
Δυναμικά συστήματα στον R2

1.1 Ροή Γραμμικού συστήματος: ΄Εστω σύστημα x′ = Ax, x(0) = x0 ∈ Rn
όπου A ∈ Rn×n

.

Ορίζουμε την ροή του συστήματος ως eAt : Rn → Rn
, t ∈ R. Η συνάρτηση ϕt := eAt

έχει τις παρακάτω

ιδιότητες για κάθε t, s ∈ R και x ∈ Rn
:

(i) ϕ0(x) = x

(ii) ϕs ◦ ϕt(x) = ϕt+s(x)

(iii) ϕ−t ◦ ϕt(x) = ϕt ◦ ϕ−t(x) = x

Οι ιδιότητες (i)-(iii) προκύπτουν άμεσα από τις ιδιότητες της εκθετικής συνάρτησης eAt
.

1.2 Ευσταθής, ασταθής και κεντρικός υπόχωρος: ΄Εστω σύστημα x′ = Ax, x(0) = x0 ∈ Rn

όπου A ∈ Rn×n
. ΄Εστω wj = uj + ivj του πίνακα A που αντιστοιχεί στην ιδιοτιμή λj = σj + iωj ∈ σ(A)

(αν ωj = 0, τότε vj = 0). ΄Εστω:

B = {u1, . . .uk,uk+1,vk+1, . . . ,um,vm}

βάση του Rn
(όπου n = 2m− k).

Ορισμός: ΄Εστω λj = σj + iωj , wj = uj + ivj και B όπως ορίστηκαν παραπάνω. Τότε

� X− = span{uj ,vj : σj < 0}

� X 0 = span{uj ,vj : σj = 0}

� X+ = span{uj ,vj : σj > 0}

είναι ο ευσταθής, κεντρικός και ασταθής υπόχωρος του συστήματος x′ = Ax, ατίστοιχα. Ισχύουν οι
παρακάτω ιδιότητες:

(i) Rn = X− ⊕X 0 ⊕X+
.

(ii) Κάθε ένας από τους τρείς υπόχωρους είναι A-αναλλοίωτος, π.χ. x ∈ X− ⇒ Ax ∈ X−
, κλπ.

(iii) Αν x0 ∈ X−
, τότε eAtx0 ∈ X−

για κάθε t ∈ R (και παρόμοια για X 0
, X+

).

Ορισμός: Ο πίνακας A ∈ Rn×n
λέγεται υπερβολικός (αντίστοιχα το σύστημα x′ = Ax λέγεται

υπερβολικό) αν X 0 = {0}.

Στην συνέχεια δίνουμε μερικούς ορισμούς ευστάθειας καθώς και ικανές και αναγκαίες συνθήκες ευστάθειας

γραμμικών χρονικά αναλλοίωτων συστημάτων (χωρίς αποδείξεις). Το θέμα αυτό αναπτύσσεται με

μεγαλύτερη πληρότητα σε άλλη ενότητα των σημειώσεων.

Ορισμός (σημείο ισορροπίας): ΄Εστω το δυναμικό σύστημα: x′ = f(x). Το διάνυσμα x∗
λέγεται σημείο

ισορροπίας του συστήματος αν f(x∗) = 0.

Ορισμός (ευστάθειας): ΄Εστω x(t ; x0) η λύση του συστήματος x′ = f(x), x(0) = x0, όπου

f : Ω ⊆ Rn → Rn
. Το σημείο ισορροπίας x∗

λέγεται:

1. Ευσταθές (κατά Lyapunov) αν για κάθε ϵ > 0 υπάρχει δ = δ(ϵ) > 0 τέτοιο ώστε:

∥x0 − x∗∥ < δ ⇒ ∥x(t ; x0)− x∗∥ < ϵ για κάθε t ≥ 0
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2. Ασυμπτωτικά ευσταθές αν είναι ευσταθές (κατά Lyapunov) και η παράμετρος δ στο (1) μπορεί να
επιλεγεί έτσι ώστε:

∥x0 − x∗∥ < δ ⇒ x(t ; x0) → x∗
καθώς t → ∞

3. Ολικά ασυμπτωτικά ευσταθές, αν

x(t ; x0) → x∗
καθώς t → ∞ για κάθε x0 ∈ Rn

4. Ασταθές αν δεν είναι ευσταθές (κατά Lyapunov).

Θεώρημα: ΄Εστω το γραμμικό, χρονικά αναλλοίωτο σύστημα x′ = Ax, A ∈ Rn×n
. Το σημείο

ισορροπίας x∗ = 0 είναι ευσταθές (κατά Lyapunov) αν και μόνο αν για κάθε ιδιοτιμή λi, i = 1, 2, . . . , ρ,
του πίνακα A ισχύει Re(λi) ≤ 0 και κάθε ιδιοτιμή με Re(λi) = 0 έχει ίση αλγεβρική και γεωμετρική
πολλαπλότητα. Το σημείο ισορροπίας x∗ = 0 είναι (ολικά) ασυμπτωτικά ευσταθές αν όλες οι ιδιοτιμές του
πίνακα A ικανοποιούν την ανισότητα Re(λi) < 0, i = 1, 2, . . . , ρ.

1.3 Ταξινόμηση συστημάτων στο επίπεδο φάσης: ΄Εστω A ∈ R2×2
. Τότε η πραγματική

μορφή Jordan του A είναι μία από τις παρακάτω:

J =

[
λ1 0
0 λ2

]
(λ1, λ2 ∈ R, λ1 ̸= λ2), J =

[
σ ω
−ω σ

]
(λ1,2 = σ ± iω, σ, ω ∈ R, ω ̸= 0)

και

J =

[
λ 0
0 λ

]
(λ ∈ R), J =

[
λ 1
0 λ

]
(λ ∈ R)

Περίπτωση 1: (λ1, λ2 ∈ R, λ1 ̸= λ2, λ1 ̸= 0, λ2 ̸= 0): Στην περίπτωση αυτή:[
z′1
z′2

]
=

[
λ1 0
0 λ2

] [
z1
z2

]
⇒ z1(t) = z10e

λ1t, z2(t) = z20e
λ2t

Απαλείφοντας την μεταβλητή χρόνου:

z2 = z20

(
eλ1t

)λ2
λ1 = z20

(
z1
z10

)λ2
λ1

=

(
z20

z
λ2/λ1

10

)
z
λ2/λ1

1 := cz
λ2/λ1

1

όπου c ∈ R. Διακρίνουμε τις παρακάτω υπο-περιπτώσεις:

Περίπτωση 1α (ευσταθής κόμβος, λ2 < λ1 < 0): Στην περίπτωση αυτή (Σχήμα 1) eλ1t → 0 και eλ2t → 0
καθώς t → ∞. Η λύση είναι (ολικά) ασυμπτωτικά ευσταθής. Οι τροχιές συγκλίνουν στο σημείο ισορροπίας
(x∗1, x

∗
2) = (0, 0) εφαπτομενικά από τον z1-άξονα, που είναι η διεύθυνση του ιδιοδιανύσματος του J που

αντιστοιχεί στην ¨αργή’ ιδιοτιμή λ1. Στο όριο t → −∞ η διεύθυνση των τροχιών τείνει να γίνει παράλληλη
με τον z2-άξονα, που είναι η διεύθυνση του ιδιοδιανύσματος που αντιστοιχεί στην ¨γρήγορη’ ιδιοτιμή λ2.

Αναλυτικά:

dz2
dz1

= c
λ2

λ1
z

λ2
λ1

−1

1 ,
λ2

λ1
− 1 > 0

και άρα

lim
|z2|→0

dz2
dz1

= 0

Επίσης,

z0 = (1, 0)T ⇒ z1(t) = eλ1t και z2(t) = 0, z0 = (0, 1)T ⇒ z2(t) = eλ2t και z1(t) = 0

και άρα έχουμε: X− = R2
, X+ = X 0 = {0}.
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Σχήμα 1: Περίπτωση 1α: Ευσταθής κόμβος

Παράδειγμα: ΄Εστω το σύστημα [
x′1
x′2

]
=

[
−1 1
0 −2

] [
x1
x2

]
Οι ιδιοτιμές του συστήματος είναι λ1 = −1 και λ2 = −2 και τα αντίστοιχα ιδιοδιανύσματα:

u1 =

[
1
0

]
και u2 =

[
−1
1

]
΄Αρα,

eAt =

[
1 −1
0 1

] [
e−t 0
0 e−2t

] [
1 1
0 1

]
και επομένως

x(t) = eAtx0 = e−t

[
1
0

] ([
1 1

]
x0

)
+ e−2t

[
−1
1

] ([
0 1

]
x0

)
Επομένως, αν xT

0 = [x01 x02],

x(t) = (x01 + x02)e
−t

[
1
0

]
+ x02e

−2t

[
−1
1

]
Παρατηρούμε ότι

x0 = u1 =

[
1
0

]
⇒ x(t) = e−t

[
1
0

]
για κάθε t ∈ R

και

x0 = u2 =

[
−1
1

]
⇒ x(t) = e−2t

[
−1
1

]
για κάθε t ∈ R

Επομένως: X− = R2
και X+ = X 0 = {0} είναι ο ευσταθής, ασταθής και κεντρικός υπόχωρος, αντίστοιχα.

Περίπτωση 1β (ασταθής κόμβος, λ2 > λ1 > 0): Το διάγραμμα (Σχήμα 2) είναι το ίδιο αλλά η κατεύθυνση
των τροχιών αντιστρέφεται. Στην περίπτωση αυτή έχουμε J → −J και θέτοντας τ = −t έχουμε:

dz

dτ
=

dz

d(−t)
= −dz

dt
= −Jz

Περίπτωση 1γ (Σαγματικό σημείο, λ2 < 0 < λ1): Στην περίπτωση αυτή z′1 = λ1z1 και z
′
2 = λ2z2. Οι

ιδιοτιμές έχουν αντίθετο πρόσημο και z1 = eλ1tz10. Καθώς t → +∞, έχουμε z1 → +∞ αν z10 > 0 και
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Σχήμα 2: Περίπτωση 1β: Ασταθής κόμβος

z1 → −∞ αν z10 < 0. Επίσης z2 = eλ2tz20 → 0 καθώς t → +∞. Οι τροχιές του συστήματος ικανοποιούν
την εξίσωση: z2 = cz

λ2/λ1

1 όπου c ∈ R και λ2/λ1 < 0 και προσομοιάζουν με υπερβολές. Επίσης:

dz2
dz1

= c
λ2

λ1
z

λ2
λ1

−1

1 ,
λ2

λ1
< −1

Επομένως, αν z10 ̸= 0 και z20 ̸= 0 οι τροχιές τείνουν ασυμπτωτικά στον z1 άξονα καθώς |z1| → ∞ και
στον z2 άξονα καθώς |z1| → 0. Το σημείο ισορροπίας (x∗1, x

∗
2) = (0, 0) είναι ασταθές και

X− =

{
γ

[
0
1

]
: γ ∈ R

}
, X+ =

{
γ

[
1
0

]
: γ ∈ R

}
και X 0 =

{[
0
0

]}
είναι ο ευσταθής, ασταθής και κεντρικός υπόχωρος, αντίστοιχα.

Σχήμα 3: Περίπτωση 1γ: Σαγματικό σημείο ισορροπίας

Παράδειγμα: ΄Εστω το σύστημα [
x′1
x′2

]
=

[
−1 1
0 2

] [
x1
x2

]
Οι ιδιοτιμές του συστήματος είναι λ1 = −1 και λ2 = 2 και τα αντίστοιχα ιδιοδιανύσματα:

u1 =

[
1
0

]
και u2 =

[
1/3
1

]
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΄Αρα,

eAt =

[
1 1

3
0 1

] [
e−t 0
0 e2t

] [
1 −1

3
0 1

]
και επομένως

x(t) = eAtx0 = e−t

[
1
0

] ([
1 −1

3

]
x0

)
+ e2t

[
1
3
1

] ([
0 1

]
x0

)
Επομένως, αν xT

0 = [x01 x02],

x(t) = (x01 −
1

3
x02)e

−t

[
1
0

]
+ x02e

2t

[
1
3
1

]
Παρατηρούμε ότι

x0 = u1 =

[
1
0

]
⇒ x(t) = e−t

[
1
0

]
για κάθε t ∈ R

και

x0 = u2 =

[
1
3
1

]
⇒ x(t) = e2t

[
1
3
1

]
για κάθε t ∈ R

Επομένως:

X− =

{
γ

[
1
0

]
: γ ∈ R

}
, X+ =

{
γ

[
1
3
1

]
: γ ∈ R

}
και X 0 =

{[
0
0

]}
είναι ο ευσταθής, ασταθής και κεντρικός υπόχωρος, αντίστοιχα.

Σχήμα 4: Σαγματικό σημείο (Παράδειγμα)

Περίπτωση 2 (Μιγαδικές συζυγείς ιδιοτιμές): ΄Εστω το σύστημα[
x′1
x′2

]
=

[
σ ω
−ω σ

] [
x1
x2

]
, x0 =

[
x01
x02

]
, σ, ω ∈ R, ω ̸= 0

Οι ιδιοτιμές του συστήματος είναι μιγαδικές συζυγείς: λ = σ + iω και λ̄ = σ − iω. Οι εξισώσεις του
συστήματος γράφονται ως:

x′1 = σx1 + ωx2, x′2 = −ωx2 + σx2

Μετασχηματίζουμε το σύστημα σε πολικές συντεταγμένες (r, θ), όπου

(x1 = r cos θ, x2 = r sin θ) ⇔ (r2 = x21 + x22, θ = tan−1(x2/x1))
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Παραγωγίζοντας:

2rr′ = 2x1x
′
1 + 2x2x

′
2 ⇒ rr′ = x1(σx1 + ωx2) + x2(−ωx1 + σx2) = σ(x21 + x22) = σr2

και άρα r′ = σr ⇒ r(t) = eσtr0. Επίσης:

θ′ =
1

1 +
x2
2

x2
1

x′2x1 − x′1x2
x21

=
x21
r2

(−ωx1 + σx2)x1 − (σx1 + ωx2)x2
x21

Ισοδύναμα

θ′ = −ω(x21 + x22)

r2
= −ωr2

r2
= −ω ⇒ θ(t) = θ0 − ωt

Παρατηρούμε ότι σ > 0 ⇒ r(t) → ∞ καθώς t → ∞ και r(t) → 0 καθώς t → −∞ και το σημείο ισορροπίας
(x∗1, x

∗
2) = (0, 0) είναι ασταθές. Αν σ = 0 ⇒ r(t) = r0 για κάθε t ∈ R και η τροχιά του συστήματος

ταλαντώνεται χωρίς απόσβεση. Το σημείο ισορροπίας (x∗1, x
∗
2) = (0, 0) είναι ευσταθές (κατά Lyapunov)

αλλά όχι ασυμπτωτικά. Τέλος, σ < 0 ⇒ r(t) → 0 καθώς t → ∞ και r(t) → ∞ καθώς t → −∞. Το
σημείο ισορροπίας (x∗1, x

∗
2) = (0, 0) είναι ασυμπτωτικά ευσταθές. Και στις τρείς περιπτώσεις, αν ω > 0, η

συνάρτηση θ(t) φθίνει γραμμικά και η τροχιά του συστήματος είναι δεξιόστροφη σπείρα, ενω αν ω < 0 η
συνάρτηση θ(t) είναι αύξουσα (γραμμικά) και η τροχιά του συστήματος είναι αριστερόστροφη σπείρα. Οι
τρεις περιπτώσεις που αντιστοιχούν στο πρόσημο του σ συνοψίζοντα γραφικά στο Σχήμα 5.

Σχήμα 5: Περίπτωση 2: Μιγαδικές συζυγείς ιδιοτιμές

Στο Σχήμα 5 τα διαγραμματα φάσης αντιστοιχούν σε ευσταθή εστία (αριστερά), ασταθή εστία (κέντρο) και
κέντρο (δεξιά). Το σημείο ισορροπίας (x∗1, x

∗
2) = (0, 0) είναι αντίστοιχα ασυμπτωτικά ευσταθές, ασταθές

και ευσταθές κατά Lyapunov (αλλά όχι ασυμπτωτικά). Και στις τρείς περιπτώσεις αν ω < 0 η φορά της
τροχιάς αντιστρέφεται (γίνεται αριστερόστροφη).

Παράδειγμα: Να μελετηθεί το διάγραμμα φάσης του συστήματος x′ = Ax:[
x′1
x′2

]
=

[
0 −2
8 0

] [
x1
x2

]
Οι ιδιοτιμες είναι οι ρίζες του χαρακτηριστικού πολυωνύμου ϕ(λ) = det(λI2 − A) = λ2 + 16 = 0 και
επομένως λ = 4i, λ̄ = −4i. Η ιδιοτιμή λ αντιστοιχεί σε παραμέτρους σ = 0 και ω = 4. Το ιδιοδιάνυσμα
της ιδιοτιμής λ είναι η λύση της [

4i 2
−8 4i

] [
α
β

]
=

[
0
0

]
⇒ 2α = iβ

΄Αρα επιλέγουμε:

u1 =

[
α
β

]
=

[
i
2

]
=

[
0
2

]
+ i

[
1
0

]
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Επομένως

A = UΣU−1, U =

[
0 1
2 0

]
, U−1 =

[
0 1

2
1 0

]
και Σ =

[
0 4
−4 0

]
Γράφουμε

x′ = UΣU−1x ⇒ U−1x′ = ΣU−1x

΄Εστω z = U−1x. Τότε

z′ = Σz ⇒
[
z′1
z′2

]
=

[
0 4
−4 0

] [
z1
z2

]
⇒ z′1 = 4z2, x

′
2 = −4z1

Σε πολικές συντεταγμένες,

r2 = z21 + z22 ⇒ 2rr′ = 2z1z
′
1 + 2z2z

′
2 = 2z1(4z2) + 2z2(−4z1) = 0 ⇒ r′ = 0 ⇒ r2 = r20 = z21 + z22

Στις αρχικές συντεταγμένες

x = Uz ⇒
[
x1
x2

]
=

[
0 1
2 0

] [
z1
z2

]
⇒ x1 = z2 και x2 = 2z1

΄Αρα

z21 + z22 =
1

4
x22 + x21 = r20 ⇒

(
x1
r0

)2

+

(
x2
2r0

)2

= 1

που αντιστοιχεί σε έλλιψη με κέντρο το σημείο (0, 0) και μήκος ημι-αξόνων l1 = r0 και l2 = 2r0.

Για να βρούμε την διεύθυνση της τροχιας υπολογίζουμε το εφαπτομενικό διάνυσμα (x′1, x
′
2) σε τυχαίο

σημείο της έλλειψης, π.χ. στο (x1, x2) =
(

r0√
2
, 2r0√

2

)
. ΄Εχουμε[

x′1
x′2

]
=

[
0 −2
8 0

] [
1
2

]
r0√
2
=

[
−4
8

]
r0√
2

και άρα η τροχιά είναι αριστερόστροφη (δείτε Σχήμα 6).

Σχήμα 6: Τροχιά (Παράδειγμα)

Παρατήρηση (Ευαισθησία ευστάθειας για μικρές παραμετρικές διαταραχές): Οι ιδιοτιμές πίνακα είναι

συνεχείς συναρτήσεις των στοιχείων του και επομένως αυθαίρετα μικρές διαταραχές ∥δA∥, A → A+ δA
σε πίνακα A με φανταστικές ιδιοτιμές μπορούν να αλλάξουν τα ποιοτικά χαρακτηριστικά του διαγράμματος
φάσης και τις ιδιότητες ευστάθειας, σε αντίθεση, π.χ. με συστήματα x′ = Ax, σ(A) ⊆ C−, που είναι
¨δομικά ευσταθή¨. Για παράδειγμα, έστω σύστημα:

x′ = Ax, A =

[
0 ω
−ω 0

]
, ω ̸= 0
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με ιδιοτιμές λ = ±iω και το αντίστοιχο σύστημα

y′ = (A+ δA)y, A+ δA =

[
µ ω
−ω µ

]
, ω ̸= 0

που έχει ιδιοτιμές λ̂ = µ ± iω και αντιστοιχεί σε μικρές διαταραχές δ11 = δ22 = µ των διαγωνίων
στοιχείων του πίνακα A (Σχήμα 7). Αν µ > 0 (αυθαίρετα μικρό), το σημείο ισορροπίας x∗ = 0
μεταβάλλεται από κέντρο σε ασταθή εστία. Το σημείο ισορροπίας του αρχικού συστήματος x′ = Ax
είναι ευσταθές κατά Lyapunov (αλλά όχι ασυμπτωτικά), ενώ το σημείο ισορροπίας του διαταραγμένου
συστήματος y′ = (A+ δA)y είναι ασταθές.

Σχήμα 7: Διαταραχή ιδιοτιμών (Παρατήρηση)

Περίπτωση 3 (Μη-μηδενική, πολλαπλή ιδιοτιμή, λ1 = λ2 = λ ∈ R, λ ̸= 0): Εξετάζουμε σύστημα της
μορφής: [

x′1
x′2

]
=

[
λ k
0 λ

] [
x1
x2

]
,

[
x1(0)
x2(0)

]
=

[
x01
x02

]
Οι εξισώσεις γράφονται ως:

x′1 = λx1 + kx2, x′2 = λx2

η

x2 = eλtx02, x
′
1 = λx1 + kx02e

λt

Η δεύτερη εξίσωση είναι γραμμική μη-ομογενής. Η γενική λύση της αντίστοιχης ομογενούς εξίσωσης είναι

x1 = Aeλt. Μία ειδική λύση της μη-ομογενούς εξίσωσης ειναι

xPI
1 = Bteλt ⇒ Beλt +Bλteλt = λBteλt + kx02e

λt ⇒ B = kx02

΄Αρα η γενική λύση της μη ομογενούς εξίσωσης είναι:

x1(t) = Aeλt + kx02te
λt

Αρχική συνθήκη: x1(0) = A και άρα

x1(t) = eλtx01 + kx02te
λt = eλt(x01 + kx02t), x2(t) = eλtx02

είναι η λύση του συστήματος. Απαλείφοντας την μεταβλητή του χρόνου:

λt = ln

(
x2
x02

)
⇒ t =

1

λ

(
x2
x02

)
και άρα

x1 = eln(x2/x02)

[
x01 + kx02

1

λ
ln

(
x2
x02

)]
⇒ x1 = x2

[
x01
x02

+
k

λ
ln

(
x2
x02

)]
8



Σχήμα 8: Περίπτωση 3α: Διάγραμμα φάσης, A = diag(λ, λ)

Περίπτωση 3α, k = 0: Στην περίπτωση αυτή ο πίνακας A = diag(λ, λ) είναι απλής δομής. Το διάγραμμα
φάσης ορίζεται από τις ευθείες x2/x02 = x1/x01:

Γιά λ < 0 το σημείο ισορροπίας (x∗1, x
∗
2) = (0, 0) είναι ασυμπτωτικά ευσταθές, ενώ αν λ > 0 το σημείο

ισορροπίας (x∗1, x
∗
2) = (0, 0) είναι ασταθές.

Περίπτωση 3β, k = 1 (Νόθος κόμβος): Στην περίπτωση αυτή ο πίνακας

A =

[
λ 1
0 λ

]
είναι μη-απλής δομής. Από την προηγούμενη ανάλυση: x1 = eλt(x01 + x02t), x2 = eλtx02 και άρα

x2 =
1

x01
x02

+ t
x1

Επομένως:

lim
|t|→∞

x2(t)

x1(t)
= lim

|t|→∞

1
x01
x02

+ t
= 0

Επίσης:

dx2
dx1

=
λx2

λx1 + x2
=

λx2
x1

λ+ x2
x1

→ 0

καθώς |t| → ∞ και επομένως οι τροχιές τείνουν να γίνουν παράλληλες με τον x1-άξονα καθώς |t| → ∞. Το
Σχήμα 9 δείχνει το διάγραμμα φάσης για k = 1 και την γενική περίπτωση k > 0. Και στα δύο διαγράμματα
η ιδιοτιμή λ είναι αρνητική και το σημείο ισορροπίας (x∗1, x

∗
2) = (0, 0) είναι ασυμπτωτικά ευσταθές. ΄Οταν

λ > 0 το σημείο ισορροπίας (x∗1, x
∗
2) = (0, 0) είναι ασταθές και η φορά της τροχιάς αντιστρέφεται.

Περίπτωση 4 (Μία ιδιοτιμή ίση με μηδέν, σ(A) = {0, λ}, λ ∈ R, λ ̸= 0): Στην περίπτωση αυτή:[
x′1
x′2

]
=

[
0 0
0 λ

] [
x1
x2

]
,

[
x1(0)
x2(0)

]
=

[
x01
x02

]
Οι εξισώσεις του συστήματος είναι: x′1 = 0 ⇒ x1 = x01 γιά κάθε t ∈ R και x′2 = λx2 ⇒ x2 = eλtx02.
Παρατηρούμε ότι κάθε σημείο του x1-άξονα (x2 = 0) είναι σημείο ισορροπίας. Αν λ < 0, x2(t) → 0 καθώς
t → ∞ ενώ αν λ > 0, x2(t) → ∞ αν x02 > 0 και x2(t) → −∞ αν x02 < 0 καθώς t → ∞. Αν λ < 0, κάθε
σημείο ισορροπίας στον x1-άξονα είναι ευσταθές κατα Lyapunov αφού η τροχιά του συστήματος μπορεί
να περιοριστεί αυθαίρετα κοντά στο σημείο ισορροπίας (όταν η αρχική συνθήκη είναι αρκούντως κοντά),

όχι όμως ασυμπτωτικά: Υπάρχουν σημεία αυθαίρετα κοντά σε κάθε σημείο ισορροπίας (πάνω στον άξονα

9



Σχήμα 9: Περίπτωση 3β: Διάγραμμα φάσης, νόθος κόμβος k = 1, k > 0

Σχήμα 10: Περίπτωση 4: Διάγραμμα φάσης, λ1 ∈ R, λ2 = 0

των x1) για τα οποία η τροχιά του συστήματος δεν συγκλίνει στο συγκεκριμένο σημείο ισορροπίας. Αν
λ > 0 κάθε σημείο ισορροπίας στον x1-άξονα είναι ασταθές.

Περίπτωση 5 (Και οι δύο ιδιοτιμές ίσες με μηδέν, λ1 = λ2 = λ = 0): Διακρίνουμε δύο περιπτώσεις:

Περίπτωση 5α (Ο πίνακας A είναι μη-απλής δομής (τ = 2, d = 1)):[
x′1
x′2

]
=

[
0 1
0 0

] [
x1
x2

]
,

[
x1(0)
x2(0)

]
=

[
x01
x02

]
Οι εξισέσεις του συστήματος γράφονται:

(x′1 = x2, x′2 = 0) ⇒ (x′1 = x02, x2 = x02) ⇒ (x1 = x01 + x02t, x2 = x02)

Κάθε σημείο στον x1-άξονα είναι (ασταθές) σημείο ισορροπίας. Οι τροχιές του συστήματος είναι ευθείες
παράλληλες με τοβ x1-άξονα.

Περίπτωση 5β (Ο πίνακας A είναι απλής δομής (τ = d = 2)): Στην περίπτωση αυτή κάθε σημείο του
επιπέδου είναι σημείο ισορροπίας (ευσταθές αλλά όχι ασυμπτωτικά).

1.4 Ποιοτικές διαφορές γραμμικών και μη-γραμμικών συστημάτων: Εξετάζουμε μη-

γραμμικά συστήματα της μορφής x′ = f(x), f : Rn → Rn
και τα συγκρίνουμε με γραμμικά χρονικά-

10



Σχήμα 11: Περίπτωση 5α: Διάγραμμα φάσης, A μη απλής δομής, λ1 = λ2 = 0

αναλλοίωτα συστήματα της μορφής x′ = Ax, A ∈ Rn×n
, det(A) ̸= 0. Κύριες ποιοτικές διαφορές της

τροχιάς των δύο κατηγοριών συστημάτων είναι οι παρακάτω:

� Μοναδικά/πολλαπλά μεμονομένα σημεία ισορροπίας: Γραμμικά συστήματα της μορφής x′ = Ax με
det(A) ̸= 0 έχουν μοναδικό σημείο ισορροπίας x∗ = 0. Αντίθετα, μη γραμμικά συστήματα μπορεί να
έχουν πολλαπλά (ενδεχομένως άπειρα) σημεία ισορροπίας, π.χ. το σύστημα x′ = x2 − 1 έχει σημεία
ισορροπίας x∗ = ±1 (όπου το x∗ = 1 είναι ασταθές και το x∗ = −1 ασυμπτωτικά ευσταθές). Το
σύστημα x′ = sinx έχει άπειρα σημεία ισορροπίας (x∗ = nπ, n ∈ Z).

� ΄Υπαρξη/Μοναδικότητα λύσης: Σε αντίθεση με γραμμικά συστήματα x′ = Ax, x(0) = x0, που

έχουν μοναδική λύση για κάθε x0 ∈ Rn
και κάθε t ∈ R, μή γραμμικά συστήματα μπορεί να μην

έχουν μοναδική λύση, η να έχουν λύση που δεν ορίζεται για κάθε t ∈ R (η λύση ¨εκρήγνυται σε
πεπερασμένο χρόνο¨).

Παράδειγμα: ΄Εστω το ΠΑΤ: x′ = f(x), f(x) = 3x2/3, x(0) = 0. Η f είναι συνεχής στο R αλλά
δεν είναι διαφορίσιμη στο x = 0. Οι συναρτήσεις x1(t) = t3 (t ∈ R) και x2(t) = 0 (t ∈ R), είναι
διαφορίσιμες στο R και ικανοποιούν την διαφορική εξίσωση και την αρχική συνθήκη, και άρα είναι
δύο διαφορετικές λύσεις του ΠΑΤ.

Παράδειγμα: ΄Εστω το ΠΑΤ: x′ = x2, x(0) = 1. Η μοναδική λύση του ΠΑΤ είναι x(t) = 1
1−t

με πεδίο ορισμού το διάστημα t ∈ (−∞, 1). Η λύση εκρήγνυται καθώς t → 1− (σε πεπερασμένο
χρόνο). Αντίθετα, σε μη-γραμμικά συστήματα x′ = f(x), x(0) = x0, δεν μπορούμε να έχουμε

∥x(t)∥ → ∞ καθώς t → t0 αν t0 ∈ R (πεπερασμένο).

� Περιοδικές τροχιές/ταλαντώσεις: Περιοδικές τροχιές/ταλαντώσεις χωρίς απόσβεση ποράγονται από

γραμμικά και μη-γραμμικά συστήματα. Σε γραμμικά συστήματα περιοδικές τροχιές αντιστοιχούν σε

ιδιοτιμές του πίνακα A πάνω στον άξονα των φανταστικών και για αυτόν τον λόγο είναι ιδιαίτερα
ευαίσθητες σε μικρές παραμετρικές διαταραχές. Επιπλέον, σε γραμμικά συστήματα το πλάτος της

ταλάντωσης εξαρτάται από τις αρχικές συνθήκες. Αντίθετα, οι ταλαντώσεις που παράγουν πολλά

μη-γραμμικά συστήματα δεν είναι ευαίσθητες σε παραμετρικές διαταραχές η στις αρχικές συνθήκες.

1.5 Γραμμικοποίηση μη-γραμμικών συστημάτων σε σημεία ισορροπίας και διαγράμ-

ματα φάσης:
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Εισαγωγικά, Παραγωγίσιμες συναρτήσεις: Η συνάτηση f : Rn → Rn
είναι παραγωγίσιμη στο σημείο

x0 ∈ Rn
αν υπάρχει γραμμικός μετασχηματισμός Df(x0) ∈ L(Rn) (ισοδύναμα πίνακας Df(x0) ∈ Rn×n ∈

Rn×n
), τ.ω.

lim
∥h∥→0

∥f(x0 + h)− f(x0)−Df(x0)h∥
∥h∥

= 0

Ο πίνακας Df(x0) είναι η παράγωγος της f στο x0.

Θεώρημα: Αν f : Rn → Rn
είναι παραγωγίσιμη στο σημείο x0 ∈ Rn

, τότε οι μερικές παράγωγοι
∂fi
∂xj
,

i, j = 1, 2, . . . , n είναι καλά ορισμένες στο x0 κάθε x ∈ Rn
,

Df(x0)x =

n∑
j=1

∂fi
∂xj

(x0)xj

Επομένως, αν η f είναι διαφορίσιμη συνάρτηση, η παράγωγος Df είναι ο πίνακας Jacobian:

Df =

[
∂fi
∂xj

]j=1,2,...,n

i=1,2,...,n

=


∂f1
∂x1

. . . ∂f1
∂xn

.

.

.
.
.
.

∂fn
∂x1

. . . ∂fn
∂xn

 ∈ Rn×n

Ορισμός: Η συνάρτηση f : Rn → Rn
είναι συνεχώς διαφορίσιμη (κλάσης C1

), δηλ. η παράγωγος Df(x),
θεωρούμενη ως απεικόνιση Df : Rn → L(Rn), είναι συνεχής συνάρτηση του x σε κάποιο ανοικτό σύνολο
E ⊆ Rn

. (Εδώ L(Rn) είναι το σύνολο των γραμμικών τελεστών από τον χώρο Rn
στον Rn

).

΄Εστω x ∈ Rn
και T = Df(x) ∈ L(Rn). Η νόρμα τελεστή στον L(Rn) (που επάγεται από την Ευκλείδια

νόρμα στον Rn
ορίζεται ως: ∥T∥ = max{∥Tx∥ : x ∈ Rn, ∥x∥ ≤ 1}. Τότε, η συνέχεια της παραγώγου

Df όριζεται σύμφωνα με τον παρακάτω ορισμό:

Ορισμός: ΄Εστω V1 και V2 δύο γραμμικοί χώροι με νόρμα ∥ · ∥1 και ∥ · ∥2, αντίστοιχα. Τότε T : V1 → V2

είναι συνεχής στο x0 ∈ V1 αν για κάθε ϵ > 0 υπάρχει δ > 0 τ.ω. x ∈ V1 και ∥x− x0∥1 < δ συνεπάγεται
ότι ∥T (x) − T (x0)∥2 < ϵ. Η T λέγεται συνεχής στο E ⊆ V1 αν είναι συνεχής σε κάθε σημείο x ∈ E,
οπότε γράφουμε T ∈ C0(E).

Ορισμός: ΄Εστω f : E ⊆ Rn → Rn
παραγωγίσιμη στο E. Τότε f ∈ C1(E) αν η παράγωγος

Df : E → L(Rn) είναι συνεχής στο E.

Θεώρημα: ΄Εστω ότι E ανοικτό υποσύνολο του Rn
και ότι f : E → Rn

. Τότε f ∈ C1(E) αν και μόνο
αν οι μερικές παράγωγοι

∂fi
∂xj
, i, j = 1, 2, . . . , n, υπάρχουν και είναι συνεχείς συναρτήσεις στο E.

Παρατήρηση: ΄Εστω E ανοικτό υποσύνολο του Rn
. Τότε οι παράγωγοι υψηλότερης τάξης Dkf(x0)

συνάρτησης f : E → Rn
, k > 1, οριζεται με παρόμοιο τρόπο όπως η Df(x0) := D1f(x0). Ισχύει ότι

f ∈ Ck(E) αν οι μερικές παράγωγοι

∂kfi
∂xj1 . . . ∂xjk

, i, j1, . . . , jk = 1, 2, . . . , n

είναι καλά ορισμένες και συνεχείς στο E.

Ορισμός: Συνάρτηση f : E → Rn
είναι αναλυτική στο ανοικτό υποσύνολο E ⊆ Rn

αν κάθε fj(x),
j = 1, 2, . . . , n είναι αναλυτική στο E, δηλ. αν για κάθε j = 1, 2, . . . , n η συνάρτηση fj(x) έχει
συγκλίνουσα σειρά Taylor σε κάποια γειτονιά κάθε σημείου του E.
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Γραμμικοποίηση και διαγράμματα φάσης: ΄Ενα βασικό ερώτημς της Θεωρίας Δυναμικών Συστημάτων είναι

το ακόλουθο: Είναι δυνατόν - και αν ναί κάτω από ποιές συνθήκες - οι ιδιότητες ευστάθειας ενός μη-

γραμμικού συστήματος κοντά σε ένα σημείο ισορροπίας να προβλευθούν από την γραμμική προσέγγιση

του συστήματος στο σημείο ισορροπίας;

΄Εστω σύστημα x′ = f(x), f : E ⊆ Rn → Rn
, συνεχώς διαφορίσιμη στο ανοικτό σύνολο E και x∗ ∈ E

σημείο ισορροπίας, δηλ. f(x∗) = 0. Η γραμμικοποίηση του συστήματος είναι εφαρμογή του Θεωρήματος
Taylor:

Θεώρημα: ΄Εστω f : E ⊆ Rn → Rn
, E ανοικτό και f ∈ C1(E,Rn). ΄Εστω x,y ∈ E. Τότε

f(y) = f(x) +Df(x)(y − x) +R(x,y)

όπου

lim
y→x

R(x,y)

∥y − x∥
και Df(x) =

[
∂fi(x)

∂xj

]
i,j=1,2,...,n

□

Σχήμα 12: Γραμμικοποίηση γύρω από το x∗

΄Εστω x∗ ∈ E σημείο ισορροπίας του συστήματος x′ = f(x), δηλαδή f(x∗) = 0, όπου f ∈ C1(E,Rn).
΄Εστω y = x∗ + h ∈ E. Περιγράφουμε το σύστημα σε τοπικές συντεταγμένες μεταφέροντας την αρχή
των αξόνων στο x∗

.΄Εχουμε:

y′ = (x∗ + h)′ = h′ = f(y) = f(x∗ + h)

Εφαρμόζοντας το Θεώρημα Taylor:

h′ = f(x∗ + h) = f(x∗) +Df(x∗)h+R(x∗,y) = Df(x∗)h+R1(h)

εφόσον x∗
είναι σημείο ισορροπίας, όπου θέσαμε R1(h) := R(x∗,x∗ + h), και όπου

lim
h→0

R1(h)

∥h∥
= 0

Ορισμός: Το (γραμμικό) σύστημα h′ = Df(x∗)h είναι το γραμμικοποιημένο σύστημα στο σημείο
ισορροπίας x∗

που αντιστοιχεί στο μη-γραμμικό σύστημα x′ = f(x), όπου

Df(x∗) =

[
∂fi(x

∗)

∂xj

]
i,j=1,2,...,n

είναι ο πίνακας Jacobian της f στο x∗
.
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Παράδειγμα: Να βρεθεί το γραμμικοποιημένο σύστημα γύρω από κάθε σημείο ισορροπίας του μη-

γραμμικού συστήματος: [
x′1
x′2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
=

[
x1 + 4x2 + ex1 − 1

−x2 − x2e
x1

]
Λύση: Τα σημεία ισορροπίας είναι οι λύσεις του συστήματος των εξισώσεων: f1(x1, x2) = f2(x1, x2) = 0.
΄Εχουμε:

f2(x1, x2) = 0 ⇒ x2(1 + ex1) = 0 ⇒ x2 = 0

και επομένως:

f1(x1, x2) = 0 ⇒ x1 + ex1 − 1 = 0 ⇒ ex1 = 1− x1 ⇒ x1 = 0

και άρα το μοναδικό σημείο ισορροπίας είναι το (x∗1, x
∗
2) = (0, 0).

y=exp(x1)

y=1-x1

1

x1

y

Σχήμα 13: Λύση της εξίσωσης ex1 = 1− x1 (Παράδειγμα)

Ο πίνακας Jacobian:

A =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(x1,x2)=(0,0)

=

[
1 + ex1 4
−x2e

x1 −1− ex1

]
(x1,x2)=(0,0)

=

[
2 4
0 −2

]
Ιδιοτιμές: σ(A) = {2,−2}. Ιδιοδιανύσματα:

λ = λ1 = 2 : (λI −A)u1 = 0 ⇒
[
0 −4
0 4

] [
α
β

]
= 0 ⇒ β = 0, u1 =

[
α
β

]
=

[
1
0

]
Επίσης:

λ = λ2 = −2 : (λI −A)u2 = 0 ⇒
[
−4 −4
0 0

] [
α
β

]
= 0 ⇒ α+ β = 0, u2 =

[
α
β

]
=

[
1
−1

]
Για το μή γραμμικό σύστημα: x2 = 0 ⇒ x′2 = 0 και άρα ο x1-άξονας (x2 = 0) παραμένει μέρος του
διαγράματοω φάσης, Στον x1-άξονα έχουμε: x

′
1 = ex1−(1−x1) > 0 αν x1 > 0 και x′1 = ex1−(1−x1) < 0

αν x1 < 0, παρόμοια με το γραμμικοποιημένο σύστημα. Επίσης:

dx2
dx1

=
x′2
x′1

=
−x2 − x2e

x1

x1 + 4x2 + ex1 − 1
⇒ dx2

dx1

∣∣∣∣
x2=−x1

=
x1(1 + ex1)

−3x1 + ex1 − 1

Επομένως για μικρό |x1| κοντά στο σημείο ισορροπίας:

dx2
dx1

≃ x1 + x1(1 + x1)

−3x1 + (1 + x1)− 1
≃ 2x1 + x21

−2x1
= −1− x1

2

και

dx2
dx1

∣∣∣∣
x2=−x1

< −1 αν x1 > 0,
dx2
dx1

∣∣∣∣
x2=−x1

> −1 αν x1 < 0
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x1

x2

x1+x2=0

Σχήμα 14: Διάγραμμα φάσης (Παράδειγμα)

Το διάγραμμα φάσης για το γραμμοποιημένο και (προσεγγιστικά) το μη-γραμμικό σύστημα σχεδιάζεται

στο Σχήμα 14.

Παράδειγμα: ΄Εστω σύστημα:[
x′1
x′2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
=

[
x1 + x22
−x2

]
Να βρεθεί και να αναλυθεί το γραμμικοποιημένο σύστημα γύρω από κάθε σημείο ισορροπίας. Να σχεδιαστεί

το διάγραμμα φάσης του μη-γραμμικού και του γραμμικοποιημένου συστήματος.

Λύση: Σημεία ισορροπίας: x2 = 0 ⇒ x1 = 0. ΄Αρα (x∗1, x
∗
2) = (0, 0) το μοναδικό σημείο ισορροπίας.

Πίνακας Jacobian:

A =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(x1,x2)=(0,0)

=

[
1 2x2
0 −1

]
(x1,x2)=(0,0)

=

[
1 0
0 −1

]
και άρα το (x∗1, x

∗
2) = (0, 0) είναι σαγματικό σημείο. Ιδιοτιμές/Ιδιοδιανύσματα:

λ1 = 1, u1 = [1 0]T και λ2 = −1, u2 = [0 1]T

Το μή-γραμμικό σύστημα μπορεί να λυθεί αναλυτικά: Οι εξισώσεις γράφονται ως εξής: x′2 = −x2 ⇒
x2(t) = e−tx02 και x

′
1 = x1 + x22 ⇒ x′1 = x1 + e−2tx202. Η γενική λύση της αντίστοιχης ομογενούς:

x1 = Aet. Ειδική λύση της μορφής x1 = Be−2t
και άρα

x1 = Be−2t ⇒ −2Be−2t = Be−2t + e−2tx202 ⇒ B = −1

3
x202

΄Αρα η γενική λύση της μη-ομογενούς είναι:

x1(t) = Aet − 1

3
x202e

−2t
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Αρχική συνθήκη:

x1(0) = A− 1

3
x202 ⇒ A = x01 +

1

2
x202

΄Αρα,

x1(t) =

(
x01 +

1

3
x202

)
et − 1

3
x202e

−2t, x2(t) = e−tx02

Παρατηρούμε ότι αν x01 +
1
3x

2
02 = 0 έχουμε x1(t) = −1

3x
2
)2e

−2t → 0 καθώς t → +∞ και η λύση είναι:

x1(t) = −1

3
x202e

−2t, x2(t) = x02e
−t

΄Αρα,

x1(t) = −1

3
(x02e

−t)2 = −1

3
x22(t) ⇒ x1(t) +

1

3
x22(t) = 0

Επομένως

(x01, x02) ∈ S := {(x1, x2) : x21 +
1

3
x22 = 0} ⇒ (x1(t), x2(t)) ∈ S για κάθε t ∈ R

και η καμπύλη S είναι αναλλοίωτη. Τα διαγράμματα φάσης του γραμμικοποιημένου και μη-γραμμικού
συστήματος σχεδιάζονται στο Σχήμα 15.

x1
x1

x2 x2

S

Σχήμα 15: Διάγραμμα φάσης γραμμικοποιημένου και μη γραμμικού συστήματος (Παράδειγμα)

Παρατηρούμε:

� Στο διάγραμμα φάσης του μη-γραμμικού συστήματος ο άξονας x2 (που στο διάγραμμα φάσης του
γραμμικοποιημένου συστήματος είναι ο ευσταθής υπόχωρος X−

) εφάπτεται στην παραβολή S.

� Ο άξονας x1 είναι η ασταθής πολλαπλότητα (manifold) του μη-γραμμικού συστήμνατος. Η παραβολή
S είναι η ευσταθής πολλαπλότητα.

� Αν x02 = 0, τότε x1(t) = x01e
t
και |x1| → ∞ καθώς t → +∞, ενώ x2(t) = 0 για κάθε t ∈ R.

� Κοντά στο σημείο ισορροπίας (x∗1, x
∗
2) = (0, 0) το διάγραμμα φάσης του μη-γραμμικού συστήματος

προσομοιάζει με αυτό του γραμμικοποιημένου συστήματος στο οποίο X− ⊥ X+
.

16



Παράδειγμα (οριακός κύκλος): ΄Εστω το σύστημα

x′1 = f1(x1, x2) = x2 + x1(1− x21 − x22), x′2 = −x1 + x2(1− x21 − x22)

Από την εξίσωση:

x2f1(x1, x2)− x1f2(x1, x2) = 0 ⇒ x22 + x1x2(1− x21 − x22) + x21 − x1x2(1− x21 − x22) = 0 ⇒ x21 + x22 = 0

συμπεραίνουμε ότι το (x∗1, x
∗
2) = (0, 0) είναι το μόνο σημείο ισορροπίας. Ο πινακας Jordan είναι:

A =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(x1,x2)=(0,0)

=

[
1− 3x21 − x22 1− 2x1x2
−1− 2x1x2 1− x21 − 3x22

]
(x1,x2)=(0,0)

=

[
1 1
−1 1

]

με ιδιοτιμές τις ρίζες του χαρακτηριστικού πολυωνύμου:

ϕ(λ) = det

[
λ− 1 −1
1 λ− 1

]
= (λ− 1)2 + 1 ⇒ σ(A) = {1± i}

και επομένως τη σημείο ισορροπίας είναι ασταθής εστία. Μετασχηματίζοντας σε πολικές συντεταγμένες

(r, θ):
x1 = r cos θ, x2 = r sin θ

έχουμε:

x′1 = r′ cos θ − rθ′ sin θ = r sin θ + r cos θ(1− r2) (Α)

και

x′2 = r′ sin θ + rθ′ cos θ = −r cos θ + r sin θ(1− r2) (Β)

΄Εχουμε

(A) cos θ + (B) sin θ = r′ = cos θ(r′ cos θ − r sin θθ′) + sin θ(r′ sin θ + rθ′ cos θ) = r(1− r2)

Παρόμοια,

(A)(− sin θ) + (B) cos θ = rθ′ = −r ⇒ θ′ = −1 ⇒ θ(t) = θ0 − t

Από το διάγραμμα φάσης της εξίσωσης r′ = f(r) = r(1 − r2) (Σχήμα 16 αριστερά) συμπεραίνουμε ότι
το r = 0 είναι ασταθές σημείο ισορροπίας και το r = 1 είναι ασυμπτωτικά ευσταθές σημείο ισορροπίας.
΄Αρα, το σημείο (x∗1, x

∗
2) = (0, 0) είναι ασταθές σημείο ισορροπίας. Επίσης r0 = 1 ⇒ r(t) = 1 για κάθε

t ∈ R, r0 > 1 ⇒ r(t) → 1 καθώς t → ∞ και (r0 < 1, r0 ̸= 0) ⇒ r(t) → 1 καθώς t → ∞. ΄Αρα ο οριακός
κύκλος r = 1 είναι ευσταθής. Εφόσον η συνάρτηση θ(t) είναι φθίνουσα οι τροχιές του συστήματος είναι
αριστερόστροφες (Σχήμα 16 δεξιά).

1.6 Περιοδικές τροχιές στον R2
, κρίτήριο Poincare-Bendixson - ΗΜΙΤΕΛΕΣ:Περιοδικές

τροχιές στον R2
χωρίζουν το επίπεδο σε δύο περιοχές, την εσωτερική και εξωτερική περιοχή της τροχιάς.

Αυτό κάνει εφικτή την διατύτωση κριτηρίων για την ύπαρξη/απουσία περιορικών τροχιών (οριακών κύκλων

που δεν γεβικεύονται σε διαστάσεις n > 2.

Θεώρημα (κριτήριο Poincare-Bendixson): ΄Εστω σύστημα x′ = f(x) όπου f : R2 → R2
συνεχώς

διαφορίσιμη. ΄Εστω M κλειστό και φραγμένο υποσύνολο του R2
, τέτοιο ώστε:

� Το M δεν περιέχει σημεία ισορροπίας, η περιέχει μοναδικό σημείο ισορροπίας τέτοιο ώστε ο πίνακας
Jacobian σε αυτό το σημείο έχει ιδιοτιμές με θετικό πραγματικό μέρος (και επομένως το σημείο
ισορροπίας είναι ασταθής κόμβος η ασταθής εστία).

� Κάθε τροχιά του συστήματος με x(0) ∈ M περιέχεται στο M γιά κάθε t ≥ 0 (δηλ. το M είναι

θετικά αναλλοίωτο σύνολο για το σύστημα)
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Σχήμα 16: Διάγραμμα φάσης γραμμικοποιημένου και μη γραμμικού συστήματος (Παράδειγμα)

Τότε το M περιέχει τουλάχιστον μία περιοδική τροχιά του x′ = f(x). □

Απόδειξη:

Παρατήρηση: Η απόδειξη βασίζεται στο γεγονός ότι φραγμένες τροχιές στο επίπεδο προσεγγίζουν

περιοδικές τροχιές η σημεία ισορροπίας καθώς t → ∞. Επομένως,

� Αν ο M δεν περιέχει σημεία ισορροπίας, τότε πρέπει να περιέχει περιοδική τροχιά.

� Αν το M περιέχει σημείο ισορροπίας (τέτοιο ώστε ο πίνακας Jacobian σε αυτό το σημείο έχει
ιδιοτιμές με θετικό πραγματικό μέρος) τότε αυθαίρετα κοντά στο σημείο αυτό το πεδίο f θα
απομακρύνεται από το σημειό ισορροπίας. Επομένως, μπορούμε να ορίσουμε απλή κλειστή καμπύλη

C γύρω από το σημείο ισορροπίας, έτσι ώστε η κατεύθυνση του f επί της C να είναι ¨προς τα έξω¨. Αν
αποκλείσουμε από τηνM το εσωτερικό της C, τότε καταλήγουμε σε περιοχή που δεν περιέχει σημείο
ισορροπίας και είναι θετικά αναλλοίωτο ως προς τροχιές που αρχίζουν στην (επαναπροσδιορισμένη)

περιοχή M .

΄Ενας τρόπος για να εξασφαλίσουμε την ιδιότητα αυτή, είναι να δείξουμε ότι το σύνορο ∂M της

M είναι καμπύλη στάθμης κάποιας συνεχώς διαφορίσιμης συνάρτησης V , δηλαδη ∂M = {x ∈ R2 :
V (x) = c} και ⟨∇V (x), f(x)⟩ < 0 για κάθε x ∈ ∂M (δηλ. η γωνία μεταξύ των διανυσμάτων∇V (x)
και f(x) είναι αμβλεία).

Σχήμα 17: Κριτήριο Poincare-Bendixson
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Παράδειγμα: ΄Εστω το σύστημα: x′1 = x2, x
′
2 = −x1 (απλός αρμονικός ταλαντωτής) και ο δακτύλιος

M = {x ∈ R2 : c1 ≤ V (x) ≤ c2} όπου V (x) = x21 + x22 και c2 > c1 > 0. Τότε η περιοχή M είναι

κλειστή και φραγμένη και δεν περιέχει σημεία ισορροπίας καθώς το μόνο σημείο ισορριπίας είναι το (0, 0).
Επιπλέον,

∇V (x) = (2x1, 2x2) ⇒ ⟨∇V (x), f⟩ = ⟨(2x1, 2x2), (x2,−x1)⟩ = 0

Επομένως, από το κριτήριο Poicare-Bendixson υπάρχει περιοδική τροχιά στην περιοχή M .

Παρατήρηση: Από το προηγούμενο Παράδειγμα συμπεραίνουμε ότι το κριτήριο Poincare-Bendinxson
δεν εξασφαλίζει μοναδικότητα της περιοδικής τροχιάς. (Στό Παράδειγμα το σημείο ισορροπίας είναι κέντρο

και έχουμε άπειρες κυκλικές τροχιές με ακτίνα ∥x0∥.)

Παράδειγμα: ΄Εστω σύστημα x′1 = f1(x1, x2) = x1+x2−x1(x
2
1+x22), x

′
2 = f2(x1, x2) = −2x1+x2−

x2(x
2
1+x22). ΄Εχουμε f1 = 0 ⇒ x1x2+x22−x1x2(x

2
1+x22) = 0 και f2 = 0 ⇒ −2x21+x1x2−x1x2(x

2
1+x22) =

0, Αφαιρώντας την δεύτερη εξίσωση από την πρώτη έχουμε 2x21 + x22 = 0 ⇒ x1 = x2 = 0 και το
(x∗1, x

∗
2) = (0, 0) είναι το μοναδικό σημείο ισορροπίας. Ο πίνακας Jacobian είναι:

A =
∂f

∂x

∣∣∣∣
x∗=0

=

[
1− 3x21 − x22 1− 2x1x2
−2− 2x1x2 1− x21 − 3x22

]
x∗=0

=

[
1 1
−2 1

]
Ιδιοτιμές:

ϕ(λ) = det

[
λ− 1 −1
2 λ− 2

]
= (λ− 1)2 + 2 = 0 ⇒ σ(A) = {1±

√
2i}

και το σημείο ισορροπίας είναι ασταθής εστία. ΄Εστω

M = {x ∈ R2 : V (x) ≤ c} όπου V (x) = x21 + x22 και c > 0

Η περιοχή M είναι κλειστή και φραγμένη και περιέχει μόνο ένα σημείο ισορροπίας στο οποίο ο πίνακας

Jacobian έχει ιδιοτιμές με θετικό πραγματικό μέρος. Στην επιφάνεια V (x) = c,

⟨∇V (x), f(x)⟩ = ∂V

∂x1
f1 +

∂V

∂x2
f2

= 2x1[x1 + x2 − x1(x
2
1 + x22)] + 2x2[−2x1 + x2 − x2(x

2
1 + x22)]

= 2x21 + 2x1x2 − 2x21(x
2
1 + x22)− 4x1x2 + 2x22 − 2x22(x

2
1 + x22)

= 2(x21 + x22)− 2(x21 + x22)
2 − 2x1x2

΄Αρα

⟨∇V (x), f(x)⟩ ≤ 2(x21 + x22)− 2(x21 + x22)
2 + (x21 + x22)

= 3(x21 + x22)− 2(x21 + x22)
2

= 3c− 2c2 = c(3− 2c)

Επιλέγοντας c ≥ 3
2 έχουμε:

⟨∇V (x), f(x)⟩ < 0 γιά κάθε x ∈ ∂M

και επομένως όλες οι τροχιές ¨παγιδεύονται’ εντος του M για t ≥ 0. ΄Αρα από το κριτήριο Poincare-
Bendinxson υπάρχει περιοδική τροχιά εντός του M .

Παράδειγμα: Εφαρμόζοντας το κριτήριο Poincare-Bendinxson δείξτε ότι το σύστημα:

x′1 = f1(x1, x2) = x2 +
1

4
x1(1− 2x21 − 2x22), x′2 = f2(x1, x2) = −x1 +

1

2
x2(1− x21 − x22)

έχει τουλάχιστον μία οριακή τροχιά εντός του δακτυλίου
1
2 ≤ r ≤ 2. Βρείτε επίσης μία μικρότερη περιοχή

που περιέχει την τροχιά.
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Λύση: Σημεία ισορροπίας είναι λύσεις του συστήματος: f1 = f2 = 0, Απο την εξίσωση x2f1 − x1f2 = 0
έχουμε:

x2f1 − x1f2 = 0 ⇒ x2[x2 +
1

4
x1(1− 2x21 − 2x22)]− x1[−x1 +

1

2
x2(1− x21 − x22)] = 0

⇒ x21 + x22 −
1

4
x1x2[−1 + 2x21 + 2x22 + 2(1− x21 − x22)] = 0

⇒ x21 + x22 −
1

4
x1x2 = 0

Εκφράζοντας την εξίσωση σε πολικές συντεταγμένες (r, θ), x1 = r cos θ, x2 = r sin θ έχουμε για r ̸= 0:

r2 cos2 θ + r2 sin2 θ − 1

4
r2 cos θ sin θ = 0 ⇒ 1− 1

8
sin(2θ) = 0 ⇒ sin(2θ) = 8

η οποία προφανώς δεν έχει πραγματική λύση. Επομένως το μοναδικό σημείο ισορροπίας είναι το x∗ = (0, 0).

Στην συνέχεια υπολογίζουμε τον πίνακα Jacobian:

∂f1
∂x1

=
1

4
(1− 2x21 − 2x22) +

1

4
x1(−4x1) ⇒

∂f1
∂x1

(0, 0) =
1

4
∂f1
∂x2

= 1 +
1

4
x1 ∗ −4x2) = 1− x1x2 ⇒

∂f1
∂x2

(0, 0) = 1

∂f2
∂x1

= −1 +
1

2
x2(−2x1) = −1− x1x2 ⇒

∂f2
∂x1

(0, 0) = −1

∂f2
∂x2

=
1

2
(1− x21 − x22) +

1

2
x2(−2x2) ⇒

∂f2
∂x2

(0, 0) =
1

2

Επομένως:

A =
∂f

∂x

∣∣∣∣
x∗=0

=

[
1
4 1
−1 1

2

]
⇒ det(λI −A) =

[
λ− 1

4 −1
1 λ− 1

2

]
και

det(λI −A) = λ2 − 3

4
λ+

9

8
⇒ λ =

1

2

(
3

4
±
√

9

16
− 36

8

)
=

3

8
± 3

√
7

8
i

Επομένως το σημείο ισορροπίας x∗ = (0, 0) είναι ασταθής εστία. Στην συνέχεια μετασχηματίζουμε το
σύστημα σε πολικές συντεταγμένες (r, θ), x1 = r cos θ, x2 = r sin θ. Εχουμε:

x′1 = r′ cos θ − rθ′ sin θ = r sin θ +
1

4
r cos θ(1− 2r2) = r sin θ +

1

4
(r − 2r3) cos θ (Α)

και

x′2 = r′ sin θ + rθ′ cos θ = −r cos θ +
1

2
r sin θ(1− r2) = −r cos θ +

1

2
(r − r3) sin θ (Β)

Από τον όρο (A) cos θ + (B) sin θ:

r′ =
1

4
(r − 2r3) cos2 θ +

1

2
(r − r3) sin2 θ

=
1

4
(r − 2r3)(1− sin2 θ) +

1

2
(r − r3) sin2 θ

=

[
−r

4
+

r3

2
+

r

2
− r3

2

]
sin2 θ +

r

4
(1− 2r2)

=
r

4
(1 + sin2 θ)− r3

2
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Από τον όρο (B) cos θ − (A) sin θ:

rθ′ = −r + cos θ sin θ

[
r

2
− r3

2
− r

4
+

r3

2

]
= −r +

r

4
cos θ sin θ = −r +

r

8
sin(2θ)

και επομένως, αν r ̸= 0,

θ′ =
1

8
sin(2θ)− 1 < 0

και επομένως κάθε δακτύλιος της μορφής r0 < r < r1, r0 > 0 δεν περιέχει σημεία ισορροπίας.
΄Εστω το κλειστό, φραγμένο σύνολο

D = {(r, θ) : 1
2
≤ r ≤ 2, 0 ≤ θ < 2π}

Εφόσον θ′ < 0 για κάθε (r, θ) ∈ D, το D δεν περιέχει σημείο ισορροπίας. Στο σύνορο του D:

� r = 1
2 : r

′ = 1
8(1 + sin2 θ)− 1

16 = 1
16(2 + 2 sin2 θ − 1) = 1

16(1 + 2 sin2 θ) > 0 για κάθε θ ∈ [0, 2π).

� r = 2: r′ = 2
4(1 + sin2 θ)− 8

2 = 1
2 + 1

2 sin
2 θ − 4 = 1

2(1 + sin2 θ)− 4 < 0 για κάθε θ ∈ [0, 2π).

Επομένως τροχιές που εισέρχονται στοD δεν μπορούν να εξέλθουν και επομένως από το κριτήριο Poincare-
Bendixson υπάρχει τουλάχιστον ένας οριακός κύκλος στο D.

Απομένει ο υπολογισμός μικρότερης περιοχής με αυτή την ιδιότητα. Εφόσον θ′ < 0 για κάθε (r, θ) εκτός
από την αρχή των αξόνων (x1, x2), δεν υπάρχεί πρόβλημα με τα σημεία ισορροπίας. Στο εσωτερικό σύνορο
επιθυμούμε να έχουμε r′ > 0 για κάθε θ ∈ [0, 2π), που είναι ισοδύναμο με:

1

4
r(1 + sin2 θ)− 1

2
r3 > 0 ∀ θ ∈ [0, 2π) ⇒ r2 <

1

2
(1 + sin2 θ) ∀ θ ∈ [0, 2π)

⇐ r2 <
1

2
min

θ∈[0,2π)
(1 + sin2 θ) ∀ θ ∈ [0, 2π)

⇔ r <
1√
2

Στο εξωτερικό σύνορο επιθυμούμε να έχουμε r′ < 0 για κάθε θ ∈ [0, 2π), που είναι ισοδύναμο με:

1

4
r(1 + sin2 θ)− 1

2
r3 < 0 ∀ θ ∈ [0, 2π) ⇒ r2 >

1

2
(1 + sin2 θ) ∀ θ ∈ [0, 2π)

⇐ r2 >
1

2
max

θ∈[0,2π)
(1 + sin2 θ) ∀ θ ∈ [0, 2π)

⇔ r > 1

΄Αρα για αυθαίρετα μικρό ϵ > 0 η περιοχή

Dϵ = {(r, θ) : 1√
2
− ϵ ≤ r ≤ 1 + ϵ, 0 ≤ θ < 2π}

είναι κλειστό και φραγμένο σύνολο και απο το Θεώρημα Poincare-Bendixson περιέχει τουλάχιστον έναν
οριακό κύκλο. Εφόσον οι κύκλοι r = 1 και r = 1√

2
δεν είναι τροχιές του συστήματος μπορούμε να

επεκτείνουμε την περιοχή Dϵ στην περιοχή D0 = {(r, θ) : 1√
2
≤ r ≤ 1, θ ∈ [0, 2π)}.

1.7 Απουσία οριακών κύκλων στον R2
(ΗΜΙΤΕΛΕΣ): Στην ενότητα αυτή παρουσιάζεται μία

ικανή συνθήκη που συνεπάγεται την απουσία περιοδικών τροχιών σε περιοχές του R2
:

Θεώρημα: Αν σε απλά συνεκτική περιοχή D του επιπέδου η συνάρτηση ∂f1
∂x1

+ ∂f2
∂x2
δεν είναι ταυτοτικά

μηδέν και δεν αλλάζει πρόσημο, τότε το σύστημα x′ = f(x), x = [x1 x2]
T
, f = [f1(x1, x2) f2(x1, x2)]

T
,

δεν έχει οριακό κύκλο που ανήκει καθόλοκληρίαν στην περιοχή D.

21



Απόδειξη: Από τις εξισώσεις x′1 = f1(x) και x
′
2 = f2(x) συμπεραίνουμε ότι

dx2
dx1

=
f2(x)

f1(x)
⇒ f2(x)dx1 − f1(x)dx2 = 0

και επομένως ∮
γ
f2(x)dx1 − f1(x)dx2 = 0

για κάθε κλειστή διαδρομή γ. Επομένως,∮
γ
F(x) · dx = 0, όπου F(x) = (f2(x),−f1(x)) και dx = (dx1, dx2)

και από το Θεώρημα του Green έχουμε ότι:∫ ∫
S

(
∂f1
∂x1

+
∂f2
∂x2

)
dx1dx2 = 0 (*)

όπου S η εσωτερική περιοχή της διαδρομής γ. Αν ∂f1
∂x1

+ ∂f2
∂x2

> 0 η ∂f1
∂x1

+ ∂f2
∂x2

< 0 στο D, δεν υπάρχει
περιοχή S ⊆ D στην οποία ισχύει η ισότητα (∗) και επομένως δεν υπάρχει κλειστή τροχιά του συστήματος
που ανήκει αποκλειστικά στην περιοχή D. □

Παράδειγμα: ΄Εστω το σύστημα: x′1 = f1(x1, x2) = x2, x
′
2 = f2(x1, x2) = ax1 + bx2 − x21x2 − x21 και

D = R2
. Τότε:

∆ :=
∂f1
∂x1

+
∂f2
∂x2

= b− x21

Επομένως, αν b < 0, ∆ < 0 για κάθε (x1, x2) ∈ D και από το προηγούμενο αποτέλεσμα δεν υπάρχει
οριακός κύκλος στο D = R2

.

Παράδειγμα: ΄Εστω το σύστημα: x′1 = ax1 − x1x2, x
′
2 = bx21 − cx2, όπου b > 0 και c > a > 0. ΄Εστω

D = {x = (x1, x2) ∈ R2, x2 ≥ 0}. Δείξτε ότι: (i) x(0) ∈ D ⇒ x(t) ∈ D για κάθε t ∈ R, και (ii) Δεν
υπάρχει οριακός κύκλος που να διέρχεται από κάποιο x ∈ D.

Λύση: (i) Στον x1-άξονα (x2 = 0) έχουμε x′2 = bx21 ≥ 0. Επομένως καμιά τροχιά του συστήματος με
αρχή στο ημιεπίπεδο D δεν μπορεί να εξέλθει από το D.

(ii) Από το προηγούμενο Θεώρημα έχουμε για x2 ≥ 0:

∂f1
∂x1

+
∂f2
∂x2

= a− x2 − c ≤ −(c− a) < 0

και άρα δεν υπάρχει οριακός κύκλος που να περιέχεται εξ΄ ολοκλήρου στο D. ΄Αρα, από το (i) κάθε οριακός
κύκλος με σημείο στο D πρέπει να περιέχεται εξόλοκλήρου στο D. Επομένως δεν υπάρχει οριακός κύκλος
με σημείο στο D.

Γ. Χαλικιάς, 3-1-2026
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