
Regression - Regularized Regression
A. Burnetas

In this note we will apply least squares regression and two regularized methods, ridge and lasso, on the ozone

data set, using both direct matrix calculations (for the LSE and ridge methods) as well as appropriate R

packages.

We first import the dataset:

ozone=read.csv("ozone.data", sep="\t")

Split dataset to training sample and testing sample, sizes=71 and 40, respectively.

Ntrain=71;

Ntest=40;

trainindex=sample(1:Ntrain+Ntest, Ntrain)

ozonetrain=ozone[trainindex,]

ozonetest=ozone[-trainindex,]

1 Ordinary Least Square Estimation

1.1 Direct computation
Create  and  from training set(with column of 1)

y=as.vector(ozonetrain$ozone)

X=as.matrix(ozonetrain[,2:4])

N=dim(X)[1]

p=dim(X)[2]

X1=as.matrix(cbind(rep(1,N),X))

Standard LSE method (no scaling no centering). Model .

LSE formulas : , where  and .

xtx=t(X1)%*%X1

xtxin=solve(xtx)

Gls=xtxin%*%t(X1)

H=X1%*%Gls

blse=Gls%*%y

yhatlse=H%*%y

Calculate residuals in training set

Y X

Y = + + + + ϵβ0 β1X1 β2X2 β3X3

= Gy, = X = Hyβ̂ ŷ β̂ G = ( XXT )−1XT H = X( XXT )−1XT
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e=y-yhatlse

plot(e)

abline(0,0)

Calculate predictions on testing set, and compute the mean prediction error:

ytest=as.vector(ozonetest$ozone)

Xtest=as.matrix(ozonetest[,2:4])

Ntest=dim(Xtest)[1]

Xtest1=as.matrix(cbind(rep(1,Ntest),Xtest))

ytesthatlse=Xtest1%*%blse

predresid=ytest - ytesthatlse

mpe=t(predresid)%*%predresid/Ntest

mpe

##        [,1]

## [1,] 639.27

1.2 R Linear Model function
Before we proceed, we repeat the previous computations using the lm function of R, which applies ordinary

least squares estimation in a linear model. We first define a model formula and then call the lm fuction on the
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model. There are several ways to do this. The fastest is

model1=y~X

This method works because X is an object of type matrix. This formula is equivalent to

model2=y ~ X[,1] + X[,2] + X[,3]

We can also use the column names of X:

colnames(X)

## [1] "radiation"   "temperature" "wind"

and define

model3= y~ X[,"radiation"] + X[,"temperature"] + X[,"wind"]

Since X is a matrix and not a dataframe, we cannot use the notation X$radiation to refer to the radiation

column.

To check that all model definitions are equivalent, we call the lm function on each of them

lm(model1)

## 

## Call:

## lm(formula = model1)

## 

## Coefficients:

##  (Intercept)    Xradiation  Xtemperature         Xwind  

##   -104.80622       0.08292       2.12650      -3.71606

lm(model2)

## 

## Call:

## lm(formula = model2)

## 

## Coefficients:

## (Intercept)       X[, 1]       X[, 2]       X[, 3]  

##  -104.80622      0.08292      2.12650     -3.71606

lm(model3)
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## 

## Call:

## lm(formula = model3)

## 

## Coefficients:

##        (Intercept)    X[, "radiation"]  X[, "temperature"]         X[, "wind"]  

##         -104.80622             0.08292             2.12650            -3.71606

A more appropriate way, from the point of view of R programming, to define the model is to consider the

training and the test set as two subsets of the original data set ozone, i.e., as two dataframes that contain both

the dependent and the independent variables. The two dataframes have the same number of columns and the

same column names and differ in the number of rows. We can then define the model formula as a relationship

between variables (column names), regardless of the dataset that they refer to:

model4 = ozone~radiation+temperature+wind

Now, when we call the lm function we must specify not only the model formula, but also the dataset that

contains the actual data. This must be a dataframe that includes all the variables mentioned in the formula.

This is done with the option data= inside the lm function:

l1 = lm(model4, data=ozonetrain)

l1

## 

## Call:

## lm(formula = model4, data = ozonetrain)

## 

## Coefficients:

## (Intercept)    radiation  temperature         wind  

##  -104.80622      0.08292      2.12650     -3.71606

Note that in all the model definitions above, we used the original X from the training set without adding the

column of 1. This is so because the lm function automatically assumes that the regression model has a

constant term and estimates it together with the slope coefficients.

We verify that all give the same estimates, which also coincide with those that we obtained with direct

computation

blse

##                      [,1]

##             -104.80621538

## radiation      0.08292363

## temperature    2.12649779

## wind          -3.71605662

The lm function returns much more information in addition to the LS estimates:
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names(l1)

##  [1] "coefficients"  "residuals"     "effects"       "rank"         

##  [5] "fitted.values" "assign"        "qr"            "df.residual"  

##  [9] "xlevels"       "call"          "terms"         "model"

bhat=l1$coefficients

ytrainhat=l1$fitted.values

If combined with the summary function it gives further information, related to statistical inference:

ls1=summary(l1)

names(ls1)

##  [1] "call"          "terms"         "residuals"     "coefficients" 

##  [5] "aliased"       "sigma"         "df"            "r.squared"    

##  [9] "adj.r.squared" "fstatistic"    "cov.unscaled"

The outputs of lm and summary(lm) are lists, the elements of which can be retrieved directly. For example the

coefficients element of l1 gives the vector of LS estimates, however the coefficients element of ls1 is a matrix

with the estimates as well as their standard deviations, the t-stastistics and the p-values of the individual

significance tests:

l1$coefficients

##   (Intercept)     radiation   temperature          wind 

## -104.80621538    0.08292363    2.12649779   -3.71605662

ls1$coefficients

##                  Estimate  Std. Error   t value     Pr(>|t|)

## (Intercept) -104.80621538 34.98993575 -2.995325 3.839780e-03

## radiation      0.08292363  0.03090748  2.682963 9.183172e-03

## temperature    2.12649779  0.37776869  5.629100 3.866905e-07

## wind          -3.71605662  0.86889511 -4.276761 6.155631e-05

The output of lm by default refers to the training set. For example l1 residuals compute 

and  for the training set. To compute the predictions for the test set we must use the function predict,

after running lm. To specify that the predictions must be computed for the test set we use the newdata option:

ytesthatlm=predict(l1, newdata = ozonetest)

We can now compute the prediction errors:

predresid=ozonetest$ozone - ytesthatlm

fitted. valuesandl1 ŷ

y − ŷ
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and draw a pot of the residuals against the predicted values:

plot(predresid~ytesthatlm)

We can also compute the mean square prediction error

mpe=t(predresid)%*%predresid/length(predresid)

mpe

##        [,1]

## [1,] 639.27

Note that the results are identical to those obtained by direct calculation, as expected.

1.3 Data Preprocessing: Scaling and Centering the
independent variables
Scaling the independent variables is useful, since it makes the regression coefficients independent of the

particular units of each variable. Scaling means applying a linear transformation to a variable such that the

regression coefficient does not change when the units of measurement change.

There are two frequently used scaling methods: normalization and standardization. Normalizing the vector of

values of a variable  means applying the transformationX
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where  is the length of the training set.

Standardization is the usual transformation applied to normal random variables, now using the sample mean

and standard deviation of :

Centering is another transfomation that serves a different purpose. Centering an independent variable is

equivalent to taking the differences of the variable values from the from its mean:

Centering is useful if we recall the property of the LS estimates in a regression model, that the regression

hyperplane passes through the center of the training set. This means that in the regression model

the LS estimates  satisfy the relation:

Therefore if we center the variables and apply the regression model:

then , thus . In other words in a dataset with centered independent variables

the estimate of the intercept is equal to the mean of , thus only the  coefficients need to be estimated.

Furthermore it is easy to see that .

Before we finish the discussion on rescaling transformations we must make the following observations:

(1) First, if some independent variables are defined as functions of other variables (for example in a polynomial

regression model  we have ), then we must center each variable

separately.

In the above example the correct centering is  and  and not

. There is a difference because .

(2) Second, when we apply the estimates to make predictions from a testing set, we must first apply the same

transformations (normalization, standardization or centering) with the numerical values for

 that were used in the training set, and not apply the transformation from

scratch. For example if in the training set , in the testing set , and we apply centering

 in the training set, then for making predictions we must also apply  in the testing

set, although it is not the mean of  for this set. Alternatively, if the training and test sets come from splitting a

larger dataset, then any rescaling must be performed on the original data before splitting.

(3) If we need both rescaling and centering the independent variables, then standardization is the most

= , i = 1 … , NX ′
i

−Xi minj Xj

−maxj Xj minj Xj

N

X

=X ′
i

−Xi X̄

s(X)

= − , i = 1, … , N . $Xc
i Xi X̄
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appropriate transformation, since it accomplishes both purposes in a single step.

To verify the above numerically, we can apply standardization to the training set of ozone dataset and rerun the

lm function for training and prediction. First create the standardized training set:

ozonetrainc=ozonetrain

ozonetrainc$radiation=(ozonetrainc$radiation-mean(ozonetrain$radiation))/sd(ozonetrain$radiat

ion)

ozonetrainc$temperature=(ozonetrainc$temperature-mean(ozonetrain$temperature))/sd(ozonetrain

$temperature)

ozonetrainc$wind=(ozonetrainc$wind-mean(ozonetrain$wind))/sd(ozonetrain$wind)

Check that the independent variables are now standardized:

apply(ozonetrainc[,2:4], 2, mean)

##     radiation   temperature          wind 

## -1.390226e-16 -5.394501e-16 -5.434754e-17

apply(ozonetrainc[,2:4], 2,sd)

##   radiation temperature        wind 

##           1           1           1

We next run the linear model on the standardized training set .

l1c=lm(model4, data=ozonetrainc)

betac=l1c$coefficients

betac

## (Intercept)   radiation temperature        wind 

##   46.971831    6.786065   16.626547  -12.340529

We first verify that the new intercept is equal to the mean of the dependent variable:

mean(ozonetrainc$ozone)

## [1] 46.97183

We also compare the coefficients with those of the original model:

blse

Y = + + +βs
0 βs

1 Xs
1 βs

2 Xs
2 βs

3 Xs
3
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##                      [,1]

##             -104.80621538

## radiation      0.08292363

## temperature    2.12649779

## wind          -3.71605662

and verify that :

blse[2]*sd(ozonetrain$radiation)

## [1] 6.786065

blse[3]*sd(ozonetrain$temperature)

## [1] 16.62655

blse[4]*sd(ozonetrain$wind)

## [1] -12.34053

Finally, we use the estimates of the standardized training set to make predictions on the test set. We must first

transform the test set using the standardization transfomration of the training set, as discussed above:

ozonetestc=ozonetest

ozonetestc$radiation=(ozonetestc$radiation-mean(ozonetrain$radiation))/sd(ozonetrain$radiatio

n)

ozonetestc$temperature=(ozonetestc$temperature-mean(ozonetrain$temperature))/sd(ozonetrain$te

mperature)

ozonetestc$wind=(ozonetestc$wind-mean(ozonetrain$wind))/sd(ozonetrain$wind)

(Pay attention where we use ozonetestc and ozonetrain in the above commands.)

The predictions are found in the same way as before and we see that they are identical with those in the

nonstandardized model

ytesthatlmc=predict(l1c, newdata = ozonetestc)

ytesthatlmc 

= sd( )βs
j Xj βj
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##          1          2          3          4          5          6          7 

##  25.925807  28.358161  18.087928  10.257092  26.252219 -22.414988 -48.207039 

##          8          9         10         11         12         13         14 

##  27.104832  25.402770  22.011691 -25.131255  16.251484  16.407513 -45.503240 

##         15         16         17         18         19         20         21 

##  23.762391  -5.360462 -14.725206  15.277144  -9.062508 -12.053556  -5.845535 

##         22         23         24         25         26         27         28 

##  32.967616  60.497556  52.444490  44.052155  59.427780  64.248773  52.110848 

##         29         30         31         32         33         34         35 

##  19.403284  -5.070436   2.296595  17.644308  29.892771  81.261828  62.323436 

##         36         37         38         39         40 

##  52.822361  69.110876  57.226103  86.260623  89.561033

ytesthatlm

##          1          2          3          4          5          6          7 

##  25.925807  28.358161  18.087928  10.257092  26.252219 -22.414988 -48.207039 

##          8          9         10         11         12         13         14 

##  27.104832  25.402770  22.011691 -25.131255  16.251484  16.407513 -45.503240 

##         15         16         17         18         19         20         21 

##  23.762391  -5.360462 -14.725206  15.277144  -9.062508 -12.053556  -5.845535 

##         22         23         24         25         26         27         28 

##  32.967616  60.497556  52.444490  44.052155  59.427780  64.248773  52.110848 

##         29         30         31         32         33         34         35 

##  19.403284  -5.070436   2.296595  17.644308  29.892771  81.261828  62.323436 

##         36         37         38         39         40 

##  52.822361  69.110876  57.226103  86.260623  89.561033

2 Regularized Regression Methods : Ridge
and Lasso Regression

2.1 Ridge Regression - Direct Computations
For ridge regression we can apply the formula

where  is the standardized matrix of independent variables (without a column of 1, since we do not estimate

the constant term which is equal to ).

The standardized matrix  may be obtained from the 2,3,4 columns of the training set, converted to matrix

type:

Xtrainc=as.matrix(ozonetrainc[,2:4])

ytrain=ozonetrain$ozone

(λ) = ( X + λI ) Yβr XT )−1 XT

X

Ȳ

X

Regression - Regularized Regression file:///D:/Mega/Synced/Teaching/Math/Machine%20Learning/Class_20...

10 of 14 4/4/2025, 8:50 AM



Since we are going to estimate the ridge coefficients and make predictions for various values of , we create

two functions which perform the corresponding task.

betaridge=function(X,y,l)

{

#Inputs : y independent variable vector 

#         X matrix of standardized independent variables

#         l regularization parameter

#Output   beta = vector of coeffients (without a constant term)

  dx=dim(X)

  N=dx[1]

  p=dx[2]

  beta = solve(t(X)%*%X + l*diag(p))%*%t(X)%*%y

return(beta)

}

Applying the function to the training set data with  we obtain

br0=betaridge(Xtrainc,ytrain,0)

br0

##                   [,1]

## radiation     6.786065

## temperature  16.626547

## wind        -12.340529

which is equal to  computed before:

betac

## (Intercept)   radiation temperature        wind 

##   46.971831    6.786065   16.626547  -12.340529

Applying the function to the training set data with  we obtain

br=betaridge(Xtrainc,ytrain,2)

The euclidian norm of the beta vector is

t(br)%*%br

##          [,1]

## [1,] 458.2601

compared to the euclidian norm of the original beta vector

t(betac[2:4])%*%betac[2:4]

λ

λ = 0

βc

λ = 2

Regression - Regularized Regression file:///D:/Mega/Synced/Teaching/Math/Machine%20Learning/Class_20...

11 of 14 4/4/2025, 8:50 AM



##          [,1]

## [1,] 474.7814

We next create a function that takes as arguments  and  from the training set, as well as the

corresponding data from the test set, computes the ridge betas and computes the predictions from the test set

and the corresponding mean prediction error. Note that we must add  to the prediction vector,

because the coefficients we calculated do not include the constant term.

mperidge=function(Xtrain, ytrain, Xtest, ytest, l)

{

  beta=betaridge(Xtrain, ytrain, l)

  yhattest=mean(ytrain)+Xtest%*%beta

  predres=ytest-yhattest

  mpe=t(predres)%*%predres/length(predres)

return(mpe)

}

We now apply the mperidge function for values of  in the interval  and plot the results:

Xtestc=as.matrix(ozonetestc[,2:4])

ytest=ozonetestc$ozone

lvals=seq(0,200,5)

nl=length(lvals)

mpe=rep(0,nl)

for (i in 1:nl)

  {

    mpe[i]=mperidge(Xtrainc, ytrain, Xtestc, ytest, lvals[i])

}

mpe

##  [1] 639.2700 589.3376 549.5914 517.7947 492.3394 472.0196 455.9041 443.2592

##  [9] 433.4978 426.1441 420.8092 417.1724 414.9676 413.9726 414.0011 414.8960

## [17] 416.5244 418.7735 421.5472 424.7635 428.3521 432.2527 436.4136 440.7900

## [25] 445.3434 450.0406 454.8529 459.7553 464.7264 469.7475 474.8024 479.8771

## [33] 484.9596 490.0394 495.1074 500.1558 505.1780 510.1682 515.1214 520.0335

## [41] 524.9009

plot(mpe~lvals)

y Xc

=βc
0 ȳ train

λ [0, 200]
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2.2 Regularized regression with glmnet library
A widely used R library for regularized regression and classification is glmnet, developed by Friedmand et al

(https://glmnet.stanford.edu/articles/glmnet.html (https://glmnet.stanford.edu/articles/glmnet.html)). To use the

library it must first be installed in R with the command

install.packages(“glmnet”), and then called using the library command:

library(glmnet)

## Loading required package: Matrix

## Loaded glmnet 4.1-8

The library has a great variety of functions to perform, analyze and plot regularized variations of Generalized

Linear Models and not only regression. For full description of the package, the reader may refer to the guide or

the webpage above. Here we use the glmnet() function which computes the regularized coefficients under a

generalized elastic-net penalty which combines the ridge and lasso penalties:

Note that  corresponds to lasso and  to ridge regularization.

λ ( ||β| + α||β| )1 − α

2
|22 |1

α = 1 α = 0
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We call the glmnet() function with the standardized matrix  and the vector  from the training set, using

 and the appropriate value of . First we verify the results for the no-regularization model with :

bnet0=glmnet(Xtrainc, ytrain, alpha=0, lambda = 0)

bnet0$beta

## 3 x 1 sparse Matrix of class "dgCMatrix"

##                     s0

## radiation     6.785835

## temperature  16.626863

## wind        -12.340399

betac

## (Intercept)   radiation temperature        wind 

##   46.971831    6.786065   16.626547  -12.340529

We observe that the results obtained with glmnet are slightly different from the (correct) values obtained from

the lm function. The reason is that glmnet computes the coefficients using an iterative optimization algorithm

similar to gradient descent, which converges to the optimal values of the coefficients asymptotically and is not

100% precise when it stops after a number of iterations. The reason is that for values  there is no

analytical expression for the optimal coefficients such as that for  (ridge regression), therefore they must

be calculated numerically.

X y

α = 0 λ λ = 0

α > 0
α = 0
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