the Iwasawa theory that he had studied for his PhD.
He knew that the theory as it stood would be of little help, so he tried to
generalize it and fix it up to attack his difficulties. It didn’t work. In 1991,
after a period of getting nowhere, he met Coates at a conference, who told
him about something that appeared to bridge the gap. A brilliant young
student, Mattheus Flach, had just written a beautiful paper analysing el-
liptic equations. Wiles took a look at the work and concluded that it was
exactly what he needed. Progress thereafter was more rapid.

In 1993 Wiles gave a series of three lectures at the Isaac Newton Insti-
tute in Cambridge, England, on Monday, Tuesday, and Wednesday 21–23
June. The title of the series was ‘Modular forms, elliptic curves and Galois
representations’. With typical modesty, he made no advance announce-
ments of his recent activity. Even so, many of the giants of number theory
realised that something special was about to happen, and they attended
the lectures—some with cameras ready to record the event for posterity. In
the course of his lectures, Wiles proved a partial version of the Taniyama–
Shimura–Weil Conjecture. It was sufficiently powerful to have a very spe-
cial corollary. At 10:30 am, at the end of his third lecture, he wrote this
corollary on the blackboard. It was the statement of Fermat’s Last Theo-
rem. At this point he turned to the audience, and as he sat down he said
‘I will stop here.’
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12.7 Technical Hitch

Wiles was not allowed to stop there. His proof now had to be subject to
the usual reviewing process, and soon doubts began to arise. In response
to a query from a colleague, Nick Katz, he realised that there was a hole
in his use of the Flach technique, employed in the final stages of his proof.
On 4 December 1993 he issued a statement that in the reviewing process
a number of issues had arisen, most of which had been resolved. However,
in view of the speculation buzzing around at the time, he acknowledged
that a certain problem had occurred, and he wished to withdraw his claim
that he had a proof. Despite this, he said that he remained confident that
he could repair the difficulty using the methods he had announced in his
Cambridge lectures.

His life was suddenly in turmoil. Instead of being able to work in secret,
his difficulties were now public knowledge. In view of the many false proofs
of Fermat’s Last Theorem that had preceded Wiles’s announcement, many
mathematical colleagues began to voice doubts about the validity of his
proof. In March 1994, in Scientific American, Faltings wrote:

If it were easy, he would have solved it by now. Strictly speaking, it
was not a proof when it was announced.

In the same magazine, André Weil was even more damning:

I believe he has had some good ideas in trying to construct the
proof, but the proof is not there. To some extent, proving Fermat’s
Theorem is like climbing Everest. If a man wants to climb Everest
and falls short of it by 100 yards, he has not climbed Everest.

From the beginning of 1994, Wiles began to collaborate with his former
student Richard Taylor in an attempt to fill the gaps in the proof. They
concentrated on the step based on Flach’s method, which was now seen
to be inadequate, but they were unable to find an alternative argument.
In August, Wiles addressed the International Congress of Mathematicians
and had to announce that he was no nearer to a solution. Taylor suggested
that they revisit Flach’s method to see if another approach were possible,
but Wiles was sure it would never work. Nevertheless, he agreed to give it
another try to convince Taylor that it was hopeless.

12.8 Flash of Inspiration

They worked on alternative approaches for a couple of weeks, with no
result. Then Wiles suddenly had a blinding inspiration as to why the
Flach technique failed:
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In a flash I saw that the thing that stopped it working was something
that would make another method I had tried previously work.

His inspiration cut through the final difficulties. On 6 October he sent
the new proof to three mathematicians primed for the job, and all three
reviewers found the new ideas satisfactory. The new method was even
simpler than his earlier failed attempt, and one of the three, Faltings,
even suggested a further simplification of part of the argument. By the
following year there was general agreement that the proof was correct and
complete. When Taylor lectured at the British Mathematical Colloquium
in Edinburgh in April 1995, there were no longer any real doubts about its
validity.

The proof was finally published in May 1995 in two papers in Annals
of Mathematics. The first, from page 443 to 551, was Wiles’s paper on
‘Modular elliptic curves and Fermat’s Last Theorem’, the second, from page
553 to 572, was the final step by Taylor and Wiles, entitled ‘Ring theoretic
properties of Hecke algebras’. See Wiles [90], Taylor and Wiles [82], and
the survey by Darmon et al. [21].

In the years that followed, Wiles was fêted around the world. In 1995 he
received the Schock Prize in Mathematics from the Royal Swedish Academy
of Sciences and the Prix Fermat from the Université Paul Sabatier. The
American Mathematical Society awarded him the Cole Prize in Number
Theory, worth $4,000. He was presented with a $50,000 share in the 1995/6
Wolf Prize by the Israeli President Ezer Weizman for his ‘spectacular con-
tributions to number theory and related fields, major advances on funda-
mental conjectures, and for settling Fermat’s Last Theorem’. The other
recipient, Robert Langlands, was honoured for his own work in number
theory, automorphic forms, and group representations. In 1996 Wiles re-
ceived the National Academy of Sciences Award ($5,000) followed in 1997
by a five year MacArthur Fellowship ($275,000). On 27 June 1997, after
his proof had been published for the statutory two years laid down in the
rules, he received the Wolfskehl Prize. A decade later, the hundred-year
period laid down in the original bequest would have run out.

There is no Nobel Prize in mathematics: the equivalent honour is the
Fields Medal, awarded to up to four mathematicians every four years at the
International Congress of Mathematicians. But by tradition the medal is
limited to individuals under the age of forty, andWiles was just over this age
when he proved Fermat’s Last Theorem. So in August 1998 the Congress
celebrated this event at the Fields Medal Ceremony by awarding Wiles a
special Silver Plaque—a unique honour in the history of the organization.
In 1999 he won the King Faisal International Prize for Science ($200,000),
being nominated for this honour by the London Mathematical Society.
In addition he has been awarded honorary degrees at many universities
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around the world and, in the New Years Honours List in 2000, he became
Sir Andrew Wiles, Knight Commander of the British Empire. The ten-
year-old boy had grown to achieve his lifetime ambition, and had been
lionized around the world for his success. He had conquered a problem
that had foiled the world of mathematicians for 358 years.

12.9 Exercises

These exercises really are intended to be taken seriously. Don’t just be
amused (or not, according to taste): do them.

1. Think about how creative mathematics needs hard work (first) and
relaxation. Note how the great insights mentioned in this chapter
occurred. Does this suggest any way to help yourself understand
difficult mathematics?

2. Find a lake or other idyllic setting; relax and think great thoughts.

3. Prepare yourself for the rigours to come. Subtler details will be out-
lined in the next two chapters.



This page intentionally left blankThis page intentionally left blank



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 215 — #231
✐

✐

✐

✐

✐

✐

13

Elliptic Curves

In this chapter we introduce the important notion of an ‘elliptic curve’.
Elliptic curves are a natural class of plane curves that generalise the straight
lines and conic sections studied in nearly all university mathematics courses
(and many high school courses). However, the study of elliptic curves
involves two new ingredients. First, it is useful to consider complex curves,
not just real ones. Second, for some purposes it is more satisfactory to work
in complex projective space rather than the complex plane C2. (Algebraic
geometers call C the complex line because it is 1-dimensional over C. So
C2 becomes the complex plane.) We introduce these refinements in simple
stages.

The main topics dicussed in this chapter are:

• Lines and conic sections in the plane.

• The ‘secant process’ on a conic section and its relation to Diophantine
equations.

• The definition and elementary properties of elliptic curves.

• The ‘tangent/secant’ process on an elliptic curve and the associated
group structure.

Our point of view emphasises analogies between conic sections, where
the key ideas take on an especially familiar form, and elliptic curves. This
should help to explain the origin of the ideas involved in the theory of
elliptic curves, and make them appear more natural.

215
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216 13. Elliptic Curves

13.1 Review of Conics

The simplest real plane curves are straight lines, which can be defined as
the set of solutions (x, y) ∈ R2 to a linear (or degree 1) polynomial equation

Ax+By + C = 0 (13.1)

where A,B,C ∈ R are constants and (A,B) 6= 0.
Next in order of complexity come the conic sections or conics, defined

by a general quadratic (or degree 2) polynomial equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (13.2)

where A,B,C,D,E, F ∈ R are constants and A, B, C 6= 0.
It is well-known that conic sections can be classified into seven different

types: ellipse, hyperbola, parabola, two distinct lines, one ‘double’ line,
a point, or empty. A good way to see this is to transform (13.2) into a
simpler form, usually known as a normal form, by a change of coordinates.
In fact, a general invertible linear change of coordinates

X = ax+ by

Y = cx+ dy

(with ad − bc 6= 0 for invertibility) transforms (13.2) into one or other of
the forms

ǫ1X
2 + ǫ2Y

2 + P = 0

X2 + Y +Q = 0

where P,Q ∈ R and ǫ1, ǫ2 = 0, 1, or −1.
The usual proof of this (see for example Loney [48] page 323, Anton [1]

page 359, or Roe [68] page 251) begins by rotating coordinates orthogonally
to diagonalise the quadratic form Ax2 +Bxy +Cy2, which changes (13.2)
to the slightly simpler form

λ1x
′2 + λ2y

′2 + αx′ + βy′ + γ = 0.

If λ1 6= 0 then the term αx′ can be eliminated by ‘completing the square’,
and similarly if λ2 6= 0 then the term βy′ can be eliminated. The coefficients
of x′2 and y′2 can be scaled to 0, 1, or −1 by multiplying them by a nonzero
constant; furthermore, x′ and y′ can be interchanged if necessary. Finally,
the entire equation can be multiplied throughout by −1. The result is the
following catalogue of normal forms:

Theorem 13.1. By an invertible linear coordinate change, every conic can
be put in one of the following normal forms:
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(1) X2 + Y 2 + P = 0

(2) X2 − Y 2 + P = 0

(3) X2 + Y +Q = 0

(4) X2 +Q = 0 �

In case (1) we get an ellipse (indeed a circle) if P < 0, a point if P = 0,
and the empty set if P > 0. In case (2) we get a (rectangular) hyperbola if
P 6= 0 and two distinct intersecting lines if P = 0. Case (3) is a parabola.
Case (4) is a pair of parallel lines if Q < 0, a ‘double’ line if Q = 0, and
empty if Q > 0.

Transforming back into the original (x, y) coordinates, circles trans-
form into ellipses, rectangular hyperbolas transform into general hyper-
bolas, parabolas transform into parabolas, lines transform into lines, and
points transform into points.

Even the conics, then, exhibit a rich set of possibilities when viewed
as curves in the real plane R2. The situation simplifies somewhat if we
consider the same equations, but in complex variables; it simplifies even
more if we work in projective space. In complex coordinates, the map
Y 7→ iY sends Y 2 to −Y 2, a scaling that cannot be performed over the
reals. This coordinate transformation sends normal form (1) to normal
form (2) and thereby abolishes the distinction between hyperbolas and
ellipses.

13.2 Projective Space

We now show that in projective space, all the different types of conic section
other than the double line and the point can be transformed into each
other. This is the case even in real projective space. First, we recall the
basic notions of projective geometry. For further details, see Coxeter [19],
Loney [48], or Roe [68].

Definition 13.2. The real projective plane RP2 is the set of lines L through
the origin in R3. Each such line is referred to as a projective point. Each
plane through the origin in R3 is called a projective line. A projective point
is contained in a projective line if and only if the corresponding line through
the origin is contained in the corresponding plane through the origin.

A projective transformation or projection is a map from RP2 to itself of
the form L 7→ φ(L), where φ is an invertible linear transformation of R3.
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Two configurations of projective lines and projective points are projec-
tively equivalent if one can be mapped to the other by a projection.

This definition may seem strange when first encountered, but it repre-
sents the distillation of a considerable effort on the part of geometers to
‘complete’ the ordinary (or affine) plane R2 by adding ‘points at infinity’
at which parallel lines can be deemed to meet. We explain this idea in a
moment, but first we record:

Proposition 13.3. In the projective plane, any two projective lines meet in
a unique projective point, and any two projective points can be joined by a
unique projective line.

Proof: These properties follow from the analogous properties of lines and
planes through the origin in R3. �

Now we describe the interpretation of the projective plane in terms of
points at infinity. One way to see how this comes about is to consider
the plane P = {(x, y, z) : z = 1} ⊆ R3. Each point (x, y, 1) ∈ P can be
identified with a point (x, y) in the affine plane R2. We write (x, y) ≡
(x, y, 1). Alternatively, the point (x, y, 1) can be identified with the line
through the origin in R3 that passes through it. Nearly every line through
the origin in R3 is of this form: the exceptions are precisely the lines that
lie in the plane Q = {(x, y, z) : z = 0}, that is, the lines parallel to P .

In the same way, any straight line M in P can be identified with either
a straight line in R2, or with a plane through the origin in R3 — namely,
the unique plane that contains both the origin of R3 and M . Precisely one
plane through the origin of R3 is not of this form, namely, the plane Q that
is parallel to P . See Figure 13.1.

These identifications therefore embed the affine plane R2 in the projec-
tive plane RP2, in such a way that points embed as projective points and
lines embed as projective lines. However, RP2 contains exactly one extra
projective line, called the line at infinity: namely, the projective line that
corresponds to the plane Q through the origin of R3. Moreover, RP2 con-
tains extra projective points that do not correspond to points in R2; indeed,
these are precisely the projective points that lie on the line at infinity, since
they correspond to lines through the origin in R3 that lie in the plane Q.
These are called ‘points at infinity’.

Each point at infinity corresponds to a unique direction in the plane R2,
that is, a set of parallel lines, because any such set is parallel to precisely
one line in the plane Q. In these terms, a direction and its exact opposite,
a 180◦ rotation, are identical. See Figure 13.2.

The key feature of this set-up is:
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Figure 13.1. Construction of the projective plane.

Figure 13.2. Points at infinity correspond to directions in the affine plane.

Lemma 13.4. Any two parallel lines in R2 meet in RP2 at exactly one point
at infinity.

Proof: Suppose J,K are parallel lines in R2. They correspond to projec-
tive lines, namely, the planes J ′,K ′ through the origin that contain J,K
respectively. But these meet in a unique projective point, namely the line
in Q that is parallel to J and K. And this is a point at infinity in RP2.

�
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220 13. Elliptic Curves

There is also a complex analogue:

Definition 13.5. The complex projective plane CP2 is the set of lines (that
is, 1-dimensional vector subspaces over C) through the origin in C3.

Each such line is referred to as a complex projective point.
Each plane through the origin in R3 is called a complex projective line.

For notational convenience and simplicity we break with tradition and
use x, y to denote complex variables, when convenient. The convention
that z = x+ iy is abandoned in this chapter and the next.

In complex projective space it is also the case that any two projective
lines meet in a unique projective point, and any two projective points can
be joined by a unique projective line.

The geometry of projective space, real or complex, is richer than mere
lines. Any curve in R2 or C2 can be embedded in the corresponding RP2

or CP2. If the equation of the curve is polynomial, then this can be done
in a systematic manner, so that ‘points at infinity’ on the curve can also
be defined. The easiest way to achieve this is to introduce ‘homogeneous
coordinates’. Again, the idea is straightforward. A point in RP2 is a
line through the origin in R3. Any nonzero point (X,Y, Z) on that line
defines the line uniquely. So we can use (X,Y, Z) as a system of coor-
dinates. However, this system has two features that distinguish it from
Cartesian coordinates. The first is that all values of X,Y, Z are permit-
ted except (X,Y, Z) = (0, 0, 0). The reason is that there is no unique
line joining (0, 0, 0) to the origin in R3. The second is that (aX, aY, aZ)
represents that same projective point as (X,Y, Z) for any nonzero con-
stant a, since clearly both points define the same line through the ori-
gin of R3. We therefore define an equivalence relation ∼ by (X,Y, Z) ∼
(aX, aY, aZ) for any nonzero constant a. In other words, it is not the values
of (X,Y, Z) that determine the corresponding projective point, but their
ratios.

The embedding of R2 into RP2 defined above, which identifies (x, y) ∈
R2 with (x, y, 1) ∈ P ⊆ R3, also identifies the usual coordinates (x, y) on
R2 with the corresponding coordinates (x, y, 1) on RP2. This represents the
same projective point as (ax, ay, a) for any a 6= 0. In other words, when
Z 6= 0 the projective point (X,Y, Z) is the same as (X/Z, Y/Z, 1) ∈ P . On
the other hand, when Z = 0 the projective point (X,Y, Z) lies in the plane
Q and hence represents a point at infinity.

This system of coordinates (X,Y, Z) on RP2 is known as homogeneous
coordinates. Homogeneous coordinates are really ∼-equivalence classes of
triples (X,Y, Z), but it is more convenient to work with representatives and
remember to take the equivalence relation∼ into account. The choice of the
line at infinity is conventional: in principle any line in RP2 can be deemed
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to be the line at infinity, and there is then a corresponding embedding of
R2 in RP2. Indeed, any projective line in RP2 can be mapped to any other
projective line by a projection, since any plane through the origin in R3

can be transformed into any other plane by an invertible linear map. For
the purposes of this book, however, we employ the convention that Z = 0
defines the line at infinity.

The way to transform a polynomial equation in affine coordinates (x, y)
into homogeneous coordinates is to replace x by X/Z and y by Y/Z, and
then to multiply through by the smallest power of Z that makes the result
a polynomial. For example the Cartesian equation y − x2 = 0 becomes:

(Y/Z)− (X/Z)2 = 0,

Y Z−1 −X2Z−2 = 0,

Y Z −X2 = 0.

Notice that as well as the usual points (x, x2) ≡ (x, x2, 1), this projective
curve also contains the point at infinity given by Z = 0, which forcesX = 0
but any nonzero Y . Since (0, Y, 0) ∼ (0, 1, 0) the parabola contains exactly
one new point at infinity, in addition to the usual points in R2. It is easy
to check that this point lies in the direction towards which the arms of the
affine parabola ‘diverge’, namely the y-axis. See Figure 13.3.

Moreover, adding this point at infinity to the parabola causes it to close
up (since the point at infinity lies on both arms). It is now plausible that the
parabola is just an ellipse in disguise—that is, that they are projectively
equivalent. We can verify this by means of the projection φ(X,Y, Z) =
(X,Y +Z, Y −Z), which transforms Y Z −X2 = 0 into Y 2 −Z2 −X2 = 0
or X2 + Z2 = Y 2. Compose with ψ(X,Y, Z) = (X,Z, Y ) to turn this
into X2 + Y 2 = Z2. Finally restrict back to the plane R2 by setting

Figure 13.3. Adding a point at infinity to a parabola.
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(X,Y, Z) = (x, y, 1) and we get x2 + y2 = 1, a circle. Which, of course, is
just a special type of ellipse.

If we had not interchanged Y and Z, the result would have been x2 −
y2 = 1, a hyperbola. So in fact the ellipse, hyperbola, and parabola are all
projectively equivalent over R. So in real projective space the list of conics
collapses to a smaller one. Namely: ellipse (= parabola = hyperbola),
intersecting lines (= pair of parallel lines), double-line, point.

What about complex projective space? Think about it. Hint: the real
surprise is ‘point’.

13.3 Rational Conics and the Pythagorean Equation

There is an interesting link between the geometry of conics and solutions
of quadratic Diophantine equations.

Definition 13.6. A rational line in R2 or C2 is a line

ax+ by + c = 0 (13.3)

whose coefficients a, b, c are rational numbers.
A rational conic in R2 or C2 is a conic

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0 (13.4)

whose coefficients a, b, c, d, e, f are rational numbers.
A rational point in R2 or C2 is a point whose coordinates are rational

numbers.

There are similar definitions for real and complex projective planes.
An intersection point of two rational lines is obviously a rational point.

However, an intersection point of a rational line and a rational conic need
not be rational—for example, consider the intersection of x − y = 0 with
x2 + y2 − 2 = 0, which consists of the two points (±

√
2,±

√
2).

Not all rational conics possess rational points. For an example see
Exercise 1 at the end of this chapter. A necessary and sufficient condition
for a rational conic to possess at least one rational point was proved by
Legendre, and can be found in Goldman [34] page 318. However, many
rational conics do possess rational points, and from now on we work with
such a conic.

Proposition 13.7. Let p be a rational point on a rational conic C. Then any
rational line through p intersects C in rational points.
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Proof: We discuss real conics: the complex case is similar. Let f(x, y) be
a rational conic as in (13.4) and let Ax + By + C = 0 be a rational line.
Suppose that B 6= 0; if not, then A 6= 0 and a similar argument applies.
Their intersection is the set of all (x, y) for which y = (Ax − C)/B and
x satisfies the quadratic equation f(x, (Ax − C)/B) = 0. Suppose that
f(x, (Ax − C)/B) = Kx2 + Lx + M : then K,L,M are rational. This
equation has at least one real root, given by p, so it has two real roots
(which are identical if and only if the line is tangent to the conic at p).
The sum of those roots is −L/K ∈ Q, and the root given by p is rational;
therefore the second root is also rational. �

This result immediately leads to a method for parametrizing all rational
points on a rational conic (provided it possesses at least one rational point).
Let C be a rational conic with a rational point p and let L be any rational
line. For any point q ∈ L the line joining q to p meets C at p, and at some
other point (which is distinct from p unless the line concerned is tangent
to C). Define a map π : L → C by letting π(q) be this second point of
intersection of the line joining q to p. (See Figure 13.4.)

Theorem 13.8. With the above notation, π(q) is rational if and only if q is
rational.

Proof: Clearly π(q) is rational if and only if the line joining p to q is
rational. But this is the case if and only if q is a rational point. �

Example 13.9. Suppose that C is the unit circle x2 + y2 − 1 = 0, which is
a rational conic. It contains the rational point p = (−1, 0). Let L be the
rational line x = 0. The rational points on L are the points (0, t) where
t ∈ Q.

Figure 13.4. Parametrization of the rational points of a rational conic in terms
of the rational points on a rational line.
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The line joining p to (0, t) has equation

y = t(x+ 1)

and this meets the circle at

(x, y) =

(

1− t2

1 + t2
,

2t

1 + t2

)

.

Thus we have the identity

(

1− t2

1 + t2

)2

+

(

2t

1 + t2

)2

= 1

or equivalently

(1 − t)2 + (2t)2 = (1 + t)2

providing solutions of the Diophantine equation x2 + y2 = z2 in rational
numbers. Indeed by Theorem 13.8 every rational solution is of this form.

This is very close to the parametrization of Pythagorean triples obtained
in Lemma 11.1. Indeed, if we set t = r/s we can easily obtain the result of
that lemma.

13.4 Elliptic Curves

Elliptic curves arise from the study of plane cubic curves

∑

i+j≤3

Aijx
iyj = 0 (13.5)

where the Aij are constants and A30A21A12A03 6= 0.

Over the reals, such curves were classified by Newton in (probably)
1668: he distinguished 58 different kinds. See Westfall [89] page 200. As
for conics, the key to such a classification is to transform coordinates so
that (13.5) takes some simpler form. There are several ways to do this. In
order to state the first, we need two definitions:

Definition 13.10. Let C be a curve in the plane (real or complex, affine or
projective). A point x ∈ C is regular if there is a unique tangent to C at
x. Otherwise, x is singular.

The curve C is non-singular if it has no singular points; that is, every
point x ∈ C is regular.
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Figure 13.5. Typical singular points: (left) self-intersection, (right) cusp.

Typical singular points are self-intersections and cusps as in Figure 13.5.
Although it looks as if the tangent at a cusp point is unique, actually there
are three ‘coincident’ tangents—that is, a tangent of multiplicity 3.

Definition 13.11. Two curves C,D ∈ CP2 (or RP2) are projectively equiva-
lent if there is a projection φ such that φ(C) = D.

Theorem 13.12. (Weierstrass Normal Form.) Every nonsingular cubic curve
in CP2 is projectively equivalent to a curve which in affine coordinates takes
the Weierstrass normal form

y2 = 4x3 − g2x− g3 (13.6)

where g2, g3 ∈ C are constants.

Proof: We sketch the proof. The first step is to establish that every
nonsingular cubic curve C has at least one inflexion point. This is a point
at which the tangent line has triple contact with the curve, in the following
sense. Suppose that the equation of the curve is f(x, y) = 0, and let
(ξ, η) ∈ C. A general line through (ξ, η) has equation a(x−ξ)+b(y−η) = 0
for a, b,∈ C. This line meets C at (ξ, η), and in general (since the equation
is cubic) it meets it at two other points. However, the cubic equation that
determines these intersection points may have multiple zeros. The line is
a tangent at (ξ, η) if that point corresponds to a double zero. The point
(ξ, η) is an inflexion if it corresponds to a triple zero.

By writing down the equations for an inflexion point, it can be shown
that any nonsingular cubic curve in CP2 has exactly nine inflexion points,
if multiplicities are taken into account. In particular, it has at least one.
See Brieskorn and Knörrer [9] page 291 for details.

By a projection, we may assume that (0, 0, 1) is an inflexion point and
that the tangent there has equation X = 0. This implies that the cubic
curve has a homogeneous equation of the form

Y 2Z +AXY Z +BY Z2 + CX3 +DX2Z + EXZ2 + FZ3 = 0
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which in affine coordinates becomes

y2 + (Ax+B)y + g(x) = 0 (13.7)

where g(x) is a cubic polynomial. Define new affine coordinates (x′, y′) by

y′ = y +
A

2
x+

B

2
x′ = x.

Then (13.7) transforms into

y′
2
+ h(x′) = 0

where h is a cubic polynomial. There exists a linear change of coordinates
x′′ = px′ + q that puts h(x′) into the form 4x′′3 − g2x

′′ − g3 while leaving
y′ unchanged. �

The coefficient 4 on the x3 term in Weierstrass normal form is tradi-
tional: it could be made equal to 1, but we will shortly see that the 4 is
more convenient in some circumstances. The notation g2, g3 for the linear
and constant coefficients is also traditional.

We may now define an elliptic curve.

Definition 13.13. An elliptic curve is the set of points (x, y) ∈ C2 that
satisfy the equation

y2 = Ax3 +Bx2 + Cx+D (13.8)

where A,B,C,D ∈ C are constants.

Strictly speaking, this defines a complex affine elliptic curve. There is
projective analogue Y 2Z = AX3+BX2Z+CXZ2+DZ3, where (X,Y, Z)
are homogeneous coordinates on CP2. When A,B,C,D ∈ R we can restrict
attention to real variables, getting a real elliptic curve. Moreover, in the
real case we can draw the graph of (13.8) in the plane to illustrate certain
features of the geometry: we do this frequently below. Figure 13.6 shows
the real elliptic curve y2 = 4x3 − 3x+ 2 for which g2 = 3, g3 = −2.

The most important elliptic curves are those for which A,B,C,D are
rational. We call these rational elliptic curves, and omit ‘rational’ whenever
the context permits.



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 227 — #243
✐

✐

✐

✐

✐

✐

13.5. The Tangent/Secant Process 227

Figure 13.6. The real elliptic curve y2 = 4x3 − 3x+ 2.

13.5 The Tangent/Secant Process

In Section 13.1 we showed that the rational points on a rational conic can
be parametrized by the rational points on a rational line, once we know
one rational point on the conic. A similar approach to rational points on a
rational elliptic curve does not lead to such a definitive result, but in some
respects the partial result that is thereby obtained is more interesting.

Proposition 13.14. Over CP2 a rational line cuts a rational elliptic curve
in three points (counting multiplicities). If two of these points are rational,
then so is the third.

Proof: Suppose that the affine equation of the elliptic curve is f(x, y) = 0
and let the line have affine equation ax + by + c = 0. Without loss of
generality assume that b 6= 0, and solve for y, to get y = −(ax + c)/b.
Substitute in f to get f(x,−(ax + c)/b) = 0. This is a cubic polynomial
px3 + qx2 + rx + s with rational coefficients, and its roots determine the
x-coordinates of the intersection points. The corresponding y-coordinates
are equal to −(ax + c)/b, hence are rational if and only if x is rational.
Since the sum of the roots of the cubic is equal to the rational number
−p/q, if two roots are rational then so is the third. �

Incidentally, we stated Proposition 13.14 in projective form because in
the affine case there are occasions when the third root of the cubic is at
infinity. That is, the cubic actually reduces to a quadratic. We slid over
this point in the proof. The proposition implies that once we have found
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Figure 13.7. Constructing new rational points on an elliptic curve.

two rational points on a rational elliptic curve, we can find another by
drawing the line through those points and seeing where else it cuts the
curve, as in Figure 13.7 (left). In fact, we can do slightly better: find one
rational point and see where else the tangent at that point cuts the curve,
Figure 13.7 (right).

13.6 Group Structure on an Elliptic Curve

We now show that the rational points on a rational elliptic curve form an
abelian group, under an operation of ‘addition’ closely related to Proposi-
tion 13.14. This remarkable fact forms the basis of the arithmetical theory
of elliptic curves.

Assume that an elliptic curve C in CP2 contains at least one rational
point, which we denote by O for reasons soon to become apparent.

Definition 13.15. Let P and Q be rational points on C. Define P ∗Q to be
the third point in which the line through P and Q meets C.

Let G be the set of all rational points in C. For some fixed but arbitrary
choice O of a rational point on C, define the operation + on G by

P +Q = (P ∗Q) ∗O (13.9)

See Figure 13.8. We now prove that the operation + gives G the struc-
ture of an abelian group.
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P*QP

P+Q
Q

O

Figure 13.8. The group operation on the rational points of an elliptic curve.

In order to achieve this, we require the following fundamental theorem
in algebraic geometry.

Theorem 13.16. (Bézout’s Theorem.) Let P (X,Y, Z) be a homogeneous
polynomial of degree p over C, let Q(X,Y, Z) be a homogeneous polynomial
of degree q over C, and suppose that P,Q have no common factor of degree
> 1. Then the number of intersection points of the curves in CP2 defined
by P = 0, Q = 0 is precisely pq (provided multiplicities are taken into
account).

Proof: A detailed proof, along with a careful discussion of how to count
multiplicities, can be found in Brieskorn and Knörrer [9] page 227. �

Next we state without proof a lemma from algebraic geometry:

Lemma 13.17. Let two curves of degree n meet in exactly n2 distinct points,
and let 0 ≤ m ≤ n. If exactly mn of these points lie on an irreducible curve
of degree mn, then the remaining n(n−m) lie on a curve of degree n−m.

Proof: See Brieskorn and Knörrer [9] page 245. �

We may now prove:

Theorem 13.18. The set G of rational points on a rational elliptic curve
forms an abelian group under the operation +. The identity element is O.

Proof: First, observe that P ∗Q = Q∗P , since the process of constructing
the third point on the line through P and Q does not depend on the order
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P

Q

S '

S

U ' U

T '

T
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3

Figure 13.9. Geometry for the proof of the associative law on G.

in which we consider P and Q. So

P +Q = (P ∗Q) ∗O = (Q ∗ P ) ∗O = Q + P

and the operation + is commutative.
We claim that P + O = P , so O is the identity element. This follows

since
P +O = (P ∗O) ∗O.

If Q = P ∗O, then P,O, Q are collinear. Assume for a moment that these
are distinct. Then (P ∗ O) ∗ O = Q ∗ O, and this must be P . If they are
not distinct, then either P = O or P = Q, and in either case it is easy to
complete the calculation.

The inverse of P is easily seen to be P ∗ (O ∗O).
The most complicated part of the proof is the associative law

(P +Q) +R = P + (Q+ R).

Figure 13.9 indicates the associated geometry.
First, we define

S = P +Q,

T = S +R,

U = Q+R.

We have to prove that P + U = T . Denote the auxiliary points used to
construct R,S, T by R′, S′, T ′, as in the figure. It suffices to show that
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P,U, T ′ are collinear. To do so, let L1 be the line through P,Q, S′, let L2

be the line through S,R, T ′, let L3 be the line through O, U ′, U , let G1 be
the line through O, S′, S, and let G2 be the line through Q,R,U ′.

Recall from Lemma 13.17 that if two curves C,D of order n meet in
exactly n2 points, nm of which lie on an irreducible curve E of order m,
then the remainder lie on a curve F of order n−m.

Apply this to the cubic curves C,D, where D = L1 ∪L2 ∪L3, and take
E = G1. First, suppose C ∩D contains exactly 9 distinct points. Then it
follows that Q,R,U ′, P, T ′, U lie on a conic. But Q,R,U ′ lie on the line
G2, so G2 is a component of this conic. Let the other component, also a
line, be G3. Then if P, T ′, U do not lie on G2, they must lie on G3, and
the proof is complete.

If C ∩ D contains less than 9 distinct points, then some intersection
points are multiple. A suitable small perturbation of the curve C splits
these apart, and a limiting argument completes the proof. For a more
algebro-geometric approach, replacing the limiting procedure by Zariski
continuity, see Brieskorn and Knörrer [9] page 310. �

The operation + can be defined in exactly the same way for any elliptic
curve, rational or not. The same proof shows that (C,+) is an abelian
group. When C is rational, G is a subgroup.

One of the most important theorems in this area is:

Theorem 13.19. (Mordell’s Theorem.) Suppose that C is a nonsingular
rational cubic curve in CP2 having a rational point. Then the group G of
rational points is finitely generated.

Proof: The original proof is due to Mordell [58]. A sketch, based on a
version due to Weil [87], is described in Goldman [34]. The main idea is
to define a function H(x), for x ∈ G, that measures the ‘complexity’ of x,
and use H as the basis of an inductive argument. This function has the
following properties:

• For any K > 0 the set {P ∈ G : H(P ) < K} is finite.

• For each Q ∈ G there exists a constant c depending only on Q such
that H(P +Q) ≤ c(H(P ))2.

• There exists a constant d such that H(P ) ≤ d(H(2P ))1/4.

• The quotient group G/2G is finite.

In fact, if P = (x, y) and x = m/n in lowest terms, we take H(P ) =
max(|m|, |n|). �
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Recall from Proposition 1.18 that a finitely generated abelian group is
of the form

F ⊕ Zk

where F is a finite abelian group, hence a direct sum of finite cyclic groups.
The group F , which is unique, consists of the elements of finite order, and
is called the torsion subgroup. The groups G determined by elliptic curves
are very special, as is shown by the following theorem of Mazur:

Theorem 13.20. Let G be the group of rational points on an elliptic curve.
Then the torsion subgroup of G is isomorphic either to Zl where 1 ≤ l ≤ 10,
or Z2 ⊕ Z2l where 1 ≤ l ≤ 4.

Proof: The proof is very technical: see Mazur [52, 53]. �

13.7 Applications to Diophantine Equations

We now describe an application of the above ideas to an equation very
similar to Fermat’s. This application is due to Elkies [26].

We know that it is impossible for two cubes to sum to a cube, but might
it be possible for three cubes to sum to a cube? It is; in fact 33+43+53 = 63.
Euler conjectured that in general n nth powers can sum to an nth power,
but not n − 1. It has been proved that Euler’s conjecture is false. In
1966 Lander and Parkin [46] found the first counterexample to Euler’s
conjecture: four fifth powers whose sum is a fifth power. In fact

275 + 845 + 1105 + 1335 = 1445.

As a check:
275 = 14348907
845 = 4182119424
1105 = 16105100000
1335 = 41615795893
1445 = 61917364224.

(13.10)

They found this example by exhaustive computer search.
In 1988 Noam Elkies found another counterexample by applying the

theory of elliptic curves: three fourth powers whose sum is a fourth power.

26824404 = 51774995082902409832960000
153656394 = 55744561387133523724209779041
187967604 = 124833740909952854954805760000
206156734 = 180630077292169281088848499041

(13.11)
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Instead of looking for integer solutions to the equation x4 + y4 + z4 = w4,
Elkies divided out by w4 and looked at the surface r4 + s4 + t4 = 1 in
coordinates (r, s, t). An integer solution to x4 + y4 + z4 = w4 leads to a
rational solution r = x/w, s = y/w, z = t/w of r4+s4+ t4 = 1. Conversely,
given a rational solution of r4+s4+t4 = 1, we can assume that r, s, t all have
the same denominator w by putting them over a common denominator, and
that leads directly to a solution to x4+y4+z4 = w4. Demjanenko [22] had
found a rather complicated condition for a rational point (r, s, t) to lie on
the closely related surface r4 + s4 + t2 = 1. Namely, such a rational point
exists if and only if there exist x, y, u such that

r = x+ y

s = x− y

(u2 + 2)y2 = −(3u2 − 8u+ 6)x2 − 2(u2 − 2)x− 2u

(u2 + 2)t = 4(u2 − 2)x2 + 8ux+ (2 − u2)

To solve Elkies’s problem it is enough to show that t can be made a square.
A series of simplifications shows that this can be done provided the equation

Y 2 = −31790X4 + 36941X3 − 56158X2 + 28849X + 22030

has a rational solution. This equation defines an elliptic curve. (Despite
the presence of a fourth power on the right hand side, it can be transformed
into a cubic. A similar transformation can be found in Section 14.2. See
also McKean and Moll [56] page 254.) Conditions are known under which
no solution can exist, but these conditions did not hold in this case, which
showed that such a solution might possibly exist. At this stage Elkies tried
a computer search, and found the solution

X = − 31

467

Y =
30731278

4672
.

From this he deduced the rational solution

r = −18796760

20615673
,

s =
2682440

20615673
,

t =
2682440

20615673
.

This led directly to the counterexample to Euler’s conjecture for fourth
powers, namely

26824404 + 153656394 + 1879604 = 206156734.
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In fact, there are infinitely many solutions. The theory of elliptic curves
provides a general procedure for constructing new rational points from
old ones—the tangent/secant construction. Using a version of this, Elkies
proved that infinitely many rational solutions exist. In fact he proved that
rational points are dense on the surface r4 + s4 + t4 = 1, that is, any patch
of the surface, however small, must contain a rational point. The second
solution generated by the tangent/secant construction is

x = 1439965710648954492268506771833175267850201426615300442218292336336633,

y = 4417264698994538496943597489754952845854672497179047898864124209346920,

z = 9033964577482532388059482429398457291004947925005743028147465732645880,

w = 9161781830035436847832452398267266038227002962257243662070370888722169.

After Elkies had discovered there was a solution, Roger Frye of the Thinking
Machines Corporation did an exhaustive computer search. He found a
smaller solution, indeed the smallest possible solution:

958004 = 84229075969600000000
2175194 = 2238663363846304960321
4145604 = 29535857400192040960000
4224814 = 31858749840007945920321.

(13.12)

13.8 Exercises

1. Prove that the rational conic x2 + y2 − 3 = 0 contains no rational
points.

(Hint: Rational solutions correspond to integer solutions of the equa-
tion X2 + Y 2 = 3Z2. Without loss of generality X,Y , and Z have
no common factor > 1. Now consider the equation mod 3.)

2. Consider a cubic curve C in CP2 whose equation is

X3 + Y 3 + Z3 −AXY Z = 0 (13.13)

where A3 = 27. Show that C is singular.

(Hint: When A = 3 there is a factorization X3+Y 3+Z3− 3XYZ =
(X + Y +Z)(X2 + Y 2 +Z2−XY − Y Z −ZX). Draw the real affine
versions of the two curves X +Y +Z = 0 and X2+Y 2 +Z2−XY −
Y Z − ZX = 0.)



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 235 — #251
✐

✐

✐

✐

✐

✐

14

Elliptic Functions

So far our discussion has been algebraic. We now introduce methods from
complex analysis and the concept of a modular function. In the next chap-
ter, we show how these classical ideas lead to the Taniyama–Shimura–Weil
Conjecture, which forms the centrepiece of Wiles’s approach to—and proof
of—Fermat’s Last Theorem.

The main topics dicussed in this chapter are:

• Trigonometric functions as a link between conic sections, Diophantine
equations, and complex analysis.

• Weierstrassian elliptic functions and their connection with elliptic
curves.

• Elliptic modular functions and their connection with elliptic curves.

An excellent reference for the material covered in this chapter, and many
related topics, is McKean and Moll [56]. See also King [45] for the basic
material, plus some fascinating connections with the solution of polynomial
equations.

14.1 Trigonometry Meets Diophantus

In this section we explore a rich area of interconnections between trigono-
metric functions, complex analysis, algebraic geometry, and the Pythagor-
ean equation

X2 + Y 2 = Z2. (14.1)

235
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We take the point of view that we do not yet have the machinery of trigono-
metric functions available, and show how to derive these functions from the
aforementioned interconnections. This is a useful ‘dry run’ for subsequent
generalizations to elliptic functions. Of course it helps to bear the standard
trigonometric functions in mind throughout, since then the manipulations
we perform make more sense.

An Approach to Trigonometric Functions

We can consider (14.1) as the projective form of the affine equation

x2 + y2 = 1 (14.2)

by setting x = X/Z, y = Y/Z. Clearly integer or rational solutions of
(14.1) correspond to rational solutions of (14.2). Solving (14.2) for y we
get y = ±

√
1− x2, which suggests looking at the integral

S(x) =

∫

dx

y
=

∫

dx√
1− x2

. (14.3)

In order to evaluate this integral we assume that there exists a function
s(u), with derivative c(u) = ds/du, such that

c2(u) + s2(u) = 1. (14.4)

To define these functions uniquely we impose ‘initial conditions’ s(0) =
0, c(0) = 1.

Given such a function, we can evaluate (14.3) by substituting x = s(u).
Then dx = c(u)du, so

∫

dx√
1− x2

=

∫

c(u)
√

1− s2(u)
=

∫

du = u.

Therefore
∫

dx√
1− x2

= s−1(x). (14.5)

Turning all this round, we can use (14.5) as the definition of the function
s, by means of the equation

∫ s(u)

0

dx√
1− x2

= u (14.6)

and we deduce that s and its derivative c satisfy (14.4), together with the
initial conditions. Similar arguments (Exercise 1 at the end of this chapter)
show that

s(−u) = −s(u), c(−u) = c(u)
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for all u for which s(u), c(u) are defined.

The abstract theory of the Riemann integral guarantees that s(u) is
defined for u in some neighbourhood of 0. We can extend the definitions
of s, c to the whole of R by making use of some of their special properties.
So we now deduce the standard properties of trigonometric functions from
our definition. Differentiate (14.4) to get

2c(u)c′(u) + 2s(u)c(u) = 0

proving that

d

du
c(u) = −s(u) (14.7)

We are now in a position to derive the standard power series for sine and
cosine by invoking Taylor’s Theorem. By induction, successive derivatives
of s, c at the origin are given by

s(n)(0) =















0 if n ≡ 0 (mod 4)
1 if n ≡ 1 (mod 4)
0 if n ≡ 2 (mod 4)

−1 if n ≡ 3 (mod 4)

and

c(n)(0) =















1 if n ≡ 0 (mod 4)
0 if n ≡ 1 (mod 4)

−1 if n ≡ 2 (mod 4)
0 if n ≡ 3 (mod 4)

so that

s(x) =
∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!
,

c(x) =

∞
∑

n=0

(−1)n
x2n

(2n)!
.

(14.8)

These series are absolutely convergent for all x ∈ R and therefore define
s, c on the whole of R. Indeed, we can replace x ∈ R by z ∈ C and extend
the definitions to the complex plane: now s, c are complex analytic. The
identity (14.4) now holds when x is replaced by any complex z, because
two power series that are equal on an open set of real values x are equal
throughout C. At this stage we are entitled to replace s by sin and c by
cos, but to emphasise the logical line of development we continue to use
the notation s, c.
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Addition Formulas and Parametrization of the Circle

We next seek formulas for s(u + v) and c(u + v). Working backwards
from (14.7) we see that Equation (14.4) is equivalent to X(U) = s(u)
and X(u) = c(u) being independent solutions of the second order linear
differential equation

d2X

du2
+X = 0. (14.9)

The general solution of (14.9), with arbitrary initial conditions, is

X(u) = As(u) +Bc(u)

for constants A,B. Let v be any constant. Clearly X(u) = s(u + v) is a
solution of (14.9), so

s(u+ v) = As(u) +Bc(u) (14.10)

and by differentiation with respect to u we also have

c(u + v) = Ac(u)− Bs(u) (14.11)

where the constants A,B may depend on v. Letting u = 0 we see that
A = −c(v), B = s(v). Thus we have the addition formulas

s(u+ v) = s(u)c(v) + c(u)s(v),

c(u+ v) = c(u)c(v) − s(u)s(v).

We are now ready to return to the Pythagorean equation (14.2), which
defines a curve in R2, the unit circle S1. By Equation (14.4) the point
(c(u), s(u)) lies in S1 for any u ∈ R. That is, there is a map

Ω : R → S1

u 7→ (c(u), s(u)).

This map is continuous, indeed infinitely differentiable.
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The real line R has a natural abelian group operation +, and we can
use the map Ω to transport this to S1 if we define ⊕ as follows:

(x1, y1)⊕ (x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

Under this operation S1 is an abelian group with identity element (1, 0).
The inverse of (c, s) is (c,−s). The addition formulas for s, c now say that
Ω is a group homomorphism, that is,

Ω(u+ v) = Ω(u)⊕ Ω(v). (14.12)

The map Ω cannot be a group isomorphism since S1 is compact but R
is not. Therefore Ω has a non-trivial kernel K. We claim that there is a
unique real number ̟ > 0 such that

K = ̟Z

To see this, observe that the derivative of Ω is nonsingular near u = 0, so
there exists ǫ > 0 such that Ω(u) 6= (1, 0) whenever 0 6= u and |u| < ǫ. It
follows that there exists a smallest real number ̟ > 0 for which Ω(̟) =
(1, 0). Then Ω(n̟) = (1, 0) for all n ∈ Z since K is a subgroup. We claim
that K = ̟Z. If not, there exists k ∈ K such that

n̟ < k < (n+ 1)̟

for some n ∈ Z. But then k−n̟ ∈ K and 0 < k−n̟ < ̟, a contradiction.
Numerical computations show that ̟ ∼ 6.28, and of course ̟ = 2π.
Since Ω is a homomorphism and ̟ ∈ K, we deduce that Ω(u + ̟) =

Ω(u) for all u ∈ R (hence also for all u ∈ C). That is, both s and c are
̟-periodic.

All of the usual properties of the trigonometric functions now follow by
standard methods. In particular we can show (Exercise 2) that Ω is onto.
Geometrically, Ω wraps R round S1 infinitely many times, in such a manner
that the usual distance in R becomes 1/2π times arc-length in S1.

The Pythagorean Equation

The group structure on S1 defined by ⊕ has an interesting implication for
the Pythagorean Equation. Namely, given two solutions

x2 + y2 = 1,

u2 + v2 = 1
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it implies that there exists a further solution

(xu − yv)2 + (xv + yu)2 = 1. (14.13)

For example, from the standard (3,4,5) right triangle we know that
x = 3/5, y = 4/5 is a solution, and so is u = 3/5, v = 4/5. By (14.13)
we compute a new solution (7/25, 24/25), so that 72 + 242 = 252. In this
manner we can obtain an infinite number of rational solutions of (14.2),
hence of integer solutions of (14.1).

We now seek to characterise those u ∈ R for which Ω(u) ∈ Q2, that is,
both s(u) and c(u) are rational. To this end we introduce

t = t(u) = tan
u

2
.

From the identities

cosu = cos2
u

2
− sin2

u

2

1 = cos2
u

2
+ sin2

u

2

we find that

cosu =
1− t2

1 + t2
sinu =

2t

1 + t2
.

Proposition 14.1. Ω(u) ∈ Q2 if and only if t ∈ Q.

Proof: Clearly t ∈ Q implies Ω(u) ∈ Q2.
If Ω(u) ∈ Q2 then

1 + t2

2t
= p ∈ Q,

1− t2

2t
= q ∈ Q

so that

1 + t2 = 2pt,

1− t2 = 2qt.

Adding,
2 = 2(p+ q)t

so that p+ q 6= 0 and t = 1
p+q ∈ Q. �
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In other words, Ω(u) ∈ Q2 if and only if u ∈ 2 arctanQ.
The identity (14.4) is now equivalent to the rational identity

(

1− t2

1 + t2

)2

+

(

2t

1 + t2

)2

= 1

which we have already encountered in Example 13.9. Putting t = u/v
where u, v ∈ Z this yields

(u2 − v2)2 + (2uv)2 = (u2 + v2)2.

In Lemma 11.1 we showed that all primitive integer solutions of the
Pythagorean equation (that is, solutions without common factors) are of
this form. Thus we have found a link between the trigonometric functions
(especially t(u)), the Pythagorean equation, and the unit circle in the plane.

A Curious Series

Later in this chapter we develop a profound generalization of the above to
elliptic curves. We could continue to explore the circle and its links for
some time, but we content ourselves with one curious formula that makes
the 2π-periodicity of the trigonometric functions ‘obvious’. Its analogue for
doubly periodic complex functions forms the basis of Weierstrass’s approach
to elliptic functions. The relevant identity is

csc z =
1

z
+

∑

n∈Z\{0}
(−1)n

(

1

z − nπ
+

1

nπ

)

. (14.14)

This series is absolutely convergent and so may be differentiated term by
term, yielding the simpler identity

csc z cot z =
∑

n∈Z

(−1)n

(z − nπ)2
. (14.15)

The series in (14.14) would itself be simpler if we could use

∑

n∈Z

(−1)n

(z − nπ)
(14.16)

but unfortunately this series fails to converge, which is why the more com-
plicated (14.14) replaces it.

If we replace z in (14.15) by z+2π then the entire series shifts one place
along, term by term. This makes it obvious that the function csc z cot z
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is 2π-periodic in z. It is straightforward to parlay this result into 2π-
periodicity of sin z and cos z. So it is possible to define the trigonometric
functions in terms of a series whose 2π-periodicity is immediately apparent
from its form.

We outline the derivation of (14.14). We rely on standard ideas from
complex analysis about residues. Suppose f(z) is a complex analytic func-
tion whose only singularities in C are poles z = aj , j = 1, 2, 3, . . . with
residues bj, where 0 < |a1| ≤ |a2| ≤ |a3| ≤ · · · . Suppose that there ex-
ists a sequence of circles Cj , with centre the origin and of radius Rj which
tends to infinity with j, not passing through any poles, with f(z) uniformly
bounded on the circles Cj ; that is, |f(z)| < M for all z ∈ ∪jCj .

An example is f(z) = csc z, with Rj = (j + 1
2 )π, to which we return

shortly.
By the residue theorem (Stewart and Tall [80] Chapter 12) if x is not a

pole of f then

1

2πi

∫

Cj

f(z)

z − x
dz = f(x) +

∑

r

br
ar − x

where the sum is over all poles interior to Cj . Now

1

2πi

∫

Cj

f(z)

z − x
dz =

1

2πi

∫

Cj

f(z)

z
dz +

x

2πi

∫

Cj

f(z)

z(z − x)
dz

= f(0) +
∑

r

br
ar

+
x

2πi

∫

Cj

f(z)

z(z − x)
dz.

Let j → ∞. Then the integral

∫

Cj

f(z)

z(z − x)
dz

tends to zero, and we get

f(x) = f(0) +

∞
∑

n=1

bn

(

1

x− an
+

1

an

)

. (14.17)

To prove (14.14) we now set f(z) = csc z − 1
z . The singularities are at

z = aj = jπ, j 6= 0, with residues bj = (−1)j . The conditions of the above
calculation are easily checked, so (14.14) follows.

Weierstrass uses a very similar series to define a class of doubly periodic
functions (and has a similar problem with convergence of the simplest form
of the series, which he solves in the same manner). We now begin the
development of Weierstrass’s theory.
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14.2 Elliptic Functions

We have seen that the trigonometric functions have a number of striking
properties, including:

• Periodicity: sin(θ + 2π) = sin(θ), cos(θ + 2π) = cos(θ)

• Algebraic differential equation: u′(θ)2 = 1−u(θ)2 where u(θ) = sin(θ)
or cos(θ)

• Parametrization of circle: (cos(θ), sin(θ) lies on the unit circle x2 +
y2 = 1 and every point on the circle is of this form

• Addition theorems:

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ)

sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ)

• Integration of algebraic functions: for example,
∫

dx√
1− x2

= sin−1(x).

These properties are all interconnected; moreover, they illuminate the
theory of quadratic Diophantine equations, and in particular the Pythagor-
ean Equation X2 + Y 2 − Z2 = 0, which in affine form is x2 + y2 − 1 = 0.

In 1811 Legendre published the first of a series of three volumes initi-
ating a profound generalization of trigonometric functions, known—for the
rather peripheral reason that they lead to a formula for the arc length of an
ellipse—as ‘elliptic functions’. In fact Legendre worked only with ‘elliptic
integrals’, of which the most important is

F (k, v) =

∫ v

0

dz
√

(1− z2)(1− k2z2)
(14.18)

for a complex variable z and a complex constant k. This particular integral
is the elliptic integral of the first kind: in Legendre’s theory there are also
elliptic integrals of the second and third kind. A detailed treatment can be
found in Hancock [36] page 187.

Gauss, Abel, and Jacobi all noticed something that had eluded Legen-
dre. (The history is complicated. Gauss never published the idea; Jacobi
made it the basis of his monumental and influential work published in 1829;
and a manuscript by Abel was submitted to the French Academy of Sci-
ences in 1826, mislaid by Cauchy, and not published until 1841, by which
time Abel was long dead. Abel also published work on elliptic functions
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in 1827, however.) Their common idea was to consider the integral (14.18)
not as defining a function, but as defining its inverse function. Denote this
inverse function by sn u: it satifies the equation

F (k, sn u) = u.

Strictly speaking, sn is a family of functions parametrized by k. Associated
with it are two other functions

cn u =
√

1− sn2 u,

dn u =
√

1− k2sn2 u.

These functions have remarkable properties reminiscent of the trigonomet-
ric functions: a sample is

sn(x+ y) =
sn x cn y dn y + sn y cn x dn x

1− k2 sn2x sn2y
.

A vast range of similar identities can be found in Cayley [14] and Han-
cock [36]. The most remarkable property of all, though, is that the func-
tions sn, cn, dn are all doubly periodic. That is, there exist two complex
constants ω1, ω2 (depending on k) that are linearly independent over R,
such that

sn(z + ω1) = sn(z + ω2) = sn z,

cn(z + ω1) = cn(z + ω2) = cn z,

dn(z + ω1) = dn(z + ω2) = dn z.

Legendre had recognised the equivalent property of his elliptic integrals,
but its expression is far more cumbersome. Moreover, sn, cn, dn are all
meromorphic functions of a complex variable, meaning that they are ana-
lytic except for isolated singularities, which are all poles. (See Stewart and
Tall [80] or any other text on complex analysis for terminology.)

In 1882 Weierstrass developed a somewhat different approach to the
whole topic of doubly periodic functions, based on a function denoted ℘(z).
(The symbol ℘ is pronounced ‘pay’ and is a stylized old German ‘p’.) The
Weierstrass ℘-function is closely connected with elliptic curves, and the
remainder of this section is devoted to this connection.

The starting-point is to consider an arbitrary doubly periodic meromor-
phic function f(z), where z ∈ C. Then there are two complex constants
ω1, ω2 that are linearly independent over R, such that

f(z + ω1) = f(z + ω2) = f(z). (14.19)
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This implies that for all (m,n) ∈ Z2

f(z +mω1 + nω2) = f(z) (14.20)

and opens up some interesting geometry of C.

Definition 14.2. Let ω1, ω2 ∈ C be linearly independent over R. Then the
set

L = Lω1,ω2
= {z ∈ C : z = mω1 + nω2 where m,n ∈ Z2}

is the lattice generated by ω1, ω2.

We studied lattices in Rn in Chapter 6. The above definition is a special
case, and arises when we identify C with R2. When (14.20) holds, we say
that f is L-periodic.

Suppose that T is the fundamental domain of L, see Chapter 6 just
before Lemma 6.2. Then by Lemma 6.2, every z ∈ C lies in exactly one
of the sets T + l for l ∈ L. Therefore f(z) is uniquely determined once
we know f(t) for all t ∈ T . Classically, the topological closure T of T is
called the period parallelogram. We can consider f to be a function on the
quotient torus O2 = C/L.

The main problem is to define ‘interesting’ doubly periodic functions
for a given lattice L. Weierstrass’s idea is a generalization of (14.14, 14.15),
namely that these can be obtained by summing over translates by the lat-
tice. That is, take some (initially arbitrary) function g(z) and consider

ĝ(z) =
∑

l∈L
g(z − l).

Then ĝ is obviously doubly periodic, because for any l′ ∈ L

ĝ(z + l′) =
∑

l∈L
g(z − l + l′) =

∑

l′′∈L
g(z + l′′) = ĝ(z)

where l′′ = l′ − l.

This is all very well, but it is necessary to choose g(z) with care. Three
things can go wrong:

• The series defining ĝ fails to converge.

• The series converges but ĝ is not meromorphic.

• The series converges but ĝ turns out to be constant.
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Avoiding these pitfalls requires a certain amount of foresight. Initially it
led Weierstrass to the choice g(z) = 1

z3 , for which ĝ(z) = −℘′(z), and from
this to a suitable choice of (some constant multiple of) the integral of this
particular ĝ. It turns out that taking g(z) = 1

z2 is not a good idea: the series
for ĝ fails to converge. However, by adding a suitable ‘arbitrary constant’
(which, taken on its own, also fails to converge, but in the ‘opposite’ way)
he could obtain a meromorphic function. His final choice was:

Definition 14.3. Let L ⊆ C be a lattice. Then the associated Weierstrass
℘-function is

℘(z) =
1

z2
+
∑

l∈L\0

(

1

(z − l)2
− 1

l2

)

. (14.21)

This series is absolutely convergent provided z 6∈ L (Exercise 3). Ev-
idently ℘ is an even function, that is, ℘(−z) = ℘(z). We may therefore
differentiate term by term to get

℘′(z) = −2
∑

l∈L

1

(z − l)3
.

This series is also absolutely convergent provided z 6∈ L (Exercise 3).

Lemma 14.4. The function ℘ is meromorphic, and doubly periodic on the
lattice L.

Proof: By the above discussion, ℘′ is meromorphic, and doubly periodic
on the lattice L. Therefore

℘′(z + ωj) = ℘′(z).

Integrate, and remember to include an arbitrary constant:

℘(z + ωj) = ℘(z) + cj (j = 1, 2) (14.22)

for constants cj ∈ C. Since ℘ is an even function, its derivative is odd, so
℘′(−z) = −℘(z). Setting u = −ω1 in (14.22) we have

℘(ω1) = ℘(−ω1) + c1 = ℘(ω1) + c1

so c1 = 0. Similarly c2 = 0, so ℘ is L-periodic.
By absolute convergence, ℘(z) is analytic for all z 6∈ L. When z ∈ L we

may without loss of generality take z = 0. Then (14.21) shows that ℘(z)
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has a simple pole at 0, of order 2. Therefore all singularities are poles, and
℘ is meromorphic. �

We now prove a useful lemma:

Lemma 14.5. Suppose that f is a doubly periodic function that is analytic
throughout C (that is, no poles or other singularities). Then f is constant.

Proof: Let T be the closure of the fundamental domain of L (the period
parallelogram). Since T is compact and f is analytic on T , there exists a
real constantM such that |h(z)| < M for all z ∈ T . By double periodicity,
|h(z)| < M for all z ∈ C. By Liouville’s Theorem (Stewart and Tall [80]
page 184) h(z) is constant. �

Define
g2 = 60

∑

l∈L\0
1
l4

g3 = 140
∑

l∈L\0
1
l6 .

(14.23)

(These and similar expressions are called Eisenstein series.) Then it may
be shown (Hancock [36] page 324) that the Laurent series (Stewart and
Tall [80] page 195) of ℘, ℘′ take the following form:

℘(z) =
1

z2
+
g2
20
z2 +

g3
140

z4 + . . . (14.24)

℘′(z) =
−2

z3
+
g2
10
z +

g3
7
z3 + . . . . (14.25)

Theorem 14.6. The Weierstrass ℘-function satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 (14.26)

Proof: By direct computation,

℘′(z)2 =
4

z6
− 2g2

5z2
+

4g3
7

+O(z2) (14.27)

℘(z)3 =
1

z6
+

3g2
20z2

+
3g3
28

z3 +O(z2) (14.28)

where O(z2) denotes a function whose Laurent series begins with terms in
z2 or higher—which, in particular, is an analytic function for all z ∈ C.
Therefore

℘′(z)2 − [4℘(z)3 − g2℘(z)− g3] = O(z2).
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The left-hand side, which we denote by h(z), is doubly periodic; the right-
hand side is analytic throughout C. Lemma 14.5 implies that h(z) is con-
stant. Since h(z) = O(z2), it follows that h(z) = 0. �

Corollary 14.7. Let C be an elliptic curve in Weierstrass normal form
y2 = 4x3 − g2x− g3 and let ℘ be the corresponding Weierstrass ℘-function.
Then (x, y) = (℘′(z), ℘(z)) lies on C for all z ∈ C.

In fact, every point on C is of the above form, so the function ℘
parametrizes C. There is a close analogy with the parametrization of a
circle by (cos(θ), sin(θ)), especially since sin′(θ) = cos(θ). Moreover, the
parametrization of C behaves naturally with respect to the group opera-
tion (13.9) on C, which for clarity we now rename ⊕ instead of +. (This
is not the same ⊕ that arose earlier in this chapter in connection with
trigonometric functions.) More precisely, let C be an elliptic curve with
equation yz = 4x3 − g2x − g3. Then C is nonsingular if and only if the
cubic 4x3 − g2x − g3 has distinct zeros, which happens if and only if the
discriminant

9g33 + 32g22 6= 0

There is one point at infinity on C, namely (0, 1, 0), and we choose this as
the identity O of the group G. Straightforward calculations in coordinate
geometry then show that if

(x3, y3) = (x1, y1)⊕ (x2, y2)

then

x3 =
1

4
(
y1 − y2
x1 − x2

)2 − (x1 + x2) (14.29)

y3 =
y1 − y2
x1 − x2

x3 +
x1y2 − x2y1
x1 − x2

. (14.30)

We now compare this with the addition theorem for the functions ℘, ℘′:

Theorem 14.8. If u 6= v ∈ C then

℘(u+ v) =
1

4

(

℘′(u)− ℘′(v)

℘(u)− ℘(v)

)2

− (℘(u) + ℘(v)) (14.31)

℘′(u+ v) =
℘′(u)− ℘′(v)

℘(u)− ℘(v)
℘(u+ v) +

℘(u)℘′(v)− ℘(v)℘′(u)

℘(u)− ℘(v)
.

(14.32)
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Proof: We sketch a proof: see Hancock [36] page 351 for details. Consider
the function

h(u) = ℘(u+ v)− 1

4

(

℘′(u)− ℘′(v)

℘(u)− ℘(v)

)2

This is doubly periodic and meromorphic: its only poles are at points
where u + v ∈ L. However, by construction it is finite at u = −v, hence
at u = −v + l for all l ∈ L. At u = 0 the function h(u) goes to infinity
like − 1

u2 . It follows that h(u)+℘(u) is doubly periodic and analytic for all
u ∈ C. Lemma 14.5 implies that h(u) + ℘(u) is constant. Setting u = 0 it
follows that the constant is −℘(v).

The addition formula for ℘′ can be obtained by differentiation and fur-
ther manipulations. �

These formulas may appear complicated, but they lead immediately to
a very elegant theorem:

Theorem 14.9. The group structure on C has the property

(℘(u), ℘′(u))⊕ (℘(v), ℘′(v)) = (℘(u+ v), ℘′(u+ v)). (14.33)

Proof: Compare formulas (14.29) and (14.31), and (14.30) and (14.32).

�

Another way to say this is that the map u 7→ (℘(u), ℘′(u)) is a homo-
morphism between (C,+) and (C,⊕).

14.3 Legendre and Weierstrass

Legendre’s theory of elliptic integrals concerns the square root of a quartic
polynomial (1 − z2)(1 − k2z2). Weierstrass’s theory revolves around the
square root of a cubic polynomial 4z3 − g2z − g3. We briefly describe the
connection between the two approaches, which is essentially that suitable
birational maps transform the Legendre normal form into the Weierstrass
normal form, and conversely. The discussion is summarized from Han-
cock [36] page 190.

Consider the integral

∫

dz
√

4z3 − g2z − g3
. (14.34)
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By Theorem 14.26 the substitution z = ℘(t) transforms this into

∫

dt = t (14.35)

so that (14.34) is equal to ℘−1(z). The similarity with (14.18), which we
restate here for convenience,

F (k, v) =

∫ v

0

dz
√

(1− z2)(1− k2z2)
(14.36)

is striking. In fact, elementary computations show that if we make the
substitution

w =
a3 + a2

2
+
a3 − a2

2

z − k

1− kz

in (14.36), where
(

1− k

1 + k

)2

=
a1 − a2
a1 − a3

then (14.36) becomes

1

2

√

a2 − a3
k

∫

dw
√

(w − a1)(w − a2)(w − a3)
.

Moreover, we can change variables from w to u = w + c, for a suitable
constant c, and eliminate the quadratic term in (w − a1)(w − a2)(w − a3),
reducing the cubic to Weierstrass normal form:

∫

dw
√

(w − a1)(w − a2)(w − a3)
= 2

∫

du
√

4u3 − g2u− g3

where

g2 = −4(a1a2 + a2a3 + a3a1)

g3 = 4a1a2a3.

The transformation is invertible, so we can also change an elliptic integral
in Weierstrass normal form to one in Legendre normal form. In short, the
two theories are equivalent.

This brief description conceals some beautiful mathematics that ex-
plains the relation between quartics and cubics that is exploited in the
above transformation. This involves the invariants of cubic and quartic
curves, the ‘resolvent cubic’ of a quartic equation, and the cross-ratio in-
variant from projective geometry. See Hancock [36] Chapter VIII.
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14.4 Modular Functions

The link between elliptic curves and Fermat’s Last Theorem stems from
a profound generalization of doubly periodic complex functions. Liouville
proved that every single-valued doubly periodic meromorphic function on
a given lattice can be expressed as a rational function of Weierstrass’s
℘-function and its derivative: see Hancock [36] page 437. This theorem
classifies all such doubly periodic functions, and at first sight leaves little
room for generalizations. However, translations are not the only interesting
transformations of the complex plane.

Suppose that Γ is some group of invertible maps C → C. Then we can
seek complex functions f that are invariant under Γ, meaning that

f(γ(z)) = f(z)

for all z ∈ C, γ ∈ Γ. Doubly periodic functions arise in this way if we take
Γ to be the group of all translations

z 7→ z +mω1 + nω2

by elements mω1 + nω2 of the lattice L. That is, m,n ∈ Z.
The question is: what groups Γ lead to interesting results? Translations

are a special case of an important class of transformations of C, namely,
the Möbius maps

g(z) =
az + b

cz + d

of Definition 12.1.
As remarked earlier, there is a technical problem: Möbius maps take

the value ∞ when z = −d/c. The usual way to get round this is to extend
C to the Riemann sphere C ∪ {∞}, see Stewart and Tall [80] page 207.
If this is done, the set of Möbius maps forms a group under composition
(Exercise 4).

Straight lines and circles in C correspond to circles on C∪ {∞}. More-
over, every Möbius map sends circles on C∪{∞} to circles. Being complex-
analytic, every Möbius map is conformal: it preserves the angles at which
curves meet. So Möbius maps have several remarkable properties. Trans-
lations are Möbius maps: take a = 1, c = 1, d = 0 to get z 7→ z + b. So we
may hope to find generalizations of doubly periodic functions among the
Möbius maps.

The trick now is to choose fruitful subgroups of the group of Möbius
maps. Taking the whole group leads to nothing of interest, because it is
easy to see that a function that is invariant under all translations z 7→ z+b
must be constant. As a clue, the translations by a lattice are defined in
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terms of a pair of integers (m,n). This leads to the following choice of
group:

Definition 14.10. The modular group is the group of all Möbius maps

g(z) =
az + b

cz + d

where a, b, c, d ∈ Z and ad− bc = 1.

It is easily seen to be a group (Exercise 5). Abstractly, it can be de-
scribed in terms of the group SL2(Z) of all matrices

[

a b
c d

]

with a, b, c, d ∈ Z and ad− bc = 1. In fact, if Z is the subgroup comprising
±I where I is the identity matrix, the modular group is isomorphic to

PSL2(Z) = SL2(Z)/Z

which is known as the projective special linear group. See Exercise 6.
For any lattice L, the group of lattice-translations has a fundamental

domain, as describe earlier. The defining property of a fundamental do-
main is that every point of C lies in exactly one of its translates by the
lattice. The modular group also has a fundamental domain, but this has
more subtle geometry than a parallelogram. Its construction is assisted by
defining two particular elements of the modular group, namely

S =

[

0 −1
1 0

]

T =

[

1 1
0 1

]

.

(14.37)

These correspond to the functions

S(z) = −1

z
T = z + 1.

It is easy to see that S2 = −I which in SL2(Z) represents the same element
as I, that T has order ∞, and (ST )3 = I. See Exercise 7.

Let H = {z : Im(z) > 0} be the upper half-plane in C. (Despite our
choice of terminology earlier, the pictures make it difficult to call this the
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Figure 14.1. Fundamental domain for the modular group.

upper half-line.) It is easy to check that the modular group maps H to
itself. We define the modular domain D by

D = {z : − 1

2
≤ Re(z) ≤ 0, |z| = 1 or − 1

2
≤ Re(z) < 1

2
, |z| > 1}.

See Figure 14.1.

Theorem 14.11. D is a fundamental domain for the modular group acting
on H.

Proof: See Goldman [34] page 184. �

The proof shows more: the effects of S and T on D are as in Figure 14.2.

Figure 14.2. Tesselation of the upper half-plane by images of the fundamental
domain.
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One final ingredient is needed before we can define an elliptic modular
function, namely: the concept of a Riemann surface. This concept was
introduced in Riemann’s Inaugural Dissertation [67] of 1851, as a general
method for making sense of ‘multi-valued’ complex functions. We explain
the idea briefly for the function f(z) =

√
z, and then describe an abstract

generalization in which the surface is not associated with a previously de-
fined function.

Every non-zero complex number, like every non-zero positive real num-
ber, has two distinct square roots. Indeed if z = reiθ, then

√
z = +

√
reiθ/2

or −√
reiθ/2. When z is real and positive, the two choices can be distin-

guished by their sign, and it is reasonable to consider the positive square
root as the ‘natural’ choice and the negative one as a secondary alternative.
In the complex case, no straightforward distinction of this kind is possible,
for the following reason. The complex setting reveals exactly why there
are two choices of sign: the key point is that −√

reiθ/2 = +
√
reiθ/2+π =

+
√
rei(θ+2π)/2. That is, there are two alternatives not because the modu-

lus r has two real square roots, but because the argument θ is defined only
modulo 2π, and different choices of argument lead to two different values
for the square root. The role of the argument is clearer if we consider the
cube root 3

√
z, which takes any of three values:

3
√
reiθ/3 3

√
reiθ/3+2π/3 3

√
reiθ/3+4π/3

because the choices of argument θ, θ + 2π, θ + 4π lead to different results.
(However, θ + 6π leads to the same cube root as θ.)

The impossibility of defining one choice to be the ‘natural’ square or
cube root becomes obvious if we consider what happens as z moves along
a continuous path in C. For example, suppose that z = eit and t runs
from 0 to 2π. When t = 0 the two square roots are +1,−1. The same is
true when t = 2π. However, if we require

√
z to vary continuously with

z, then 1 lies on the path of square roots given by
√
eit = eit/2, and −1

lies on the path of square roots given by
√
eit = −eit/2. As t increases

from 0 to 2π, the choice 1 changes continuously into −1, while the choice
−1 changes continuously into 1. That is, the choices 1,−1 swap places.
Therefore neither can be considered more natural than the other.

Prior to Riemann, such phenomena were handled by declaring the func-
tion to be ‘multi-valued’, and prescribing rules for how choices of values
should be made. Riemann’s idea for coping with such behaviour is radically
different: define the function to be single-valued (as is now conventional
whenever the word ‘function’ is used), but specify a domain that is dif-
ferent from the usual complex plane C. For the function

√
z Riemann’s

construction can be described in terms of two superposed copies C1 and
C2 of C \ {0}, slit from 0 to −∞ along the real axis. The top left-hand
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quadrant of C1 is glued to the bottom left-hand quadrant of C2, and the
top left-hand quadrant of C2 is glued to the bottom left-hand quadrant of
C1. If we try to draw the resulting surface S in R3 then it is forced to
intersect itself, but abstractly no such self-intersection is implied by the
gluing recipe.

There is a canonical projection ρ : S → C \ {0} which identifies each
copy Cj of C\{0} with C\{0}. Any continuous path γ(t) in C\{0} lifts to a
continuous path γ̂(t) in S, by which we mean that ρ(γ̂(t)) = γ(t). Suppose,
for example, that γ(t) describes the unit circle in C \ {0}, anticlockwise, so
that γ(t) = eit for 0 ≤ t ≤ 2π. As t increases from 0 to π, this curve lifts
to

γ̂(t) = eit ∈ C1.

However, because the two sheets C1,C2 are cross-connected along their
negative real axes, the curve lifts to

γ̂(t) = eit ∈ C2

as t increases from π to 2π. So the lifted path, unlike the original, is not a
closed loop: instead, it returns to a different sheet, C2 rather than C1.

If the argument of z describes the path γ(t) in C \ {0}, and we choose
a continuously varying argument for

√
z, then the choices ±√

z change in
the same manner as the sheets of the surface S. That is, we can define a
single-valued square root on S. This is Riemann’s idea. The surface S is
one of the simplest examples of a Riemann surface in the classical sense: for
further examples and proofs see Stewart and Tall [80] page 268 onwards.

The modern treatment of a Riemann surface is based on the geometry
of the surface and the ‘complex structure’ given by its relation to C:

Definition 14.12. A surface S is a topological space, covered by a countable
collection of open subsets U called patches. Each patch U is equipped with
a local coordinate map αU : U → D where D ⊆ R2 is the open unit disc.
Finally, if x ∈ S lies in the overlap U ∩ V of two patches, then the overlap
map α−1

V αU must be continuous where it is defined.
A Riemann surface is defined in the same way, but now we consider

D to be the open unit disc in C, and the overlap maps are required to be
conformal, that is, to preserve the angles at which curves cross.

For further details see McKean and Moll [56] pages 3–5.
We can now define an elliptic modular function:

Definition 14.13. Let N > 0 be an integer, and define a subgroup

Γ0(N) ⊆ SL2(Z)
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by

Γ0(N) =

{[

a b
c d

]

, a, b, c, d ∈ Z, ad− bc = 1, N |c
}

.

This group acts on H and there is a compact Riemann surface X0(N) such
that

H/Γ0(N) = X0(N) \ K
where K is some finite set of points. The points in K are the cusps of the
modular curve X0(N) of level N .

Definition 14.14. An (elliptic) modular function of level N onH is a function
f(z) that is invariant under Γ0(N) and descends to a function that is
meromorphic on X0(N), even at the cusps.

Here ‘descends’ just means that f has the same value on each orbit of
Γ0(N) on H, and hence defines a function on the quotient space H/Γ0(N).

14.5 Exercises

1. Prove that

s(−u) = −s(u), c(−u) = c(u)

for all u for which s(u), c(u) are defined.

(Hint: s(−u) and c(−u) satisfy the differential Equation (14.9), hence
are of the form As(u) +Bc(u) for constants A,B. Which?)

2. Prove that the map Ω : R → S1 defined by Ω(u) = (c(u), s(u)) is
onto.

(Hint: Show that the image of c is the interval [−1, 1] and that both
signs for

√

1− c2(u) can be realised by s(u), s(−u).)

3. Prove that the series

℘′(z) = −2
∑

l∈L

1

(z − l)3

and

℘(z) =
1

z2
+
∑

l∈L\0

[

1

(z − l)2
− 1

l2

]

are absolutely convergent provided z 6∈ L.



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 257 — #273
✐

✐

✐

✐

✐

✐

14.5. Exercises 257

(Hint: Break the sum up in terms of lattice points that lie on the
parallelograms Pj with vertices ±2jω1 ± 2jω2. Estimate the sums
over the points in these parallelograms.) See Hancock [36] page 311.

4. Let

f(z) =
az + b

cz + d

g(z) =
Az +B

Cz +D

be Möbius maps, so that ad− bc 6= 0, AD −BC 6= 0. Show that

g(f(z)) =
(Aa+Bc)z + (Ab+Bd)

(Ca+Dc)z + (Cb+Dd)
.

Deduce that the set of Möbius maps forms a group under composition.

5. Continuing Exercise 3, if ad − bc = 1 and AD − BC =1, prove that
(Aa + Bc)(Cb + Dd) − (Ab + Bd)(Ca + Dc) = 1. Deduce that the
modular group really is a group.

6. Prove that the modular group is isomorphic to

PSL2(Z) = SL2(Z)/Z.

7. Let S, T be as defined in (14.37). Prove that S2 = −I, T has order
∞, and ST has order 3.
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Wiles’s Strategy and Recent Developments

We continue sketching Wiles’s proof of Fermat’s Last Theorem. The pre-
vious chapter discusses the classical theory of modular functions. This
theory provides the context required to state the Taniyama–Shimura–Weil
Conjecture, which forms the centrepiece of Wiles’s approach to—and proof
of—Fermat’s Last Theorem. The present chapter is about more recent dis-
coveries, and develops the circle of new ideas that leads to the proof of a
special case of the Taniyama–Shimura–Weil Conjecture. Wiles, building on
the work of Frey and others, realised that this special case, the semistable
Taniyama–Shimura–Weil Conjecture, immediately implies the truth of Fer-
mat’s Last Theorem. A vital first step is the definition of the Frey elliptic
curve, which links Fermat’s Last Theorem to elliptic curves.

We conclude with a summary of several recent results and conjectures
that either develop the theory further, or provide insight into related ques-
tions. The main topics discussed are the full Taniyama–Shimura–Weil Con-
jecture, the Catalan Conjecture, the Fermat-Catalan Conjecture, the ABC
Conjecture, and the Beal Conjecture.

15.1 The Frey Elliptic Curve

A major reason why problems like Fermat’s Last Theorem remain unsolved
for centuries is that it is difficult to find a reasonable line of attack—a
place to start from. As we have seen, the ‘big idea’ of the 1840s and 1850s
was to reformulate the problem in a cyclotomic field. This idea led to

259
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significant progress, and although in the end it failed to prove Fermat’s Last
Theorem, it left a legacy that was far more important than the theorem
itself: the whole machinery of ideals in algebraic number theory. This
kind of development is quite common in mathematics: the significance
of a notorious unsolved problem often lies not in its answer (nothing of
great importance would follow easily or directly from knowing whether
Fermat’s Last Theorem is true or false) but in the methods that the search
for an answer can open up. Such problems serve as glorious reminders
of areas of massive ignorance, and quell any belief that mathematics is
‘pretty much worked out’. As it turned out, Fermat’s Last Theorem has
stimulated the creation of several major mathematical theories, whose far-
reaching consequences are still being discovered. Wiles’s ideas, leading
to a complete proof of the Taniyama–Shimura–Weil Conjecture—which is
important in its own right because it opens up new lines of attack on all
kinds of questions—is the latest addition to the list.

When the approach to Fermat’s Last Theorem by way of cyclotomic
fields ground to a halt in the 1980s, no plausible line of attack seemed
to be visible. That situation changed dramatically with the work of Helle-
gouarch [41] and Frey [29, 30], who indulged in some major lateral thinking
that revealed a startling link between Fermat’s Last Theorem and the the-
ory of elliptic curves. Bearing in mind that elliptic curves form one of the
deepest areas of number theory, one equipped with a vast array of powerful
machinery, the significance of this breakthrough was immediately evident
to number-theorists.

It was Frey, above all, who made this link solid and complete. He
started in the obvious way: assume there is a counterexample and derive a
contradiction. That is, assume there exist three pairwise coprime non-zero
integers a, b, c that satisfy the Fermat Equation

ap + bp = cp

and then. . .
A lot of people have tried this, but the big problem is to derive a

contradiction. This is where everyone either made a mistake or got stuck.
Frey’s key idea is to consider what we now call the Frey elliptic curve F ,
defined by

y2 = x(x − ap)(x+ bp).

Since the above solution gives rise to two further solutions bp + ap = cp

and ap + (−c)p = (−b)p we can arrange for b to be even and a ≡ −1
mod 4. These conditions are needed to make F ‘semistable’, a notion that
we discuss below. For technical reasons, it is also useful to assume p > 3,
which involves no loss of generality since both Fermat and Euler proved
Fermat’s Last Theorem for p = 3.
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Frey’s chief contribution was to recognise that the curve F has such
strange properties that, intuitively, it cannot possibly exist. If this could be
proved, then by contradiction there are no solutions to the Fermat equation,
and Fermat’s Last Theorem is proved.

Moreover, Frey [30] provided strong but incomplete evidence why F can-
not exist. Namely, if it does, then it contradicts the Taniyama–Shimura–
Weil Conjecture. The main gap in his argument was filled in by Serre,
but only by invoking a conjecture of his own, the Special Level Reduc-
tion Conjecture. In 1986 Ribet [65] proved Serre’s Special Level Reduction
Conjecture (the proof was not published until 1990), at which stage the
hoped-for proof of Fermat’s Last Theorem rested only on the Taniyama–
Shimura–Weil Conjecture. It was a sufficiently powerful special case of
this conjecture that Wiles attacked, over a period of seven years, and (not
without hiccups) demolished.

15.2 The Taniyama–Shimura–Weil Conjecture

The Taniyama–Shimura–Weil Conjecture (often also attributed to some
subset of those three mathematicians) can be stated in numerous forms,
which look very different but are equivalent given the state of knowledge
in the field in the 1980s. In essence, it is this:

Conjecture 15.1. (Taniyama–Shimura–Weil Conjecture.) Every elliptic curve
over Q is modular.

However, in order for this to make sense we have to explain what it
means for an elliptic curve to be modular, and this is where the different
alternatives arise.

The best known approach involves ‘reduction modulo p’, where p ∈ Z is
a prime. Suppose that E is an elliptic curve over Q, and let Fp be the field
with p elements. We can write E in projective form as a homogeneous cubic
with integer coefficients, and we can then reinterpret those coefficients as
integers modulo p. We then get a cubic equation over Fp, also in projective
form; and we define bp to be the number of distinct solutions over Fp,
including any that lie at infinity. For instance, suppose that E has affine
equation

y2 = x3 + 22

so that in projective form it becomes

y2z = x3 + 22z3
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and let p = 5. In F5 we have 22 ≡ 2, so we are trying to count the
projectively distinct solutions of

y2z = x3 + 2z3

with x, y, z ∈ F5. By trial and error we find that there are exactly 6 of
them, namely

(x, y, z) = (0, 1, 0),

(1, 0, 3),

(1, 1, 2),

(1, 1, 4),

(1, 4, 2),

(1, 4, 4).

The first two involve 0 so are at infinity. For example, when (x, y, z) =
(1, 4, 4) then y2z − (x3 + 2z3) = −65, which is congruent to 0 modulo 5.

Remember that if any solution is multiplied throughout by a non-zero
constant, then projectively this is the same solution—so that, for instance,
(1, 1, 2) is the same as (3, 3, 1).

We conclude that for this E,

b5 = 6.

The numbers bp, for various p, encode useful information about E.
When E is modular, there is a formula relating all the numbers bp, for all
primes p, to a single function. This function is called an eigenform. It can
be written

f(z) =

∞
∑

n=1

ane
2πinz (15.1)

and has some very specific properties (technically, it is a normalized cusp
form of weight 2 for the Γ0(N) of Definition 14.14, and it is an eigenfunction
for all Hecke operators). We then have:

Definition 15.2. An elliptic curve E over Q is modular if there exists an
eigenform (15.1) such that for all but finitely many primes p,

bp = p+ 1− ap.

It is now known that this definition leads to an alternative, equivalent
formulation of the Taniyama–Shimura–Weil Conjecture, which states that
E can be parametrized by modular functions of a certain kind—much as
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the circle can be parametrized by trigonometric functions and every elliptic
curve can be parametrized by the Weierstrass ℘-function and its derivative:

Conjecture 15.3. (Taniyama–Shimura–Weil Conjecture, alternative formula-
tion.) Let y2 = Ax3 + Bx2 + Cx + D be an elliptic curve, where
A,B,C,D ∈ Q. Then there exist modular functions f(z), g(z), both of
the same level N , such that

g(z)2 = Af(z)3 +Bf(z)2 + Cf(z) +D.

See Cox [18] and Mazur [54] for further information on this alternative
formulation.

Wiles did not prove the full Taniyama–Shimura–Weil Conjecture, al-
though this has now been done as a consequence of Wiles’s ideas. He
realised that a more accessible special case would be sufficient: this is
known as the Semistable Taniyama–Shimura–Weil Conjecture. In order to
explain what ‘semistable’ means, we must discuss some numerical invari-
ants of elliptic curves. Suppose, then, that we have a rational elliptic curve
y2 = Ax3 +Bx2+Cx+D. Over the complex numbers, the cubic equation
p(x) = Ax3 +Bx2 +Cx+D = 0 has three roots x1, x2, x3. Classically, the
discriminant of p(x) is defined to be (x1 − x2)

2(x1 − x3)
2(x2 − x3)

2. It is
so named because it vanishes if and only if p(x) has a multiple root, so it
‘discriminates’ between the roots. It is the forerunner of the discriminant
of an algebraic number field, defined in Chapter 2 Section 2. We may now
define four invariants of the Frey curve.

• The discriminant, which equals a2pb2pc2p. Already we see that the
Frey curve is special, since this is a perfect 2pth power, a highly
unusual circumstance.

• The minimal discriminant, equal to 2−8a2pb2pc2p. Since b is even and
p ≥ 5, this is an integer.

• The conductor, which is the product of all primes that divide a, b,
or c. If an elliptic curve is modular, then it can be parametrised by
modular functions whose level is equal to the conductor of the curve.

• The j-invariant, which equals 28(a2p+b2p+apbp)3

a2pb2pc2p and is a complete
invariant in the sense that any two elliptic curves with the same j-
invariant are isomorphic over C.

Now we can define semistability.
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Definition 15.4. An elliptic curve is semistable if whenever a prime l > 3
divides the discriminant, only two of the three roots of p(x) are congruent
modulo l; and similar but more technical conditions on the primes 2 and 3
hold.

Lemma 15.5. The Frey curve F is semistable.

Proof: The discriminant is a2pb2pc2p and the roots are 0, ap,−bp where
ap, bp are coprime. When l = 2, 3 the conditions b even, a ≡ −1 (mod 4)
are also required in the proof. �

Wiles’s main result is:

Theorem 15.6. (Semistable Taniyama–Shimura–Weil Conjecture.)
Every semistable elliptic curve over Q is modular. �

Thus every semistable elliptic curve over Q can be parametrized by
modular functions of some level N (equal to the conductor). This leads to:

Lemma 15.7. If l is an odd prime dividing N , then the j-invariant of F
can be written in the form r−mpq where m > 0 and r is a rational number
whose numerator and denominator in lowest terms are not divisible by l.

Proof: The j-invariant of F is

28(a2p + b2p + apbp)3

a2pb2pc2p
=

28(c2p − bpcp)3

(abc)2p
.

The power of l dividing the denominator is a multiple of p. Since a, b, c are
pairwise coprime, the above fraction is in lowest terms. The result follows
since N is the product of the primes dividing abc. �

This lemma fails for l = 2 because of the factor 28.

15.3 Sketch Proof of Fermat’s Last Theorem

We can now sketch Wiles’s proof of Fermat’s Last Theorem. We need
one further ingredient from complex analysis: that of a modular form of
weight 2. We begin with an elliptic integral of the first kind

∫

dx√
Ax3 +Bx2 + Cx+D

.
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Setting y2 = Ax3 +Bx2 +Cx+D, defining an elliptic curve, this becomes
∫

dx
y . If the elliptic curve is modular then there exist modular functions

f(z), g(z) such that x = f(z), y = g(z) parametrizes the curve. In this case

dx

y
=
df

g
=
f ′(z)dz

g(z)
= F (z)dz

where

F (z) =
f ′(z)

g(z)
.

It is not hard to see that although F is not a modular function, it comes
close:

F

(

az + b

cz + d

)

= (cz + d)2F (z).

See Exercise 2.
In this case we say that F is a modular form of weight 2 and level N .

Modular forms of this type have some distinctive features: in particular, if
the choice of parametrization (f(z), g(z)) is chosen carefully, the function
F (z) is analytic and vanishes at the cusps. Moreover, it is possible to work
out F (z) from arithmetic information about the elliptic curve, namely, the
number of solutions to the congruences y2 ≡ Ax3 +Bx2+Cx+D (mod p)
for all primes p. It is this connection, rather than anything to do with Fer-
mat’s Last Theorem, that makes the Taniyama–Shimura–Weil Conjecture
so important.

And now for the climax of this book:

Theorem 15.8. (Fermat’s Last Theorem.) If p is an odd prime then the
Fermat equation

xp + yp = zp

has no solutions in nonzero integers x, y, z.

Proof: The full proof can be found in Wiles [90] and Wiles and Taylor [82]
and is several hundred pages long. We can, however, sketch how the proof
follows from the concepts introduced above. For a longer, more technical
sketch, see Ribet [66].

We aim for a proof by contradiction, and suppose that there exists a
solution ap+bp = cp for nonzero integers a, b, c. Let F be the corresponding
Frey elliptic curve. By Theorem 15.6 the curve F is modular, hence has a
cusp form F of weight 2 and level N , where N is the conductor of F .

Lemma 15.7 now allows us to invoke Serre’s Level Reduction Conjec-
ture, proved by Ribet, and this implies that for any odd prime l dividing
N there exists a cusp form F ′ of weight 2 and level N/l, which inherits
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various useful properties of F . (It would be too technical to say which).
Inductively, we can consider an odd prime l′ dividing N/l and repeat the
argument to get a cusp form of level N/ll′, and so on. The conductor is
divisible by 2 since b is even, and by definition the conductor is a product
of distinct primes. We may therefore remove all odd prime factors of N
and deduce that there exists a cusp form of level 2.

The dimension of the space of such cusp forms is equal to the genus of
the compact Riemann surface X0(N). But by direct calculation, the genus
of X0(2) can be shown to equal 0. (Indeed, the genus of X0(N) is zero for
N ≤ 10.) That is, there are no cusp forms of weight 2 and level 2. This is
a contradiction, and Fermat’s Last Theorem is therefore true. �

15.4 Recent Developments

Wiles’s proof of Fermat’s Last Theorem is not important because it solved
that problem and thereby closed down that line of research. On the con-
trary, it is important because it introduced new methods and made new
connections, opening up many new areas for future work. In this section
we indicate some of these developments, including appropriate background
material.

Full Taniyama–Shimura–Weil Conjecture

Perhaps the most significant development of all occurred six years af-
ter Wiles’s breakthrough, when Christophe Breuil, Brian Conrad, Fred
Diamond, and Richard Taylor announced a proof of the full Taniyama–
Shimura–Weil Conjecture (Darmon [20]). Recall that Wiles required (and
proved) only the semistable case of this conjecture. Their methods are
firmly in the spirit of Wiles’s pioneering work, and we content ourselves
with two observations. The first is that they prove a more general theorem
than the Taniyama–Shimura–Weil Conjecture by rephrasing it in algebraic
form. This more general conjecture has technical advantages, which make
the proof possible. The second is that their methods make heavy use of Ga-
lois Theory (Stewart [78]), which was introduced by Évariste Galois around
1830 as a way to decide whether a polynomial equation can be solved in
terms of radicals—expressions involving nth roots of algebraic formulas.

One consequence of Galois’s work is a simple and conceptual proof that
the quintic equation (the general polynomial equation of the fifth degree)
cannot be solved by radicals—a theorem proved slightly earlier by Abel,
using different methods. However, contrary to common myth, no explicit
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proof of the insolubility of the general quintic occurs in any surviving doc-
ument by Galois: see Neumann [60]. The reason is presumably that as far
as Galois was concerned, this theorem had already been proved by Abel.
Galois wanted to go further. He knew that some quintics were soluble
by radicals, but others were not. The obvious question is: how do you
tell which kind you are looking at? Galois gave a necessary and sufficient
condition for solubility, and it is easy to see that the general quintic does
not satisfy it. But to Galois the key result was this condition, which he
(justifiably) believed improved on Abel’s result.

The Catalan Conjecture

Fermat’s Last Theorem is just one of many famous questions in number
theory about integer powers. In 1844 the Belgian mathematician Eugène
Catalan published a short letter in the Journal für die Reine und Ange-
wandte Mathematik (Journal for Pure and Applied Mathematics), univer-
sally known as Crelle’s journal after its founder and first editor August
Crelle. It read:

I beg you, sir, to please announce in your journal the following the-
orem that I believe true although I have not yet succeeded in com-
pletely proving it; perhaps others will be more successful. Two con-
secutive whole numbers, other than 8 and 9, cannot be consecutive
powers; otherwise said, the equation xm − yn = 1 in which the un-
knowns are positive integers only admits a single solution.

This statement became known as the Catalan Conjecture.
The earliest significant explicit application of algebraic numbers to the

Catalan Conjecture occurred in 1850, when Victor Lebesgue proved the
result when the smaller of the two powers is a square; that is, the equation
xa−y2 = 1 has no solutions. It took another 111 years before anyone could
prove that there are no integer solutions to the deceptively similar equation
xa − y2 = −1. Very little was known about this equation: for example in
1961 it was proved that x must have at least 3 billion digits. In the same
year Chao Ko proved that no solutions exist except the one that started
the whole game: 23−32 = −1. However, it took another three years before
his proof became known to the mathematical community.

The upshot of these discoveries is a useful simplification of the Catalan
Conjecture. Its proof or disproof reduces to a special case, in which both x
and y occur to odd prime powers. In this case the distinction between +1
and −1 ceases to be relevant because −1 to an odd power is −1. So the
equation under consideration becomes

xp − yq = 1, (15.2)
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where p and q are odd primes. From now on we call this the Catalan
equation. The Catalan Conjecture is now equivalent to the assertion that
for all odd primes p, q the Catalan equation has no whole number solutions.

Meanwhile, a different line of attack suggested that perhaps the Catalan
Conjecture could be reduced to a computer calculation. Suppose a solution
exists. Suppose moreover that the sizes of x, y, p and q are bounded; that
is, if a solution exists, then there must be one for which these four numbers
have a specific, limited size, called a bound. Then a computer could, in
principle, try every possibility up to that bound. If no solutions were found
in this range, the proof would be complete. Alternatively, a solution would
appear, and that would prove the conjecture false.

Proving that such a bound exists, and working out what it is, would
be difficult, but there were encouraging precedents. Bit by bit, pieces of
the puzzle seemed to be slotting into place. In 1929 Karl Siegel proved
a general theorem on Diophantine equations, and a direct consequence is
that for fixed odd primes p and q, the Catalan equation has a finite number
of solutions. The hope was that this finite number could be proved to be
zero, but at least number theorists now knew that there cannot be infinitely
many solutions. This, in turn, implies that for fixed p and q the sizes of x
and y are bounded. However, Siegel’s theorem does not say how big that
bound is. It also fails to specify any bound on the sizes of p and q. So,
while it is a step in the right direction, it does not open the way for a
computer attack.

In 1955 Davenport and Klaus Roth proved another general theorem, and
this one did provide an explicit bound on the sizes of x and y. However,
the bound was so gigantic that a computer search would take much longer
than the lifetime of the universe, so again the practical implications of their
theorem were nil. Nonetheless, number theorists felt they were edging just
a little bit closer to a proof, and further evidence for this belief soon showed
up. In 1966–67 Alan Baker proved that in general, an integer combination
of logarithms of rational numbers cannot be small; indeed, it has to be
larger than some function of the integers and rationals concerned. In 1976
Robert Tidjeman [84] applied Baker’s theorem to the Catalan equation, and
proved that the exponents p and q must both be less than some explicitly
computable bound.

Later work showed that the largest solution to (15.2) satisfies

|x| ≤ exp exp exp exp 730.

At this point, a computer could in principle solve the problem, by checking
all numbers in this range. But again, the range was much too great for
any practical computation to be possible—even allowing for probable im-
provements in computer power. In 1999, Maurice Mignotte proved that if a
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nontrivial solution exists then p < 7.15×1011 and q < 7.78×1016. Modern
computers can handle numbers that big—but those are the exponents, not
the numbers x and y, let alone their powers xp and yq. So Mignotte’s the-
orem, although an exciting theoretical result, did not reduce the problem
to a feasible calculation.

Nevertheless, mathematicians were slowly whittling away at the Catalan
Conjecture. A few more improvements of the same kind, and a computer
solution would be within reach. But when a solution finally appeared,
however, it came from a different direction altogether. And it made hardly
any use of a computer. Instead, it went back to the tried and tested strategy
of algebraic number theory—but with better tactics.

In 2002, Preda Mihăilescu startled the mathematical community by
publishing a proof of the Catalan Conjecture [57]. His ingenious, highly
technical, proof is based on cyclotomic integers. The methods come from
his PhD thesis ‘Cyclotomy of rings and primality testing’, an area with no
obvious connection to the Catalan Conjecture. An expanded description
of the proof can be found in Schoof [72]. See also Bilu [5].

The first step is to rewrite the Catalan equation as xp − 1 = yq and
borrow a trick from Gauss. The left-hand side factorizes as (x− 1)(xp−1 +
xp−2+...+x+1). The right-hand side is a qth power, therefore the left hand
side is also a qth power. If the two numbers x−1 and xp−1+xp−2+...+x+1
have no common factor, then each factor must also be a qth power. In 1960
John Cassels (usually known as ‘Ian’) proved that this assumption leads
to a contradiction. He also showed that if the two numbers do have a
common factor, it must be p. In fact, p divides the second term but p2

does not. Cassels was unable to derive a contradiction from this result,
but it convinced number theorists that further progress on the Catalan
Conjecture might be possible by pursuing a similar strategy. There were
some standard tricks that might apply, but none of them seemed to work.

Using the cyclotomic integer ζ = e2πi/p, the Catalan equation splits
into linear factors:

yq = xp−1 − 1 = (x− 1)(x− ζ)(x − ζ2) . . . (x − ζp−1)

If the factors on the right-hand side have no common factor, and prime
factorization is unique in the cyclotomic integers for the prime p, then
each term x − ζk must itself be a prime power. From this it is not too
hard to derive a contradiction. However, neither of these statements is
true. Undaunted, Mihăilescu decided to find out what happens instead.
The resulting analysis is quite long, and too complicated to do more than
summarize. It relied on a number of ideas about the ring of cyclotomic
integers.
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The current proof, a simplification of Mihăilescu’s original version that
includes more recent work—some by him—has several main components.
The first step, which he completed in 2000, was to prove that the exponents
p and q satisfy a very stringent condition: they are double Wieferich primes.
This means that pq−1 − 1 is divisible by q2 and qp−1 − 1 is divisible by p2.
Wieferich introduced a related condition in 1909 when working on Fermat’s
last theorem: a Wieferich prime p is one for which p2 divides 2p−1−1. The
only known Wieferich primes are 1093 and 3511, and their rarity suggests
that double Wieferich primes might also be rare. Indeed, if it could be
proved that they do not exist, that would polish off the Catalan Conjecture.
However, they do exist: an example is p = 83, q = 4871, and only five more
such pairs are currently known. Nevertheless, this result is a good start.

The next step, accomplished in 2002, is to derive a much simpler con-
dition. Namely, either p − 1 is divisible by q or q − 1 is divisible by p.
A key idea is to analyse the structure of ‘annihilators’, a technical con-
cept that turns statements about ideals back into useful statements about
numbers. Another is to exploit known results about the units of cyclotomic
numbers—cyclotomic integers whose reciprocal is also a cyclotomic integer.
A deep and difficult theorem proved by Francisco Thaine in 1988 relates
annihilators of units to ideals, and this is a key ingredient in proving the
second step.

The third step relates the sizes of the primes p and q. Neither can
be too large compared to the other; specifically, p < 4q2 and q < 4p2.
Mihăilescu proved this in 2003, and it simplifies parts of his original proof.
The method fails to work for some smallish values of p and q, so these have
to be handled by other methods. In this manner, he proved that no new
solutions of the Catalan equation exist if either p or q is 41 or less. The
improved proof replaces 41 by 5.

By putting all these things together, Mihăilescu was able to prove that
if the Catalan equation has a solution, then the two primes p and q that
occur must satisfy the condition p < q. However, because p and q are odd,
the equation is symmetric in p and q, in the sense that if xp − yq = 1
then (−y)q − (−x)p = 1. So we can swap p and q. Therefore, by the same
argument, q < p. This is a contradiction, so no new solution to the Catalan
equation exists.

Whenever someone solves a major problem in mathematics, an imme-
diate reflex is to try the same method on other similar problems. However,
Mihăilescu’s proof uses so many special features of the Catalan equation
that it is difficult to get any significant generalizations working. So, for
the moment at least, it is a ‘one-off’, carefully steering its way through
a host of difficulties. That makes Mihăilescu’s achievement all the more
remarkable.
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The Pillai Conjecture

A stronger result was conjectured by Subbayya Sivasankaranarayana Pillai.
The Pillai Conjecture states that each positive integer occurs only finitely
many times as a difference of perfect powers. That is, for any integer c > 0
the equation xm−yn = c has finitely many integer solutions. This problem
remains open, but it would be a consequence of the ABC Conjecture 15.14
below.

Fermat–Catalan Conjecture

More generally, consider the Diophantine equation

xa + yb = zc. (15.3)

The ‘surprising’ solutions occur when a, b, c are ‘large’ in some sense. For
the Pythagorean equation (a = b = c = 2), with its infinite family of
solutions, the exponents a, b, c should clearly be considered small. We ex-
plain below why a sensible interpretation of the ‘size’ of a solution, in this
context, is the number

s =
1

a
+

1

b
+

1

c
.

The smaller s is, the larger a, b, c must be. The crucial distinction is that
‘large’ solutions have s < 1 but ‘small’ ones have s > 1. The only known
integer solutions of (15.3) for large a, b, c (see Mazur [55]) are:

1 + 23 = 32,
25 + 72 = 34

73 + 132 = 29

27 + 173 = 712

35 + 114 = 1222

177 + 762713 = 210639282

14143 + 22134592 = 657

92623 + 153122832 = 1137

438 + 962223 = 300429072

338 + 1590342 = 156133.

(15.4)

By convention 1 is treated as 1∞ and 1
∞ = 0. So s = 5

6 for the first
solution above.

The first five of these solutions have been known for centuries; the last
five are due to Frits Beukers and Zagier. The main conjecture here is:
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Conjecture 15.9. (Fermat–Catalan Conjecture.) In total, for all large (a, b, c)
(that is, s > 1) there exists only a finite number of coprime integer solutions
of Equation (15.3).

The name of the conjecture is modern, due to Henri Darmon and
Granville: it reflects the fact that a positive solution would imply both
the Catalan Conjecture and Fermat’s Last Theorem.

The main positive result is a recent theorem of Darmon and Löıc Merel,
who prove that there are no solutions with (a, b, c) = (g, g, 3) for g > 3.
Darmon and Granville have proved that for each individual triple (a, b, c)
with s < 1 there exist only finitely many coprime integer solutions x, y, z of
(15.3). The Fermat–Catalan Conjecture says more than this: the number
of triples (a, b, c) with s < 1 for which coprime integer solutions exist is
also finite.

ABC Conjecture

The problems above lead to a far-reaching and potentially enormously pow-
erful conjecture. Its proof would revolutionize number theory. In order to
formulate the relevant conjectures and theorems with some precision, we
require the following simple concepts:

Definition 15.10. Let N be an integer. Then the radical radN is the product
of all distinct prime factors of N .

If N 6= 0,±1 then the power function of N is

P (N) =
log |N |

log radN
.

By convention,
P (±1) = ∞.

Obviously P (N) = 1 if and only if N is squarefree. If N is a perfect
kth power, then P (N) ≥ k. We also define an a-powered number to be a
number N for which P (N) ≥ a. Roughly speaking, the larger a becomes,
the rarer a-powered numbers are. For example:

Proposition 15.11. As x → ∞ the number of squarefree integers between 0
and x is of the form

6

π2
x+O(

√
x).
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Proof: See Exercise 8. �

Informally, this proposition tells us that roughly 60% of integers (up to
a given size) are squarefree.

Fermat’s Last Theorem asserts that a particular ‘linear relation’ be-
tween perfect nth powers is rare—indeed, so rare that it never happens.
That is, the sum of two nth powers is never an nth power. More generally,
we can look at linear relations between three a-powered numbers and ask
how rare those are. To be precise, choose three real numbers a, b, c ≥ 1
and a real number x. Let S(a, b, c;x) be the set of all triples (A,B,C) of
integers (assumed relatively prime and nonzero) such that

|A| ≤ x |B| ≤ x |C| ≤ x,

A+B + C = 0,

P (A) ≥ a P (B) ≥ b P (c) ≥ c.

Given a, b, c, how rapidly do we expect the cardinality of S(a, b, c;x) to
grow as x → ∞? That is, how rare (or how common) are solutions to
A+B + C = 0 in a, b, c-powered numbers A,B,C?

A heuristic argument leads to a striking guess. Ignore the condition
that A,B,C be relatively prime, because this does not change the likely
result much. Then there are roughly x1/a choices for A, x1/b choices for B,
and x1/c choices for C. Since |A+B +C| ≤ 3x, the probability (whatever
that means here) that A + B + C = 0 is of the order 1

a + 1
b + 1

c − 1, so

the cardinality of S(a, b, c;x) should be comparable to x
1
a
+ 1

b
+ 1

c
−1. This

argument is very rough-and-ready, but it focuses attention on the basic
exponent

d =
1

a
+

1

b
+

1

c
− 1 = s− 1

and leads us to consider three different cases:

d < 0 d = 0 d > 0

where we expect very different results. Roughly speaking, if d > 0 then
we expect a proportion xd of solutions with |A|, |B|, |C| ≤ x, so that in
particular if we allow x to take on all values, then we expect there to exist
infinitely many solutions to A + B + C = 0. When d < 0, however, we
expect there to be only finitely many solutions (allowing x to range over
all values). When d = 0 we have a delicate transitional case and caution is
needed even in formulating a sensible conjecture.

Suppose that a ≤ b ≤ c ∈ N. Then we can tabulate all cases for which
d ≥ 0 (Table 15.1). This table is familiar from other areas of mathematics,
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notably polyhedra and tilings in higher dimensions, which raises the hope
that the approach being adopted here is significant.

When d > 0 and a, b, c ∈ N we can get large numbers of (a, b, c′)
solutions with c′ close to c from single Diophantine equations, such as
xa + yb = Ezc for some fixed integer E 6= 0. Thus, for instance, to obtain
lots of (2, 2, c) solutions we might consider x2 + y2 = zc. When c = 2
the problem is that of Pythagorean triples, and these occur in sufficient
profusion to establish the conjectured asymptotics, in the sense that the
number of solutions with |A|, |B|, |C| < x is at least xd−ǫ for any ǫ > 0,
however small.

When d < 0 the problem becomes, if anything, more interesting. Ex-
tensive numerical experiments are consistent with:

Conjecture 15.12. ((a,b,c) Conjecture.) If 1
a + 1

b + 1
c < 1 then the number

of solutions A,B,C of the equation A+B+C = 0 with P (A) ≥ a, P (B) ≥
b, P (C) ≥ c is finite.

Indeed, there is a stronger conjecture:

Conjecture 15.13. (Uniform (a,b,c) Conjecture.) Let d0 < 0 be real. If
1
a + 1

b + 1
c < 1 then the number of solutions A,B,C of the equation A +

B + C = 0 with P (A) ≥ a, P (B) ≥ b, P (C) ≥ c and 1
a + 1

b + 1
c − 1 ≤ d0 is

finite.

The Uniform (a, b, c) Conjecture implies the (a, b, c) Conjecture. How-
ever, at the time of writing neither conjecture has been proved in any
case whatsoever. However, both would be consequences of the so-called
ABC-Conjecture of Masser and Oesterlé [50, 62], one of the biggest open

a b c d
1 * * *
2 2 * *
2 3 3 1

6

2 3 4 1
12

2 3 5 1
30

2 3 6 0

3 3 3 0

Table 15.1. Integer a, b, c for which d ≥ 0.
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questions in current number theory. We state this conjecture after setting
up one necessary concept.

Define an ABC solution to be a triple (A,B,C) of nonzero coprime
integers such that A+B + C = 0. Define the power of (A,B,C) to be

P (A,B,C) =
logmax(|A|, |B|, |C|)

log rad (ABC)
.

Then the conjecture is:

Conjecture 15.14. (Masser and Oesterlé ABC Conjecture.) For any real
ρ > 1 there exist only finitely many ABC solutions with P (A,B,C) ≥ ρ.

In 2012 Shinichi Mochizuki announced a proof of the ABC Conjecture
based on over 500 pages of work in four preprints. It developed a novel
method, which he named ‘inter-universal Teichmüller theory’. Experts
have been analyzing this proof, which involves a substantial amount of
new machinery and is therefore an intensely time-consuming task. So far
one error has emerged, but Mochizuki has stated that this can be corrected
so that the proof still works. He has not lectured on his ideas, but he has
issued progress reports. The mathematical community had not reached a
final decision about the proof’s validity when this book went to press.

Beal Conjecture

Finally, we mention the Beal Conjecture: see also Mauldin [51]. Andrew
Beal is a number theory enthusiast living in Dallas, Texas. When Fer-
mat’s Last Theorem was proved, he decided to follow the example of Paul
Wolfskehl. He offered a prize of $5,000 (increasing annually by $5,000 up
to a total of $50,000) for a proof of:

Conjecture 15.15. (Beal Conjecture.) Let x, y, z, a, b, c be positive integers
with a, b, c > 2. If xa + yb = zc, then x, y, z have a common factor > 1.

This conjecture is currently open, and the prize is now $1 million.

All ten ‘large’ solutions (15.4) of xa + yb = zc have one exponent equal
to 2, so the Beal Conjecture is consistent with the known data related
to the Fermat–Catalan Conjecture. It is clear that plenty of unsolved
questions about sums of powers remain to keep the next generation of
number theorists busy.
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15.5 Exercises

1. Give a heuristic argument to show that the number of squarefree
integers less than x is equal to 6

π2x+O(
√
x) for x→ ∞.

(Hint: Let pj be the primes in increasing order and consider the
sequence of integers 1, 2, 3, ..., x. Remove from this sequence all mul-
tiples of p21, leaving approximately (1 − 1

p2
1

)x integers. From these,

remove all mutiples of p22, then p
2
3, and so on. Continue until pj ∼

√
x,

so that the number of integers left (which are the squarefree ones) is
approximately

x
∏

pj≤
√
x

(

1− 1

p2j

)

.

Now use Euler’s result that

π2

6
=

∞
∑

n=1

1

n2
=
∏

pj

(

1− 1

p2j

)

and estimate errors.)

2. If f(z), g(z) are modular functions and

F (z) =
f ′(z)

g(z)

prove that

F

(

az + b

cz + d

)

= (cz + d)2F (z).

3. Show that over the Gaussian integers Z[i] the equation

(78 + 78i)2 = (−23i)3 + i

is valid. That is, two perfect powers (other than 8 and 9) differ by a
unit.

4. Prove that Table 15.1 lists all solutions of the inequality d ≥ 0, where

d =
1

a
+

1

b
+

1

c
− 1

and a, b, c are positive integers.

5. Search the Internet to find the latest information on the status of the
Fermat-Catalan, Beal, and ABC Conjectures.
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Quadratic Residues

The theory of quadratic residues is one of the great triumphs of the classical
period of number theory. An integer k that is prime to a positive integer
m is said to be a quadratic residue modulo m if there exists z ∈ Z such
that

z2 ≡ k (modm).

Denoting the residue class of k modulo m by k̄, this can be rephrased as:
k̄ is both a unit and a square in Zm.

We investigate the question of quadratic residues by determining the
structure of the units in Zm. We also show how understanding quadratic
residues leads to the solution of quadratic equations

ax2 + bx+ c = 0

in Zm.
The most remarkable theorem about quadratic residues is known as the

quadratic reciprocity law which states:
If p, q are distinct odd primes, at least one of which is congruent to 1

modulo 4, then p is a quadratic residue of q if and only if q is a quadratic
residue of p; otherwise precisely one of p, q is a quadratic residue of the
other.

The reciprocal nature of the relationship between p and q in the first
case gives rise to the name of the law. Gauss first proved it in 1796 when
he was eighteen years old. The result had been conjectured earlier by Euler
and Legendre, though Gauss said that he did not know this at the time. He
thought so highly of this theorem that he called it ‘the gem of higher arith-
metic’ and developed six different proofs. In the 19th century quadratic

279
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reciprocity continued to arouse interest, and more than fifty different meth-
ods of proof were found by mathematicians such as Cauchy, Eisenstein,
Jacobi, Leopold Kronecker, Kummer, Liouville, and Karl Zeller. In fact it
was when Kummer was studying higher reciprocity laws that he devised
his partial proof of Fermat’s Last Theorem. In 1850 Kummer referred to
the higher reciprocity laws as the ‘the pinnacle of contemporary number
theory’, regarding Fermat’s Last Theorem as a ‘curiosity’, Edwards [24]. It
is only right and proper, therefore, that any text on Fermat’s Last Theorem
should include a description of the result that so fascinated number theo-
rists, and whose study led to Kummer’s proof of a special case of Fermat’s
Last Theorem as a by-product.

A.1 Quadratic Equations in Zm

An obvious topic of number-theoretic study is the solution of polynomial
equations modulo a positive integer m.

A linear equation
ax+ b ≡ 0 (modm) (A.1)

can clearly be solved when a is prime to m, because there exist integers
c, d such that

ac+ dm = 1,

so ac ≡ 1 (mod m). Multiply (A.1) by c and simplify to get the solution

x ≡ −bc (modm).

If, on the other hand, a and m have highest common factor h > 1, then
(A.1) can have a solution only if h divides b, in which case, writing a = a0h,
b = b0h, m = m0h, (A.1) reduces to

a0x+ b0 ≡ 0 (modm0)

where once more a0, m0 are coprime. Thus the solution of linear equations
modulo m is straightforward.

Quadratic equations are more interesting. The equation

ax2 + bx+ c ≡ 0 (modm) (A.2)

where m does not divide a may be simplified by multiplying throughout
(including the modulus) by 4a and completing the square to get the equiv-
alent equation

4a2x2 + 4abx+ 4ac ≡ 0 (mod 4am)
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or
(2ax+ b)2 ≡ b2 − 4ac (mod 4am).

Now substituting 4am = m0, 2ax+ b ≡ z mod m0 and b2 − 4ac ≡ k mod
m0 , we replace (A.2) by the two equations:

z2 ≡ k (modm0) (A.3)

2ax+ b ≡ z (modm0) (A.4)

If we find z from (A.3) we can then attack (A.4) by the given method for
linear congruences, so the solution of the general quadratic (A.2) reduces
to solving (A.3). We can further reduce this if k, m0 are not coprime by
supposing they have highest common factor h where k = k0h and m0 =
m1h, and then factorizing h as

h = e2r

where e2 is the largest square factor of h. If (A.3) has a solution for z then
er is a factor of z. Let z = erw; then

e2r2w2 ≡ k0e
2r (modm1e

2r)

so
rw2 ≡ k0 (modm1). (A.5)

Now suppose that the highest common factor of r, m1 is s. For (A.5) to
have a solution, s must be a factor of k0. But k0, m1 are coprime, so s = 1
and r, m1 are also coprime. Thus there exists an integer d prime to m1

such that
dr ≡ 1 (modm1),

so multiplying (A.5) by d and simplifying gives

w2 ≡ dk0 (modm1). (A.6)

But d and k0 are both prime to m1, so putting dk0 = k1, the solution of
the general quadratic equation (A.2) reduces to linear congruences and the
congruence

w2 ≡ k1 (modm1)

where k1, m1 are coprime.
If m > 1 and k are integers, recall that k is a quadratic residue modulo

m if
(1) k, m are coprime
(2) There exists w ∈ Z such that

w2 ≡ k (modm).
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If k̄ is the residue class of k in Zm, then these conditions are equivalent to

(1)′ k̄ is a unit in Zm,

(2)′ w̄2 = k in Zm,

so k̄ is both a unit and a square in Zm. We attack the problem of finding
quadratic residues by first computing the structure of the units in Zm.

A.2 The Units of Zm

An element k̄ ∈ Zm is a unit if and only if k, m are coprime, so the units
U(Zm) of Zm are

U(Zm) = {k̄ ∈ Zm|1 ≤ k < m; k,m coprime}.

The number of elements in U(Zm) is called the Euler function φ(m) and is
equal to the number of positive integers k less than m and prime to it. For
example φ(10) = 4 since 1, 3, 7, 9 are the integers between 1 and 10 and
prime to 10, and there are four of them. For later reference we record:

Lemma A.1. If p is prime, then φ(pe) = pe−1(p − 1), and in particular
φ(p) = p− 1.

Proof: There are pe − 1 elements satisfying 1 ≤ k < pe, and of these, if
k = rp, then

1 ≤ rp < pe

implies

1 ≤ r < pe−1,

so there are pe−1 − 1 elements not prime to p, giving

φ(pe) = (pe − 1)− (pe−1 − 1).
�

The units U(Zm) form a group under multiplication whose structure
we compute. First we factorize m = pe11 . . . perr where p1, . . . , pr are distinct
primes, and reduce the problem to considering each prime separately. For
typographical reasons we write peii = Pi.

Lemma A.2. If m = pe11 . . . perr where p1, . . . , pr are distinct primes, then,
writing peii = Pi, there is a ring isomorphism

Zm
∼= ZP1

× . . .× ZPr
.
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Proof: Define π : Z → ZP1
×. . .×ZPr

by π(k) = (k1, . . . , kr) where ki is the
residue class of k modulo Pi = peii . Clearly π is a ring homomorphism and
k ∈ ker π if and only if Pi divides k for every i, which implies ker π = 〈m〉
(the ideal generated by m). Thus π induces a monomorphism

π̄ : Zm → ZP1
× . . .× ZPr

.

But ZP1
× . . . × ZPr

has P1 × . . . × Pr = m elements, so π̄ is in fact an
isomorphism. �

Lemma A.3. With the above notation,

U(Zm) ∼= U(ZP1
)× . . .× U(ZPr

).

Proof: Under the ring isomorphism π̄, an element k̄ ∈ Zm is a unit if and
only if π̄(k) is a unit, which holds if and only if each of its components is
a unit. �

Lemma A.3 reduces the study of units in Zm to the case of Zpe where
p is prime. To tackle this case we begin with e = 1. Here we see that
U(Zp) is a cyclic group of order p− 1. It might seem that the easiest way
to show this would be to find a generator, but that turns out not to be
feasible in general. So we attack the problem indirectly by introducing an
auxiliary notion, which will prove useful in several ways: the exponent h of
a finite group G, which is defined as the smallest positive integer such that
(in multiplicative notation) xh = 1 for all x ∈ G.

By Lagrange’s Theorem, xn = 1 where n is the order ofG, so clearly h ≤
n. Also, for any x ∈ G, if x has order k, then k divides h. An alternative
definition of the exponent is, therefore, the least common multiple of all
the orders of the elements in G.

We claim that in any finite abelian group of exponent h, there exists
an element x0 of order h. This applies in particular to U(Zp). Two facts
follow. First, by Lagrange’s Theorem, the exponent h divides the order of
G. Second, if we can demonstrate that the exponent equals the order, then
G is cyclic with generator x0.

To demonstrate the existence of such an x0, we begin with:

Lemma A.4. In an abelian group G, if a, b have finite orders q, r which are
coprime, then ab has order qr.

Proof: (ab)qr = aqrbqr = 1. If (ab)s = 1 then

as = b−s
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so the elements as and b−s have the same order k. However, the order of
as divides the order of a, so k divides q, similarly k divides r. Since q, r
are coprime, k = 1, which implies

as = b−s = 1,

whence q divides s and r divides s. Since q, r are coprime, qr divides s. �

Lemma A.5. If the finite abelian group G has exponent h, then there exists
x0 ∈ G such that the order of x0 is h.

Proof: Let pk be the highest power of a prime p dividing h. It is easy to
see that G must have an element x of order pkr where r is prime to p, for
if not, the highest power of p dividing the order of every element is pk−1 or
less, contrary to the definition of h. The element y = xr is then of order pk.
Find elements y for all distinct primes p dividing h and then use Lemma
A.4. �

Proposition A.6. U(Zp) is a cyclic group of order p− 1.

Proof: The order of U(Zp) is φ(p) = p− 1 by Lemma A.1. To show U(Zp)
is cyclic by Lemma A.5, we verify that the exponent h of U(Zp) is p − 1.
Certainly h ≤ p − 1. Conversely, every element of U(Zp) satisfies xh = 1
by definition, and interpreting xh − 1 = 0 as a polynomial equation over
Zp, this has, at most, h roots, hence p− 1 ≤ h. �

Examples A.7.

U(Z2) = {1̄}, generator 1̄.
U(Z3) = {1̄, 2̄}, generator 2̄.
U(Z5) = {1̄, 2̄, 3̄, 4̄}, generators 2̄, 3̄.
U(Z7) = {1̄, 2̄, 3̄, 4̄, 5̄, 6̄}, generators 3̄.5̄.

If s̄ is a generator of U(Zp), then s ∈ Z is called a primitive root modulo
p. Primitive roots play a central part in our computations, since every
element of U(Zp) is of the form s̄r where s is a primitive root modulo p. If
we can find a primitive root, then because the order of U(Zp) is even, the
even powers s̄2r are clearly quadratic residues and the odd powers s̄2r+1

are not. In general we do not attack the problem this way, because we
do not know the value of s, but it illustrates the theoretical importance of
primitive roots. We isolate two properties which will prove essential later:
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Lemma A.8.
(a) If s is a primitive root modulo p, then so is sr if and only if r, p− 1 are
coprime.
(b) If s is a primitive root modulo p and k is a positive integer, then there

is another primitive root λ modulo p such that s̄ = λ̄p
k

.

Proof: (a) If r, p− 1 are coprime, then there exist integers a, b such that
ar + b(p− 1) = 1, so

s̄ = s̄ar+b(p−1) = (s̄r)a,

and s̄r generates U(Zp).
Conversely, if r, p− 1 have a common factor d > 1, where p− 1 = dq,

r = dc, then

(s̄r)q = s̄dcq = s̄(p−1)c = 1,

so s̄r cannot generate U(Zp).

(b) Since pk, p−1 are coprime, there exist integers a, b where a is prime
to p− 1 such that

apk + b(p− 1) = 1.

Hence λ = sa is a primitive root modulo p by part (a) and

λ̄p
k

= s̄ap
k

= s̄ap
k+b(p−1) = s̄. �

We are now in a position to describe the structure of U(Zpe) for prime
p, which we do by explicit computation, first for an odd prime.

Proposition A.9. If p is a prime, p 6= 2, e ≥ 2, then U(Zpe) is a cyclic group
of order pe−1(p − 1) with generator s̄(1 + p), where s̄ is a primitive root
modulo p.

Proof: Since the order of U(Zpe) is pe−1(p− 1) by Lemma A.1, and p− 1,
pe−1 are coprime, then using Lemma A.4 it is sufficient to show that s̄ has
order p− 1 and 1 + p has order pe−1 in U(Zpe). For s̄,

s̄p−1 = λ̄p
e−1(p−1) using Lemma A.7 (ii)

= 1(mod pe) by Lagrange’s theorem.

On the other hand

sr ≡ 1 (mod pe)

implies

sr ≡ 1 (mod p)
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and since s is a primitive root modulo p we have

sr 6≡ 1 (mod pe) for 1 < r < p− 1,

demonstrating that s̄ is of order p− 1 in U(Zpe). To prove that 1 + p is of
order pe−1, we establish by induction on e ≥ 2 that

(1 + p)p
e−2 ≡ 1 + kpe−1 (mod pe) (A.7)

where k depends on e, but k 6≡ 0 (mod p). For e = 2 this is true with
k = 1. Assume it true for some e ≥ 2. Then

(1 + p)p
e−2

= 1 + kpe−1 + rpe

= 1 + spe−1

where s = k + rp 6≡ 0 (mod p). Hence

(1 + p)p
e−1

= (1 + spe−1)p

= 1 + pspe−1 +

(

p
2

)

s2p2(e−1) + . . .+ sppp(e−1).

For e ≥ 2 and prime p 6= 2 this is of the form

1 + spe + bpe+1.

(For p = 2 this breaks down only when e = 2.) Therefore

(1 + p)p
e−1 ≡ 1 + spe (mod pe+1) (A.8)

where s 6≡ 0 (mod p), completing the induction proof of (A.7).

Then (A.7) implies

(1 + p)p
e−2 6= 1̄ in Zpe

and (A.8) implies

(1 + p)p
e−1

= 1̄ in Zpe ,

which together show 1 + p is of order pe−1 in U(Zpe). �

Since the proof in Proposition A.9 breaks down for p = 2, we must treat
this case separately. We find:
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Proposition A.10. U(Z4) = {1̄,−1̄} is cyclic with generator −1̄. For e ≥ 3,
U(Z2e) is not cyclic, but −1̄ is of order 2, 5̄ is of order 2e−2 and U(Z2e)
is the direct product of the cyclic groups generated by −1̄, 5̄.

Proof: The assertion concerning U(Z4) is trivial. For e ≥ 3, by Lemma
A.1, the order of U(Z2e) is 2e−1. Clearly the order of −1̄ in U(Z2e) is 2.
For the element 5̄ we note that by induction on e ≥ 3 we may establish

52
e−3

= (1 + 22)2
e−3 ≡ 1 + 2e−1 (mod 2e).

Hence 5̄2
e−3 6= 1̄ in Z2e , but

52
e−2 ≡ (1 + 2e−1)2 ≡ 1 (mod 2e)

so 5̄ is of order 2e−2 in U(Z2e).
Now −1̄ is not a power of 5̄ in U(Z2e) since

−1 6≡ 5r (mod 4),

so certainly

−1 6≡ 5r (mod 2e).

Hence if C is the cyclic subgroup generated by 5̄, the cosets C, −1̄C are
disjoint. But the index of C in U(Z2e) is 2e−1/2e−2 = 2, so these two
cosets exhaust U(Z2e). Thus every element of U(Z2e) is uniquely of the
form (−1̄)a5̄b where a = 0 or 1 and 0 ≤ b < 2e−2. Since multiplication is
commutative, U(Z2e) is the direct product of the cyclic subgroups gener-
ated by −1̄, 5̄. The exponent of U(Z2e) is 2

e−2 which is less than the order,
so U(Z2e) cannot be cyclic. �

Having described the structure of U(Zpe), we are now in a position to
investigate quadratic residues.

A.3 Quadratic Residues

As in the last section we can speedily reduce the problem of finding residues
modulo m to the case of prime powers:

Proposition A.11. If m = pe11 . . . perr where p1, . . . , pr are distinct primes
and k is relatively prime to m, then k is a quadratic residue modulo m if
and only if it is a quadratic residue of peii for 1 ≤ i ≤ r.
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Proof: Using the isomorphism π̄ : U(Zm) → U(ZP1
) × . . . × U(ZPr

) of
Lemma A.3, k̄ is a square if and only if each component of π̄(k̄) is a square,
and the ith component is the residue class of k modulo peii . �

This reduces the general problem of finding quadratic residues to the
simpler problem of finding quadratic residues modulo a prime power. Fol-
lowing the last section we distinguish between the case of an odd prime
and p = 2 first, because this can be given an immediate answer:

Proposition A.12. The odd integer k is a quadratic residue modulo 4 if and
only if k ≡ 1(mod4), and is a quadratic residue modulo 2e for e ≥ 3 if and
only if k ≡ 1(mod8).

Proof: Since U(Z4) = {1̄, 3̄} the only square in U(Z4) is 1̄. For e ≥ 3, if
z̄2 = k̄ in U(Z2e), we use Proposition A.10 to write

z̄ = (−1̄)a5̄b, k̄ = (−1̄)c5̄d,

and then

(−1̄)2a5̄2b = (−1̄)c5̄d,

whence c is even and 2b ≡ d (mod 2e−2). Given d, the congruence can be
solved for b if and only if d is even. Thus k̄ is a quadratic residue modulo
2e if and only if

k̄ = 5̄d

in Z2e where d is even. Putting d = 2r this implies

k ≡ 52r (mod 2e)

for e ≥ 3, hence

k ≡ 25r (mod 8)

≡ 1 (mod 8).

Conversely if k ≡ 1 (mod 8) and k ≡ (−1)c5d (mod 2e), then

(−1)c5d ≡ 1 (mod 8).

This happens only when c, d are even, and then (−1̄)c5̄d is a square in
U(Z2e). �

In the case p odd we first characterize the quadratic residues modulo p
by using a primitive root modulo p:
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Lemma A.13. If s is a primitive root modulo p, then k̄ = s̄a is a quadratic
residue if and only if a is even.

Proof: If a = 2b, then k̄ = (s̄b)2. Now s̄ has even order p− 1, it cannot be
a square, nor can s̄a for a odd. �

This characterization of quadratic residues modulo p immediately gives:

Proposition A.14. If p is an odd prime, then k is a quadratic residue modulo
pe for e ≥ 2 if and only if k is a quadratic residue modulo p.

Proof: If z2 ≡ k (mod pe), then clearly z2 ≡ k (mod p), so a quadratic
residue modulo pe also serves modulo p. Conversely, suppose k is a quadratic
residue modulo p. By Proposition A.8 we can write k ≡ sa(1 + p)a (mod
pe), and reducing this modulo p gives k ≡ sa (mod p), so Lemma A.12
implies that a = 2b for an integer b, so k ≡ [sb(1 + p)b]2 (mod pe) and k is
a quadratic residue modulo pe. �

This leaves the central core of the problem: to determine quadratic
residues modulo any odd prime p. Legendre, who published two volumes
on number theory in 1830, introduced a deceptively simple notation which
is ideally suited to the task. He defined the symbol (k/p) for an odd prime
p and an integer k not divisible by p as

(k/p) =

{

+1 if k is quadratic residue modulo p.
−1 otherwise.

As remarked in the introductory chapter, the Legendre symbol is commonly
written

(

k

p

)

but this is less convenient in print.
The value of this notation can be seen by writing k̄ = s̄a where s is a

primitive root modulo p. By Lemma A.12, k is a quadratic residue modulo
p if and only if a is even, hence

(k/p) = (−1)a.

From this it is easy to deduce the following useful properties:

Proposition A.15.
(a) k ≡ r (mod p) implies (k/p) = (r/p).
(b) (kr/p) = (k/p)(r/p).
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Proof: (a) is immediate, and (b) follows by writing k̄ = s̄a, r̄ = s̄b, whence
kr = s̄a+b and

(kr/p) = (−1)a+b = (−1)a(−1)b = (k/p)(r/p). �

It is now possible to give a computational test for quadratic residues:

Proposition A.16. (Euler’s Criterion.) For an odd prime p and an integer k
not divisible by p,

(k/p) ≡ k(p−1)/2 (mod p).

Proof: For a primitive root s modulo p we have sp−1 ≡ 1 (mod p), and
since p− 1 is even,

(s(p−1)/2 − 1)(s(p−1)/2 + 1) = (sp−1 − 1) ≡ 0 (mod p).

Because s(p−1)/2 6≡ 1 mod p, we deduce

s(p−1)/2 ≡ −1 (mod p).

Hence, writing k̄ = s̄a as before,

(k/p) = (−1)a

≡ (s(p−1)/2)a (mod p)

= (sa)(p−1)/2

≡ k(p−1)/2 (mod p).

�

Example A.17. k is a quadratic residue mod 5 if k2 ≡ 1 (mod 5), giving
k = 1, 4.

We soon see the weakness in this criterion if we attempt to find the
quadratic residues modulo a larger prime, for example p = 19. In this case
k is a quadratic residue if and only if k9 ≡ 1 (mod 19), and the calculations
concerned involve more work than just calculating all the squares of ele-
ments in U(Z19) and solving the problem by inspection. However, Euler’s
criterion can be used to deduce a much more useful test, due to Gauss.

What Gauss did was to partition the units modulo p by writing them
in the form

U(Zp) = {−(p− 1)/2, . . . ,−2̄,−1̄, 1̄, 2̄, . . . , (p− 1)/2}
= N ∪ P
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where
N = {−(p− 1)/2, . . . ,−2̄,−1̄}

and
P = {1̄, 2̄, . . . , (p− 1)/2}.

For instance, if p = 7, then

N = {−3̄,−2̄,−1̄}, P = {1̄, 2̄, 3̄}.

Using the usual multiplicative notation aS = {as|s ∈ S}, we can write
N = (−1̄)P . To find out whether k is a quadratic residue, Gauss computed
the set k̄P and proved:

Proposition A.18. (Gauss’s Criterion.) With the above notation, if k̄P ∩ N
has ν elements then (k/p) = (−1)ν .

Proof: Since k̄ is a unit, the elements of k̄P are distinct so |k̄P | = |P |.
Furthermore if ā, b̄ are distinct elements of P, then we may take 0 < a <
b ≤ (p − 1)/2. We cannot have k̄ā = r̄ and k̄b̄ = −r̄, for that implies
k(a + b) is divisible by p, hence a + b is divisible by p, contradicting the
inequalities satisfied by a, b. Thus the elements k̄, k2, . . . , k̄(p− 1)/2 of
k̄P consist precisely of the elements ±1̄,±2̄, . . . ,±(p− 1)/2, possibly in a
different order, where the number of minus signs is the number of elements
of k̄P in N . Hence

k̄ · k̄2̄ . . . k̄(p− 1)/2 = (±1̄)(±2̄) . . . (±(p− 1)/2)

so
k̄(p−1)/2 = (−1)ν

where ν is the number of elements in k̄P ∩N . Thus

k(p−1)/2 ≡ (−1)ν (mod p)

and Euler’s criterion gives

(k/p) = (−1)ν .

�

Example A.19. Is 3 a quadratic residue modulo 19? To answer this we
calculate 3̄P = {3, 6, 9, 12, 15, 18, 2, 5, 8}

= {3, 6, 9, 2, 5, 8}∪ {−7,−4,−1},
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so ν = 3 and Gauss’s criterion tells us that 3 is not a quadratic residue
modulo 19.

These two criteria take us further in the search for quadratic residues
k modulo an odd prime p, for by factorizing

k = (−1)a2bpe11 . . . perr

then k is a square if a, b, e1, . . . , er are even; moreover, it is a quadratic
residue if the factors with odd exponent are quadratic residues. Thus the
question of quadratic residues is finally reduced to determining whether
−1, 2 or an odd prime q (distinct from p) are quadratic residues modulo
an odd prime p.

The given criteria solve the question for −1, 2:

Proposition A.20.

(a) (−1/p) = (−1)(p−1)/2, so −1 is a quadratic residue modulo p if and
only if p ≡ 1 (mod 4).

(b) (2/p) = (−1)(p
2−1)/8, so 2 is a quadratic residue modulo p if and only

if p ≡ ± 1 (mod 8).

Proof: (a) is a trivial consequence of Euler’s criterion.

(b) 2P = 2̄, 4̄, . . . , p− 1, so |2̄P ∩N | is ν = (p − 1)/2 − r where r is
the largest integer such that 2r ≤ (p− 1)/2. The proof now splits into two
cases.

Case 1. (p− 1)/2 is even and 2r = (p− 1)/2, whence ν = (p− 1)/2−
(p− 1)/4 = (p− 1)/4. Thus (2/p) = (−1)(p−1)/4.

Case 2. (p− 1)/2 is odd and 2r = (p− 1)/2− 1, so that ν = (p− 1)/2−
(p − 1)/4 + 1

2 = (p + 1)/4. Thus (2/p) = (−1)(p+1)/4. We can put these
two cases together by noting that in the first case (p− 1)/2 is even if and
only if (p + 1)/2 is odd. Raising (−1)n to an odd power does not change
it, so in case 1

(2/p) = [(−1)(p−1)/4](p+1)/2 = (−1)(p
2−1)/8.

Case 2 gives the same result by raising to the odd power (p− 1)/2. �

We see from the work required in case (b) that Gauss’s criterion is still
not subtle enough to decide easily whether an odd prime q is a quadratic
residue modulo p. To complete the solution we refine the criterion further
to obtain Gauss’s ‘gem of higher arithmetic’:
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Theorem A.21. (Quadratic Reciprocity Law.) If p, q are distinct odd primes,
then

(p/q)(q/p) = (−1)(p−1)(q−1)/4.

Proof: By Gauss’s criterion (q/p) = (−1)ν , where ν is the number of
integers a in 1 ≤ a ≤ (p−1)/2 such that there exists an integer b satisfying

aq = bp+ r, −p/2 < r < 0.

There can be at most one such integer b for each a, so we can rephrase
the requirement: ν is the number of ordered pairs (a, b) of integers
satisfying

1 ≤ a ≤ (p− 1)/2, (A.9)

−p/2 < aq − bp < 0. (A.10)

From (A.9) and (A.10) we deduce

bp < aq + p/2 ≤ (p− 1)q/2 + p/2 < pq/2 + p/2 = p(q + 1)/2.

Hence b < (q + 1)/2, and (A.10) implies b ≥ 1, so

1 ≤ b ≤ (q − 1)/2. (A.11)

Since (A.9) and (A.10) imply (A.11), it does no harm to add (A.11) to the
list of requirements to be satisfied by the ordered pair (a, b), so ν is the
number of pairs (a, b) of integers satisfying (A.9)–(A.11). It actually does
a lot of good because of the symmetry of (A.9) and (A.11). Interchanging
p, q and a, b, we also have

(p/q) = (−1)µ

where µ is the number of ordered pairs of integers (a, b) satisfying (A.11),
(A.9) and

−q/2 < bp− aq < 0 (A.10)
′

which can be written
0 < aq − bp < q/2. (A.12)

Since p, q are distinct primes, (A.9) and (A.11) imply aq− bp 6= 0, so ν +µ
is the number of ordered pairs of integers (a, b) satisfying (A.9), (A.11)
and

−p/2 < aq − bp < q/2. (A.13)

Now
(p/q)(q/p) = (−1)ν+µ, (A.14)
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so the problem reduces to finding the value of ν + µ mod 2.
To do this, let

R = {(a, b) ∈ Z2|1 ≤ a ≤ (p− 1)/2, 1 ≤ b ≤ (q − 1)/2}.

Then R has (p− 1)(q − 1)/4 elements. Partition R into three subsets

R1 = {(a, b) ∈ R|aq − bp ≤ −p/2}
R2 = {(a, b) ∈ R| − p/2 < aq − bp < q/2}
R3 = {(a, b) ∈ R|q/2 ≤ aq − bp}.

Then R2 is the set of solutions of (9), (11), (13) as required. The map
f : Z2 → Z2 given by f(a, b) = ((p+ 1)/2− a, (q + 1)/2− b) is easily seen
to restrict to a bijection from R1 to R3, so |R1| = |R3|. This implies that

|R| = |R1|+ |R2|+ |R3| ≡ |R2| (mod 2)

so
(p− 1)(q − 1)/4 = ν + µ (mod 2).

From (A.14)
(p/q)(q/p) = (−1)(p−1)(q−1)/4.

�

An immediate deduction is the quadratic reciprocity law in the form
stated by Gauss:

Theorem A.22. If p and q are distinct odd primes, at least one of which is
congruent to 1 modulo 4, then p is a quadratic residue of p if and only if q
is a quadratic residue of p; otherwise if neither is congruent to 1 modulo 4
then precisely one is a quadratic residue of the other.

Proof: If at least one of p, q is congruent to 1 modulo 4, then (p−1)(q−1)/4
is even, so

(p/q)(q/p) = 1,

whence (p/q) = +1 if and only if (q/p) = +1. If neither is congruent to 1
modulo 4, then (p− 1)(q − 1)/4 is odd,

(p/q)(q/p) = −1,

so precisely one of (p/q), (q/p) is +1 and the other is −1. �

We can imagine Gauss’s intense pleasure at discovering this remarkable
result. To see its power, we only have to compare the easy way this resolves
problems involving quadratic residues compared with the two criteria given



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 295 — #311
✐

✐

✐

✐

✐

✐

A.3. Quadratic Residues 295

earlier or with ad hoc methods. Its use is even more clear when allied with
Legendre’s clever symbol.

Example A.23. Is 1984 a quadratic residue modulo 97?

(1984/97) = (44/97) = (2/97)2(11/97) = (±1)2(11/97)

= (11/97) = (97/11) = (9/11) = (3/11)2 = 1

because 97 ≡ 1 mod 4. Hence 1984 is a quadratic residue modulo 97.

By putting together the appropriate results of this chapter the question
of whether a specific number k is a quadratic residue modulo m may be
completely solved by a succession of reductions of the problem:

(a) By factorizing m and using Proposition A.11 which says k is a
quadratic residue modulo m if and only if it is a quadratic residue modulo
each prime factor of m.

(b) If 2 is a prime factor, that part of the problem may be solved by
Proposition A.12: if 2e is the largest power of 2 dividing m, for e = 1, any
odd k is a quadratic residue, for e = 2 we must check that k ≡ 1 (mod 4)
and for e ≥ 3 we must check that k ≡ 1 (mod 8).

(c) For an odd prime factor p of m, we calculate (k/p). First, reduce k

modulo p to assume that 1 ≤ k < p. Then factorize k = qf11 . . . qqss where
the qi are primes and write

(k/p) = (q1/p)
f1 . . . (qs/p)

fs .

We need consider only (qi/p) for fi odd, and since qi < p, we can use
quadratic reciprocity to obtain

(qi/p) = (p/qi)
2(qi/p) = (p/qi)(−1)(p−1)(qi−1)/4

This reduces the problem to calculating (p/qi) where p > qi. Reducing
p modulo qi, we have to calculate Legendre symbols for smaller primes.
Successive reductions of this nature lead to a complete solution.

Example A.24. Is 65 a quadratic residue modulo 124?
Since 124 = 22 × 31, we must check whether 65 is a quadratic residue

modulo 22 and 31. Modulo 22 we have 65 ≡ 1 (mod 4), so the answer is
yes by Proposition A.12(a). Modulo 31

(65/31) = (3/31) = (31/3)(−1)30×2/4 = −(31/3) = −(1/3),

and 1 is a quadratic residue modulo 3, so (65/31) = −1. Thus 65 is not a
quadratic residue modulo 124.
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It is the reduction of the seemingly complicated problem of quadratic
residues to simple arithmetic such as this which highlights the brilliance of
the jewel in Gauss’s number-theoretic crown.

A.4 Exercises

1. Solve the following congruences (where possible)

(1) 3x ≡ 14 (mod 17),

(2) 6x ≡ 3 (mod 35),

(3) 3x ≡ 13 (mod 18),

(4) 20x ≡ 60 (mod 80).

2. Solve the quadratic congruences (where possible):

(1) 3x2 + 6x+ 5 ≡ 0 (mod 7),

(2) x2 + 5x+ 3 ≡ 0 (mod 4),

(3) x2 ≡ 1 (mod 12),

(4) x2 ≡ 0 (mod 12),

(5) x2 ≡ 2 (mod 12).

3. Let a1, a2, . . . , an be the complete set of residues modulo n (not in
any specific order), and let b be an integer relatively prime to n and
c any integer. Show that

a1b+ c, a2b+ c, . . . , anb+ c

is also a complete set of residues.

4. Calculate the Euler function φ(n) = |U(Zn)| for n = 4, 6, 12, 18.

5. Determine all the generators of U(Z7), U(Z11), U(Z17).

6. Show that there exists a primitive root s modulo p such that

sp−1 6≡ 1 (mod p2).

7. Calculate the exponents of the following groups: U(Z4), U(Z6), U(Z8),
U(Z10). Which of these groups are cyclic?

8. Show that for an odd prime p there are as many square residue classes
as non-squares in U(Zpe) for e ≥ 1.
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9. Show that in U(Z2e) there are exactly 2e−3 squares and 3 · 2e−3 non-
squares for e ≥ 3.

10. Determine the squares in the following groups: U(Z7), U(Z12), U(Z49).

11. Use Euler’s criterion to check whether 7 is a quadratic residue modulo
23. Answer the same question using Gauss’s criterion. Now calculate
(7/23) using Gauss reciprocity.

12. Compute the following Legendre symbols: (−1/179), (6/11), (2/97).

13. Compute (97/1117), (2437/811), (23/97).

14. Is 1984 a quadratic residue modulo 365?

15. Is 2001 a quadratic residue modulo 1820?

16. Find the primes for which 11 is a quadratic residue.

17. Define the Jacobi symbol (k/m) for relatively prime integers k, m
(m > 0) by factorizing m = pe11 . . . perr and writing

(k/m) = (k/p1)
e1 . . . (k/pr)

er .

If k, r are prime to m and k ≡ r (mod m), show

(k/m) = (r/m).

18. If (k/m) is the Jacobi symbol of Exercise 17, for m positive and odd,
prove that

(1) (−1/m) = (−1)(m−1)/2,

(2) (2/m) = (−1)(m
2−1)/8.

For k, m positive and relatively prime, prove that

(k/m)(m/k) = (−1)(k−1)(m−1)/4.
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Dirichlet’s Units Theorem

In this appendix we look a little more deeply at properties of the units
in the integers of a number field. These properties are significant for the
general theory, but are not essential to our development of Fermat’s Last
Theorem. Units are important because, while ideals are best suited to
technicalities, there may come a point at which it is necessary to return to
elements. But the generator of a principal ideal is ambiguous up to mul-
tiples by a unit. To translate results about ideals to their corresponding
generators, we therefore need to know about units in the ring of integers.
The most fundamental and far-reaching theorem on units is that of Dirich-
let, which gives an almost complete description, in abstract terms, of the
group of units of the ring of integers of any number field. In particular it
implies that this group is finitely generated. We prove Dirichlet’s theorem
in this appendix. The methods are ‘geometric’ in that we use Minkowski’s
theorem, together with a ‘logarithmic’ variant of the space Lst.

B.1 Introduction

We have already described the units in the integers of Q(
√
d) for negative

squarefree d in Proposition 4.2. For d = −1 the units are {±1,±i}, for
d = −3 they are {±1,±ω,±ω2} where ω = e2πi/3, and for all other d < 0,
the units are just {±1}.

In all cases U is a finite cyclic group of even order (2, 4, or 6) whose
elements are roots of unity. It is in any case obvious that every unit of
finite order is a root of unity in any number field.

299
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For other number fields the structure of U is more complicated. For
example in Q(

√
2)

(1 +
√
2)(−1 +

√
2) = 1

so ǫ = 1+
√
2 is a unit. Now ǫ is not a root of unity since |ǫ| = 1+

√
2 6= 1.

It follows that ǫ has infinite order, all the elements ± ǫn (n ∈ Z) are distinct
units, and U is an infinite group. In fact, though we do not prove it here,
the ±ǫn are all the units of Q(

√
2), so U is isomorphic to Z2 × Z.

After we have proved Dirichlet’s theorem it will emerge that this more
complicated structure of U is in some sense typical.

B.2 Logarithmic Space

Let K be a number field of degree n = s+ 2t, as in Chapter 8, and let Lst

be as described there. We use the notation of Chapter 8 in what follows.
Define a map

l : Lst → Rs+t

as follows. For x = (x1, . . . , xs;xs+1, . . . , xs+t) ∈ Lst put

lk(x) =

{

log |xk| for k = 1, . . . , s

log |xk|2 for k = s+ 1, . . . s+ t.

Then set
l(x) = (l1(x), . . . , ls+t(x)).

The additive property of the logarithm leads at once to the property

l(xy) = l(x) + l(y) (B.1)

for x, y ∈ Lst. The set of elements of Lst with all coordinates non-zero is a
group under multiplication, and l is a homomorphism from this group into
Rs+t. By (8.1) in Chapter 8,

s+t
∑

h=1

lk(x) = log |N(x)| . (B.2)

For α ∈ K define
l(α) = l(σ(α))

where σ : K → Lst is the standard map. This ambiguity in the use of l
causes no confusion, and is tantamount to an identification of α with σ(α).
Explicitly,

l(α) = (log |σ1(α)| , . . . , log |σs(α)| , log |σs+1(α)|2 , . . . , log |σs+t(α)|2).
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The map l : K → Rs+t is the logarithmic representation of K, and Rs+t

is the logarithmic space.
By (8.2) of Chapter 8 and (B.1),

l(αβ) = l(α) + l(β) (α, β ∈ K)

so l is a homomorphism from the multiplicative group K∗ = K \ {0} of K
to the additive group of Rs+t. Further we have, setting lk(α) = lk(σ(α)),

s+t
∑

k=1

lk(α) = log |N(α)| ,

using (8.3) of Chapter 8 and (B.2).

B.3 Embedding the Unit Group in Logarithmic Space

Why all these logarithms? Because the group of units is multiplicative,
whereas Minkowski’s theorem applies to lattices, which are additive. We
must pass from one context to the other, and it is just for this purpose that
logarithms were created.

Let U be the group of units ofO, the ring of integers ofK. By restriction
we obtain a homomorphism

l : U → Rs+t.

It is not injective, but the kernel is easily described:

Lemma B.1. The kernel W of l : U → Rs+t is the set of all roots of unity
belonging to U . This is a finite cyclic group of even order.

Proof: We have l(α) = 0 if and only if |σi(α)| = 1 for all i. The field
polynomial

∏

i

(t− σi(α))

lies in Z[t] by Theorem 2.6 (a) combined with Lemma 2.13. We can there-
fore appeal to Lemma 11.6 to conclude that all the σi(α) are roots of unity,
in particular α itself.

The image σ(O) in Lst is a lattice by Corollary 8.3, so it is discrete by
Theorem 6.1. Since the unit circle in C maps to a bounded subset in Lst

it follows that O contains only finitely many roots of unity, so W is finite.
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But any finite subgroup of K∗ is cyclic (see Stewart [78], Theorem 16.7, p.
171). Finally, W contains −1 which has order 2, so W has even order. �

Obviously the next thing to find out is the image E of U in Rs+t:

Lemma B.2. The image E of U in Rs+t is a lattice of dimension ≤ s+t−1.

Proof: The norm of any unit is ±1, so for any unit ǫ

s+t
∑

k=1

lk(ǫ) = log |N(ǫ)| = log 1 = 0.

Hence all points of E lie in the subspace V of Rs+t consisting of those
elements (x1, . . . , xs+t) such that

x1 + . . .+ xs+t = 0.

This has dimension s+ t− 1.
To prove E is a lattice it is sufficient to prove it discrete by Theorem

6.1. Let || || be the usual length function on Rs+t. Suppose that 0 < r ∈ R,
and

||l(ǫ)|| < r.

Now |lk(ǫ)| ≤ ||l(ǫ)|| < r, so

|σk(ǫ)| < er (k = 1, . . . , s)

|σs+j(ǫ)|2 < er (j = 1, . . . , t).

Hence the set of points σ(ǫ) in Lst corresponding to units with ||l(ǫ)|| < r
is bounded, so finite by Corollary 8.3. Hence E intersects each closed ball
in Rs+t in a finite set, so E is discrete. Therefore E is a lattice. Since
E ⊆ V it has dimension ≤ s+ t− 1. �

Already we know quite a lot about U . In particular, U is finitely gen-
erated, because W is finite and U/W ∼= E is a lattice, so free abelian, with
rank ≤ s + t − 1. All that remains is to find the exact dimension of the
lattice E. In fact it is s+ t− 1, as we prove in the next section.

B.4 Dirichlet’s Theorem

The main thing we lack is a topological criterion for deciding whether a
lattice L in a vector space V has the same dimension as V . We remedy
this lack with:
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Lemma B.3. Let L be a lattice in Rm. Then L has dimension m if and only
if there exists a bounded subset B of Rm such that

Rm =
⋃

x∈L

(x+B).

Proof: If L has dimension m then we may take B to be a fundamental
domain of L and appeal to Lemma 6.2.

Suppose conversely that B exists but, for a contradiction, L has dimen-
sion d < m. An intuitive argument goes like this: the quotient Rm/L is,
by Theorem 6.6, the direct product of a torus and Rm−d. The condition on
B says that the image of B under the natural map ν : Rm → Rm/L is the
whole of Rm/L. But because B is bounded this contradicts the presence of
a direct factor Rm−d which is unbounded. By taking more account of the
topology than we have done hitherto, this argument can easily be made
rigorous. Alternatively, we operate in Rm instead of Rm/L as follows.

Let V be the subspace of Rm spanned by L. If L has dimension less than
m then dim V < dim Rm. Hence we can find an orthogonal complement
V ′ to V in Rm. The condition on B implies that Rm = ∪v∈V (v + B),
so V ′ is the image of B under the projection π : Rm → V ′. But π is
distance-preserving, so V ′ is bounded, contradiction. �

In fact, what we are saying topologically is that L has dimension m
if and only if the quotient topological group Rm/L is compact. This can
profitably be compared with Theorem 1.17. In fact there is some kind of
analogy between free abelian groups and sublattices of vector spaces; as
witness to which the reader should compare Lemma 9.3 and Theorem 1.17.

Before proving that E has dimension s+ t−1 it is convenient to extract
one computation from the proof:

Lemma B.4. Let y ∈ Lst and let λy : Lst → Lst be defined by λy(x) = yx.
Then λy is a linear map and

detλy = N(y).

Proof: It is obvious that λy is linear. To compute det λy we use the basis
(8.4) of Chapter 8. If

y = (x1, . . . , xs; y1 + iz1, . . . , yt + izt)

then we obtain for det λy the expression
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which is
x1 . . . xs(y

2
1 + z21) . . . (y

2
t + z2t ) = N(y).

�

The way is now clear for the proof of:

Theorem B.5. The image E of U in Rs+t is a lattice of dimension s+ t− 1.

Proof: As before let V be the subspace of Rs+t whose elements satisfy

x1 + . . .+ xs+t = 0.

Then E ⊆ V , and dim V = s+ t− 1. To prove the theorem we appeal to
Lemma B.3: it is sufficient to find in V some bounded subset B such that

V =
⋃

e∈E

(e +B).

This additive property translates into a multiplicative property in Lst. Ev-
ery point in Rs+t is the image under l of some point in Lst, so every point in
V is the image of some point in Lst. In fact, for x ∈ Lst, we have l(x) ∈ V
if and only if |N(x)| = 1. So if we let

S = {x ∈ Lst : |N(x)| = 1}

then l(S) = V . If X0 ⊆ S is bounded, then so is l(X0), as may be verified
easily. If x ∈ S then the multiplicativity of the norm implies that xX0 ⊆ S
if X0 ⊆ S. In particular if ǫ is a unit then σ(ǫ)X0 ⊆ S. So if we can find a
bounded subset X0 of S such that

S =
⋃

ǫ∈U

σ(ǫ)X0 (B.3)

then B = l(X0) will do what is required in V .
Now we find a suitable X0. Let M be the lattice in Lst corresponding

to O under σ. Consider the linear transformation λy : Lst → Lst(y ∈ Lst)
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of Lemma B.4. If y ∈ S then the determinant of λy is N(y) which is ± 1.
Therefore λy is unimodular. By the remark after Lemma 9.3, this implies
that any fundamental domain for the lattice yM(= λy(M)) has the same
volume as a fundamental domain for M . Call this volume v.

Choose real numbers ci > 0 with

Q = c1 . . . cs+t >

(

4

π

)t

v.

Let X be the set of x ∈ Lst for which

|xk| < ck (k = 1, . . . , s)

|xs+j |2 < cs+j (j = 1, . . . , t).

By Lemma 9.2 there exists in yM a non-zero point x ∈ X . We have

x = yσ(α) (0 6= α ∈ O).

Now
N(x) = N(y)N(α) = ±N(α)

so

|N(α)| < Q.

By Theorem 5.17 (c) only finitely many ideals of O have norm < Q. Con-
sider principal ideals and recall that their generators are ambiguous up to
unit multiples. Then there exist in O only finitely many pairwise non-
associated numbers

α1, . . . , αN

whose norms are < Q in absolute value. Thus for some i = 1, . . . , N we
have αǫ = αi for a unit ǫ. Therefore

y = xσ(α−1
i )σ(ǫ). (B.4)

Now define

X0 = S ∩
(

N
⋃

i=1

σ(α−1
i )X

)

. (B.5)

Since X is bounded so are the sets σ(α−1
i )X , and since N is finite X0 is

bounded. Obviously X0 does not depend on the choice of y ∈ S.
But now, since y and σ(ǫ) ∈ S, we have xσ(α−1

i ) ∈ S, hence xσ(α−1
i ) ∈

X0. Then (B.4) shows that

y ∈ σ(ǫ)X0.
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Hence (B.3) holds for an arbitrary element y ∈ S. �

We put this result into a more explicit form, obtaining the Dirichlet
Units Theorem:

Theorem B.6. (Dirichlet Units Theorem.) The group of units of O is
isomorphic to

W × Z× . . .× Z

where W is as described in Lemma B.1 and there are s + t − 1 direct
factors Z.

Proof: By Theorem B.5, U/W ∼= Z × . . . × Z = Zs+t−1. Since W is
finite, U is a finitely generated abelian group, hence a direct product of
cyclic groups, see Fraleigh [28] Theorem 9.3, p. 90. Since W is finite and
U/W is torsion-free, W is the set of elements of U of finite order, which
is the product of all the finite cyclic factors in the direct decomposition.
The other factors are all infinite cyclic; looking at U/W tells us there are
exactly s+ t− 1 of them. �

In more classical terms, Dirichlet’s theorem asserts the existence of a
system of s+ t− 1 fundamental units

η1, . . . , ηs+t−1

such that every unit of O is representable uniquely in the form

ζ · ηr11 . . . η
rs+t−1

s+t−1

for a root of unity ζ and rational integers ri.

We return briefly to Q(
√
2), which we looked at in Section B.1. For this

field, s = 2, t = 0, so s+ t− 1 = 1. Hence U is of the form W × Z where
W consists of the roots of unity in Q(

√
2). These are just ± 1, so we get

U ∼= Z2 ×Z as asserted in Section 1. Note, however, that we have still not
proved that 1 +

√
2 is a fundamental unit. In fact, this is true in general

of Dirichlet’s theorem: it does not allow us to find any specific system of
fundamental units. Other methods can be developed to solve this problem,
and the Dirichlet theorem is still needed to tell us when we have found
sufficiently many units.
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B.5 Exercises

1. Find units, not equal to 1, in the rings of integers of the fields Q(
√
d)

for d = 2, 3, 5, 6, 7, 10.

2. Use Dirichlet’s theorem to prove that for any squarefree positive
integer d there exist infinitely many integer solutions x, y to the
Pell equation

x2 − dy2 = 1.

(Really this should not be called the Pell equation, since Pell did not
solve it. It was mistakenly attributed to him by Euler, and the name
stuck.)

3. Prove that 1 +
√
2 is a fundamental unit for Q(

√
2).

4. Let η1, . . . , ηs+t−1 be a system of fundamental units for a number
field K. Show that the regulator

R = |det (log |σi(ηj)|)|

is independent of the choice of η1, . . . , ηs+t−1.

5. Show that the group of units of a number field K is finite if and only
if K = Q or K is an imaginary quadratic field.

6. Show that a number field of odd degree contains only two roots of
unity.
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161/162 (1988) 165–186.

[63] C. Reid. Hilbert, Springer–Verlag, Berlin 1970.

[64] P. Ribenboim. 13 Lectures on Fermat’s Last Theorem, Springer–Verlag,
New York 1979.

[65] K. Ribet. On modular representations of Gal(Q/Q) arising from modular
forms, Invent. Math. 100 (1990) 431–476.

[66] K. Ribet. Galois representations and modular forms, Bull. Amer. Math.
Soc. 32 (1995) 375–402.

[67] B. Riemann. Grundlagen für eine allgemeine Theorie der Funktionen einer
veränderlichen complexen Grosse, Werke (2nd ed.) 3–48.



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 313 — #329
✐

✐

✐

✐

✐

✐

BIBLIOGRAPHY 313

[68] J. Roe. Elementary Geometry, Oxford University Press, Oxford 1993.

[69] J.J. Rotman. An Introduction to the Theory of Groups, Allyn & Bacon,
Boston 1984.

[70] K. Rubin and A. Silverberg. A report on Wiles’ Cambridge lectures, Bull.
Amer. Math. Soc. 31 (1994) 15–38.

[71] P. Samuel. About Euclidean rings, J. Algebra 19 (1971) 282–301.

[72] R. Schoof. Catalan’s Conjecture, Springer–Verlag, New York 2008.

[73] J.L. Selfridge and B.W. Pollock. Fermat’s Last Theorem is true for any
exponent up to 25,000, Notices Amer. Math. Soc. 11 (1967) 97, abstract
no. 608–138.

[74] D. Sharpe. Rings and Factorization, Cambridge University Press, Cam-
bridge 1987.

[75] C.L. Siegel. Zum Beweise des Starkschen Satzes, Invent. Math. 5 (1968)
169–179.

[76] H.M. Stark. A complete determination of the complex quadratic fields of
class-number one, Michigan Math. J. 14 (1967) 1–27.

[77] I. Stewart. The Problems of Mathematics, Oxford University Press, Oxford
1987.

[78] I. Stewart. Galois Theory (4rd ed.), Chapman and Hall/CRC, Boca Raton
FL 2015.

[79] I. Stewart and D.O. Tall. The Foundations of Mathematics (2nd ed.), Ox-
ford University Press, Oxford 2015.

[80] I. Stewart and D.O. Tall. Complex Analysis, Cambridge University Press,
Cambridge 1983.

[81] D.J. Struik. A Concise History of Mathematics, Bell, London 1962.

[82] R.L. Taylor and A. Wiles. Ring theoretic properties of certain Hecke alge-
bras, Ann. of Math. 141 (1995) 553–572.

[83] H. te Riele and H. Williams. New computations concerning the Cohen-
Lenstra heuristics, Experimental Math. 12 (2003) 99–113.

[84] R. Tijdeman. On the equation of Catalan, Acta Arith. 29 (1976) 197–209.

[85] E.C. Titchmarsh. The Theory of Functions, Oxford University Press, Ox-
ford 1960.

[86] S. Wagstaff. The irregular primes to 125000, Math. Comp. 32 (1978) 583–
591.



✐

✐

“book˙2” — 2015/9/8 — 17:27 — page 314 — #330
✐

✐

✐

✐

✐

✐

314 BIBLIOGRAPHY
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