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Abstract

An algorithm is described that enables efficient deterministic approximate computation
of the bootstrap distribution for any linear bootstrap method T ∗

n , alleviating the need for
repeated resampling from observations (resp. input-derived data). In essence, the algorithm
computes the distribution function from a linear mixture of independent random variables
each having a finite discrete distribution. The algorithm is applicable to elementary bootstrap
scenarios (targetting the mean as parameter of interest), for block bootstrap, as well as for
certain residual bootstrap scenarios. Moreover, the algorithm promises a much broader
applicability, in non-bootstrapped hypothesis testing.

Keywords: deterministic bootstrapping, bootstrap distribution, linear mixture, quantiles,
linear bootstrap methods

Problem setting, motivation, related work. Given an estimation problem based on real-
valued data points Xi, i = 1 . . . n, deemed to originate from some distribution P⊗n, and aiming
to infer a parameter θ ∈ Rm of that distribution using a map θ̂ : (X1, . . . , Xn) 7→ Rm, the
question arising in practice is with what certainty the obtained value is close to the true value,
or similarly what is the suitable confidence band (/volume) in which the true value can be
expected to be, given the obtained estimate θ̂ = θ̂(X1, . . . , Xn) and some confidence level.

As far as the joint distribution P⊗n of the Xi is known in parametric form, such intervals can
be determined for every confidence level 0 < α < 1 by examining the then (in principle) known
limit distribution of a proxy quantity T (X1, . . . , Xn) which essentially is a suitably centered
and normed ”derivate” of θ̂(·). In absence of such information, but under certain conditions,
bootstrap methods allow to still reasonably estimate confidence intervals by determining an
empirical distribution of the proxy quantity for the parameter estimator of interest. To this
end, bootstrap methods resample from the existing data set, thereby generating ”replicate”
data sets, and determine an estimate for each replicate.

A common way to construct a bootstrap estimator is to use the original T , replace the
expectation parameter contained for centering by the empirical mean of the data set and apply
it on data points X∗i which are obtained by resampling the original data set. The so constructed
bootstrap estimator T ∗n is called plugin estimator (associated with T ). The estimator and the
exact specification of choosing the X∗i from the Xi together constitute a bootstrap method.

This present text is concerned with linear bootstrap methods, i.e. a class of methods where
the bootstrap estimate T ∗n belonging to the value of interest can be expressed linearly in the
bootstrap variables, and the bootstrap variables are (conditional on the data set) stochastically
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independent through choice of the resampling rule. A list of examples of such methods are found
in the appendix .

The standard approach of constructing an empirical distribution of T ∗n would evaluate the
map T ∗n at various, say B ∈ N, bootstrap samples, each of which is obtained by resampling. The
B may not be chosen too small in order to ensure a sufficient convergence of the distribution
estimate to the actual distribution of T ∗n . Since each bootstrap estimate evaluation naively needs
at least n data access operations, this approach has a computationally substantial cost for large
n, concretely is of complexity at least Ω(B · n).

The claim here made is that for linear bootstrap methods, a much more direct method
for obtaining an approximation to the distribution of T ∗n may be employed. Essentially, it is
sufficient to approximate the discrete distribution of a linear mixture of independent random
variables which themselves are finitely discretely distributed. The present text outlines a sketch
of a suitable algorithm for this setting. In effect, by doing away with the resampling in case of
linear bootstrap estimators, the accuracy of the obtained distribution is substantially increased,
since clearly any effect from variance introduced at the resampling level is avoided. (There have
been previous attempts to counter this variance, for example, by using a balanced bootstrap,
see [DHS86]. The principle behind the balanced bootstrap is to control the choice of the samples
across many replicates so as to produce a bootstrap mean estimate which is zero. Besides the
drawback that this and similar methods retain considerable simulation induced variance, one
has to observe that the estimates coming out of the generated single replicates are not strictly
independent; ”later drawn” replicates chose values of their bootstrap variables not according
to an Efron distribution. Another, logically natural, approach for ”stabilizing” the outcome of
bootstrap simulations is to use quasi-Monte Carlo methods in an attempt to cover the simula-
tion space more evenly and thus remove some of the unwanted randomness of the simulation
procedure. This approach has been followed for example by Kolenikov [Kol07], Aidara [Aid13]
and references therein.)

It is noteworthy that the method here described extends to certain non-linear mixtures
as well, namely Z =

∑m
j=1 ajhj(X

[j]) with X [j] independent, and furthermore is cascadable.

Therefore random variables of form Z = Y [0]+(
∑m

j=1 ajY
[j])2, with Y [j], j = 0 . . .m, independent

are amenable to the proposed method.
The remainder of the text first gives a description of the algorithm, and then comments on

the output obtained from a small (synthetic) numerical example.

Algorithm description. Let aj ∈ R, j = 1 . . .m, and let a finite discrete distribution F̂n of
a random variable be given in form of real values Xi, i = 1 . . . n. Let Z =

∑m
j=1 ajX

[j], where

X [j] are independently distributed according to the distribution F̂n. Choose N ≥ n, and choose
T ≥ TZ with TZ := zU − zL and

zU = max
i
Xi ·

∑
aj>0

aj + min
i
Xi ·

∑
aj<0

aj (1)

zL = max
i
Xi ·

∑
aj<0

aj + min
i
Xi ·

∑
aj>0

aj . (2)

An approximation of the probability density fZ is computed as follows:



1. Compute1 for all k = 0 . . . (N − 1) and all j = 1 . . .m,

gk,j =
1

n

n∑
i=1

e
−2πi·

ajXi
TZ
·k
. (3)

2. Set

gk =
m∏
j=1

gk,j . (4)

3. Using an inverse Fast-Fourier transform, compute for i = 0 . . . (N − 1)

f̃i =
1

N

N−1∑
k=0

gke
2πi· ikN . (5)

4. Set fi := 2Re(f̃i)− 1
N .

Then, under suitable conditions, fi approximates
∫ z0+TZ/N
z0

fZ(z) dz with z0 = iTZN − TZ ·
1{iTZ

N
>zU}

. Consequently, it is hi =
∑i

i′=0 fi+imin with imin = bzL(N/T )c mod N approxi-

mating FZ(i · TZN + zL) for i = 0 . . . (N − 1). Note that, given a sample, the computation of
quantiles is deterministic with this algorithm.

The computational complexity of this algorithm is: For the forward Fourier transformation,
O(m · n) exponentials and O(N ·m · n) complex multiplications and additions. For the inverse
Fourier transformation, O(N log(N)) complex multiplications and additions.

Numerical example. The presented example (Fig. 1) shows the algorithm result in a low
n setting (n = 20), with observations Xi drawn from a uniform distribution in [0, 19]. The
average of the sample turned out to be 8.0613 = 40.3066/5, its minimum and maximum were
0.3872 and 18.9123. The considered random variable Z was defined as Z =

∑5
j=1X

[j], i.e.
m = 5, where the five summands were each deemed independently distributed according to the
empirical distribution of the sample. Clearly Z takes values in [1.9360, 94.5615]. Figure 1 shows
the algorithm output when run once with N = 1000 and once with N = 40. (Note that the
true probability density function consists of up to nm = 3.2 million singular peaks, or, more
rigorously, the distribution function of as many steps.)

Conclusion. Further work should illuminate the convergence characteristics (especially in low
n/low m settings) in dependence on the properties of the input distribution F̂n.

Appendix: Examples of linear bootstrap methods.
Sample mean in the iid. observations case
The bootstrap estimator T ∗n obtained from centering and norming the plugin-estimator of the
sample mean, combined with Efron’s bootstrap distribution [Efr79], is a linear boostrap method:

T ∗n = T (X∗1 , . . . , X
∗
n) =

√
n · ( 1

n

n∑
i=1

X∗i − (n−1
∑
t

Xt)) (6)

with X∗i independent and P ∗(X∗i = Xj) = 1
n . (7)

1In this and later expressions, it denotes i after 2π the imaginary unit.



(a) (b)

Figure 1: Algorithm output (fi) for an example with sample size n = 20 and mixing width m = 5 (with
a = ~1), with N = 1000 (a) and N = 40 (b).

Sample mean for m-dependent time series
Let X1, . . . , Xn be a sample from a strongly stationary m-dependent time series. (definition:
see [ST95]) Let n = b · l, with l the block lengths chosen > m, and b denoting the number of
blocks. The moving block bootstrap estimator for the mean of the time series, given by

T ∗n = T (X∗1 , . . . , X
∗
n) =

√
b · (1b

b∑
k=1

V ∗k ) with (8)

V ∗k = l−1 ·
l∑

s=1

X∗(k−1)l+s −
¯̄Xn (9)

(where ¯̄Xn is the average of the averages of the (n−l+1) possible consecutive blocks in the given
time series X1, . . . , Xn; and the X∗i are drawn according to the Künsch procedure [Kün89], sec.
2.3) essentially is a linear mixture of b independent random variables each taking values (with
equal probability mass) from the set {l−1 ·

∑l
s=1X(i−1)+s − ¯̄Xn, i = 1 . . . n− l + 1}.

Linear regression with iid. noise and fixed design matrix
Details on the linearity property of the residual bootstrap for linear regression estimation will
be elaborated in another text.
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