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u AN ANALYSIS OF FOUR
MISSING DATA TREATMENT
METHODS FOR SUPERVISED
LEARNING

GUSTAVOE. A. P. A. BATISTA and
MARIACAROLINAMONARD
University of S~ao Paulo, S~ao Carlos, SP, Brazil

One relevant problem in data quality is missing data. Despite the frequent occurrence and the

relevance of the missing data problem, many machine learning algorithms handle missing data

in a rather naive way. However, missing data treatment should be carefully treated, otherwise

bias might be introduced into the knowledge induced. In this work, we analyze the use of the

k-nearest neighbor as an imputation method. Imputation is a term that denotes a procedure

that replaces the missing values in a data set with some plausible values. One advantage of

this approach is that the missing data treatment is independent of the learning algorithm used.

This allows the user to select the most suitable imputation method for each situation. Our

analysis indicates that missing data imputation based on the k-nearest neighbor algorithm can

outperform the internal methods used by C4.5 and CN2 to treat missing data, and can also

outperform the mean or mode imputation method, which is a method broadly used to treat

missing values.

INTRODUCTION

One relevant problem in data quality is missing data. Missing data may
be for different reasons, such as death of patients, equipment malfunctions,
refusal of respondents to answer certain questions, and so on. In addition, a
significant fraction of data can be erroneous, and the only alternative may be
discarding the erroneous data.

Data quality is a major concern in machine learning (ML) and other
correlated areas, such as data mining (DM) and knowledge discovery from
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databases (KDD). Despite the frequent occurrence of missing data in real-
world data sets, ML algorithms handle missing data in a rather naive way.
Missing data treatment should be carefully treated, otherwise bias might be
introduced into the knowledge induced.

In most cases, data sets attributes are not independent from each other.
Thus, through the identification of relationship among attributes, missing
values can be determined. Imputation is a term that denotes a procedure that
replaces the missing values in a data set by some plausible values. One
advantage of this approach is that the missing data treatment is independent
of the learning algorithm used. This allows the user to select the most suitable
imputation method for each situation.

The objective of this work is to analyze the performance of the k-nearest
neighbor as an imputation method, comparing its performance to three other
missing data treatment methods. The first method is the mean or mode
imputation. This method is very simple and broadly used. It consists of
replacing every missing value of an attribute by the mean (if the attribute is
quantitative) or mode (if the attribute is qualitative) of its known values. The
other two methods are the internal missing data treatment strategies used by
two well known ML algorithms: CN2 (Clark and Niblett 1989) and C4.5
(Quinlan 1988).

RANDOMNESS OF MISSING DATA AND METHODS FOR
TREATING MISSING DATA

Missing data randomness can be divided into three classes as proposed by
(Little and Rubin 1987):

1. Missing Completely At Random ðMCARÞ. This is the highest level of
randomness. It occurs when the probability of an instance (case) having a
missing value for an attribute does not depend on either the known values
or the missing data. In this level of randomness, any missing data treat-
ment method can be applied without risk of introducing bias on the data.

2. Missing At Random ðMARÞ. When the probability of an instance having a
missing value for an attribute may depend on the known values, but not
on the value of the missing data itself.

3. Not Missing At Random ðNMARÞ. When the probability of an instance
having a missing value for an attribute could depend on the value of that
attribute.

Several methods have been proposed in the literature to treat missing
data. Many of these methods, such as case substitution, were developed for
dealing with missing data in sample surveys and have some drawbacks when
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applied to the data mining context. Other methods, such as replacement of
missing values by the attribute mean or mode, are very naive and should be
carefully used to avoid insertion of bias.

In a general way, missing data treatment methods can be divided into the
following three categories (Little and Rubin 1987):

1. Ignoring and Discarding Data. There are two main ways to discard data
with missing values. The first one is known as complete case analysis. It is
available in all statistical packages and is the default method in many
programs. This method consists of discarding all instances (cases) with
missing data. The second method is known as discarding instances and=or
attributes. This method consists of determining the extent of missing data
on each instance and attribute, and deleting the instances and=or attri-
butes with high levels of missing data. Before deleting any attribute, it is
necessary to evaluate its relevance to the analysis. Unfortunately, relevant
attributes should be kept even with a high degree of missing values. Both
methods (complete case analysis and discarding instances and=or attributes)
should be applied only if missing data are MCAR because missing data
that are not MCAR have non-random elements that can bias the results.

2. Parameter Estimation. Maximum likelihood procedures are used to esti-
mate the parameters of a model defined for the complete data. Maximum
likelihood procedures that use variants of the expectation-maximization
algorithm (Dempster et al. 1977) can handle parameter estimation in the
presence of missing data.

3. Imputation. Imputation is a class of procedures that aims to fill in the
missing values with estimated ones. The objective is to employ known
relationships that can be identified in the valid values of the data set to
assist in estimating the missing values. This paper focuses on imputation of
missing data. More details about this class of methods are described next.

IMPUTATION METHODS

Imputation methods involve replacing missing values with estimated ones
based on information available in the data set. There are many options
varying from naive methods, such as mean imputation, to some more robust
methods based on relationships among attributes. A description of some
widely used imputation methods follows:

1. Case Substitution. This method is typically used in sample surveys. One
instance with missing data (for example, a person that cannot be
contacted) is replaced by another non-sampled instance.

2. Mean or Mode Imputation. This is one of the most frequently used
methods. It consists of replacing the missing data for a given attribute by

Missing Data Treatment Methods 521

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

aa
st

ri
ch

t]
 a

t 1
7:

03
 0

1 
Ju

ly
 2

01
4 



the mean (quantitative attribute) or mode (qualitative attribute) of all
known values of that attribute.

3. Hot Deck and Cold Deck. In the hot deck method, a missing attribute
value is filled in with a value from an estimated distributation for the
missing value from the current data. Hot deck is typically implemented in
two stages. In the first stage, the data are partitioned into clusters. In the
second stage, each instance with missing data is associated with one
cluster. The complete cases in a cluster are used to fill in the missing
values. This can be done by calculating the mean or mode of the attribute
within a cluster. Cold deck imputation is similar to hot deck, but the data
source must be other than the current data source.

4. Prediction Model. Prediction models are sophisticated procedures for
handling missing data. These methods consist of creating a predictive
model to estimate values that will substitute the missing data. The attri-
bute with missing data is used as class-attribute, and the remaining
attributes are used as input for the predictive model. An important
argument in favor of this approach is that, frequently, attributes have
relationships (correlations) among themselves. In this way, those corre-
lations could be used to create a predictive model for classification or
regression for, respectively, qualitative and quantitative attributes with
missing data. Some of these relationships among the attributes may be
maintained if they are captured by the predictive model. An important
drawback of this approach is that the model estimated values are usually
more well-behaved than the true values would be, i.e., since the missing
values are predicted from a set of attributes, the predicted values are likely
to be more consistent with this set of attributes than the true (not known)
values would be. A second drawback is the requirement for correlation
among the attributes. If there are no relationships among attributes in the
data set and the attribute with missing data, then the model will not be
precise for estimating missing values.

IMPUTATION WITH k-NEAREST NEIGHBOR

This work proposes the use of the k-nearest neighbor algorithm to esti-
mate and substitute missing data. The main benefits of this approach are:
(i) k-nearest neighbor can predict both qualitative attributes (the most fre-
quent value among the k-nearest neighbors) and quantitative attributes (the
mean among the k-nearest neighbors); (ii) there is no necessity for creating a
predictive model for each attribute with missing data. Actually, the k-nearest
neighbor algorithm does not create explicit models (such as a decision tree or
a set of rules), since the data set is used as a ‘‘lazy’’ model. Thus, the k-nearest
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neighbor algorithm can be easily adapted to work with any attribute as class
by just modifying the attributes to be considered in the distance metric. Also,
this approach can easily treat examples with multiple missing values.

The main drawback of the k-nearest neighbor approach is that, whenever
the k-nearest neighbor looks for the most similar instances, the algorithm
searches through all the data sets. This limitation can be very critical for
KDD, since this research area has, as one of its main objectives, the analysis
of large databases. Several works that aim to solve this limitation can be
found in the literature. One method is the creation of a reduced training set
for the k-nearest neighbor composed only by proto-typical examples (Wilson
and Martinez 2000). This work uses an access method called M-tree (Ciaccia
et al. 1997) that was implemented in the k-nearest neighbor algorithm
employed. Furthermore, M-trees can organize and search data sets based on
a generic metric space. M-trees can drastically reduce the number of distance
computations in similarity queries.

MISSING DATA TREATMENT BY C4.5 AND CN2

Both algorithms, C4.5 and CN2, were selected because they are well
considered by the ML community. They induce propositional concepts:
decision trees and rules, respectively. Furthermore, C4.5 seems to have a
good internal algorithm to treat missing values, as shown in Grzymala-Busse
and Hu (2000). On the other hand, CN2 seems to use a rather simple method
to treat missing data.

C4.5 and CN2 can handle missing values in any attribute, except the class
attribute, for both training and test sets.

C4.5 uses a probabilistic approach to handle missing data. Given a
training set, T, C4.5 finds a suitable test, based on a single attribute, that has
one or more mutually exclusive outcomes O1;O2; . . . ;On. T is partitioned into
subsets T1;T2; . . . ; Tn, where Ti contains all the instances in T that satisfy the
test with outcome Oi. The same algorithm is applied to each subset Ti until a
stop criteria is obeyed. C4.5 uses the information gain ratio measure to choose
a good test to partition the instances. If there exist missing values in an
attribute X, C4.5 uses the subset with all known values to X to calculate the
information gain.

Once a test based on an attribute X is chosen, C4.5 uses a probabilistic
approach to partition the instances with missing values in X. When an
instance in T with known value is assigned to a subset Ti, this indicates that
the probability of that instance belonging to subset Ti is 1 and to all other
subsets is 0. When the value is not known, only a weaker probabilistic
statement can be made. C4.5 associates to each instance in Ti a weight
representing the probability of that instance belonging to Ti. If the instance
has a known value and satisfies the test with outcome Oi, then this instance is
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assigned to Ti with weight 1; if the instance has an unknown value, this
instance is assigned to all partitions with different weights for each one. The
weight for the partition Ti is the probability that instance belongs to Ti. This
probability is estimated as the sum of the weights of insances in T known to
satisfy the test with outcome Oi divided by the sum of weights of the cases in
T with known values on the attributes X.

The CN2 algorithm uses a rather simple imputation method to treat
missing data. Every missing value is filled in with its attribute most common
known value before calculating the entropy measure (Clark and Niblett
1989).

EXPERIMENTAL ANALYSIS

The main objective of the experiments conducted in this work is to
evaluate the efficiency of the k-nearest neighbor algorithm as an imputation
method to treat missing data, comparing its performance with the perfor-
mance obtained by the internal algorithms used by C4.5 and CN2 to learn
with missing data and by the mean or mode imputation method.

In these experiments, missing values were artificially implanted in diffe-
rent rates and attributes into the data sets. The performance of all four
missing data treatments were compared using cross-validation estimated
error rates. In particular, we are interested in analyzing the behavior of these
treatments when the amount of missing data is high since some researchers
have reported finding databases where more than 50% of the data were
missing (Lakshminarayan et al. 1999).

The experiments were carried using four data sets from UCI (Merz and
Murphy 1998) Bupa, Cmc, Pima, and Breast. The first three data sets have no
missing values. Breast has very few cases with missing values (in total sixteen
cases or 2.28%), which were removed before starting the experiments. The
main reason for not using data with missing values is the wish to have total
control over the missing data in the data set. For instance, we would like the
test sets to have no missing data. If some test set has missing data, then the
inducer’s ability to classify missing data properly may influence the result.
This influence is undesirable since the objective of this work is to analyze the
viability of the k-nearest neighbor as an imputation method for missing data
and the inducer learning ability when missing values are present.

Table 1 summarizes the data sets employed in this study. It shows, for
each data set, the number of instances (#Instances), number and percentage
of duplicate (appearing more than once) or conflicting (same attribute-value
but different class attribute) instances, number of attributes (#Attributes),
number of quantitative and qualitative attributes, class attribute distribution,
and the majority class error. This information was obtained using the
MLCþþ info utility (Kohavi et al. 1996).
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Initially, the original data set was partitioned into ten pairs of training
and test sets through the application of ten-fold cross validation resampling
method. Then, missing values were inserted into the training set. Six copies of
this training set were used; two were given directly to C4.5 and CN2 without
any missing data treatment. Another two copies had their missing values
treated, by the mean or mode imputation method and the last two copies
were given to the k-nearest neighbor to estimate and substitute the missing
values. After the missing data treatment, the training sets were given to C4.5
and CN2. All classifiers, i.e., the two induced with untreated data and
the other four induced with treated data, were used to classify the test set. At
the end of ten iterations, the true error rate was estimated by calculating the
mean of the error rates of each iteration. Finally, the performances of C4.5
and CN2 allied to the k-nearest neighbor missing data treatment method
were analyzed and compared to the performances of the methods used
internally by C4.5 and CN2 to learn when missing values are present, and to
the performances of C4.5 and CN2 allied to the mean or mode imputation.

In order to insert missing data into the training sets, some attributes have
to be chosen and some of their values modified to unknown. Which attributes
will be chosen and how many of their values will be modified to unknown is
an important decision. It is straightforward to see that the most repre-
sentative attributes of the data set are a sensible choice for the attributes that
should have their values modified to unknown. Otherwise, the analysis may
be compromised by treating non-representative attributes that will not be
incorporated into the classifier by the learning system. Since finding the most
representative attributes of a data set is not a trivial task, we used the results
of Lee et al. (1999) to select the three most relevant attributes according to
several feature subset selection methods, such as wrapper and filter.

Related to the amount of missing data to be inserted into the training
sets, we want to analyze the behavior of the methods with different amounts

TABLE 1 Data Sets Summary Descriptions

Data set #Instances

#Duplicate or

conflicting (%)

#Attributes

(quanti., quali.) Class Class%

Majority

Error

bupa 345 4 (1.16%) 6 (6,0) 1 42.03 42.03%

2 57.97 on value 2

cmc 1473 115 (7.81%) 9 (2,7) 1 42.70 57.30%

2 22.61 on value 1

3 34.69

pima 769 1 (0.13%) 8 (8,0) 0 65.02 34.98%

1 34.98 on value 0

breast 699 8 (1.15%) 9 (9,0) 2 65.52 34.48%

4 34.48 on value 2
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of missing data. In this way, missing data was inserted completely at random
(MCAR) in the following percentages: 10%, 20%, 30%, 40%, 50% and 60%
of the total of instances. The experiments were performed with missing data
inserted into one, two, and three of the attributes selected as the most
representative. The missing values were replaced by estimated values using 1,
3, 5, 10, 20, 30, 50, and 100 nearest neighbors. Unfortunately, due to lack of
space, only results with 10-nearest neighbor, identified as 10-NNI, will be
showed in this work.

Considering the results shown in Figure 1, it can be observed that the
performance of 10-NNI is superior to the performances of C4.5 and CN2
internal algorithms, and the mean imputation for Bupa data set. Further-
more, the C4.5 internal algorithm is competitive to 10-NNI only when
missing values were inserted into the attributes 2, 4, and 5. The mean or mode
imputation obtained good results when missing values were inserted into the
attributes 2, 4, and 5 for the CN2 inducer.

Similar results are shown in Figure 2. The performance of 10-NNI is in
most cases superior to the performance obtained without missing data
treatment for both C4.5 and CN2. The performance of 10-NNI is also
superior or, in a few cases, competitive to the performance of the mean or
mode imputation method. In fact, the mean or mode imputation method is
competitive to 10-NNI only when missing values were inserted into the
attributes 0 and 3 and 0, 1, and 3, using CN2 as inducer.

Figure 3 shows the comparative results for Pima data set. In this data set,
the 10-NNI method shows a slightly superior performance compared with
C4.5 without missing data treatment, and a superior performance compared
with CN2 without missing data treatment. Besides, 10-NNI is superior to the

FIGURE 1. Comparative results for Bupa data set.

526 G. Batista and M. C. Monard

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

aa
st

ri
ch

t]
 a

t 1
7:

03
 0

1 
Ju

ly
 2

01
4 



mean or mode imputation when missing data were inserted into attribute 1
for both inducers.
With missing data inserted into more than one attribute, 10-NNI and mean
or mode imputation show similar results.

Table 2 shows some numerical results related to the graphs presented in
Figures 1, 2, and 3. This table shows the error rates and standard deviations.
More detailed results can be found in Batista and Monard (2002).

It is important to say that, for Bupa, Cmc, and Pima data sets, the
internal methods used by C4.5 and CN2 to treat missing data show lower

FIGURE 2. Comparative results for Cmc data set.

FIGURE 3. Comparative results for Pima data set.

Missing Data Treatment Methods 527

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

aa
st

ri
ch

t]
 a

t 1
7:

03
 0

1 
Ju

ly
 2

01
4 



TABLE 2 Comparative Results for Bupa, Cmc, Pima, and Breast Data Sets

C4.5 CN2

Data

set Attr. %

No

Imputation Mean=Mode 10-NNI

No

Imputation Mean=Mode 10-NNI

0 36.82±2.69 – – 35.39±2.47 – –

10 38.56±1.74 36.50±1.76 29.87±1.76 33.58±1.94 31.91±1.88 34.19±1.45

20 35.95±1.24 35.66±1.61 34.78±2.43 36.82±0.96 33.95±1.70 32.45±0.95

4 30 37.36±1.89 39.14±2.41 35.36±2.71 38.53±2.16 36.52±1.74 31.56±2.71

40 40.56±2.05 36.78±1.72 31.55±1.86 39.13±1.09 33.91±1.36 28.96±2.24

50 37.62±2.35 38.22±3.03 33.34±2.54 37.35±2.74 35.92±2.09 31.28±1.91

60 42.31±2.11 43.45±2.08 31.22±3.33 39.41±1.20 34.51±2.78 33.29±2.64

0 36.82±2.69 – – 35.39±2.47 – –

10 35.32±2.36 34.20±2.23 34.18±1.72 34.75±2.01 35.45±2.21 33.63±1.77

20 36.22±2.18 38.21±2.54 34.51±2.16 33.81±3.23 33.89±1.49 31.81±2.65

Bupa 4, 2 30 37.70±2.40 37.07±2.44 35.96±2.05 37.66±1.48 33.61±1.96 33.34±1.88

40 37.08±1.42 34.25±1.76 32.45±1.09 39.67±1.98 33.88±1.27 33.02±2.44

50 39.71±2.76 40.89±2.31 33.28±3.07 41.72±1.38 36.83±1.88 34.51±2.40

60 36.21±1.84 39.36±2.30 33.57±2.38 38.81±1.58 36.51±2.33 31.01±1.48

0 36.82±2.69 – – 35.39±2.47 – –

10 35.36±1.76 39.71±1.91 31.56±2.44 37.09±2.55 34.50±1.81 30.71±2.47

20 33.92±2.07 35.92±1.17 33.05±2.09 34.18±2.03 35.39±1.75 34.81±1.49

4, 2, 5 30 35.97±2.90 36.52±1.68 35.61±3.00 35.94±2.14 34.18±1.92 35.35±1.39

40 36.19±2.39 40.29±2.47 35.11±2.14 38.25±1.49 31.59±2.51 32.49±1.20

50 34.39±2.84 34.45±1.75 36.75±2.12 41.97±1.58 32.18±2.24 31.56±1.58

60 34.48±1.77 36.46±1.71 34.47±3.02 40.56±1.88 39.72±1.63 34.82±2.04

0 48.27±0.83 – – 51.25±0.80 – –

10 49.35±1.14 50.24±1.15 48.20±1.16 51.19±1.51 49.69±1.34 50.64±1.22

20 50.23±1.12 49.35±0.85 47.59±0.98 51.73±1.17 49.15±1.42 49.08±0.95

3 30 49.49±0.95 50.78±1.45 47.39±1.48 52.27±0.94 52.21±1.13 49.70±1.71

40 49.97±0.87 48.54±1.46 48.54±1.12 53.56±1.47 51.60±0.73 50.51±1.11

50 50.71±1.11 50.51±1.15 49.36±0.91 54.92±0.95 51.39±1.39 49.56±1.74

60 52.88±1.25 49.90±1.07 47.73±0.95 54.24±1.31 51.93±1.50 50.51±1.12

0 48.27±0.83 – – 51.25±0.80 – –

10 48.27±0.67 48.27±1.37 47.32±1.30 51.26±0.80 49.83±0.77 48.75±1.42

20 48.27±0.99 49.62±1.42 48.61±1.30 52.48±1.51 50.78±1.20 48.88±1.46

Cmc 3, 0 30 48.88±1.40 50.58±0.98 49.02±1.36 52.68±0.91 50.92±0.95 48.54±1.34

40 48.61±1.20 49.56±1.33 47.59±1.53 52.35±1.10 50.11±1.43 50.44±1.09

50 49.49±0.84 49.15±1.38 46.23±1.06 52.68±0.81 48.68±1.18 50.03±1.76

60 50.64±1.16 50.24±0.91 47.39±1.87 51.12±1.53 50.10±1.38 50.85±1.49

0 48.27±0.83 – – 51.25±0.80 – –

10 46.78±1.46 47.32±0.78 47.18±1.19 51.32±1.19 49.56±1.46 49.70±1.61

20 49.56±1.34 51.40±1.49 48.34±1.29 52.14±1.04 51.12±1.07 51.66±1.06

3, 0, 1 30 48.20±1.19 51.18±0.89 48.13±1.51 52.95±1.25 52.34±1.45 51.46±1.15

40 51.26±1.33 48.54±1.12 47.45±1.46 53.36±1.23 49.83±0.85 50.10±1.49

50 50.31±1.23 50.84±1.61 47.38±1.74 52.68±1.02 51.94±1.29 51.73±1.82

60 52.75±1.16 51.46±1.06 48.75±1.86 52.88±0.76 52.75±1.05 50.92±1.35

(Continued)
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TABLE 2 Continued.

C4.5 CN2

Data

set Attr. %

No

Imputation Mean=Mode 10-NNI

No

Imputation Mean=Mode 10-NNI

0 26.56±1.16 – – 25.77±1.12 – –

10 26.17±1.03 26.42±1.48 24.86±0.88 27.99±0.98 28.38±0.87 25.91±0.86

20 28.65±1.15 26.68±1.18 26.04±1.68 28.51±1.06 28.76±1.51 26.18±0.78

1 30 28.25±1.85 27.59±1.38 27.35±1.03 27.47±1.11 29.30±1.23 26.69±1.61

40 26.95±1.67 28.90±1.23 25.38±1.15 30.21±1.08 30.34±1.59 26.82±0.98

50 28.11±1.14 27.86±0.84 26.17±1.11 30.34±1.21 29.68±1.58 27.35±1.47

60 30.59±1.13 27.34±1.05 26.29±1.90 30.21±1.28 30.72±1.47 25.78±1.33

0 26.56±1.16 – – 25.77±1.12 – –

10 25.25±1.10 26.56±1.08 27.86±1.15 28.38±0.87 26.69±1.31 27.08±0.98

20 26.94±1.22 25.91±1.34 26.43±1.08 28.76±1.51 23.43±0.68 28.25±1.09

Pima 1, 5 30 27.73±1.60 26.42±1.27 25.39±0.81 29.30±1.23 27.86±1.16 25.65±1.13

40 27.21±1.45 28.12±1.11 26.29±1.69 30.34±1.59 26.57±1.73 26.17±1.07

50 25.78±1.13 27.99±1.37 27.46±1.16 29.68±1.58 26.17±0.82 25.91±1.08

60 29.81±1.43 27.46±1.67 27.85±1.51 30.72±1.47 27.47±0.75 27.60±1.47

0 26.56±1.16 – – 25.77±1.12 – –

10 25.11±1.70 25.51±1.90 25.13±0.90 27.48±1.00 28.38±0.99 27.73±0.68

20 26.30±1.01 27.33±1.42 25.65±1.35 29.82±0.82 26.30±1.13 27.87±1.26

1, 5, 0 30 26.17±1.35 27.48±1.19 25.51±1.75 31.25±0.89 27.73±0.91 26.17±1.32

40 26.82±1.28 25.65±0.84 25.91±1.44 29.03±0.90 27.35±0.92 25.92±1.32

50 28.11±1.32 28.11±1.65 24.61±1.16 29.69±0.41 26.83±1.29 25.26±0.68

60 27.60±1.05 27.34±1.53 27.86±1.55 31.51±1.17 23.83±0.95 26.05±0.86

0 4.24±0.67 – – 4.68±0.60 – –

10 3.80±0.93 3.66±0.82 4.25±0.67 4.39±0.44 4.24±0.46 5.12±0.84

20 3.95±0.90 3.51±0.88 5.11±0.99 4.68±0.75 4.83±0.69 4.39±0.57

1 30 3.95±0.90 3.80±0.93 4.09±0.91 4.97±0.82 4.67±1.03 4.97±0.62

40 3.95±0.90 3.95±0.90 4.53±0.82 4.53±0.73 5.12±0.90 4.53±0.70

50 3.95±0.90 3.95±0.90 5.41±1.00 4.53±0.91 4.82±0.87 4.53±0.63

60 3.95±0.90 3.95±0.90 6.00±0.88 4.83±0.84 4.83±1.07 5.12±0.69

0 4.24±0.67 – – 4.68±0.60 – –

10 4.83±0.61 3.80±0.85 4.10±0.61 4.38±0.65 3.80±0.66 4.38±0.75

20 4.97±0.65 4.68±0.64 3.80±0.88 3.65±0.84 4.53±0.67 5.56±0.77

Breast 1, 5 30 4.68±0.61 4.39±0.65 4.83±0.69 3.95±0.54 4.09±0.97 4.69±0.57

40 4.39±0.65 4.97±0.44 4.98±0.54 3.95±0.87 3.51±0.66 4.96±0.99

50 4.98±0.73 4.69±0.37 3.81±0.63 4.53±0.63 4.68±0.75 4.98±0.76

60 4.54±0.71 4.68±0.65 5.85±0.53 4.39±0.95 3.66±0.66 4.25±0.64

0 4.24±0.67 – – 4.68±0.60 – –

10 4.68±0.75 4.10±0.61 4.83±0.81 4.25±0.71 4.10±0.52 4.83±0.76

20 5.12±0.73 4.83±0.69 4.69±0.68 4.97±0.79 4.39±0.66 3.80±0.62

1, 5, 0 30 5.42±0.69 4.98±0.50 4.69±1.02 5.12±0.54 5.41±0.78 4.24±0.80

40 4.97±0.62 4.09±0.68 5.27±0.85 5.13±0.55 3.65±0.82 4.83±0.62

50 5.41±0.57 4.83±0.61 4.10±0.84 5.85±0.76 3.07±0.82 4.24±0.91

60 4.97±0.73 4.68±0.78 4.68±0.80 5.85±0.61 3.80±0.73 5.11±0.97
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error rates compared to 10-NNI in only 11 of 108 measurements (8 for C4.5
and 3 for CN2). In none of these 11 measurements does the internal methods
show a statistically significant difference. On the other hand, 10-NNI shows
statistically significant difference in 35 measurements (13 of them are highly
significant). Comparing 10-NNI to the mean or mode imputation method,
the mean or mode imputation shows a lower error rate in 20 of 108 mea-
surements (5 for C4.5 and 15 for CN2); 1 of them is a highly significant
difference. 10-NNI shows statistically significant differences in 11 measure-
ments (3 of them are highly significant).

Although missing data imputation with k-nearest neighbor can provide
good results, there are occasions when its use should be avoided. This is
illustrated by the Breast data set. Breast was chosen because its attributes
have strong correlations among each other. These correlations cause an
interesting situation: On one hand, the k-nearest neighbor can predict the
missing values with precision; On the other hand, the inducer can decide not
to use the treated attribute, replacing it by another attribute with high cor-
relation. The results for Breast data set are shown in Figure 4, where it can be
seen that 10-NNI does not outperform the other missing data treatment

TABLE 3 Mean Square Error (MSE) Between Predicted and Actual Values for 10-NNI

and Mean or Mode Imputation—Breast Data Set

Attribute MSE 10-NNI MSE Mean=Mode

0 (Clump thickness) 4.02±0.14 7.70±0.28

1 (Uniformity of cell size) 1.72±0.11 8.96±0.36

5 (Bare nuclei) 4.23±0.30 13.29±0.46

FIGURE 4. Comparative results for Breast data set.
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methods. This scenario is interesting because 10-NNI was able to predict the
missing data with higher precision than the mean or mode imputation. As
missing values were artificially implanted into the data, the mean square error
(MSE) between the predicted values and the actual ones can be measured.
These errors are presented in Table 3.

If 10-NNI method was more accurate in predicting the missing values,
why does this higher accuracy not translate into a more precise classifier? The
answer may be in the high correlation among the data set attributes and
because (or consequently) Breast data set has several attributes with similar
predicting power.

In order to perform a deeper analysis, we need to verify how each
attribute is used in the induced classifier. For instance, it is interesting to
understand how C4.5 was able to obtain a constant error rate even with high
levels of missing values inserted into attribute 1 (Figure 4). Analyzing the
decision trees generated by C4.5, it is possible to verify that C4.5 was able to
substitute attribute 1—Uniformity of Cell Size—by attribute 2—Uniformity
of Cell Shape. This substitution was possible because these two attributes
have a high level of correlation (linear correlation coefficient r¼ 0.9072). In a
general way, for Breast data set, C4.5 was able to replace every attribute with
missing values by others attributes, and still be competitive with 10-NNI.
Using the highest level of the decision tree in which the attribute was
incorporated as a heuristical measure of attribute importance in the model,
Table 4 shows that C4.5 was able to gradually discard the attributes with
missing values as the amount of missing data increased. In a similar way,
C4.5 shows a tendency to discard the attributes with missing values when
those attributes were treated with mean or mode imputation. This result is
expected since, in mean or mode imputation, all missing values are replaced
by the same value (the attribute mean or mode). Consequently, the attribute
discriminatory power (measured by the C4.5 decision tree algorithm through

TABLE 4 Level in which the Attributes 1, 5, and 0 of Breast Data Set were Incorporated into the

Decision Tree Induced by C4.5. ‘‘–’’ means that the Attribute was not Selected to be Part of the

Tree. Level 1 is the Root of the Decision Tree

No Imputation Mean=Mode 10-NNI

% of missing Attr. 1 Attr. 5 Att. 0 Attr. 1 Attr. 5 Att. 0 Attr. 1 Attr. 5 Att. 0

0 1 2 3 1 2 3 1 2 3

10 2 2 3 2 2 3 1 2 3

20 – 2 3 – 3 3 1 2 3

30 – 5 – – 3 – 1 2 3

40 5 4 – 3 – – 1 2 3

50 – – – 6 7 3 1 3 2

60 – 5 – – 3 – 1 2 3
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entropy) tends to decrease. The same did not occur when the missing data
were treated by 10-NNI. In this scenario, C4.5 kept the attributes with
missing values as the upmost attributes into the decision tree. This situation
would have been an advantage if Breast data set did not have other attributes
with similar predicting power.

CONCLUSIONS AND LIMITATIONS

This work analyzes the behavior of four methods for missing data
treatment: the 10-NNI method using a k-nearest neighbor algorithm for
missing data imputation; the mean or mode imputation; and the internal
algorithms used by C4.5 and CN2 to treat missing data. These methods were
analyzed inserting different percentages of missing data into different
attributes of four data sets showing promising results. The 10-NNI provides
very good results, even for training sets having a large amount of missing
data.

The Breast data set provided a valuable insight into the limitations of the
missing data treatment methods. The first decision to be made is if the
attribute should be treated. The existence of other attributes with similar
information (high correlation), or similar predicting power can make the
missing data imputation useless or even harmful. Missing data imputation
can be harmful because even the most advanced imputation method is only
able to approximate the actual (missing) value. The predicted values are
usually more well-behaved, since they conform with other attributes values.
In the experiments carried out, as more attributes with missing values were
inserted and as the amount of missing data increased, the induced models
became more simple. In this way, missing data imputation should be
carefully applied under the risk of oversimplifying the problem under study.

In future works, the missing data treatment methods will be analyzed in
other data sets. Furthermore, in this work, missing values were inserted
completely at random (MCAR). In a future work, we will analyze the
behavior of these methods when missing values are not randomly distributed.
In this case, there is a possibility of creating invalid knowledge. For an
effective analysis, we will have to inspect not only the error rate, but also the
quality of the knowledge induced by the learning system.
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