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 Paul T. Bateman and Harold G. Diamond

 EARLY WORK ON PRIMES. This year marks the hundredth anniversary of the

 proof of the Prime Number Theorem (PNT), one of the most celebrated results in

 mathematics. The theorem is an asymptotic formula for the counting function of

 primes 7r(X) = #{p < x: p prime} asserting that

 7r(x) x/log x (PNT)

 The twiddle notation is shorthand for the statement limxO, 7r(x)/{x/log x} = 1.
 Here we shall survey early work on the distribution of primes, the proof of the

 PNT, and some later developments.

 Since the time of Euclid, the primes, 2, 3, 5, 7, 11, 13, . . ., have been known to

 be infinite in number. They appear to be distributed quite irregularly, and early
 attempts to find a closed formula for the nth prime were unsuccessful. By the end

 of the 18th century many mathematical tables had been computed, and examina-

 tion of tables of prime numbers led C. F. Gauss and A. M. Legendre to change the

 question under investigation. Instead of seeking an exact formula for the nth

 prime, they considered the counting function 7r(X) and asked for approximations

 to this function, evidently a new kind of question in number theory. Each of the

 two men conjectured the PNT, though neither did so in the form we have given. In
 1808 Legendre published the formula 7r(X) = x/(log x + A(x)), where A(x) tends

 to a constant as x oc. Gauss recorded his conjecture in one of his favorite books

 of tables around 1792 or 1793 but first disclosed it, in a mathematical letter, over

 fifty years later. He actually found a better approximation for s(x) in terms of the
 logarithmic integral function, defined for x > 0 by

 li(x) - lim (| + | )-dt.
 o+ o 1+ logt

 It is easy to show that li(x) x/log x, so either expression can be used in the

 asymptotic formula for 7r(X). It has been shown that li(x) is a more accurate

 estimate of 7r(X) than either x/log x or Legendre's proposed formula, so today

 li(x) is used in PNT error estimates. For more details about Gauss' meditations on

 the PNT, see [Gol].

 The function that we now call the Riemann zeta function, which was to play a

 decisive role in the proof of the PNT, was introduced by L. Euler in the 18th

 century. For s real and s > 1, define
 00

 ;(s) = E n -S .
 n=l

 Using the unique factorization of positive integers, Euler proved that

 ;(S) = n {1 + p-s + p-2s + *.. } = n {1 _ p-s} -l

 P
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 where the product extends over all primes p. Further, he gave another proof of the
 infinitude of the primes by obseIving that if the number of primes were finite, then
 the product for {(1) would converge, while in fact the sum for; at s = 1 is the
 harmonic series, which diverges. Euler's proof shows further that the primes are
 sufficiently numerous that the sum of their reciprocals diverges.

 Legendre conjectured and incorrectly believed he had proved that there are an
 infinite number of primes in each arithmetic progression for which the first term

 and common difference are relatively prime. This theorem was established by P. L.
 Dirichlet in 1837 by greatly extending the metbod of Euler described above. In two
 papers, Dirichlet introduced characters (periodic completely multiplicative arith-
 metic functions) to select the elements of an arithmetic progression; he generalized
 the; function by multiplying terms of the series for; by characters to make what
 we today call Dirichlet L functions; he related the value of an L function L(1, X)
 with the class number of quadratic forms of a given discriminant, and from tbe
 positivity of the class number he deduced his key lemma that each of the L
 functions is nonzero at the point s = 1. The subject of analytic number theory is
 generally considered to have begun with Dirichlet.

 is oS at z

 P. Le Chebyshev

 The first person to establish the true order of 7r(x) was P. L. Chebyshev. In the
 middle of the l9th century he found an ingenious elementary method to estimate
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 7r(x) and established the bounds .921x/log x < s(x) < 1.106x/log x for all suffi-
 ciently large values of x. Chebyshev's work was based on use of the arithmetic
 identity

 5£^(d)= logn,
 dln

 where von Mangoldt's function A is a weighted prime and prime power counting
 function defined by A(d) = log p if d = pa for some prime p and positive integer
 a and A(d) = 0 otherwise. Chebyshev's formula is the arithmetic equivalent of the
 zeta function identity {- ;'(s)/;(s)} * ;;(s) = - ;'(s). Chebyshev showed also that

 if w(x)/{x/log x} had a limit as x , then its value would be 1. Attempts at

 improving Chebyshev's methods led to slightly sharper estimates and much more
 elaborate calculations, but the PNT was not to be established by an elementary
 method for another hundred years.

 A few years after the appearance of Chebyshev's paper, a path to the proof of
 the PNT was laid out by G. F. B. Riemann [Edw], [Lan] in his only published paper
 on number theory. Riemann's revolutionary idea was to consider; as a function
 of a complex variable and ewress s(x) in terms of a complex integral involving ;.
 By formally deforming the integration contour, Riemann achieved an explicit

 .S'
 _Z _:..
 ... __ ......

 - __.,l

 i1

 .. P._ . .

 .;. W .

 ... .....

 .

 f.eWS..SS *,.

 B. Uemann
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 formula for 7r(x) as an infinite series whose leading term was li(x) and that
 involved the zeros of ;(s). However, there was not enough analysis available at
 that time to rigorously deduce the PST following Riemann's program. It was not
 until the end of the l9th century that the missing essential ingredient was supplied:
 this was the theoty of entire functions of finite order, which was developed by
 J. Hadamard for the purpose of proving the PNT.

 Riemann proved that the; function has an analytic continuation to C with just
 one singularity, a simple pole with residue 1 at the point s = 1 and that; satisfies
 a functional equation connecting its values at complex arguments s and 1 - s.
 Incidentally, we owe to Riemann the unusual notation for a complex number
 s = (r + it that has become standard in analytic number theory. Riemann recog-
 nized the key role that zeros of the; function play in prime number theory. He
 conjectured several properties of these zeros, all but one of which were proved
 around the end of the l9th century by Hadamard and H. von Mangoldt. The one
 conjecture that remains to this day, and is generally considered to be the most
 famous unsolved problem in mathematics, is the so-called Riemann hypothesis:

 All nonreal zeros of the; function have real part 1/2. (RH)

 Riemann evidently perceived the greater difficulty of the RH, for while he stated
 his other conjectures with no qualification, he prefaced the statement of the RH
 with the phrase "it is very likely that [es ist sehr wahrscheinlich dass]...."

 Activity in prime number theory increased toward the end of the l9th century.
 The term "Prime Number Theorem" appears to have originated at this time in the

 Gottingen dissertation of H. von Schaper "Uber die Theorie der Hadamardschen
 Funktionen und ihre Anwendung auf das Problem der Primzahlen," 1898. There

 were several false starts before correct proofs of the PNT were given. For example,
 in 1885 Stieltjes [Stl] claimed to have proved the RH. With this result one could
 establish the PNT with an essentially optimal error term

 7T(X)-li(x) = O(X2 ff ). (l)

 Here we have used the notation f(x) - o(g(x)) where g is a positive function for
 all x from some point onward, if If(x)l/g(x) < B holds for some positive constant
 B and all sufficiently large positive values of x. The deduction of (1) under the
 assumption of the RH was later carried out by von Koch. Stieltjes died in 1894
 without having either substantiated or retracted his claim of having proved the
 RH.

 FIRST PROOFS OF THE PItIME NUMBER THEOREM. The PNT was estab-
 lished in 1896 by Jacques Hadamard and by Charles-Jean de la Vallee Poussin. It
 was the first major achievement for each at the start of long and distinguished
 careers. Hadamard was born at Versailles, France, in 1865. After studies at the
 Ecole Normale Superieure he obtained his doctorate in 1892. He spent most of his

 career in Paris, working principally in complex function theory, partial differential
 equations, and differential geometry. He died in 1963, within two months of his
 98th birthday. De la Vallee Poussin was born in 1866 in Louvain, Belgium, where
 his father was a professor of mineralogy and geology at the University. After
 studying at Louvain, he too joined the faculty of the University, at the age of 26, as
 Professor of Mathematics. His elegant and lucid Cours d'Analyse has educated
 generations of mathematicians in the methods of Borel and Lebesgue. De la
 Vallee Poussin died in 1962, in his 96th year.
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 Ch. J. de la Vallee Poussin

 The arguments of both Hadamard and de la Vallee Poussin followed the
 scheme laid out by Riemann. Both papers made essential use of Riemann's
 functional equation for the zeta function, several other properties of; conjectured
 by Riemann and established by Hadamard, and Hadamard's new theory of entire functions.

 Hadamard's paper on the PNT [Had] consists of two parts. Here are the
 opening paragraphs of Part I, "On the distribution of zeros of the zeta function"
 (in our translation). It is interesting to see how he treats Stieltjes' claim.

 The Riemann zeta function is defined, when the real part of s is greater
 than 1, by the formula

 log {(s) = - E log(1 - 1/pS), (2)
 p

 where p runs over the prime numbers,.... [Translators' remark: Use the
 principal branch for the logarithms on the right side of (2).] It is holomorphic
 in the entire plane, except at the point s = 1, which is a simple pole. It does
 notvanish for any value of s with real part greater than 1, since the
 right-hand side of (2) is finite. But it admits an infinity of complex zeros with
 real part between 0 and 1. Stieltjes proved, in accordance with Riemann's

 1996]
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 ewectations, that these zeros are all of the form 2 + it (where t is real); but
 his proof has never been published, and it has not even been established that

 the function; has no zeros on the line Rs = 1.
 It is this last assertion that I propose to prove here.

 J. Hadamard

 Hadamard's proof that; + O on the line L{a = 1} = (s E C: Rs = 1} used
 formula (2) for log ;(s), where s = cr + it with a > 1 and t real, and the
 representation

 X 1 X cos(mt log p)
 -R log(1 p ) 1 mpm m=l mpma

 Thus

 p m-l mP
 (3)

 In the analysis of {, one can ignore the contribution of the higher prime powers,

 because that part of the series is uniformly bounded for ff > 1, while the sum over
 just the primes in (3) is not. Hadamard observed first that, because of the simple
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 pole of; at s = 1,

 Ep log ;( ff ) log ff _ 1 ( ff 1 + ) . (4)

 He next noted that if 1 + ito were a zero of ;, necessarily simple, then it would
 follow that

 ,p cos(tO log p) - log _ 1 ( cr 1 + ) . (5)

 Comparing (4) and (5), he concluded in succession that (a) cos(tO log p) -1 for
 most primes p, (b) hence cos(2tO log p) + 1 for most primes p, and (c) finally
 1 + 2ito would be a pole of ;, contradicting the fact that; has no singularities in
 C other than at s = 1. We have omitted some details that Hadamard gave to make
 this argument complete; they can be found also in [THB, Ch. 3]. Today it is
 customary to use a cleaner method, due to F. Mertens, that combines formula (3)
 with a trigonometric inequality to get an inequality for; that expresses Hadamard's
 idea. For example, the choice 3 + 4 cos 0 + cos 20 > O yields

 ;(ff)31 ;( + it) 141 ;(S + 2it) 1 > 1 ( > 1).

 Part II of Hadamard's 1896 paper, "Arithmetic Consequences," contains his
 deduction of the PNT. It begins with the following modest words:

 As one can see, we are quite far from having proved the assertion of
 Riemann-Stieltjes; we have not even been able to exclude the hypothesis of

 an infinity of zeros of ;(s) approaching arbitrarily close to the limiting line
 Ms= 1. However, the result which we have obtained suffices by itself to
 prove the principal arithmetic consequences which people have, up to now,
 sought to deduce from the properties of ;(s).

 Here are the main ingredients in Hadamard's deduction of the PNT. He firs
 established the following "smoothed" form of the Mellin inversion formula,

 E a,1 log(x/n) = 2Ti 122 i:, 52 nEl nS

 valid for x positive and La,ln-s a Dirichlet series that is absolutely convergent fo
 As > 1. The arithmetic function to which he applied the formula was the vo]
 Mangoldt function A(n) that appeared in Chebyshev's work. The associates
 Dirichlet series satisfies the zeta function formula

 00

 x, A(n)n-s = _;,(5)/;(s),
 n=l

 which is shown by differentiating formula (2) for log ;(s). Using the Weierstrass
 Hadamard product representation for (s - l);(s), the convergence of LIPI
 (where p runs over the nonreal zeros of ;), and a contour deformation ane
 estimation of the above Mellin integral, Hadamard deduced that

 , A(n) log(x/n) x.
 nex

 From this relation the PNT follows quite easily.

 Like Hadamard, de la Vallee Poussin [VaP] began his proof by establishing that
 ; has no zeros with real part 1 (by a rather more complicated argument than that
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 of Hadamard). He also used a smoothed form of the Mellin inversion formula, but
 with an expression xS/(s-uXs-v) in place of Xs/S2. In 1899, de la Vallee

 Poussin published another article in which he obtained the PNT with an error
 estimate

 (x) - li(x) = O(xeEp{-clogax}), (6)

 where cx = 1/2 and c is some positive constant. In the last paper he made use of
 Mertens' trigonometric inequality. A quarter of a centuty went by before de la
 Vallee Poussin's error bound was improved.

 We note that the estimate (6) with a fixed positive value of a is superior to any
 estimate of the form

 (x) - li(x) = O(x/log x)

 with fLxed k > 0. The RH implies that (6) holds with a = 1, C = 2 - (, as stated
 it1 (1).

 LATER DEVELOPMENTS. In just over a decade after the proof of the PNT,
 prime number theoly moved from obscurity to mainstream. So little was known on
 the subject in England at the turn of the century that J. E. Littlewood was assigned
 the task of proving the RH by E. W. Barnes, his Cambridge research supervisor,
 and at one point, according to G. H. Hardy, it was believed that the RH had been

 E. anslawl
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 proved. The publication of E. Landau's Handbuch der Lehre von der Verteilung der
 Primzahlen [Lan] in 1909 quickly changed the status of the subject. Landau's book
 presented in accessible form nearly evetything that was then known about the
 distribution of primes. Incidentally, the O notation we use was popularized by
 Landau.

 In addition to writing about prime number theory, Landau made significant
 contributions to the subject, including the simplification of some of the main
 arguments and extension of the results. For example, he was the first to prove the
 PNI without making use of the functional equation of {. His idea was to combine
 an analytic continuation of the zeta function a bit to the left of L{<T = 1}, e.g., via

 s X [x] -x

 {( ) s- 1 11 Xs+l X s

 with an upper bound for the logarithmic derivative of the zeta function in a
 suitable zero-free region. With the aid of his new methods, Landau was able to
 treat some related problems, such as estimating the number of prime ideals of
 norm at most x in the ring of integers of an arbitrary algebraic number field [Lan,
 Sec. 242]. Iwhis result solved part of the eighth problem posed in Hilbert's famous
 1900 address to the International Congress of Mathematicians.

 It had long been noted, possibly already by Gauss, that

 w(x) - li(x) < O (7)

 for x = 2,3, . . . to whatever point it was checked. In addition to this empirical
 evidence, theoretical support for the conjecture that (7) holds for all x 2 2 was

 J. E. Littlewood
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 provided by Riemann, who observed that his formula for s(x) begins with the

 terms li(x)- li(4)/2. However, this conjecture was disproved by Littlewood
 [Ing], who used almost periodic functions and diophantine ideas to show that in

 fact the difference changes sign infinitely often. Littlewood's proof did not pro-
 vide an estimate of where the first change of sign might be, and this question at-

 tracted further attention. The suggestion was raised that the question might be

 undecidable. However, it was proved by S. Skewes that there is a number
 x < exp exp exp exp7.705 for which (7) does not hold. Skewes' number, which is
 among the largest that have occurred in mathematics, has subsequently been
 replaced by a more modest number with fewer than 400 decimal digits. There is a
 moral here: vast amounts of empirical evidence together with a CCphilosophical"

 explanation for a mathematical phenomenon are not the same as a proof.

 What is the relation between the PNT and the nonvanishing of the Riemann
 zeta function on L{cn = 1}? It is quite easy to see that the PNI implies that; has
 no zeros on the line. Proofs of the PNT were given first by Landau [Lan, Sec. 241]

 and then by Hardy and Littlewood that used, besides the nonvanishing of; on
 L{ = 1}, only very weak growth conditions for ;((r + it) for (r > 1 and Itl , oo.

 The question arose whether the PNT could be proved using just the fact that;

 has no zeros on L{cr = 1}. This was answered affirmatively around 1930 by work of
 N. Wiener using Fourier analysis. Wiener created an approximate integral formula

 for 7r(x) involving a compactly supported smoothing function. The following
 tauberian theorem [Chl] provides one of the most direct proofs now known for the
 PNT.

 Wiener-Ikehara Theorem. Suppose f is a non-decreasing real-valued function on
 [1, °°) such that

 00

 | It(u)|u-t-l du <oo
 1

 for each real ff > 1. Suppose further that

 | f(u)u-S-l du = 1 +g(S) 5 > 1,

 where ae E R and g is the restriction to {s: Sts > 1} of a continuous function on the

 closed half plane {s: R s 2 1}. Then

 lim u-lt(u) = ct.

 u oo

 In 1937 A. Beurling introduced an abstraction of prime number theory in which
 multiplicative structure was preserved but the additive structure of integers was
 dropped. A sequence of real numbers P1 < P2 < p3 < ', called "generalized

 primes," was introduced, and the free abelian semigroup generated from them

 under multiplication was called the associated sequence of"generalized integers."

 From the assumption that the counting function of the generalized integers

 satisfies the condition

 I(x) = Ar + O(x log-7 x), 7 > 3/2,

 an analogue of the PNT was established. Moreover, the condition that y > 3/2
 was shown to be best possible. A form of the Wiener-Ikehara theorem with a

 weaker hypothesis on the behavior of the function g near L{(J = 1} can be used in

 the proof of Beurling's theorem.

 738
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 N. W*lener

 Generalized prime number theory has several applications, and it has raised

 interesting new problems. For example, Landau's prime ideal theorem is easily

 deduced from Beurling's result. Also, there are generalized prime models for
 which the counting function of generalized integers is quite close to that of the

 usual integers, but for which the analogue of the RH is false. This means that a

 successful proof of the RH will require more than just the facts that the positive
 integers are a multiplicative semigroup and that the counting function of positive

 integers [x] is close to x; presumably, the additive structure of the integers must be

 taken into account. More on this topic can be found in the authors' survey article
 [BaD].

 Many different proofs have been given for the PNT. A very concise argument

 that uses only the analyticity and nonvanishing of (s - l);(s) on the closed half
 plane {s: Rs 2 1} was found by D. J. Newman [New]. In place of the Wiener-

 Ikehara theorem or an application of the Mellin inversion integral, Newman's

 method uses basic complex function theoxy to estimate the integral

 I S ( R2 ) nEl nS

 over a finite contour for large values of R. Some other interesting proofs of the
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 PNT include that of H. Daboussi, which uses elements of sieve theory, and a
 method of A. Hildebrand based on the large sieve.

 De la Vallee Poussin's PNT error term was improved by Littlewood, who used
 exponential sum methods to find bounds for Dirichlet series. These estimates led
 to enlarged regions on which the zeta function is guaranteed to be nonzero and
 consequently to better PNT estimates. The method was developed and improved
 by the school of I. M. Vinogradov, leading to the bound in which (6) holds with
 ct-3/5-e.

 The failure of the Chebyshev methods and the success of Riemann's program in
 proving the PNT led to the opinion, voiced by Hardy and others, that the PNT

 could be proved only with the use of the Riemann zeta function. This belief was
 strengthened by Wiener's proof of the equivalence of the PNT and the nonvanish-
 ing of; on L{C= 1}. Inspired by work in sieve theory, A. Selberg developed a
 kind of weighted analogue of Chebyshev's identit. With this formula and an
 argument of P. Erdos he succeeded in giving an '4elementary" proof of the PNT.
 Subsequently, Selberg and Erdos each discovered an independent proof. Their
 arguments are considered elementaty in the sense that they do not involve the zeta
 function, complex analysis, or Fourier methods; however, the methods are quite
 intricate. Subsequently, elementary estimates were sought for the PNT error term,
 and by use of higher order analogues of Selberg's formula and more elaborate
 tauberian arguments, error terms of type (6) with c} = 1/6 - e were achieved. For
 a survey of the use of elementary methods in prime number theory, see [Dia].

 We conclude with a summary of what is now known about the truth of the RH.
 If the RH is false and; has even a single nonreal zero off the critical line {s E C:

 Rs = 1/2}, there would be consequences for prime number theoty, such as in the
 qualit,r of the PNT error term. The numerical evidence in support of the RH is
 very great-by comparing the sign changes of a real-valued equivalent of ;(2 + it)
 with the zeros predicted by use of the argument principle, van de Lune, te Riele,
 and Winter showed that the first one and a half billion (!) nonreal zeros of zeta lie
 on the critical line and are simple. In the 1920's, Littlewood showed that almost all
 the nonreal zeros lie in any given strip of positive width that contains the critical
 line. Hardy proved that there were infinitely many zeros of zeta on the critical line,

 and later Selberg showed that a positive proportion of the nonreal zeros were on
 the line. Near the end of his life, N. Levinson introduced an efficient zero counting
 method, which B. Conrey has developed to show that more than 2/5 of the
 nonreal zeta zeros are simple and lie on the critical line.

 SOURCES. The theory of the distribution of prime numbers is a rich and
 fascinating topic. In this survey we have had to treat fleetingly or omit entirely
 many interesting topics. Also, it was not feasible to list the sources for all the facts
 cited. Ihe following books and articles discuss further topics and provide refer-
 ences to original sources.

 Landau's Handbuch [Lan] remains an excellent introduction to prime number
 theory and is a reference for virtually all early results in the area. The second
 edition of the Handbuch, edited by the first author, contains information on work
 up to about 1950 on the distribution of primes. The books of Chandrasekharan
 [Ch l], [Ch2 ], Ingham [Ing], and Ellison & Mendes -France [EMF] provide very
 readable introductions to the subject. Titchmarsh & Heath-Brown [THB] and Ivic
 [Ivc] are standard references on the Riemann zeta function, and Edwards [Edw]
 provides a historical view of this subject. There are detailed and authoritative

 encyclopedia articles on prime number theory by Hadamard [BHM] and by Bohr
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 and Cramer [BoC]. The recent survey article of W. Schwarz [Sch] describes the

 development of prime number theory in the twentieth century, including several

 topics that we have not treated. Finally, Ribenboim [Rib] provides a kind of

 Guinness record book about primes and includes extensive references.
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