
΄Υπαρξη και Μοναδικότητα λύσης

1. Προκαταρκτικά

1.1 Διανυσματικοί χώροι με νόρμα

Ορισμός: Νόρμα σε διανυσματικό χώρο (V,R) είναι συνάρτηση: ∥ · ∥ : V → R με τις εξής ιδιότητες:
(i) ∀v ∈ V, ∥v∥ ≥ 0 και ∥v∥ = 0 ⇔ v = 0. (ii) ∀v ∈ V, a ∈ R, ∥av∥ = |a|∥v∥, και (ii) ∀v1, v2 ∈ V,
∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥ (τριγωνική ανισότητα).

Παράδειγμα (Χρήσιμες νόρμες στον (Rn,R)): (i) ∥x∥1 =
∑n

i=1 |xi| (νόρμα-1). (ii) ∥x∥2 =
√∑n

i=1 x
2
i

(νόρμα-2 η Ευκλείδια νόρμα). (iii) ∥x∥p = p
√∑n

i=1 x
p
i (νόρμα-p, 1 ≤ p < ∞). ∥x∥ = maxi=1,2,...,n |xi|

(νόρμα-∞).

Οι ιδιότητες (i) και (ii) στον ορισμό προκύπτουν εύκολα. Θα δείξουμε την τριγωνική ανισότητα γιά τις
νόρμες (i)-(iv) στο Παράδειγμα. Παρόλο πού η νόρμα 1 και η νόρμα 2 είναι ειδικές περιπτώσεις της νόρμας
p (και ∥x∥p → ∥x∥∞ καθώς p → ∞) τις εξετάζουμε ξεχωριστά.

(i) Νόρμα 1:

∥x+ y∥1 =
n∑

i=1

|xi + yi| ≤
n∑

i=1

(|xi|+ |yi|) =
n∑

i=1

|xi|+
n∑

i=1

|yi| = ∥x∥1 + ∥y∥1

(ii) Νόρμα 2: Αποδεικνύουμε πρώτα την ανισότητα Cauchy-Schwartz: |xT y| ≤ ∥x∥2 ·∥y∥2: ΄Εστω x ̸= 0
και y ̸= 0 διαφορετικά η ανισότητα είναι προφανής. ΄Εστω λ ∈ R. Τότε:

0 ≤ ∥x− λy∥22 = (x− λy)T (x− λy) = ∥x∥22 − 2λxT y + λ2∥y∥22

Ο όρος δεξιά ελαχιστοποιείται όταν

d

dλ

(
∥x∥22 − 2λxT y + λ2∥y∥22

)
= 0 ⇒ λ = λ∗ =

xT y

∥y∥22
΄Αρα,

0 ≤ ∥x− λ∗y∥22 = ∥x∥22 −
(xT y)2

∥y∥22
⇒ |xT y| ≤ ∥x∥2∥y∥2

Η τριγωνική ανισότητα προκύπτει άμεσα:

∥x+ y∥22 = (x+ y)T (x+ y) = ∥x∥22 + 2xT y + ∥y∥22 ≤ ∥x∥22 + 2|xT y|+ ∥y∥22
≤ ∥x∥22 + 2∥x∥2∥y∥2 + ∥y∥22 ≤ (∥x∥2 + ∥y∥2)2

και επομένως: ∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2.

(iii) Νόρμα μεγίστου (νόρμα ∞):

∥x+ y∥∞ = max
i=1,2,...,n

|xi + yi| ≤ max
i=1,2,...,n

(|xi|+ |yi|) ≤ max
i=1,2,...,n

|xi|+ max
i=1,2,...,n

|yi| = ∥x∥∞ + ∥y∥∞

(iii) Νόρμα p (1 ≤ p < ∞)

Λήμμα (Ανισότητα αριθμητικού-γεωμετρικού μέσου): Αν α, β ≥ 0 και 0 < t < 1, τότε
αtβ−1−t ≤ tα+ (1− t)β.

Απόδειξη: Η ανισότητα είνα προφανής αν α = 0 η β = 0 οπότε υποθέτουμε ότι α > 0 και
β > 0. Η συνάρτηση f(t) = ln(t), t > 0, είναι κοίλη (f ′′(t) = − 1

t2
< 0) και επομένως:

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) για κάθε x, y > 0, 0 < t < 1. ΄Αρα

ln(tα+ (1− t)β) ≥ t ln(α) + (1− t) ln(β) ⇒ tα+ (1− t)β ≥ et ln(α)+(1−t) ln(β) = αtβ1−t
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που ολοκληρώνει την απόδειξη. □

Πρόταση (Ανισότητα Holdrer): ΄Εστω 1 ≤ p, q ≤ ∞ και 1p + 1
q = 1 (όπου συμβατικά 1/∞ = 0).

Τότε για x, y ∈ Rn
,

|xT y| ≤ ∥x∥p∥y∥q = p

√√√√ n∑
j=1

|xi|p q

√√√√ n∑
j=1

|yi|q

Απόδειξη: Η απόδειξη είναι εύκολη αν (p, q) = (1,∞), οπότε υποθέτουμε ότι 1 < p, q < ∞.
Υποθέτουμε επίσης ότι x ̸= 0 και y ̸= 0, οπότε ∥x∥p > 0 και ∥y∥q > 0. ΄Εστω,

αj =
|xj |p

∥x∥pp
και βj =

|yj |q

∥y∥qq
, j = 1, 2, . . . , n

Από την ανισότητα αριθμητικού-γεωμετρικού μέσου:

|xjyj | = |xj ||yj | = α
1/p
j ∥x∥p · β1/q

j ∥y∥q = ∥x∥p∥y∥qαt
jβ

1−t
j

όπου t = 1
p , 1− t = 1

q . Επομένως,

|xjyj | ≤ ∥x∥p∥y∥q(tαj + (1− t)βj)

πού συνεπάγεται ότι:

|xT y| =

∣∣∣∣∣∣
n∑

j=1

xjyj

∣∣∣∣∣∣ ≤
n∑

j=1

|xjyj | ≤ ∥x∥p∥y∥q

t
n∑

j=1

αj + (1− t)
n∑

j=1

βj


≤ ∥x∥p∥y∥q

1

p

n∑
j=1

αj +
1

q

n∑
j=1

βj

 ≤ ∥x∥p∥y∥q

1

p

n∑
j=1

|xj |p

∥x∥pp
+

1

q

n∑
j=1

|yj |q

∥y∥qq


≤ ∥x∥p∥y∥q

[
1

p

∑n
j=1 |xj |p

∥x∥pp
+

1

q

∑n
j=1 |yj |q

∥y∥qq

]
≤ ∥x∥p∥y∥q

[
1

p
+

1

q

]
= ∥x∥p∥y∥q

που ολοκληρώνει την απόδειξη. □

Λήμμα (Τριγωνική ανισότητα p-νόρμας - ΑνισότηταMinkowski): ΄Εστω 1 ≤ p ≤ ∞. Αν x, y ∈ Rn
,

τότε ∥x+ y∥p ≤ ∥x∥p + ∥y∥p.

Απόδειξη: Η απόδειξη έχει ήδη γίνει για p = 1 και p = ∞ οπότε υποθέτουμε ότι 1 < p < ∞.
Θέτουμε q = p

p−1 (οπότε
1
p + 1

q = 1). Γιά κάθε j = 1, 2, . . . , n:

|xj + yj |p = |xj + yj | · |xj + yj |p−1 ≤ (|xj |+ |yj |) · |xj + yj |p−1

Από την ανισότητα Holder:

∥x+y∥pp =
n∑

j=1

|xj+yj |p ≤
n∑

j=1

(|xj |+|yj |)·|xj+yj |p−1 =

n∑
j=1

|xj |·|xj+yj |p−1+

n∑
j=1

|yj |·|xj+yj |p−1

΄Εστω

z =
[
|x1| |x2| . . . |xn|

]T
, w =

[
|x1 + y1|p−1 |x2 + y2|p−1 . . . |xn + yn|p−1

]T
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Τότε

|zTw| ≤ ∥z∥p∥w∥q ⇒
n∑

j=1

|xj | · |xj + yj |p−1 ≤ ∥x∥p

 n∑
j=1

|xj + yj |(p−1)q

1/q

⇒
n∑

j=1

|yj | · |xj + yj |p−1 ≤ ∥y∥p

 n∑
j=1

|xj + yj |(p−1)q

1/q

΄Αρα,

∥x+ y∥pp ≤ (∥x∥p + ∥y∥p)

 n∑
j=1

|xj + yj |(p−1)q

1/q

΄Ομως

(p− 1)q = (p− 1)
p

p− 1
= p

οπότε,

∥x+ y∥pp ≤ (∥x∥p + ∥y∥p)

 n∑
j=1

|xj + yj |p
1/q

= (∥x∥p + ∥y∥p)

 n∑
j=1

|xj + yj |p
 1

p
p
q

= (∥x∥p + ∥y∥p) · ∥x+ y∥
p
q
p

Επομένως

∥x+ y∥
p− p

q
p ≤ ∥x∥p + ∥y∥p ⇒ ∥x+ y∥

p
(
1− 1

q

)
p ≤ ∥x∥p + ∥y∥p ⇒ ∥x+ y∥p ≤ ∥x∥p + ∥y∥p

που ολοκληρώνει την απόδειξη. □

Ορισμός: Διανυσματικός χώρος (V,R) εφοδιασμένος με νόρμα ∥ · ∥ συμβολίζεται ως (V,R, ∥ · ∥). Η
ανοικτή σφαίρα στον (V,R, ∥ · ∥) με κέντρο v ∈ V και ακτίνα r είναι το σύνολο: Br(v) = {x ∈ V :
∥x− v∥ < r}. ΄Ενα σύνολο S ⊆ V είναι φραγμένο αν S ⊆ Br(0) γιά κάποιο r ≥ 0. Γενικά, κάθε σφαίρα
Br(v) είναι φραγμένη αφού Br(v) ⊆ B∥v∥+r+1(0).

Ορισμός: Η ακολουθία (vi) στον (V,R, ∥ · ∥) συγκλίνει στο v ∈ V αν για κάθε ϵ > 0 υπάρχει
N = N(ϵ) ∈ N, τέτοιο ώστε ∥vi − v∥ < ϵ για κάθε n ≥ N . Γράφουμε vi → v η lim vi = v.

Ορισμός: ΄Εστω (V,R, ∥ · ∥). Το σύνολο K ⊂ V είναι κλειστό αν περιέχει όλα τα οριακά του σημεία,
δηλαδή αν για κάθε ακολουθία vi ∈ K, vi → v ∈ V, τότε v ∈ K. Το K είναι ανοικτό αν V \K κλειστό
(ισοδύναμα αν για κάθε v ∈ K υπάρχει Br(v) ⊆ K). Σε χώρους πεπερασμένης διάστασης, το K είναι
συμπαγές αν και μόνο αν είναι κλειστό και φραγμένο.

Στην συνέχεια εξετάζουμε συναρτήσεις της μορφής: f : (U ,R, ∥ · ∥U ) → (V,R, ∥ · ∥V).

Ορισμός: Η f είναι συνεχής στο σημείο u ∈ U αν και μόνο αν γιά κάθε ϵ > 0 υπάρχει δ = δ(ϵ, u) τέτοια
ώστε ∥u− x∥U < δ ⇒ ∥f(u)− f(x)∥V < ϵ. Η f είναι συνεχής στο U αν είναι συνεχής σε κάθε u ∈ U .

Λήμμα: Η νόρμα ∥ · ∥ ως συνάρτηση μεταξύ των χώρων (V,R, ∥ · ∥V) και (R,R, | · |) είναι συνεχής στον
χώρο V.
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Απόδειξη: Από τον ορισμό συνέχειας στο σημείο x0 ∈ V πρέπει να δείξουμε ότι:

∀ϵ > 0 ∃δ > 0 : ∥x− x0∥ < δ ⇒ |∥x∥ − ∥x0∥| < ϵ

Από την τριγωνική ανισότητα:

∥x∥ = ∥x− x0 + x0∥ ≤ ∥x− x0∥+ ∥x0∥ ⇒ ∥x∥ − ∥x0∥ ≤ ∥x− x0∥

Παρόμοια

∥x0∥ = ∥x0 − x+ x∥ ≤ ∥x− x0∥+ ∥x∥ ⇒ ∥x0∥ − ∥x∥ ≤ ∥x− x0∥

΄Αρα:

|∥x| − ∥x0∥| ≤ ∥x− x0∥

΄Εστω ϵ > 0. Επιλέγοντας δ = ϵ:

∥x− x0∥ < δ ⇒ |∥x| − ∥x0∥| < ϵ

και επομένως η νόρμα ∥ · ∥ είναι συνεχής συνάρτηση στο x0. Εφόσον x0 αυθαίρετο, η νόρμα ∥ · ∥ είναι
συνεχής συνάρτηση στον V. □

Ορισμός (Ισοδύναμες νόρμες): ΄Εστω χώρος (V,R) με δύο νόρμες ∥ · ∥α και ∥ · ∥β . Λέμε ότι οι δύο
νόρμες είναι ισοδύναμες (∥ · ∥α ∼ ∥ · ∥β) αν (και μόνο αν) υπάρχουν m,M > 0, έτσι ώστε:

m∥v∥α ≤ ∥v∥β ≤ M∥v∥α

γιά κάθε v ∈ V.

Παράδειγμα: ΄Εστω x ∈ Rn
και οι νόρμες ∥x∥1 και ∥x∥∞ όπως ορίστηκαν παραπάνω. Τότε:

∥x∥∞ = max
i=1,2,...,n

|xi| ≤
n∑

i=1

|xi| = ∥x∥1

και

∥x∥1 =
n∑

i=1

|xi| ≤
n∑

i=1

(
max

i=1,2,...,n
|xi|

)
= n max

i=1,2,...,n
|xi| = n∥x∥∞

Επομένως:

∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞
Επίσης:

∥x∥1 ≤ n∥x∥∞ ≤ n∥x∥1
και επομένως ∥ · ∥1 ∼ ∥ · ∥∞ ⇔ ∥ · ∥∞ ∼ ∥ · ∥1.

΄Ασκηση: ΄Εστω ∥ · ∥α και ∥ · ∥β δύο νόρμες στον (V,R). Δείξτε ότι (i) ∥ · ∥α ∼ ∥ · ∥β αν και μόνο
αν ∥ · ∥β ∼ ∥ · ∥α. (ii) Δείξτε επίσης ότι αν ∥ · ∥γ είναι επίσης νόρμα στον (V,R), ∥ · ∥α ∼ ∥ · ∥β και
∥ · ∥β ∼ ∥ · ∥γ , τότε ισχύει και ότι ∥ · ∥α ∼ ∥ · ∥γ .

Λήμμα: ΄Εστω ∥ · ∥α ∼ ∥ · ∥β στον χώρο (V,R). Τότε, μία ακολουθία (vi) ⊆ V συγκλίνει στο v ∈ V
στον χώρο (V,R, ∥ · ∥α) αν και μόνο αν συγκλίνει στο v στον χώρο (V,R, ∥ · ∥β).

΄Εστω ότι vi → v ∈ V ως προς την νόρμα ∥ · ∥α. Τότε:

∀ϵ > 0 ∃N ∈ N : ∥vn − v∥α < ϵ ∀n ≥ N

Απο την ισοδυναμία: ∥ · ∥α ∼ ∥ · ∥β υπάρχουν m,M > 0 τέτοια ώστε:

m∥v∥α ≤ ∥v∥β ≤ M∥v∥α, ∀v ∈ V
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΄Εστω ϵ > 0. Τότε υπάρχει N1 ∈ N : ∥vn − v∥α < ϵ
M ∀n ≥ N1. Τότε γιά το ίδιο N1:

∥vn − v∥β ≤ M∥vn − v∥α < M
ϵ

M
= ϵ ∀n ≥ N1

και επομένως vn → v και ως προς την νόρμα ∥ · ∥β . Το αντίστροφο αποδεικνύεται με παρόμοιο τρόπο. □

Θεώρημα: Κάθε δύο νόρμες σε χώρο πεπερασμένης διάστασης είναι ισοδύναμες.

Απόδειξη: ΄Εστω ∥ · ∥α και ∥ · ∥β δύο νόρμες που ορίζονται στον (V,R) και έστω {vi}ni=1 βάση του V.
Γιά αυθαίρετο x ∈ V έχουμε x =

∑n
i=1 ξivi, για κάποια ξi ∈ R. Ορίζουμε,

∥x∥α =

√√√√ n∑
i=1

ξ2i

Μπορούμε εύκολα να δείξουμε ότι ∥ · ∥α : V → R+ είναι νόρμα στον (V,R). ΄Αρα, αρκεί να δείξουμε ότι
γιά κάθε νόρμα ∥ · ∥β στον (V,R) έχουμε ∥ · ∥α ∼ ∥ · ∥β , δηλαδή ότι υπάρχουν m,M > 0, τέτοια ώστε
m∥x∥α ≤ ∥x∥β ≤ M∥x∥α γιά κάθε x ∈ V. Από τις ιδιότητες ορισμού νόρμας:

∥x∥β =

∥∥∥∥∥
n∑

i=1

ξivi

∥∥∥∥∥
β

≤
n∑

i=1

|ξi|∥vi∥β ≤

√√√√ n∑
i=1

ξ2i

√√√√ n∑
i=1

∥vi∥2β := M∥x∥α

όπου ορίσαμε M =
√∑n

i=1 ∥vi∥2β και χρησιμοποιήσαμε την ανισότητα Cauchy-Schwartz. ΄Εστω η

συνάρτηση f(a) = ∥
∑n

i=1 aivi∥β . Η f : (Rn,R, ∥ · ∥2) → (R+,R, | · |) είναι συνεχής: Πράγματι, αν
a, a′ ∈ Rn

:

|f(a)− f(a′)| =

∣∣∣∣∣∣
∥∥∥∥∥

n∑
=1

aivi

∥∥∥∥∥
β

−

∥∥∥∥∥
n∑

i=1

a′ivi

∥∥∥∥∥
β

∣∣∣∣∣∣
≤

∥∥∥∥∥
n∑

i=1

(ai − a′i)vi

∥∥∥∥∥
β

≤
n∑

i=1

|ai − a′i|∥vi∥β

≤

√√√√ n∑
i=1

(ai − a′i)
2

√√√√ n∑
i=1

∥vi∥2β = M∥a− a′∥2

Επομένως, για κάθε a ∈ Rn
και ϵ > 0, αν επιλέξουμε δ = ϵ

M , τότε:

∥a− a′∥2 < δ ⇒ |f(a)− f(a′)| < Mδ = M
ϵ

M
= ϵ

και η f είναι συνεχής.

΄Εστω S = {a ∈ Rn :
∑n

i=1 a
2
i = 1}. Το σύνολο S είναι κλειστό και φραγμένο στον Rn

, άρα συμπαγές

στον Rn
, και επομένως έχει ελάχιστο στοιχείο, m := f(a∗), για κάποιο a∗ ∈ S (Θεώρημα Bolzano-

Weierstrass). Τότε, γιά κάθε x ∈ V, v =
∑n

i=1 aivi, έχουμε:

∥x∥β =

∥∥∥∥∥
n∑

i=1

ξivi

∥∥∥∥∥
β

=

√√√√ n∑
i=1

ξ2i ·

∥∥∥∥∥∥
n∑

i=1

ξi√∑n
i=1 ξ

2
i

vi

∥∥∥∥∥∥
β

=

√√√√ n∑
i=1

ξ2i ·

∥∥∥∥∥
n∑

i=1

aivi

∥∥∥∥∥
β

όπου ai =
ξi√∑n
i=1 ξ

2
i

, i = 1, 2, . . . , n. Επομένως,

∥x∥β = ∥x∥αf(a) ≥ ∥x∥αmin
a∈S

f(a) = ∥x∥αf(a∗) = m∥x∥α
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Επομένως έχουμε γιά κάθε x ∈ V:
m∥x∥α ≤ ∥x∥β ≤ M∥x∥α

και επομένως ∥ · ∥α ∼ ∥ · ∥β . □

Παρεμφερές με το Θεώρημα Bolzano-Weierstrass είναι και το παρακάτω:

Θεώρημα: ΄Εστω (xn) ακολουθία που περιέχεται σε συμπαγές υποσύνολο χώρου (V,R, ∥ · ∥). Τότε η
ακολουθία έχει τουλάχιστον ένα σημείο συσσώρευσης. (Υπενθύμηση: x0 είναι σημείο συσσώρευσης της
ακολουθίας (xn) αν xnk

→ x0 γιά κάποια υπακολουθία (xnk
).

Ορισμός: Η ακολουθία (xk) ∈ X λέγεται ακολουθία Cauchy αν ∥xk − xm∥ → 0 καθώς k,m → ∞
(δηλ., για κάθε ϵ > 0 υπάρχει N = N(ϵ) ∈ N τέτοιο ώστε ∥xk − xm∥ < ϵ γιά κάθε k,m > N .

Ορισμός: Ο χώρος X είναι πλήρης αν κάθε ακολουθία Cauchy που περιέχεται στον X συγκλίνει σε
κάποιο στοιχείο του X . Πλήρης διανυσματικός χώρος με νόρμα λέγεται χώρος Banach.

Παράδειγμα: Ορίζουμε το σύνολο όλων των συνεχών συναρτήσεων f : [a, b] → Rn
, το οποίο

συμβολίζεται με C[a, b] (η C0[a, b]). Το σύνολο είναι διανυσματικός χώρος επί του R (με πράξεις
(x + y)(t) = x(t) + y(t), (ax)(t) = ax(t), ορίζοντας ως 0 την μηδενική συνάρτηση στο [a, b], κλπ).
Αν x ∈ C0[a, b], ορίζουμε την νόρμα:

∥x∥C = max
t∈[a,b]

∥x(t)∥

όπου η νόρμα ∥ · ∥ δεξιά είναι οποιαδήποτε p-νόρμα στον Rn
. Προκύπτει άμεσα ότι: ∥x∥C ≥ 0 και ότι

∥x∥C = 0 ⇔ x = 0. Η τριγωνική ανισότητα ισχύει επίσης:

∥x+ y∥C = max
t∈[a,b]

∥x(t) + y(t)∥ ≤ max
t∈[a,b]

∥x(t)∥+ max
t∈[a,b]

∥y(t)∥ = ∥x∥C + ∥y∥C

Επίσης έχουμε για λ ∈ R:

∥λx∥C = max
t∈[a,b]

∥λx(t)∥ = |λ| max
t∈[a,b]

∥x(t)∥ = |λ|∥x∥C

και επομένως (C0([a, b],R, ∥ · ∥C είναι διανυσματικός χώρος με νόρμα. Επιπλέον είναι πλήρης (χώρος
Banach), όπως δείχνουμε παρακάτω:

(i) Σύγκλιση κατά σημείο: ΄Εστω (xk) ακολουθία Cauchy με όρους στον C
0[a, b]. Γιά κάθε t ∈ [a, b]:

∥xk(t)− xm(t)∥ ≤ ∥xk − xm∥C → 0 καθώς k,m → ∞

και άρα η ακολουθία xk(t) είναι ακολουθία Cauchy (στον Rn
). Αλλά στον Rn

κάθε νόρμα είναι

πλήρης αφού σύγκλιση σε νόρμα συνεπάγεται σύγκλιση κάθε στοιχείου και αφού ο R είναι πλήρης.
΄Αρα, γιά κάθε t ∈ [a, b] υπάρχει x(t) ∈ Rn

, τέτοιο ώστε xk(t) → x(t) που αποδεικνύει σύγκλιση
(κατά σημείο). Ορίζουμε ώς x την συνάρτηση που αντιστοιχεί σε κάθε t ∈ [a, b] το όριο της
ακολουθίας xk(t).

(ii) Ομοιόμορφη σύγκλιση xk → x στο διάστημα [a, b]: Θα δείξουμε ότι η σύγκλιση είναι ομοιόμορφη,
δηλ. ότι γιά κάθε ϵ > 0, υπάρχει N = N(ϵ) ∈ N τέτοιος ώστε ∥xk(t)− x(t)∥ < ϵ γιά κάθε k > N
και t ∈ [a, b] (με N ανεξάρτητο από t ∈ [a, b]).

΄Εστω ϵ > 0. Επιλέγουμε N ∈ N τέτοιο ώστε ∥xk − xm∥C < ϵ
2 για k,m > N . Τότε, για k > N :

∥xk(t)− x(t)∥ = ∥xk(t)− xm(t) + xm(t)− x(t)∥
≤ ∥xk(t)− xm(t)∥+ ∥xm(t)− x(t)∥
≤ ∥xk − xm∥C + ∥xm(t)− x(t)∥
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Ο πρώτος όρος στο δεξιό μέλος της ανισότητας είναι μικρότερος του
ϵ
2 γιά κάθε k,m > N .

Εφόσον η ακολουθία (xm(t)) (στον Rn
) συγκλίνει στο x(t) ∈ Rn

, υπάρχει N1 = N1(ϵ, t) ∈ N
τέτοιος ώστε ∥xm(t) − x(t)∥ < ϵ

2 για κάθε m > N1. Επιλέγουμε (γιά κάθε ζεύγος (ϵ, t))
m = m(ϵ, t) = max(N(ϵ), N1(ϵ, t)). ΄Αρα γιά κάθε k > N = N(ϵ) και t ∈ [a, b], ∥xk(t)−x(t)∥ < ϵ.
΄Αρα xk → x ομοιόμορφα στο [a, b].

(iii) Η συνάρτηση x(t) είναι συνεχής στο [a, b]: Θα δείξουμε ότι γιά κάθε ϵ > 0 υπάρχει δ > 0 τέτοιο
ώστε |t− t0| < δ και t ∈ [a, b] συνεπάγονται ότι ∥x(t)− x(t0)∥ < ϵ. ΄Εχουμε:

∥x(t)− x(t0)∥ ≤ ∥x(t)− xk(t)∥+ ∥xk(t)− xk(t0)∥+ ∥xk(t0)− x(t0)∥

΄Εστω ϵ > 0. Εφόσον xk → x ομοιόμορφα, μπορούμε να επιλέξουμε N1 ∈ N τέτοιο ώστε:

∥x(t)− xk(t)∥ <
ϵ

3
και ∥x(t0)− xk(t0)∥ <

ϵ

3
γιά k > N1

Επίσης, εφόσον η xk είναι συνεχής υπάρχει δ > 0 τέτοιο ώστε ∥xk(t)− xk(t0)∥ < ϵ
3 αν |t− t0| < δ

και t ∈ [a, b]. ΄Αρα, t ∈ Bδ(t0) ∩ [a, b] ⇒ ∥x(t) − x(t0)∥ < ϵ και εφόσον ϵ > 0 ήταν αυθαίρετο η x
είναι συνεχής στο [a, b], δυλαδή x ∈ C0([a, b]).

(iv) xk → x ως προς την νόρμα ∥ · ∥C : Προκύπτει λόγω ομοιόμορφης συνέχειας:

∀ϵ > 0 ∃N = N(ϵ) ∈ N : ∥xk(t)− x(t)∥ < ϵ ∀k ≥ N, ∀t ∈ [a, b]

Ισοδύναμα:

∀ϵ > 0 ∃N = N(ϵ) ∈ N : max
t∈[a,b]

∥xk(t)− x(t)∥ < ϵ ∀k ≥ N

η

∀ϵ > 0 ∃N = N(ϵ) ∈ N : ∥xk − x∥C < ϵ ∀k ≥ N

και επομένως xk → x ως προς την νόρμα ∥ · ∥C .

Επομένως πράγματι ο (C0[a, b],R, ∥ · ∥C) είναι χώρος Banach. □

Θεώρημα: Ο χώρος (C(E),R, ∥ · ∥C) των συνεχών συναρτήσεων f : E → Rn
όπου ∥ · ∥C η sup-νόρμα

(L∞-νόρμα) και E συμπαγές σύνολο είναι πλήρης.

Απόδειξη: ΄Εστω (fn) ακολουθία Cauchy συναρτήσεων στον χώρο (C(E),R, ∥·∥C). Πρέπει να δείξουμε
ότι η ακολουθία συγκλίνει σε συνεχή συνάρτηση f∗ ∈ (C(E),R, ∥ · ∥C). ΄Εστω x0 ∈ E. Θα δείξουμε
αρχικά ότι η ακολουθία (fn(x0)) συγκλίνει (ως ακολουθία στον Rn

). Εφόσον εξ΄ υποθέσεως η ακολουθία

(fn) είναι Cauchy:

∀ϵ > 0 ∃N = N(ϵ) ∈ N : n,m ≥ N ⇒ ∥fn(x0)− fm(x0)∥ ≤ ∥fn − fm∥C < ϵ

και επομένως (fn(x0)) είναι ακολουθία Cauchy στον Rn
. Κάθε ακολουθία Cauchy στον Rn

είναι φραγμένη

και επομένως ανήκει σε συμπαγές υποσύνολο του Rn
. Επομένως, από το Θεώρημα Bolzano-Weierstrass

η ακολουθία έχει σημείο συσσώρευσης, δηλ. υπάρχει συγκλίνουσα υπακολουθία fnk
(x0) → f∗(x0) καθώς

nk → ∞. Ειδικότερα, η ακολουθία η ίδια συγκλίνει σε αυτό το όριο, γιατί αν n ≥ N(ϵ),

∥fn(x0)− f∗(x0)∥ ≤ ∥fn(x0)− fnk
(x0)∥+ ∥fnk

(x0)− f∗(x0)∥ < 2ϵ

εφόσον nk ≥ n γιά υπακολουθία. Επιπλέον, εφόσον το N εξαρτάται μόνο απο το ϵ έχουμε ομοιόμορφη
σύγκλιση.

Ορίζουμε συνάρτηση f∗ : E → Rn
ως το όριο που ορίσαμε παραπάνω γία κάθε x ∈ E. Εφόσον το E είναι

συμπαγές, κάθε συνάρτηση fn είναι ομοιόμορφα συνεχής. (΄Ασκηση: Αν f : E → Rn
είναι συνεχής και

E συμπαγές, τότε η f είναι ομοιόμορφα συνεχής). Επομένως γιά κάθε ϵ > 0 υπάρχει δ(ϵ) > 0 έτσι ώστε
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∥fn(x) − fn(y)∥ < ϵ γιά κάθε x, y ∈ E με ∥x − y∥ < δ. Επιλέγοντας N(ϵ) όπως προηγουμένως έχουμε
για n ≥ N :

∥f∗(x)− f∗(y)∥ ≤ ∥f∗(x)− fn(x)∥+ ∥fn(x)− fn(y)∥+ ∥fn(y)− f∗(y)∥ < 5ϵ

Εφόσον η ανισότητα ισχύει για κάθε ϵ̂ = 5ϵ > 0 η f∗
είναι (ομοιόμορφα) συνεχής. □

Πόρισμα: Κλειστό υποσύνολο πλήρους χώρου με νόρμα είναι πλήρες.

Απόδειξη: ΄Εστω (fn) ακολουθία Cauchy συναρτήσεων fn ∈ Y ⊆ X όπου X πλήρης χώρος με νόρμα.
Τότε, fn → f∗ ∈ X . Εφόσον f∗

είναι το όριο της (fn) και το κλειστό σύνολο Y εξ΄ ορισμού περιέχει όλα
τα σημεία συσσώρευσης, έχουμε f∗ ∈ Y και το Y είναι πλήρες ως προς την νόρμα του χώρου. □

Θεώρημα (συστολής): ΄Εστω S κλειστό υποσύνολο του χώρου Banach (V,R, ∥·∥) και έστω T : S → S.
΄Εστω ότι:

∥T (x)− T (y)∥ ≤ ρ∥x− y∥ ∀ x, y ∈ S, 0 ≤ ρ < 1

Τότε: (i) Υπάρχει μοναδικό x∗ ∈ S τέτοιο ώστε x∗ = T (x∗) (σταθερό σημείο του T ). (ii) Η ακολουθία
πού ορίζεται από την εξίσωση: xk+1 = T (xk), k ∈ N, όπου x1 αυθαίρετο σημείο του S, συγκλίνει στο x∗,
δηλαδή ∥xk − x∗∥ → 0.

Απόδειξη: Επιλέγουμε αυθαίρετο x1 ∈ S και ορίζουμε την ακολουθία (xk) από την αναδρομική σχέση
xk+1 = T (xk), k ∈ N. Εφόσον T : S → S, xk ∈ S γιά κάθε k ∈ N. Θα δείξουμε αρχικά ότι (xk) είναι
ακολουθία Cauchy. ΄Εχουμε:

∥xk+1 − xk∥ = ∥T (xk)− T (xk−1∥ ≤ ρ∥xk − xk−1∥ ≤ ρ2∥xk−1 − xk−2∥ ≤ . . . ≤ ρk−1∥x2 − x1∥

Επομένως,

∥xk+r − xk∥ ≤ ∥xk+r − xk+r−1∥+ ∥xk+r−1 − xk+r−2∥+ . . .+ ∥xk+1 − xk∥

≤
(
ρk+r−2 + ρk+r−3 + . . .+ ρk−1

)
∥x2 − x1∥

= ρk−1
(
1 + ρ+ . . .+ ρr−1

)
∥x2 − x1∥

≤ ρk−1
∞∑
i=1

ρi∥x2 − x1∥ =
ρk−1

1− ρ
∥x2 − x1∥

Ο όρος δεξιά τείνει στο 0 καθώς k → ∞ και άρα η ακολουθία (xk) είναι Cauchy. Εφόσον X είναι χώρος
Banach, xk → x∗ ∈ X καθώς k → ∞. Επιπλέον, αφού S είναι κλειστό, x∗ ∈ S.

Στην συνέχεια θα δείξουμε ότι x∗ = T (x∗):

∥x∗−T (x∗)∥ ≤ ∥x∗−xk∥+∥xk−T (x∗)∥ = ∥x∗−xk∥+∥T (xk−1)−T (x∗)∥ ≤ ∥x∗−xk∥+ρ∥xk−1−x∗∥

Στο όριο k → ∞ ο όρος δεξιά γίνεται αυθαίρετα μικρός. ΄Αρα ∥x∗ − T (x∗)∥ = 0 ⇔ x∗ = T (x∗) και x∗

είναι σταθερό σημείο του T .

Θα δείξουμε ότι το x∗ είναι το μοναδικό σταθερο σημείο του T : ΄Εστω x∗ και y∗ δύο σταθερά σημεία του
T . Το΄τε:

∥x∗ − y∗∥ = ∥T (x∗)− T (y∗)∥ ≤ ρ∥x∗ − y∗∥ ⇒ (1− ρ)∥x∗ − y∗∥ ≤ 0 ⇒ ∥x∗ − y∗∥ = 0 ⇒ x∗ = y∗

και επομένως το σταθερό σημείο του T είναι μοναδικό. □

Παράδειγμα: ΄Εστω a > 0 και f(x) = 1
2

(
x+ a

x

)
, όπου x ≥

√
a. ΄Εστω x̄1 >

√
a και S = [

√
a, x̄1] το

πεδίο ορισμού της f . ΄Εχουμε:

f(x)−
√
a =

1

2

(
x+

a

x

)
−
√
a =

x2 − 2
√
a+ a

2x
=

(x−
√
a)2

2x
≥ 0
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αν x ≥
√
a. ΄Εχουμε ότι f : S → S. Επιπλέον η f είναι συνάρτηση συστολής στο S: ΄Εστω x1, x2 ∈ S.

Τότε:

f(x1)− f(x2) =
1

2

(
x1 +

a

x1

)
− 1

2

(
x2 +

a

x2

)
=

1

2
(x1 − x2) +

1

2

(
a

x1
− a

x1

)
=

1

2
(x1 − x2)−

a

2

x1 − x2
x1x2

=
1

2
γ(x1, x2)(x1 − x2), γ(x1, x2) := 1− a

x1x2

Εφόσον,

0 ≤ γ(x1, x2) < 1 για x1, x2 ∈ S ⇒ |f(x1)− f(x2)| <
1

2
|x1 − x2|

και η f είναι συνάρτηση συστολής στο S. Συνεπώς, α ακολουθία xk+1 =
1
2

(
xk +

a
xk

)
, k ∈ N, συγκλίνει

στο μοναδικό σταθερό σημείο της f στο S:

x =
1

2

(
x+

a

x

)
⇒ 2x =

x2 + a

x
⇒ x2 = a ⇒ x =

√
a

1.2 Διαφορίσιμες συναρτήσεις

΄Εστω S ανοικτό υποσύνολο του Rn
. Η συνάρτηση f : S → Rm

είναι παραγωγίσιμη στο σημείο x ∈ S αν
υπάρχει πίνακας Df(x) ∈ Rm×n

τέτοιος ώστε:

lim
∥h∥→0

∥f(x+ h)− f(x)−Df(x)h∥
∥h∥

= 0

΄Οταν το όριο είναι καλά ορισμένο ο πίνακας Df(x) (η ∂f
∂x ) είναι μοναδικός και ονομάζεται πίνακας Jacobian

της f :

Df(x) =
∂f

∂x
=

[
∂fi(x)

∂xj

]j=1,2,...,n

i=1,2,...,m

Αντίστροφα, αν ο πίνακας Df(x) υπάρχει, τότε όλες οι μερικές παράγωγοι ∂fi∂xj
υπάρχουν και είναι συνεχείς

συναρτήσεις σε μία περιοχή (γειτονιά) του x. Λέμε ότι η f είναι συνεχώς διαφορίσιμη στο S (f ∈ C1(S))
αν τα στοιχεία του Df(x) είναι συνεχείς συναρτήσεις στο S. Αν m = 1 και f : S → R συνεχώς
διαφορίσιμη στο S, πίνακας Jacobian είναι το διάνυσμα (γραμμής):

Df(x) =
∂f

∂x
=

[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]
:= (∇f(x))T

και ονομάζεται και διάνυσμα κλίσης της f .

΄Εστω S ανοικτό υποσύνολο του Rn
, f : S → Rm

, f συνεχώς διαφορίσιμη σε σημείο x0 ∈ S, g : A → Rk

όπου A ανοικτό σύνολο που περιέχει την εικόνα f(S) (f(S) ⊆ A) και g συνεχώς διαφορίσιμη στο σημείο
f(x0). Τότε h : S → Rk

, h(x) := (g ◦ f)(x) = g(f(x)) είναι συνεχώς διαφορίσιμη στο x0 και

∂h

∂x

∣∣∣∣
x=x0

=
∂g

∂f

∣∣∣∣
f=f(x0)

· ∂f
∂x

∣∣∣∣
x=x0

όπου οι αντίστοιχοι πίνακες Jacobian έχουν διαστάσεις:

∂h

∂x

∣∣∣∣
x=x0

∈ Rk×n,
∂g

∂f

∣∣∣∣
f=f(x0)

∈ Rk×m
και

∂f

∂x

∣∣∣∣
x=x0

∈ Rm×n

Θεώρημα (μέσης τιμής στον Rn
): ΄Εστω f : Rn → R συνεχώς διαφορίσιμη στο ανοικτό υποσύνολο S

του Rn
. ΄Εστω x, y δύο σημεία του S, έτσι ώστε:

L(x, y) = {z : z = θx+ (1− θ)y, 0 < θ < 1} ⊆ S
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Τότε, υπάρχει σημείο z0 ∈ L(x, y) τέτοιο ώστε:

f(y)− f(x) =
∂f

∂x

∣∣∣∣
x=z0

(y − x)

Απόδειξη: ΄Εστω z(θ) = (1− θ)x+ θz και g : [0, 1] → R, g(θ) = f(z(θ)), θ ∈ [0, 1]. Τότε g(0) = f(x)
και g(1) = f(y). Εφόσον η f είναι συνεχώς διαφορίσιμη σε κάθε σημείο, η g είναι συνεχώς διαφορίσιμη
γι·α κάθε θ ∈ [0, 1] και g′(θ) = Df(z(θ))z′(θ), δηλαδή g′(θ) = Df(z(θ))(y−x). Από το Θεώρημα Μέσης
Τιμής συναρτήσεων μιάς μεταβλητής, υπάρχει θ0 ∈ (0, 1) τέτοιο ώστε: g(1)−g(0) = g′(θ0)(1−0) = g′(θ0).
΄Αρα:

f(y)− f(x) = Df(z(θ0))(y − x) ⇒ f(y)− f(x) =
∂f

∂x

∣∣∣∣
x=z0

(y − x)

όπου θέσαμε z0 = z(θ0). □

Θεώρημα (Taylor στον Rn
): ΄Εστω f : D → R όπου D ανοικτό υποσύνολο του Rn

. Αν f ∈ C1(D),
τότε γιά κάθε x, y ∈ D:

f(y) = f(x) +Df(x)(y − x) +R1(x, y) όπου lim
y→x

(
R1(x, y)

∥x− y∥

)
= 0

Επιπλέον, αν f ∈ C2(D),

f(y) = f(x) +Df(x)(y − x) +
1

2
(y − x)TD2f(x)(y − x) +R2(x, y) όπου lim

y→x

(
R2(x, y)

∥x− y∥2

)
= 0

όπου D2f(x) =
[

∂2f
∂xixj

]j=1,2,...,n

i=1,2,...,n
.

1.3 Συναρτήσεις Lipschitz

΄Εστω f : X → Y όπου X ⊆ Rn
και Y ⊆ Rm

.

Ορισμός 1: Η συνάρτηση f λέγεται ‘Lipschitz’ αν για κάθε x1, x2 ∈ X υπάρχει L > 0 τέτοιο ώστε
∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥ (όπου L η σταθερά Lipschitz).

Ορισμός 2: Η συνάρτηση f λέγεται ‘τοπικά Lipschitz’ αν για κάθε x ∈ X υπάρχει r = r(x) > 0 τέτοιο
ώστε η f να είναι Lipschitz στην περιοχή Br(x) := {y ∈ Rn : ∥y − x∥ < r}. (Η σταθερά Lipschitz σε
κάθε περιοχή δεν είναι απαραίτητα η ίδια).

Ορισμός 3: Η συνάρτηση f λέγεται ‘ολικά Lipschitz’ αν είναι Lipschitz σε όλο το Rn
.

Ο ορισμός επεκτείνεται σε συναρτήσεις της μορφής f(t, x) : [t0, t1]×X → Y , όπου X ⊆ Rn
και Y ⊆ Rm

αν προσθέσουμε τον προσδιορισμό ‘ομοιόμορφα ως προς t¨, π.χ.

(α) Η f(t, x) είναι Lipschitz ‘ως προς x’ στο [t0, t1]×X αν ικανοποιεί την ανισότητα:

∥f(t, x1)− f(t, x2)∥ ≤ L∥x1 − x2∥ (1)

για κάθε t ∈ [t0, t1] και κάθε x1, x2 ∈ X (με την ίδια σταθερά Lipschitz L > 0).

(β) Η συνάρτηση f είναι τοπικά Lipschitz ως προς x στο [t0, t1] × X ⊆ R × Rn
αν για κάθε x ∈ X

υπάρχει r = r(x) > 0 τέτοιο ώστε η ανισότητα (1) να ικανοποιείται για κάθε (t, x) ∈ [t0, t1]×Br(x)
με σταθερά Lipschitz L = L(x) > 0.

(γ) Η f είναι τοπικά Lipschitz ‘ως προς x’ στο [t0,∞] × X αν είναι τοπικά Lipschitz ως προς x στο
[t0, t1]×X για κάθε (συμπαγές) διάστημα [t0, t1] ⊆ [t0,∞).
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Λήμμα 1: ΄Εστω f : X → Y συνάρτηση Lipschitz. Τότε η f είναι ομοιόμορφα συνεχής.

Απόδειξη: ΄Εστω ϵ > 0 και L σταθετά Lipschitz της f . Επιλέγουμε δ = ϵ
L . Τότε

∥x1 − x2∥ < δ ⇒ ∥f(x1)− f(x2)∥ < L∥x1 − x2∥ < L
ϵ

L
= ϵ

και εφόσον το δ δεν εξαρτάται από το x ∈ X η f είναι ομοιόμορφα συνεχής. □

Λήμμα 2: ΄Εστω f : X → Y συνάρτηση τοπικά Lipschitz και A ⊆ X συμπαγές. Τότε η f είναι
Lipschitz στο A.

Απόδειξη: ΄Ασκηση!

Λήμμα 3: ΄Εστω A ⊆ Rn
συμπαγές και κυρτό σύνολο και f ∈ C1(A,Rn). Τότε η f είναι Lipschitz με

σταθερά Lipschitz L = maxx∈A ∥Df(x)∥.

Απόδειξη: Εφόσον το A είναι κυρτό, κάθε σημείο της ευθείας

l(x, y) = {ξ(s) : ξ(s) = (1− s)x+ sy, 0 ≤ s ≤ 1}

ανήκει στο A. Επομένως:

f(y)− f(x) =

∫ 1

0

d

ds
(f(ξ(s))) ds =

∫ 1

0
Df(ξ(s))ξ′(s)ds =

∫ 1

0
Df(ξ(s))(y − x)ds

Εφόσον το A είναι συμπαγές υποσύνολο του Rn
και η νόρμα του πίνακα Jacobian είναι συνεχής συνάρτηση,

τότε έχει μέγιστη τιμή στο A, δηλαδή: L = max{∥Df(x)∥ : x ∈ A}. Επομένως,

∥f(y)− f(x)∥ = ∥
∫ 1

0
Df(ξ(s))(y − x)ds∥ =

∫ 1

0
∥Df(ξ(s))∥ · ∥y − x∥ds ≤ L∥y − x∥

και η f είναι Lipschitz με σταθερά Lipschitz L. □

Πόρισμα: Αν E ⊆ Rn
ανοικτό σύνολο και f ∈ C1(E,Rm), τότε η f είναι τοπικά Lipschitz.

Απόδειξη: Εφόσον E ειναι ανοικτό σύνολο, τότε για κάθε x ∈ E υπάρχει r = r(x) > 0 τέτοιο ώστε
B̄r(x) ⊆ E. Εφόσον B̄r(x) είναι συμπαγές και κυρτό σύνολο, η f είναι Lipschitz στο B̄r(x) από το Λήμμα
3. Από τον Ορισμό 2 η f είναι Lipschitz στο E. □

2. ΄Υπαρξη και μοναδικότητα λύσης

΄Εστω το Πρόβλημα Αρχικών Τιμών (ΠΑΤ):

x′ = f(x), x(t0) = x0 (2)

όπου x : R → Rn
και f : Rn → Rn

. Ολοκληρώνοντας η εξίσωση μετασχηματίζεται στην:

x(t) = x0 +

∫ t

t0

f(x(τ))dτ (3)

΄Εστω ότι η εξίσωση αυτή μπορεί να λυθεί ως προς την συνάρτηση x : J → Rn
σε διάστημα

J = [t0 − a, t0 + a]. Το ολοκλήρωμα δεν απαιτεί ότι η f είναι διαφορίσιμη, οπότε υποθέτουμε ότι είναι
απλά συνεχής. Αν η x(t) είναι λύση της (3) τότε αυτή είναι λύση του ΠΑΤ (2).

Λήμμα 1: ΄Εστω f ∈ C0(E,Rn) και x ∈ C0(J,E) είναι λύση της (3). Τότε x ∈ C1(J,E) και είναι λύση
του ΠΑΤ (2).
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Απόδειξη: Παρατηρούμε ότι αν x η λύση της (3), τότε x(t0) = x0. Εφόσον η x είναι συνεχής στο
διάστημα J , η συνάρτηση που ολοκληρώνουμε στην (3) είναι επίσης συνεχής και επομένως η συνάρτηση
στο δεξιό μέλος της (3) είναι συνεχώς διαφορίσιμη (C1

) ως ολοκλήρωμα συνεχούς συνάρτησης. Από

το θεμελιώδες θεώρημα ολοκληρωτικού λογισμού η παράγωγος του δεξιού μέλους της (3) είναι f(x(t)),
δηλαδή x′ = f(x(t)). □

Το επόμενο Θεώρημα (Picard-Lindelof) αποδεικνύει τοπική ύπαρξη και μοναδικότητα λύσης με χρήση του
Θεωρήματος συστολής.

Θεώρημα 1: ΄Εστω ότι για x0 ∈ Rn
υπάρχει b > 0 τέτοιο ώστε f : B̄b(x0) → Rn

συνάρτηση Lipschitz
με σταθερά Lipschitz K > 0. Τότε το ΠΑΤ (2) έχει μοναδική λύση x(t) για t ∈ J = [t0 − a, t0 + a] αν
a < min

(
b
M , 1

K

)
όπου M = max{∥f(x)∥ : x ∈ B̄b(x0)}.

Απόδειξη: Ορίζουμε αρχικά έναν (πλήρη) χώρο με νόρμα στον οποίο εφαρμόζουμε το Θεώρημα

Συστολής:

X = (C0(J,Rn),R, ∥ · ∥C)

όπου ∥x∥C = maxt∈J ∥x(t)∥ και ∥ · ∥ αυθαίρετη νόρμα στον Rn
. Ορίζουμε υποσύνολο N του X πού

αποτελείται από όλες τις συναρτήσεις x(t) που περιέχονται στην σφαίρα B̄b(x0) γιά κάθε t στο διάστημα
J , δηλ. x ∈ C0(J, B̄b(x0)) (x : J → B̄b(x0) και συνεχείς). Το σύνολο N := C0(J, B̄b(x0)) είναι κλειστό
υποσύνολο του πλήρους χώρου X και επομένως (από προηγούμενο αποτέλεσμα) τοN είναι πλήρης μετρικός
χώρος.

Εφόσον η f είναι Lipschitz στο B̄b(x0) είναι συνεχής και επομένως το ολοκλήρωμα
∫ t
t0
f(x(τ))dτ είναι

συνεχής συνάρτηση του t για κάθε x ∈ N (και μάλιστα συνεχώς παραγωγίσιμη). Θα δείξουμε ότι ο
τελεστής:

T (x) = x0 +

∫ t

t0

f(x(τ))dτ

απεικονίζει το N στον εαυτό του, δηλ. T : N → N και ότι είναι συνάρτηση συστολής. Τότε από το
Θεώρημα συστολής θα συμπεράνουμε ότι ο T έχει μοναδικό σταθερό σημείο x∗ = T (x∗) το οποίο από το
προηγούμενο Λήμμα είναι λύση του ΠΑΤ (3) και αντίστροφα. Επομένως θα συμπεράνουμε ότι η μοναδική

λύση του ΠΑΤ (3) είναι το σταθερό σημείο του T .

Αν x ∈ N , η T (x) είναι συνεχής (αφού f συνεχής) αλλά πρέπει να δείξουμε ότι T (x) ∈ N . Εφόσον f
συνεχής και B̄b(x0) συμπαγές, η f είναι φραγμένη στο B̄b(x0), οπότε:

M = max{∥f(x)∥ : x ∈ B̄b(x0}

είναι καλά ορισμένο. Αν t ∈ [t0 − a, t0 + a]:

∥T (x)(t)− x0∥ ≤
∣∣∣∣∫ t

t0

∥f(x(τ))∥dτ
∣∣∣∣ ≤ M |t− τ | ≤ Ma

και εφόσον ο τελευταίος όρος δεν υπερβαίνει το b, a ≤ b
M . Στην περίπτωση αυτή έχουμε T (x)(t) ∈ B̄b(x0)

για κάθε t ∈ J = [t0 − a, t0 + a] και άρα T (x) ∈ N .

Γιά να δείξουμε ότι T είναι τελεστής συστολής, έστω x, y ∈ N . Εφόσον η f είναι Lipschitz,

∥T (x)(t)− T (y)(t)∥ ≤
∣∣∣∣∫ t

t0

∥f(x(τ))− f(y(τ))∥dτ
∣∣∣∣ ≤ K

∣∣∣∣∫ t

t0

∥x(τ)− y(τ)∥dτ
∣∣∣∣ ≤ Ka∥x− y∥C

όταν t ∈ J . Επομένως ∥T (x)− T (y)∥C ≤ γ∥x− y∥C όπου γ = Ka < 1 ⇐ a < 1
K . Επομένως ο T είναι

τελεστής συστολής αν a < min
(

b
M , 1

K̂

)
και επομένως από προηγούμενο Λήμμα το (μοναδικό) σταθερό

σημείο του T είναι η (μοναδική) λύση του ΠΑΤ (2). □
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Παρατήρηση: Η συνθήκη a < 1
K δεν είναι απαραίτητη και μιά άλλη απόδειξη δίνει ικανή συνθήκη

ύπαρξης και μοναδικότητας την ανισότητα a < b
M μόνο (άσκηση!). Η απόδειξη χρησιμοποιεί την νόρμα

Bieleki πού ορίζεται ως:

∥f∥L = max
t∈J

(
e−L|t−t0|∥f(t)∥

)
και όπου L > K. Η απόδειξη είναι επίσης εφαρμογή του Θεωρήματος Συστολής.

Παράδειγμα: ΄Εστω το ΠΑΤ: x′ =
√
|x|, x(0) = 0. Η συνάρτηση f : I → R+, f =

√
|x|, δεν είναι

Lipschitz αν 0 ∈ I (ούτε τοπικά). ΄Εστω x1 = 0, x2 = ϵ > 0. Τότε:

|f(x2)− x(x1)| =
√
ϵ =

1√
ϵ
ϵ =

1√
ϵ
|x2 − x1|

και επομένως για ϵ αυθαίρετα μικρό, L := 1√
ϵ
είναι αυθαίρετα μεγάλο. Στην περίπτωση αυτή οι συνθήκες

του Θεωρήματος δεν ισχύουν και δεν ξέρουμε αν υπάρχει μοναδική λύση. Στην συγκεκριμμένη περίπτωση

δεν έχουμε μοναδικότητα: Δύο διακεκριμένες λύσεις είναι: (α) x1(t) =
1
4 t

2
(t ≥ 0), x1(t) = 0 (t < 0), και

(β) x2(t) = 0, t ∈ R. Παρατηρούμε ότι η x1 είναι συνεχώς διαφορίσιμη (ακόμα και στο t = 0).

Παράδειγμα (Εκτίμηση μέγιστου διαστήματος μέσω Θεωρήματος Picard-Lindelof): ΄Εστω το ΠΑΤ
x′ = x2, x(0) = x0 > 0. Η εξίσωση λύνεται αναλυτικά. Αν x ̸= 0,∫

dx

x2
=

∫
dt+ c′ ⇒ −1

x
= t+ c′ ⇒ 1

x
= c− t ⇒ x(t) =

1

c− t

Αρχική συνθήκη: x(0) = x0 ⇒ c = 1
x0
. ΄Αρα, x(t) = 1

1
x0

−t
. Παρατηρούμε ότι η λύση εκρύγνηται σε

πεπερασμένο χρόνο t = 1
x0
και ότι το μέγιστο διάστημα ύπαρξης λύσης είναι το (−∞, 1

t0
).

Το Θεώρημα Picard-Lindelof εγγυάται την ύπαρξη και μοναδικότητα λύσης σε διάστημα J = [−a, a],
όπου a = b

M , M = max{|f(x)| : x ∈ B̄b(x0)}. Παρατηρούμε ότι f(x) = x2 είναι Lipschitz σε κάθε
συμπαγές διάστημα [x− 0− b, x0 + b]. ΄Εχουμε:

M = max{x2 : x ∈ [x0 − b, x0 + b]} = (x0 + b)2

΄Αρα a = b
M = b

(x0+b)2
και max a = a∗ = maxb≥0

b
(x0+b)2

. ΄Εστω g(b) = b
(x0+b)2

. Η μέγιστη τιμή της g(b)

στο διάστημα b ∈ [0,∞) αντιστοιχεί στην λύση της εξίσωσης:

g′(b) = 0 ⇒ (x0 + b)2 − 2b(x0 + b)

(x0 + b)4
= 0 ⇒ (x0 + b)(x0 − b) = 0 ⇒ b = b∗ = x0

και άρα a∗ = x0

4x2
0
= 1

4x0
.

Μή αυτόνομα συστήματα: ΄Εστω το μη αυτόνομο σύστημα x′ = f(t, x), x(t0) = x0 ∈ Rn
. Το

σύστημα μετασχηματίζεται σε αυτόνομο αν ορίσουμε την επιπλέον μεταβλητή: xn+1 = t. Τότε x′n+1 = 1

και επομένως αν ορίσουμε: y = (x, xn+1) και f̂ = (f, 1) το ΠΑΤ γράφεται:

y′ = (x′, x′n+1) = (f(xn+1, x), 1), (x(t0), xn+1(t0)) = (x0, t0)

Επομένως το προηγούμενο Θεώρημα εφαρμόζεται αν η f είναι Lipschitz και ως προς t. Η υπόθεση αυτή
είναι πολλές φορές περιοριστική αλλά μπορούμε να χρησιμοποιήσουμε το παρακάτω Θεώρημα:

Θεώρημα 2 (΄Υπαρξη και μοναδικότητα για μη αυτόνομα συστήματα): ΄Εστω ότι f(t, x) : J× B̄b(x0) →
Rn
είναι ομοιόμορφα Lipschitz ως προς x με σταθερά Lipschitz K > 0 και συνεχής ως προς t στο

διάστημα J = [t0 − c, t0 + c]. Τότε το ΠΑΤ: x′ = f(t, x), x(t0) = x0 έχει μοναδική λύση x(t) στο
διάστημα [t0 − a, t0 + a], όπου αν a < min

(
c, b

M

)
και M = max{∥f(t, x)∥ : x ∈ B̄b(x0), t ∈ J}.

Απόδειξη: ΄Ασκηση.
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3. Εξάρτηση από αρχικές συνθήκες: Εξετάζουμε την εξάρτηση της λύσης του ΠΑΤ: x′ =
f(x), x(0) = y από την αρχική συνθήκη: x(0) = y ∈ Rn

. Γιά να δώσουμε έμφαση στην εξάρτηση

της λύσης από το y συμβολίζουμε την λύση ως: u(t; y) όπου u(0; y) = y.

Λήμμα: ΄Εστω x0 ∈ Rn
για το οποίο υπάρχει b > 0 τέτοιο ώστε η f : B̄b(x0) → Rn

είναι Lipschitz
με σταθερά K. ΄Εστω M = max{∥f(x)∥ : x ∈ B̄b(x0)}. Τότε η οικογένεια λύσεων u(t; y) του ΠΑΤ
x′ = f(x), x(0) = y, υπάρχει και είναι μοναδική γιά κάθε y ∈ Bb/2(x0) και t ∈ J := [−a, a] όπου

a < min
(
1
K , b

2M

)
.

Απόδειξη: Ορίζουμε N = C0(J, B̄b(x0)) το σύνολο των συνεχών συναρτήσεων x : J → B̄b(x0). Το N
είναι συμπαγές υποσύνολο του χώρου V = (C0(J,Rn),R, ∥ · ∥C) και άρα πλήρες. Ορίζουμε τον τελεστή:
Ty, Ty(u) = y +

∫ t
0 f(u(τ))dτ . ΄Εχουμε:

(α) Ty : N → N : Αν u συνεχής συνάρτηση,
∫ t
0 f(u(τ))dτ συνεχής (και μάλιστα συνεχώς παραγωγίσιμη),

άρα Ty συνεχής. Επίσης για κάθε |t| < a:

∥Ty(u)(t)− x0∥ =

∥∥∥∥y + ∫ t

0
f(u(τ))dτ − x0

∥∥∥∥
≤ ∥y − x0∥+

∣∣∣∣∫ t

0
∥f(u(τ))∥dτ

∣∣∣∣
≤ b

2
+Ma ≤ b ⇐ a ≤ b

2M

(β) Ty τελεστής συστολής: ΄Εστω u, v ∈ N . Τότε:

Ty(u)(t) = y +

∫ t

0
f(u(τ))dτ, Ty(v)(t) = y +

∫ t

0
f(v(τ))dτ

Επομένως για κάθε |t| ≤ a:

∥Ty(u)(t)− Ty(v)(t)∥ =

∥∥∥∥∫ t

0
(f(u(τ))− f(v(τ))) dτ

∥∥∥∥
≤

∣∣∣∣∫ t

0
∥f(u(τ))− f(v(τ))∥ dτ

∣∣∣∣
≤

∣∣∣∣∫ t

0
K∥u(τ)− v(τ)∥dτ

∣∣∣∣
≤ K|t|∥u− v∥C ≤ Ka∥u− v∥C

΄Αρα:

∥Ty(u)− Ty(v)∥C ≤ Ka∥u− v∥C
και Ty είναι συνάρτηση συστολής αν Ka < 1 ⇐ a < 1

K .

Συνεπώς αν a < min
(

b
2M , 1

K

)
, Ty : N → N και είναι συνάρτηση συστολής. ΄Αρα έχει μοναδικό σταθερό

σημείο που είναι η λύση του ΠΑΤ. □

Παρατήρηση:

(i) Η ανισότητα a < 1
K πάλι δεν είναι απαραίτητη και μπορεί να παραλειφθεί.

(ii) Το διάστημα J = [−a, a] είναι το κοινό διάστημα λύσεων για κάθε ΠΑΤ: x′ = f(x), x(0) = y με
y ∈ B̄b/2(x0).

(iii) Το Θεώρημα εγγυάται την ύπαρξη και μοναδικότητα της οικογένειας των λύσεων u(t; y) σε διάστημα
με το μισό μήκος από το αντίστοιχο μήκος του διαστήματος στο Θεώρημα Picard-Lindeloff.
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Λήμμα (Gronwall): ΄Εστω g, k : [0, a] → R συνεχείς, a > 0, k(t) ≥ 0 και

g(t) ≤ G(t) := c+

∫ t

0
k(s)g(s)ds

για κάθε t ∈ [0, a]. Τότε, g(t) ≤ ce
∫ t
0 k(s)ds

για κάθε t ∈ [0, a].

Απόδειξη: Εφόσον g και k συνεχείς, G συνεχώς διαφορίσιμη και G(0) = c. Παραγωγίζοντας,

G′(t) = k(t)g(t) ≤ k(t)G(t) ⇒ G′(t)− k(t)G(t) ≤ 0 ⇒ e−
∫ t
0 k(s)dsG′(t)− e−

∫ t
0 k(s)dsk(t)G(t) ≤ 0

Επομένως,

d

dt

(
G(t)e−

∫ t
0 k(s)ds

)
≤ 0 ⇒ G(t)e−

∫ t
0 k(s)ds ≤ G(0) = c

η

G(t) ≤ ce
∫ t
0 k(s)ds ⇒ g(t) ≤ G(t) ≤ ce

∫ t
0 k(s)ds

που αποδεικνύει το Λήμμα. □

Θεώρημα (Εξάρτηση Lipschitz ως προς τις αρχικές συνθήκες): ΄Εστω x0 ∈ Rn
και έστω ότι υπάρχει

b > 0 τέτοιο ώστε η f : B̄b(x0) → Rn
είναι Lipschitz με σταθερά K. ΄Εστω ότι το διάστημα J = [−a, a]

είναι κοινό διάστημα ύπαρξης και μοναδικότητας για λύσεις u(t; y), u : J × B̄b/2(x0) → B̄b(x0) του ΠΑΤ:
x′ = f(x), x(0) = y. Τότε η συνάρτηση u(t; y) είναι ομοιόμορφα Lipschitz ως προς y με σταθερά
Lipschitz eKa

.

Απόδειξη: ΄Εστω u(t; y) και u(t; z) δύο λύσεις με αρχικές συνθήκες στο B̄b/2(x0), δηλαδή για t ∈ [0, a]

u(t; y) = y +

∫ t

0
f(u(τ ; y))dτ, u(t; z) = z +

∫ t

0
f(u(τ ; z))dτ

Επομένως,

∥u(t; y)− u(t; z)∥ ≤ ∥y − z∥+
∫ t

0
∥f(u(τ ; y))− f(u(τ ; z))∥dτ ≤ ∥y − z∥+K

∫ t

0
∥u(τ ; y)− u(τ ; z)∥dτ

Από την ανισότητα Gronwall (με c = ∥y − z∥ και k(t) = K), έχουμε:

∥u(t; y)− u(t; z)∥ ≤ ∥y − z∥eKt

΄Αρα u(t; y) είναι ομοιόμορφα Lipschitz ως προς y με σταθερά Lipschitz L = eKa
. □

4. Μέγιστο διάστημα ύπαρξης και μοναδικότητας λύσης:

Το Θεώρημα Picarf-Lindeloff εγγυάται ότι αν η f είναι τοπικά Lipschitz υπάρχει μοναδική λύση σε κλειστό
διάστημα J = [t0 − a, t0 + a]. Η εκτίμηση μπορεί να μην είναι ιδιαίτερα ακριβής και η λύση να ορίζεται σε
πολύ μεγαλύτερο διάστημα.

Ορισμός: Το μέγιστο διάστημα ύπαρξης και μοναδικότητας λύσης, J(t0, x0), είναι το μεγαλύτερο
διάστημα του R, t0 ∈ J(t0, x0), στο οποίο το ΠΑΤ έχει μοναδική λύση.

Παράδειγμα: Εξετάζουμε πάλι το ΠΑΤ: x′ = x2, x(0) = x0, με αναλυτική λύση x(t) = x0
1−tx0

.

Διακρίνουμε τρεις περιπτώσεις ανάλογα με το πρόσημο του x0: (i) x0 > 0: J = (−∞, 1
x0
), (ii) x0 < 0:

J = ( 1
x0
,∞) και (i) x0 = 0: J = (−∞,∞) = R. Και στις τρεις περιπτώσεις το μεγιστο διάστημα ύπαρξης

και μοναδικότητας είναι ανοικτό υποσύνολο του R.
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Θεώρημα (Μέγιστο διάστημα ύπαρξης και μοναδικότητας λύσης): ΄Εστω E ανοικτό σύνολο, E ⊆ Rn

και f : E → Rn
τοπικά Lipschitz. Τότε υπάρχει μέγιστο ανοικτό διάστημα J = (α, β), t0 ∈ J , τέτοιο

ώστε το ΠΑΤ: x′ = f(x), x(t0) = x0 να έχει μοναδική λύση x : J → E.

Απόδειξη: Θα χρησιμοποιήσουμε τον συμβολισμό u(t; t0, x0) για την λύση του ΠΑΤ. Το Θεώρημα
Picard-Lindeloff εγγυάται ότι σε κάθε κλειστή σφαίρα B̄b(x0) ⊆ E υπάρχει λύση σε διάστημα J0 =
[t− a0, t+ a0]. Επιπλέον, από την απόδειξη του Θεωρήματος συνάγεται ότι u(t; t0, x0) ∈ B̄b(x0) ⊆ E και
ότι είναι κλάσσης C1

(συνεχώς διαφορίσιμη συνάρτηση). Επομένως, θέτοντας t1 := t0 + a0:

lim
t→t1

u(t; t0, x0) = x1 ∈ B̄b(x0)

και x1 ∈ E εφόσον E ανοικτό. Εφαρμόζουμε πάλι το Θεώρημα για το ΠΑΤ με αρχική συνθήκη
αυτή τη φορά x(t1) = x1 σε σφαίρα B̄b1(x1) ⊆ E που μας δίνει νέα λύση u(t; t1, x1) σε διάστημα
J1 = [t1 − a1, t1 + a1] γύρω από το σημείο t1 = t0 + a0. Παρατηρούμε ότι J0 ∩ J1 ̸= ∅ και ότι στο
J0 ∩ J1 έχουμε u(t; t0, x0) = u(t; t1, x1) από το μονοσήμαντο της λύσης.

Με παρόμοιο τρόπο η λύση επεκτείνεται και ορίζει μοναδική λύση σε διαδοχικά μεγαλύτερα διαστήματα.

΄Εστω J η ένωση όλων αυτών των διαστημάτων και x η λύση που κατασκευάζεται στο J . Το διάστημα
J είναι ανοικτό. ΄Εστω για αντίφαση ότι κάποιο άκρο του J είναι κλειστό, π.χ. J = (α, β]. Τότε, όπως
προηγουμένως, x(β) ∈ E και η λύση θα μπορούσε να επεκταθεί σε μεγαλύτερο διάστημα δεξιά του β, που
είναι άτοπο. Επομένως το J είναι ανοικτό διάστημα. □

Παράδειγμα: Εξετάζουμε πάλι το ΠΑΤ: x′ = x2, x(0) = x0 > 0 με λύση x(t) = x0
1−tx0

. Επιλέγοντας

b = x0 η μέγιστη τιμή της a0 είναι a0 =
1

4x0
και επομένως J0 = [−a0, a0] =

[
− 1

4x0
, 1
4x0

]
.

Γιά να εφαρμόσουμε πάλι το Θεώρημα Picard-Lindelof για το ΠΑΤ: x′ = x2, x(a0) = x1, θα πρέπει
να μπορούμε να υπολογίσουμε το x1, που γενικά δεν είναι δυνατόν. Στο παράδειγμα αυτό όμως η
αναλυτική λύση είναι γνωστή και βρίσκουμε x1 = 4x0

3 . Η εφαρμογή του Θεωρήματος για το νέο ΠΑΤ

δίνει: J2 = [t1 − a1, t1 + a1] όπου a1 =
1

4x1
= 3

16x0
.

΄Ασκηση: Δείξτε συνεχίζοντας την διαδικασία ότι το Θεώρημα Picard-Lindelof εγγυάται (μετά από n
βήματα) ύπαρξη και μοναδικότητα λύσης έως χρόνο tn, όπου

tn =
1

x0

(
1−

(
3

4

)n)
και ότι επομένως tn → t∞ = 1

x0
που είναι ο (πραγματικός) χρόνος έκρηξης της λύσης. □

Θεώρημα: ΄Εστω E ⊆ Rn
ανοικτό και f : E → Rn

τοπικά Lipschitz. ΄Εστω (α, β) το μέγιστο διάστημα
ύπαρξης και μοναδικότητας της λύσης του ΠΑΤ: x′ = f(x), x(t0) = x0. Αν β ∈ R (πεπερασμένο), τότε γιά
κάθε συμπαγές K ⊆ E υπάρχει t ∈ [t0, β) τέτοιο ώστε x(t) /∈ K. Αντίστοιχα, αν α ∈ R (πεπερασμένο),
τότε γιά κάθε συμπαγές K ⊆ E υπάρχει t ∈ (α, t0] τέτοιο ώστε x(t) /∈ K.

Απόδειξη: Εξετάζουμε μόνο την περίπτωση για το άνω άκρο του J , β ∈ R.

(i) ΄Εστω ότι ο ισχυρισμός του Θεωρήματος δεν ευσταθεί. Τότε θα υπήρχε συμπαγές σύνολο K ⊆ E
τέτοιο ώστε x(t) ∈ K για κάθε t ∈ [t0, β). Εφόσον η f είναι συνεχής και K συμπαγές, η f είναι
φραγμένη στο K. Μάλιστα, το ελάχιστο άνω φράγμα της f ταυτίζεται με την μέγιστη τιμή:

M = max{∥f(x)∥ : x ∈ K}

(ii) Από την εξίσωση λύσης του ΠΑΤ:

x(t) = x0 +

∫ t

t0

f(x(τ))dτ

συμπεραίνουμε ότι για t1 ≤ t2 < β:

∥x(t1)− x(t2)∥ ≤
∫ t2

t1

∥f(x(τ))∥dτ ≤ M |t2 − t1|
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(iii) Επομένως, αν tj ∈ [t0, β) είναι ακολουθία tj → β, τότε η ακολουθία (x(tj)) στο Rn
είναι Cauchy.

(Εφόσον tj → β, γιά κάθε ϵ > 0 υπάρχει N = N(ϵ) : |tj − β| < ϵ
2M γι·α κάθε j ≥ N . ΄Αρα γιά

j, k ≥ N ,

∥x(tj)− x(tk)∥ ≤ M |tj − tk| ≤ M(|tj − β|+ |tk − β|) ≤ M
( ϵ

2M
+

ϵ

2M

)
= ϵ

και η (x(tj)) είναι Cauchy).

(iv) Εφόσον K συμπαγές υποσύνολο του Rn
κάθε ακολουθία Cauchy συγκλίνει (στο K). ΄Εστω

x(tj) → x1.

(v) ΄Εστω δύο ακολουθίες (tj) και (τj) στο [t0, β), tj → β και τj → β. Το΄τε tj − τj → 0 και:

∥x(τj)− x1∥ ≤ ∥x(τj)− x(tj)∥+ ∥x(tj)− x1∥ ≤ M |τj − tj |+ ∥x(tj)− x1∥ → 0

και άρα x(τj) → x1. ΄Αρα για κάθε ακολουθία (tj), tj ∈ [t0, β), tj → β έχουμε x(tj) → x1. Από
την αρχή της μεταφοράς το όριο:

lim
t→β

x(t) = x1

είναι καλά ορισμένο και x1 ∈ K αφού K κλειστό.

(vi) Ορίζουμε x(β) = x1. Τότε η x(t) είναι συνεχής στο (κλειστό) διάστημα [t0, β]. Το Θεώρημα
Picard-Lindelof γιά το ΠΑΤ x′ = f(x), x(β) = x1, εγγυάται ύπαρξη και μοναδικότητα λύσης σε
κάποιο κλειστό διάστημα J ′

, β ∈ J ′
. Επιπλέον J ∩ J ′ ̸= ∅. Από την μοναδικότητα λύσης, οι λύσεις

στο J ∩ J ′
ταυτίζονται. ΄Αρα η λύση του ΠΑΤ επεκτείνεται πέραν του β και άρα το J = (α, β)

δεν είναι το μέγιστο διάστημα ύπαρξης και μοναδικότητας όπως έχουμε υποθέσει (άτοπο). ΄Αρα δεν

υπάρχει συμπαγές K ⊆ E για το οποίο x(t) ∈ K γιά κάθε t ∈ [t0, β). □

Πόρισμα: Αν β ∈ R (πεπερασμένο), τότε:

(i) Το όριο limt→β x(t) δεν υπάρχει (ως πραγματικός αριθμός), η

(ii) limt→β x(t) ∈ ∂E

Απόδειξη: Αν β ∈ R, τότε από το προηγούμενο Θεώρημα συμπεραίνουμε ότι η λύση x(t) δεν μπορεί να
περιορισθεί εντός συμπαγούς συνόλου K ⊆ E. Αν το όριο υπάρχει, τότε δεν μπορεί να είναι σημείο το
E, γιατί τότε η λύση θα μπορούσε να επεκταθεί (εντός του E) όπως προηγουμένως. Επομένως, καθώς
x(t) ∈ E για κάθε t ∈ [t0, β), πρέπει να έχουμε limt→β x(t) ∈ ∂E. □

Παράδειγμα: ΄Εστω το ΠΑΤ: x′ = f(x) = 1
x , x(0) = x0 > 0. Εφόσον η f δεν ορίζεται στο x = 0,

επιλέγουμε E = R+ = (0,∞) (εφόσον x(0) = x0 > 0). Η λύση υπολογίζεται αναλυτικά με την μέθοδο
διαχωρισμού μεταβλητών:∫

xdx =

∫
dt+ c′ ⇒ x2 = 2t+ c, x(0)2 = x20 = c2 ⇒ x(t) =

√
x20 + 2t

΄Εχουμε x(t) > 0 ⇒ x20+2t > 0 ⇒ t > −x2
0
2 και επομένως το μέγιστο διάστημα ύπαρξης και μοναδικότητας

λύσης είναι: J =
(
−x2

0
2 ,∞

)
. Παρατηρούμε ότι σε αυτήν την περίπτωση,

lim
t→(−x2

0/2)
+
x(t) = 0 ∈ ∂E.

5. Ολική ύπαρξη λύσης
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Εξετάζουμε συνθήκες κάτω από τις οποίες η λύση του ΠΑΤ υπάρχει (και είναι μοναδική) σε όλο το J = R
η στο J = [t0,∞). Χωρίς βλάβη γενικότητας ορίζουμε το ΠΑΤ ως: x′ = f(x), x(0) = x0, δηλαδή
θέτουμε t0 = 0.

Θεώρημα: Αν f : Rn → Rn
τοπικά Lipschitz και φραγμένη, τότε η λύση του ΠΑΤ υπάρχει (και είναι

μοναδική) σε όλο το R.

Απόδειξη: Εφόσον η f είναι τοπικά Lipschitz η λύση υπάρχει και είναι μοναδική σε κάποιο ανοικτό
διάστημα J = (α, β), 0 ∈ J . Από την υπόθεση υπάρχει m > 0, τέτοιος ώστε: ∥f(x)∥ ≤ m, x ∈ Rn

.

Τότε, αν 0 ≤ t < β:

x(t) = x0 +

∫ t

0
f(x(τ))dτ ⇒ ∥x(t)− x0∥ ≤

∫ t

0
∥f(x(τ))∥dτ ≤ mt

Αν β ∈ R (πεπερασμένο), τότε η x(t) θα ανήκε στο συμπαγές σύνολο x(t) ∈ B̄mβ(x0) γιά κάθε t ∈ [0, β),
πού είναι άτοπο από το προηγούμενο Θεώρημα. Επομένως το β δεν είναι πεπερασμένο. Παρόμοια γιά το
κάτω όριο α του διαστήματος J . ΄Αρα J = (−∞,∞) = R. □

Θεώρημα: ΄Εστω f : Rn → Rn
ολικά Lipschitz. Τότε η λύση του ΠΑΤ υπάρχει και είναι μοναδική σε

όλο το J = R.

Απόδειξη: Παρόμοια με την προηγούμενη απόδειξη:

∥x(t)− x0∥ ≤
∫ t

0
∥f(x(τ))∥dτ ≤

∫ t

0
(∥f(x(τ))− f(x0)∥+ ∥f(x0)∥) dτ

για κάθε t ∈ [0, β). Ο πρώτος όρος φράσσεται ως:

∥f(x(τ))− f(x0)∥ ≤ K∥x(τ)− x0∥

όπου K η (ολική) σταθερά Lipschitz. ΄Εστω β ∈ R (πεπερασμένο). Τότε:

∥x(t)− x0∥ ≤ β∥f(x0)∥+K

∫ t

0
∥x(τ)− x0∥dτ

Από την ανισότητα Gronwall,
∥x(t)− x0∥ ≤ β∥f(x0)∥eKt

Επομένως για 0 ≤ t < β, η x(t) περιέχεται σε συμπαγές σύνολο,

x(t) ∈ B̄β∥f(x0)∥eKβ (x0) = {y : ∥y − x0∥ ≤ β∥f(x0)∥eKβ}

πο·υ αντιβαίνει σε αποτέλεσμα προηγούμενου Θεωρήματος. ΄Αρα β = ∞. Παρόμοια, α = −∞ και

επομένως J = R. □

Το επόμενο αποτέλεσμα προκύπτει άμεσα, αλλά είναι χρήσιμο στην ανάλυση ευστάθειας Lyapunov:

Θεώρημα: ΄Εστω f : E → Rn
τοπικά Lipschitz όπου E ⊆ Rn

ανοικτό. ΄Εστω K ⊆ Rn
συμπαγές και

x0 ∈ K. ΄Εστω ότι κάθε λύση x(t) του ΠΑΤ: x′ = f(x), x(0) = x0, περιέχεται στο K γιά κάθε t ≥ 0.
Τότε υπάρχει μοναδική λύση του ΠΑΤ που ορίζεται σε όλο το J = [0,∞).

Απόδειξη: Εφόσον f τοπικά Lipschitz υπάρχει μοναδική λύση που επεκτείνεται σε μέγιστο διάστημα
J = [0, β) (στο R+0). ΄Εστω β ∈ R (πεπερασμένο). Από προηγούμενο Θεώρημα υπάρχει t ∈ (0, β) τέτοιο
ώστε x(t) /∈ K που αντιβαίνει την υπόθεση του Θεωρήματος. ΄Αρα β = ∞ και J = [0,∞). □

Παράδειγμα: ΄Εστω το ΠΑΤ: x′ = f(x), f(x) = −x3, x(0) = x0. Δείξτε (χωρις να υπολογίσετε την
λύση αναλυτικά) ότι η λύση του ΠΑΤ είναι μοναδική σε όλο το διάστημα J = [0,∞).
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Αρχικά παρατηρούμε ότι |f ′(x)| = 3x2 δεν είναι φραγμένη στο R και άρα η f είναι μόνο τοπικά
Lipschitz. Επομένως δεν μπορούμε να εφαρμοσουμε προγούμενο Θεώρημα ολικής ύπαρξης που αναφέρεται
σε συναρτήσεις f που είναι ολικά Lipschitz.

΄Εστω K = {x ∈ R : |x| ≤ |x0|}. Το K είναι συμπαγές υποσύνολο του R και για κάθε t ≥ 0: Αν
x(t) > 0 ⇒ x′(t) = f(x(t)) < 0 και αν x(t) < 0 ⇒ x′(t) = f(x(t)) > 0 (το x = 0 είναι σημείο
ισορροπίας). ΄Εστω [0, β) το μέγιστο διάστημα της λύσης στο R+ όπου β ∈ R (πετερασμένο). Τότε
υπάρχει t ∈ (0, β) τέτοιο ώστε x(t) /∈ K, άτοπο εξ΄ υποθέσεως. ΄Αρα η λύση ορίζεται και είναι μοναδική
για κάθε t ≥ 0.

Γ. Χαλικιάς, 1-2-2023
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