
Ευστάθεια δυναμικών συστημάτων

1. Προκαταρκτικά

1.1 Θετικά ορισμένοι/ημι-ορισμένοι πίνακες

Ορισμός: ΄Εστω P ∈ Rn×n
. Ο P είναι θετικά ορισμένος (θετικά ημι-ορισμένος), P ≻ 0 (P ⪰ 0) αν η

τετραγωνική μορφή xTPx > 0 για κάθε x ∈ Rn
, x ̸= 0 (xTPx ≥ 0 για κάθε x ∈ Rn

). Παρόμοια ορίζουμε

αρνητικά ορισμένους (ημι-ορισμένους) πίνακες: P ≺ 0 ⇔ −P ≻ 0 (P ⪯ 0 ⇔ −P ⪰ 0).

Παρατήρηση: Αν P ∈ Rn×n
, P ≻ 0 (P ⪰ 0), τότε χωρίς βλάβη γενικότητας μπορούμε να υποθέσουμε

ότι P = P T
. Πράγματι,

xTPx = xT
[
1

2
(P + P T ) +

1

2
(P − P T )

]
x

όπου ο πίνακας P + P T
(P − P T

), είναι συμμετρικός (αντι-συμμετρικός). Επομένως,

xTPx = xT
(
P + P T

2

)
x για κάθε x ∈ Rn

και επομένως P ≻ 0 ⇔ P + P T ≻ 0 (αντίστοιχα P ⪰ 0 ⇔ P + P T ⪰ 0). Στη συνέχεια ορίζουμε:

Sn
+ = {P ∈ Rn : P = P T ≻ 0}, S̄n

+ = {P ∈ Rn : P = P T ⪰ 0}, Sn = {P ∈ Rn : P = P T }

και έχουμε: Sn
+ ⊆ S̄n

+ ⊆ Sn
, δηλαδή υποθέτουμε ότι θετικά ορισμένοι και ημι-ορισμένοι πίνακες (όπως και

αρνητικά ορισμένοι και ημι-ορισμένοι) είναι αυτόματα συμμετρικοί.

Ιδιότητες:

I1 : S
n
+ και S̄

n
+ είναι κυρτοί κώνοι στον Rn×n

, δηλαδή:

I1(a) : P1, P2 ∈ Sn
+ ⇒ λP1 + (1− λ)P2 ∈ Sn

+ ∀ λ ∈ [0, 1], P ∈ Sn
+ ⇒ λP ∈ Sn

+ ∀ λ > 0

I1(b) : P1, P2 ∈ S̄n
+ ⇒ λP1 + (1− λ)P2 ∈ S̄n

+ ∀ λ ∈ [0, 1], P ∈ S̄n
+ ⇒ λP ∈ S̄n

+ ∀ λ ≥ 0.

I2 : Αν P ∈ Rn×n
, τότε P ≻ 0 ⇔ ∆i := det(ET

i PEi) > 0, i = 1, 2, . . . , n, όπου Ei ∈ Rn×i
ο πίνακας

που ορίζεται από τις i-πρώτες στήλες του μοναδιαίου πίνακα In. (Τα ∆i είναι τα leading minors του
P ). Επίσης, αν P ∈ Rn×n

, τότε P ⪰ 0 ⇔ det(Pκ,κ) ≥ 0 γιά κάθε μη-κενό κ ⊆ {1, 2, . . . , n}, όπου
Pκ,κ ο τετραγωνικός πίνακας που αποτελείται από όλες τις γραμμές i ∈ κ και όλες τις στήλες j ∈ κ
(δηλαδή όλα τα principal minors του P πρέπει να είναι μη-αρνητικά).

I3 : Αν P ∈ Rn×n
, P ≻ 0, τότε λi(P ) > 0, i = 1, 2, . . . , n (και αντίστροφα για συμμετρικό P ): Εφόσον

P = P T
έχουμε P = UΛUT

, Λ = diag{λ1, λ2, . . . , λn}, λi ∈ R, i = 1, 2, . . . , n, και U ∈ Rn×n
,

UUT = UTU = In. ΄Εστω ότι λj ≤ 0 για κάποιο j ∈ {1, 2, . . . , n}. Τότε, αν uj η j-στήλη του U
και συμβολίζοντας με ej την j-στήλη του In, θα είχαμε ότι:

uTj Puj = uTj UΛUTuj = eTj Λej = λj ≤ 0

άτοπο, αφού ∥uj∥ = 1. Αντίστροφα, αν P = P T
έχει θετικές ιδιοτιμές: {λ1, λ2, . . . , λn}, τότε

xTPx = xTUΛUTx =
n∑

i=1

λi∥UTx∥2 =
n∑

i=1

λi∥x∥2 > 0 αν x ̸= 0

και άρα P ≻ 0. Παρόμοια μπορούμε να δείξουμε ότι: P ⪰ 0 ⇔ λi(P ) ≥ 0, i = 1, 2, . . . , n.

1



I4 : Αν P ∈ Rn×n
, P ⪰ 0 τότε xTPx = 0 ⇔ Px = 0: Η αριστερή συνεπαγωγή είναι προφανής.

΄Εστω xTPx = 0 για κάποιον πίνακα P ∈ Rn×n
, P ⪰ 0. Γράφουμε P = Udiag{Λ1, 0}UT

όπου

Λ1 = diag(Λ1) ≻ 0 και UUT = UTU = In. ΄Εστω U = [U1 | U2], U1 = Rn×r
, r = rank(P ).

Τότε Px = 0 ⇔ x ∈ R(U2). Επίσης P = U1Λ1U
T
1 = U1Λ

1/2
1 UT

1 U1Λ
1/2
1 UT

1 := P 1/2P 1/2

όπου P 1/2 = U1Λ
1/2
1 UT

1 = (P 1/2)T ⪰ 0, Λ
1/2
1 = diag{

√
λ1,

√
λ2, . . . ,

√
λn}. Επομένως

xTPx = 0 ⇔ ∥P 1/2x∥ = 0 ⇔ P 1/2x = 0 ⇔ Px = 0.

I5 : Αν P (t) =
∫ t
0 Q(τ)QT (τ)dτ , t > 0 και Q ∈ C(R,Rn×m), τότε P (t) = P T (t) ⪰ 0 και∫ t

0 x
TP (τ)xdτ =

∫ t
0 ∥Q

T (τ)x∥2dτ . Επομένως xTP (t)x = 0 ⇔ QTx(τ) = 0 για κάθε τ ∈ [0 t]
λόγω συνέχειας. Επίσης t2 ≥ t1 ⇒ P (t2) ⪰ P (t1) (που εξ¨ορισμού σημαίνει ότι P (t2)−P (t1) ⪰ 0).

I6 : ΄Εστω

P = P T =

[
P11 P12

P T
12 P22

]
όπου P ∈ Rn×n

και P11 ∈ Rm×m
, m < n. Τότε: P ≻ 0 ⇔ (P22 ≻ 0 και P11 − P12P

−1
22 P

T
12 ≻ 0).

Ο πίνακας P11 − P12P
−1
22 P

T
12 λέγεται συμπλήρωμα Schur του P22.

1.2 Κατά κατεύθυνση παράγωγος, κανόνας αλυσίδας

΄Εστω Ω μη-κενό, ανοικτό υποσύνολο του Rn
. Αν f : Ω → Rn

τοπικά Lipschitz και V ∈ C1(Ω,R),
ορίζουμε την συνεχή συνάρτηση Vf : Ω → R ως

Vf (x) = ⟨∇V (x), f(x)⟩ := ∂V (x)

∂xT
f(x) =

n∑
i=1

∂V (x)

∂xi
fi(x), ∀x ∈ Ω

όπου∇V (x) η κλίση της V στο σημείο x και fj η j-συνιστώσα της f . (Η ανάστροφος στον πανονομαστή

του όρου
∂V (x)
∂xT υποδηλώνει ότι το

∂V (x)
∂xT είναι διάνυσμα γραμμής). Για κάθε x ∈ Ω, η Vf (x) είναι η

(κατά κατεύθυνση) παράγωγος στο σημείο x κατά την κατεύθυνση του διανυσματικού πεδίου f(x) (όχι
κανονικοποιημένη σε μοναδιαίο διάνυσμα). Το συμπέρασμα αυτό προκύπτει ως εξής: ΄Εστω x αυθαίρετο
σημείο του Ω και έστω g : R → Rn

, g(t) := x + tf(x). Εφαρμόζοντας τον κανόνα της αλυσίδας στην
σύνθετη συνάρτηση V ◦ g έχουμε

(V ◦ g)′(0) = lim
t→0

V (x+ tf(x))− V (x)

t
= ⟨∇V (g(t)),g′(t)⟩|t=0 = ⟨∇V (x), f(x)⟩ := Vf (x)

΄Οταν η x(t) είναι η λύση του συστήματος x′(t) = f(x(t)), x(0) = x0, η Vf (x(t)) είναι η κατά
κατεύθυνση παράγωγος της V κατά μήκος της λύσης (x′ = f(x) είναι εφαπτομενικό διάνυσμα της τροχιάς
του συστήματος). Παρατηρούμε ότι δεν χρειάζεται να έχουμε γνώση της λύσης του συστήματος για

να υπολογίσουμε την Vf (x(t)). Συμβατικά θα γράφουμε (σύμφωνα με τον καθιερωμένο συμβολισμό)
V̇ (x(t)) := Vf (x(t)).

2.1 Θεωρία ευστάθειας Lyapunov

΄Εστω δυναμικό σύστημα x′ = f(x), x(0) = x0. Αν η λύση του συστήματος υπάρχει και είναι μοναδική

στο διάστημα I = R+ = [0,∞) θα συμβολίζεται ως x(t ; x0).

Ορισμός: Αν M(x, d) μετρικός χώρος, το σύνολο V είναι γειτονιά του σημείου p αν υπάρχει ανοικτή
σφαίρα με κέντρο p και ακτίνα r, δηλ. Br(p) = {x ∈ X : d(x, p) < r}, που περιέχεται στο V . Το
σύνολο V δεν είναι απαραίτητα ανοικτό - ορίζουμε ανοικτή/κλειστή γειτονιά αν το V είναι αντίστοιχα
ανοικτό/κλειστό υποσύνολο του X.

Ορισμός: ΄Εστω σύστημα x′ = f(x), x(0) = x0, όπου f : Ω ⊆ Rn → Rn
. Το διάνυσμα x∗

λέγεται

σημείο ισορροπίας του συστήματος αν f(x∗) = 0. Παρατηρούμε ότι αν x0 = x∗
, τότε x(t) = x∗

για κάθε

t ≥ 0.
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Παρατήρηση: Χωρίς βλάβη γενικότητας μπορούμε να υποθέσουμε ότι το σημείο ισορροπίας, την

ευστάθεια του οποίου θέλουμε να αναλύσουμε, είναι το x∗ = 0, δηλαδή ότι f(0) = 0: ΄Εστω ότι x∗ ̸= 0.
Με την αλλαγή μεταβλητών: y = x− x∗

έχουμε:

y′ = x′ = f(x) = f(y + x∗) := g(y), όπου g(0) = 0

Θα χρησιμοποιήσουμε την υπόθεση αυτή όταν η ανάλυση του προβλήματος απλοποιείται.

Ορισμός (ευστάθειας): ΄Εστω x(t ; x0) η λύση του συστήματος x′ = f(x), x(0) = x0, όπου

f : Ω ⊆ Rn → Rn
. Το σημείο ισορροπίας x∗

λέγεται:

1. Ευσταθές (κατά Lyapunov) αν για κάθε ϵ > 0 υπάρχει δ = δ(ϵ) > 0 τέτοιο ώστε:

∥x0 − x∗∥ < δ ⇒ ∥x(t ; x0)− x∗∥ < ϵ για κάθε t ≥ 0

2. Ασυμπτωτικά ευσταθές αν είναι ευσταθές (κατά Lyapunov) και η παράμετρος δ στο (1) μπορεί να
επιλεγεί έτσι ώστε:

∥x0 − x∗∥ < δ ⇒ x(t ; x0) → x∗
καθώς t→ ∞

3. Ολικά ασυμπτωτικά ευσταθές, αν

x(t ; x0) → x∗
καθώς t→ ∞ για κάθε x0 ∈ Rn

4. Ασταθές αν δεν είναι ευσταθές (κατά Lyapunov).

Θεώρημα (Lyapunov): ΄Εστω το σύστημα x′ = f(x), x(0) = x0, με λύση x(t ;x0). ΄Εστω x∗
σημείο

ισορροπίας (δηλ. f(x∗) = 0). ΄Εστω επίσης Ω ⊆ Rn
(ανοικτή) γειτονιά του x∗

και έστω ότι η f είναι
τοπικά Lipschitz στο Ω. Αν υπάρχει V : Ω → R τέτοια ώστε:

(i) V ∈ C1(Ω,R) (συνεχώς διαφορίσιμη στο Ω).

(ii) Η V είναι θετικά ορισμένη στο Ω ως προς το x∗
(δηλ. V (x∗) = 0 και V (x) > 0 γιά κάθε

x ∈ Ω\{x∗}).

(iii) V̇ (x) = ∂V (x)
∂xT f(x) = ∇V (x)f(x) =

∑n
i=1

∂V
∂xi

(x)fi(x) αρνητικά ημι-ορισμένη στο Ω ως προς x∗

(δηλ. V̇ (x∗) = 0 και V̇ (x) ≤ 0 αν x ∈ Ω\{x∗}).

τότε x∗
είναι ευσταθές σημείο ισορροπίας (κατά Lyapunov). Αν επιπλέον:

(iv) V̇ (x) = ∂V (x)
∂xT f(x) = ∇V (x)f(x) =

∑n
i=1

∂V
∂xi

(x)fi(x)

αρνητικά ορισμένη στο Ω ως προς x∗
(δηλ. V̇ (x∗) = 0 και V̇ (x) < 0 αν x ∈ Ω\{x∗}) τότε το x∗

είναι

ασυμπτωτικά ευσταθές σημείο ισορροπίας.

Παρατήρηση: Αν η συνάρτηση V ικανοποιεί τις σχέσεις (i)-(iii), τότε λέγεται συνάρτηση Lyapunov.
Αν επιπλέον ικανοποιεί και την (iv) τότε λέγεται ισχυρή συνάρτηση Lyapunov.

Απόδειξη: ΄Εστω ότι η V είναι συνάρτηση Lyapunov.

� Θα δείξουμε ότι για κάθε ϵ > 0 υπάρχει δ = δ(ϵ) > 0 τέτοιο ώστε ∥x0−x∗∥ < δ ⇒ ∥x(t;x0)−x∗∥ <
ϵ για κάθε t ≥ 0 και άρα x∗

ευσταθές (κατά Lyapunov).

� Εφόσον Ω (ανοικτή) γειτονιά του x∗
υπάρχει ϵ1 (αρκούντως μικρό) τέτοιο ώστε 0 < ϵ1 ≤ ϵ και

Bϵ1(x
∗) ⊆ Ω. .
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� Εφόσον V συνεχής στο Ω και ∂Bϵ1(x
∗) συμπαγές υποσύνολο του Rn

, υπάρχει

α = min
x∈∂Bϵ1 (x

∗)
V (x)

΄Εχουμε α > 0 (γιατί αν x ∈ Ω, V (x) = 0 ⇒ x = x∗
)

� Ορίζουμε: Ω1 = {x ∈ Bϵ1(x
∗) : V (x) < α}. Εφόσον V συνεχής, το Ω1 είναι ανοικτό και x

∗ ∈ Ω1

(αφού V (x∗) = 0). Επίσης, το Ω1 περιέχεται στο Bϵ1(x
∗) γιατί V (x) < α για κάθε x ∈ Ω1 και εξ΄

ορισμού V (x) ≥ α στο ∂Bϵ1(x
∗).

� Εφόσον Ω1 ανοικτό, υπάρχει δ > 0 τέτοιο ώστε Bδ(x
∗) ⊆ Ω1. Θα δείξουμε ότι αυτό είναι κατάλληλο

δ, δηλαδή x0 ∈ Bδ(x
∗) ⇒ x(t ; x0) ∈ Bϵ1(x

∗) για κάθε t ≥ 0:

� Εφόσον x0 ∈ Bδ(x
∗) έχουμε V (x(t ; x0)) ≤ V (x0) < α για κάθε t ≥ 0 (γιατί V̇ (x) ≤ 0 στο Ω).

� Επίσης είναι αδύνατον να έχουμε x(t ; x0) ∈ ∂Bϵ1(x
∗) για κάποιο t > 0 (εφόσον στο ∂Bϵ1(x

∗)
έχουμε εξ΄ ορισμού V (x) ≥ α.

� ΄Αρα ∥x(t ; x0)− x∗∥ < ϵ1 ≤ ϵ για κάθε t ≥ 0 και το x∗
ευσταθές (κατά Lyapunov).

� Επιπλέον, εφόσον f τοπικά Lipschitz στο Ω και x(t ;x0) /∈ B̄ϵ1(x
∗) (που είναι συμπαγές υποσύνολο

του Ω), το μέγιστο διάστημα ύπαρξης και μοναδικότητας λύσης για t ≥ 0 είναι όλο το R+ = [0,∞).

Ω

Ω1

Bε1
(x*)

Bδ(x*)

x*

δ

ε1

Στην συνέχεια υποθέτουμε ότι ισχύει η αυστηρότερη συνθήκη: V̇ (x0) = 0 και V̇ (x) < 0 για x ∈ Ω\{x0}.

� Θα δείξουμε ότι x0 ∈ Bδ(x
∗) ⇒ x(t;x0) → x∗

καθώς t→ ∞, δηλ. ότι το σημείο ισορροπίας x∗
είναι

ασυμπτωτικά ευσταθές. Η παράμετρος είναι αυτή που επιλέξαμε στο πρώτο μέρος της απόδειξης).

� Εφόσον x∗
ευσταθές (κατά Lyapunov) η λύση x(t;x0), t ≥ 0, είναι φραγμένη (γιατί ∥x(t;x0)−x∗∥ <

ϵ1 για κάθε t ≥ 0).

� ΄Εστω (για αντίφαση) ότι x(t ; x0) ↛ x∗
καθώς t→ ∞. Τότε υπάρχει µ > 0 και γνησίως αύξουσα

ακολουθία (tk)k∈N, tk ≥ 0, tk → ∞, τέτοια ώστε:

∥x(tk ; x0)− x∗∥ > µ > 0, για κάθε k ∈ N

� Εφόσον (x(tk ; x0))k∈N0 φραγμένη, από το Θεώρημα Bolzano-Weirstrass υπάρχει συγκλίνουσα
υπακολουθία:

x(tkj ; x0) → x∞ καθώς j → ∞

Λόγω της ανισότητας ∥x(tk ; x0)− x∗∥ > µ > 0, έχουμε ότι x∞ ̸= x∗
.
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� Εφόσον η συνάρτηση V (x(t ; x0)), t ≥ 0, είναι φθίνουσα έχουμε για κάθε (αυθαίρετο αλλά
σταθεροποιημένο) t ≥ 0:

V (x(tkj ; x0)) ≥ V (x(tkj + t ; x0)) ≥ V (x(tkj+m
; x0))

όπου επιλέξαμε m ∈ N τέτοιο ώστε tkj + t < tkj+m
. (Εφόσον tkj → ∞, τέτοιο m πάντα υπάρχει

όσο μεγάλο και να είναι το t).

0 tkj
tkj+m-1

tkj
+t tkj+m

tx0

.....

� Επομένως:

V (x(tkj ; x0)) ≥ V (x(t ; x(tkj ; x0))) ≥ V (x(tkj+m
; x0))

για κάθε t ≥ 0. [Ο μεσαίος όρος προκύπτει επειδή το σύστημα είναι χρονικά αναλλοίωτο (δείτε και
τον αξιωματικό ορισμό δυναμικού συστήματος): Η λύση σε χρόνο tkj + t όταν η αρχική συνθήκη
σε χρόνο 0 είναι x0, ταυτίζεται με την λύση σε χρόνο t όταν η αρχική συνθήκη σε χρόνο 0 είναι
x(tkj ; x0)].

� Στο όριο j → ∞, tkj → ∞ και

V (x∞) ≥ V (x(t ; x∞)) ≥ V (x∞)

για κάθε t ≥ 0. Παρατηρούμε ότι: Τα όρια V (x(tkj ;x0)) → V (x∞) και V (x(tkj+m
;x0)) → V (x∞)

ισχύουν λόγω συνέχειας της V , ενώ το όριο V (x(t ; x(tkj ; x0))) → V (x(t ; x∞)) ισχύει λόγω
συνέχειας της λύσης ως προς τις αρχικές συνθήκες.

� ΄Αρα V (x(t ;x∞)) σταθερή και ίση με V (x∞) για κάθε t ≥ 0. Συνεπώς V̇ (x∞) = 0 που είναι άτοπο,
γιατί V̇ (x∞) < 0 αφού x∞ ̸= x∗

(V̇ (x) = 0 αν και μόνο αν x = x∗
).

□

Παράδειγμα: ΄Εστω βαθμωτό σύστημα x′ = −g(x), όπου g(x) τοπικά Lipschitz στο Ω = (−a, a) ⊆ R
και

g(0) = 0, xg(x) > 0 για κάθε x ∈ Ω\{0}

Το μοναδικό σημείο ισορροπίας είναι το x∗ = 0. ΄Εστω

V : Ω → R, V (x) =

∫ x

0
g(y)dy, x ∈ Ω

υποψήφια συνάρτηση Lyapunov. Εφόσον η g είναι συνεχής στο Ω η V είναι συνεχώς διαφορίσιμη. Επίσης,
V (0) = 0 και

V̇ (x(t)) =
∂V

∂x
(−g(x)) = g(x)(−g(x)) = −g2(x) < 0 για κάθε x ∈ Ω\{x∗}

και επομένως το x∗ = 0 είναι ασυμπτωτικά ευσταθές.

Παράδειγμα (εκκρεμές με τριβή): Το δυναμικό σύστημα περιγράφεται από τις εξισώσεις:

x′1 = x2, x
′
2 = −g

l
sinx1 − bx2
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όπου x1 = θ η γωνία του εκκρεμούς με την κατακόρυφο, x2 = θ′ η γωνιακή ταχύτητα, l το μήκος του
εκκρεμούς, g η επιτάχυνση της βαρύτητας και b > 0 ο συντελεστής τριβής. ΄Εστω Ω = {(x1, x2) : x1 <
|π|}. Το μοναδικό σημείο ισορροπίας στο Ω είναι το x∗ = 0. Επιλέγουμε αρχικά ως υποψήφια συνάρτηση
Lyapunov την συνολική ενέργεια του συστήματος:

V (x) = Κ.Ε.+Δ.Ε. =
1

2
ml2x22 +mgl(1− cosx1)

΄Εχουμε ότι V ∈ C1(Ω,R), V (0) = 0 και V θετικά ορισμένη στο Ω ως προς x∗
. Επίσης,

V̇ (x(t)) =
∂V

∂x1
x′1 +

∂V

∂x2
x′2 = mglx2 sinx1 +ml2x2

(
−g
l
sinx1 − bx2

)
= −ml2bx22 ≤ 0

΄Εχουμε V̇ (x) < 0 αν x2 ̸= 0 και V (x) = 0 αν x2 = 0, και επομένως όταν b > 0 η V̇ είναι αρνητικά ημι-
ορισμένη στο Ω και το συμπέρασμα σύμφωνα με το Θεώρημα Lyapunov είναι ότι το x∗ = 0 είναι ευσταθές
κατά Luapunov (όχι ασυμπτωτικά). Το ίδιο συμπέρασμα προκύπτει όταν δεν υπάρχει τριβή (b = 0). Σε

θ
l

mg

mg sinθ

l(1-cos θ)

bθ

mg cosθ

αυτή την περίπτωση η V̇ (x) = 0 είναι πάλι μόνο αρνητικά ημι-ορισμένη στο Ω και επομένως το Θεώρημα
Lyapunov εγγυάται πάλι μόνο ευστάθεια (κατά Lyapunov), όχι ασυμπτωτική. Στην περίπτωση αυτή το
συμπέρασμα είναι το αναμενόμενο: Εφόσον V̇ (x(t)) = 0 για κάθε x ∈ Ω, η συνάρτηση V (x(t)) είναι
σταθερή σε κάθε σημείο της τροχιάς x(t ; x0), t ≥ 0, και επομένως η x(t ; x0) δεν μπορεί να συγκλίνει
στο x0 αν x0 ̸= x∗

. Από φυσική άποψη όταν δεν καταναλώνεται ενέργεια (σε συνθήκες απουσίας τριβής),

η συνολική ενέργεια παραμένει σταθερή κατά την κίνηση του εκκρεμούς και η μάζα ταλαντώνεται με

σταθερό πλάτος ταλάντωσης γύρω από την γωνία ισορροπίας x1 = 0. Μπορούμε να περιορίσουμε την
νόρμα ∥x(t ; x0) − x∗∥ < ϵ, t ≥ 0, σε αυθαίρετα μικρή ακτίνα ϵ > 0 (επιλέγοντας αρχική κατάσταση x0

αρκούντως κοντά στο σημείο ισορροπίας x∗ = 0) αλλά η συνάρτηση x(t ; x0) δεν συγκλίνει στο σημείο
ισορροπίας x∗ = 0, και άρα έχουμε ευστάθεια (κατά Lyapunov) αλλά όχι ασυμπτωτική. Αντίθετα, στην
περίπτωση που υπάρχει τριβή στο σύστημα (b > 0), η συνολική ενέργεια του συστήματος διαρκώς μειώνεται
όσο αυτό είναι σε κίνηση και επομένως το σημείο ισορροπίας πρέπει να είναι ασυμπτωτικά ευσταθές.

Υπάρχουν δύο τρόποι για να καταλήξουμε στο ισχυρότερο αυτό συμπέρασμα ασυμπτωτικής ευστάθειας

του σημείου ισορροπίας x∗ = 0 στην περίπτωση b > 0. Ο πρώτος, όπως θα δείξουμε εδώ, είναι η εφαρμογή
του Θεωρήματος με χρήση μίας πιο γενικής συνάρτησης Lyapunov που είναι πάλι θετικά ορισμένη στο Ω.
Εναλλακτικά, μπορούμε να εφαρμόσουμε ένα πιο ισχυρό κριτήριο ευστάθειας που βασίζεται στη αρχή του

αναλλοίωτου (invariance principle) του Lassale και το οποίο θα παρουσιάσουμε αργότερα.

΄Εστω νέα υποψήφια συνάρτηση Lyapunov είναι της μορφής:

V (x) =
1

2
xTPx+

g

l
(1− cosx1) =

1

2

[
x1 x2

] [ p11 p12
p12 p22

] [
x1
x2

]
+
g

l
(1− cosx1)
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Θα επιλέξουμε τον πίνακα P ως θετικά ορισμένο (P = P T ≻ 0), ώστε η συνάρτηση V (x) να είναι θετικά
ορισμένη στο Ω, συνθήκη που ισοδυναμεί με τις ανισότητες p11 > 0 και p11p22 − p212 > 0. Επομένως η
υποψήφια συνάρτηση Lyapunov είναι:

V (x) =
1

2
(p11x

2
1 + 2p12x1x2 + p22x

2
2) +

g

l
(1− cosx1)

Παρατηρούμε ότι η νέα V (x) είναι ίση με την συνολική ενέργεια του συστήματος αν επιλέξουμε p11 =
p12 = 0 και p22 = ml2. ΄Εχουμε:

∂V

∂x1
= p11x1 + p12x2 +

g

l
sinx1 και

∂V

∂x2
= p12x1 + p22x2

Επομένως, με αυτή την γενικότερη μορφή της V (x) έχουμε:

V̇ (x) =
∂V

∂x1
x′1 +

∂V

∂x2
x′2 =

(
p11x1 + p12x2 +

g

l
sinx1

)
x2 + (p12x1 + p22x2)

(
−g
l
sinx1 − bx2

)
Ισοδύναμα:

V̇ (x) =
g

l
(1− p22)x2 sinx1 −

g

l
p12x1 sinx1 + (p11 − p12b)x1x2 + (p12 − p22b)x

2
2

Για να απλοποιήσουμε την παραπάνω έκφραση επιλέγουμε p22 = 1 και p11 = p12b (ώστε να απαλλείψουμε
τον πρώτο και τον τρίτο όρο που έχουν πότε θετικό και πότε αρνητικό πρόσημο). Επομένως έχουμε

V̇ (x) = −g
l
p12x1 sinx1 + (p12 − b)x22

Με τις επιλογές αυτές οι ανισότητες που ισοδυναμούν με την συνθήκη P ≻ 0 είναι: p11 > 0 ⇒ p12 > 0
και p11p22 − p212 > 0 ⇒ b − p12 > 0. ΄Αρα πρεπει να έχουμε 0 < p12 < b. Επιλέγοντας, π.χ. p12 = b

2 ,

εξασφαλιζουμε ότι:

V (x) =
1

2

(
b2

2
x21 + bx1x2 + x22

)
+
g

l
(1− cosx1)

είναι θετικά ορισμένη στο Ω (ως προς x∗ = 0) και ότι

V̇ (x) = −gb
l2
x1 sinx1 −

b

2
x22

είναι αρνητικά ορισμένη στο Ω (ως προς x∗ = 0). ΄Αρα απο το Θεώρημα Lyapunov συμπεραίνουμε ότι το
σημείο ισορροπίας x∗ = 0 είναι ασυμπτωτικά ευσταθές.

2.2 Ολική ασυμπτωτική ευστάθεια

Από την απόδειξη του Θεvρήματος Lyapunov η περιοχή σύγκλισης (έλκυσης)

Π.Σ. := {x0 ∈ Rn : x(t ; x0) → x∗}

περιέχει σφαίρα μέγιστης ακτίνας δ και κέντρου x∗
. Γιά να πετύχουμε ολική ασυμπτωτική ευστάθεια

θα πρέπει να μπορούμε να επιλέξουμε το δ > 0 αυθαίρετα μεγάλο. Εκτός από το ότι οι συνθήκες του
Θεωρήματος Lyapunov πρέπει να ισχύουν σε όλο το Ω = Rn

, μία επιπλέον συνθήκη πρέπει να ικανοποιείται

(η συνάρτηση Lyapunov να είναι ακτινικά μη-φραγμένη, όπως ορίζεται στην διατύπωση του παρακάτω
Θεωρήματος).

Θεώρημα (ολικής ασυμπτωτικής ευστάθειας): ΄Εστω ότι όλες οι συνθήκες του Θεωρήματος Lyapunov
ικανοποιούνται για Ω = Rn

. Αν V : Rn → R είναι ισχυρή συνάρτηση Lyapunov και επιπλέον:

V (x) → ∞ καθώς ∥x∥ → ∞ (V ακτινικά μη-φραγμένη)

τότε το σημείο ισορροπίας x∗
είναι ολικά ασυμπτωτικά ευσταθές.

Παρατήρηση: Αν x∗
ολικά ασυμπτωτικά ευσταθές τότε x∗

είναι το μοναδικό σημείο ισορροπίας.

Απόδειξη: Η απόδειξη ακολουθεί τα παρακάτω βήματα:
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δ=2||x0-x*||

x*

x0

Ω1

Βδ(x∗)

Βε(x*)

� ΄Εστω x0 ∈ Rn
(αυθαίρετο) και έστω δ = 2∥x0 − x∗∥ (οπότε x0 ∈ Bδ(x

∗)).

� ΄Εστω

α = max
∥x−x∗∥≤δ

V (x) > 0

(Εφόσον V συνεχής και {x : ∥x− x∗∥ ≤ δ} συμπαγές, η μέγιστη τιμή είναι καλά ορισμένη και είναι
θετική γιατί V (x) = 0 ⇒ x = x∗

).

� Ορίζουμε Ω1 = {x ∈ Rn : V (x) < α}. Τότε Ω1 φραγμένο, εφόσον V ακτινικά μη-φραγμένη
συνάρτηση. Επομένως

ϵ1 := sup
x∈Ω1

∥x− x∗∥ ∈ R (πεπερασμένο)

� ΄Εστω ϵ > ϵ1. Τότε οι συνθήκες του Θεωρήματος Lyapunov ικανοποιούνται και επομένως:

(i) x0 ∈ Bδ(x
∗) ⇒ x(t ; x0) ∈ Bϵ(x

∗) για κάθε t ≥ 0, και

(ii) x0 ∈ Bδ(x
∗) ⇒ x(t ; x0) → x∗

καθώς t→ ∞.

� Εφόσον x0 αυθαίρετο, το δ είναι αυθαίρετα μεγάλο και x
∗
ολικά ασυμπτωτικά ευσταθές. □

Παράδειγμα: ΄Εστω σύστημα με εξισώσεις:

x′1 = −x1 + x22, x′2 = −x1x2 − x2

Σημεία ισορροπίας:

x1 = x22 και x2(x1 + 1) = 0 ⇒ x2 = 0 η x1 = −1

΄Ομως x1 ̸= −1 (εφόσον x1 = x22). ΄Αρα x2 = 0 και επομένως το μοναδικό σημείο ισορροπίας είναι το
x∗ = 0.

΄Εστω V (x) = x21+x
2
2 = ∥x∥2. Τότε V (x) θετικά ορισμένη στο R2

(ως προς x∗
) και ακτινικά μη-φραγμένη.

Επίσης:

V̇ (x(t)) =
∂V

∂x1
x′1 +

∂V

∂x2
x′2 = 2x1(−x1 + x22) + 2x2(−x1x2 − x2) = −2(x21 + x22) = −2∥x∥2

και άρα V̇ αρνητικά ορισμένη στο R2
. ΄Αρα x∗ = 0 ολικά ασυμπτωτικά ευσταθές σημείο ισορροπίας.
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2.3 Φραγμένες και μη-φραγμένες επιφάνειες Lyapunov

΄Εστω ότι ισχύουν όλες οι υποθέσεις του Θεωρήματος Lyapunov με Ω = Rn
. ΄Εστω ότι η επιφάνεια

στάθμης:

Ωα = {x ∈ Rn : V (x) < α}

είναι φραγμένη, δηλαδή Ωα ⊆ Bϵ1(x
∗) για κάποιο ϵ1 > 0. Εφόσον V̇ (x) < 0 στο Ωα\{x∗} το Ωα είναι

θετικά αναλλοίωτο σύνολο, δηλαδή:

x0 ∈ Ωα ⇒ x(t ; x0) ∈ Ωα για κάθε t ≥ 0

΄Αρα, αν Bδ(x
∗) ⊆ Ωα ⊆ Bϵ1(x

∗) τότε x0 ∈ Bδ(x
∗) ⇒ x(t ;x0) ∈ Bϵ1(x

∗) για κάθε t ≥ 0 και επομένως x∗

ευσταθές (κατά Lyapunov). Επιπλέον από την απόδειξη του Θεωρήματος, x0 ∈ Bδ(x
∗) ⇒ x(t ;x0) → x∗

και το x∗
είναι ασυμπτωτικά ευσταθές.

Για μικρές τιμές του α > 0 η επιφάνεια στάθμης Ωa είναι φραγμένη (εφόσον η V είναι συνεχής και θετικά
ορισμένη). Για παράδειγμα, αν για κάποιο ϵ > 0 έχουμε:

min
x∈∂Bϵ(x∗)

V (x) = α

τότε Ωα ⊆ Bϵ(x
∗) και άρα Ωβ φραγμένη για κάθε β ∈ (0, α]. Η ιδιότητα αυτή δεν ισχύει αναγκαστικά για

μεγάλες τιμές του α. Γενικά,

Ωα = {x ∈ Rn : V (x) < α} ⊆ Br(x
∗) ⇒ α < inf

∥x−x∗∥≥r
V (x)

Παρατηρούμε ότι αν r2 ≥ r1, τότε

{x ∈ Rn : ∥x− x∗∥ ≥ r2} ⊆ {x ∈ Rn : ∥x− x∗∥ ≥ r1}

και επομένως

inf
∥x−x∗∥≥r1

V (x) ≤ inf
∥x−x∗∥≥r2

V (x)

δηλαδή η συνάρτηση

ψ(r) := inf
∥x−x∗∥≥r

V (x)

είναι αύξουσα. Επομένως

ψ(r) := inf
∥x−x∗∥≥r

V (x) = min
∥x−x∗∥=r

V (x)

εφόσον η V συνεχής συνάρτηση και το σύνολο ∂Br(x
∗) είναι συμπαγές υποσύνολο του Rn

. Αν:

lim
r→∞

ψ(r) = lim
r→∞

inf
∥x−x∗∥≥r

V (x) = lim
r→∞

min
∥x−x∗∥=r

V (x) = l <∞

τότε η Ωα είναι φραγμένη αν α < l. Αν l = ∞, τότε η V είναι ακτινικά μή φραγμένη και κάθε επιφάνεια
στάθμης Ωα, α ∈ R+, είναι φραγμένη.

Παράδειγμα: ΄Εστω

V : R2 → R, V (x1, x2) =
x21

1 + x21
+ x22

που είναι θετικά ορισμένη στο R2
ως προς το x∗ = (0, 0). Για μεγάλες τιμές του c ∈ R οι καμπύλες

στάθμης της V δεν είναι φραγμένες. Επομένως παρόλο που η V (x(t ;x0)) είναι φθίνουσα κατά μήκος της
λύσης x(t ; x0) αυτό δεν εγγυάται ότι x(t ; x0) → x∗

καθώς t→ ∞ (δείτε διάγραμμα).
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x1

x2

΄Εστω ∥x∥2 = x21 + x22 = r2. Τότε

V

(
x1,±

√
r2 − x21

)
:= V̂r(x1) =

x21
1 + x21

+ r2 − x21 =
1 + x21 − 1

1 + x21
+ r2 − x21 = 1 + r2 −

(
1

1 + x21
+ x21

)
όπου 0 ≤ x21 ≤ r2. Επίσης:

1

1 + r2
+ r2 − 1

1 + x21
− x21 = r2 − x21 +

1 + x21 − 1− r2

(1 + r2)(1 + x21)
= (r2 − x21)

(
1− 1

(1 + r2)(1 + x21)

)
≥ 0

με ισότητα όταν x1 = r η x1 = −r. ΄Αρα

1

1 + r2
+ r2 ≥ 1

1 + x21
+ x21

και

V

(
x1,±

√
r2 − x21

)
:= V̂r(x1) = 1 + r2 −

(
1

1 + x21
+ x21

)
≥ 1− 1

1 + r2

Επομένως, για σταθεροποιημένο r > 0:

min
∥x∥=r

V (x1, x2) = 1− 1

1 + r2
:= ψ(r)

και εφόσον ψ(r) αύξουσα συνάρτηση,

min
∥x∥>r

V (x1, x2) = min
∥x∥=r

V (x1, x2) = 1− 1

1 + r2

Επομένως:

l = lim
r→∞

min
∥x∥≥r

V (x1, x2) = lim
r→∞

(
1− 1

1 + r2

)
= 1

και άρα Ωα := {x = (x1, x2) ∈ R2 : V (x1, x2) < α} φραγμένη αν α < l = 1. Παρατηρούμε ότι το όριο
της V στην κατεύθυνση του x1 άξονα:

lim
|x1|→∞

V (x1, 0) = lim
|x1|→∞

x21
1 + x21

= 1

που επιβεβαιώνει το παραπάνω συμπέρασμα.
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2.4 Αρχή του αναλλοίωτου και Θεώρημα Lasalle

Ορισμός: Το σύνολο S ⊆ Rn
λέγεται θετικά αναλλοίωτο για το σύστημα x′(t) = f(x(t)), x(0) = x0,

αν x0 ∈ S συνεπάγεται ότι x(t ; x0) ∈ S για κάθε t ≥ 0.

Παράδειγμα: ΄Εστω το σύστημα:

x′1 = x2 + x1(1− x21 − x22), x
′
2 = −x1 + x2(1− x21 − x22)

΄Εστω r2 = x21 + x22. Τότε:(
r2
)′
= 2rr′ =

(
x21 + x22

)′
= 2x1x

′
1 + 2x2x

′
2

= 2x1x2 + 2x21(1− x21 − x22)− 2x2x1 + 2x22(1− x21 − x22)

= 2(x21 + x22)(1− x21 − x22)

Επομένως: r′ = r(1− r2). Αν r(0) = 1 τότε r′(0) = 0 και επομένως r(t) = 1 για κάθε t ≥ 0. Παρόμοια,
0 < r(0) < 1 ⇒ 0 < r(t) < 1 για κάθε t ≥ 0 και r(0) > 1 ⇒ r(t) > 1 για κάθε t ≥ 0. Επομένως,
αν D = {x ∈ R2 : ∥x∥ < 1}, τα σύνολα D\{(0, 0)}, ∂D = {x ∈ R2 : ∥x∥ = 1} (ευσταθής οριακός
κύκλος) και R2\(D ∪ ∂D) είναι θετικά αναλλοίωτα σύνολα για το σύστημα. Το σημείο ισορροπίας (0, 0)
είναι επίσης θετικά αναλλοίωτο.

Ορισμός: ΄Εστω συνάρτηση x : R+ → Rn
. Λέμε ότι η συνάρτηση x συγκλίνει σε κάποιο σύνολο

S ⊆ Rn
αν

lim
t→∞

dist(x(t), S) = 0 όπου dist(x, S) := inf
s∈S

∥x− s∥

Παρατήρηση: Η έννοια της σύγκλισης συνάρτησης σε σύνολο S, δεν σημαίνει αναγκαστικά ότι η
συνάρτηση συγκλίνει στο ίδιο σημείο του S η ότι το όριο της συνάρτησης υπάρχει.

Παράδειγμα: Στο προηγούμενο παράδειγμα, η λύση του συστήματος x(t ;x0) με x0 ∈ D, x0 ∈ ∂D και
x0 ∈ R2\(D ∪ ∂D), αντίστοιχα, συγκλίνει στον ευσταθή οριακό κύκλο ∂D.

Θεώρημα (Lasalle): ΄Εστω x∗
σημείο ισορροπίας του συστήματος x′(t) = f(x(t)), x(0) = x0, όπου f

τοπικά Lipschitz και V : Ω → R συνάρτηση Lyapunov σε γειτονιά Ω του x∗
. Τότε το Ω περιέχει κλειστή

και φραγμένη θετικά αναλλοίωτη γειτονιά K του x∗
και για κάθε x0 ∈ K η λύση x(t ;x0) του συστήματος

συγκλίνει στο σύνολο:

S = {x0 ∈ K : V̇ (x(t ; x0)) = 0 για κάθε t ≥ 0}

Το σύνολο S είναι διάφορο του κενού και θετικά αναλλοίωτο. Επιπλέον, αν S = {x∗} τότε το x∗
είναι

ασυμπτωτικά ευσταθές.

Απόδειξη: Η κατασκευή του K είναι παρόμοια με αυτήν του Ω1 στην απόδειξη του Θεωρήματος

Lyapunov: Εφόσον Ω είναι γειτονιά του x∗
, υπάρχει, εξ΄ ορισμού σφαίρα Bϵ(x

∗) με αρκούντως μικρή
ακτίνα ϵ > 0 που περιέχεται στο Ω. ΄Εστω

α = min
∥x−x∗∥=ϵ

V (x)

Τότε α > 0. Τότε το σύνολο
K = {x ∈ Bϵ(x

∗) : V (x) ≤ α/2}

έχει τις επιθυμητές ιδιότητες: Είναι φραγμένη και κλειστή γειτονιά του x∗
και εφόσον V̇ (x) ≤ 0 είναι

επίσης θετικά αναλλοίωτο.

Το σύνολο S είναι διάφορο του κενού (περιέχει το x∗
). ΄Εστω x0 ∈ S. Τοτε, λόγω του ότι το K είναι

θετικά αναλλοίωτο, για κάθε t ≥ 0 το σημείο y := x(t ; x0) ∈ K. ΄Εστω s ≥ 0 (αυθαίρετο). Τότε:

V̇ (x(s ; y)) = V̇ (x(s ; x(t ; x0))) = V̇ (x(t+ s ; x0)) = 0

11



εφόσον x0 ∈ S και t+ s ≥ 0. Εφόσον s ≥ 0 αυθαίρετο, σε κάθε σημείο της τροχιάς

O+(y) = {x(s ; y) : s ≥ 0}

έχουμε V̇ (x(s ; y)) = 0 και άρα y ∈ S. ΄Αρα αν x0 ∈ S, όλη η τροχιά {y = x(t ; x0), t ≥ 0} είναι εντός
του S και επομένως το S είναι θετικά αναλλοίωτο.

Στην συνέχεια, έστω ότι x0 ∈ K. Εφόσον K θετικά αναλλοίωτο, όλη η τροχιά x(t ; x0) παραμένει εντός
του K για κάθε t ≥ 0. Υποθέτουμε (για αντίφαση) ότι η συνάρτηση x(t ; x0) δεν συγκλίνει στο σύνολο
S. Τότε, καθώς η συνάρτηση x(t ; x0) είναι φραγμένη, από το Θεώρημα Bolzano-Weierstrass υπάρχει
ακολουθία (tn) με tn → ∞ τέτοια ώστε

x(tn ; x0) → x∞ /∈ S

Εφόσον K κλειστό, x∞ ∈ K. Θα δείξουμε ότι V (x(t ; x∞)) είναι σταθερή συνάρτηση της μεταβλητής
t ≥ 0. Για κάθε t ≥ 0 (αυθαίρετα μεγάλο αλλά σταθεροποιημένο) υπάρχει k ∈ N τέτοιος ώστε:

V (x(tn ; x0)) ≥ V (x(tn + t ; x0)) = V (x(t ; x(tn ; x0))) ≥ V (x(tn+k ; x0)), t ≥ 0 (*)

(Η πρώτη ανισότητα ισχύει γιατί V̇ (x) ≤ 0 και η δεύτερη προκύπτει πάλι από την ανισότητα V̇ (x) ≤ 0 σε
συνδυασμό με το γεγονός ότι για κάθε (σταθεροποιημένο) t ≥ 0 (αυθαίρετα μεγάλο) υπάρχει ακέραιος k
(αρκούντως μεγάλος) ώστε να έχουμε tn + t < tn+k). Παίρνοντας το όριο n→ ∞ στην (∗), έχουμε

V (x∞) ≥ V (x(t ; x∞)) ≥ V (x∞)

λόγω συνέχειας της V και συνέχειας της λύσης x(t ; x0) ως προς την αρχική συνθήκη x0. Επομένως,

V (x(t ; x∞)) είναι σταθερή για t ≥ 0 και άρα V̇ (x(t ; x∞)) = 0 για κάθε t ≥ 0. Ομως τότε x∞ ∈ S, που
αντιβαίνει στην υπόθεση. ΄Αρα η υπόθεση ότι η συνάρτηση x(t ; x0) ↛ S είναι λανθασμένη. □

Παρατήρηση: Σε μία διαφορετική εκδοχή του Θεωρήματος Lasalle η υπόθεση ότι η V είναι θετικά
ορισμένη δεν είναι απαραίτητη, αν και είναι χρήσιμη στην πράξη γιατί πολλές φορές η κατασκευή της

συνάρτησης Lyapunov εγγυάται αυτόματα την ύπαρξη αναλλοίωτου συνόλου K. Η απόδειξη του
Θεωρήματος Lasalle βασίζεται σε μία συγκεκριμένη κατασκευή του συνόλου K. Αν μας αρκεί να
αποδείξουμε την ασυμπτωτική ευστάθεια κάποιου σημείου ισορροπίας, ο ορισμός του συνόλου K δεν
είναι απαραίτητος - μόνο η εγγύηση της ύπαρξης του.

Παράδειγμα: Εκκρεμές με τριβή (συνέχεια). Υπενθυμίζουμε ότι οι εξισώσεις του συστήματος είναι:

x′1 = x2, x
′
2 = −g

l
sinx1 − bx2

όπου b > 0 ο συντελεστής τριβής. Από προηγούμενη ανάλυση, επιλέγοντας ως υποψήφια συνάρτηση
Lyapunov την συνολική ενέργεια του συστήματος:

V (x) = Κ.Ε.+Δ.Ε. =
1

2
ml2x22 +mgl(1− cosx1) ⇒ V̇ (x) = −mbl2x22 ≤ 0

συμπεραίνουμε ότι η συνάρτηση V είναι θετικά ορισμένη στο Ω := {x = (x1, x2) ∈ R2 : |x1| < π} ως προς
το σημείο ισορροπίας x∗ = 0. Η συνάρτηση V̇ είναι (μόνο) αρνητικά ημι-ορισμένη στο Ω, εφόσον έχουμε
ότι V̇ (x) = 0 στον x1 άξονα του επιπέδου (x1, x2), ενώ σε κάθε άλλο σημείο του επιπέδου το πρόσημο της
V̇ είναι αρνητικό. Από το Θεώρημα Lyapunov συμπεραίνουμε ότι το σημείο ισορροπίας x∗ = 0 είναι (απλά)
ευσταθές (κατά Lyapunov) και όχι ασυμπτωτικά, όπως είναι το αναμενόμενο αποτέλεσμα. Πράγματι, όπως
είδαμε σε προηγούμενο παράδειγμα, αν επιλέξουμε συνάρτηση Lyapunov της μορφής:

V (x) =
1

2
xTPx+

g

l
(1− cosx1), P =

[
b2

2
b
2

b
2 1

]
= P T ≻ 0
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η παράγωγος της V κατά την κατεύθυνση της λύσης:

V̇ (x) = −g
l
x1 sinx1 −

b

2
x22

είναι αρνητικά ορισμένη στο Ω που συνεπάγεται ασυμπτωτική ευστάθεια του x∗ = 0. Το συμπέρασμα έχει
την ερμηνεία από άποψη φυσικής ότι όσο το σύστημα είναι σε κίνηση, η ενέργεια του μειώνεται συνεχώς

λόγω τριβής. Το Θεώρημα Lasalle μας δίνει το ίδιο αποτέλεσμα με χρήση συνάρτησης Lyapunov που έχει
“φυσική σημασία”, δηλαδή συνάρτησης που αντιστοιχεί στην συνολική ενέργεια του συστήματος.

΄Εστω K το σύνολο των διανυσμάτων κατάστασης για τα οποία η τιμή της V (x) δεν υπερβαίνει κάποιο
σταθερό ποσοστό της συνολικής ενέργειας του συστήματος στο σημείο (x1, x2) = (π, 0), δηλαδή,

K = {x ∈ R2 : |x1| < π, V (x1, x2) ≤ (1− γ)V (π, 0)} ⊆ Ω

όπου γ ∈ (0, 1). Το σύνολο K είναι κλειστό και φραγμένο υποσύνολο του Ω καθώς και γειτονιά
του x∗ = 0. Είναι επίσης θετικά αναλλοίωτο, καθώς αν (x1, x2) ∈ K η ενέργεια του εκκρεμούς δεν
αρκεί ώστε αυτό να φτάσει η να περάσει από την κατακόρυφη θέση x1 = ±π λόγω του περιορισμού
V (x) ≤ (1− γ)V (π, 0) στον ορισμό του K. ΄Εστω επίσης:

S = {x0 ∈ K : V̇ (x(t ; x0)) = 0 για κάθε t ≥ 0}

Αν x0 ∈ K τότε διαισθητικά περιμένουμε ότι η τροχιά x(t ;x0) θα συγκλίνει στο S καθώς t→ ∞, αφού η
ενέργεια του συστήματος μειώνεται όσο αυτό είναι σε κίνηση. Επίσης, δεν υπάρχει λύση του συστήματος

(διαφορετική από την σταθερή λύση x(t ; x0) = 0) που παραμένει ταυτοτικά εντός του S. Η συνθήκη
V̇ = 0 ικανοποιείται στα άκρα της ταλάντωσης (όπου x1 είναι τοπικό ακρότατο και x2 = 0) αλλά μόνο
στιγμιαία.

Το ίδιο συμπέρασμα προκύπτει και από τις εξισώσεις του συστήματος: Αν υπήρχε λύση x(t ; x0) ∈ S για
κάθε t ≥ 0, τότε x′1(0) = 0 για κάθε t ≥ 0, δηλαδή η συνάρτηση x1(t) θα ήταν σταθερή, και επίσης θα
είχαμε ότι x′2(t) = 0 για κάθε t ≥ 0. ΄Αρα θα είχαμε ότι sinx1 = 0 και η μόνη τιμή του x1 ∈ (−π, π) για
την οποία ισχύει αυτή η ισότητα είναι η τιμή x1 = 0. ΄Αρα η μοναδική λύση που μπορεί να μείνει ταυτοτικά
στο S για t ≥ 0 είναι η σταθερή λύση x(t ; x0) = x∗ = 0. Σε αυτή την περίπτωση το Θεώρημα Lassale
συνεπάγεται ότι το σημείο ισορροπίας x∗

είναι ασυμπτωτικά ευσταθές.

Παρατήρηση: Αν το Θεώρημα Lasalle ισχύει με συνάρτηση Lyapunov ακτινικά μή φραγμένη στο
Ω = Rn

, τότε το σημείο ισορροπίας είναι ολικά ασυμπτωτικά ευσταθές.

Παράδειγμα: ΄Εστω το σύστημα:

x′1 = 1− ex2 , x′2 = 1− ex2−x1

Σημεία ισορροπίας:

ex2 = 1 ⇒ x2 = 0, 1− ex2−x1 = 0 ⇒ ex1 = 0 ⇒ x1 = 0

΄Αρα (x∗1, x
∗
2) = (0, 0) το μοναδικό σημείο ισορροπίας. ΄Εστω υποψήφια συνάρτηση Lyapunov:

V (x1, x2) = V1(x1) + V2(x2), V1(x1) = x1 + e−x1 − 1, V2(x2) = ex2 − x2 − 1

Τότε

V ′
1(x1) = 1− e−x1 = 0 ⇒ x1 = 0, V ′′

1 (x1) = e−x1 ⇒ V ′′
1 (0) = 1 > 0

και

V ′
2(x2) = ex2 − 1 = 0 ⇒ x2 = 0, V ′′

2 (0) = ex2 ⇒ V ′′
2 (0) = 1 > 0

΄Αρα x1 = 0 και x2 = 0 τα ολικά ελάχιστα της V1(x1) και της V (x2), αντίστοιχα, και επομένως για κάθε
(x1, x2) ̸= (0, 0):

V (x1, x2) = V1(x1) + V2(x2) > V1(0) + V2(0) = 0
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Επομένως V (x1, x2) είναι θετικά ορισμένη στο R2
ως προς το (x∗1, x

∗
2) = (0, 0). Επίσης:

V̇ (x1(t), x2(t)) =
∂V

∂x1
x′1 +

∂V

∂x2
x′2 = (1− e−x1)(1− ex2) + (ex2 − 1)(1− ex2−x1)

= 1− ex2 − e−x1 + ex2−x1 + ex2 − e2x2−x1 − 1 + ex2−x1

= −e−x1(1− 2ex2 + e2x2) = −e−x1(1− ex2)2 ≤ 0

και

V̇ (x1(t), x2(t)) = 0 για κάθε t ≥ 0 ⇒ ex2 = 1 για κάθε t ≥ 0 ⇒ x1 = 0 για κάθε t ≥ 0

΄Αρα από το Θεώρημα Lasalle το σημείο ισορροπίας (x∗1, x
∗
2) = (0, 0) είναι ασυμπτωτικά ευσταθές. Η

συνάρτηση Lyapunov V (x1, x2) που επιλέξαμε είναι ακτινικά μη-φραγμένη: Θέτοντας x2 = λx1 έχουμε:

V (x1, λx1) = (1− λ)x1 + e−x1 + eλx1 − 2

Επομένως, αν λ ̸= 0:
lim

|x1|→∞
V (x1, λx1) = +∞

Επίσης

lim
|x1|→∞

V1(x1) = lim
|x2|→∞

V2(x2) = +∞

Επομένως η συνάρτηση V είναι ακτινικά μη-φραγμένη και το σημείο ισορροπίας (x∗1, x
∗
2) = (0, 0) είναι

ολικά ασυμπτωτικά ευσταθές.

2.5 Συνθήκες αστάθειας - Θεώρημα Chataev

΄Εστω V : Ω → R συνεχώς διαφορίσιμη συνάρτηση στο χωρίο D ⊆ Rn
. Υποθέτουμε (χωρίς βλάβη

γενικότητας, δείτε Παρατήρηση στην ενότητα 2.1) ότι x∗ = 0 είναι σημείο ισορροπίας του συστήματος
x′ = f(x) και ότι 0 ∈ Ω. ΄Εστω επίσης ότι V (0) = 0 και ότι υπάρχει σημείο x0 αυθαίρετα κοντά στο

x∗ = 0 τέτοιο ώστε V (x0) > 0. Επιλέγουμε r > 0 αρκούντως μικρό ώστε:

B̄r(0) := {x ∈ Rn : ∥x∥ ≤ r} ⊆ Ω

Ορίζουμε:

U = {x ∈ B̄r(0) : V (x) > 0}

Τότε U ̸= ∅ και U ⊆ B̄r(0). Το σύνορο ∂U του U αποτελείται από μέρη της επιφάνειας V (x) = 0 και
της σφαίρας ∥x∥ = r. Εφόσον V (0) = 0 το σημείο x∗ = 0 κείται στο ∂U ∩ Br(0). Για παράδειγμα, αν
n = 2 και V (x) = 1

2(x
2
1 − x22) το σύνολο U είναι όπως στο παρακάτω σχήμα:

x1

x2

Br(0)

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx

U

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
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xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Θεώρημα (Chataev): ΄Εστω x∗ = 0 σημείο ισορροπίας του συστήματος x′ = f(x). ΄Εστω V : Ω → R
συνεχώς διαφορίσιμη συνάρτηση στο χωρίο Ω ⊆ Rn

, 0 ∈ Ω, τέτοια ώστε V (0) = 0 και V (x0) > 0 για
κάποιο x0 με αυθαίρετα μικρή νόρμα ∥x0∥. Ορίζουμε σύνολο U ως

U = {x ∈ B̄r(0) : V (x) > 0}

και έστω ότι V̇ (x) > 0 για κάθε x ∈ U . Τότε το σημείο ισορροπίας x∗ = 0 είναι ασταθές.

Απόδειξη: Το σημείο x0 είναι στο εσωτερικό του συνόλου U και V (x0) > 0. ΄Εστω ότι V (x0) = a.
Η τροχιά x(t) := x(t ; x0) θα βγεί τελικά έξω από το σύνολο U . Το συμπέρασμα αυτό προκύπτει αν
παρατηρήσουμε ότι όσο το x(t) είναι εντός του U , V (x) ≥ a αφού V̇ (x) > 0 στο U . ΄Εστω

γ = min{V̇ (x) : x ∈ U και V (x) ≥ a}

που είναι καλά ορισμένο αφού V̇ (x) είναι συνεχής συνάρτηση και το σύνολο

{x ∈ U και V (x) ≥ a} = {x ∈ B̄r(0) και V (x) ≥ a}

είναι συμπαγές. Τότε γ > 0 και

V (x(t)) = V (x0) +

∫ t

0
V̇ (x(s))ds ≥ a+

∫ t

0
γds = a+ γt

Η παραπάνω ανισότητα αποδεικνύει ότι η τροχιά δεν μπορεί να μείνει για πάντα εντός του U , γιατί η V (x)
είναι φραγμένη στο U . ΄Ομως η τροχιά x(t) δεν μπορεί να φύγει από το U διαμέσω της επιφάνειας V (x) = 0
αφού V (x(t)) ≥ a. Επομένως, η τροχιά πρέπει να φύγει εκτός του U μέσω της σφαίρας ∥x∥ = r. Εφόσον
αυτό συμβαίνει για αυθαίρετα μικρό ∥x0∥, το σημείο ισορροπίας x∗ = 0 είναι ασταθές. □

Παράδειγμα: ΄Εστω το σύστημα:

x′1 = x1 + g1(x), x′2 = −x2 + g2(x)

όπου g1 και g2 συναρτήσεις τοπικά Lipschitz που ικανοποιούν τις ανισότητες:

|g1(x)| ≤ k∥x∥2, |g2(x)| ≤ k∥x∥2

σε κάποια γειτονιά D του σημείου (0, 0). (Εδώ ∥ · ∥ είναι η ευκλείδια νόρμα). Από τις ανισότητες
συμπεραίνουμε ότι g1(0) = g2(0) = 0 και άρα το σημείο x∗ = (0, 0) είναι το (μοναδικό) σημείο ισορροπίας

΄Εστω η συνάρτηση:

V (x) =
1

2
(x21 − x22)

Στον x1-άξονα (x2 = 0), έχουμε V (x) > 0 για σημεία αυθαίρετα κοντά στο x∗ = 0. Η παράγωγος την V
κατά μήκος της λύσης του συστήματος είναι:

V̇ (x) =
∂V

∂x1
x′1 +

∂V

∂x2
x′2 = x1(x1 + g1(x))− x2(−x2 + g2(x)) = x21 + x22 + x1g1(x)− x2g2(x)

Επίσης:

|x1g1(x)− x2g2(x)| ≤ |x1| |g1(x)|+ |x2| |g2(x)| ≤ 2k∥x∥3

Επομένως:

V̇ (x) ≥ ∥x∥2 − 2k∥x∥3 = ∥x∥2(1− 2k∥x∥)

Επιλέγοντας ακτίνα r τέτοια ώστε B̄r(0) ⊆ D και r < 1
2k , οι υποθέσεις του Θεvρήματος Cataev

ικανοποιούνται και επομένως συμπεραίνουμε ότι το σημείο ισορροπίας x∗ = 0 είναι ασταθές.
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2.6 Συστήματα κλίσης και Χαμιλτονιανά συστήματα (στον R2
)

2.7 Ευστάθεια Γραμμικών Συστημάτων (ημιτελές - αγνοήστε!)

Αρχίζουμε την ανάλυση ευστάθειας γραμμικών χρονικά αναλλοίωτων συστημάτων με τα παρακάτω

προκατραρκτικά:

Λήμμα: ΄Εστω A ∈ Cn×n
, λ ∈ σ(A) και έστω m(λ) η αλγεβρική πολλαπλότητα της ιδιοτιμής λ και

E(λ) = ker(A− λIn)
m(λ)

ο γενικευμένος ιδιόχωρος που αντιστοιχεί στην ιδιοτιμή λ. Επίσης, αν z ∈ Cn
,

έστω xz : R → Cn
, xz = eAtz.

(i) Αν λ ∈ σ(A) και z ∈ E(λ), τότε

xz(t) = eλt
m(λ)−1∑
k=0

tk

k!
(A− λIn)

kz, t ∈ R

(ii) ΄Εστω B(λ) βάση του E(λ) και B = ∪λ∈σ(A)B(λ). Τότε το σύνολο {xz : z ∈ B} είναι βάση τού
χώρου λύσεων του ΠΑΤ: x′(t) = Ax(t), x(t0) = x0 ∈ Cn

.

Απόδειξη: (i) ΄Εστω d(λ) η γεωμετρική πολλαπλότητα της ιδιοτιμής λ και

(A− λIn)zi,1 = 0

(A− λIn)zi,2 = zi,1
.
.
.

(A− λIn)zi,νi = zi,νi−1

η i-αλυσίδα γενικευμένων ιδιοδιανυσμάτων μήκους νi που αντιστοιχούν στην ιδιοτιμή λ, όπου i =

1, 2, . . . d(λ) και
∑d(λ)

i=1 νi = m(λ). (Εδώ zi,j , j = 1, 2, . . . , νi, είναι το γενικευμένο ιδιοδιάνυσμα j-τάξης
της i αλυσίδας). Τότε

(A− λIn)
jzi,j = 0, i = 1, 2, . . . , d(λ), j = 1, 2, . . . , νi

Επομένως,

xz(t) = eAtz = eλte(A−λIn)tz = eλt
∞∑
k=0

tk

k!
(A− λIn)

kz

Ισοδύναμα:

xz(t) = eλt
m(λ)−1∑
k=0

tk

k!
(A− λIn)

kz+ eλt
∑

k≥m(λ)

tk

k!
(A− λIn)

kz, t ∈ R

Εδώ έχουμε εξ΄ υποθέσεως ότι

z ∈ E(λ) = ⟨zi,j⟩j=1,2,...,νi
i=1,2,...,d(λ) =

d(λ)∑
i=1

νi∑
j=1

cijzi,j

για κάποια cij ∈ C. Επομένως για k ≥ m(λ) ≥ νi για κάθε i = 1, 2, . . . , d(λ), έχουμε:

(A− λIn)
kz =

d(λ)∑
i=1

νi∑
j=1

cij(A− λIn)
kzi,j =

d(λ)∑
i=1

νi∑
j=1

cij(A− λIn)
k−j(A− λIn)

jzi,j = 0
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(παρατηρούμε ότι στο εσωτερικό άθροισμα έχουμε k − j ≥ 0 για κάθε τιμή των k και j και επομένως ο
πίνακας (A− λIn)

k−j
είναι καλά ορισμένος). Επομένως

xz(t) = eλt
m(λ)−1∑
k=0

tk

k!
(A− λIn)

kz, t ∈ R

(ii) Εφόσον
Cn = ker(A− λ1)

m1(λ) ⊕ ker(A− λ2)
m2(λ) ⊕ · · · ⊕ ker(A− λτI)

mτ (λ)

όπου

{λ1, λ2, . . . , λτ} = σ(A)

το σύνολο B είναι βάση του Cn
και επομένως {xz : z ∈ B} = {eAtz : z ∈ B} είναι βάση του συνόλου των

λύσεων του ΠΑΤ. □

Θεώρημα: ΄Εστω A ∈ Cn×n
, µA = max{Reλ : λ ∈ σ(A)} και

ΓA = {γ ∈ R : ∃Mγ ≥ 1 τ.ω. ∥eAt∥ ≤Mγe
γt, t ≥ 0}

Τότε:

(i) (µA,∞) ⊆ ΓA και inf ΓA = µA.

(ii) µA ∈ ΓA αν και μόνο αν για κάθε λ ∈ σ(A) με Re(λ) = µA η αλγεβρική και η γεωμετρική
πλλαπλότητα της ιδιοτιμής λ είναι ίσες.

(iii) ΄Εστω γ ∈ R. Αν για κάθε ξ ∈ Cn
ισχύει ότι e(A−γI)t → 0 καθώς t→ ∞, τότε µA < γ.

Απόδειξη: (i) ΄Εστω λ ∈ σ(A) και z ∈ Cn
αντίστοιχο γενικευμένο ιδιοδιάνυσμα. Τότε από το

προηγούμενο Λήμμα:

eAtz = eλt
m(λ)−1∑
k=0

tk

k!
(A− λIn)

kz, t ∈ R

΄Εστω {z1, z2, . . . , zn} βάση του Cn
που αποτελείται από τα γενικευμένα ιδιοδιανύσματα του A και έστω

Z = [z1 z2 . . . zn] ∈ Cn×n
, detZ ̸= 0.

΄Εστω αυθαιρετο γ ∈ (µA,∞). Θα δείξουμε ότι γ ∈ ΓA (και άρα (µA,∞) ⊆ ΓA). ΄Εστω λ ∈ σ(A)
και zi ∈ ker(A − λIn)

m(λ)
όπου m(λ) η αλγεβρική πολλαπλότητα της ιδιοτιμής λ (δηλ. zi γενικευμένο

ιδιοδίανυσμα που αντιστοιχεί στην ιδιοτιμή λ). Τότε:

∥eAtzi∥ ≤ |eλt|

∥∥∥∥∥∥
m(λ)−1∑
k=0

tk

k!
(A− λIn)

kzi

∥∥∥∥∥∥ , t ∈ R

≤
∣∣∣e[Re(λ)+iIm(λ)]t

∣∣∣
∣∣∣∣∣∣
m(λ)−1∑
k=0

tk

k!
∥A− λIn)

k∥

∣∣∣∣∣∣ ∥zi∥, t ∈ R

= eRe(λ)t|pλ(t)| ∥zi∥ = eRe(λ)tpλ(t)∥zi∥, t ∈ R+

όπου

pλ(t) :=

m(λ)−1∑
k=0

tk

k!
∥A− λIn)

k∥

Εφόσον γ > µA ≥ Re(λ) για κάθε λ ∈ σ(A), υπάρχει L ≥ 0 τ.ω.

∥eAtzi∥ ≤ Leγt∥zi∥, i = 1, 2, . . . , n, t ≥ 0
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και L ≥ 1 εφόσον για t = 0 έχουμε ∥zi∥ ≤ L∥zi∥. ΄Εστω ξ ∈ Cn
αυθαίρετο. Ορίζουμε:

η = Z−1ξ ⇒ ξ = Zη =
[
z1 z2 . . . zn

]

η1
η2
.
.
.

ηn

 ⇒ ξ =
n∑

i=1

ηizi

και άρα

∥eAtξ∥ ≤ ∥eAt
n∑

i=1

ηizi∥ ≤
n∑

i=1

|ηi∥ ∥eAtzi∥

΄Ομως για κάθε i = 1, 2, . . . , n,

|ηi| ≤ ∥η∥ ≤ ∥Z−1∥ ∥ξ∥ ⇒ ∥eAtξ∥ ≤
n∑

i=1

∥Z−1∥ ∥ξ∥ ∥eAtzi∥

και επομένως

∥eAtξ∥ ≤Mγe
γt∥ξ∥, t ≥ 0 όπου Mγ := L∥Z−1∥

n∑
i=1

∥zi∥

και εφόσον ξ ∈ Cn
αυθαίρετο,

∥eAt∥ ≤Mγe
γt, t ≥ 0

Από τον ορισμό του ΓA έχουμε ότι γ ∈ ΓA ⇒ γ̂ ∈ ΓA για κάθε γ̂ ≥ γ και άρα

γ ∈ ΓA ⇒ (µA,∞) ⊆ ΓA ⇒ inf ΓA ≤ µA

Αντίστροφα, έστω λ ∈ σ(A) και z1 ∈ Cn
ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή λ με ∥z1∥ = 1.

Τότε (A− λIn)
kz1 = 0 αν k ≥ 1 και επομένως

eAtz1 = eλtz1, t ∈ R

και επομένως για κάθε t ∈ R έχουμε

∥eAt∥ = max
z∈Cn,∥z∥=1

∥eAtz∥ ≥ ∥eAtz1∥ = ∥eλtz1∥ = |eλt| ∥z1∥ = eRe(λ)t

Επομένως δεν υπάρχει Mγ ≥ 1 τ.ω. ∥eAt∥ ≤ Mγe
γt
για κάθε t ≥ 0 αν γ > Re(λ). Εφόσον λ ∈ σ(A)

αυθαίρετο, δεν υπάρχει Mγ ≥ 1 τ.ω. ∥eAt∥ ≤ Mγe
γt
για κάθε t ≥ 0 αν γ > µA. Επομένως inf ΓA ≥ µA

που μαζί με την προηγούμενη ανισότητα (inf ΓA ≤ µA) συνεπάγεται ότι inf ΓA = µA.

(ii) Θα χρησιμοποιήσουμε το γεγονός ότι μία ιδιοτιμή λ του A έχει ίση αλγεβρική και γεωμετρική
πολλαπλότητα αν και μόνο αν ο γενικευμένος ιδιόχωρος E(λ) = ker(A − λI)m(λ)

ταυτίζεται με τον

ιδιόχωρο ker(A− λI).

Αν κάθε ιδιοτιμή λ ∈ σ(A) που ικανοποιεί την ισότητα Re(λ) = µA έχει την ίδια αλγεβρική και γεωμετρική
πολλαπλότητα, τότε από την σχέση

eAtz = eλt
m(λ)−1∑
k=0

tk

k!
(A− λIn)

kz, t ∈ R

προκύπτει ότι για κάθε γενικευμένο ιδιοδιάνυσμα z του A υπάρχει Lz ≥ 1, τ.ω.

∥eAtz∥ ≤ Lze
µAt∥z∥, t ≥ 0

Με παρόμοια απόδειξη όπως στο (i) υπάρχει M ≥ 1 τ.ω. ∥eAt∥ ≤MeµAt
, t ≥ 0 και επομένως µA ∈ ΓA.
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Αντίστροφα, έστω µA ∈ ΓA, λ ∈ σ(A) με Re(λ) = µA και έστω z ∈ E(λ) = ker(A − λA)m(λ)

(γενικευμένο ιδιοδιάνυσμα της ιδιοτιμής λ). Τότε∥∥∥∥∥∥
m(λ)−1∑
k=0

tk

k!
(A− λ)kz

∥∥∥∥∥∥ = ∥e−λteAt∥ = e−µAt∥eAt∥ ≤ e−µAtMeµAt =M, t ≥ 0

Επομένως

∥eAt∥ ≤M |eλt| =MeµAt, t ≥ 0

που συνεπάγεται ότι (A − λI)z = 0, δηλαδή ότι z ∈ ker(A − λI). Εφόσον η συνεπαγωγή ισχύει για
κάθε z ∈ E(λ) έχουμε E(λ) = ker(A− λI) και επομένως η αλγεβρική και γεωμετρική πολλαπλότητα της
ιδιοτιμής λ είναι ίσες.

2.7α Ευστάθεια Γραμμικών Συστημάτων - Αλγεβρική εξίσωση Lyapunov

΄Εστω το γραμμικό σύστημα x′ = Ax όπου A ∈ Rn×n
. Το σύστημα έχει σημείο ισορροπίας στο x∗ = 0,

το οποίο είναι μεμονομένο αν και μόνο αν det(A) ̸= 0, δηλ. αν και μόνο αν ο πίνακας A έχει τετριμμένο
πυρήνα. Παρατηρούμε επίσης ότι ένα γραμμικό σύστημα δεν μπορεί να έχει πολλαπλά μεμονομένα σημεία

ισορροπίας, γιατί αν x1 και x2 είναι σημεία ισορροπίας και x1 ̸= x2, τότε, λόγω γραμμικότητας, κάθε

σημείο στην ευθεία που συνδέει τα δύο σημεία είναι επίσης σημείο ισορροπίας.

Εξετάζουμε το σημείο ισορροπίας x∗ = 0. Αν x(0) = x0, η λύση του συστήματος είναι x(t) = eAtx0. Αν

P ∈ Cn×n
ο πίνακας των γενικευμένων ιδιοδιανυσμάτων, έχουμε

P−1AP := J = block-diag(J1, J2, . . . , Jr)

όπου:

ϕ(λ) = det(λIn −A) = (λ− λ1)
τ1(λ− λ2)

τ2 . . . (λ− λρ)
τρ

το χαρακτηριστικό πολυώνυμο του πίνακα A, ρ ο αριθμός των διακεκριμένων ιδιοτιμων λi ∈ σ(A),
n =

∑n
i=1 τi και τi η αλγεβρική πολλαπλότητα της ιδιοτιμής λi, i = 1, 2, . . . , ρ. Ορίζουμε di =

null(λIn − A) = n − rank(λIn − A), i = 1, 2, . . . , ρ την γεωμετρική πολλαπλότητα της ιδιοτιμής λi,
i = 1, 2, . . . , ρ. Τότε:

eAt = PeJtP−1 =

r∑
i=1

mi∑
k=1

tk−1eλitRik

όπου r =
∑ρ

i=1 di ο αριθμός των Jordan blocks του πίνακα J και όπου mi η μέγιστη διάσταση των

Jordan blocks που αντιστοιχούν στην ιδιοτιμή λi (σε κάθε διακεκριμένη ιδιοτιμή λi αντιστοιχούν di
Jordan blocks). Γενικά 1 ≤ di ≤ τi για κάθε i = 1, 2, . . . , ρ. Η διάσταση όλων των Jordan blocks που
αντιστοιχούν στην ιδιοτιμή λi είναι ίση με την μονάδα αν και μόνο αν di = τi. Από την παραπάνω ανάλυση
προκύπτει το επόμενο Θεώρημα:

Θεώρημα: Το σημείο ισορροπίας x∗ = 0 είναι ευσταθές (κατά Lyapunov) αν και μόνο αν για κάθε
ιδιοτιμή λi, i = 1, 2, . . . , ρ, του πίνακα A ισχύει Re(λi) ≤ 0 και κάθε ιδιοτιμή με Re(λi) = 0 έχει
ίση αλγεβρική και γεωμετρική πολλαπλότητα. Το σημείο ισορροπίας x∗ = 0 είναι (ολικά) ασυμπτωτικά
ευσταθές αν όλες οι ιδιοτιμές του πίνακα A ικανοποιούν την ανισότητα Re(λi) < 0, i = 1, 2, . . . , ρ.

Απόδειξη: Από την σχέση x(t) = eAtx0 συμπεραίνουμε ότι το σημείο ισορροπίας x
∗ = 0 είναι ευσταθές

αν και μόνο αν η συνάρτηση eAt
είναι φραγμένη για t ≥ 0. Αν υπαρχεί ιδιοτιμή λi με Re(λi) > 0, ο

αντίστοιχος όρος eλit της

eAt =

r∑
i=1

mi∑
k=1

tk−1eλitRik
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δεν φράσσεται καθώς t→ ∞. Επομένως πρέπει να περιορίσουμε τις ιδιοτιμές στο C̄−. ΄Ομως, αν k > 1, οι
ιδιοτιμές στον άξονα των φανταστικών (αν υπάρχουν) αντιστοιχούν επίσης σε μη φραγμένες συναρτήσεις

στο t ∈ [0,∞). ΄Αρα για ευστάθεια (κατά Lyapunov) κάθε ιδιοτιμή που κείται στον άξονα των φανταστικών
πρέπει να έχει ίση αλγεβρική και γεωμετρική πολλαπλότητα (ώστε τα αντίστοιχα Jordan blocks να έχουν
διάσταση 1 × 1). Οι παραπάνω συνθήκες είναι επίσεις ικανές για να εξασφαλίσουν ότι η συνάρτηση
[0,∞) → eAt

είναι φραγμένη. Επίσης, από την μορφή του αναπτύγματος της eAt
προκύπτει ότι eAt → 0

καθώς t → ∞ αν και μόνο αν Re(λi) < 0 για κάθε i = 1, 2, . . . , ρ. Εφόσον η λύση x(t) εξαρτάται
γραμμικά από την αρχική κατάσταση x0, η ευστάθεια του σημείου ισορροπίας x

∗ = 0 στην περίπτωση
αυτή είναι ολική. □

Παρατήρηση: Πίνακας A ∈ Rn×n
με σ(A) ⊆ C− λέγεται πίνακας Hurwitz.

Παρατήρηση: ΄Εστω σύστημα x′ = Ax όπου A ∈ Rn×n
πίνακας Hurwitz. Ορίζουμε υποψήφια

συνάρτηση Lyapunov V (x) = xTPx όπου P = P T ≻ 0. Η V είναι συνεχώς διαφορίσιμη και θετικά
ορισμένη ως προς το σημείο ισορροπίας x∗ = 0 του συστήματος. Επιπλέον, η παράγωγος της V κατά
μήκος της τροχιάς του συστήματος είναι

V̇ (x) = xTP ẋ+ ẋTPx = xT (PA+ATP )x = −xTQx

όπου Q = QT
ορίζεται ως: PA+ATP = −Q. Αν Q ≻ 0, τότε

V̇ (x) = xTPx′ + x′TPx = x(PA+ATP )x = −xTQx < 0

για x ̸= 0 και από το Θεώρημα Lyapunov το σημείο x∗ = 0 είναι ασυμπτωτικά ευσταθές (και μάλιστα
ολικά, εφόσον V (x) = xTPx ≥ λmin(P )∥x∥2 → ∞ καθώς ∥x∥ → ∞, η V είναι ακτινικά μη-φραγμένη
εφόσον λmin(P ) > 0). Επομένως, αν για κάποιον πίνακα Q = QT ≻ 0 η αλγεβρική εξίσωση Lyapunov
PA + ATP + Q = 0 έχει θετικά ορισμένη λύση P = P T ≻ 0, τότε ο πίνακας A είναι Hurwitz και
V (x) = xTPx είναι (ισχυρή) συνάρτηση Lyapunov ως προς το σημείο ισορροπίας x∗ = 0 του συστήματος
x′ = Ax.

Θεώρημα (Εξίσωση Lyapunov): A ∈ Rn×n
είναι πίνακας Hurwitz (σ(A) ⊆ C−) αν και μόνο αν για

κάθε Q = QT ≻ 0 υπάρχει P = P T ≻ 0 τέτοιος ώστε: PA + ATP + Q = 0. Επιπλέον αν A Hurwitz,
τότε ο P γράφεται ως

P = P T =

∫ ∞

0
eA

T tQeAtdt

και είναι η μοναδική λύση της αλγεβρικής εξίσωσης Lyapunon: PA+ATP+Q = 0. Στην περίπτωση αυτή
(A Hurwitz) η συνάρτηση V (x) := xTPx είναι ισχυρή συνάρτηση Lyapunov για το σύστημα x′ = Ax
και ακτινικά μη-φραγμένη, και επομένως το σημείο ισορροπίας x∗ = 0 είναι ολικά ασυμπτωτικά ευσταθές.

Απόδειξη: (⇐) : ΄Εστω Q = QT ≻ 0 (αυθαίρετος). Οριζουμε V (x) = xTPx. Τότε η συνάρτηση
V (x) (σύμφωνα με την τελεψταία παρατήρηαη) ισχύρή συνάρτηση Lyapunov για το σύστημα x′ = Ax
και επομένως το σημείο ισορροπίας x∗ = 0 είναι (ολικά) ασυμπτωτικά εψσταθές. ΄Αρα ο πίνακας A είναι
Hurwitz.

(⇒) : Αντίστροφα, έστω ότι ο πίνακας A είναι Hurwitz. Ορίζουμε:

P =

∫ ∞

0
eA

T tQeAtdt

Τα στοιχεία του πίνακα που ολοκληρώνεται είναι της μορφής tkeµt, k ≥ 0, Re(µ) < 0, και επομένως ο P
είναι καλά ορισμένος. Επίσης, εφόσον ο πίνακας που ολοκληρώνεται είναι συμμετρικός για κάθε t ≥ 0,
έχουμε ότι P = P T

. ΄Εστω ότι P ⊁ 0. Τότε υπάρχει x ̸= 0 τέτοιο ώστε xTPx = 0. ΄Αρα

xT

(∫ ∞

0
eA

T tQeAtdt

)
x = 0 ⇒

∫ ∞

0
xT eA

T tQeAtxdt = 0 ⇒
∫ ∞

0
∥Q1/2eAtx∥2dt = 0 ⇒ ∥Q1/2eAt∥ = 0
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λόγω συνέγειας της συνάρτησης t 7→ ∥Q1/2eAtx∥ και εφόσον ∥Q1/2eAtx∥2 ≥ 0 για κάθε t ≥ 0. Εφόσον
Q1/2 = (Q1/2)T ≻ 0 και det(eAt) ̸= 0 για κάθε t ≥ 0, η τελευταία σχέση συνεπάγεται ότι x = 0 και
οδηγεί σε αντίφαση. Επομένως:

PA+ATP =

∫ ∞

0

(
eA

T tQeAtA+AT eA
T tQeAt

)
dt =

∫ ∞

0

d

dt

(
eA

T tQeAt
)
dt

= lim
t→∞

(
eA

T tQeAt
)
− eA

T tQeAt
∣∣∣
t=0

= −Q

και επομένως ο P είναι λύση της αλγεβρικής εξίσωσης Lyapunov PA+ATP +Q = 0. Για να δείξουμε ότι
ο P είναι η μοναδική λύση της εξίσωσης, έστω ότι P̃ είναι επίσης λύση, δηλαδή ότι P̃A+AT P̃ +Q = 0.
Αφαιρώντας τις δύο εξισώσεις Lyapunov κατά μέλη έχουμε για κάθε t ≥ 0:

(P − P̃ )A+AT (P − P̃ ) = 0 ⇒ eA
T t

[
(P − P̃ )A+AT (P − P̃ )

]
eAt = 0 ⇒ d

dt

(
eA

T t(P − P̃ )eAt
)
= 0

Επομένως ο πίνακας eA
T t(P − P̃ )eAt

είναι σταθερός για κάθε t ≥ 0 και

eA
T t(P − P̃ )eAt = eA

T t(P − P̃ )eAt
∣∣∣
t=0

= P − P̃

Στο όριο καθώς t→ ∞,
lim
t→∞

eA
T t(P − P̃ )eAt = 0 = P − P̃

και επομένως P = P̃ . Η ολική ασυμπτωτική ευστάθεια του σημείου ισορροπίας x∗ = 0 του συστήματος
x′ = Ax προκύπτει από την τελευταία Παρατήρηση. □

Παρατήρηση: Η αλγεβρική εξίσωση Lyapunov ATP+PA+Q = 0 είναι ειδική περίπτωση της εξίσωσης
Sylvester AX +XB = C (όπου A ∈ Rn×n

, B ∈ Rr×r
και C,X ∈ Rn×r

) που αναλύθηκε στην ενότητα

1.2 (Ανάδραση καταστάσεων/Παρατηρητές). Αποδεικνύεται στην ενότητα αυτή ότι η εξίσωση Sylvester
έχει μοναδική λύση αν και μόνο αν σ(A) ∩ σ(−B) = ∅. Συνεπώς η εξίσωση Lyapunov έχει μοναδική
λύση αν και μόνο αν σ(A)∩ σ(−A) = ∅, η ισοδύναμα αν και μόνο αν λi(A) + λ̄j(A) ̸= 0 για κάθε ζεύγος
ιδιοτιμών λi, λj ∈ σ(A), ιδιότητα που ισχύει αν ο A είναι πίνακας Hurwitz.

Παρατήρηση: ΄Εστω A πίνακας Hurwitz. Τοτε από την παραπάνω παρατήρηση η λύση P της
ATP + PA +Q = 0 υπάρχει και είναι μοναδική. ΄Εστω Q = QT

. Τότε αναγκαστικά P = P T
. Γιατι αν

P είναι λύση, δηλ. ATP + PA +Q = 0, τότε (ATP + PA +Q)T = 0 ⇒ P TA + ATP T +Q = 0, δηλ.
P T
είναι επίσης λύση. Λόγω μοναδικότητας λύσης έχουμε P = P T

.

Μία γενίκευση του παραπάνω Θεωρήματος όταν Q = QT ⪰ 0 είναι η παρακάτω:

Λήμμα: ΄Εστω A ∈ Rn×n
πίνακας Hurwitz. Τότε ισχύουν τα παρακάτω σε σχέση με την (μοναδική)

λύση της εξίσωσης Lyapunov ATP + PA+Q = 0:

1. P =
∫∞
0 eA

T tQeAtdt.

2. (α) Αν Q = QT ≻ 0 τότε P = P T ≻ 0. (β) Αν Q = QT ⪰ 0, τότε P = P T ⪰ 0.

3. Αν Q = QT ⪰ 0, τότε P = P T ≻ 0 αν και μόνο αν Σo(A,Q) είναι πλήρως παρατηρήσιμο.

Απόδειξη: Το (1) και (2α) έχουν ήδη αποδειχθεί. Παρόμοια, το (2β) επίσης ισχύει: Το ολοκλήρωμα

συγκλίνει εφόσον ο A είναι πίνακας Hurwitz και P = P T ⪰ 0 ως ολοκλήρωμα συμμετρικού, θετικά
ημιορισμένου πίνακα στο διάστημα [0,∞). (3.⇒) ΄Εστω ότι P = P T ≻ 0 και έστω (για αντίφαση) ότι το
σύστημα Σo(A,Q) δεν είναι πλήρως παρατηρήσιμο. Τότε υπάρχει ζεύγος (λ,v), λ ∈ σ(A), v ∈ Cn\{0}
τέτοιο ώστε Av = λv και Qv = 0. Επομένως:

v∗(ATP + PA+Q)v = 0 ⇒ 2Re(λ)(v∗Pv) = 0 ⇒ Re(λ) = 0
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που είναι άτοπο γιατι ο A είναι πίνακας Hurwitz εξ΄ υποθέσεως. (3.⇐) ΄Εστω Q = QT ⪰ 0 και Σo(A,Q)
πλήρως παρατηρήσιμο. Από το (2b) έχουμε P = P T ⪰ 0. Αν P = P T ≻ 0 η απόδειξη ολοκληρώθηκε.
΄Εστω (για αντίφαση) ότι det(P ) = 0. Τότε υπάρχει ξ ∈ Rn

, ξ ̸= 0, τέτοιο ώστε Pξ = 0. Επομένως:

ξT (ATP + PA+Q)ξ = 0 ⇒ ξTQξ = 0 ⇒ Qξ = 0

αφού Q = QT ⪰ 0. Επομένως ker(P ) ⊆ ker(Q). Επίσης:

(ATP + PA+Q)ξ = 0 ⇒ PAξ = 0 ⇒ ξTAT (ATP + PA+Q)Aξ = ξTATQAξ = 0 ⇒ QAξ = 0

Επαγωγικά:

QAkξ = 0 για κάθε k ∈ N0 ⇒ QeAtξ = 0 για κάθε t ∈ R

και επομένως το σύστημα Σo(A,Q) δεν είναι πλήρως παρατηρήσιμο που είναι άτοπο εξ΄ υποθέσεως. □

Πόρισμα: ΄Εστω A ∈ Rn×n
πίνακας Hurwitz. Τότε το σύστημα Σo(A,C) είναι πλήρως παρατηρήσιμο αν

και μόνο αν η λύση P της εξίσωσης Lyapunov ATP +PA+CTC = 0 είναι θετικά ορισμένη. Αντίστοιχα,
αν A ∈ Rn×n

είναι πίνακας Hurwitz, τότε το Σi(A,B) είναι πλήρως ελέγξιμο αν και μόνο αν η λύση Q
της εξίσωσης Lyapunov AQ+QAT +BBT = 0 είναι θετικά ορισμένη.

Απόδειξη: Προκύπτει άμεσα από το μέρος (3) του παραπάνω Λήμματος και την δυικότητα ελεγξιμότητας

και παρατηρησιμότητας. Οι πίνακες P και Q είναι οι πίνακες Gramian παρατηρησιμότητας και
ελεγξιμότητας, αντίστοιχα, του συστήματος Σ(A,B,C). □

Σε ορισμένες περιπτώσεις θέλουμε να συνάγουμε συμπεράσματα για το φάσμα του πίνακα A από την λύση
εξίσωσης Lyapunov. Στις περιπτώσεις αυτές το παρακάτω Λήμμα είναι χρήσιμο:

Λήμμα: ΄Εστω P η λύση της εξίσωσης Lyapunov ATP + PA+Q = 0. Τότε,

1. Re(λi(A)) ≤ 0 για κάθε λi(A) ∈ σ(A) αν P = P T ≻ 0 και Q = QT ⪰ 0.

2. A Hurwitz αν P = P T ≻ 0 και Q = QT ≻ 0.

3. A Hurwitz αν P = P T ⪰ 0, Q = QT ⪰ 0 και Σo(A,Q) ανιχνεύσιμο (detectable).

Απόδειξη: ΄Εστω (λ,v) ζεύγος ιδιοτιμής/ιδιοδιανύσματος του πίνακα A. Τότε Av = λv.
Πολλαπλασιάζοντας την εξίσωση Lyapunov από τα δεξιά με v και από τα αριστερά με v∗

, έχουμε:

v∗(ATP + PA+Q)v = 2Reλ(v∗Pv) + v∗Qv = 0

Αν P ≻ 0, τότε v∗Pv > 0 και επομένως Reλ ≤ 0 αν Q ⪰ 0 και Reλ < 0 αν Q ≻ 0 που αποδεικνύουν το
(1) και το (2). Για να δείξουμε το (3), έστω ότι Re(λ) ≥ 0. Τότε v∗Qv = 0 ⇒ Qv = 0. ΄Αρα λ ∈ C̄+

και είναι μη-παρατηρήσιμη ιδιοτιμή, εφόσον[
λIn −A

C

]
v = 0

που αντιβαίνει στην υπόθεση ότι το σύσημα Σo(A,Q) είναι ανιχνεύσιμο. □

2.8 Η έμμεση μέθοδος Lyapunov

΄Εστω το σύστημα x′ = f(x) όπου f : D → Rn
συνεχώς διαφορίσιμη συνάρτηση και D χωρίο (ανοικτό

συνεκτικό υποσύνολο) του Rn
. Υποθέτουμε ότι x∗ = 0 ∈ D και f(0) = 0, δηλ. ότι x∗ = 0 είναι σημείο

ισορροπίας. ΄Εστω x ∈ D. Από το θεώρημα μέσης τιμής:

fi(x) = fi(0) +
∂fi
∂x

(z)x, i = 1, 2, . . . , n
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όπου z σημείο που κείται στο ευθύγραμμο τμήμα του ενώνει τα σημεία x και 0. Υποθέτουμε ότι το
ευθύγραμμο τμήμα που ενώνει τα δύο αυτά σημεία κείται εξ΄ ολοκλήρου στο D. Αυτό συμβαίνει για
παράδειγμα (για κάθε x ∈ D) αν το σύνολο D είναι κυρτό. Εφόσον f(0) = 0 μπορούμε να γράψουμε:

fi(x) =
∂fi
∂x

(z)x =
∂fi
∂x

(0)x+

[
∂fi
∂x

(z)− ∂fi
∂x

(0)

]
x

Ισοδύναμα

f(x) = Ax+ g(x)

όπου

A =
∂f

∂x
(0), gi(x) =

[
∂fi
∂x

(z)− ∂fi
∂x

(0)

]
x

και οι συναρτήσεις gi(x, i = 1, 2, . . . , n είναι οι γραμμές του διανύσματος g(x. Η συνάρτηση gi(x)
φράσσεται ως:

|gi(x)| ≤
∥∥∥∥∂fi∂x

(z)− ∂fi
∂x

(0)

∥∥∥∥ ∥x∥

Λόγω συνέχειας της συνάρτησης [∂f/∂x] (η συνάρτηση f είναι συνεχώς διαφορίσιμη):

∥g(x)∥
∥x∥

→ 0 καθώς ∥x∥ → 0

Η παραπάνω ιδιότητα υπονοεί ότι σε μία γειτονιά (αρκούντως μικρής ακτίνας) γύρω από το σημείο

ισορροπίας (εδώ x∗ = 0 χωρίς βλάβη γενικότητας) ίσως να μπορούμε να προσεγγίσουμε το μη γραμμικό
σύστημα: x′ = f(x) από το γραμμικοποιημένο σύστημα: x′ = Ax, υπό την έννοια ότι η τροχιά
του μη-γραμμικού συστήματος στην περιοχή αυτή μπορεί να προσεγγίζεται με ακρίβεια από την τροχιά

του γραμμικοποιημένου συστήματος και επομένως οι ιδιότητες ευστάθειας του σημείου ισορροπίας

του μη-γραμμικού συστήματος να αντιστοιχούν (τουλάχιστον τοπικά) με αυτές του γραμμικοποιημένου

συστήματος. ΄Οπως θα δούμε στην συνέχεια η διαίσθηση αυτή είναι σωστή μόνο κάτω από ορισμένες

συνθήκες και αποτελεί την βάση της λεγόμενης έμμεσης μεθόδου Lyapunov (Lyapunov’s indirect
method).

Θεώρημα (ασυμπτωτικής ευστάθειας): ΄Εστω x∗ = 0 σημείο ισορροπίας του μη-γραμμικού συστήματος
x′ = f(x) όπου f : D → Rn

συνεχώς διαφορίσιμη συνάρτηση και D γειτονιά του x∗ = 0. ΄Εστω

A =
∂f

∂x
(x)

∣∣∣∣
x=0

Τότε, αν Reλi < 0 για κάθε λi ∈ σ(A), το σημείο ισορροπίας x∗ = 0 είναι ασυμπτωτικά ευσταθές.

Απόδειξη: ΄Εστω A πίνακας Hurwitz. Τότε, από προηγούμενο Θεώρημα γνωρίζουμε ότι για κάθε
Q = QT ≻ 0 η (μοναδική) λύση της εξίσωσης Lyapunov: ATP + PA + Q = 0 είναι συμμετρικός και
θετικά ορισμένος πίνακας P . ΄Εστω V (x) = xTPx υποψήφια συνάρτηση Lyapunov για το μη γραμμικό
σύστημα. Η παράγωγος της V κατά μήκος της τροχιάς του συστήματος είναι:

V̇ (x) = xTP f(x) + fT (x)Px

= xTP [Ax+ g(x)] + [xTAT + gT (x)]Px

= xT (PA+ATP )x+ 2xTPg(x)

= −xTQx+ 2xTPg(x)

Ο πρώτος όρος (−xTQx) στο δεξιό μέλος της εξίσωσης είναι αρνητικά ορισμένη συνάρτηση και ο δεύτερος
(2xTPg(x)) μπορεί να έχει θετικό η αρνητικό πρόσημο. Η συνάρτηση g(x) ικανοποιεί:

∥g(x)∥
∥x∥

→ 0 καθώς ∥x∥ → 0
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Επομένως, για κάθε ϵ > 0 υπάρχει δ > 0 τέτοιο ώστε:

0 < ∥x∥ < δ ⇒ 0 < ∥g(x)∥ < ϵ∥x∥

Επομένως

V̇ (x) = −xTQx+ 2xTPg(x)

< −xTQx+ 2ϵ∥P∥∥x∥2 για κάθε 0 < ∥x∥ < δ

≤ −λmin(Q)∥x∥2 + 2ϵ∥P∥∥x∥2 για κάθε 0 < ∥x∥ < δ

= −(λmin(Q)∥x∥2 − 2ϵ∥P∥)∥x∥2 για κάθε 0 < ∥x∥ < δ

Επιλέγοντας 0 < ϵ < λmin(Q)/(2∥P∥, η συναρτηση V̇ (x) είναι αρνητικά ορισμένη και το σημείο ισορροπίας
x∗ = 0 είναι ασυμπτωτικά ευσταθές. □

Θεώρημα (αστάθειας): ΄Εστω x∗ = 0 σημείο ισορροπίας του μη-γραμμικού συστήματος x′ = f(x) όπου
f : D → Rn

συνεχώς διαφορίσιμη συνάρτηση και D γειτονιά του x∗ = 0. ΄Εστω

A =
∂f

∂x
(x)

∣∣∣∣
x=0

Τότε, αν Reλi > 0 για (τουλάχιστον) μία ιδιοτιμή λi ∈ σ(A), το σημείο ισορροπίας x∗ = 0 είναι ασταθές.

Απόδειξη: Υποθέτουμε αρχικά (για απλούστευση της απόδειξης) ότι ο πίνακας A δεν έχει ιδιοτιμές
στον άξονα των φανταστικών. Τότε, Υπάρχει πίνακας T ∈ Rn×n

τέτοιος ώστε:

TAT−1 =

[
−A1 0
0 A2

]
όπου A1 και A2 πίνακες Hurwitz. ΄Εστω

z = Tx =

[
z1
z2

]
όπου ο διαχωρισμός του διανύσματος z στα διανύσματα z1 και z2 είναι συμβατός με τις διαστάσεις των
πινάκων A1 και A2, αντίστοιχα. ΄Εστω η αλλαγή μεταβλητών: z = Tx. Τότε

z′ =

[
z′1
z′2

]
= Tx′ = T (Ax+ g(x)) = TAT−1z+ Tg(T−1z) =

[
−A1 0
0 A2

] [
z1
z2

]
+

[
g1(z)
g2(z)

]
όπου [

g1(z)
g2(z)

]
= Tg(x) = Tg(T−1z)

Επομένως

z′1 = −A1z1 + g1(z), z′2 = A2z1 + g2(z)

και άρα:

∥gi(z)∥ ≤
∥∥∥∥[ g1(z)

g2(z)

]∥∥∥∥ = ∥Tg(x)∥ ≤ ∥T∥ ∥g(x)∥, i = 1, 2

Απο προηγούμενη ανάλυση, για κάθε ϵ > 0 υπάρχει δ > 0 τέτοιο ώστε

∥g(x)∥ < ϵ∥x∥ για κάθε ∥x∥ < δ, x ̸= 0

΄Αρα για i = 1, 2

∥gi(z)∥ ≤ ∥T∥∥g(x)∥ < ϵ∥T∥∥x∥ = ϵ∥T∥∥T−1z∥ ≤ ϵ∥T∥∥T−1∥∥z∥ = ϵκ(T )∥z∥
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για κάθε

∥x∥ < δ, x ̸= 0 ⇔ ∥T−1z∥ < δ, T−1z ̸= 0 ⇐ ∥T−1∥∥z∥ < δ, z ̸= 0 ⇔ ∥z∥ < δ∥T−1∥−1, z ̸= 0

Θέτοντας ϵ̂ := ϵκ(T ) και δ̂ := δ∥T−1∥−1
συμπεραίνουμε ότι για κάθε ϵ̂ > 0 υπάρχει δ̂ = δ̂(ϵ̂) > 0 τέτοιο

ώστε:

∥gi(z)∥ < ϵ̂∥z∥ για κάθε ∥z∥ < δ̂, z ̸= 0

όπου i = 1, 2. Το σημείο z = 0 είναι σημείο ισορροπίας του μη γραμμικού συστήματος εκφρασμένου στις
νέες (z) συντεταγμένες. Επίσης, εφόσον det(T ) ̸= 0, κάθε συμπέρασμα ως προς τις ιδιότητες ευστάθειας
του σημείου z = 0 (στις νέες συντεταγμένες) αυτομάτως αντιστοιχεί στο ίδιο συμπέρασμα ως προς τις
ιδιότητες ευστάθειας του σημείου ισορροπίας x = 0 (στις αρχικές συντεταγμένες).

Θα αποδείξουμε αστάθεια του σημείου ισορροπίας z = 0 χρησιμοποιώντας το Θεώρημα Chataev: ΄Εστω
Q1 και Q2 συμμετρικοί, θετικά ορισμένοι πίνακες με διαστάσεις ίσες με αυτές των A1 και A2, αντίστοιχα.

΄Εστω P1 και P2 οι (μοναδικές) λύσεις των εξισώσεων Lyapunov:

PiAi +AT
i Pi +Qi = 0, i = 1, 2

Εφόσον A1 και A2 πίνακες Hurwitz έχουμε P1 = P T
1 ≻ 0 και P2 = P T

2 ≻ 0. ΄Εστω η συνάρτηση

V (z) = zT1 P1z1 − zT2 P2z2 =
[
zT1 zT2

] [ P1 0
0 −P2

] [
z1
z2

]
Στον υπόχωρο z2 = 0, V (z) > 0 σε σημεία αυθαίρετα κοντά στο σημείο 0. ΄Εστω

U = {z ∈ Rn : ∥z∥ ≤ δ̂ και V (z) > 0}

Για κάθε z ∈ U :

V̇ (z) = (z1
′)TP1z1 + zT1 P1z

′
1 − (z2

′)TP2z2 − zT2 P2z
′
2

= (−zT1A
T
1 + gT

1 (z))P1z1 + zT1 P1(−A1z1 + g1(z))− (zT2A
T
2 + gT

2 (z))P2z2 − zT2 P2(A2z2 + g2(z))

= −zT1 (P1A1 +AT
1 P1)z1 + 2zT1 P1g1(z)− zT2 (P2A2 +AT

2 P2)z2 − 2zT2 P2g2(z)

= zT1Q1z1 + zT2Q2z2 + 2zT
[

P1g1(z)
−P2g2(z)

]
≥ λmin(Q1)∥z1∥2 + λmin(Q2)∥z2∥2 − 2∥z∥

√
∥P1∥2∥g1(z)∥2 + ∥P2∥2∥g2(z)∥2

Θέτοντας

α := min{λmin(Q1), λmin(Q2)}

έχουμε:

λmin(Q1)∥z1∥2 + λmin(Q2)∥z2∥2 ≥ α∥z1∥2 + α∥z2∥2 = α(∥z1∥2 + ∥z2∥2) = α∥z∥2

Επίσης, θέτοντας

β = max{∥P1∥, ∥P2∥}

έχουμε

∥P1∥2∥g1(z)∥2 + ∥P2∥2∥g2(z)∥2 ≤ β2∥g1(z)∥2 + β2∥g2(z)∥2 < 2β2ϵ̂2∥z∥2

οπότε

2∥z∥
√

∥P1∥2∥g1(z)∥2 + ∥P2∥2∥g2(z)∥2 < 2
√
2βϵ̂∥z∥2

και

V̇ (z) > (α− 2
√
2βϵ̂)∥z∥2
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Επιλέγοντας:

ϵ̂ <
α

2
√
2β

έχουμε ότι V̇ (z) > 0 για z ∈ U και επομένως από το Θεώρημα Chataev το σημείο ισορροπίας z = 0 είναι
ασταθές. □

Παράδειγμα: Εξετάζουμε το μαθηματικό εκκρεμές με τριβή, του οποίου οι εξισώσεις είναι:

x′1 = x2, x′2 = −a sinx1 − bx2, a > 0, b > 0

Υπάρχουν δύο σημεία ισορρο[πίας: (x1, x2) = (0, 0) και (x1, x2) = (π, 0). Ο πίνακας Jacobian του
συστήματος είναι:

∂f

∂x
=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
0 1

−a cosx1 −b

]
Στο σημείο ισορροπίας (x1, x2) = (0, 0):

A1 =
∂f

∂x

∣∣∣∣
(x1,x2)=(0,0)

=

[
0 1
−a −b

]
Ο πίνακας A1 έχει ιδιοτιμές:

ϕA1(λ) = det

[
λ −1
a λ+ b

]
= λ2 + bλ+ a = 0 ⇒ λ1,2 = −1

2
b± 1

2

√
b2 − 4a

Επομένως Re(λi) < 0, i = 1, 2, και το σημείο ισορροπίας είναι ασυμπτωτικά ευσταθές. Στο σημείο
ισορροπίας (x1, x2) = (π, 0),

A2 =
∂f

∂x

∣∣∣∣
(x1,x2)=(π,0)

=

[
0 1
a −b

]
Ο πίνακας A2 έχει ιδιοτιμές:

ϕA1(λ) = det

[
λ −1
−a λ+ b

]
= λ2 + bλ− a = 0 ⇒ λ1,2 = −1

2
b± 1

2

√
b2 + 4a

Επομένως, μία ιδιοτιμή έχει θετικό πραγματικό μέρος και το σημείο ισορροπίας είναι ασταθές.

2.9 Μη-γραμμικά συστήματα ανάδρασης

΄Εστω μη-γραμμικό σύστημα της μορφής

x′(t) = g(x(t),u(t)), g(0,0) = 0 (*)

όπου u(t) είναι η συνάρτηση ελέγχου (υπό σχεδίαση) και g ∈ C1(Rn × Rm,Rn) (συνεχώς διαφορίσιμη
συνάρτηση Rn × Rm → Rn

). Από τον ορισμό συμπεραίνουμε ότι το σύστημα ανοικτού βρόγχου

x′ = g(x(t),0) έχει σημείο ισορροπίας στο x∗ = 0. Το πρόβλημα που εξετάζουμε είναι το εξής: Κάτω
από ποιές συνθήκες υπάρχει ανάδραση καταστάσεων u = k(x), k(0) = 0, που να σταθεροποιεί το σημείο
ισορροπίας x∗ = 0, δηλαδή τέτοια ώστε το σημείο ισορροπίας x∗ = 0 του συστήματος κλειστού βρόγχου:
x′ = g(x,k(x)) να είναι ασυμπτωτικά ευσταθές.

Ορισμός: Το σύστημα (∗) είναι C1
-σταθεροποιήσιμο αν υπάρχει k ∈ C1(Rn,Rm) με k(0) = 0 τέτοιο

ώστε το σημείο x∗ = 0 να είναι ασυμπτωτικά ευσταθές σημείο ισορροπίας του συστήματος x′ = g(x,k(x)).
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Το πρόβλημα της σταθεροποίησης του συστήματος (∗) συνδέεται άμεσα με το πλόβλημα της σταθερο-
ποίησης της γραμμικοποίησης του συστήματος. ΄Εστω το γραμμικοποιημένο σύστημα Σi(A,B) : x′ =
Ax+Bu, όπου

A = (D1g)(0, 0) =
∂g

∂x
(0, 0) ∈ Rn×n, B = (D2g)(0, 0) =

∂g

∂u
(0, 0) ∈ Rn×n

Τότε έχουμε το ακόλουθο αποτέλεσμα:

Θεώρημα: Το σύστημα (∗) είναι C1
-σταθεροποιήσιμο αν η γραμμικοποίηση του Σi(A,B) είναι

σταθεροποιήσιμη (δηλαδή υπάρχει F ∈ Rm×n
τέτοιος ώστε ο πίνακας A+BF να είναι Hurwitz).

Απόδειξη: ΄Εστω ότι το γραμμικοποιημένο σύστημα Σi(A,B) είναι σταθεροποιήσιμο. Τότε υπάρχει
F ∈ Rm×n

, τέτοιος ώστε ο πίνακας A + BF να είναι Hurwitz. Εφαρμόζοντας την (γραμμική) ανάδραση
u = Fx στο (μή-γραμμικό) σύστημα (∗), έχουμε

x′ = f(x), όπου f(x) := g(x, Fx)

Από τον κανόνα της αλυσίδας

(Df)(0) =
[
(D1g)(0, 0) (D2g)(0, 0)

] [ I
F

]
= (D1g)(0, 0) + (D2g)(0, 0)F = A+BF

Από την έμμεση μέθοδο Lyapunov (Θεώρημα ασυμπτωτικής ευστάθειας) συμπεραίνουμε ότι το x∗ = 0
είναι ασυμπτωτικά ευσταθές σημείο ισορροπίας για το σύστημα ανάδρασης. □

Η αντίστροφη συνεπαγωγή του παραπάνω Θεωρήματος δεν ισχύει: Αν το γραμμικοποίημένο σύστημα

δεν είναι σταθεροποιήσιμο, αυτό δεν σημαίνει απαραίτητα οτι το μή-γραμμικό σύστημα δεν είναι C1
-

σταθεροποιήσιμο:

Παράδειγμα: ΄Εστω το σύστημα:

x′ = g(x, u) = u(t)x2(t), x(t) ∈ R, u(t) ∈ R

Το γραμμικοποιημένο σύστημα είναι

x′(t) = Ax(t) +Bu(t), A =
∂g

∂x
(0, 0) = 2xu|(0,0) = 0, B =

∂g

∂u
(0, 0) = x2|(0,0) = 0

΄Αρα το γραμμικοποιημένο σύστημα: x′(t) = 0 δεν είναι σταθεροποιήσιμο. ΄Οπως θέτοντας u(t) = −x(t),
το μη-γραμμικό σύστημα σταθεροποιείται, δηλαδή το σημείο ισορροπίας x∗ = 0 του συστήματος κλειστού
βρόγχου x′(t) = −x3(t) είναι ασυμπτωτικά ευσταθές.

Θεώρημα: ΄Εστω ότι το γραμμικοποιημένο σύστημα

Σi(A,B) := Σi

(
∂g

∂x
(0, 0),

∂g

∂u
(0, 0)

)
του μη-γραμμικού συστήματος (∗) έχει τουλάχιστον μία ιδιοτιμη λ ∈ σ(A) με θετικό πραγματικό μέρος.
Τότε το σύστημα (∗) δεν είναι C1

-σταθεροποιήσιμο.

Απόδειξη: ΄Εστω Σi(A,B) το γραμμικοποιημένο σύστημα όπως ορίστηκε παραπάνω. Από την υπόθεση
υπάρχει ιδιοτιμή λ ∈ σ(A) με Re(λ) > 0. ΄Εστω k συνεχώς διαφορίσιμη συνάρτηση k : Rn → Rm

με

k(0) = 0. Θέτοντας F = (Dk)(0) ∈ Rm×n
και ορίζοντας f : Rn → Rn

ως f(x) = g(x,u), u = k(x),
έχουμε

(Df)(x) =
∂g

∂x
(x,u) +

∂g

∂u
(x,u)(Dk)(x)
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και επομένως

(Df)(0) =
∂g

∂x
(0,0) +

∂g

∂u
(0,0)(Dk)(0) = A+BF

Εφόσον λ ∈ σ(A), λ μη-ελέγξιμη ιδιοτιμή του πίνακα A μέσω του πίνακα B, τότε λ ∈ σ(A + BF ) για
κάθε F ∈ Rm×n

, άρα και για τον συγκεκριμένο F που επιλέξαμε. Από την έμμεση μέθοδο Lyapunov
(Θεώρημα αστάθειας) συμπεραίνουμε ότι το x∗ = 0 είναι ασταθές σημείο ισορροπίας για το σύστημα
ανάδρασης x′ = f(x) = g(x,k(x)). ΄Αρα το (∗) δεν είναι C1

-σταθεροποιήσιμο. □
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