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Regression - Regularized Regression

A. Burnetas

In this note we will apply least squares regression and two regularized methods, ridge and lasso, on the ozone
data set, using both direct matrix calculations (for the LSE and ridge methods) as well as appropriate R
packages.

We first import the dataset:
ozone=read.csv("ozone.data", sep="\t")
Split dataset to training sample and testing sample, sizes=71 and 40, respectively.

Ntrain=71;

Ntest=40;
trainindex=sample(1:Ntrain+Ntest, Ntrain)
ozonetrain=ozone[trainindex, ]
ozonetest=ozone[-trainindex, ]

1 Ordinary Least Square Estimation

1.1 Direct computation

Create Y and X from training set(with column of 1)

y=as.vector(ozonetrain$ozone)
X=as.matrix(ozonetrain[,2:4])
N=dim(X)[1]

p=dim(X)[2]
X1=as.matrix(cbind(rep(1,N),X))

Standard LSE method (no scaling no centering). Model Y = By + 81 X1 + B2 X2 + B3 X3 + €.
LSE formulas : 8 = Gy, § = XB = Hy, where G = (XTX) ' X7 and H = X(XTX) 1 X7,

xtx=t (X1)%*%X1
xtxin=solve(xtx)
Gls=xtxin%*%t (X1)
H=X1%*%G1ls
blse=Gls%*%y
yhatlse=H%*%y

Calculate residuals in training set
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e=y-yhatlse
plot(e)
abline(9,0)
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Calculate predictions on testing set, and compute the mean prediction error:

ytest=as.vector(ozonetest$ozone)
Xtest=as.matrix(ozonetest[,2:4])
Ntest=dim(Xtest)[1]
Xtestl=as.matrix(cbind(rep(1,Ntest),Xtest))
ytesthatlse=Xtest1%*%blse

predresid=ytest - ytesthatlse

mpe=t (predresid)%*%predresid/Ntest

mpe

## [,1]
## [1,] 639.27

1.2 R Linear Model function

70
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Before we proceed, we repeat the previous computations using the Im function of R, which applies ordinary
least squares estimation in a linear model. We first define a model formula and then call the Im fuction on the
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model. There are several ways to do this. The fastest is
modell=y~X

This method works because X is an object of type matrix. This formula is equivalent to
model2=y ~ X[,1] + X[,2] + X[,3]

We can also use the column names of X:

colnames(X)

## [1] "radiation” "temperature" "wind"

and define

model3= y~ X[,"radiation"] + X[, "temperature"] + X[,"wind"]

Since X is a matrix and not a dataframe, we cannot use the notation X$radiation to refer to the radiation
column.

To check that all model definitions are equivalent, we call the Im function on each of them

Im(modell)

##

## Call:

## Im(formula = modell)

##

## Coefficients:

## (Intercept) Xradiation Xtemperature Xwind
## -104.80622 0.08292 2.12650 -3.71606

Im(model2)

##

## Call:

## Im(formula = model2)

##

## Coefficients:

## (Intercept) X[, 1] X[, 2] X[, 3]
## -104.80622 0.08292 2.12650 -3.71606

Im(model3)
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##

## Call:

## Im(formula = model3)

##

## Coefficients:

it (Intercept) X[, "radiation"] X[, "temperature"] X[, "wind"]
## -104.80622 0.08292 2.12650 -3.71606

A more appropriate way, from the point of view of R programming, to define the model is to consider the
training and the test set as two subsets of the original data set ozone, i.e., as two dataframes that contain both
the dependent and the independent variables. The two dataframes have the same number of columns and the
same column names and differ in the number of rows. We can then define the model formula as a relationship
between variables (column names), regardless of the dataset that they refer to:

model4 = ozone~radiation+temperature+wind

Now, when we call the Im function we must specify not only the model formula, but also the dataset that
contains the actual data. This must be a dataframe that includes all the variables mentioned in the formula.
This is done with the option data= inside the Im function:

11 = 1m(modeld, data=ozonetrain)
11

##

## Call:

## Im(formula = model4, data = ozonetrain)

##

## Coefficients:

## (Intercept) radiation temperature wind
## -104.80622 0.08292 2.12650 -3.71606

Note that in all the model definitions above, we used the original X from the training set without adding the
column of 1. This is so because the Im function automatically assumes that the regression model has a
constant term and estimates it together with the slope coefficients.

We verify that all give the same estimates, which also coincide with those that we obtained with direct

computation
blse
#it [,1]
#i# -104.80621538
## radiation 0.08292363
## temperature 2.12649779
## wind -3.71605662

The Im function returns much more information in addition to the LS estimates:
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names(11)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual”
## [9] "xlevels™ "call" "terms" "model"

bhat=11$coefficients
ytrainhat=11$fitted.values

If combined with the summary function it gives further information, related to statistical inference:

1sl=summary(11)

names(1lsl)

## [1] "call" "terms" "residuals” "coefficients"”
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"

The outputs of Im and summary(lm) are lists, the elements of which can be retrieved directly. For example the
coefficients element of 11 gives the vector of LS estimates, however the coefficients element of Is1 is a matrix
with the estimates as well as their standard deviations, the t-stastistics and the p-values of the individual
significance tests:

11$coefficients

##  (Intercept) radiation temperature wind
## -104.80621538 0.08292363 2.12649779 -3.71605662

1si1$coefficients

## Estimate Std. Error t value Pr(>|t])
## (Intercept) -104.80621538 34.98993575 -2.995325 3.839780e-03
## radiation 0.08292363 0.03090748 2.682963 9.183172e-03
## temperature 2.12649779 0.37776869 5.629100 3.866905e-07
## wind -3.71605662 ©0.86889511 -4.276761 6.155631e-05

The output of Im by default refers to the training set. For example |1 fitted. valuesandllresiduals compute

and y — y for the training set. To compute the predictions for the test set we must use the function predict,

after running Im. To specify that the predictions must be computed for the test set we use the newdata option:
ytesthatlm=predict(ll, newdata = ozonetest)

We can now compute the prediction errors:

predresid=ozonetest$ozone - ytesthatlm
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and draw a pot of the residuals against the predicted values:

plot(predresid~ytesthatlm)
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We can also compute the mean square prediction error

mpe=t(predresid)%*%predresid/length(predresid)
mpe

## [,1]
## [1,] 639.27

Note that the results are identical to those obtained by direct calculation, as expected.

1.3 Data Preprocessing: Scaling and Centering the
Independent variables

Scaling the independent variables is useful, since it makes the regression coefficients independent of the
particular units of each variable. Scaling means applying a linear transformation to a variable such that the
regression coefficient does not change when the units of measurement change.

There are two frequently used scaling methods: normalization and standardization. Normalizing the vector of
values of a variable X means applying the transformation
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, Xi—mianj X
X/ = - ,i=1...,N
max; X; — min; X

where N is the length of the training set.

Standardization is the usual transformation applied to normal random variables, now using the sample mean
and standard deviation of X:

Centering is another transfomation that serves a different purpose. Centering an independent variable is
equivalent to taking the differences of the variable values from the from its mean:

Xf=X,-X,i=1,...,N.$

Centering is useful if we recall the property of the LS estimates in a regression model, that the regression
hyperplane passes through the center of the training set. This means that in the regression model

Y=0+5X1+--+B8X,+e
the LS estimates B satisfy the relation:
Y =By + 61 X1+ B,X,.
Therefore if we center the variables and apply the regression model:
Y =85+ B{ X7+ + B Xy + ¢

— — ~C
then X; =0,7=1,...,p,thusY = ;. In other words in a dataset with centered independent variables
the estimate of the intercept is equal to the mean of Y, thus only the p coefficients need to be estimated.

~C ~
Furthermore it is easy to see that 8, = 3,7 =1,...,p.

Before we finish the discussion on rescaling transformations we must make the following observations:

(1) First, if some independent variables are defined as functions of other variables (for example in a polynomial
regression model Y = By + 51X + B2 X? we have Xy = X12), then we must center each variable
separately.

In the above example the correct centering is X7 = X7 — Xl and X5 = Xy — Xg =Xy — Xl2 and not
) 5 ~ 2
X5 = X12 — X1 . There is a difference because Xl2 # X1 .

(2) Second, when we apply the estimates to make predictions from a testing set, we must first apply the same
transformations (normalization, standardization or centering) with the numerical values for

min(X), max(X), X, sd(X) that were used in the training set, and not apply the transformation from
scratch. For example if in the training set X = 5, in the testing set X = 6, and we apply centering

X¢ = X — 5in the training set, then for making predictions we must also apply X = X — 5 in the testing
set, although it is not the mean of X for this set. Alternatively, if the training and test sets come from splitting a
larger dataset, then any rescaling must be performed on the original data before splitting.

(3) If we need both rescaling and centering the independent variables, then standardization is the most
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appropriate transformation, since it accomplishes both purposes in a single step.
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To verify the above numerically, we can apply standardization to the training set of ozone dataset and rerun the

Im function for training and prediction. First create the standardized training set:

ozonetrainc=ozonetrain

ozonetrainc$radiation=(ozonetrainc$radiation-mean(ozonetrain$radiation))/sd(ozonetrain$radiat

ion)

ozonetrainc$temperature=(ozonetrainc$temperature-mean(ozonetrain$temperature))/sd(ozonetrain

$temperature)

ozonetrainc$wind=(ozonetrainc$wind-mean(ozonetrain$wind))/sd(ozonetrain$wind)

Check that the independent variables are now standardized:

apply(ozonetrainc[,2:4], 2, mean)

#H# radiation  temperature wind
## -1.390226e-16 -5.394501e-16 -5.434754e-17

apply(ozonetrainc[,2:4], 2,sd)

## radiation temperature wind
i 1 1 1

We next run the linear model on the standardized training set Y = B¢ + B X7 + 35 X5 + B3 X3

llc=1m(modeld, data=ozonetrainc)
betac=11c$coefficients
betac

## (Intercept) radiation temperature wind
##  46.971831 6.786065 16.626547 -12.340529

We first verify that the new intercept is equal to the mean of the dependent variable:

mean(ozonetrainc$ozone)

## [1] 46.97183

We also compare the coefficients with those of the original model:

blse
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#Hit [,1]
it -104.80621538
## radiation 0.08292363
## temperature 2.12649779
## wind -3.71605662

and verify that 8; = sd(X)B;:

blse[2]*sd(ozonetrain$radiation)
## [1] 6.786065
blse[3]*sd(ozonetrain$temperature)
## [1] 16.62655
blse[4]*sd(ozonetrain$wind)

## [1] -12.34053

Finally, we use the estimates of the standardized training set to make predictions on the test set. We must first
transform the test set using the standardization transfomration of the training set, as discussed above:

ozonetestc=o0zonetest
ozonetestc$radiation=(ozonetestc$radiation-mean(ozonetrain$radiation))/sd(ozonetraing$radiatio
n)
ozonetestc$temperature=(ozonetestc$temperature-mean(ozonetrain$temperature))/sd(ozonetraingte
mperature)

ozonetestc$wind=(ozonetestc$wind-mean(ozonetrain$wind))/sd(ozonetrain$wind)

(Pay attention where we use ozonetestc and ozonetrain in the above commands.)

The predictions are found in the same way as before and we see that they are identical with those in the
nonstandardized model

ytesthatlmc=predict(llc, newdata = ozonetestc)
ytesthatlmc
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and Lasso Regression

2.1 Ridge Regression - Direct Computations

For ridge regression we can apply the formula

BTN = (XTX + M) HXTY

file:///D:/Mega/Synced/Teaching/Math/Machine%20Learning/Class_20...

26.

16.

59

29.

89.

26.

16.

59

29.

89.

5
252219
12
251484
19

.062508

26

.427780

33
892771
40
561033

5
252219
12
251484
19

.062508

26

.427780

33
892771
40
561033

-22

16.

-12.

64.

81.

-22.

16.

-12.

64.

81.

6

.414988

13
407513
20
053556
27
248773
34
261828

6
414988
13
407513
20
053556
27
248773
34
261828

-48.

-45.

52.

62.

-48.

-45.

52.

62.

7
207039
14
503240
21

.845535

28
110848
35
323436

7
207039
14
503240
21

.845535

28
110848
35
323436

where X is the standardized matrix of independent variables (without a column of 1, since we do not estimate
the constant term which is equal to Y').

The standardized matrix X may be obtained from the 2,3,4 columns of the training set, converted to matrix

type:

Xtrainc=as.matrix(ozonetrainc[,2:4])

ytrain=ozonetrain$ozone
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Since we are going to estimate the ridge coefficients and make predictions for various values of A, we create
two functions which perform the corresponding task.

betaridge=function(X,y,1)

{
#Inputs : y independent variable vector
# X matrix of standardized independent variables
# L regularization parameter
#output  beta = vector of coeffients (without a constant term)
dx=dim(X)
N=dx[1]
p=dx[2]
beta = solve(t(X)%*%X + l*diag(p))%*%t(X)%*%y
return(beta)

}

Applying the function to the training set data with A = 0 we obtain

bre=betaridge(Xtrainc,ytrain, o)

bro

#H [,1]
## radiation 6.786065
## temperature 16.626547
## wind -12.340529

which is equal to 8¢ computed before:

betac

## (Intercept) radiation temperature wind
## 46.971831 6.786065 16.626547 -12.340529

Applying the function to the training set data with A = 2 we obtain
br=betaridge(Xtrainc,ytrain,2)
The euclidian norm of the beta vector is

t(br)%*%br

## [,1]
## [1,] 458.2601

compared to the euclidian norm of the original beta vector

t(betac[2:4])%*%betac[2:4]
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##

[>1]

## [1,] 474.7814

We next create a function that takes as arguments y and Xc from the training set, as well as the
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corresponding data from the test set, computes the ridge betas and computes the predictions from the test set
and the corresponding mean prediction error. Note that we must add 8; = 4,4, to the prediction vector,
because the coefficients we calculated do not include the constant term.

mperidge=function(Xtrain, ytrain, Xtest, ytest, 1)

{

beta=betaridge(Xtrain, ytrain, 1)
yhattest=mean(ytrain)+Xtest%*%beta
predres=ytest-yhattest

mpe=t(predres)%*%predres/length(predres)

return(mpe)

We now apply the mperidge function for values of A in the interval [0, 200] and plot the results:

Xtestc=as.matrix(ozonetestc[,2:4])

ytest=o0zonetestc$ozone
lvals=seq(0,200,5)
nl=length(lvals)
mpe=rep(0,nl)

for (i in 1:nl)

{

mpe

##
##
##
##
##
##

mpe[i]=mperidge(Xtrainc, ytrain, Xtestc, ytest, lvals[i])

[1]
[9]
[17]
[25]
[33]
[41]

639.2700 589.3376 549.5914 517.7947 492.3394 472.0196 455.9041 443.2592
433.4978 426.1441 420.8092 417.1724 414.9676 413.9726 414.0011 414.8960
416.5244 418.7735 421.5472 424.7635 428.3521 432.2527 436.4136 440.7900
445.3434 450.0406 454.8529 459.7553 464.7264 469.7475 474.8024 479.8771
484.9596 490.0394 495.1074 500.1558 505.1780 510.1682 515.1214 520.0335
524.9009

plot(mpe~lvals)
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2.2 Regularized regression with gimnet library

A widely used R library for regularized regression and classification is glmnet, developed by Friedmand et al
(https://gimnet.stanford.edu/articles/gimnet.html (https://gimnet.stanford.edu/articles/gimnet.html)). To use the
library it must first be installed in R with the command

install.packages(“glmnet”), and then called using the library command:

library(glmnet)
## Loading required package: Matrix

## Loaded glmnet 4.1-8

The library has a great variety of functions to perform, analyze and plot regularized variations of Generalized
Linear Models and not only regression. For full description of the package, the reader may refer to the guide or
the webpage above. Here we use the gimnet() function which computes the regularized coefficients under a
generalized elastic-net penalty which combines the ridge and lasso penalties:

1 —
A (A58l + el

Note that & = 1 corresponds to lasso and a = 0 to ridge regularization.
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We call the gimnet() function with the standardized matrix X and the vector y from the training set, using
a = 0 and the appropriate value of \. First we verify the results for the no-regularization model with A = 0:

bnet@=glmnet(Xtrainc, ytrain, alpha=0, lambda = @)
bnete$beta

## 3 x 1 sparse Matrix of class "dgCMatrix'

## so

## radiation 6.785835

## temperature 16.626863

## wind -12.340399

betac

## (Intercept) radiation temperature wind

##  46.971831 6.786065 16.626547 -12.340529

We observe that the results obtained with glmnet are slightly different from the (correct) values obtained from
the Im function. The reason is that gimnet computes the coefficients using an iterative optimization algorithm
similar to gradient descent, which converges to the optimal values of the coefficients asymptotically and is not
100% precise when it stops after a number of iterations. The reason is that for values o > 0 there is no
analytical expression for the optimal coefficients such as that for &« = 0 (ridge regression), therefore they must
be calculated numerically.
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