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Preface

Linear algebra has in recent years become an essential part of the mathematical
background required of mathematicians, engineers, physicists and other scientists.
This requirement reflects the importance and wide applications of the subject
matter.

This book is designed for use as a textbook for a formal course in linear algebra
or as a supplement to all current standard texts. It aims to present an introduction
to linear algebra which will be found helpful to all readers regardless of their fields
of specialization. More material has been included than can be covered in most first
courses. This has been done to make the book more flexible, to provide a useful
book of reference, and to stimulate further interest in the subject.

Each chapter begins with clear statements of pertinent definitions, principles
and theorems together with illustrative and other descriptive material. This is fol-
lowed by graded sets of solved and supplementary problems. The solved problems
serve to illustrate and amplify the theory, bring into sharp focus those fine points
without which the student continually feels himself on unsafe ground, and provide
the repetition of basic principles so vital to effective learning. Numerous proofs of
theorems are included among the solved problems. The supplementary problems
serve as a complete review of the material of each chapter.

The first chapter treats systems of linear equations. This provides the motivation
and basic computational tools for the subsequent material. After vectors and
matrices are introduced, there are chapters on vector spaces and subspaces and on
inner products. This is followed by chapters covering determinants, eigenvalues and
eigenvectors, and diagonalizing matrices (under similarity) and quadratic forms
(under congruence). The later chapters cover abstract linear maps and their canon-
ical forms, specifically the triangular, Jordan and rational canonical forms. The last
chapter treats abstract linear maps on inner product spaces.

The main changes in the second edition have been for pedagogical reasons
(form) rather than in content. Here, the notion of a matrix mapping is introduced
early in the text, and inner products are introduced right after the chapter on vector
spaces and subspaces. Also, algorithms for row reduction, matrix inversion comput-
ing determinants, and diagonalizing matrices and quadratic forms are presented
using algorithmic notation. Furthermore, such topics as elementary matrices, LU
factorization, Fourier coefficients, and various norms in R" are introduced directly
in the text, rather than in the problem sections. Lastly, by treating the more
advanced abstract topics in the latter part of the text, we make this edition more
suitable for an elementary course or for a two-semester course in linear algebra.

I wish to thank the staff of the McGraw-Hill Schaum Series, especially John
Aliano, David Beckwith and Margaret Tobin, for invaluable suggestions and for
their very helpful cooperation. Lastly, I want to express my gratitude to Wilhelm
Magnus, my teacher, advisor and friend, who introduced me to the beauty of mathe-
matics.

Temple University SEYMOUR LiPSCHUTZ
January, 1991
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Chapter 1

Systems of Linear Equations

1.1 INTRODUCTION

The theory of linear equations plays an important and motivating role in the subject of linear
algebra. In fact, many problems in linear algebra are equivalent to studying a system of linear equa-
tions, e.g., finding the kernel of a linear mapping and characterizing the subspace spanned by a set of
vectors. Thus the techniques introduced in this chapter will be applicable to the more abstract treat-
ment given later. On the other hand, some of the results of the abstract treatment will give us new
insights into the structure of “concrete™ systems of linear equations.

This chapter investigates systems of linear equations and describes in detail the Gaussian elimi-
nation algorithm which is used to find their solution. Although matrices will be studied in detail in
Chapter 3, matrices, together with certain operations on them, are also introduced here, since they are
closely related to systems of linear equations and their solution.

All our equations will involve specific numbers called constants or scalars. For simplicity, we
assume in this chapter that all our scalars belong to the real field R. The solutions of our equations will
also involve n-tuples u = (ky, k,, ..., k,) of real numbers called vectors. The set of all such n-tuples is
denoted by R".

We note that the results in this chapter also hold for equations over the complex field C or over any
arbitrary field K.

1.2 LINEAR EQUATIONS, SOLUTIONS

By a linear equation in unknowns x,, x,, ..., X,,» W& mean an equation that can be put in the
standard form:

ayx, +a,x;+ - +a,x,=b (1.1

where a,, a,, ..., a,, b are constants. The constant a, is called the coefficient of x, and b is called the
constant of the equation.
A solution of the above linear equation is a set of values for all the unknowns, say x, =k,,

x; =ky, ..., x, = k,, or simply an n-tuple u = (k, k,, ..., k,) of constants, with the property that the
following statement (obtained by substituting each k; for x; in the equation) is true:

aky +ak, +- +ak,=b

This set of values is then said to satisfy the equation.
The set of all such solutions is called the solution set or general solution or, simply, the solution of
the equation.

Remark: The above notions implicitly assume there is an ordering of the
unknowns. In order to avoid subscripts, we will usually use variables x, y, z, as
ordered, to denote three unknowns, x, y, z, t, as ordered, to denote four unknowns, and
x, ¥, z, S, t, as ordered, to denote five unknowns.
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Example 1.1
(@ The equation 2x — Sy + 3xz = 4 is not linear since the product xz of two unknowns is of second degree.

() The equation x + 2y — 4z + t = 3 is linear in the four unknowns x, y, z, t.
The 4-tuple u = (3, 2, 1, 0) is a solution of the equation since

3I+22)—41)+0=3 or 3=3
is a true statement. However, the 4-tuple v = (1, 2, 4, 5) is not a solution of the equation since

1+2(2)—44)+5=3 or —6=3

is not a true statement.

Linear Equations in One Unknown
The following basic result is proved in Problem 1.5.

Theorem 1.1: Consider the linear equation ax = b.
(i) Ifa+# 0, then x = b/a is a unique solution of ax = b.
(1) Ifa=0, but b+ 0, then ax = b has no solution.

(i) Ifa = 0and b = 0, then every scalar k is a solution of ax = b.

Example 1.2

(a) Solvedx —1=x+6.
Transpose to obtain the equation in standard form: 4x — x = 6 + 1 or 3x = 7. Multiply by 1/3 to obtain
the unique solution x = § [Theorem 1.1(i)].

(b) Solve2x -5 —x=x+3.
Rewrite the equation in standard form: x — 5 = x + 3, or x — x = 3 + 8, or Ox = 8. The equation has no
solution [Theorem 1.1(ii)].

(c) Solved + x—3=2x+1-—x

Rewrite the equation in standard form: x + l =x+ l,or x —x=1—1, or Ox = 0. Every scalar k is a
solution [Theorem 1.1(iii)].

Degenerate Linear Equations
A linear equation is said to be degenerate if it has the form
Ox; +0x; +---+0x,=b
that is, if every coefficient is equal to zero. The solution of such an equation is as follows:
Theorem 1.2: Consider the degenerate linear equation Ox, + Ox; + --- + Ox, = b.

(i) If the constant b # 0, then the equation has no solution.
(i) If the constant b = O, then every vector u = (k,, k,. ..., k,) is a solution.
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Proof. (i) Letu=(k,, k,, ..., k,) be any vector. Suppose b # 0. Substituting u in the equation we
obtain:

Ok, + Ok, + -+ +Ok,=b or O+0+--+0=b or O=b

This is not a true statement since b # 0. Hence no vector u is a solution.
(ii) Suppose b = 0. Substituting u in the equation we obtain:

Ok, + Ok, +---+0k,=0 or O0+0+--+0=0 or 0=0

which is a true statement. Thus every vector u in R is a solution, as claimed.

Example 1.3. Describe the solution of 4y — x — 3y +3=2+x—-2x + y + 1.
Rewrite in standard form by collecting terms and transposing:

y—Xx+3=y—x+3 or v—x—y+x=3-3 or Ox + 0y =0

The equation is degencrate with a zero constant; thus every vector u = (a, b) in R? is a solution.

Nondegenerate Linear Equations, Leading Unknown
This subsection covers the solution of a single nondegencrate linear equation in one or more
unknowns, say
a,x, + a3x; + - +a,x,=b

By the leading unknown in such an equation, we mean the first unknown with a nonzero coefficient. Its
position p in the equation is therefore the smallest integral value of j for which 4; # 0. In other words,
x, is the leading unknown if a; = O for j < p, but a, # 0.

Example 1.4. Consider the linear equation Sy — 2z = 3. Here y is the leading unknown. If the unknowns are x, y,
and z, then p = 2 is its position; but if y and z are the only unknowns. then p = 1.

The following theorem, proved in Problem 1.9, applies.

Theorem 1.3: Consider a nondegenerate linear equation a,x, + d,x, + -~ + a,x, = b with leading
unknown x,.

(i) Any set of values for the unknowns x; with j # p will yield a unique solution of the
equation. (The unknowns x; are called free variables since one can assign any values
to them.)

(i) Every solution of the equation is obtained in (i).
(The set of all solutions is called the general solution of the equation.)

Example 1.5
(a) Find three particular solutions to the equation 2x — 4y + z = 8.

Here x is the leading unknown. Accordingly, assign any values to the free variables y and z, and then
solve for x to obtain a solution. For example:
(1) Sety=1andz = 1. Substitution in the equation yields

2x —4NH+1=8 or 2x—4+41=8 or 2x=11 or x=4

Thus u, = (4, 1, 1) is a solution.
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(2) Sety= |, z=0.Substitution yields x = 6. Hence u, = (6, 1, 0) is a solution.
(3) Set y =0,z = 1. Substitution yields x = 3. Thus u; = (, 0, 1) is a solution.

(b) The general solution of the above equation 2x — 4y + z = 8 is obtained as follows.

First, assign arbitrary values (called parameters) to the free variables, say, y = a and z = b. Then substitute
in the equation to obtain

2x—4a+b=8 or 2x=8+4a-b or x=4+2a—3b
Thus
x=4+2a—4%b,y=a,z=bH or u=(4+2a—13b,ab

is the general solution.

1.3 LINEAR EQUATIONS IN TWO UNKNOWNS

This section considers the special case of linear equations in two unknowns, x and y, that is,
equations that can be put in the standard form

ax + by =c

where a, b, ¢ are real numbers. (We also assume that the equation is nondegenerate, i.c., that a and b are
not both zero.) Each solution of the equation is a pair of real numbers, u = (k,, k;), which can be found
by assigning an arbitrary value to x and solving for y, or vice versa.

Every solution u = (k,, k;) of the above equation determines a point in the cartesian plane R
Since a and b are not both zero, all such solutions correspond precisely to the points on a straight line
(whence the name “linear equation”). This line is called the graph of the equation.

Example 1.6. Consider the linear equation 2x + y = 4. We find three solutions of the equation as follows. First
choose any value for either unknown, say x = —2. Substitute x = — 2 into the equation to obtain

A-+y=4 or —4+y=4 or y=8

Thus x = —2, y = —8 or the point (—2, 8) in R? is a solution. Now find the y-intercept, that is, substitute x = 0 in
the equation to get y = 4; hence (0, 4) on the y axis is a solution. Next find the x-intercept, that is, substitute y =0
in the equation to get x = 2; hence (2, 0) on the x axis is a solution.

To plot the graph of the equation, first plot the three solutions, (—2, 8), (0, 4), and (2, 0), in the plane R? as
pictured in Fig. 1-1. Then draw the line L determined by two of the solutions and note that the third solution also
lies on L. (Indeed, L is the set of all solutions of the equation.) The line L is the graph of the equation.

System of Two Equations in Two Unknowns

This subsection considers a system of two (nondegenerate) linear equations in the two unknowns x
and y:

ax +by=c,

a,x +by=c,

(1.2)

(Thus a, and b, are not both zero, and a, and b, are not both zero.) This simple system is treated
separately since it has a geometrical interpretation, and its properties motivate the general case.
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Graph of 2x+y=4
Fig. 1-1

A pair u = (k,, k) of real numbers which satisfies both equations is called a simultaneous solution
of the given equations or a solution of the system of equations. There are three cases, which can be
described geometrically.

(1) The system has exactly one solution. Here the graphs of the linear equations intersect in one point,
as in Fig. 1-2(a).

(2) The system has no solutions. Here the graphs of the linear equations are parallel, as in Fig. 1-2(b).

(3) The system has an infinite number of solutions. Here the graphs of the linear equations coincide, as
in Fig. 1-2(c).

{a) {b) {c)
Fig. 1-2

The special cases (2) and (3) can only occur when the coefficients of x and y in the two linear
equations are proportional; that is,

a; b a, b,
coid =a.b, —a,b; =0
% b; or a, b, a0, — a; by
Specifically, case (2) or (3) occurs if
a, b ¢ a; by ¢

respectively. Unless otherwise stated or implied, we assume we are dealing with the general case (1).
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a by
a, b,
determinant of order two. Determinants will be studied in Chapter 7. Thus the system
has a unique solution when the determinant of the coefficients is not zero.

Remark: The expression , which has the value a,b, — a, b, is called a

Elimination Algorithm

The solution to system (/.2) can be obtained by the process known as elimination, whereby we

reduce the system to a single equation in only one unknown. Assuming the system has a unique solu-
tion, this elimination algorithm consists of the following two steps:

Strep 1. Add a multiple of one equation to the other equation (or to a nonzero multiple of the other

equation) so that one of the unknowns is eliminated in the new equation.

Step 2. Solve the new equation for the given unknown, and substitute its value in one of the original

equations to obtain the value of the other unknown.

Example 1.7

(a)

(b)

(<)

Consider the system
Ly 2x+5y= 8
Lyt 3x—2y=-7
We eliminate x from the equations by forming the new equation L = 3L, — 2L,; that is, by multiplying
L, by 3 and multiplying L, by —2 and adding the resultant equations:
3L: 6x+15y=24
—2L,: —6x+ 4y=14
Addition: 19y = 38

Solving the new equation for y yields y = 2. Substituting y = 2 into one of the original equations, say L,,
yields
2x + 5(2)=8 or 2x + 10=8§ or 2x = -2 or x=—1
Thus x = —1 and y = 2, or the pair (— 1, 2), is the unique solution to the system.
Consider the system
Ly: x—3y=4
L,y —2x+6y=35

Eliminate x from the equations by multiplying L, by 2 and adding it to L,; that is, by forming the equation
L =2L, + L,. This yields the new equation Ox + Oy = 13. This is a degenerate equation which has a nonzero
constant; therefore, the system has no solution. (Geometrically speaking, the lines are parallel.)

Consider the system

L;: x—-3y= 4

Ly —2x+6y=—8
Eliminate x by multiplying L, by 2 and adding it to L,. This yields the new equation Ox + Oy = 0 which is a
degenerate equation where the constant term is also zero. Hence the system has an infinite number of solu-
tions, which correspond to the solutions of either equation. (Geometrically speaking, the lines coincide.) To

find the general solution, let y = a and substitute in L, to obtain x — 3a = 4 or x = 3a + 4. Accordingly, the
general solution to the system is

(3a+ 4, q)

where a is any real number.
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1.4 SYSTEMS OF LINEAR EQUATIONS, EQUIVALENT SYSTEMS, ELEMENTARY
OPERATIONS

This section considers a system of m linear equations, say L,, L,, ..., L., in n unknowns Xx,,
X5, ..., X, which can be put in the standard form
Ay Xy +ay3Xy + - + Gy, X, = by
azlxl + azzxz + = + ﬂz,,x,, = bz

(1.3)

Apy Xy + GpaXa + "+ Qpp Xy = bm

where the a;;, b; are constants.

A solution (or a particular solution) of the above system is a set of values for the unknowns, say
x; =k, x3 =k, ..., X, = k,, or an n-tuple u = (k, k,, ..., k,) of constants, which is a solution of each
of the equations of the system. The set of all such solutions is called the solution set or the general
solution of the system.

Example 1.8. Consider the system
Xy + 2x3 — Sx3+ 4x, =3
b:. +3x2+ x_,,*rzx‘=|

Determine whether x, = —8, x; = 4, x, = 1, x, = 2 is a solution of the system.
Substitute in each eqguation to obtain

(1) —8+24)—-51)+42=3 or -8+8-548=13 or =13
) A-B)+3IH+1-2(2)=1 or —-16+12+1—-4=1 or -7=13

No, it is not a solution since it is not a solution of the second equation.

Equivalent Systems, Elementary Operations

Systems of linear equations in the same unknowns are said to be equivalent if the systems have the
same solution set. One way of producing a system which is equivalent to a given system, with linear
equations L,, L,, ..., L, is by applying a sequence of the following operations called elementary
operations:

[E,] Interchange the ith equation and the jth equation: L;«» L;.
[E;] Muitiply the ith equation by a nonzero scalar k: kL;— L,, k # 0.
[E;] Replace the ith equation by k times the jth equation plus the ith equation: (kL; + L) — L;.
In actual practice, we apply [E,] and then [E,] in one step, that is, the operation
[E] Replace the ith equation by k' times the jth equation plus k (nonzero) times the ith equation:
(KL; + kL) — L;, k #0.
The above is formally stated in the following theorem proved in Problem 1.46.

Theorem 1.4: Suppose a system (#) of linear equations is obtained from a system () of linear equa-
tions by a finite sequence of elementary operations. Then (#) and (+) have the same
solution set.

Our method for solving the system (/.3) of linear equations consists of two steps:

Step 1. Use the above elementary operations to reduce the system to an equivalent simpler system (in
triangular or echelon form).

Step 2. Use back-substitution to find the solution of the simpler system.
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The two steps are illustrated in Example 1.9. However, for pedagogical reasons, we first discuss Step
2 in detail in Section 1.5 and then we discuss Step 1 in detail in Section 1.6.

Example 1.9. The solution of the system
x+ 2y— 4z= -4
Sx + 1ly—2lz= —22
Ix— 2y+ 3z= 11
is obtained as follows:
Step 1. First we eliminate x from the second equation by the elementary operation (—~ 5L, + L,) — L,, that is, by

multiplying L, by —5 and adding it to L,; and then we eliminate x from the third equation by applying
the elementary operation ( — 3L, + L,) = L,, i, by multiplying L, by — 3 and adding it to L,:

“S5xL;: —5x—10y+20z= 20 —3xL;: —3x—6y+122=12
L,: Sx + 1y —2lz= —-22 L,: Ix —2y+ 3z=11
new L;: y— z= =2 new L,: —8y+ 152=23

Thus the original system is equivalent to the system
x+2y— 4z=—4
Fi=  gomoacd
—8y +15z= 23
Next we eliminate y from the third equation by applying (8L, + L,) — L, that is, by multiplying L, by 8
and adding it to L,:
8x L, By— Bz= —16
Ly: —8y+152= 23
new L,: Tz= 7

Thus we obtain the following equivalent triangular system:

x+2y—4z=—4
y— z=-=2
Tz= 7

Step 2. Now we solve the simpler triangular system by back-substitution. The third equation gives z = 1. Substi-
tute z = 1 into the second equation to obtain

y=1=-2 or y=-I
Now substitute z = 1 and y = — | into the first equation to obtain
x+2=-1)—-41)= —4 or x—2—4=-4 or x—6=—4 or x=2

Thus x =2, y = —1, z = 1, or, in other words, the ordered triple (2, —1, 1), is the unique solution to the
given system.

The above two-step algorithm for solving a system of linear equations is called Gaussian elimination.
The following theorem will be used in Step 1 of the algorithm.

Theorem 1.5: Suppose a system of linear equations contains the degenerate equation
L: Ox, +0x; +---+0x,=b
(@) If b= 0, then L may be deleted from the system without changing the solution set.
(b) If b # 0, then the system has no solution.
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Proof. The proof follows directly from Theorem 1.2; that is, part (a) follows from the fact that
every vector in R" is a solution to L, and part (b) follows from the fact that L has no solution and hence
the system has no solution.

1.5 SYSTEMS IN TRIANGULAR AND ECHELON FORM

This section considers two simple types of systems of linear equations: systems in triangular form
and the more general systems in echelon form.

Triangular Form

A system of linear equations is in triangular form if the number of equations is equal to the number
of unknowns and if x, is the leading unknown of the kth equation. Thus a triangular system of linear
equations has the following form:

Gy Xy + 83X+ + Gy 41 X1+ G,X,= by
GpXa+ "+ 8y - 1Xp 1+ O X,=b,
...................................... 4
an—l.u—lxu-—l + Oy, nXqg = bu-l
Quu X = by,
wherea,, #0,a,, #0,...,a,, #0.
The above triangular system of linear equations has a unique solution which may be obtained by

the following process, known as back-substitution. First, we solve the last equation for the last
unknown, x,:

b

g

Qpn

Second, we substitute this value for x, in the next-to-last equation and solve it for the next-to-last
unknown, x,_y:

blr-l — an-—lln(bn/aun)

au—l.u—-l

Xp-1 =

Third, we substitute these values for x, and x,_, in the third-from-last equation and solve it for the
third-from-last unknown, x,_,:

bu-z - (au—z,u—jfﬂn— 1,n— l}[bh—l — Oy lu(bnfan)] — (an—E.JJamwn

Qn_2.n-2

Xp—2 =

In general, we determine x; by substituting the previously obtained values of x,, x,_{, ..., X4+ in the
kth equation:

n
bl - z Oy X
> m=k+1

X =

Ay

The process ceases when we have determined the first unknown, x,. The solution is unique since, at
each step of the algorithm, the value of x, is, by Theorem 1.1(i}, uniquely determined.

Example 1.10. Consider the system

2x +4y— z= 11
S5y+ z= 2
3z=-9
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Since the system is in triangular form it may be solved by back-substitution.
(i) The last equation yields z = —3.
(ii) Substitute in the second equation to obtain 5y —3 =2orS5y=Sory=1.
(iij) Substitute z = —3 and y = 1 in the first equation to obtain
2x + 41— (—3) =11 or 2x+4+3=11 or 2x =4 or x=2
Thus the vector u = (2, 1, —3) is the unique solution of the system.

Echelon Form, Free Variables

A system of linear equations is in echelon form if no equation is degenerate and if the leading
unknown in each equation is to the right of the leading unknown of the preceding equation. The
paradigm is:

A X; +a X+ a3 x5+ QX+ +ay,x,=by
@25, Xjy + B 1 Xjper + 7 +83,X, = b,
(1.5)

A%, + 8, 5, 41%541 + "+ @%, = b,

where 1 < j, < --- < j, and wherea,; #0,a,;, #0, ..., g,;, # 0. Note that r < n.

An unknown x; in the above echelon system (/.5) is called a free variable if x, is not the leading
unknown in any equation, that is, if x, # xy, X, # Xx,. ..., X # x;,.

The following theorem, proved in Problem 1.13, describes the solution set of an echelon system.

Theorem 1.6: Consider the system (/.5) of linear equations in echelon form. There are two cases.

() r=n. That is, there are as many equations as unknowns. Then the systemn has a
unique solution.

(i) r <n That is, there are fewer equations than unknowns. Then we can arbitrarily
assign values to the n — r free variables and obtain a solution of the system.

Suppose the echelon system (1.5) does contain more unknowns than equations. Then the system has
an infinite number of solutions since each of the n — r free variables may be assigned any real number.
The general solution of the system is obtained as follows. Arbitrary values, called parameters, say
ty, ty, ..., L, ,, are assigned to the free variables, and then back-substitution is used to obtain values
of the nonfree variables in terms of the parameters. Alternatively, one may use back-substitution to
solve for the nonfree variables x,, x;,, ..., x;, directly in terms of the free variables.

Example 1.11. Consider the system

x+4y—3z+2=35
z—4t=2
The system is in echelon form. The leading unknowns are x and z; hence the free variables are the other unknowns
yand £
To find the general solution of the system, we assign arbitrary values to the free variables y and t, say y=a
and t = b, and then use back-substitution to solve for the nonfree variables x and z. Substituting in the last
equation yields z — 4b = 2 or z = 2 + 4b. Substitute in the first equation to get
x+4a—32+4b)+2b=5 or x+4a—6—12b+2b=5 or x =11 — 4a + 10b
Thus

x=11—4a+ 10b,y=a,z=2+4b,t=5 or (11 — 4a + 10b, a, 2 + 4b, b)
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is the general solution in parametric form. Alternatively, we can use back-substitution to solve for the nonfree
variables x and z directly in terms of the free variables y and t. The last cquation gives z = 2 + 4¢. Substitute in the
first equation to obtain

x+4y—-32+4)+2t=35 or x+4dy—6—12t+2t=5 or x=11—-4y + 10n

~ Accordingly,
x=11—4y + 10t
z= 2+ 4

is another form for the general solution of the system.

1.6 REDUCTION ALGORITHM

The following algorithm (sometimes called row reduction) reduces the system (7.3) of m linear equa-
tions in n unknowns to echelon (possibly triangular) form, or determines that the system has no
solution.

Reduction algorithm

Step 1. Interchange equations so that the first unknown, x,, appears with a nonzero coefficient in the
first equation; i.e.,, arrange that a,, # 0.

Step 2, Use ay, as a pivot to eliminate x, from all the equations except the first equation. That is, for
each i > 1, apply the elementary operation (Section 1.4)

[E;): —(an/fay,)L, + Li— L, or LE}: —ayL, +ay,L; = L
Step 3. Examine each new equation L:

(a) If L has the form Ox; + Ox, + -+ + Ox, =0 or if L is a multiple of another equation,
then delete L from the system.

(b) If L has the form Ox, + Ox, + -+ + Ox, = b with b # 0, then exit from the algorithm.
The system has no solution.

Step 4. Repeat Steps 1, 2, and 3 with the subsystem formed by all the equations, excluding the first
equation.

Step 5. Continue the above process until the system is in echelon form or a degenerate equation is
obtained in Step 3(b).

The justification of Step 3 is Theorem 1.5 and the fact that if L = kL’ for some other equation L’ in
the system, the operation —kL' + L — L replaces L by Ox, + Ox, + --- + Ox, = 0, which again may be
deleted by Theorem 1.5.

Example 1.12
(a) The system
2x+ y—2z=10
3+ 2y +2z= 1
Sx + 4}" +32= 4
is solved by first reducing it to echelon form. To eliminate x from the second and third equations, apply the
operations —3L, + 2L, + L, and —5L, + 2L, — L,:
—3L;: —6x—3y+ 6z=-30 —~5L,: —10x — 5y + 10z= —-50
2L,: 6x+4y+ 4z= 2 2L,: 10x +8y+ 6z= 8
—-3L, + 2L;: y+ 10z = —28 —5L, + 2L,: Iy + 16z = ~42
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This yields the following system, from which y is eliminated from the third equation by the operation

—3L;+L3_'L3:
2x+y— 2z2= 10 X +y— 2z2= 10
y+ 10z= =28 — y+ 10z = —28
3y + 16z = —42 —14z= 42

The system is now in triangular form. Therefore, we can use back-substitution to obtain the unique solution
M= (11 2! = 3)‘

(b) The system

x+2y— 3z=1
2x + 5y — Bz=4
Ix+By—13z=7

is solved by first reducing it to echelon form. To eliminate x from the second and third equations, apply
—2L, + L~ L, and — 3L, + L, — L, to obtain

hehdiim ot xX+2y—3z=1
y—2z=2 or
y—2z=2
2y—4z=4

(The third equation is deleted since it is a multiple of the second equation.) The system is now in echelon form,
with free variable z.

To obtain the general solution, let z = a and solve by back-substitution. Substitute z = a into the second
equation to obtain y =2+ 2a. Then substitute z=a and y =2 + 2a into the first equation to obtain
x + 2(2 + 2a) — 3a = 1 or x = —3 — a. Thus the general solution is

x=-3—a, y=2+2az=a or (-3—a,2+ 240
where a is the parameter.
(¢) The system

x+2y—3z=—1
Ix— y+22= 7
Sx+3y—4z= 2
is solved by first reducing it to echelon form. To eliminate x from the second and third equations, apply the
operations —3L, + L, = L, and — 5L, + L, — L, to obtain the equivalent system

x+2y— 3z= -1
—Ty+11z= 10
—Ty+llz= 7

The operation —L, + L, — L, yields the degenerate equation
Ox + 0y + 0z = —3

Thus the system has no solution.

The following basic result was indicated previously.

Theorem L.7: Any system of linear equations has either: (i) a unique solution, (ii) no solution, or
(1ii) an infinite number of solutions.

Proof. Applying the above algorithm to the system, we can either reduce it to echelon form or
determine that it has no solution. If the echelon form has free variables, then the system has an infinite
number of solutions.
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Remark: A system is said to be consistent if it has one or more solutions [Case (i)
or (iii) in Theorem 1.7], and is said to be inconsistent if it has no solutions [Case (ii) in
Theorem 1.7]. Figure 1-3 illustrates this situation.

System of linear equations

| |

Inconsistent Consistent
No Unique Infinite number
solution solution of solutions
Fig. 1-3

1.7 MATRICES
Let A be a rectangular array of numbers as follows:

Gy Oy ... Gy

a a vew.
A= 21 22 2n

Quy Gy - 4a

The array A is called a matrix. Such a matrix may be denoted by writing A =(g;), i=1,...,m,
j=1,..., n,orsimply A = (a;;). The m horizontal n-tuples

@11, 812, ---, 8., (824, G224 -5 B3), oo (Bpyy Gz -5 By)

are the rows of the matrix, and the n vertical m-tuples

ay a,; Qyn

a3 as, 4z,
1 y vy

Gy Q2 a

are its columns. Note that the element a;;, called the ij-entry or ij-component, appears in the ith row and
the jth column. A matrix with m rows and n columns is called an m by n matrix, or m x n matrix; the
pair of numbers (m, n) is called its size.

1 =3 4
Example 1.13. Let A =(0 5 2) Then A is a 2 x 3 matrix. Its rows are (1, —3, 4) and (0, 5, —2); its

e (} (o)

The first nonzero entry in a row R of a matrix A is called the leading nonzero entry of R. If R has
no leading nonzero entry, i.e., if every entry in R is 0, then R is called a zero row. If all the rows of A are
Zero rows, i.e., if every entry of A is 0, then A is called the zero matrix, denoted by 0.
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Echelon Matrices
A matrix A is called an echelon matrix, or is said to be in echelon form if the following two condi-
tions hold:

(i) All zero rows, if any, are on the bottom of the matrix.
(i) Each leading nonzero entry is to the right of the leading nonzero entry in the preceding row.

That is, A = (a;)) is an echelon matrix if there exist nonzero entries
g Bappsovos@ups where Ji<js < <],
with the property that
a; =0 fori<rj<j,,and(ii)i>r

In this case, a,;,, ..., a,;, are the leading nonzero entries of A.

Example 1.14. The following are echelon matrices whose leading nonzero entries have been circled:

@ 3 0 4 5 -6

2

® 2 3 o ® 3 0 0 4
SO S S o o @] (o o o @ o -3
c o o0 o0 0 @ 0O 0 0 0o 0 0 o0 O 2
©o 0 0 0o 0 0 0

An echelon matrix A is said to be in row canonical form if it has the following two additional
properties:
(i) Each leading nonzero entry is 1.
(iv) [Each leading nonzero entry is the only nonzero entry in its column.
The third matrix above is an example of a matrix in row canonical form. The second matrix is not in
row canonical form since the leading nonzero entry in the second row is not the only nonzero entry in
its column, there is a 3 above it. The first matrix is not in row canonical form since some leading
nonzero entries are not k.

The zero matrix 0, for any number of rows or columns, is also an example of a matrix in row
canonical form.

1.8 ROW EQUIVALENCE AND ELEMENTARY ROW OPERATIONS

A matrix A is said to be row equivalent to a matrix B, written 4 ~ B, if B can be obtained from 4
by a finite sequence of the following elementary row operations:

[E,] Interchange the ith row and the jth row: R, R,.
[E,] Multiply the ith row by a nonzero scalar k: kR, — R;, k # 0.
[Es] Replace the ith row by k times the jth row plus the ith row: kR; + R, = R;.
In actual practice, we apply [E,] and then [E;] in one step, i.e., the operation
[E] Replace the ith row by k’ times the jth row plus k (nonzero) times the ith row:
K'R; + kR; — R, k # 0.

The reader no doubt recognizes the similarity of the above operations and those used in solving
systems of linear equations.

The following algorithm row reduces a matrix A into echelon form. (The term “row reduce™ or
simply “reduce™ shall mean to transform a matrix by row operations.)
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Algorithm 1.8A
Here A = (a;;) is an arbitrary matrix.
Step 1. Find the first column with a nonzero entry. Suppose it is the j, column.

Step 2. Interchange the rows so that a nonzero entry appears in the first row of the j, column, that is,
so that a,; # 0.

Step 3. Use a,;, as a pivot to obtain Os below a,;,; that is, for each i > 1, apply the row operation
—ﬂ.-th + ﬂl"R;—b 'Ri Ol'(—aulfalh)Rl + Ri—“ R‘,

Step 4. Repeat Steps 1, 2, and 3 with the submatrix formed by all the rows, excluding the first row.

Step 5. Continue the above process until the matrix is in echelon form.

1 2 -3 0
Example 1.15. Thematrix 4 =] 2 4 -2 2 | is reduced to echelon form by Algorithm 1.8A as follows:
3 6 —4 3

Use a,, =1 as a pivot to obtain 0s below a,,, that is, apply the row operations —2R, + R, - R, and
—3R, + R; = R, to obtain the matrix

Now use a,; = 4 as a pivot to obtain a 0 below a,,, that is, apply the row operation —5R; + 4R, — R, to obtain
the matrix

1 2 -3 0
0 0 4 2
o o o0 2

The matrix is now in echelon form.

The following algorithm row reduces an echelon matrix into its row canonical form.

Algorithm 1.8B
Here A = (a;)) is in echelon form, say with leading nonzero entries
Qyjyp Ozjys ==y Oy,
Step 1. Multiply the last nonzero row R, by 1/a,;, so that the leading nonzero entry is 1.

Step 2. Use a,; =1 as a pivot to obtain Os above the pivot; that is, for i=r —1,r—2,..., 1, apply
the operation

-ﬂl'rl R' + R‘-PR‘
Step 3. Repeat Steps 1 and 2 forrows R, _,, R, ;,..., R;.
Step 4. Multiply R by 1/a,;, .
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Example 1.16. Using Algorithm 1.8B, the echelon matrix

A=

(== ]
o o w
S W o
(=T SRV
b

is reduced to row canonical form as follows:

Multiply R, by 4 so that the leading nonzero entry equals 1; and then use ays = 1 as a pivot to obtain Os
above it by applying the operations —5R; + R, - R;and —6R; + R, = R;:

23 456 2 3 4 50
A~10 0 3 2 5|~t0 0 3 2 O
0 00011 0 0001

Multiply R, by % so that the leading nonzero entry equals 1; and then use a,, = 1 as a pivot to obtain 0 above
with the operation —4R; + R, = R;:

2 3 450 23030
A~[0 01 2 o]~{0 01 2 0
0 0 0 01 00 0 01
Finally, multiply R, by } to obtain
1 3 0% O
001 3 0
00001

This matrix is the row canonical form of A.

Algorithms 1.8BA and B show that any matrix is row equivalent to at least one matrix in row
canonical form. In Chapter 5 we prove that such a matrix is unique, that is,

Theorem 1.8: Any matrix A is row equivalent to a unique matrix in row canonical form (called the
row canonical form of A).

Remark: If a matrix A is in echelon form, then its leading nonzero entries will be
called pivot entries. The term comes from the above algorithm which row reduces a
matrix to echelon form.

1.9 SYSTEMS OF LINEAR EQUATIONS AND MATRICES

The augmented matrix M of the system (/.3) of m linear equations in # unknowns is as follows:

Gy Gy ... Oy

........................

Observe that each row of M corresponds to an equation of the system, and each column of M corre-
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sponds to the coefficients of an unknown, except the last column which corresponds to the constants of
the system.
The coefficient matrix A of the system (/.3) is

4y a3 Gypn

Gy, Gzy Qap
A =

Dy G 4

Note that the coefficient matrix A may be obtained from the augmented matrix M by omitting the last
column of M.

One way to solve a system of linear equations is by working with its augmented matrix M, specifi-
cally, by reducing its augmented matrix to echelon form (which tells whether the system is consistent)
and then reducing it to its row canonical form (which essentially gives the solution). The justification of
this process comes from the following facts:

(1) Any elementary row operation on the augmented matrix M of the system is equivalent to applying

the corresponding operation on the system itself.

(2) The system has a solution if and only if the echelon form of the augmented matrix M does not
have a row of the form (0,0, ..., 0, b) with b # 0.

(3) In the row canonical form of the augmented matrix M (excluding zero rows) the coefficient of each
nonfree variable is a leading nonzero entry which is equal to one and is the only nonzero entry in
its respective column; hence the free-variable form of the solution is obtained by simply trans-
ferring the free variable terms to the other side.

This process is illustrated in the following example.

Example 1.17
(a) The system

x+ y—2z+4t=5
2x+2y—3z4+ t1=3
Ix+3y—4z—21=1

is solved by reducing its augmented matrix M to echelon form and then to row canonical form as follows:

tot -2 4 5\ 1o -2 a4 s\
M=[2 2 -3 1 3J~f0 0 1 -7 -7~ o | 5 _
3 03 -4 -2 1/ \o o 2 -14 -14

[The third row (in the second matrix) is deleted since it is a multiple of the second row and will result in a zero
row.] Thus the free variable form of the general solution of the system is as follows:

x+y — 10t = -9 o x=—9—y+ 10t
z— Tt=-7 z=-—T+ Tt

Here the free variables are y and t, and the nonfree variables are x and z.
(b) The system

x|+ x:—h3+3x4=4
2x|+3x2+3x3— x4=3
5x|+7x3+4x3+ x4=5
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is solved as follows. First we reduce its augmented matrix to echelon form:

1 1 =2 3 4 1 1 =2 3 4 1 1 =2 3 4
M=|2 3 3 -1 3]~10 1 7 -7 —-5|~|0 1 7 -7 -5
5 7 4 1 5 0 2 14 —14 15 0 0 0 0 -5

There is no need to continue to find the row canonical form of the matrix since the echelon matrix already tells
us that the system has no solution. Specifically, the third row of the echelon matrix corresponds to the degen-
erate equation

OX| +0'x; +0x, +llx4= -5

which has no solution.

(¢) The system

x+2y+z 3
2x+ 5y —z=—4
Ix—2y—z= 5

is solved by reducing its augmented matrix M to echelon form and then to row canonical form as follows:

1 2 1 3 1 2 1 3 1 2 1 3
M=]2 5 -1 —-4}]~}|0 1 -3 -10j~10 1 -3 -10
i3 -2 -1 5 0 -8 -4 —4 0 0 -—-28 -34
1 2 1 3 1 2 0 0 1 0o 0 2

~10 1 -3 —10]~10 1
0 0o 1 3 0 0 1 3 0 0 1 3

Thus the system has the unique solution x = 2, y = — 1,z = 3 or u = (2, — 1, 3). (Note that the echelon form of
M already indicated that the solution was unique since it corresponded to a triangular system.)

1.10 HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS

The system (1.3) of linear equations is said to be homogeneous if all the constants are equal to zero,
that is, if the system has the form

a"xl+alzxz+”'+a|,,xﬂ=0
Gy Xy + 83%5 + 2 + dy, %, =0
KR S o o (1.6)
OpmiXy + Gpa X3 + " + Oy Xy =

In fact, the system (7.6) is called the homogeneous system associated with the system (7.3).

The homogeneous system (1.6) always has a solution, namely the zero n-tuple 0 =(0,0, ..., 0)
called the zero or trivial solution. (Any other solution, if it exists, is called a nonzero or nontrivial
solution.) Thus it can always be reduced to an equivalent homogeneous system in echelon form:

H“xl+a|2xz+aux3+ """"" -l-alnx =0

Qpp Xy + 82 jppe1Xjper + 000 + a,%, =0

(1.7)

Gpj, X5, + Op ja1 Xjuy + 0+ 0y X, =

There are two possibilities:
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(1) r=n. Then the system has only the zero solution.
(i) r <n. Then the system has a nonzero solution.

Accordingly, if we begin with fewer equations than unknowns then, in echelon form, r < n and hence
the system has a nonzero solution. This proves the following important theorem.

Theorem 1.9: A homogeneous system of linear equations with more unknowns than equations has a
nonzero solution.

Exampie 1.18

(a) The homogeneous system
x+2y—3z4 w=0
x—3y+ z—-2w=0
2x+ y—3z4+5w=0

has a nonzero solution since there are four unknowns but only three equations.

(b} We reduce the following system to echelon form:

x+ y— z=0 x+y— z=0 x+y— z=0
2x—=3y+ z=0 —5y+32=0 —5y+3:2=0
x—4y+2z=0 ~5y+32=0

The system has a nonzero solution, since we obtained only two equations in the three unknowns in echelon
form. For example, let z = 5; then y = 3 and x = 2. In other words, the 3-tuple (2, 3, 5) is a particular nonzero
solution.

(¢} We reduce the following system to echelon form:

x+ y— z=10 x+y— z=0 x+y—z=0
2x+4y— z=0 2y+ z=0 2y+z=0
Ix+2y+22=0 —¥+5z=0 1z=0

Since in echelon form there are three equations in three unknowns, the given system has only the zero
solution (0, 0, 0).

Basis for the General Solution of a Homogeneous System

Let W denote the general solution of a homogeneous system. Nonzero solution vectors u,, u,, ...,
u, are said to form a basis of W if every solution vector w in W can be expressed uniquely as a linear
combination of u,, u,, ..., 4,. The number s of such basis vectors is called the dimension of W, written
dim W = s (If W = {0}, we define dim W = 0.

The following theorem, proved in Chapter 5. tells us how to find such a basis.

Theorem 1.10: Let W be the general solution of a homogeneous system, and suppose an echelon form
of the system has s free variables, Let u,, u,, ..., u, be the solutions obtained by setting
one of the free variables equal to one (or any nonzero constant) and the remaining free
variables equal to zero. Then dim W = s and u,, u,, ..., u, form a basis of W.

Remark: The above term linear combination refers to multiplying vectors by
scalars and adding, where such operations are defined by

kia,, a;, ..., a,) = (kay, ka,, ..., ka,)
(al:- 25 EITETR ﬂ")+ (bls bzs LR X b,,} = (al + b]v a2 + bzs oey by + bn}
These operations are studied in detail in Chapter 2.
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Example 1.19 Suppose we want to find the dimension and a basis for the general solution W of the homogeneous
system

x+ 2y— 3z+25— 4 =0
2x+ 4y— S5z+4 s5— 6t=0
5x+ 10y — 132 + 45— 16t =0

First we reduce the system to echelon form. Applying the operations —2L, + L, — L, and —5L, + L, — L,, and
then —2L, + Ly — L,, yields:

x+2y—3z+25—4t=0 XxX+2y—32+25s—4t=0
z-=35+2t=0 and z—35+2=0
2z —6s+4t=0

In echelon form, the system has three free variables, y. s and t; hence dim W = 3. Three solution vectors which
form a basis for W are obtained as follows:

(1) Sety=1,s=0,t=0.Back-substitution yields the solution u, = (-2, 1,0, 0, 0).
(2) Sety=0,s=1,t=0. Back-substitution yields the solution u, = (7,0, 3, 1, 0).
(3) Sety =0.s=0,t= 1. Back-substitution yields the solution u, = (—2,0, —2,0, 1).

The set {u,, u,, u,} is a basis for W.
Now any solution of the system can be written in the form

auy, + buy +cuy =a(—2,1,0,0,00+ 57,0,3, 1,00+ c(—2,0, —-2,0, 1)
=(—-2a+ 76— 2c,a,3b —2¢,b,¢)

where a, b, ¢ are arbitrary constants. Observe that this is nothing other than the parametric form of the general
solution under the choice of parameters y = a,s = b, 1 = ¢.

Nonhomogeneous and Associated Homogeneous Systems

The relationship between the nonhomogeneous system (/.3) and its associated homogeneous system
(1.6) is contained in the following theorem whose proof is postponed until Chapter 3 (Theorem 3.5).

Theorem 1.11: Let v, be a particular solution and let U be the general solution of a nonhomogeneous
system of linear equations. Then

U=ve+W={v+w:we W}

where W is the general solution of the associated homogeneous system.
That is, U = vy + W may be obtained by adding v, to each element of W.

The above theorem has a geometrical interpretation in the space R>. Specifically, if W is a line
through the origin, then, as. pictured in Fig. 1-4, U = vy + W is the line parallel to W which can be
obtained by adding v, to each element in W. Similarly, whenever W is a plane through the origin, then
U = vy + Wis a plane parallel to W.
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v+ W
W
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0 %
X
Fig. 1-4
Solved Problems
LINEAR EQUATIONS, SOLUTIONS
1.1.  Determine whether each equation is linear:
(@ Sx+ 7y —8yz=16 B x+ny+ez=logs () 3x+ky—8z=16
(a) No. since the product yz of two unknowns is of second degree.
(b) Yes, since x, e, and log 5 are constants.
(¢) As it stands, there are four unknowns: x, y, z, k. Because of the term Ky it is not a linear equation.
However, assuming k is a constant, the equation is linear in the unknowns x, y, z.
1.2.  Consider the linear equation x + 2y — 3z = 4. Determine whether u = (8, 1, 2) is a solution.
Since x, y, z is the ordering of the unknowns, u = (8, 1, 2) is short for x = 8, y = 1, z = 2. Substitute in
the equation to obtain
8+21)—32)=4 or 8+42-6=4 or 4=4
Yes, it is a solution
1.3. Determine whether (@) u=(3, 2, 1, 0) and () v=(1, 2, 4, 5) are solutions of the equation
Xy +2xz —4x3+x4=3.
(a) Substitute to obtain 3 + 2(2) — 41) + 0 = 3, or 3 = 3; yes, it is a solution.
(b) Substitute to obtain 1 + 2(2) — 4(4) + 5 = 3, or —6 = 3; not a solution.
14. Isu = (6,4, —2) a solution of the equation 3x, + x3 — x, = 47
By convention, the components of u are ordered according to the subscripts on the unknowns. That is,
u = (6,4, —2) is short for x, = 6, x, = 4, x4 = —2. Substitute in the equation to obtain 3(4) —2 - 6 =4, or
4 = 4. Yes, it is a solution.
15. Prove Theorem 1.1.

Suppose a # 0. Then the scalar b/a exists. Substituting b/a in ax = b yields a(b/a) = b, or b = b; hence
bfa is a solution. On the other hand, suppose x,, is a solution to ax = b, so that ax, = b. Multiplying both
sides by 1/a yields x, = b/a. Hence b/a is the unique solution of ax = b. Thus (i) is proved.

On the other hand, suppose a = 0. Then, for any scalar k, we have ak =0k = 0. ITb # 0, then ak # b.
Accordingly, k is not a solution of ax = b and so (ii) is proved. If b = 0, then ak = b. That is, any scalar k is
a solution of ax = b and so (iii} is proved.
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1.6.

1.7.

1.8.

1.10.
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Solve each equation:
(¢) ex =log 5 (€)3x —4—x=2x+3
) ex=0 d) 7+2x—4=3x+3—x

(a) Since e # 0, multiply by 1/e to obtain x = (log 5)/e.

(b) If ¢ 0, then O/c =0 is the unique solution. If ¢ = 0, then every scalar k is a solution [Theorem
1.1(iii)].

(¢) Rewrite in standard form, 2x — 4 = 2x + 3 or Ox = 7. The equation has no solution [ Theorem 1.1(ii)].

(d) Rewrite in standard form, 3 + 2x = 2x + 3 or Ox = 0. Every scalar k is a solution [Theorem 1.1(iii)].

Describe the solutions of the equation 2x + y + x — 5=2y + 3Ix — y + 4.
Rewrite in standard form by collecting terms and transposing:
Ix+y—5=y+3x+4 or Ox +0y=9

The equation is degenerate with a nonzero constant; thus the equation has no solution.

Describe the solutions of the equation 2y + 3x —y+4=x+3+y+ 1 + 2x.
Rewrite in standard form by collecting terms and transposing:
Yy+3Ix+4=3x+4+y or Ox+0y=0

The equation is degenerate with a zero constant; thus every vector u = (g, b) in R? is a solution.

Prove Theorem 1.3.
First we prove (i). Set x; = k; for j # p. Because a; = 0 for j < p, substitution in the equation yields
ApX, + QpiKpiy + " +a,k,=b or  ayx,=b—ay,, ks, ——a.k,
with a, # 0. By Theorem 1.1(i), x,, is uniquely determined as
Y= by = =0k

Thus (i) is proved.
Now we prove (ii). Suppose u = (k,, k;, ..., k,) is a solution. Then

1
ak, 4+ ap  kpoy+ - +ak,=b or kl,:a—{b—apﬂkpﬂL---—a,,k,,)
P

This, however, is precisely the solution

= (k,, o gy S el k,,)

a,

obtained in (i). Thus (ii) is proved.

Consider the linear equation x — 2y + 3z = 4. Find (a) three particular solutions and (b) the
general solution.

(a) Here x is the leading unknown. Accordingly, assign any values to the free variables y and z, and then
solve for x to obtain a solution. For example:

(1) Sety=1and z = 1. Substitution in the equation yields
x=21)+3()=4 or x—2+3=4 or x=3

Thus u, =(3, 1, 1) is a solution.
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(2) Sety=1,z=0.Substitution yields x = 6; hence u, = (6, 1, 0) is a solution.
(3) Set y =0, z = 1. Substitution yields x = 1; hence uy = (1, 0, 1) is a solution.

(b) To find the general solution, assign arbitrary values to the free variables, say y = a and z = b. (We call
a and b parameters of the solution.) Then substitute in the equation to obtain

x—2a+3b=4 or x=4+2a—3b
Thus u = (4 + 2a — 3b, g, b) is the general solution.

SYSTEMS IN TRIANGULAR AND ECHELON FORM
1.11. Solve the system
2x -3y + 5z -2t =9
Sy— z43t=1
Tz— 1=3
2t =8

The system is in triangular form; hence we solve by back-substitution.
(i) The last equation gives t = 4.
(ii) Substituting in the third equation gives 7z —4 =3,or 7z = 7,0orz = L.
(iti) Substituting z = 1 and 1 = 4 in the second equation gives

S5p—1434)=1 or Sy—1+12=1 or 5y=-—10 or y=-2
(iv) Substituting y = —2, z = 1, ¢t = 4 in the first equation gives
2x — =)+ H1)—24)=9 or 2x+6+5—8=9 or 2x=6 or x=73
Thus x = 3, y = —2,z = 1, t = 4 is the unique solution of the system.

1.12. Determine the free variables in each system:

Ix+2y—5z—65s+2t=4 Sx—3y+7z=1 x+2y—3z=2
z+8—3t=6 4y + 5z =6 2x—-3y+ z=1
s—5t=5 4z =9 5x —4y— z=4

(a) (b) (©)

(a) In the echelon form, any unknown that is not a leading unknown is termed a free variable. Here, y and
t are the free variables.

(b) The leading unknowns are x, y, z. Hence there are no free variables (as in any triangular system).
(¢} The notion of free variable applies only to a system in echelon form.,

1.13. Prove Theorem 1.6.

There are two cases:
(i) r=n. Thatis, there are as many equations as unknowns. Then the system has a unique solution.

(i) r <n. That is, there are fewer equations than unknowns. Then we can arbitrarily assign values to the
n — r free variables and obtain a solution of the system.

The proof is by induction on the number r of equations in the system. If r = 1, then we have a single,
nondegenerate, linear equation, to which Theorem 1.3 applies when n > r = 1 and Theorem 1.1 applies
when n = r = 1, Thus the theorem holds for r = 1.

Now assume that r > 1 and that the theorem is true for a system of r — 1 equations. We view the r — 1
equations
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5, % + Ay 1 X0+ Hag, X, = by

a’bxfr + al'.)c*’ 1x,f.-+l *: App Xy = br

as a system in the unknowns x,,, ..., x,. Note that the system is in echelon form. By the induction hypoth-
esis, we can arbitrarily assign values to the (n — j, + 1) — (r — 1) free variables in the reduced system to
obtain a solution (say, x;, = k;,, ..., x, = k). As in case r = |, these values together with arbitrary values

for the additional j, — 2 free variables (say x, = k,, ..., x;,_, = k;,_,) yield a solution of the first equation
with
1
x, =— (b, —ak, —- - —ak)
ay,

[Note that there are (n — j, + 1} — (r — 1) + (j; — 2) = n — r free variables.] Furthermore, these values for
Xy, ..+s X, also satisfy the other equations since, in these equations, the coeflicients of x,, ..., x;, ., are zero.

Now il r = n, then j, = 2. Thus by induction we obtain a unique solution of the subsystem and then a
unique solution of the entire system. Accordingly, the theorem is proven.

1.14. Find the general solution of the echelon system

x—=2y—32+5-2t= 4
2Z—6s+ 3= 2
5t =10
Since the equations begin with the unknowns x, z, and t, respectively, the other unknowns y and s are

the free variables. To find the general solution, assign parameters to the free variables, say y =aand s = b,
and use back-substitution to solve for the nonfree variables x, z, and 2.

(i) The last equation yields t = 2.
(i) Substitute f = 2, s = b in the second equation to obtain
22—-6b+32)=2 or 22—-6b+6=2 or 2z2=6b—4 or z=3b-2
(iii) Substitutet =2,5=b, z = 3b — 2, y = a in the first equation to obtain
x—2a-33b-2+5b—-22)=4 or x—2a—9b+6+5h—-4=4
or x=2a+4b+2
Thus
x=2a+4b + 2 y=a z=3b-12 s=b t=2

or, equivalently,
u=Q2a+4b+2,a,3b—-2,b,2)

is the parametric form of the general solution.
Alternately, solving for x, z, and t in terms of the free variables y and s yields the following free-variable
form of the general solution:

x=2y+4s5+2 z=3s-2 r=2

SYSTEMS OF LINEAR EQUATIONS, GAUSSIAN ELIMINATION

1.15. Solve the system
x—2y+ z= 17
2x— y+4z=17
Ix-2y+2z=14

Reduce to echelon form. Apply —2L, + L, — L, and —3L, + L, — L, to eliminate x from the second
and third equations, and then apply —4L, + 3L, — L, to eliminate y from the third equation. These
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1.16.

L.17.

1.18.

operations yield
x—2y+ z= 17 x—2y+ z= 7
Wy+2z= 3 and v+ 2z2= 3
4y— z=—7 —“2=—33

The system is in triangular form, and hence, after back-substitution, has the unique solution u = (2, —1, 3).

Solve the system
2x — S5y +3z—4s+2t= 4
Ix- Ty+2z2—5s+4t= 9
5x — 10y — 5z —4s + Tt = 22

Reduce the system to echelon form. Apply the operations —3L, + 2L, — L, and —5L, + 2L, — L,,
and then —5L, + L, —+ L, to obtain

2x—5y+ 3z— 4s+u= 4 2Xx—5y+3%z—4s+2u= 4
y— 524+ 25+2t= 6  and y=5+25+2t= 6
Sy—25z+12s+4t=24 25—6t=—6

The system is now in echelon form. Solving for the leading unknowns, x, y, and s, in terms of the free
variables, z and ¢, we obtain the free-variable form of the general solution:

x=26+11z— 15 y=12 4+ 5z — Bt s=-34+3
From this follows at once the parametric form of the general solution (where z = a, t = b):

x=26+1la— 15b y=12 4 5a—8b z=a s=-=3+3b t=5

Solve the system

x+ 2y —3z+4+4t=2
2x+ Sy—2z4 t=1
Sx + 12y —Tz4+ 6t =7
Reduce the system to echelon form. Eliminate x from the second and third equations by the operations
—2L, + L; - Ly and —5L, + L, —+ L,; this yields the system
X+2y—3z+ 4t= 2
y+4z— Tt=-3
2y + 8z—l4t= -3

The operation —2L, + L, — L, yields the degenerate equation 0 = 3. Thus the system has no solution
(even though the system has more unknowns than equations).

Determine the values of k so that the following system in unknowns x, y, z has: (i) a unique
solution, (ii) no solution, (iii) an infinite number of solutions.

x+ y— z=1
2x+ 3y +kz=3
x+ky+3y=2
Reduce the system to echelon form. Eliminate x from the second and third equations by the operations
—2L, + Ly - L, and — L, + L, — L, to obtain
X+ y—= z=1
y+k+2)z-=1
k—Dy+ 4z =1
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1.19.
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To eliminate y from the third equation, apply the operation —(k — 1)L, + L, — L, to obtain

x+y— z=1
y+ k+2)z=1
B+k2—kKz=2-k
The system has a unique solution if the coefficient of z in the third equation is not zero; that is, if k # 2 and
k # —3. In case k = 2, the third equation reduces to 0 = 0 and the system has an infinite number of

solutions (one for each value of z). In case k = — 3, the third equation reduces to 0 = 5 and the system has
no solution, Summarizing: (i) k # 2and k # 3, (i) k= —3, (i) k = 2.

What condition must be placed on g, b, and ¢ so that the following system in unknowns x, y, and
z has a solution?

x+2y— 3z=a
2x + 6y —1lz=b
x—2y+ Tz=c
Reduce to echelon form. Eliminating x from the second and third equation by the operations
—2L, + Ly —+L;and —L, + L, — L,, we obtain the equivalent system
X+2y— 3z=a
2y— S5z=b—2a
—4y +10z=c—a
Eliminating y from the third equation by the operation 2L, + L, — L,, we finally obtain the equivalent
system
x+2y—3z=a
2y —5z=b—2a
O=c+2b—5a
The system will have no solution if ¢ + 2b — 5a # 0. Thus the system will have at least one solution if

¢+ 2b — 5a =0, or Sa = 2b + c. Note, in this case, that the system will have infinitely many solutions. In
other words, the system cannot have a unique solution.

MATRICES, ECHELON MATRICES, ROW REDUCTION

1.20.

1.21.

Interchange the rows in each of the following matrices to obtain an echelon matrix:

0 1 -3 4 6 0 0 0 0 o 6 2 2 2 2

i 0 & 8 -4 1 2 3 4 5 0 3 1 0 o0

0 0 7 -2 8 0 0 5 -4 7 0 0 0 o0 0
(a) () (c)

(a) Interchange the first and second rows, i.e., apply the elementary row operation R, ++R,.
(b) Bring the zero row to the bottom of the matrix, i.e., apply R, < R, and then R, «— R,.
(¢} No amount of row interchanges can produce an echelon matrix.

Row reduce the following matrix to echelon form:
1 2 -3 0
A=|2 4 -2 2
3 6 —4 3
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Use a,; = 1 as a pivot to obtain 0s below a, , ; that is, apply the row operations —2R, + R, » R, and
—3R; + R, — R, to obtain the matrix

) 2 -3 0
0O o0 4 2
0 0 5 &

Now use a,, = 4 as a pivot to obtain a 0 below a,,; that is, apply the row operation —5R, + 4R, = R; to
obtain the matrix

1 2 -3 0

0 0 4 2

0 0 0 2

which is in echelon form.
1.22. Row reduce the following matrix to echelon form:

—4 1 —6
B = 1 2 -5
6 3 -4

Hand calculations are usually simpler if the pivot element equals 1. Therefore, first interchange R, and
R;; then apply 4R, + R; = R; and —6R, + Ry, — R,; and then apply R, + R, — Rjy:
1 2 -5 1 2 -5 1 2 -5
B~| -4 1 —6]~{0 9 -26]~{0 9 —-26
6 3 -4 0 -9 26 0o 0 0

The matrix is now in echelon form.

1.23. Describe the pivoting row reduction algorithm. Also, describe the advantages, if any, of using this
pivoting algorithm.

The row reduction algorithm becomes a pivoting algorithm if the entry in column j of greatest absolute
value is chosen as the pivot a,;, and if one uses the row operation
(—aﬂl,"a“.]ﬂl + Ri =g .R‘

The main advantage of the pivoting algorithm is that the above row operation involves division by the
(current) pivot a,;, and, on the computer, roundoff errors may be substantially reduced when one divides by
a number as large in absolute value as possible.

1.24. Use the pivoting algorithm to reduce the following matrix A to echelon form:

2 -2 2 1
A=|{-3 6 0 -1
1 -7 10 2
First interchange R, and R, so that —3 can be used as the pivot, and then apply ($)R, + R, — R, and
()R, + Ry Ry:
-3 6 0 —1 -3 6 o -1
A~ 2 =2 2 1]~ 0 2 2 i
1 -7 10 2 0 -5 10 3
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Now interchange R, and R, so that —5 may be used as the pivot, and apply (3)R, + R; = R;:

-3 6 0 -1 -3 6 0 -1
A~ 0o =5 10 3]~ 0o -5 w0 %
0o 2 2 | 0 0 6 1

The matrix has been brought to echelon form.

ROW CANONICAL FORM

1.25. Which of the following echelon matrices are in row canonical form?

1 2 -3 0 1 0 1 T —3 0 1 0 5 0 2
0 0 5 2 -4 0 0 0 0 1 0 I 2 0 4
0 0 0 7 3 0 0 0 0 0 0 0 0 1 7

The first matrix is not in row canonical form since, for example, two leading nonzero entries are 5 and
7, not 1. Also, there are nonzero entries above the leading nonzero entries 5 and 7. The second and third
matrices are in row canonical form.

1.26. Reduce the following matrix to row canonical form:

2 2 -1 6 4
B=14 4 1 10 13
6 6 0 20 19
First, reduce B to an echelon form by applying —2R, + R, = R; and —3R, + R; —» R,, and then
—R, + Ry > Ry:
2 FAREES | 6 4 2 2 -1 6 4
B~j0 0 3 =2 5]~10 0 3 -2 5
0 0 3 2 7 0 0 0 4 2

Next reduce the echelon matrix to row canonical form. Specifically, first multiply R, by 1, so the pivot
by, = 1, and then apply 2R, + R, = R, and —6R, + R, — R;:

2 2 -1 6 4 2 2 - 0

=
[= -

B~|0 0 3 -2 51~10 )] 3
o o o 1 3 o o o 1 3
Now multiply R, by 4, making the pivot b,, = 1. and apply R, + R, = R,:
2 2 -1 0 | 2 2 0 0 3
B~{0 0 1 0 2]1~10 0 1 0 2
o o o 1 1 o 0o o0 1 3

Finally, multiply R, by  to obtain the row canonical form

=
=
B e

=
=]
=]
[

1.27. Reduce the following matrix to row canonical form:
1 -2 3 1 2
A=]1 1 4 —1
2 5 9 -2 8

bl
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1.28.

1.29.

1.30.

First reduce A to echelon form by applying —R, + R, =+ R, and —2R, + Ry —+ R,, and then apply-
ing —3R, + Ry — R;:
1 -2 3 1 2 1 -2 3 | 2
A~{0 3 1 -2 1]~{0 3 1 -2 1
0 9 3 —4 4 0 0 0 2 1
Now use back-substitution. Multiply R, by 4 to obtain the pivot a,, = 1. and then apply 2Ry + R, —» R,
aﬂd _R3 + R' —DRl:
1 -2 3 1 2 1 -2 3 0 3
A~{0 3 1 =2 1]~]0 3 | 0 2
0 o 0 1 3 0 0 o 1 3

Now multiply R, by § to obtain the pivot a,, = I, and then apply 2R, + R, — R,:
1 -2 3 o 3 10 8 o u
A~{0 1 4+ 0 %]~10 1 1 0 %
o o o 1 3 Vo o o 1 1

Since a,, = 1, the last matrix is the desired row canonical form.

Describe the Gauss—Jordan elimination algorithm which reduces an arbitrary matrix A to its
row canonical form.

The Gauss—Jordan algorithm is similar to the Gaussian elimination algorithm except that here the
algorithm first normalizes a row to obtain a unit pivot and then uses the pivot to place Os both below and
above the pivot before obtaining the next pivot.

Use Gauss-Jordan elimination to obtain the row canonical form of the matrix of Problem 1.27.

Use the leading nonzero entry a,, = [ as pivot to put Os below it by applying - R, + R, = R, and
—2R, + R; — R,; this yields
1 -2 3 | 2
A~10 3 1 -2 I
0 9 3 -4 4
Multiply R, by 3 to get the pivot a,; =1 and produce Os below and above a,, by applying
"'ng —+ RJ —"Rs arﬂ ZRZ + R‘l =+ Rl"
1 -2 3 1 2 1 0 & -3 %
A~lo 1§ -% {)~j0 1 % -} 1}
0 9 3 —4 4 0 o0 0 2 I

Last, multiply R, by 4 to get the pivot a,, = 1 and produce 0s above a,, by applying 3R, + R, —» R; and
*Ra + R, R;:
o & -3 3§ 1 0 % o
A~|0 1 + -3 ij~lo 1 % 0o %
0o 0 o 1 % 0 0 o

One speaks of “an” echelon form of a matrix A, “the” row canonical form of 4. Why?

An arbitrary matrix A may be row equivalent to many echelon matrices. On the other hand, regardless
of the algorithm that is used, a matrix A is row equivalent to a unique matrix in row canonical form. (The
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term “canonical” usually connotes uniqueness.) For example, the row canonical forms in Problems 1.27
and 1.29 are identical.

1.31. Given an n x n echelon matrix in triangular form,

dyy dyz O, Q) p—y Gy
0 4y ay Q3 p-1 U2n
A= 0 0 a3 ... a3, , a,
0 0 0 0 7, 1

with all g; # 0. Find the row canonical form of A.

Multiplying R, by 1/a,, and using the new a,, = 1 as pivot, we obtain the matrix

Gy Gy3 613 ... @41 O
0 a;; a3 -.. a3, 0
0 0 ay; ... a5, 0
o o0 O 0 |

Observe that the last column of 4 has been converted into a unit vector. Each succeeding back-substitution
yields a new unit column vector, and the end result is

1o ... 0
A~0[' 0
00 ... 1

i.e., A has the n x n identity matrix I as its row canonical form.

1.32. Reduce the following triangular matrix with nonzero diagonal elements to row canonical form:

5 -9 6
c=\0 2 3
0 0 7

By Problem 1.31, C is row equivalent to the identity matrix. Alternatively, by back-substitution,

5 -9 6 5 -9 o 5 -9 0 5 0 o0 | 0 0
C~\10 2 3)~10 2 0)]~]0 1 0]~]0 l O0f~|0 1 0
0 0 | 0 0 1 0 0 I 0 0 | 0 0 |

SYSTEMS OF LINEAR EQUATIONS IN MATRIX FORM
1.33. Find the augmented matrix M and the coefficient matrix 4 of the following system:

x+2y—3z2=4
3y—4z+7x=5
6z + 8x — 9y =1
First align the unknowns in the system to obtain
x+2y-—-3z2=4
Tx+3y—4z=5
Bx -9 +6z2=1
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Then
1 2 -3 4 | 2 -3
M=]|7 3 —4 5 and A=|7 3 -4
8§ -9 6 1 8§ -9 6
1.34. Solve, using the augmented matrix,
X—2y+4z=2
2x —3y+ 5z=13
Ix—4y+6z2=17
Reduce the augmented matrix to echelon form:
1 -2 4 2 1 -2 4 2 1 =2 4 2
-3 5 3|~10 1 -3 —-1}~f0 1 -3 -1
3 —4 6 7 0 2 -6 1 0 0 0 3

The third row of the echelon matrix corresponds to the degenerate equation 0 = 3; hence the system has no
solution.

1.35. Solve, using the augmented matrix,
x+2y—3z—-2s+4t=1
2x + 5y —8z— s+ 61=4
x+4y—Tz+55+2t=8

Reduce the augmented matrix to echelon form and then to row canonical form:

l 2 -3 =2 4 | | 2 -3 -2 4 1 1 2 -3 -2 4 1
2 5 -8 -1 6 41~10 1 -2 3 -2 2]~|0 r -2 3 -2 2
4 -7 5 2 8 0 2 —4 7 =2 7 0 0 0 1 2 3

I 2 -3 0 8 7 1 0 1 0 24 21
~10 I -2 0 -8 —-7]~|0 1 -2 0 -8 -7
0 0o 0 | 2 3 0 0 0 1 2 3

Thus the free-variable form of the solution is

X+ z+ 24t = 21 x= 21— z-—24t
y—2z— 8t=-7 or =—-T+ 2z 4+ 8t
s+ 2= 3 s= 3-X

where z and ¢ are the free variables.

1.36. Solve, using the augmented matrix,
xX+2y— z=3
x+3y+ z=S5
3x + 8y +4z=17
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Reduce the augmented matrix to echelon form and then to row canonical form:

| zZ -1 3 1 2 -1 3 | 2 -1 3
| 3 1 5]~{0 1 2 2]~10 1 2 2
3 8 4 17 0 s 7 8 0 0 3 4

12 =1 3N\ /1 2 o B\ {1 o o ¥
~lo 1 2 2]~f0 1 0o -%]~l0 1 0 -3
o o 1t % o o 1 % Vo o 1 %

The system has the unique solution x = 4, y = —4§,z=%oru= (&, —%. %)

HOMOGENEOUS SYSTEMS
1.37. Determine whether each system has a nonzero solution.

x+2y— z=0

x—2y+3z-2w=0 x+2y—32=0 2x+5y+2z=0

Ix—Ty—2z2+4w=0 2x + 5y +2z2=0 x+4y+72=0

4x+3y+52+2w=0 3x— y—4z=0 x+3y+3z=0
(a) () ()

(@) The system must have a nonzero solution since there are more unknowns than equations.
{h) Reduce to echelon form:

XxX+2y—3z=0 x+2y—3z=0 X+2y—32=0
2x+ 5y +2:=0 to y+8=0 to y+82=0
Ix— y—4z=0 ~Ty+5z=0 6lz=20

In echelon form there are exactly three equations in the three unknowns; hence the system has a
unique solution, the zero solution.

{¢) Reduce to echelon form:

x+2y— z=0 x+2y— z=0

2x +5y+2:=0 y+4z=0 x+2y— z=0
to to

X+4y+7z=0 2y +8z=0 y+4z=0

x+3y+3=0 y+4z=0

In echelon form there are only two equations in the three unknowns; hence the system has a nonzero
solution.

1.38. Find the dimension and a basis for the general solution W of the homogeneous system
x+ 3y—2z4+ 55—3t=0
2x+ Ty—3z+ Ts—5t=0
3x+11ly—4z+10s —91 =0
Show how the basis gives the parametric form of the general solution of the system.

Reduce the system to echelon form. Apply the operations —2L, + L, -+ L, and —3L, + Ly — L,, and
then —2L, + L, — L, to obtain
x+3y—2:245—-3=0 X43y—2z455-3=0
y+ z—3s+ =0 and y+ z—3s54+ t=0
2y + 2z — 5s =0 s—2t=0
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1.39.

1.40.

141.

In echelon form, the system has two free variables, z and ¢; hence dim W = 2. A basis [u,, u,] for W may
be obtained as follows:

(I) Set z=1, t=0. Back-substitution yields s=0, then y= —1, and then x =5 Therelore,
u, =(5 —1,1,0,0).

(2) Set z=0, t=1 Back-substitution yields s=2, then y=35, and then x= —22 Therefore,
u, =(—22,5,0,2, 1).

Multiplying the basis vectors by the parameters a and b, respectively, yields
au, + bu, = a5, — 1. 1,0,0) + B{—22, 5,0, 2, 1) = (5a — 22b, —a + 5b, a. 2b, b)
This is the parametric form of the general solution.

Find the dimension and a basis for the general solution W of the homogeneous system

x+2y—3z=0

2x + S5y +2z=0

3x— y—4z=0

Reduce the system to echelon form. From Problem 1.37(b) we have

XxX+2y—3z=0
y+8=0
6lz =0

There are no free variables (the system is in triangular form). Hence dim W =0 and W has no basis.
Specifically, W consists only of the zero solution, W = {0}.

Find the dimension and a basis for the general solution W of the homogeneous system

2x+ 4y — 524 3t=0
Ix+ 6y— Tz+4t=0
Sx 4+ 10y —1lz+ 6t =0

Reduce the system to echelon form. Apply —3L, +2L,—L, and —5L, +2L,— L,, and then
—3L, + L, -+ L4 to obtain

2x+4y—52+3t=0
z— t=0 and
3z—3t=0

In echelon form, the system has two free variables, y and ¢; hence dim W = 2. A basis {u,, u,} for W may
be obtained as follows:

2x +4y— 52+ 3t=0
z— t=0

(1) Set y = 1, 1= 0. Back-substitution yields the solution u;, = (-2, 1, 0, 0).
(2) Set y =0,1= 1. Back-substitution yields the solution u, = (1,0, 1, 1).

Consider the system
x—3y—2z+4t= 5
3x —8y—3z+ 8t =18
2x — 3y 4+ 5z—-4 =19
(@) Find the parametric form of the general solution of the system.
(b) Show that the result of (a) may be rewritten in the form given by Theorem 1.11.
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(@) Reduce the system to echelon form. Apply —3L, + L,—» L, and —2L, + Ly— L,, and then
—3L, + L, — L, to obtain

x—3y—2z+ 4t=5
y+3z— =3 and
3y+9z—12t=9
In echelon form, the free variables are z and t. Set z = a and t = b, where a and b are parameters.

Back-substitution yields y = 3 — 3a + 4b, and then x = 14 — 7a + 8b. Thus the parametric form of the
solution is

Xx—3y—2z4+d1=5
¥y+3z—4r=3

x=14—Ta+ 8b y=3-3a+4b z=a t="5b (%)

(b) Let vq=1(14, 3, 0, 0) be the vector of constant terms in (=), let u, =(—7, —3, 1, 0) be the vector of
coeflicients of a in (+), and let u, = (8, 4, 0, 1) be the vector of coefficients of b in (*). Then the general
solution (») may be rewritten in vector form as

(x, ¥, 2, t) = vg + auy + bu, (%)

We next show that (++) is the general solution per Theorem 1.11. First note that v, is the solution
of the inhomogeneous system obtained by setting a = 0 and b = 0. Consider the associated homoge-
ncous system, in echelon form:

x—3y—2z244t=0
y+3z—-4r=90

The free variables are z and 1. Set z = 1 and ¢ = O to obtain the solution u, = (-7, —3, 1, 0). Set z =
and r = | to obtain the solution u, = (8, 4, 0, 1). By Theorem 1.10, {u,, u,} is a basis for the solution
space of the associated homogeneous system. Thus (=) has the desired form.

MISCELLANEOUS PROBLEMS

142

1.43.

1.44.

Show that each of the elementary operations [E, |, [E,], [E;] has an inverse operation of the

same type.

[E,] Interchange the ith equation and the jth equation: L, « L;.

[E,]1 Multiply the ith equation by a nonzero scalar k: kL; —» L;, k # 0.

[E;] Replace the ith equation by k times the jth equation plus the ith equation: kL; + L; = L.

{a) Interchanging the same two equations twice, we obtain the original system; that is, L, L; is its own
inverse.

(b) Multiplying the ith equation by k and then by k™!, or by k™! and then k, we obtain the original
system. In other words, the operations kL, — I, and k'L, — L, are inverses.

(c) Applying the operation kL; + L;— L; and then the operation —kL; + L, — L;, or vice versa, we obtain
the original system. In other words, the operations kL; + L; — L; and —kL; + L, - L, are inverses.

Show that the effect of applying the following operation [E] can be obtained by applying [E,]
and then [E,].

[E] Replace the ith equation by k' times the jth equation plus k (nonzero) times the ith equa-
tion: K'L; + kL; —» L;, k # 0.
Applying kL, — L; and then applying kK'L; + L; - L, has the same result as applying the operation
KL; + kL, > L;.

Suppose that each equation L; in the system (/.3) is multiplied by a constant ¢;, and that the
resulting equations are added to yield

(Crayy +  F+ Cplpy)xy + - (e a,, + ey )X, =c b, + - +c,b, (N
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145,

1.46.

147.

Such an equation is termed a linear combination of the equations L,. Show that any solution of
the system (/.3) is also a solution of the linear combination (/).

Suppose u = (k, k4, ..., k,) is a solution of (1.3):

a,k, +ank, +---+a k,=b i=1....,m (2)
To show that u is a solution of (1), we must verify the equation
(ciay, + "+ Cppdky + - +(cyay, + -+ a0k, =c, b, +--- +c.b,
But this can be rearranged into

@y ky 4+ - +ak)+ -+ fa, + - +a,k)=c b+ +c,b,
or, by (2)

b+ +epbp=cby+---+c,.b,

which is clearly a true statement.

Suppose that a system (#) of linear equations is obtained from a system (*) of linear equations
by applying a single elementary operation—[E, ], [E,], or [E;]. Show that (#) and (*) have all
solutions in common (the two systems are equivalent).

Each equation in (#) is a linear combination of the equations in (x). Therefore, by Problem 1.44, any
solution of (*) will be a solution of all the equations in (#). In other words, the solution set of () is
contained in the solution set of { #). On the other hand, since the operations [E,], [E,]}, and [E,] have
inverse elementary operations, the system (=) can be obtained from (#) by a single elementary operation.
Accordingly, the solution set of (#) is contained in the solution set of (*). Thus (#) and ()} have the same
solutions,

Prove Theorem 1.4.

By Problem 1.45. each step does not change the solution set. Hence the original system (») and the final
system (#) (and any system in between) have the same solution set.

Prove that the following three statements about a system of linear equations are equivalent:
(i) The system is consistent (has a solution). (ii) No linear combination of the equations is the
equation

Ox, +0xy + - +0x,=b #0 ()
(i) The system is reducible to echelon form.

Suppose the system is reducible to echelon form. The echelon form has a solution, and hence the
original system has a solution. Thus (iii} implies (i).

Suppose the system has a solution. By Problem 1.44, any linear combination of the equations also has
a solution. But (+) has no solution; hence (#) is not a linear combination of the equations. Thus (i) implies
(i).

Finally, suppose the system is not reducible to echelon form. Then, in the Gaussian algorithm, it must
yield an equation of the form (=). Hence (») is a linear combination of the equations. Thus not-(iii) implies
not-(ii), or, equivalently, (i) implies (iii).
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Supplementary Problems

SOLUTION OF LINEAR EQUATIONS

148. Solve:
2x 4+ 3y =1 2x + 4y =10 4x — 2y =5
(@) ! (b) ) (c) y
Sx+Ty=3 Ix + 6y =15 —6x +3y=1
1.49. Solve:
2x+ y—3z= 5 2x + 3y —22=5 x+2y+ 3z=3
(@ 3x—2y+2z2= 5 by x—2y+3z=2 () 2x+3y+ 8Bz=4
5x —3y— z=16 4x — y+4z=1 Ix+2y+172=1
1.50. Solve:
2x + 3y =13 x+2y—3z24+2t=2 x+2y— z+3t= 3
(@@ x—2y=35 by 2x+5y—8z+6t=35 () 2x +4y+4z+3t= 9
Ix+2y=7 Ix+4y—5z+2t=4 3x+6y— z+ 8 =10
1.51. Solve:

x+2y+2z= 12
3Ix-2y— z= 5
2x — Sy +3z= —4
x+4y+62=0

x+5y+4z—13t=3
(b) Ix— y+2z4 5t=2
2x+2y+ 32— 41 =1

(@

HOMOGENEOUS SYSTEMS

1.52. Determine whether each system has a nonzero solution:

x+3y—2z=0 x+3y—2z2=0 x+2y—52+4=0
(@@ x—8y+8=0 by 2x —3y + z=0 (©) 2x -3y +22+ 3t =0
Ix—2y+4z=0 Ix—-2p+2z2=0 4x—Ty+ z—61=0

1.53. Find the dimension and a basis of the general solution W of each homogeneous system.

x+ 3y+ 22—s5s— t=0 2x — 4y +3z— s+ 2=0
@ 2x+ 6y+ S5z+s5— =0 (b) 3x— 6y +5z—25+4t=0
S5x + 15y + 12z 45 -3t =0 5x - 10y+7z2—3s+ t=0

ECHELON MATRICES AND ELEMENTARY ROW OPERATIONS

1.54. Reduce A to echelon form and then to its row canonical form, where

1 2 -1 2 1 2 3 -2 5 1
(@ A=|2 4 1 =2 3 ) A={3 -1 2 0 4
k] 6 2 -6 5 4 -5 6 -5 7
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1.55.

1.56.

1.57.

1.58.

1.59.

Reduce A to echelon form and then to its row canonical form, where

E g o= 2 0 1 3 -2
0 1 -5 3 0 4 -1 3

A= e
(a) 2 -5 3 ] DEA=ls 5 1 4
4 1 1 5 0 5 -3 4

Describe all the possible 2 x 2 matrices which are in row reduced echelon form.

Suppose A is a square row reduced echelon matrix. Show that il 4 # I, the identity matrix, then 4 has a
ZETO TOW.

Show that each of the following elementary row operations has an inverse operation of the same type.

[E,] Interchange the ith row and the jth row: R;+» R;.
[E,] Multiply the ith row by a nonzero scalar k: kR; - R,, k # 0.
[E;] Replace the ith row by k times the jth row plus the ith row: kR; + R; -+ R;.

Show that row equivalence is an equivalence relation:
(i} A isrowequivalent to A;
(ii) A row equivalent to B implies B row equivalent to A;
(iii) A row eguivalent to B and B row equivalent to C implies A row equivalent to C.

MISCELLANEOUS PROBLEMS

1.60.

1.61.

1.62.

Consider two general linear equations in two unknowns x and y over the real field R:

ax + by=e¢e
cx +dy=f
Show that:
M If E # g ie, if ad — be # 0, then the system has the unique solution x = ——:——Z—E, )= H;
. a b e ;
(i) If — = - # -, then the system has no solution;
¢ d f
a b e )
(iii) If == 5= then the system has more than one solution.
[

Consider the system
ax + by=1
ex +dy =0

Show that if ad — bc # 0, then the system has the unique solution x = d/(ad — bc), y = —c/(ad — bc). Also
show that if ad — bc = 0. ¢ # 0 or d # 0, then the system has no solution.

Show that an equation of the form Ox, + Ox, + --+ + Ox, = 0 may be added or deleted from a system
without affecting the solution set.
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1.63.

1.64.

1.48.

1.49.

1.50.

1.51.
1.52.

1.53.

1.54.

1.55.

SYSTEMS OF LINEAR EQUATIONS [CHAP. 1|

Consider a system of linear equations with the same number of equations as unknowns:

ap X, + Ay Xz 4+ a,x,=b
a3, Xy + 33X+ -+ azax,=by

............................... (1

(i) Suppose the associated homogeneous system has only the zero solution. Show that (/) has a unique
solution for every choice of constants b;.

(ii) Suppose the associated homogeneous system has a nonzero solution. Show that there are constants b,
for which (/) does not have a solution. Also show that if (1) has a solution, then it has more than one.

Suppose in 2 homogeneous system of linear equations the coeflicients of one of the unknowns are all zero.
Show that the system has a nonzero solution.

Answers to Supplementary Problems

(@) x=2,y=—1; () x=5—2a,y=a; (¢) no solution

x=—1-7z

(@) (1. =3, =2) (b) no solution; () (=1 —7a,2 + 2a,a) or {y 2422

x=—z+ 2
@ x=3,y=—1; ) (—a+2b,1+2a—2bh,a by or {y=l+22—2l
=3—=51/2 -2y
1 5h/2—2 b x=1
() (7—5b/2—2a,a, % +b/2,b) {z=1+!ﬂ
(@ (2,1, 1) (b) no solution
(@) yes; (b) no; (c) yes, by Theorem 1.8
(@ DimW=3;u=(-31000)u,=(7,0 -3, 1,0), u; =(3,0, —1,0, 1)
(b)) Dim W =2;u, =(—2,1,0,0,0), u, = (5,0, =5, =3, 1)
1 2 1 2 o0 0 %
@ (0 o 0 0 1 0 0];
0 0 o o o 1 -%
2 3 -2 5 1 1 0o & & #
b (0 —11 10 —t5 5 and o 1 - LK -F
0 0o 0 0 0 0O 0 0 0 0
1 3 -1 2 1 0 & R
0o 11 -5 3 0 1 -4 &)
@ls o o o ™ lo o o of
0O 0 0 0 0o 0 0 0
[( 3 -2 c 1 0 o
0 0 —13 11 0O 0 1 ©
® 1o o o 3] ™ o o o 1
0 0 0 0 0 0 0 0



Chapter 2

Vectors in R” and C”, Spatial Vectors

2.1 INTRODUCTION

In various physical applications there appear certain quantities, such as temperature and speed,
which possess only “magnitude.” These can be represented by real numbers and are called scalars. On
the other hand, there are also quantities, such as force and velocity, which possess both “magnitude™
and “direction.” These quantities can be represented by arrows (having appropriate lengths and direc-
tions and emanating from some given reference point 0O) and are called vectors.

We begin by considering the following operations on vectors.

(i) Addition: The resultant u + v of two vectors u and v is obtained by the so-called parallelogram
law, i.e., u + v is the diagonal of the parallelogram formed by u and v as shown in Fig. 2-1(a).

(i) Scalar multiplication: The product ku of a vector u by a real number k is obtained by multiplying
the magnitude of u by k and retaining the same direction if k > 0 or the opposite direction if k < 0,
as shown in Fig. 2-1(b).

(b)
Fig. 2-1

Now we assume the reader is familiar with the representation of the points in the plane by ordered
pairs of real numbers. If the origin of the axes is chosen at the reference point O above, then every
vector is uniquely determined by the coordinates of its endpoint. The relationship between the above
operations and endpoints follows.

(i) Addition: If(a, b)and (c, d) are the endpoints of the vectors u and v, then (a + ¢, b + d) will be the
endpoint of u + v, as shown in Fig. 2-2(a).

(i) Scalar multiplication: If (a, b) is the endpoint of the vector w, then (ka, kb) will be the endpoint of
the vector ku, as shown in Fig. 2-2(b).

Mathematically, we identify the vector u with its endpoint (g, b) and write u = (g, b). In addition we
call the ordered pair (a, b) of real numbers a point or vector depending upon its interpretation. We
generalize this notion and call an n-tuple (a,, a,, ..., a,) of real numbers a vector. However, special
notation may be used for spatial vectors in R* (Section 2.8).

39
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(at+c, b+d

ku (ka, kb)
(a, b)
“ (a, b)

(a) (b)
Fig. 2-2

We assume the reader is familiar with the elementary properties of the real number field which we
denote by R.

2.2 VECTORS IN R”

The set of all n-tuples of real numbers, denoted by R”, is called n-space. A particular a-tuple in R",
say

u=(uy, Uy, ..., u,)

is called a point or vector; the real numbers u; are called the components (or coordinates) of the vector u,
Moreover, when discussing the space R” we use the term scalar for the elements of R,

Two vectors u and v are equal, written u = v, if they have the same number of components, ie.,
belong to the same space, and if corresponding components are equal. The vectors (1, 2, 3) and (2, 3, 1)
are not equal, since corresponding elements are not equal.

Example 2.1

(a) Consider the following vectors

©n (,-3 (1,234 (-54L0m

The first two vectors have two components and so are points in R?; the last two vectors have four components
and so are points in R*.

(b Suppose (x — y, x + y,z — 1) = (4, 2, 3). Then, by definition of equality of vectors,

x—y=4
x+y=2
z—1=3

Solving the above system of equations gives x =3,y = —l,and z = 4.

Sometimes vectors in n-space are written vertically as columns rather than horizontally as rows, as
above. Such vectors are called column vectors. For example,

O ) (1) (=

-8 28

are column vectors with 2, 2, 3, and 3 components, respectively.
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2.3 VECTOR ADDITION AND SCALAR MULTIPLICATION
Let # and v be vectors in R":
U= (1, Uy, ..., U,) and v =(Vg, Uzy--.50,)
The sum of u and v, written u + v, is the vector obtained by adding corresponding components:
ut+v=_(uy +v,u;+0y,...,u,+0)

The product of the vector u by a real number k, written ku, is the vector obtained by multiplying each
component of u by k:

ku = (ku,, ku,, ..., ku,)
Observe that ¥ + v and ku are also vectors in R™. We also define
—u=—1lu and u—v=u+(—~v)

The sum of vectors with different numbers of components is not defined.
Basic properties of the vectors in R" under vector addition and scalar multiplication are described
in the following theorem (proved in Problem 2.4). In the theorem, 0 = (0,0, ..., 0), the zero vector of R™.

Theorem 2.1: For any vectors u, v, w € R"” and any scalars k, k' € R,

(i) W+ovy+w=u+(@+w (v) k{u+v)=ku+ kv
(i) u+0=u (vi) (k+Kkw=>ku+ Ku
(i) u+(—u)=0 (vil) (kk')u = k(k'u)
(iv u+v=v+u (viii) lu=u

Suppose u and v are vectors in R" for which u = kv for some nonzero scalar k € R. Then u is called
a muliiple of v; and u is said to be in the same direction as v if k > 0, and in the opposite direction if
k<0

24 VECTORS AND LINEAR EQUATIONS

Two important concepts, linear combinations and linear dependence, are closely related to systems
of linear equations as follows.

Linear Combinations
Consider a nonhomogeneous system of m equations in n unknowns:

ayy Xy + adyz X, + e Ay X, = bl
ayq Xy +a22-\-’2+'”+ ahx“=b2

Ay Xy +am2x2 S e o amxn=bm

This system is equivalent to the following vector equation

2 n
L] e
—-
2 B
[
L] L]
LT~

[

L]

_EJ'

Zn bz

[~}

3

-4

[=}

g e
B

[}

[~



42 VECTORS IN R" AND C", SPATIAL VECTORS [CHAP. 2

that is, the vector equation
Xquy + XUy + X U, =D

where u,, u,, ..., u,, v are the above column vectors, respectively.
Now if the above system has a solution, then v is said to be a linear combination of the vectors u;.
We state this important concept formally.

Definition: A vector v is a linear combination of vectors u,, u,, ..., u, if there exist scalars ky, k,, ...,
k, such that
v=kyuy +ku, + - +kyu,
that is, if the vector equation
v=x0 + Xy + 00 + X1,

has a solution where the x; are unknown scalars.

The above definition applies to both column vectors and row vectors, although our illustration was
in terms of column vectors.

Example 2.2. Suppose

2 1 1 1
U= 3 y u. = l " uz - l al'ld ll3 = 0
—4 1 0 0
Then v is a linear combination of u,, u, , u; since the vector equation (or system)
2 1 1 1 2=x+y+z
3]l=xq1}+MN1]+20 or 3=x+y
—4 1 0 0 —~4=x
has a solution x = —4, y = 7, z = — L. In other words,

. --4“. + ?HI — u_,
Linear Dependence
Consider a homogeneous system of m equations in n unknowns:

Ay Xy + ay2%; + -+ ag,x, =0
Xy + Ay Xy + o+ Ay x, =0

yy X +am212+“' + amxu=0

This system is equivalent to the following vector equation:

ay dyz 0
day dza 0
Xql . +x;] |+ +x .
A1 Om2 0

that is, the vector equation
X Uy + XauUy + 0 + x,u,=0

where uy, u,, ..., u, are the above column vectors, respectively.
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Now, if the above homogeneous system has a nonzero solution, the vectors u,, u,, ..., u, are said to
be linearly dependent; on the other hand, if the equation has only the zero solution, then the vectors are
said to be linearly independent. We state this important concept formally.

Definition: Vectors u,, u,, ..., u, in R" are linearly dependent if there exist scalars k,, k,, ..., k,, not
all zero, such that
kiu, +kauy + - +k,u,=0
that is, if the vector equation
Xty + Xatty + 0 + X, u, =0
has a nonzero solution where the x; are unknown scalars. Otherwise, the vectors are said

to be linearly independent.

The above definition applies to both column vectors and row vectors, although our illustration was
in terms of column vectors.

Example 2.3
(a) The only solution to

1 | 1 0 x+y+z=0
x1)+y1]+240}]=]0 or x+y =0
1 0 0 0 x =0

is the zero solution x = 0, y = 0, z = 0. Hence the three vectors are linearly independent.

(k) The vector equation (or system of linear equations)

1 2 1 0 x+2y+ z=0
l{j+H —1]+2 —5]=|0 or x— y—5=0
1 3 3 0 x+3y+3z=0

has a nonzero solution (3, —2, 1},i.e.,, x = 3, y = —2, z = 1. Thus the three vectors are linearly dependent.

25 DOT (SCALAR) PRODUCT
Let ¢ and v be vectors in R":
u=(uy, Uy, ..., U,) and v=_(v,, U3,..., 0,)

The dot, scalar, or inner product of u and v, denoted by u * v, is the scalar obtained by multiplying
corresponding components and adding the resulting products:

Uu*v=u,0; +uvy +- - +u,u,
The vectors u and v are said to be orthogonal (or perpendicular) if their dot product is zero, that is, if
u-v=0.
Example 24. letu=(l.-2,3, —4),v=(6.7,1, —2),and w = (5, —4, 5, 7). Then
uro=164+(—-2)"7+314+(—4)(-2)=6-14+3+8=3
usw=15+(-2 (-9 +3*54+(—4-T7=54+8+15-28=0

Thus u and w are orthogonal.

Basic properties of the dot product in R" (proved in Problem 2.17) follow.
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Theorem 2.2: For any vectors u, v, w € R” and any scalar k € R,
) (u+v)yw=u~wt+ov*w (i) usv=vu

(i) (ku) ~v=kiu-v) (iv uru>0,anduu=0iffu=20

Remark: The space R" with the above operations of vector addition, scalar
multiplication, and dot product is usually called Euclidean n-space.

26 NORM OF A VECTOR

Let u = (u,, 5, ..., 1) be a vector in R". The norm (or length) of the vector u, written [Ju]|, is defined
to be the nonnegative square root of u * u:

bl = Vuru=Jul + i+ +ul

Since u * u > 0, the square root exists. Also, if u # 0, then ||« > 0; and ||0]| = 0.

The above definition of the norm of a vector conforms to that of the length of a vector (arrow) in
(Euclidean) geometry. Specifically, suppose u is a vector (arrow) in the plane R? with endpoint P(a, b) as
shown in Fig. 2-3. Then |a| and | b| are the lengths of the sides of the right triangle formed by u and the
horizontal and vertical directions. By the Pythagorean Theorem, the length |u| of uis

lul = /a® + b2

This value is the same as the norm of ¢ defined above.

Pia. b)

o lal

Fig. 2-3

Example 25. Suppose u = (3, —12, —4). To find |lull, we first find Ju|? = u - u by squaring the components of u
and adding:

Ml =32+ (=122 +(—4)* =9 + 144 + 16 = 169
Then |u| = /169 = 13.

A vector u is a unit vector if ju] = 1 or, equivalently, if = u = 1. Now if v is any nonzero vector,
then

v

1
ML

liel ol

is a unit vector in the same direction as v. (The process of finding © is called normalizing v.) For example,

)

v 2 -3 8 -5
||vi|—(sz’\/wz’,/wz’,/m

is the unit vector in the direction of the vector v = (2, —3, 8, —5).

b=
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We now state a fundamental relationship (proved in Problem 2.22) known as the Cauchy—Schwarz
inequality.

Theorem 2.3 (Cauchy—Schwarz): For any vectors u, vin R" [u - v| < |lu| |v|.

Using the above inequality, we prove (Problem 2.33) the following result known as the triangle
inequality or as Minkowski’s inequality.

Theorem 2.4 (Minkowski): For any vectors u, v in R, Ju + v < jlu] + Jiv]l.

Distance, Angles, Projections
Let u = (u,, 4z, ..., 4,) and v=(v,, v,, ..., 1,) be vectors in R". The distance between u and v,
denoted by d(u, v), is defined as
diu, v) = Jlu— vl = Sy — v +(uy — 0> + - + (u, — v,)?

We show that this definition corresponds to the usual notion of Euclidean distance in the plane R%
Consider u = (a, b) and v = (¢, d) in R% As shown in Fig 2-4, the distance between the points P(a, b)
and Q(c, d) 1s

d=fa—cf +((b-d?
On the other hand, by the above definition,
du, v) = Ju —vll = l(a— ¢, b—d)| = /(a—c)* + (b—dy?

Both give the same value.

Using the Cauchy-Schwarz inequality, we can define the angle 6 between any two nonzero vectors
u, vin R" by

u-v
~ lulel
Note that if u~ v = 0, then 8 = 90° (or 6 = n/2). This then agrees with our previous definition of orthog-
onality.

cos 0

Example 2.6. Supposeu = (1, —2,3)and v =(3, —5, —7). Then
diu, v) = S(1 -3 +(—2+52+ (3 + =4+ 9+ 100= /113
To find cos 0, where @ is the angle between u and v, we first find
urv=3+10-21= -8 lul*=1+4+9=14 o> =9+ 25 + 49 = 83
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Then
use

-8
Cluliel 14 /73

Let u and v # O be vectors in R". The (vector) projection of u onto v is the vector

cos f#

proj (u v) = =
uv)=—>v
ol
We show how this definition conforms to the notion of vector projection in physics. Consider the
vectors u and v in Fig. 2-5. The (perpendicular) projection of u onto v is the vector u*, of magnitude

u*v  u-v
laflvl v

To obtain u*, we multiply its magnitude by the unit vector in the direction of v:

|u*| = |ul cos 0 = |u|

v u-v
¥ ¥ —— —
il T

This agrees with the above definition of proj (u, v).

I
C
el »e B

Fig. 2-5

Example 2.7. Suppose u = (1, —2,3)and v = (2, 5, 4). To find proj (u, v), we first find
urpv=2-104+12=4 and lo|2=4 + 25+ 16 = 45
Then

u-p 4 8 20 16 8 4 16
1 v T ————— L | —— 5’4 - — "'—'_‘—"_'—"'- — "—._,_
proj (u 1) =z v =25(2.5.4) (45 45 45) (45 9 45)

2.7 LOCATED VECTORS, HYPERPLANES, AND LINES IN R"

This section distinguishes between an n-tuple P(a,, a,, ..., a,) = P(a;} viewed as a point in R" and
an n-tuple v = [¢,, ¢,, -.., ¢,] viewed as a vector (arrow) from the origin O to the point C(c,, ¢5, ..., C,).
Any pair of points P = (a;) and Q = (b,) in R" defines the located vector or directed line segment from P
to Q, written PQ. We identify PQ with the vector

b=Q—P=[b, —ay,b,—ay..... b, — a,]

since PQ and v have the same magnitude and direction as shown in Fig. 2-6.
A hyperplane H in R" is the set of points (x,, x;, ..., x,) that satisfy a nondegenerate linear
equation
a;x, "l"a:xz + - +a,,x,,= b

In particular, a hyperplane H in R? is a line; and a hyperplane H in R® is a plane. The vector
u=[a,a,,...,a,] #0is called a normal to H. This terminology is justified by the fact (Problem 2.33)
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Fig. 2-6

that any directed line segment @ where P, Q belong to H, is orthogonal to the normal vector u. This
fact in R* is shown in Fig. 2-7.

Fig. 2-7

The line L in R" passing through the point P(a,, 4,, ..., a,) and in the direction of the nonzero
vector u = [u,, U,, ..., u,] consists of the points X(x,, x,,..., x,) which satisfy
xl == al ‘+’ ult
Xy =4, + uyt
X=P+1tu or z z 2

..............

where the parameter t takes on all real numbers. (See Fig. 2-8.)

P+ru

P-tu

Fig. 2-8
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Example 2.8

(@) Consider the hyperplane H in R* which passes through the point P(1, 3, —4, 2) and is normal to the vector
u=[4, —2,5, 6]. Its equation must be of the form

4x -2y +5z+ 6t =k
Substituting P into this equation, we obtain
4 -23)+5(—)+6{)=k or 4—-6—-20+12=k or k=-10
Thus 4x — 2y + 5z + 6t = — 10 is the equation of H.

(b) Consider the line L in R* passing through the point P(1, 2, 3, —4) in the direction of u =[5, 6, —7, 8]. A
parametric representation of L is as follows:

x; =1+ 5t
x; =2+ 6t
X, =3-Tt or (145246637, —4+8)
xg=—4 + 8Bt

Note t = 0 yields the point P on L.

Curves in R"

Let D be an interval (finite or infinite) in the real line R. A continuous function F: D — R" is a curve
in R". Thus to each ¢ € D there is assigned the following point (vector) in R":

F(t) = [F,(t), Fy(1), ..., F ()]
Moreover, the derivative (if it exists) of F(r) yields the vector
V(t) = dF(t)/dt = [dF ((t)/dt, dF ,(t)/dt, ..., dF(t)/dt]

which is tangent to the curve. Normalizing V(t) yields
V)
IVl

which is the unit tangent vector to the curve. [Unit vectors with geometrical significance are often
notated in bold type; compare Section 2.8.]

T(t)

Example 2.9. Consider the following curve C in R?:
F(t)=[sint, cos t, t]
Taking the derivative of F(f) [or each component of F(t)] yields
V(t) =[cos t, —sin t, 1]
which is a vector tangent to the curve. We normalize V(). First we obtain
IOl =cos? e +sint+1=1+1=2
Then

1403) [cost —sint 1 ]
)= = y ——, ——
"ol 5 55

which is the unit tangent vector to the curve.
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28 SPATIAL VECTORS, ijk NOTATION IN R?

Vectors in R3, called spatial vectors, appear in many applications, especially in physics. In fact, a
special notation is frequently used for such vectors as follows:

i = (1, 0, 0) denotes the unit vector in the x direction,
j = (0, 1, 0) denotes the unit vector in the y direction,
k = (0, 0, 1) denotes the unit vector in the z direction.

Then any vector u = (a, b, ¢) in R* can be expressed uniquely in the form
u={(a, b, c)=ai+ bj+ ck
Since i, j, k are unit vectors and are mutually orthogonal, we have
ifi=1, jri=1, k-k=1 and i-j=0, i-k=0, jrk=0

The various vector operations discussed previously may be expressed in the above notation as
follows. Suppose u = a,i + a,j + a;k and v = byi + b, j + b5 k. Then

u+v=_(a, +bi+(a, +by)j+ (a; + by)k urv=a,b, +a,b, +asb,

cu = ca,i + cazj + caz k lul = Ju-u=./a?+al+al

where c is a scalar.

Example 2.10. Suppose u = 3i + 5 — 2k and v = 4i — 3j + 7k.
(@) To find u + v, add corresponding components yielding
utv="Ti+ 2+ 5k

(b) To find 3u — 2v, first multiply the vectors by the scalars, and then add:
3u—2v = (% + 15) — 6k) + (—8i + 6j — 14k) = 4i + 21j — 20k
(¢} To find u - v, multiply corresponding components and then add:
uv=12-15—-14=—-17
(d) To find JJul|, square each component and then add to get |Jul|%. That is,
Jul?=9+25+4=38 andhence [u =./38

Cross Product
There is a special operation for vectors u, v in R?, called the cross product and denoted by u x .
Specifically, suppose
u=a;i+a,j+ ask and v=>bi+bj+ bk
Then
u x v=(ayby — a3 b)i + (a3b, — a,b3)j + (a,b; — a; by)k

Note u x vis a vector; hence u x v is also called vector product or outer product of u and v.

Using determinant notation (Chapter 7), where “ 3 = ad — bc, the cross product may also be
expressed as follows:
_ |92 G3f. |41 O3 a, a4,
ki PN L P L S
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or, equivalently,

i j k
uxv=|a, a, a,
b, b; b,

Two important properties of the cross product follow (see Problem 2.56).

Theorem 2.5: Let u, v, w be vectors in R3.
(i) The vector u x v is orthogonal to both u and v.

(i) The absolute value of the “triple product” u * v x w represents the volume of the
parallelepiped formed by the vectors u, v, and w (as shown in Fig. 2-9).

Fig. 2.9

Example 2.11
{a) Suppose u = 4i + 3j + 6k and v = 2i + 5§ — 3k. Then

3 6|. |4 6. |4 3 . 2
u><v=|5 _3‘|—|2 _3|+|2 5||i-——39'l+24j+]4|l
-1 5 2 5112 -1
—1,5 1, 6) = - =(—41 1
(b) 2, —1,5 x(3,76) (| 7 6lr 3 6’l3 TD ( 3, 17)

(Here we find the cross product without using the ijk notation.)
(¢} The cross products of the vectors i, §, k are as follows:
ixj=k ixk=i kxi=j, and ixi=—k kxj=—i ixk=—j

In other words, if we view the triple (i, j, k) as a cyclic permutation, i.e., as arranged around a circle in the
counterclockwise direction as in Fig. 2-10, then the product of two of them in the given direction is the third
one but the product of two of them in the opposite direction is the negative of the third one.

>

Fig. 2-10
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29 COMPLEX NUMBERS

The set of complex numbers is denoted by C. Formally, a complex number is an ordered pair (a, b)
of real numbers; equality, addition, and multiplication of complex numbers are defined as follows:

(a, b) = (c, d) iff a=cand b=d
(a,b)+(c,dy=(a+c,b+d
(a, b)c, d) = (ac — bd, ad + bc)
We identify the real number a with the complex number (a, 0):
a+(a, 0)

This is possible since the operations of addition and multiplication of real numbers are preserved under
the correspondence

(a0 + b 0)=(a+ b0 and (a, OXb, 0) = (ab, 0)

Thus we view R as a subset of C and replace (a, 0) by a whenever convenient and possible.
The complex number (0, 1), denoted by i, has the important property that

2=ii=(01)0,1)=(—1,0=—-1 o i=./-1
Furthermore, using the fact
(a, b) = (a, 0) + (0, b) and (0, b) = (b, 0X0, 1)
we have
(a, b) = (a, 0) + (b, OXO, 1) =a + bi

The notation z = a + bi, where a = Re z and b = Im z are called, respectively, the real and imaginary
parts of the complex number z, is more convenient than (a, b). For example, the sum and product of two
complex numbers z = a + bi and w = ¢ + di can be obtained by simply using the commutative and
distributive laws and i* = —1:

z+w=(@+b)+c+diyj=a+c+bit+di=(@+c)+ (b +d)i
zw = (a + biXc + di) = ac + bci + adi + bdi* = (ac — bd) + (bc + ad)i

Warning: The above use of the letter i for ./ —1 has no relationship whatsoever
to the vector notation i = (1, 0, 0) introduced in Section 2.8.

The conjugate of the complex number z = (a, b) = a + bi is denoted and defined by

z=a+ bi=a— bi

Then zZ = (a + bija — bi) = a®> — b%i* = a® + b If, in addition, z # 0, then the inverse z~' of z and
division of w by z are given, respectively, by

z*‘—z . J— =0 i and Y e
zz at+ b a4+ b 2
where w € C. We also define
—z= -1z and w—z=w+(—2)

Just as the real numbers can be represented by the points on a line, the complex numbers can be
represented by the points in the plane. Specifically, we let the point (a, b) in the plane represent the
complex number z = a + bi, i.e, whose real part is ¢ and whose imaginary part is b. (See Fig. 2-11.) The
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absolute value of z, written | z|, is defined as the distance from z to the origin:
lz] = \/a*® + b

Note that | z| is equal to the norm of the vector (a, b). Also, | z| = \/E

Fig. 2-11

Example 2.12. Suppose z = 2 + 3iand w = 5 — 2i. Then
z+w={24+3)+(5-20=24+5+3i—-2i=T+i
2w =(2+ 35— 2i) =10 + 15 —4i — 6 =16 + 11i
3=2+43=2-3 and Ww=5-2i=5+2

52 (S5—22-3) 4-19% 4 19

2+3 (2+3)2—3) 13 13 13

lz] =4 +9=,/13 and |w]=,/25+4=./29

w
z

Remark: We emphasize that the set C of complex numbers with the above oper-
ations of addition and multiplication is a field, like R.

210 VECTORS IN

The set of all n-tuples of complex numbers, denoted by C", is called complex n-space. Just as in the
real case, the elements of C" are called points or vectors, the elements of C are called scalars, and vector
addition in C" and scalar multiplication on C" are given by

(22, -z Flwpwa, . W)=(2, +w, 23 +wWa, ..., 2, + W)
Z{Z., Z350-n1 Zn)=(ZZI, ZZ2g4 01y ZZ,J

where z;, w;, z € C.

Example 2.13
@ R+3,4—-0i3)+(3—-2i,5,4—-600=(5+1i4 +4i,7— 6i)
(b) 22+ 3i,4 —i,3)=(—6+ 4i,2 + 8i, 6i)

Now let u and v be arbitrary vectors in C":
U=(2y,23.....2,) v=(wy, Wy, oo, W) z;, w; € C
The dot, or inner, product of u and v is defined as follows:

U=z, w  +2Z,W, + -+ 2, W,
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Note that this definition reduces to the previous one in the real case, since w, = w; when w; is real. The
norm of u is defined by

lul = Ju-u=/z,3,+ 2,5, + -+ 2,7, =Sz, P + |2, * + - + |z, ]

Observe that u * u and so ||u]| are real and positive when u # 0and 0 when u = 0.

Example 2.14. Letu =(2 + 3,4 —i, 2)andv = (3 — 2, 5,4 — 6i). Then

up=(2+ 33 — 2i) + (4 — iX5) + (2i)4 — 6i)
= (2 + 303 + 20) + (4 — IX5) + (204 + 6i)
=13 420 -5 — 12+ 8i =8 + 16i

weu=(2+ 3iK2 + 30) + (4 — I8 — i) + (2i)20)
= (2 + 30)2 — 3} + (4 — N4 + i) + (20X~ 2i)
—134+17+4=34

lull = Ju-u= /3%

The space C” with the above operations of vector addition, scalar multiplication, and dot product,
is called complex Euclidean n-space.

Remark: If u v were defined by u*v=2z,w, +--- + z,w,, then it is possible
for u * u = 0 even though u # 0,e.g, if u = (1, i, 0). In fact, u - u may not even be real.

Solved Problems

VECTORS IN R"
21. Letu=(2 —-7,1),v=(—3,0,4),w= (0,5, —8). Find (a) 3u — 4v, (b) 2u + 3v — 5w.
First perform the scalar multiplication and then the vector addition.

(@ 3u—4v=32 -7,1)—-4-3,0,4)=(6, —21, 3) + (12,0, —16) = (18, —21, —13)
h) 2u+3w—-5w=22 —7. 1)+ 3(-3,0,4)— 50, 5 —8)

=4, —14,2) + (—9, 0, 12) + (0, =25, 40)

=4-94+0, -144+0—-252+ 12 +40) =(—5, —39, 59)

22. Compute:

1 2 5 —1 3
@ 21 —-1]-31 3} b - 3|+ 53| —1
3 -4 —4 2 -1
First perform the scalar multiplication and then the vector addition.
1 2 2 -6 —4
@ 2l —1)-3 3)=|-2)+|-9)=]|-11
3 —4 6 12 18
5 -1 3 —10 —4 -9 —23
b -2 3!+ 5)-31—-1)=| —6]+{ 20|+ 3|=| 17

—4 2 —1 8 8 3 19
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Find x and y if (a) (x, 3) = (2, x + y); (b)) (4, y) = x(2, 3).
(a) Since the two vectors are equal, the corresponding components are equal to each other:
x=2 3=x+y
Substitute x = 2 into the second equation to obtain y = 1. Thus x =2 and y = 1.

(b) Multiply by the scalar x to obtain (4, y) = x(2, 3) = (2x, 3x). Set the corresponding components equal
to each other:
4=2x y=13x

Solve the linear equations for x and y: x = 2 and y = 6.

Prove Theorem 2.1.
Let u;, v;, and w; be the ith components of u, v, and w, respectively.

(i) By definition, u; + v; is the ith component of u + v and so (u; + v) + w; is the ith component of
(u + v} + w. On the other hand, v; + w; is the ith component of v + w and so u; + (v; + w;) is the ith
component of u + (v + w). But &, v;, and w; are real numbers for which the associative law holds,
that is,

(u,+v,]+w,-=u;+(v;+wﬂ for i=1...,n

Accordingly, (u + v) + w = u + (v + w) since their corresponding components are equal.

(ii) Here, 0= (0,0, ..., 0); hence
U+ 0= (ty, tig, ey 1) + (0,0, ..., 0)
=W +0u,+0, ..., u,+0)=(u,uy,...,u)=u
(i) Since —u= —Nu,, ty,...,u) =(—u;, —ty, ..., —t)
u+(—u) =, uy, ..., 4)+ (—uy, —uy, ..., — 1)
=y — Uy, Uy — iy, ..., 4, —4)=(0,0..0=0

(iv) By definition, u; + v is the ith component of u + v, and v; + u; is the ith component of v + u. But y;

and v, are real numbers for which the commutative law holds, that is,

U+, =1 4 u; i=1..,n

Hence u + v = v + u since their corresponding components are equal.

(v) Since u; + v; is the ith component of u + v, k{u; + v) is the ith component of k(u + v). Since ku; and
kv, are the ith components of ku and kv, respectively, ku; + kv, is the ith component of ku + ko. But k,
u;, and v, are real numbers; hence

klu; + v} = ku; + ky; i=1,...,n

Thus k(u + v) = ku + kv, as corresponding components are equal.

(vi) Observe that the first plus sign refers to the addition of the two scalars k and k' whereas the second
plus sign refers to the vector addition of the two vectors ku and k'u.
By definition, (k + k')u; is the ith component of the vector (k + k'u. Since ku; and k'y; are the ith
components of ku and k'u, respectively, ku; + k'u; is the ith component of ku + k'u. But k, k', and u;
are real numbers; hence

(k + Ky, = ku, + Ky, i=1,...,n
Thus (k + k)Ju = ku + k'u, as corresponding components are equal.

(vil} Since k'y; is the ith component of k'u, k(k'u;) is the ith component of k{k'u). But (kku; is the ith
component of (kk)u and, since k, k’ and u; are real numbers,

(kk'W, = k(k'u;) i=1...n
Hence (kk')Ju = k(k'u), as corresponding components are equal.

i) 1 u= g, uy,. . u) = (luy, luy, ..., L) = (g, g, ..., 4,) = 1.
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VECTORS AND LINEAR EQUATIONS

2.5. Convert the following vector equation to an equivalent system of linear equations and solve:

1 1 2 3
~6)l=x{2]+5]+22
5 3 8 3

Multiply the vectors on the right by the unknown scalars and then add:

1 x 2y 3z x+2y+ 3z
—6]l=|2x]|+|Sy)+{2z|=|2x+ 5y + 2z
5 3x 8y 3z 3x + 8y + 3z

Set corresponding components of the vectors equal to each other, and reduce the system to echelon form:

x+2y+3z= 1 x+2y+3z= 1 X+2p4+3z= 1
2x + 5y +2z= —6 y—4z= -8 y—4z= -8
Ix+8y+3z= 5§ 2y—6z= 2 2z= 18

The system is triangular, and back-substitution yields the unique solution x = —82, y=28,z=9.

2.6. Write the vector v = (1, —2, 5) as a linear combination of the vectorsu, = (1, 1, 1), u; =(1, 2, 3),
and u; =(2, —1, 1).

We want to express v in the form v = xu, + yu, + zu, with x, y, and z as yet unknown. Thus we have

1 1 1 2 x+ y+ 22
—2)=x{1]+M2)+zf -1)={x+2y— :z
5 1 3 1 x+3y+ ¢z

(It is more convenient to write the vectors as columns than as rows when forming linear combinations.)
Setting corresponding components equal to each other we obtain:

x+y+2z= 1 x+y+2z= 1 x+y+2z= 1
x+2y— z=-2 or y—3z=-3 or y—3z=-3
x+3y+ z= 5 2y— z= 4 5z= 10

The unique solution of the triangular formis x = —6,y = 3,z = 2; thus v = —6u; + 3u; + 2u,.

2.7. Write the vector v = (2, 3, —95) as a linear combination of u; = (1,2, —3), u, =(2, — 1, —4), and
uy =(1,7, - 5).

Find the equivalent system of equations and then solve. First:

2 1 2 1 X+2y+ z
]l= 21+ -1 ]+ T]= 2x— y+ 7z
=5 -3 —4 -5 —3x—4y— 5z

Setting corresponding components equal to each other we obtain

x+2y+ z= 2 x+2y+ z= 2 x+2y+z= 2
2x— y+Tz= 3 or ~5y+ 5z= —1 or —S5y+5z= -1
—3x—4y—5z= -5 2y—2z= 1 0= 3

The third equation, 0 = 3, indicates that the system has no solution. Thus v cannot be written as a linear
combination of the vectors u,, u, and u,.
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29.

2.10.

211.
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Determine whether the vectors u, = (1, 1, 1), u, =(2, —1, 3), and uy = (1, —5, 3) are linearly
dependent or linearly independent.
Recall that u,, u,, u, are linearly dependent or linearly independent according as the vector equation

xu, + yu, + zuy = 0 has a nonzero solution or only the zero solution. Thus first set a linear combination of
the vectors equal to the zero vector:

0 1 2 1 x+2y+ z
Ol=x1j+ —-t)+ -5)={x—- y—3z
0 1 3 3 x+3y+ 3z
Set corresponding components equal to each other, and reduce the system to echelon form:
x+2y+ z=0 x+2y+ z=0 x+2y+ z=0
XxX— y—52=0 or —3y—6z=0 or y+2z=0
x+3y+32=0 y+2z=0

The system in echelon form has a free variable; hence the system has a nonzero solution. Thus the original
vectors are linearly dependent. (We do not need to solve the system to determine linear dependence or
independence; we only need to know if a nonzero solution exists.)

Determine whether or not the vectors (1, —2, —3),(2, 3, — 1), and (3, 2, 1) are linearly dependent.

Set a linear combination (with coefficients x, y, z) of the vectors equal to the zero vector:

0 1 2 3 x+2y+ 3z
O)=x] -2+ 3)+z2)=|—2x+3y+ 2z
0 -3 —1 1 -3x— y+ z
Set corresponding components equal to each other, and reduce the system to echelon form:
x+2y+3z=0 x+2y+ 3z=0 x+2y+3z=0 x+2y+3z=0
—2x+3y+2z2=0 or Ty+ Bz=10 or y+2z=0 or y+2:=0
—3Ix— y+ z=0 Sy+10z=0 Ty +8=0 —6z=10

The homogeneous system is in triangular form, with no free variables; hence it has only the zero solution.
Thus the original vectors are linearly independent.

Prove: Any n + 1 or more vectors in R" are linearly dependent.
Suppose uy, u,, ..., u, are vectors in R" and g > n. The vector equation
Xpuy + XUy + o+ xu, =0

is equivalent to a homogeneous system of n equations in g > n unknowns. By Theorem 1.9, this system has
a nonzero solution. Therefore u,, u,, ..., u, are linearly dependent.

Show that any set of g vectors that includes the zero vector is linearly dependent.
Denoting the vectors as 0, u,, us, .... u,, we have 1(0) + Ou; + Ouy + -+ + Ou, = 0.

DOT (INNER) PRODUCT, ORTHOGONALITY

2.12.

2.13.

Compute u * v whereu = (1, —2,3, —4)and v = (6, 7, 1, —2).
Multiply corresponding components and add: u * v = (1X6) + (=2)7) + (3X1) + (—4X~2) = 3.

Supposeu=(3,2,1),v=(5 -3, 4)w=(1,6, =7).Find: (@ @u+v)*w,(B)u-w+uv-w
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(@) First calculate u + v by adding corresponding components:
u4v=3+52-3,1+4)=8, —1,5)

Then compute (u + v) = w = (BX1) + (—1X6) + (SX\—T7) =8 —6— 35= —33.

(b) Fistfindu-w=3+12—-7=8andv-w=5— 18~ 28 = —41. Then
u*w+v-w=8—-41=-33
[Note: As expected from Theorem 2.2(i), the two values are equal.]

204. Letu=(1,2,3, —4),v=(5, —6,7,8),and k = 3. Find: (@) k{u - v), (b) (ku) - v, () u * (kv).
(@) Firstfindu+v=5—124+ 21 — 32 = —18. Then k(u+ v) = 3—18) = —54.
(b) First find ku = (3(1), 3(2), 33), X—4)) = (3, 6,9, —12). Then
(ku) = v = (3KS) + (6K —6) + (OKT) + (—12)¥8) = 15 — 36 + 63 — 96 = —54
(c) First find ke = (15, —18, 21, 24). Then
u = (ke) = (1X15) + (2 — 18) + (3X21) + (—4)24) = 15 — 36 + 63 — 96 = — 54

215. Letu=(54,1),v=(3, —4, 1), and w=(1, —2, 3). Which pair of these vectors, if any, are
perpendicular?
Find the dot product of each pair of vectors:

u*r=15—-164+1=0 v w=3+84+3=14 urw=5-84+43=0

Hence vectors u and v and vectors u and w are orthogonal, but vectors v and w are not.

2.16. Determine k so that the vectors u and v are orthogonal where u = (1, k, —3) and v = (2, —5, 4).

Compute u * v, set it equal to 0, and solve for k. u*v = (IX2) + (kK—5) + (=34 =2 — Sk — 12 =0,
or —5k — 10 = 0. Solving, k = —2.

2.17. Prove Theorem 2.2
Letu=(u;, Uy, ....0) 0 =(0;, U3,...,0 ), Ww={wy, W,,..., W)
(i) Sinceu+v=(u +v,u +uv,y,...,u,+0),

(w+v)w=(u; +vw, +@u, +v)w, +-- +(u, + o w,
=uw; +vw Fuawy v, o U w, oW,
=f{ugwy +ugw; + -+ uw)) Hloyw, +oawy + - +p,w,)
=u"whovew

(ii) Since ku = (ku,, ku,, ..., ku,),
(ku) ~v=kuyv, + kuyv, + -+ + ku,v, = kfuyv, + u,v; + - + u,v,) = k(u * v)
(i) urv=uw, +uv; + - +UL,=0U +0 U+ " FUU=V"D
(iv) Since u? is nonnegative for each i, and since the sum of nonnegative real numbers is nonnegative,
uru=uj +ui+- +ul>0

Furthermore, u * u = 0 ifl 4, = 0 for each i, that is, iff u = 0.
NORM (LENGTH) IN R

2.18. Find |w]ifw=(—-3,1, —2 4, —5).
w2 =(=3) + 12+ (=27 + 4> + (=52 =9 + 1 + 4 + 16 + 25 = 55; hence [w| = /55.
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2.19.

222,

VECTORS IN R" AND C", SPATIAL VECTORS [CHAP. 2

Determine k such that |u| = ./39 whereu = (1, k, —2, 5).
lu))?> = 1% + k? +(—2) + 5% = k* + 30. Now solve &k + 30 = 39 and obtain k = 3, —3.

Normalize w = (4, —2, —3, 8).

First find [wi> =w-w=44+ (-2 +(—3)* + 82 = 16 + 4 + 9 + 64 = 93. Divide each component
of w by |lw| = /93 to obtain

w 4 -2 -3 8

*=W=(ﬁ*ﬁ'ﬁ'ﬁ)

Normalize v = (3, %, —1).

Note that v and any positive multiple of v will have the same normalized form. Hence, first multiply v
by 12 to “clear” fractions: 12v = (6, 8, —3). Then

o~ 12v

6 8 -3
[120]|2 = 36 + 64 + 9 = 109 and =120 = =( : , )
M2l \ /109 /109 . /109

Prove Theorem 2.3 (Cauchy—-Schwarz). |u- v| < [lul [v].

We shall prove the following stronger statement: |u* v| < Y |y;v;] < |lul/|v|. First, if u =0 or v =0,
i=1
then the inequality reduces to 0 < 0 <0 and is therefore true. Hence we need only consider the case in
which u # 0 and v # 0, i.e., where Jju]| # 0 and ||} # 0. Furthermore, because

lu-vl =Y wr| <3 tuv;

we need only prove the second inequality.
Now, for any real numbers x, y € R, 0 < (x — y)* = x> — 2xy + )? or, equivalently,

2xy < x2 + y? )
Set x = | u;|/Ilul] and y = |y, |fllvll in (1) to obtain, for any i,
fuel [l Jat? | Juf?
Tl T e
(lall o ful®  Wel

But, by definition of the norm of a vector, |luf =} u? =Y |u|? and [[¢l =} o} = ¥ jv;|?. Thus summing
(2) with respect to i and using |u; v;| = |y; || v;|, we have

2 Z |u; v; < z ‘uiF + z |f-’i|z _ ||“||:I + |Iv!l’ _
lull e [l ol lull® * fell?

)

that is,

E | u; v <1
lesll ol

Multiplying both sides by [ful| |v]l, we obtain the required inequality.

Prove Theorem 2.4 (Minkowski). lu + v < [lul + v
By the Cauchy-Schwarz inequality (Problem 2.22) and the other properties of the inner product,

lu+vlP=@W+v) (u+v)=u-u+2u-vy+v-v
< lul)® + 2)ullliel + llol* = (lull + Jol)?

Taking the square roots of both sides yields the desired inequality.
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2.24.

2.25.

Prove that the norm in R" satisfies the following laws:
(@) [N,] Forany vectoru, |ul| >0;and [u| =0iffu=0.
(b) [N,] Forany vector u and any scalar k, ||ku| = | k| [lul.
(¢) [N,] Foranyvectorsuandu, |u+ v| < full + |2].
(a) By Theorem2.2,u-u>0,and u *u = 0iff u = 0. Since |u| = \/u - u, [N,]follows.
(b) Suppose u = (uy, uy, ..., u,) and so ku = (ku,, ku,, ..., ku,). Then
Ikull® = (kuy)? + (ktig)® + == + (ku ) = K3 f + 43 + -+ + ug) = K2 Jull®
Taking square roots gives [N,].
(c) [N,] was proved in Problem 2.23.

Let u=(1,2 —2), v=(3, —12,4), and k= —3. (@) Find |u|, ||, and |ku|. (b) Verify that

llkull = k| jull and Jlu + o]l < lu|f + ||v]l.

@ Jul=/1+4+4=/9=3, ol=/9+ 144+ 16 = /169 = 13, ku=(—3, —6, 6), and [lku| =
9+36+36=./81=9.

(b) Since |k|=|—3]|=3,wehave |k||jul =3+3 =9 = |lku|. Also u + v = (4, —10, 2). Thus

lu + vl = /16 + 100 + 4 = /120 < 16 = 3 + 13 = [[u]| + Jv]|

DISTANCE, ANGLES, PROJECTIONS

2.26.

2.28.

Find the distance d(u, v) between the vectors u and v where
(@ u=(1,7),v=(6 —-3)
b) u=(3, —54),v=(62 —1),
(C) ut(ss:;’ ""25 ""4} ——1),IJ=(2, "'110) _7o2)'
In each case use the formula d(u, v) = [lu — vl = J(u, — v,)* + -~ + (u, — )%
(@ du,v)= (1 — 62+ (7 + 5P =./25 + 144 = . /169 = 13
) duv)=/B—6F +(—5—2F +(@+ 1 =./9+49 +25= /83
(€ dut)= /=2 +B+ 12 +(=2+0P +(—4+ 7P + (-1 —2}"=\/4_?

Find k such that d(u, v) = 6 where u = (2, k, 1, —4)andv = (3, — 1,6, —3).
First find
[du, )] =2 -3 +k+1) 4+ (1 -6 +(—4+ 3 =k + 2k + 28
Now solve k? 4 2k + 28 = 6 to obtain k = 2, —4.

From Problem 2.24, prove that the distance function d(u, v) satisfies the following:
[M,] d(u,v})=0;and du, v) =0iff u=v.
[M;]  dlu, v) = div, u).
[Mi1 du, v) < du, w) + d(w, v) (triangle inequality).
[M,] follows directly from [N,]. By [N,],
du, v) = lu —vll = (~IXv — W) =] —1]]lv—ull = |lv—ul| = d(v, u)
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which is [M,]). By [N,],
du, v) = JJu — vl = [[(s — w) + (w — )]l < [[u—wil + |w—ell =du, w) + dw, v)
which is [M,].

Find cos 6, where 6 is the angle between u = (1,2, —5)and v = (2, 4, 3).
First find
u-v=24+8-—-15= -5 ful|2=1+4+25=30 it> =4 + 16 + 9 =129
Then

u-uv

5
0= g
lullhel  /30,/29

Find proj (u, v) where u = (1, —3,4)and v = (3,4, 7).
First findu*v=3—- 12+ 28 = 19and |[v|* =9 + 16 + 49 = 74. Then

S 25 A 7}_(5_? 16 133 _(ﬂ 3 '_33)
PO =t T "\ 7 e ) T \78° 37 s

POINTS, LINES, AND HYPERPLANES

This section distinguishes between an n-tuple P(a,, a,, ..., a,) = P(a;) viewed as a point in R" and
an n-tuple v = [¢,, ¢5,..., ¢,] viewed as a vector (arrow) from the origin O to the point C(c,, c;,---, c,).

231.

2.32.

2.33.

Find the vector v that is identified with the directed line segment P_é for the points (@) P(2, 5) and
0(—3,4)in R%, (b) P(1, —2,4)and (6,0, —3)in R?.

@ v=Q—P=[-3—24—5)=[-5,—1]
) v=Q-P=[6-1,0+2 —3—-4]=[52 7]

Consider points P(3, k, —2) and Q(5, 3, 4) in R?. Find k so that Fé is orthogonal to the vector
u=1[4, -3,2].

Firstfindv=0Q -P=[5—-33-k 4+ 2] =[23— k, 6). Next compute
U v=4D-33 - +26)=8-9+3k+12=3k+ 11
Lastly, setu - v =0or 3k + 11 = 0, from which k = —11/3.

Consider the hyperplane H in R” which is the solution set of the linear equation
X, +ayx;+ - +a,x,=b (1)

where u = [a,, a,, ..., a,] # 0. Show that the directed line segment Fé of any pair of points P,
Q € H is orthogonal to the coefficient vector u; the vector u is said to be normal to the hyper-
plane H.

Letw1=(?andw2=b§;hmwv=wz—wt=P_Q'.By(.'},u-w,=bandu'w,=b.ﬂulthen
urv=u-(w,—w)=u*w,—u*w,=b—-b=0

—_—
Thus v = PQ is orthogonal to the normal vector u.
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235

2.37.

2.38.

Find an equation of the hyperplane H in R* which passes through P(3, —2, 1, —4) and is normal
tou=[235, —6, —2].

An equation of H is of the form 2x + Sy — 6z — 2w = k since it is normal to u. Substitute P into this
equation to obtain k = —2. Thus an equation of H is 2x + 5y — 6z — 2w = —2.

Find an equation of the plane H in R? which contains P(1, — 5, 2) and is parallel to the plane H’
determined by 3x — 7y + 4z = 5.

H and H’ are parallel if and only if their normals are parallel or antiparallel. Hence an equation of H is
of the form 3x — 7y + 4z = k. Substitute P(1, —5, 2) into this equation to obtain k = 46. Thus the required
equation is 3x — Ty + 4z = 46,

Find a parametric representation of the line in R* passing through P(4, —2, 3, 1) in the direction
u=1[275 -7,11].

The line L in R" passing through the point P(a;) and in the direction of the nonzero vector u = [u;]
consists of the points X = (x,) which satisfy the equation

X=P+tu or X;=a; + u;l (ffori=1,2,...,n) (I
where the parameter 1 takes on all real values. Thus we obtain

x= 44+ 2

s P ok (4+2t, -2+ 5,371, 1+ 1)

z= 33— Tt

w= 1+11lz

Find a parametric equation of the line in R*® passing through the points P(5, 4, —3) and
od, —3,2).
First compute u = ITQ. =[1-5 —-3—4,2—(—3)] =[—4. —7, 5] Then use Problem 2.36 to obtain
x=5-4 y=4-Tt z= -3 45

Give a nonparametric representation for the line of Problem 2.37.

Solve each coordinate equation for ¢ and equate the results

X—3 y—4 z43
-4 -7 5

or the pair of linear equations 7x — 4y = 19 and 5x + 4z = 3.

Find a parametric equation of the line in R* perpendicular to the plane 2x — 3y + 7z = 4 and
intersecting the plane at the point P(6, 5, 1).

Since the line is perpendicular to the plane, the line must be in the direction of the normal vector
u = [2, —3. 7] of the plane. Hence

x=64+2t y=5-3 z=14+Tt

Consider the following curve C in R* where 0 <1 < 4:
F)=(* 3t -2t +5)
Find the unit tangent vector T when t = 2.
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Take the derivative of (each component of) F(r) to obtain a vector V which is tangent to the curve:

dF(r)

Vin=—~=@.3 3%, 21)
Now find V when t = 2: V = (4, 3, 12, 4). Normalize V to get the unit tangent vector T to the curve when
t = 2. We have
IVIZ=16+9+ 144+ 16 =185 or |V =./185
Thus

1_:[4 3'12‘4]
/185 /185" /185" /i85

241. Let T(t) be the unit tangent vector to a curve C in R". Show that dT(t)/dt is orthogonal to T(t).
We have T{(r) - T(t) = 1. Using the rule for differentiating a dot product, along with d(1)/dt = 0, we have
d[T(t) - T())/dt = T(t) - AT (t)/dt + dT(t)/dr = T(1) = 2T(t) ~ dT(2t)/dt =
Thus dT(t)/dt is orthogonal to T{z).

SPATIAL VECTORS (VECTORS IN R?), PLANES, LINES, CURVES, AND
SURFACES IN R*®

The following formulas will be used in Problems 2.42-2.53.
The equation of a plane through the point Py(x,, o, zo) with normal direction N = di + bj + ck is
a(x — xo) + by — yo) + elx — x5) =0 (2.1)

The parametric equation of a line L through a point Py(x,, ¥y, 2p) in the direction of the vector
v=ai+ bj+ckis

x =at + x, y=bt + y, z=cl + z,
or, equivalently,
Sf(0) = (at + xo)i + (bt + yo)j + (ct + z)k (2.2)

The equation of a normal vector N to a surface F(x, y,2z) = 01is
N=F,i+Fj+Fk (2.3)

242. Find the equation of the plane with normal direction N = 5i — 6j + 7k and containing the point
P(3,4, —2).

Substitute P and N in equation (2.1} to get
5x =3 —6y—N+TNz+2)=0 or Sx —6y+Tz=-23

243. Find a normal vector N to the plane 4x + 7y — 12z = 3.

The coefficients of x, y, z give a normal direction; hence N = 4i + 7j — 12k. (Any multiple of N also is
normal to the plane.)

2.44. Find the plane H parallel to 4x + 7y — 12z = 3 and containing the point P{2, 3, —1).
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H and the given plane have the same normal direction; that is, N =4i + 7j — 12k is normal to H.
Substitute P and N in equation (a) to get

Hx—2D+Ty—3)—12z+1)=0 or 4x+Ty— 12z =4l

245. Let H and K be, respectively, the planes x + 2y — 4z = 5and 2x — y + 3z = 7. Find cos 8 where
¢ is the angle between planes H and K.

The angle ¢ between H and K is the same as the angle between a normal N to H and a normal N’ to
K. We have

N=i+2—4k and N=2i—j+3k
Then
N*N=2-2-12=-12 INP=1+4+16=21 INJP=4+1+9=14
Thus
N-N 12 12

INIINT -~ /2t Jia 7/6

cos f =

2.46. Derive equation (2.1).
Let P(x, y, z) be an arbitrary point in the plane. The vector v from P, to P is
v=FP—=Py=(x—xo)i +{y—yoli +(z—zo)k
Since v is orthogonal to N = ai + bj + ck (Fig. 2-12), we get the required formula
alx — xo) + by — yo) + clz — zp) = 0

)

Fig. 2-12

247. Derive equation (2.2).
Let P(x, y, z) be an arbitrary point on the line L. The vector w from P, to P is
w= PPy =(x—XoJi +(y ~ yolj +(z — 2o}k (N
Since w and v have the same direction (Fig. 2-13),
w=tv = t{ai + bj + ck) = ani + btj + ctk (2)

Equations (!) and (2) give us our result.
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(a.b.c)

Fig. 2-13

2.48. Find the (parametric) equation of the line L through:

2.49.

(@) Point P(3, 4, —2) and in the direction of v = 5i — j + 3k,
(b) Points P(1, 3,2) and Q(2, 5, —6).
(a) Substitute in equation (2.2) to get
@O =(5t+3)i +(~t+ 4]+ (3t —2k

(b) First find the vector v from P to Q: v=Q — P =i + 2j — 8k. Then use (2.2) with v and one of the
given points, say P, to get

SO =@+ 1i+2+3)j+(—8t+ 2)k

Let H be the plane 3x + 5y + 7z = 15. Find the equation of the line L perpendicular to H and
containing the point P(1, —2, 4).

Since L is perpendicular to the plane H, L must be in the same direction as the normal
N = 3i + 5j + Tk to H. Thus use (2.2) with N and P to get

J)= (3t + i + (5t — 2)j + (7t + )k

Consider a moving body B whose position at time ¢t is given by R(t) = ¢%i + 2¢%j + 3tk. [Then
V(t) = dR(t)/dt denotes the velocity of B and A(t) = dV(t)/dt denotes the acceleration of B.]

(@) Find the position of Bwhent=1. (¢} Find the speed s of B when t = 1.

(b) Find the velocity v of Bwhen t = 1. (d) Find the acceleration a of B when t = 1.

(a) Substitute t = 1 into R(t) to get R(1) =i + 2j + 3k.

(b) Take the derivative of R(r) to get

dR

Substitute t = 1 in V(1) to getv = V(1) = 3i + 4j + 3k.
(c) The speed s is the magnitude of the velocity v. Thus

sP=|v)2=9+16+9=34 andhence s=./34

= 3% + 4t + 3k
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() Take the second derivative of R(t) or, in other words, the derivative of ¥ (1) to get
d¥V(t)
dt

Substitute t = 1 in A{¢) to get a = A(l) = 6i + 4}

Alt) = = 6ti + 4j

2.51. Consider the surface xy* + 2yz = 16 in R”. Find (@) a normal vector N{(x, y, z) to the surface and
(b) the tangent plane H to the surface at point P(1, 2, 3).

(a) Find the partial derivatives F,, F,, F, where F(x, y, z} = xy* + 2yz — 16. We have
F =yt F,=2xy + 2z F,=2y

Thus, from equation (2.3), N(x, y, 2) = y%i + (2xy + 22)j + 2)k.
(b) A normal to the surface at point P is

N(P) = N(1,2,3)=4i + 10j + 4k
Thus N = 2i + S§j + 2k is also a normal vector at P. Substitute P and N into equation (2.1) to get
Ax — DN +5(y—-2)+Az—3)=0 or 2x + 5y + 2z =18

2.52. Consider the ellipsoid x* + 2y* + 3z% = 15. Find the tangent plane H at point P(2, 2, 1).
First find a normal vector [from equation (2.3)]
N(x, y,z) = F i+ F,j + F, k = 2xi + 4yj + 62k
Evaluate the normal vector N(x, y. z) at Ptoget .
N(P) = N(2, 2, 1) = 4i + 8j + 6k
Thus N = 2i + 4j + 3k is normal to the ellipsoid at P. Substitute P and N into (2,/) to obtain H:;
2x - +4Hy—D+Mz—-1)=0 or 2x + 4y + 3z =15

2.53. Consider the equation F(x, y, z) = x? + y* — z = 0, whose solution set z = x? + y* represents a
surface S in R>. Find (@) a normal vector N to the surface S when x =2, y = 3; and (b) the
tangent plane H to the surface S when x =2, y = 3.

(a) Use the fact that, when F(x, y, z2) = f(x,)) —z, wehave F, = ., F, = f,,and F, = —1. Then
N=({f.f,, —)=2xi+ 2yj —k =4i + 6j — k

() Mx=2 y=3,then z=4+9 = 13; hence P(2, 3, 13) is the point on the surface S. Substitute P and
N = 4i + 6j — k into equation (2./) to obtain H.

Y- +6(y—3)—(z—-13)=0 or 4x+6y—z=13

CROSS PRODUCT
The cross product is defined only for vectors in R”.
2.54. Find ux v where (@) u=(l, 2, 3) and v=(@4, 5, 6), (b) u=(7, 3, 1) and v=(1, 1, 1),
(©)u=(—4,12 2 and v = (6, — 18, 3).

The cross product of u = (a,, a,, a,} and v = (b,, b, b,) may be obtained as follows. Put the vector
v = (by, by, b;) under the vector u = (a,, a,, a,) to form the array

ay d; d,
b, b, by
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a, |a;| da,
b, |b b,

L] ¥

_ ap a; 4y a, d,
'”“"“( b, by by b, )

That is, cover the first column of the array and take the determinant to obtain the first component of
u x v; cover the second column and take the determinant backwards [compute a,b, — a,b, instead of
—(a, b, — a, b,)] to obtain the second component; and cover the third column and take the determinant to
obtain the third component.

1 2 3 1 2] 3] |1 2
(a) uxu=(;| . 6,—|4 6,14 p |)=[12—15,12—6.5—8)={—3,6,—3)
71 31 7 [3] 1} |7 3
= - = —_ —F —_ = —_
by uxv (] ! I[‘ ] IHI I [H) B-L1-7,7-3)=(2, -6,4)
—4

—
o8]

1
" (IF9 2 2] 2l-4 12 [2
e wete= 6| —18 3 6 |—18] 3] 6 —18 -3

=(36+ 36, 12+ 12,72 — 72) = (72, 24, 0)

Consider the vectors u=2i—3j+4k, v=3i+j—-2k, w=i+ S5j+3k. Find: (a) u x v,
B uxw (v xw

Use
i § k
Uy X0 =14, G G} 14 dyl. (G G, 14 Gafy
by by, by b, by by b,y b, b,
wherev, = a,i + a,j + a,k and v, = byi + b, j + b, k.
i i k
@ uxv=})2 -3 4)|=(6-Hi+(12+49+2+N%=2+16+ 11k
3 1 -2

(Remark : Observe that the j component is obtained by taking the determinant backwards.)

b) uxws= =(—9 — 20)i + (4 — 6) + (10 + 3k = —29i — 2§ + 13k

- b
|
LA ey e

-

(© vxws= =3+ 10)i +(—2— 9 + (15 — Dk = 13i — 11j + 14k

[P SN R o

- fad W
;

Prove Theorem 2.5(i): The vector ¥ x v is orthogonal to both u and .
Suppose u = (a,, a,, a;)and v = (b, b,, by). Then

u*(uxv)=ayazby — ayby) + axasb, — a by} + ajla,h, — a, b))
= a'l'ﬂlb.! = 016352 + azasbl e ﬂlazb3 + alﬂsbz -azasbt = 0

Thus u x v is orthogonal to u. Similarly, u x v is orthogonal to v.
Find a unit vector ¥ orthogonal to v = (1, 3, 4) and w = (2, —6, 5).
2 -6 -5
vxw=(—15+24,8+5 —6—-6)=(9 13, —12)
Now normalize u x w to get u = (9/,/394, 13/, /394, — 12/, /394).

First find v x w which is orthogonal to v and w. The array (i 3 4) gives
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2.58. Prove Lagrange’s identity, ||lu x »||*> = (u * u)v * v) — (u * v)*.
Ifu = (a,, a,,d;)and v = (b, b, , b,), then
llu x v)* = (a3 by — @y b3)* + (ay by — a,b3)* + (a,b; — ay b)) (1
(= ulv - v) —{u-vi? = (a + a + al}b} + b? + b3} — (a,b, + a, b, + a3 b,)? 2

Expansion of the right-hand sides of (/) and (2) establishes the identity.

COMPLEX NUMBERS
259. Supposez=5+3iandw =2 — 4i. Find: (@) z + w, (b) z — w, (c) zw.
Use the ordinary rules of algebra together with i* = — 1 to obtain a result in the standard form a + bi.
(@ z4+w=05+3)+Q2—-4)=7—i

B) z—-w=(5+3W-2—-=5+3-2+4i=3+7Ti
() ew=(5+3N2—4)=10—14i — 12* =10 — 14i 4+ 12 =22 — 14i

2.60. Simplify: (@) (5 + 3iX2 — 7i), (b)) (4 — 3i)%, () (1 + 2i)>.
(@ (5 +3iX2 — 7i) = 10 + 6i — 35i — 21 = 31 — 29i
(h) (4 —3i)> =16—24i +9i* =7 — 24i
© 0+2P=1+6i+122 483 =146i—12—8i=—11-2

2.61. Simplify: (a) i i3, i% (b) i, i%, i7, i, (c) *%, i* 74, 232, 7.
@ =L =ifi)=(-)= —i,i* =) =(-)-=1L
B P=N=Mp=ci®=@"N=()=F=—-1Li"=P=—if=i"=1
(¢) Usingi* =1andi" =i*"" = (i*)% = 19 = {, divide the exponent n by 4 to obtain the remainder r:

9 __ l-dt‘)u k]

i 4)9£3 = l‘)i.l ) = 174 2 252

= (i =i = —i =t =1 232 =0 =y it =i'=i

2.62. Find the complex conjugate of each of the following:
(@) 6 +4i,7—5i,4+1i, —3—1i; (b)6, —3,4i, -9
(@ 6+4i=6—6i, T—Si=T+5 4+ti=4—i, —3—i=—3+i
by 6=6 —3=-3 4di=—4i, —9%% =09

(Note that the conjugate of a real number is the original number, but the conjugate of a pure imaginary
number is the negative of the original number.}

263. Findzz and |z|whenz =3 + 4i.

Fot z = a 4+ bi,use 2z = a* + b* and z = \ /27 = \/a® + b

Zz=9+16=25 lz| =/25=5

2T

54 3i

2.64. Simplify

To simplify a fraction z/w of complex numbers, multiply both numerator and denominator by w, the
conjugate of the denominator.

2—7:'_(2-—?!]5—31')_—1!—4[1'* 11 41,

S+3i (5+35-3) M 4 M




68 VECTORS IN R" AND ", SPATIAL VECTORS

2.65. Prove: For any complex numbers z, w € C, () z + w = 7 + w, (ii) zw = 2w, (iii) 2 = z.
Suppose z=a + biand w = ¢ + di wherea, b, c,d € R.
() z+w=(@+b)+lc+d)=(@a+)+(+di
=a+c)—(b+di=a+c—bi—di
—@—b)+(c—diy=Z+Ww
{ii) zw = (a + bikc + di) = (ac — bd) + (ad + bo)i
= {ac — bd) — (ad + bc)i = (@ — bifc — di) = zw

(ii) Z=a+bi=a—bi=a—(-bli=a+bi=1z

2.66. Prove: For any complex numbers z, w € C, | zw| = | z| | w}.

By (ii) of Problem 2.65,

[zw|? = (zwlzw) = (zw)ZW)
= (22Hww) = |z |*|w]?

The square root of both sides gives us the desired result.

2.67. Prove: For any complex numbers z, we C, |z + w| < |z| + |w].

[CHAP. 2

Suppose z = a + bi and w = ¢ + di where g, b, ¢, d € R. Consider the vectors u = (g, b) and v = (¢, d) in

R2. Note that

lz| = /a* + b = |jul lwl= /¢’ +d* = vl

and

lz+wl=l@+d+bB+dil=Jla+cP+b+d?=l@a+ecb+dl=lu+v|
By Minkowski’s inequality (Problem 2.23), flu + ¢l < |lu|| + llv]l and so
lz+w|=llu+el <|ul + lv] =]z + [w]

268. Find the dot products v and v*u where (@) u=(1 —2i, 3+1i), v=(4+ 2i, 5— 6i), and

BPyu=03—-2i,4i, 1 +61),v=(5+i2—3i,7 + 2i).
Recall that the conjugates of the second vector appear in the dot product
(Zygseeen 2 "Wy ea W =2, W, + - 4z, W,

(@ u-v=(1—2i)8+2)+(3+i5— 6
=(1-204 -2+ (3 +i)5+65))= —10i +9+23i=9+ 13
vou=(4+ 21 —20) +(5— 603 + i)
=@+201+20)+(5—6i3 — i) =10i +9— 23 =9 — 13i
(B) u+v=(3— 25+ i) + @iN2 — 3) + (1 + 6i)7 + 2§)
=(3— 25 — i) + (N2 + 3} + ( + 67 — 2i) = 20 + 35i
vou=(5+iK3— 2i) + (2 — 3iN4) + (7 + 2iX1 + 6})
=(5+ i3 + 2i) + (2 — 3N —ai) + (7 + 2iX1 — 6i) = 20 — 35i

In both cases, v * u = u - v. This holds true in general, as seen in Problem 2.70.
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269. Letu=(7-—2i,2+ S)andv = (1 + i, —3 — 6i). Find:
@u+uv; (b)2iu; ()33 —ip; (du-v; (e) ull and |r|.
@ u+v=(T—-2i+1+i2+5i—3—6)=(@—i, —1—i
(b} 2iu = (14i — 4%, 4i + 10i*) = (4 + 14§, — 10 + 4i)
) B—iw=03+3i—i—i’ —9— 18 4 3i+6i’) =(4 + 2i, —15 — 15i)
(d) u-v=(7—21+0)+(2+5X—3— 6
=T -2l — )+ QR+ S —3+6)=5—9—36—3i=—31—12
(@ ful = /7 + (=27 +22 + 57 = /82, Ioll = /1 + P+ (=) + (=67 = /47

270. Prove: For any vectors u, v € C" and any scalar ze C, (Ju-~v=v- u, (1) (zu)* v = z(u " v),
(1) u = (z0) = z(u * v).
Suppose u =(z,, 23, ..., z,) and v = {w, wy, ..., W)
(i) Using the properties of the conjugate,

U'uzle-l'i‘w?'Ez'i‘”"" 1 +
=Wz, +WaZy + Wz, =2, W 42, W + 0 F
(ii) Since zu = (zz,, zz,, ..., zz,),
(zw) - v =zz Wy + zz, Wy + - + zz, W, = 2Z{z, W + 2, W, + - + z,w,) = z{u < v)
(Compare with Theorem 2.2 on vectors in R".)
(iiij Method 1. Since zv = (zw,, zw,, ..., ZW,),

ut(zv) =z, 2w, + 232ZW, + - + 2 ZW, = Z,ZW, + Z,IWy 4+ + - + Z,ZW,
=7Z{z,W; + 23 Wy + - + Z, W)= Z(u " v)

Method 2. Using (i) and (ii),

u°(zv]={zv]°u=z{v'u)=2{;'_'_ul=2(u'v]

Supplementary Problems

VECTORS IN R"

27, Let u=(2 -1, 0, =3), v=(1, -1, -1, 3}, w=(1, 3, -2, 2). Find: (@) 2u — 3v; (b) 5u— 3v — 4w;
(€} —u+ 20— 2w, (d)u* v,u-wand v - wi:(e) ul. [[vl, and {w].

2.72. Determine x and yif: (a} x(3, 2) = 2(y, — 1}; (B} x(2, ¥} = M1, —2).

2.73. Find d(u, v) and proj (u, v) when (@ u = (1, =3} v =@ Dand (Bu=(2, - 1,0, 1), v =(1, — 1, 1,2).

LINEAR COMBINATIONS, LINEAR INDEPENDENCE

2.74. Let
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Express v as a linear combination of u,, u, , uy where

1
(@ v=} -2} b v=
4

a
2 () v=1b
.

L ol e

2.75. Determine whether the following vectors u, v, w are linearly independent and, if not, express one of them as
a linear combination of the others.

@ u=001)v=(,23),w=(32735)s

By u=(L01e=(11),w=(01,1);

@ u=(,2,v=(, -1 w=(235)

(d u=(1,0,0,1}v=(01,21),w=(1234);
(&) u=(1,0,01,v=(01,21),w=(12473)

2.76. Prove that Theorem 2.3 holds with equality iff u and v are linearly dependent.

LOCATED VECTORS, HYPERPLANES, LINES, CURVES
2.77. Find the flocated) vector v from (a) P(2, 3, -7y to Q(1, —6, —5); (b} P(1, —8, —4, 6} to Q(3, —5,2, —4).

278. Find an equation of the hyperplane in R* which:

(a) Passes through(2, —7, 1} and is normal to (3, 1, —11);
(h) Contains (1, —2, 2),(0, 1, 3), and (0, 2, —1};
(c) Contains (1, —5, 2) and is parallel to 3x — 7y + 4z = 5.

2.79. Find a parametric representation of the line which:

(a) Passes through (7, — 1, 8) in the direction of (1, 3, — 5);
(b) Passes through (1,9, —4, 5)and (2, —3,0, 4);
(c) Passes through (4, — 1, 9} and is perpendicular to the plane 3x — 2y + z = 18&.

SPATIAL VECTORS (VECTORS IN R?%); PLANES, LINES, CURVES, AND
SURFACES IN R?
2.80. Find the equation of the plane H:

(@) With normal N = 3i — 4j + 5k and containing the point P(l, 2, —3);
(b) Parallel to 4x + 3y — 22 = 11 and containing the point P(1, 2, —3).

281. Find a unit vector u which is normal to the plane:
(@) 3x—4y—12z=11; By 2x —y—2z=1.

2.82. Find cos 6 where @ is the angle between the planes:

(@) 3x—2y—4z=3S5and x+ 2y — 6z =4;
b) 2x+Sy—4dz=1landdx +3y+2z=1.

283. Find the (parametric) equation of the line L:
(@) Through the point P(2, 5, — 3) and in the direction of v = 4i — 5§ + 7k;
(b) Through the points P(1, 2, —4) and Q(3, —7, 2);
(¢} Perpendicular to the plane 2x — 3y + 7z = 4 and containing P(1, —S5, 7).
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2.87.

Consider the following curve where 0 < ¢t < 5:
F(ty = %i— % + (2 = 3k
(a) Find F(t) whent = 2.
(b Find the endpoints of the curve.
(¢} Find the unit tangent vector T to the curve when 1 = 2,

Consider the curve F(t) = (cos t)i + (sin 1)j + tk.
(@) Find the unit tangent vector T(f) to the curve.

(b} Find the unit normal vector IN(t) to the curve by normalizing U(f) = dT(t)/de.
(¢} Find the unit binormal vector B(t) to the curve using B =T x N.

Consider a moving body B whose position at time ¢ is given by R(t) = ¢%i + t*j + 2¢k. [Then V(1) = dR(t)/dt
denotes the velocity of B and A(t) = dV(t)/dt denotes the acceleration of B.]

(a) Find the position of Bwhen t = 1.

(k) Find the velocity v of Bwhen r = 1.

(¢} Find the speed sof B whent = 1.

(d) Find the acceleration a of B when t = 1.

Find a normal vector N and the tangent plane H to the surface at the given point:

(@) Surface: x*y + 3yz = 20 and point P(l, 3, 2);
(b) Surface: x* + 3y* — 5z* = 16 and point P(3, —2, 1).

Given the surface z = f{x, y) = x* + 2xy. Find a normal vector N and the tangent plane H when x = 3,
y=1

CROSS PRODUCT

2.89.

2.90.

291.

The cross product is defined only for vectors in R,

Givenu=3i—4j+ 2k,v=21+ 55— 3k w=4i+ 7j+ 2k Find: (@u x s, Blu x w,(c)v x w,(d) v x u

Find a unit vector w orthogonal to (@) u=1(1, 2, 3) and v=(1, —1, 2}; (b) u=3i—j+2k and
v=4i—2— k.

Prove the following properties of the cross product:

(@) uxv=—(vxu (d) ux({p+w=(uxuv)+(uxw

() u x u= 0 for any vector u € (+wxu=({vxu+(wxu

(€ k) xv=kluxvy=uxtke) (f) Wxv)xw=(u*wh—(@-wu

COMPLEX NUMBERS

2.92.

293,

- ! '
Simplify: (a) (4 — 79 + 2i): (b) (3 — Sif*; (0) 7= : () g h :: e (1 — i

b 243 Ly
Simplify: (a) % i "'b}?{_ﬁ J () i'3, i3, %% (d) (3 = i) é
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2.94.
2.95.
2.96.
297
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Letz=2— Siand w= 7 + 3i. Find: (a) z + w; (b) zw; (c) z/w; (d) Z, w; (e} | z|, fw]I.
Letz =2+ iand w=6 — 5i. Find: (a) z/w; (b} z, w; (c) | |, | w].
Show that (a) Re z = 3(z + 2); (b)) Im z = (z — Z)/2i.

Show that zw = Q implies z = 0 or w = 0.

VECTORS IN C"

2.98.

2.99.

2.7L.

2.72.

2.73.

2.74.

275

2.77.

178.

.79.

Prove: For any vectors u, v, w e C":

) wW+vyrw=u-w+vew; (i) w-(u+vj=wru+w-r

Prove that the norm in C* satisfies the following laws:

[N,] Forany vector u, [luff > 0;and full =0ifu=0.

[N,;] For any vector u and any complex number z, ||zull = [z| [ul.
[N3] Forany vectorsuand o, lu + ¢|l < llu| + |oll.

Answers to Supplementary Problems

(@ 2u—3v=(11,3, —15) @ wu-v=—6u-w=-Tv-w=6
B) Su—3v—4dw=(3, —14,11, =32) (o Jull =./14, ol = 2./3, |w] = 3,/2
(€) —u+2w—2w= (-2 -1725)

(@ x=-1l,y=—3; (b)) x=0,y=0 or x=-2,y=—4
(@) d=5proj(u,v)=(% &) (b d=\/ﬁ,l3l‘0j(ﬂ.vl=(a,—%.%,"¥}

(@) v=(3u, - 5u; + 3,
b)) v=uy + 2u,
() v={{a—2b+ c)/2Ju, + (a + b — cJuy + [(c — a}f2]u,

(a) dependent; () independent; (c) dependent; (d) independent; (e} dependent.
(@ 3x+y—I1lz=—12; by Ix+dp+z=17, (€ Ix—Ty+4z=46

@ x=7+ty=—-14+3,z=8-5¢
By x;,=1+t,x,=9— 12, x,=—-4+4t,x,=5—1
¢} x=4+3t,y=—-1—-21,2=9+1

(@ 3x—4y+5z=-20; (b) 4x+3y—2z=16
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2.81.

2.82.
2.83.

BB

5k

292

293,

294

2.95.

297

(@)
(a)

(@)
(b
(o)

(a)

(a)
(b)
()

(a)

(a)
()

(a)
b

(a)
(a)
(@)

(a)
(b
(©

(a)
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w=0—4—12ky13;  (B) u={2i —j— 2k)/3

BAS/BVAY; 1) 151/45/29)

x=24+4Uy=5-5tz=-3+T
x=14+2y=2—-9,2z=—4+6t
x=14+2y=-5-3t,z=T7+ Tt

8i—d4i+k; (b)) —3kand125i—25i+7k; (a T =(6i—2j+kA/4l

T(t) = (- sin i + (cos 1)j + k)/y/2
N(f) = (— cos t)i — (sin ?2)j
B(t) = (sin 1)i — (cos 1)j + k)/y/2

i+j+2k (B 2i+3j+2k (9 JI1T, (D 2A+¢6

N=6i+7j+9,6x+7Ty+9z=45
N==6i—12— 10k, 3x — 6y — 5z =16

Bi+ 6 —k,8x+6y—z=15

2i + 13 + 23k (@ 3ti— 16§ — 6k
—22%i+2+3& @ -2 - 13j— 23k

(7.1, —3//59; (B (5i+ 11j— 2k)/ /150
SO—SSi; (b)) —16—130i; () (A+7)65. (4 (1+32; (9 —2-2
—3i; () G+27)/58; (@ —ii —1; (4 (4+ 350

z4+w=9-2 d Z=2+4+5i,w=T7-3i
w = 29 — 29i (&) |zl =25 |w|=./58
z/w =(—1 —41i)/58

zfw = (T + 16i)/61; by 2=2—i,w=46+ 5i; (cd lz|=./S5 |w|=./6l

If zw = 0, then |zw| = |z||w| = |0| = 0. Hence |z] =0 or |w|=0:andsoz=0o0rw = 0.



Chapter 3

Matrices

3.1 INTRODUCTION

Matrices were first introduced in Chapter 1 and their elements were related to the coefficients of
systems of linear equations. Here we will reintroduce these matrices and we will study certain algebraic
operations defined on them. The material here is mainly computational. However, as with linear equa-
tions, the abstract treatment presented later on will give us new insight into the structure of matrices.

The entries in our matrices shall come from some arbitrary, but fixed, field K. The elements of K
are called scalars. Nothing essential is lost if the reader assumes that K is the real field R or the complex
field C.

Last, we remark that the elements of R" or C" are conveniently represented by “row vectors™ or
“column vectors,” which are special cases of matrices.

3.2 MATRICES

A matrix over a field K (or simply a matrix if K is implicit) is a rectangular array of scalars a;; of the
form

dyy y) ayn
ay; Qi s,
aml am! a

The above matrix is also denoted by (g;;), i = 1, ..., m, j = 1, ..., n, or simply by (a;;). The m horizontal
n-tuples

@y, G124 o0 @4) (@240 G230 -0 Ag)s oo (@ys Gz s -+ -5 Gyy)

are the rows of the matrix, and the n vertical m-tuples

dyy G2 Ay,

ayy a;, a,
. e

aml amz am

are its columns. Note that the element a;;, called the ij-entry or ij-component, appears in the ith row and
the jth column. A matrix with m rows and n columns is called an m by n matrix, or m x n matrix; the
pair of numbers (m, n) is called its size or shape.

Matrices will usually be denoted by capital letters 4, B, ..., and the elements of the field K by lower-
case letters a, b, .... Two matrices A and B are equal, written A = B, if they have the same shape and if
corresponding elements are equal. Thus the equality of two m x n matrices is equivalent to a system of
mn equalities, one for each pair of elements.

Example 3.1

1 -3 4
following is a 2 x 3 matrix:
(a) The followingis a 2 x 3 matrix (0 5 _2)

74
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Its rows are (I, — 3, 4) and (0, 5, —2); its columns are (:}). (_;), and( ;)

(b) The statement (i + i 22 * :) = (:: 3) is equivalent to the following system of equations:

x+y=3
x—yp=1
2z4w=35
z—w=4

The solution of the systemisx =2, y=1,z=3, w= —1.

Remark: A matrix with one row is also referred to as a row vector, and with one
column as a column vector. In particular, an element in the field K can be viewed as a
1 x 1 matrix.

33 MATRIX ADDITION AND SCALAR MULTIPLICATION

Let A and B be two matrices with the same size, i.e., the same number of rows and of columns, say,
m X n matrices:

a4y 4472 ... 44, b”_ b12 . bln

a a; ... a b b b
A i 21 22 Zn and B = 21 22 2n

Qi Oz ... 04 bn!l bmz v 'bn!

The sum of A and B, written 4 + B, is the matrix obtained by adding corresponding entries:

a, +by, a,+b, ... a,+by,
ay +by; apy+b,, ... a3+b,,

A+ B=

......................................

The product of a matrix A by the scalar k, written k* A or simply kA, is the matrix obtained by
multiplying each entry of A by k:

ka,, ka,, ka,,
kA = ka,, ka,, ka,,
kaml ka,,,; L ka

Observe that A + B and kA are also m x n matrices. We also define
—~A=-1A and A—B=A+(—B)

The sum of matrices with different sizes is not defined.

Example 3.2. Leu=(' w2 3)andB=(q3 ? 2).Then

4 5 —6 7 8
1+3 —2+0 342 4 -2 5
A= ( 541 ~6+s)“( 36 2)
3-1 3- ( 2) 3:3 -6 9
A= (3 4 . 3-(— 6))*( —13)

s _3p—(? N -6 0, S | 0
- 8 10 —12 21 —3 —24 29 7 =36
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The m x n matrix whose entries are all zero is called the zero matrix; for example, the 2 x 3 zero matrix is
0 00
0 0 0
The zero matrix is similar to the scalar 0, and the same symbol will be used for both. For any matrix A4,

"A+0=0+A4A=A4

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

Theorem 3.1: Let V be the set of all m x n matrices over a field K. Then for any matrices 4, B, C € V
and any scalars k, k, € K,

i) (A+B)+C=A+(B+0O) (v) k{(A+B)y=kA+ kB
(i) A+0=A4 vi) (k, + k) A=k, A+ k, A
(i) A+(-A4)=0 (vi))  (kky)A = ky(k, A)

(ivy A+B=B+ A (viii) 1-A=4

Using (vi) and (viii) above, we also havethat A + A =24, A+ A+ A=3A4, ....

Remark: Suppose vectors in R” are represented by row vectors (or by column vectors); say,
u=(a,a,,...,a) and b=l B D)
Then viewed as matrices, the sum u + v and the scalar product ku are as follows:
u+v=(a, +b,a,+b,,...,a,+hb) and ku = (ka,, ka,, ..., ka,)

But this corresponds precisely to the sum and scalar product as defined in Chapter 2. In other words,
the above operations on matrices may be viewed as a generalization of the corresponding operations
defined in Chapter 2.

3.4 MATRIX MULTIPLICATION

The product of matrices A and B, written 4B, is somewhat complicated. For this reason, we first
begin with a special case.

The product A4 = B of a row matrix A = (ag;) and a column matrix B = (b)) with the same number of
elements is defined as follows:

bl
b, "
[ D, (RN =ab, + ayb, + - +a,b,= ) ab
P k=1
b

]

Note that A - B is a scalar (or a 1 x 1 matrix). The product A * B is not defined when A and B have
different numbers of elements.
Example 3.3

3
B —4 5 2]=8-34(—4-24+5-(—1)=24-8-5=1]
—1

Using the above definition, we now define matrix multiplication in general.
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Definition: Suppose A = (a;;) and B = (b;;) are matrices such that the number of columns of A is equal
to the number of rows of B; say, A is an m x p matrix and B is a p x n matrix. Then the
product AB is the m x n matrix whose ij-entry is obtained by multiplying the ith row A; of
A by the jth column B’ of B:

A, B! A,-B? ... A,-B"
AB = A, B! Az'B2 A, - B"
A, B! A,,,'BI A, B"
That is,
ay LT by, bu by, Ci11
ﬂu ﬂ;‘, ] - - - —_— Cﬁ
ﬂml ﬂ" bpl v bpj s bp le

r
where fij = anb“- + ausz—i- L = aipbpj = z aikbl:j'
k=1

We emphasize that the product AB is not defined if 4 is an m x p matrix and B is a g X n matrix,
where p # q.

Example 3.4
@ r s\fa, a, ay\ _[ra, +sb, ra, + sh, m,+sb3)
D\t ul\b, b, b)) " \ta, +ub, ta, +ub, ta,+ ub,
o (L 2)! |_(t+|+2-0 1-1+2-2) (1 5
3 40\0 2/ \3-1+4-0 3-1+4-2/) \3 11
1oyl 2\ /1-1+1-3 1-241-4Y (4 6
0 2/\3 4/ \0-1+2-3 0-2+2-4) \6 8
The above example shows that matrix multiplication is not commutative, 1.€., the products AB and

BA of matrices need not be equal.
Matrix multiplication does, however, satisfy the following properties:

Theorem 3.2: (i) (AB)C = A(BC) (associative law)
(i) A(B + C) = AB + AC (left distributive law)
(iii) (B + )4 = BA + CA (right distributive law)
(iv) k(AB) = (kA)B = A(kB), where k is a scalar

We assume that the sums and products in the above theorem are defined.
We remark that 04 = 0 and B0 = 0 where 0 is the zero matrix.

3.5 TRANSPOSE OF A MATRIX

The transpose of a matrix A, denoted A7, is the matrix obtained by writing the rows of A, in order,
as columns:

T

......................................
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In other words, if A = (g;)) is an m x n matrix, then A” = (a}) is the n x m matrix where a; = a, for all
iandj.

Note that the transpose of a row vector is a column vector and vice versa.

The transpose operation on matrices satisfies the following properties:

Theorem 3.3: (i) (A + B)' = A" + BT (iii) (kA4)" = kAT (k a scalar)
(i) (AN =4 {iv) (AB)T = BTAT

Observe in (iv) that the transpose of a product is the product of transposes, but in the reverse order.

3.6 MATRICES AND SYSTEMS OF LINEAR EQUATIONS
Consider again a system of m linear equations in n unknowns:

uuxl +a|2x2 + ."+ ﬂlnx,,: bl
a1 Xy + az;x, + "'+ﬂzhx~= bz (3}}

Ay Xy + Az X3 + - + ap,x, = b,

The above system is equivalent to the following matrix equation:

x
fdyy Gy LT ! b,
X2
ayy dj; a b .
"Nx, |= 2 or simply AX =B
aml aml am b
x

where A = (g;;) i1s the matrix of coefficients, called the coefficient matrix, X = (x;) is the column of
unknowns, and B = (b)) is the column of constants. The statement that they are equivalent means that
every solution of the system (3.7) is a solution of the matrix equation, and vice versa.

The augmented matrix of the system (3.7) is the following matrix:

ay Gy ... @, by
Ay Gy ... Gy, by
Oy Gmz - Gy, b

That is, the augmented matrix of the system AX = B is the matrix which consists of the matrix A of
coefficients followed by the column B of constants. Observe that the system (3./) is completely deter-
mined by its augmented matrix.

Example 3.5. The following are, respectively, a system of linear equations and its equivalent matrix equation:

2x43y—4z=7 . (2 3 —4\(") (7
Xx—2y—5z=73 1 -2 s\ \s
z
(Note that the size of the column of unknowns is not equal to the size of the column of constants.)

The augmented matrix of the system is
2 3 -4 7
1 -2 -5 3

In studying linear equations it is usually simpler to use the language and theory of matrices, as
indicated by the following theorems.
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Theorem 3.4: Suppose u,, u,, ..., u, are solutions of a homogeneous system of linear equations
AX = 0. Then every linear combination of the u; of the form k,u, + k,u, + -+ + k_u,
where the k; are scalars, is also a solution of AX = 0. Thus, in particular, every multiple
ku of any solution u of AX = 0 is also a solution of AX = 0.

Proof. We are given that Au, =0, Au, =0, ..., Au, = 0. Hence
A(h‘l ""kuz + - +ku")= klAul + szuz 4 + kﬂAun
=k0+k,04+ - +£,0=0

Accordingly, k,u, + - + k,u, is a solution of the homogeneous system AX = 0.

Theorem 3.5: The general solution of a nonhomogeneous system AX = B may be obtained by adding
the solution space W of the homogeneous system AX = 0 to a particular solution v, of
the nonhomogeneous system AX = B. (That 1s, v, + W is the general solution of
AX = B)

Proof. Let w be any solution of AX = 0. Then
Alvg + w) = Alvg) + Aw)=B+0=B8B

That is, the sum v, + wis a solution of AX = B.
On the other hand, suppose v is any solution of AX = B (which may be distinct from v,). Then

Av —vg)=Av— Avy=B—-B =0
That is, the difference v — vy, is a solution of the homogeneous system AX = 0. But
v =104+ (v — vg)

Thus any solution of AX = B can be obtained by adding a solution of AX = 0 to the particular solu-
tion v, of AX = B.

Theorem 3.6: Suppose the field K is infinite (e.g., K is the real field R or the complex field C). Then
the system AX = B has no solution, 2 unique solution, or an infinite number of
solutions.

Proof. 1t suifices to show that if AX = B has more than one solution, then it has infinitely many.
Suppose u and v are distinct solutions of AX = B; that is, Au = B and Av = B. Then, for any k € K,

Alu + k{u — v)] = Au + k(Au — Av) = B+ k(B — B)= B

In other words, for each k € K, u + kiu — v) is a solution of AX = B. Since all such solutions are
distinct (Problem 3.21), AX = B has an infinite number of solutions as claimed.

3.7 BLOCK MATRICES

Using a system of horizontal and vertical (dashed) lines, we can partition a matrix A into smaller
matrices called blocks (or cells) of A. The matrix A is then called a block matrix. Clearly, a given matrix
may be divided into blocks in different ways; for example,

1 =2 0 1 3 P —2i®0 1) 3 1 -2 0.1 3
2 3 5 71 =2]= ?_“9_1§"d 1572 =12 3 5.7 =2
3 1 4 S5 9 3 14 59 3 1 45 9
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The convenience of the partition into blocks is that the result of operations on block matrices can be
obtained by carrying out the computation with the blocks, just as if they were the actual elements of the
matrices. This is illustrated below.

Suppose A is partitioned into blocks; say

AI] AII Aln
U I
Aml AmZ A

Multiplying each block by a scalar k, multiplies each element of A by k; thus

kAll kAIz LR kAll'l
kA;y kAy; ... kA,

........................

kA =

Bll BIZ Bln
B= Bll 822 Bln
Bml Bm2 B

Furthermore, suppose the corresponding blocks of A and B have the same size. Adding these corre-
sponding blocks adds the corresponding elements of A and B. Accordingly,

Ayy ¥ By AggdByy oy Ay By
A 4 _B — AZI + BZI Azz + Bzz atae Az“ + an

The case of matrix multiplication is less obvious but still true. That is, suppose matrices U and V
are partitioned into blocks as follows

Ull Ul! Ulp Vll Vlz Vln
| B Ull UII Ulp and V = Vzl sz Vzn
Uml Um2 Um Vpl Vll Vpn

Then

Wi Wi Wi
UV — WZI sz %n
wntl sz W,

where
Wi=UyViyy+ U Vyy+ -+ U,V

The proof of the above formula for UV is straightforward, but detailed and lengthy. It is left for
Problem 3.31.



CHAP. 3] MATRICES 81

Solved Problems

MATRIX ADDITION AND SCALAR MULTIPLICATION

3.1

3.2,

34.

Compute:

1 2z 3 1 -1 2
(a) A+.BforA—(4 5 6)3‘“’3—-(0 3 _5).

i —2 3
(b) 34 and —5A,whereA=(4 5 —6)'

(@) Add corresponding elements:

Al A=) P¥IN 218
'4+B‘(4+0 543 6+(—5))"(4 8 1)

(b) Multiply each entry by the given scalar:
3A_(3°1 3:(=2 3-3 )_(3 —6 9
“\3:4 3:5 3-(—6)/ \12 15 —18
—5,4-(_5" -5:(-2 -5-3 )_( -5 10 *IS)
“\-5-4 -5-5 —5:(—6)) \-20 -25 30

. I =2 3 3 0 2
FtndZA-—3B,whereA—(4 5 _)andB—(_? | 8)'

First perform the scalar multiplications, and then a matrix addition:

2 -4 6 -9 0 -6 -7 —4 0
2 = B = ==
Ao (8 10 -12)+( 21 -3 -24) (29 7 -36)
(Note that we multiply B by —3 and then add, rather than multiplying B by 3 and subtracting. This usually
avoids errors.)

- o (x Y\ [ x 6 4 x+y
Fmdx,y,z,andWlf3(z w)'_(—] 2w)+(z+w 3 )

First write each side as a single matrix:
Ix 3\ _( x+4 X+y+6
3z 3w) \z+w—1 2w+3

Set corresponding entries equal to each other to obtain the system of four equations,

Ix=x+4 2x =4
3y=x+y+6 2y =6+ x
3zZ=z+w-—1 or 2z =w—1
3w=2w+3 w=13

The solutionis: x=2,y=4,z=1L,w=3,

Prove Theorem 3.1(v): Let A and B be m x n matrices and k a scalar. Then k(4 + B) = kA + kB.

Suppose A = (a;) and B = (b)). Then a;; + b;; is the ij-entry of A + B, and so kig;; + b)) is the ij-entry
of k(A + B). On the other hand, ka,, and kb,; are the ij-entries of k4 and kB, respectively, and so ka,, + kb,,
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is the jj-entry of kA + kB. But k, a;; and b;; are scalars in a field; hence
kia; + b;)) = ka;; + kb;;  for every i, j

Thus k(A + B) = kA + kB, as corresponding entries are equal,

MATRIX MULTIPLICATION

5
35. Calculate: (@) (3,8, —2,4) —1 (b) (1,8,3,4)6,1, —3,5)
6
(@) The product is not defined when the row matrix and column matrix have different numbers of

elements.
(b) The product of a row matrix and a row matrix is not defined.

—1 3 -2 6
(a) Since Ais 2 x 2 and Bis 2 x 3, the product AB 15 defined and 1s a 2 x 3 matrix. To obtain the entries

2 "
in the first row of 4B, multiply the first row (1, 3) of A by the columns (3). ( 0), and( :;) of B,

36. Llet A= (; 3) and B = (2 D ‘4). Find (a) AB, (b) BA.

-2
respectively:

(1 V2 © —4)_(|-2+3-3 1-0+3-(-2) l-(—4}+3-6)
2 ~-1\3 -2 6/

et e

To obtain the entries in the second row of A B, multiply the second row (2, — 1) of 4 by the columns of

B, respectively:
(1 3%y2 0 -4\ /11 -6 14
2 —IA3 -2 6/ \4-3 0+2 -8-6

11 -6 14
AB =
e ( 12 - 14)
(b} Note that Bis 2 x 3 and A is 2 x 2. Since the inner numbers 3 and 2 are not equal, the product BA is
not defined.
2 - i -2 -5
37. Given A = 1 0O]Jand B = (3 4 0), find (@) AB, (b) BA.
-3 4

(a) Since Ais 3 x 2 and B is 2 x 3, the product AB is defined and is a 3 x 3 matrix. To obtain the first
row of 4B, multiply the first row of 4 by each column of B, respectively:

T —(l) (] _9 _5)4 2—-3 —-4—-4 —-10+0 B -1 -8 -10
A 3 4 0
To obtain the second row of 4B, multiply the second row of 4 by each column of B, respectively:
A T S et W e
3 4 ¢gf1'+0 -2+ -54+0]= - -

-3



CHAP. 3] MATRICES 83

38.

39.

3.10.

To obtain the third row of AB, multiply the third row of 4 by each column of B, respectively:
2 -1 —1 —8 —10 -1 -8 —=10

I 0(; _i _3)= i = -5 |=[ 1 =2 =5

-3 4 ~34+12 6416 1540 9 22 15
1 —8 —10
Thus AB = 1 -2 -5
9 2 15

(b} Since Bis 2 x 3and A is 3 x 2, the product BA is defined and is a 2 x 2 matrix. To obtain the first
row of BA, multiply the first row of B by each column of A, respectively:

2 -1
(1 i _) i _(2-2+15 —l+0—20)_(]5 —21)
3 4 oA .,

To obtain the second row of B4, multiply the second row of B by each column of A, respectively:

I -2 -5 ? ":) {15 -21 ) (15 =21
34 O\ L, \6+4+0 -3+0+0/ \10 -3
15 —21
BA =
Thus (l{) _3)

Remark: Observe that in this problem both AB and BA are defined, but they are
not equal; in fact they do not even have the same shape.

Find AB, where

2 -1 0 6
A=(2 > '1) B=|1 3 -5 1
4 1 -2 2

Since A is 2 x 3 and B is 3 x 4. the product is defined as a 2 x 4 matrix. Multiply the rows of 4 by the
columns of B to obtain:

4+3-4 -2+9—-1 0-15+2 ]2+3+2)_(3 6 —13 13)
Aeer 8 -2+20 —4-6+5 0+10—10 24—-2+10/ \26 -5 0 32

Refer to Problem 3.8. Suppose that only the third column of the product AB were of interest.
How could it be computed independently?

By the rule for matrix multiplication, the jth column of a product is equal to the first factor times the
Jth column vector of the second. Thus

2 3 -1 2 fO—=ASE2N S]]
4 -2 5 "2 \o+10-10/ 0
Similarly, the ith row of a product is equal to the ith row vector of the first factor times the second
factor.

Let A be an m % n matrix, with m > | and n > 1. Assuming u and v are vectors, discuss the
conditions under which (a) 4w, (b) vA4 is defined.

(@) The product Au is defined only when u is a column vector with n components, i.e., an n x | matrix. In
such case, Au is a column vector with m components.
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3.11.

312

3.13.
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(b) The product vA is defined only when v is a row vector with m components, .., a 1 x m matrix. In such
case, vA is a row vector with n components.

2 2
Compute: (a) 3|6, —4,5) and (b) (6, —4,5f{ 3
-1 -1/

(@) The first factor is 3 x | and the second factor is 1 x 3, so the product is defined as a 3 x 3 matrix:

2 2X6)  (2K—4)  (2X9) 12 -8 10
—1 (—1X6) (—1X—4) (—I1XS5) -6 4 -5

(b) The first factor is | x 3 and the second factor is 3 x I, so the product is defined as a 1 x 1 matrix,
which we frequently write as a scalar.

2
-1

Prove Theorem 3.2(i): (AB)C = A(BC).
Let 4 = (a;;), B = (by), and C = (¢,,). Furthermore, let AB = § = (s3) and BC = T = (t;). Then

m
Su = Qb+ A by + -+ ay by = Zaijbjl
i=1
L3
!jl = bjlcll + b‘uCz; + "+ bjncul = Zbﬁ(‘u
k=1

Now multiplying § by C, i.c., (48) by C, the element in the ith row and Ith column of the matrix (AB)C is

”m
SuCu+Spcuyt o 5,0, = Z Sp Oy = Z z (aijbpk‘tr
k=1 k=1 =1

On the other hand, multiplying 4 by T, ie, A by BC, the element in the ith row and /th column of the
matrix A(BC) is

@ty = 2 % afbucy)

1 i=1 k=1

auly+aply+- - +aglt,, =
'

i~12

Since the above sums are equal, the theorem is proven.

Prove Theorem 3.2(ii): A(B + C) = AB + AC.

Let A=(a,), B=(by), and C =(cy). Furthermore, let D= B4 C =(d,), E = AB =(ey), and
F=AC = (f,). Then

dy = by +ci
m
ex =auby +ayby + - +a, by = _zal}b.l
;‘;l
Jo=aucu +ancu+ Qi Co = Elau'c}l

1

Hence the element n the ith row and kth column of the matrix AB + AC is

eﬁ +f“= Zaub“"' Zaijfﬂ‘= Eﬂiﬂbﬁ'l’fﬁ)
j=1 j=1 i=1
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On the other hand, the element in the ith row and kth column of the matrix AD = A(B + O)is

andy + apdy + -+ a;,dy = Z a;;dy = Z aijtbji + Ci)
i=1 j=1

Thus A(B + ) = AB + AC since the corresponding elements are equal.

TRANSPOSE
. 1 3 5 r ¥
314. Given A = 6 -7 —s) find A" and (47)".
Rewrite the rows of A as columns to obtain A7, and then rewrite the rows of A" as columns to obtain
(an":
1 6
T_ _ R 1 3 5
A" =13 7 {A]_(ﬁ 7 _g
5 —8

[As expected from Theorem 3.3(ii), (47)" = A.]

3.15. Show that the matrices 44" and A" A are defined for any matrix A.

If Ais an m x n matrix, then A" is an n x m matrix. Hence AA” is defined as an m x m matrix, and
AT A is defined as an n x n matrix.

1 2 0
3.16. Find AA" and AT A4, where A = (3 o 4).

Obtain AT by rewriting the rows of 4 as columns:

1 3 1 3
eofp ) e wee(l 2 )
0 4 0 4
1 3 1+9 2—3 0+ 12 0 -1 12
1 2 0
ATA={2 —1 (3 { 4)= 2—-3 441 0—4}=1-1 5 —4
0 4 0+12 0—4 0+ 16 12 -4 16
3.17. Prove Theorem 3.3(iv): (AB)" = BT A".
If A = (a;)) and B = (b)), the ij-entry of AB is
anbyy+ apby; + - + a,,b,; 0]

Thus (/) is the ji-entry (reverse order) of (AB)T.
On the other hand, column j of B becomes row j of B”, and row i of A becomes column i of A7,
Consequently, the ji-entry of BTAT is

a;
Gz }

(byjs bajs ooy b =by;a, + byja,, +--- + b, 0,
Qim

Thus, (AB)" == B A7, since corresponding entries are equal.
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BLOCK MATRICES
3.18. Compute AB using block multiplication, where

1 2 1 I 2 3.1
A= _3”__4__1_‘:_' and B = 4_ _5____(3_:_!
0 0o 2 0 0 [
E F R 5 .
Here A =( )and B=( ),whcre E,F,G, R, S, and T are the given blocks. Hence
lel G 0]:3 T
(9 12 15) (3) (l)
+ 9 12 15 4
AB=(OER ES(-:TFT)= 19 26 33 7 0 (19 2 33 7
1=3
© 0 0 @) o o0 0 2

3.19. Compute CD by block multiplication, where

1 2.0 0 O ; _i g g
3 4:0 0 0 s 4
U b o and D=|0 0! 1 2
0 0. 2 -3
0o 0 3 4 1 -
0 0:-4 1
1 2y3 -2
(3 4)(2 4) 022
cD = I 3
0 s
2x2 3 4 1 e
—4 1
3+4 248 = 7T 6 0 0
[\9+8 —6+16 B 17 10 0 0
9

0 542—-8 10-3+2\] | 0 o -1
3 3I+8-4 6-12+1

MISCELLANEOUS PROBLEMS

3.20. Show: (a) If A has a zero row, then AB has a zero row. (b) If B has a zero column, then AB has a
zero column.

(a) Let R; be the zero row of 4, and B, ..., B" the columns of B. Then the ith row of AB is
[Ri o B‘, Ri .BI, anay Ri o B') =(0‘0, -.-.O)

() Let C; be the zero column of B, and A4,, ..., A, the rows of A. Then the jth column of AB is

A,-C; 0
A,-C;| [0
An-C,J \O

3.21. Let u and v be distinct vectors. Show that, for distinct scalars k € K, the vectors u + k(u — v) are
distinct.
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It suffices to show that if
u+kyu—u)=u+kyu—r 0]
then k, = k,. Suppose (/) holds. Then
kiu—1v)=kyu—r) or (ky — ku—1v)=10
Since u and v are distinct, u — v # 0. Hence k, — k, =0and k, = k,.

Supplementary Problems

MATRIX OPERATIONS

Problems 3.22-3.25 refer to the following matrices:

) () el

322. Find 54 — 2Band 24 + 3B.
3.23. Find:(a) AB and (AB)C, (b) BC and A(BC). [Note (AB)C = A(BC).]
3.24. Find A7, B", and ATB”. [Note A"B" # (AB)"]
325. Find A4 = A% and AC.
a, a; ay a,
326. Supposee, =(1,0,0),e,=(0,0,1),e;=(0,0,1),and A={b, b, b, b,| Finde, 4, e,A4, and e, A

C, € Cy ¢,

(7

.27. Lete;=(0,...,0,,0,..., 0) where | is the ith component. Show the following:
(a) e; A = A, the ith row of a matrix A.
(b) Be] = B/, the jth column of B.
(¢) Ife,A=e,Bforeachi,then A = B.
(d) If Ae] = Be! for each j, then A = B.

1 2
328, LetA= ( 6)' Find a 2 x 3 matrix B with distinct entries such that AB = 0,

3

3.29. Prove Theorem 3.2(1ii): (B + C)4 = BA + CA,; (iv) k(AB) = (kA)B = A(kB), where k is a scalar. [Parts (i)
and (ii) were proven in Problems 3.12 and 3.13, respectively.]

330. Prove Theorem 3.3: (i) (4 + B)Y = A" + B”; (ii) (A")" = A4; (iii) (kA)" = kA", for k scalar. [Part (iv) was
proven in Problem 3.17.]

3.31. Suppose A =(A,) and B = (B,;) are block matrices for which 4B is defined and the number of columns
of each block 4, is equal to the number of rows of each block B,;. Show that

AB = (C;), where C;;= Y A, B,;.
k
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3.23.

3.25.

3.26.

328

(

(

(
(

(ay, a;,az,a.), (by, by, ba, by), (¢, ¢, €3, ¢4), the rows of A.

(

a

-5
27

1
2

7
-9

2
—1

-7

10
—36/)
14
39 -28

1
—1

MATRICES

Answers to Supplementary Problems

7 4
2 13

21 105
—17 285

_i)’ (3 *?)’(13

22

4
-2

M
)

9
-33

15

—40
—6
32

8
296)’ &l

(s

—15
60

K

21
-17

105
— 285

—98
296

)
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Chapter 4

Square Matrices, Elementary Matrices

4.1 INTRODUCTION

Matrices with the same number of rows as columns are called square matrices. These matrices play
a major role in lincar algebra and will be used throughout the text. This chapter introduces us to these
matrices and certain of their elementary properties.

This chapter also introduces us to the elementary matrices which are closely related to the elemen-
tary row operations in Chapter 1. We use these matrices to justify two algorithms—-one which finds the
inverse of a matrix. and the other which diagonalizes a quadratic form.

The scalars in this chapter are real numbers unless otherwise stated or implied. However, we will
discuss the special case of complex matrices and some of their properties.

42 SQUARE MATRICES

A square matrix is a matrix with the same number of rows as columns. An n x n square matrix is
said to be of order n and is called an n-square matrix.

Recall that not cvery two matrices can be added or multiplied. However, if we only consider square
matrices of some given order n, then this inconvenience disappears. Specifically, the operations of addi-
tion, multiplication, scalar multiplication, and transpose can be performed on any n x n matrices and
the result is again an n x n matrix.

1 2 3 2 -5 1
Example 41. LetA=] -4 —4 —4jandB=|0 3 -2 |.Then A and B are square matrices of order 3.
5 6 7 1 2 -4
Also,
3 -3 4 2 4 6 1 -4 5
A+B=|-4 -1 -6 2= -8 -8 -8 AT = = |
6 8 3 0 12 14 3 -4 7
and
24+0+3 ~5+6+6 1—4-—-12 5 7 —15
AB=| —-8+0—-4 20—-12-—8 —44+8+16)=| —12 0 20
10+0+7 -~-25+18+14 5-—-12-28 17 7 35

are matrices of order 3.

Remark: A nonempty collection A of matrices is called an algebra (of matrices) if
A is closed under the operations of matrix addition, scalar multiplication of a matrix,
and matrix multiplication. Thus the collection M, of all n-square matrices forms an
algebra of matrices.

Square Matrices as Functions

Let A be any n-square matrix. Then A may be viewed as a function 4 : R" — R" in two different
ways:

89
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(1) A(u) = Au where u is a column vector;

(2) A(u) = uA where u is a row vector.

This book adopts the first meaning of A(u), that is, that the function defined by the matrix A will be
A(u) = Au. Accordingly, unless otherwise stated or implied, vectors u in R" are assumed to be column

vectors (not row vectors). However, for typographical convenience, such column vectors u will often be
presented as transposed row vectors.

1 -2 3
Example 4.2. letA=|4 5 —6|.Hu=(1,—3,7)7 then
2 0 -1
1 -2 3 1 1 +6+21 28
Aw=Au=|a 5 —6f -3)={a—-15-42]=]-53
I R U 5
If w = (2, — L, 4)7, then
1 =2 3 2 24+2412 16
Aw)=Aw=|4 5 -6} -t1|=18-5—-24}=|-21
2 0 —tf\ a 4+0—4 0

Commuting Matrices

Matrices A4 and B are said to commute if AB = BA, a condition that applies only for square matrices
of the same order. For example, suppose

1 2 5 4
‘4=(3 4) and B=(6 11)
B — 5+12 4+22\ (17 26

“\I15+24 12+44) \39 56

BA = 54+12 10+ 16 (17 26
“\6+33 124+44) \39 56

Since AB = BA, the matrices commute.

Then

and

43 DIAGONAL AND TRACE, IDENTITY MATRIX

Let A = (a;;) be an n-square matrix. The diagonal (or main diagonal) of A consists of the elements
Ayys A3, --., 4,,- The trace of A, written tr A, is the sum of the diagonal elements, that is,

n
ll’A=a“ +azz+“‘+ﬂmi Za,‘
i=1
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The n-square matrix with 1’s on the diagonal and 0’s elsewhere, denoted by [, or simply /, is called
the identity (or unit) matrix. The matrix [ is similar to the scalar 1 in that, for any matrix A (of the same

order),
Al =1A= A

More generally, if B is an m x n matrix, then BI, = B and I,, B = B (Problem 4.9).
For any scalar k € K, the matrix ki which contains k’s on the diagonal and 0's elsewhere is called
the scalar matrix corresponding to the scalar k.

Example 4.3.

(a) The Kronecker delta d;; is defined by

0 ifi#j
I {I ifi=j
Thus the identity matrix may be defined by I = (5,)).

(b) The scalar matrices of orders 2, 3, and 4 corresponding to the scalar k = 5 are, respectively,

& |

(It is common practice to omit blocks or patterns of 0’s as in the third matrix.)

=l == I
< th O
th O o

5

The following theorem is proved in Problem 4.10.

Theorem 4.1: Suppose A = (a;;) and B = (b;)) are n-square matrices and k is a scalar. Then
(i) tr(A+B)=tr A+1trB, () trkA=k-tr A, (i) tr AB=1tr BA

44 POWERS OF MATRICES, POLYNOMIALS IN MATRICES
Let A be an n-square matrix over a field K. Powers of A are defined as follows:
A? = AA A*=A%,..., A" =A"A,... and A’ =1
Polynomials in the matrix A are also defined. Specifically, for any polynomial
f)=a,+ax+ax>+ - +a,x"
where the qg; are scalars, f(A) is defined to be the matrix
flA)=agl +a,A+a, A*+---+a,A"

[Note that f(A) is obtained from f(x) by substituting the matrix A for the variable x and substituting
the scalar matrix a, I for the scalar g, .] In the case that f(A) is the zero matrix, the matrix A is called a
zero or root of the polynomial f(x).

| 2
Example 44. Let A = ( 3 4). Then

L2y 2 7 - ( 7 —6\1 2\ [-11 38
- P - s S -
4 ”(3 —4)(_3 —4) (—9 22) mh. =LA g wnls —4) ( 57 —106)

Iff(x) = 2x* — 3x + §, then

7 -6 AT 0)_( 16 —IB)
f“"“{w 22)_3(3 —a)* (o )"\ @
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If g(x) = x* 4 3x — 10, then

7 -6 1 2 1 0 0 0
= 3 _— =
oA (_9 22) M (3 —4) m(o 1) (o 0)
Thus 4 is a zero of the polynomial g(x).

The above map from the ring K[ x] of polynomials over K into the algebra M, of n-square matrices
defined by

J(x)—=f(A)
is called the evaluation map ar A.
The following theorem (proved in Problem 4.11) applies.
Theorem 4.2: Let f(x) and g(x) be polynomials and let A be an n-square matrix (all over K). Then
D)+ glA) = f(A) + g(A),
(i) (fgkA) = f(A)g(A),
(i)  f(A)g(A) = gLA)f(A).

In other words, (i) and (1i) state that if we first add (multiply) the polynomials f(x) and y(x) and then
evaluate the sum (product) at the matrix 4, we get the same result as if we first evaluated f(x) and g(x)
at A and then added (multiplied) the matrices f(A) and g(A). Part (iii) states that any two polynomials in
A commute,

45 INVERTIBLE (NONSINGUILAR) MATRICES

A square matrix A is said 10 be invertible (or nonsingular) if there exists a matrix B with the property
that

AB = BA =1
where [ is the identity matrix. Such a matrix B is unique; for
AB, =B,A=1Iand AB, = B,A=1[  implies B, = B,I = B,(4AB,) =(B,A)B, =B, = B,

We call such a matrix B the inverse of A and denote it by 4~ '. Observe that the above relation is
symmetric; that is, if B is the inverse of A4, then A4 is the inverse of B.

Example 4.5

2 5 3 -5
A= B= ;
(a) Suppose 4 ( ) 3) and (_ ; 2) Then

2 5\ 3 -5\ (6-5 —10+10\ (1 0
AB‘(] 3X--| 2)_(3 3 —5+6)=(0 |)="

3 -5\2 S 6—5 15—15\ (1 0
BA_(—I 2)(1 3)"(—2+2 -5+6):(0 1)

Thus 4 and B are invertible and are inverses of each other.

i

1 0 2 -11 2 2
(b) Supposc A=|2 -1 Jland B=| -4 0 1. Then
4 1 8 6 —1 -1
—1+0+12 24+0-2 2+0-2 1 0 0
AB=| —224+4+18 44+0—-3 4—-1-3]|=|0 1| 0O)=1
—44 -44+48 B+0—8 8+1-8 0 o0 1
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By Problem 4.21, AB =1 if and only if BA = I; hence we do not need to test if BA = [, Thus 4 and B are

inverses of each other,
a b
A=
(¢ 2)

We are able to determine when A is invertible and, in such a case, to give a formula for its inverse. First
of all, we seek scalars x, y, z, t such that

(a b)(x y)_ oy ax + bz ay + bt -_(1 0
c di\z 1) \0 1 ex+dz cv+dt) \0 1
which reduces to solving the following two systems

ax + bz =1 ay + bt =0
x+dz=0 cy+dt=1

Consider now a general 2 x 2 matrix

where the original matrix A is the coefficient matrix of each system. Set | A| = ad — bc (the determinant
of A). By Problems 1.60 and 1.61, the two systems are solvable, and 4 is invertible, if and only if
| 4] # 0. In that case, the first system has the unique solution x =d/| A|, z= —¢/| A, and the second
system has the unique solution y = —b/| 4|, t = a/] A|. Accordingly,

- _( d/| A| —b/[At)__l__( d —b)
~c/| Al afl A| lA|\—c¢ a
In words: When | 4| # 0, the inverse of a 2 x 2 matrix A4 is obtained by (i) interchanging the elements

on the main diagonal, (i) taking the negatives of the other elements, and (iii) multiplying the matrix by
/1A

Remark 1: The above property that A is invertible if and only if its determinant
| A| # O is true for square matrices of any order. (See Chapter 7.)

Remark 2: Suppose A and B are invertible, then AB is invertible and
(AB) ' = B 'A~'. More generally, if A,, A,, ..., A, are invertible, then their product
is invertible and

(AyAy-- AY~ " = A7 Ay tAT!

the product of the inverses in the reverse order.

46 SPECIAL TYPES OF SQUARE MATRICES

This section describes a number of special kinds of square matrices which play an important role in
lincar algebra.

Diagonal Matrices

A square matrix D = (d;;) is diagonal if its nondiagonal entries are all zero. Such a matrix is fre-
quently notated as D = diag (d,,, d,,, .... d,,), where some or all of the d;; may be zero. For example,

6 \

3 0 0 40) 0
0 -7 0 5 3 iy

o 0 2 1
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are diagonal matrices which may be represented, respectively, by
diag (3, — 7, 2) diag (4. —5) and diag (6, 0, —9, 1)
(Observe that patterns of Os in the third matrix have been omitted.)
Clearly, the sum, scalar product, and product of diagonal matrices are again diagonal. Thus all the

n x n diagonal matrices form an algebra of matrices. In fact, the diagonal matrices form a commutative
algebra since any two n x n diagonal matrices commute.

Triangular Matrices
A square matrix A = (a;) is an upper triangular matrix or simply a triangular matrix if all entries

below the main diagonal are equal to zero; that is, if a; = 0 for i > j. Generic upper triangular
matrices of orders 2, 3, and 4 are, respectively,

Cyy €12 O3 Cia

bn f"lz bla ¢ c c

Ay Gy2 b b 22 €23 Ca
22 23

0 a;, b Ciz Cag

33 Caa

(As in diagonal matrices, it is common practice to omit patterns of 0s.)
The upper triangular matrices also form an algebra of matrices. In fact,

Theorem 4.3: Suppose 4 = (a;) and B = (b;;) are n x n upper triangular matrices. Then
() A + B is upper triangular, with diagonal (a;, + b,,, a;; + b33, ..., a,, + b,,).
(i1} kA is upper triangular, with diagonal (ka,,. ka,,, ..., ka,,).
(ii1) AB is upper triangular, with diagonal (a, b,,, @y, b5;, ..., a,, b,).

(iv) For any polynomial f(x), the matrix f{A) is upper triangular with diagonal (f(a,,),
nﬂaZZ}! =y ”arm”

(v) A is invertible if and only if each diagonal element «; # 0.

Analogously, a lower triangular matrix is a square matrix whose entries above the diagonal are all
zero, and a theorem analogous to Theorem 4.3 holds for such matrices.

Symmetric Matrices

A real matrix A is symmetric if AT = A. Equivalently, A4 = (g;) is symmetric if symmetric ele-
ments (mirror images in the diagonal) arc equal, ie., if each 4, =a;. (Note that A must be
square in order for AT = A.)

A real matrix A is skew-symmetric if A" = - A. Equivalently, A = (q;;) is skew-symmetric if each
a;; = —ay;. Clearly, the diagonal clements of a skew-symmetric matrix must be zero since q; = —a;
implies a; = 0.

Example 4.6. Consider the following matrices:

2 -3 5 0 3 -4 ' 0 0
A=|-3 6 7 B=|-3 0 5 C= (0 0 l)
5 7 -8 4 -5 0

(@) By inspection, the symmetric elements in A are equal, or A" = 4. Thus A is symmetric.
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(k) By inspection, the diagonal elements of B are 0 and symmetric elements are negatives of each other. Thus B is
skew-symmetric.

{¢) Since C is not square, C is neither symmetric nor skew-symmetric.

If A and B are symmetric matrices, then A + B and kA are symmetric. However, AB need not be
symmetric. For example,

) 2 il , 14 17\, _
A= (2 3) and B = ( 5 6) are symmetric, but AB = ( ” 28) is not symmetric.

Thus the symmetric matrices do not form an algebra of matrices.
The following theorem is proved in Problem 4.29.

Theorem 4.4: If A is a square matrix, then (i) A + A" is symmetric; (ii) 4 — A" is skew-symmetric;
(ili) A = B + C, for some symmetric matrix B and some skew-symmetric matrix C.

Orthogonal Matrices

A real matrix A4 is said to be orthogonal if AA" = ATA = I. Observe that an orthogonal matrix 4 is
necessarily square and invertible, with inverse 4 ' = 47,

5 & —3
Example 4.7. letA=(3% ~-% —I|.Then
§ & 3
5 &8 —-3\/ & % % 1+ 64+ 16 4-32428 8§+8—16
aaT =3 _s g)( R g)=$ 4-32+28 16+16+49 32-4-28
3 % § $ -3 3 8+ 816 32— 4-28 64+1416
i 1 0 0
= 0 31 0 =lo 1 o]=1
0 0 8l 0 0 1

This means A" = 4 "' andso A”A = I as well. Thus A is orthogonal.

Consider now an arbitrary 3 x 3 matrix

If A is orthogonal, then

a, a, ay\fa, b, ¢, 1 0 0
AAT = bl bz b3 a2 bz C2 i 0 I 0 . 1
Cy Cy Ca iy ba Cy 0 0 l
This yields
ﬂf"‘a%'l'a%:l ﬂlb1+ﬂ2b2+ﬂ3b3=0 ﬂ:cl+azf'2+03‘:3=0
brﬂ' +b2ﬂ2+b3ﬂ3=0 b%"‘b%"‘bg: l blcl +b2£‘2+b363=0
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or, in other words,

u, *uy =1 uycu; =0 U uz3 =0
U " uy = U; " u; = Uy * Uz =
H3'u|=0 u:'u2=0 113‘1(3:1

where u, = (a,. a; . a3}, u; = {b;, by, b3), u3 = (c,, €, ¢3) are the rows of A. Thus the rows u,, u,, and u,
are orthogonal to each other and have unit lengths, or, in other words, u,, 4, , u; form an orthonormal
set of vectors. The condition ATA = I similarly shows that the columns of 4 form an orthonormal set of
vectors. Furthermore, since each step is reversible, the converse is true.

The above result for 3 x 3 matrices is true in general. That is,

Theorem 4.5: Let A be a real matrix. Then the following are equivalent: (a) A is orthogonal; (b) the
rows of A form an orthonormal set; (¢} the columns of A form an orthonormal set.

For n = 2, we have the following result, proved in Problem 4.33.

Th 46: E 2 x 2 orthogonal matrix has the form cos 0 sin 0 o cos sin 0 for
eorem 4.0: very 2 x 2 orthogonal matrix O el sosd r g

some real number 6.

Remark: The condition that vectors uy, u,, ..., u,, form an orthonormal set may
be described simply by u; = u; = J;;, where ;; is the Kronecker delta [Example 4.3(a)].

Normal Matrices
A real matrix A is normal if A commutes with its transpose, that is, if AA” = ATA. Clearly, if A is

symmetric, orthogonal or skew-symmetric, then A is normal. These, however, are not the only normal
matrices.

3 6
6 -3\ 6 3\ [45 0 6 3\6 -3\ (45 0
AAT = 5 a  Atax 2
(3 6)(—3 6) (0 45) an (—3 6)(3 6) (0 45)

Since 44T = AT A, the matrix A4 is normal.

6 —3
Example 48. Let 4 =( ) Then

The following theorem, proved in Problem 4.35, completely characterizes real 2 x 2 normal
matrices.

Theorem 4.7: Let A be a real 2 x 2 normal matrix. Then A is either symmetric or the sum of a
scalar matrix and a skew-symmetric matrix.

47 COMPLEX MATRICES

Let A be a complex matrix, i.e., a matrix whose entries are complex numbers. Recall (Section 2.9)
that if z = a + bi is a complex number, then z = a — bi is its conjugate. The conjugate of the complex
matrix A, written A, is the matrix obtained from A by taking the conjugate of each entry in A, that is, if
A = (a;;) then A = (b;) where b; = a;;. [We denote this fact by writing 4 = (a;;).]

The two operations of transpose and conjugation commute for any complex matrix A4, that is,
(A)" = (A"). In fact, the special notation A" is used for the conjugate transpose of A. (Note that if A is
real then A% = A7)
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ke
Example 4.9. Lan=(2+8‘ = 4 ’)Thn

6i 1—4i 342/
7+8 6 2—8  —6i
AP =531 1-4di|=|5+3i 1+4i
4-17i 342 447 3-—2i

Hermitian, Unitary, and Normal Complex Matrices

A square complex matrix A4 is said to be Hermitian or skew-Hermitian according as
AP = 4 or A= —A

If A = (qa;) is Hermitian, then q;; = a; and hence each diagonal element a; must be real. Similarly, if A
is skew-Hermitian then each diagonal element a; = 0.
A square complex matrix A is said to be unitary if

A =471

A complex matrix A is unitary if and only if its rows (columns) form an orthonormal set of vectors
relative to the inner product of complex vectors. (See Problem 4.39.)
Note that when A is real, Hermitian is the same as symmetric, and unitary is the same as
orthogonal.
A square complex matrix 4 is said to be normal if
AAY = AY4

This definition reduces to the one for real matrices when A is real.

Example 4.10. Consider the following matrices:

I 2 R g 3 1-2 447 .
A= i 1 14 B=(1+2i -4 -2 C=( T 112_)
2\i4i —1+i 0 4-7i 2 2 ! T

{a) Aisunitaryif A" = A ' orif AA" = A" A = I. As noted previously, we need only show that 44" = I:

1 —i -1+ 1 —i 1 —i

- 1
AA"=AAT=3 i 1 L+i i 1 -1-—i
l+i —1+i 0 —1—i 1—i 0
I P+1+2 —i—i+ 2 1—i+i—-1+0 ! 0 0
=2 i+i—2i 1 +1+2 i+1—1—i }=|0 | 0)=1
l4+i—i—-14+0 —i4+1—-14+i+0 24240 0 0 1

Accordingly, A is unitary.

(b) B is Hermitian since its diagonal elements 3, —4, and 2 are real, and the symmetric elements, 1 — 2i and
1+ 2,4+ 7iand 4 — 7i, and — 2i and 2i, are conjugates.

() Toshow that C is normal, evaluate CC¥ and C*C:

~ 2+3i 1 2-3  —i
H _ 0T =
GE =it ( i 1+2i)( 1 1-2;)

i, 2—-3i  —i (243 1
He . &7
CC“CC*( 1 1—2:‘)( i l+2i)

Since CC* = CHC, the complex matrix C is normal.

it

14 4—4i
4+4i 6

(14 4—4f)
4+4i 6
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48 SQUARE BLOCK MATRICES

A block matrix A is called a square block marrix if (i) A is a square matrix, (ii) the blocks form a
square matrix, and (iit) the diagonal blocks are also square matrices. The latter two conditions will
occur if and only if there are the same number of horizontal and vertical lines and they are placed
symmetrically.

Consider the following two block matrices:

1 2.3 4.5 1 2.3 4 .5
TN B T A T U B |
A={9 817 6 'S5 B={9 &8'7 6 'S5
4 4.4 4 a4 4 4.4 44
3 5:3 § .3 ¥ S5¢3% & 3

Block matrix A4 is not a square block matrix since the second and third diagonal blocks are not square
matrices. On the other hand, block matrix B is a square block matrix.

A block diagonal matrix M is a square block matrix where the nondiagonal blocks are all zero
matrices. The importance of block diagonal matrices is that the algebra of the block matrix is frequently
reduced to the algebra of the individual blocks. Specifically, suppose M is a block diagonal matrix and
f(x) is any polynomial. Then M and f(M) have the following form:

Ay (A1)
M = Azz f(M) = f(AZZJ

v J4.)

(As usual, we use blank spaces for patterns of zeros or zero blocks.)

Analogously, a square block matrix is called a block upper triangular matrix if the blocks below the
diagonal are zero matrices, and a block lower triangular matrix if the blocks above the diagonal are zero
matrices.

A

49 ELEMENTARY MATRICES AND APPLICATIONS
First recall (Section 1.8) the following operations on a matrix A, called elementary row operations:
[E,] (Row-interchange) Interchange the ith row and the jth row:
R,—~R;
[E,] {(Row-scaling) Multiply the ith row by a nonzero scalar k:
kR;-» R, (k#0)

[E;] (Row-addition) Replace the ith row by k times the jth row plus the ith row:

kR; + R, > R;
Each of the above operations has an inverse operation of the same type. Specifically (Problem 4.19):

(1) R;— R, is its own inverse.
(2) kR; = R;and k™ 'R, — R, are inverses.
(3) kR; + R; = R; and —kR; + R; — R; are inverses.
Also recall (Section 1.8) that a matrix B is said to be row equivalent to a matrix A, written A ~ B, if

B can be obtained from A by a finite sequence of elementary row operations. Since the elementary row
operations are reversible, row equivalence is an equivalence relation; that is, (a) A ~ A; (b} if A ~ B, then
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B~ A:(c)if A~ Band B~ C, then A ~ C. We also restate the following basic result on row equiva-
lence:

Theorem 4.8: Every matrix A is row equivalent to a unique matrix in row canonical form.

Elementary Matrices

Let e denote an elementary row operation and let ¢ A) denote the result of applying the operation e
to a matrix A. The matrix E obtained by applying e to the identity matrix,

E = e{l)

is called the elementary matrix corresponding to the elementary row operation e.

Example 4.11. The 3-square clementary matrices corresponding to the elementary row operations R,++ R,,
—6R, - R, and —4R, + R, — R; are, respectively,

1 0 0 1 0 o0 1 0 o0
E,=lo o 1 E,=|l0 —6 0 E,=| 0o 1 o
0o 1 0 0 0 1 -4 0 1

The following theorem, proved in Problem 4.18, shows the fundamental relationship between the
elementary row operations and their corresponding elementary matrices.

Theorem 4.9: Let ¢ be an elementary row operation and E the corresponding m-square elementary
matrix, i.e., E = e(l,). Then, for any m x n matrix A, e(4) = EA.

That is, the result of applying an elementary row operation e to a matrix A can be obtained by
premultiplying A by the corresponding elementary matrix E.

Now suppose ¢’ is the inverse of an elementary row operation e. Let E’ and E be the corresponding
matrices. We prove in Problem 4.19 that E is invertible and E’ is its inverse. This means, in particular,
that any product

of elementary matrices is nonsingular.
Using Theorem 4.9, we are also able to prove (Problem 4.20) the following fundamental result on
invertible matrices.
Theorem 4.10: Let A be a square matrix. Then the following are equivalent:
(1) A is invertible (nonsingular);
(i) A is row equivalent to the identity matrix /;

(i) A is a product of elementary matrices.
We also use Theorem 4.9 to prove the following theorems.
Theorem 4.11: 1f AB=1I,then BA =T and hence B= A" '.

Theorem 4.12: B is row equivalent to A if and only if there exists a nonsingular matrix P such that
B=iPA,
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Application to Finding Inverses

Suppose a matrix A is invertible and, say, it is row reducible to the identity matrix I by the
sequence of elementary operations e,, e,, ..., ¢,. Let E; be the elementary matrix corresponding to the
operation e;. Then, by Theorem 4.9,

Eq"'EzE]A=’ or (Eq”'EzElI)A:] S0 A 1-'_—E1”‘E2E:1’

In other words, A" can be obtained by applying the elementary row operations ¢, e,, ..., €, to the
identity matrix [.

The above discussion leads us to the following (Gaussian elimination) algorithm which either finds
the inverse of an n-square matrix A or determines that A4 is not invertible.

Algorithm 4.9: Inverse of a matrix 4
Step 1. Form the n x 2n [block] matrix M = (A4 i1); that is, A is in the left half of M and the identity
matrix I is in the right half of M.

Step 2. Row reduce M to echelon form. If the process generates a zero row in the A-half of M, STOP
(A is not invertible). Otherwise, the A-half will assume triangular form.

Step 3. Further row reduce M to the row canonical form (I i B), where I has replaced A in the left half
of the matrix.

Step 4. SetA™'=B.

1 0 2
Example 4.12. Suppose we want to find the inverse of A =2 —1 3 ]. First we form the block matrix
4 1 8

M = (A:I) and reduce M to echelon form:
1 0 2 1 0 0 1 0 2 1 0
M=|2 -1 3 0 1 0]~[0 -1 -1 -2 1
4 1 8 ] 0 1 0 1 0 —4 0

=

1 0o 2 1 0 0
a0 =1 =13 =2 1 0
0 0 —1' —6 1 1

In echelon form, the left half of M is in triangular form; hence A is invertible. Next we further reduce M to its row
canonical form:

=

—

1 0o o'-1nm 2 2 1 0 o0, —-11 2 2
M~{0 —1 0 4 0 —1)~l0 1 0, -4 0 I
o o 1° 6 —1 -1/ W0 o0 1 6 —1 -1

The identity matrix is in the left half of the final matrix; hence the right halfis A ', In other words,

—11 2 2
A '= —4 0 1
6 —1 -1

4.10  ELEMENTARY COLUMN OPERATIONS, MATRIX EQUIVALENCE

This section repeats some of the discussion of the preceding section using the columns of a matrix
instead of the rows. (The choice of first using rows comes from the fact that the row operations are
closely related to the operations with linear equations.) We also show the relationship between the row
and column operations and their elementary matrices.

The elementary column operations which are analogous to the elementary row operations are as
follows:
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[F,] (Column-interchange) Interchange the ith column and the jth column:
C.—C;
[F;] (Column-scaling) Multiply the ith column by a nonzero scalar k:
kC,— C; (k#0)
[F3;] (Column-addition) Replace the ith column by k times the jth column plus the ith column:
kC; + C;— C;

Each of the above operations has an inverse operation of the same type just like the corresponding
row operations.

Let f'denote an elementary column operation. The matrix F, obtained by applying f to the identity
matrix I, that is,

F=f{)
is called the elementary matrix corresponding to the elementary column operation f.

Example 4.13. The 3-square elementary matrices corresponding to the elementary column operations C; «— C,,
—2C, = Cy,and —5C, + C, — C, are, respectively,

o o0 1 I I 0 1
F,=lo 1 o0 F,=l0 1 o0 F,=[0 1 -5
I 0 0 0 0 -2 0 0 1

Throughout the discussion below, e and f will denote, respectively, corresponding elementary row
and column operations, and E and F will denote the corresponding elementary matrices.

Lemma 4.13: Suppose 4 is any matrix. Then
f(A) = [e(A)]"

that is, applying the column operation f to a matrix A gives the same result as applying
the corresponding row operation e to A” and then taking the transpose.

The proof of the lemma follows directly from the fact that the columns of A are the rows of A7, and
vice versa. The lemma shows that

F=fu)={eIM" =[eD]" = E"

In other words,

Corollary 4.14: F is the transpose of E.

(Thus F is invertible since E is invertible.) Also, by the above lemma,
J(A) = [dAN)T = [EAT]" = (AT)'ET = AF
This proves the following theorem (which is analogous to Theorem 4.9 for the elementary row
operations):
Theorem 4.15: For any matrix A, f(A) = AF.

That is, the result of applying an elementary column operation f on a matrix 4 can be obtained by
postmultiplying A by the corresponding elementary matrix F.
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A matrix B is said to be column equivalent to a matrix A if B can be obtained from A by a sequence
of elementary column operations. Using the argument that is analogous to that for Theorem 4.12
yields:

Theorem 4.16: B is column equivalent to A if and only if there exists a nonsingular matrix Q such that
B = AQ.

Matrix Equivalence

A matrix B is said to be equivalent to a matrix A if B can be obtained from A by a finite sequence of
elementary row and column operations. Alternatively (Problem 4.23), B is equivalent to A if there exist
nonsingular matrices P and Q such that B = PAQ. Just like row equivalence and column equivalence,
equivalence of matrices is an equivalence relation.

The main result of this subsection, proved in Problem 4.25, is as follows:

Theorem 4.17: Every m x n matrix A is equivalent to a unique block matrix of the form

(9

where I, is the r x r identity matrix. (The nonnegative integer r is called the rank of A.)

4.11 CONGRUENT SYMMETRIC MATRICES, LAW OF INERTIA

A matrix B is said to be congruent to a matrix A if there exists a nonsingular (invertible) matrix P
such that

B=P"AP
By Problem 4.123, congruence is an equivalence relation. Suppose 4 is symmetric, i.e., AT = A. Then
B" = (PTAP)" = PTA"PT" = PTAP =B
and so B is symmetric. Since diagonal matrices are special symmetric matrices, it follows that only

symmetric matrices are congruent to diagonal matrices.
The next theorem plays an important role in linear algebra.

Theorem 4.18 (Law of Inertia): Let A be a real symmetric matrix. Then there exists a nonsingular
matrix P such that B= PTAP is diagonal. Moreover, every such
diagonal matrix B has the same number p of positive entries and the
same number n of negative entries.

The rank and signature of the above real symmetric matrix A are denoted and defined, respectively,
by
rank A=p+n and sigA=p—n

These are uniquely defined by Theorem 4.18. [The notion of rank is actually defined for any matrix
(Section 5.7), and the above definition agrees with the general definition.]

Diagonalization Algorithm

The following is an algorithm which diagonalizes (under congruence) a real symmetric matrix
A - (ﬂi j)'
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Algorithm 4.11: Congruence diagonalization of a symmetric matrix

Step 1. Form the n x 2n [block] matrix M = (A iI); that is, A is the left half of M and the identity
matrix I is the right half of M.

Step 2. Examine the entry a, .

Case I:  a,, # 0. Apply the row operations —a;;R; + a;R;—=R,, i=2, ..., n, and then
apply the corresponding column operations —a;,C, + a,,C; — C; (to the left half
of M) to reduce the matrix M to the form

* * I
* * ‘ )

a 0
M — 11
(o 5
Case II: a,; =0 but g; # 0, for some i > 1. Apply the row operation R, « R; and then the

corresponding column operation C, « C; to bring a; into the first diagonal posi-
tion. This reduces the matrix to Case 1.

Case 1II: All diagonal entries a; = 0. Choose i, j such that a;; # 0 and apply the row oper-
ations R; + R, = R, and the corresponding column operation C; + C; — C; to
bring 2q;; # 0 into the ith diagonal position. This reduces the matrix to Case II.

In each of the cases, we finally reduce M to the form (/) where B is a symmetric matrix of
order less than A.

Remark: The row operations will change both halves of M, but the column oper-
ations will only change the left half of M.

Step 3. Repeat Step 2 with each new matrix (neglecting the first row and column of the preceding
matrix) until A4 is diagonalized, that is, until M is transformed into the form M’ = (D, Q) where
D is diagonal.

Step 4. Set P = Q". Then D = PTAP.

The justification of the above algorithm is as follows. Let ¢, e,, ..., ¢, be all the elementary row
operations in the algorithm and let f,, f5, ..., fi be the corresponding elementary column operations.
Suppose E; and F; are the corresponding elementary matrices. By Corollary 4.14,

F;=ET
By the above algorithm,
Q=E,---E,E|I=E, - E,E,
since the right half I of M is only changed by the row operations. On the other hand, the left half A of
M is changed by both the row and column operations; therefore,
D=E, - E,E,AFF, - F,
=(Ex -+ EEDA(E, -~ EL BT

= QAQ" = PTAP
where P = Q7.
1 2 -3
Example 4.14. Suppose A = 2 5 —4/|, a symmetric matrix. To find a nonsingular matrix P such that

-3 -4 8
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B = PTAP is diagonal, first form the block matrix (4 | I):
1 2 -3 1 0 0

Ain=| 2 5 —-4 0 | 0
-3 -4 8 0 0 1

Apply the operations —2R, + R, » R, and 3R, + R, —+ R, to (A | I) and then the corresponding operations
—2C, + C, = Cyand 3C, + C, — C; to A to obtain

1 2 -3 1 0 0 | 0 0 | 0 0
0 1 2 -2 1 0 and then 0 | 2 -2 1 0
0 2 -1 3 0 1 0 2 -1'" 3 0 1
Next apply the operation —2R; + R; — R, and then the corresponding operation —2(; + C; — C, to obtain
1 0 0 1 0 0 1 0 0 1 0 0
0 1 2 -2 1 0 and then 0 1 0 -2 1 0
0 0 -5 7 -2 1 0o 0 -5 7 -2 1

Now A has been diagonalized. Set

-2 7 1 0 0
P=|0 1 -2 and then B=PAP={0 1 0
0 0 1 0 0 -5
Note that B has p = 2 positive entries and n = | negative entry.
4.12 QUADRATIC FORMS
A quadratic form g in variables x,, x,, ..., x, is a polynomial
QX 1s Xza 0eey X = Y 5 X X; .1

i<j
(where each term has degree two). The quadratic form q is said to be diagonalized if

z 2
q{x;, Xz erea xﬂ)=‘:|le ‘l‘szXz  rr; 3 = o

that is, if g has no cross product terms x; x; (where i # j).
The quadratic form (4.7) may be expressed uniquely in the matrix form

g(X)= XTAX 4.2)

where X = (x,, X,, ..., X,}" and A = (a;;) is a symmetric matrix. The entries of A can be obtained from
(4.1) by setting

d;i = Cy and a;=day; = c,-,-/Z (for i # j)

that is, A has diagonal entry a; equal to the coefficient of x and has entries 4;; and a; each equal to
half the coefficient of x; x;. Thus

Ay Aaz ... ye\ [ X
a 7] PP /| X
21 22 2n 2
g X)=(x, ... x,
Gy Gpy  -oe G/ \X,

1

i<j
The above symmetric matrix A is called the matrix representation of the quadratic form g. Although
many matrices A4 in (4.2) will yield the same quadratic form g, only one such matrix is symmetric.

= Z au,x‘x_i IGHJCE + azzxi + -0 + a"xj + 2 Z a'x'xj
i
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Conversely, any symmetric matrix A defines a quadratic form g by (4.2). Thus there is a one-to-one
correspondence between quadratic forms g and symmetric matrices A. Furthermore, a quadratic form g
is diagonalized if and only if the corresponding symmetric matrix A is diagonal.

Example 4.15
(@) The quadratic form
gix, y, z) = x* — bxy + 8y? — dxz + Syz + 72°
may be expressed in the matrix form
1 =3 -2\/x

gx. =520 -3 8 3|y
-2 3 7\z

where the defining matrix is symmetric. The quadratic form may also be expressed in the matrix form

1 -6 —4\/x
gix, y, z2)=(x, y,z§ O 8 S50y
0 0 T\z

where the defining matrix is upper triangular.

. {2 : ;
(b) The symmetric matrix (3 2) determines the quadratic form

g(x, y) = (x, })(;I :)(;) = 2x* 4 6xy + 5y?

Remark: For theoretical reasons, we will always assume a quadratic form q is
represented by a symmetric matrix A. Since 4 is obtained from g by division by 2, we
must also assume | + 1 # 0 in our field K. This is always true when K is the real field
R or the complex field C.

Change-of-VYariable Matrix

Consider a change of variables, say from x,, x5, ..., x, t0 ¥}, ¥2, ..., ¥, by means of an invertible
linear substitution of the form

X;=pu¥1 tPiaVa+ "t Pinka (i=12..n)

(Here invertible means that one can solve for each of the y's uniquely in terms of the x’s.) Such a linear
substitution can be expressed in the matrix form

X =PY 4.3)
where
X={X‘, Xzsaeey x..)T Y=(}’|, }'zru-v}'nlr and P"_‘{pq)

The matrix P is called the change-of-variable matrix; it is nonsingular since the linear substitution is
invertible.
Conversely, any nonsingular matrix P defines an invertible linear substitution of variables, X = PY.
Furthermore,
Y =pP1X

yields the formula for the y’s in terms of the x's.
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There is a geometrical interpretation of the change-of-variable matrix P which is illustrated in the
next example.

Example 4.16. Consider the cartesian plane R? with the usual x and v axes, and consider the 2 x 2 nonsingular

matrix
2 -1
P=
G )

The columns u, = (2, )" and u, = (—1. 1)" of P determine a new coordinate system of the plane, say with s and ¢
axes, as shown in Fig. 4-1. That is

(1) The s axis is in the direction of u, and its unit length is the length of u,.
(2) The t axis is in the direction of u, and its unit length is the length of u, .

Any point  in the plane will have coordinates relative to each coordinate system, say Oa, b) relative to the x and y
axes and ({a’. b') relative to the s and 1 axes. These coordinate vectors are related by the matrix P. Specifically,

()-C ")E) o x-e

where X = (a, )" and Y = (a’, b)".

Fig. 4-1

Diagonalizing a Quadratic Form

Consider a quadratic form q in variables x,, x,, ..., x,, say g(X) = XTAX (where A is a symmetric
matrix). Suppose a change of variables is made in g using the linear substitution (4.3). Setting X = PY
in g yields the quadratic form g(Y) = (PY)  A(PY) = Y(PTAP)Y. Thus B = P"AP is the matrix repre-
sentation of the quadratic form in the new variables y,, y,, ..., y,. Observe that the new matrix B is
congruent to the original matrix A representing q.

The above linear substitution X = PY is said to diagonalize the quadratic form g(X) if g(Y) is
diagonal, ie., if B = PTAP is a diagonal matrix. Since B is congruent to A and A is a symmetric matrix,
Theorem 4.18 may be restated as follows.

Theorem 4.19 (Law of Inertia): Let g(X) = X"AX be a real quadratic form. Then there exists an
invertible linear substitution ¥ = PX which diagonalizes g. Moreover,
every such diagonal representation of ¢ has the same number p of
positive entries and the same number n of negative entries.
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The rank and signature of a real quadratic form g are denoted and defined by
rank g=p+n and sigg=p—n

These are uniquely defined by Theorem 4.19.
Since diagonalizing a quadratic form is the same as diagonalizing under congruence a symmetric
matrix, Algorithm 4.11 may be used here.

Example 4.17. Consider the quadratic form

qlx, y, z} = x* + 4xy + S5y* — 6xz — Byz + 827 (N
The (symmetric) matrix 4 which represents g is as follows:
1 2 -3
A= 2 5 —4
-3 -4 8

From Example 4.14, the following nonsingular matrix P diagonalizes the matrix A under congruence:

i -2 7 1 0 0
P=10 1 -2 and B=P'AP =10 1 0
0 0 1 0 0 -5

Accordingly, g may be diagonalized by the following linear substitution:
x=r~-2+T
y= s—2t
t

ty

Specifically, substituting for x, y, and z in (/) yields the gquadratic form
qir, 5. 1) = r* + 5 — 5¢? (2)
Here p = 2and n = 1; hence

rank g =3 and sigg=1

Remark: There is a geometrical interpretation of the Law of Inertia (Theorem
4.19) which we give here using the quadratic form g in Example 4.17. Consider the
following surface S in R*:

qlx, y, 2) = x* + 4xy + 5)* — 6xz — Byz + 8z2 = 25

Under the change of variables,

x=r—-2s4+Tt
y=s—2t
z=1

or, equivalently, relative to a new coordinate system with r, s, and ¢ axes, the equation
of S becomes

gr.s.)=r* +s> -5 =25

Accordingly, S is a hyperboloid of one sheet, since there are two positive and one
negative entry on the diagonal. Furthermore, S will always be a hyperboloid of one
sheet regardless of the coordinate system, Thus any diagonal representation of the
quadratic form g(x, y, z) will contain two positive and one negative entries on the
diagonal.
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Positive Definite Symmetric Matrices and Quadratic Forms

A real symmetric matrix 4 is said to be positive definite if
XTAX >0

for every nonzero (column) vector X in R". Analogously, a quadratic form g is said to be positive definite
if g(v) > O for every nonzero vector in R".

Alternatively, a real symmetric matrix A or its quadratic form q is positive definite if any diagonal
representation has only positive diagonal entries. Such matrices and quadratic forms play a very impor-
tant role in linear algebra. They are considered in Problems 4.54-4.60.

4.13 SIMILARITY

A function f: R" — R" may be viewed geometrically as “sending” or “mapping” each point Q into a
point f(Q) in the space R". Suppose the function f can be represented in the form

J(Q) = AQ

where A is an n x n matrix and the coordinates of Q are written as a column vector. Furthermore,
suppose P is a nonsingular matrix which may be viewed as introducing a new coordinate system in the
space R”. (See Example 4.16.) Relative to this new coordinate system, we prove that f is represented by
the matrix

B=P AP
that is,

J1Q) = BQ'

where Q' denotes the column vector of the coordinates of Q relative to the new coordinate system.

Example 4.18. Consider the function f: R? -» R? defined by
Jix, »)=03x — 4y, 5x + 2))

N

Suppose a new coordinate system with s and t axes is introduced in R? by means of the nonsingular matrix
2 -1 3 %)
P= and so P l=
(G 7) (4
(See Fig. 4-1.) Relative to this new coordinate system of R?, the function f may be represented as
sy _ s
t) T\t
I a2 I 1 _lo
INs 20 ) \Z

Sis, ) =(%s— ¥, ¥s + 4n)

or, equivalently,

where

H=P“AP=(

Tt

In other words,

The above discussion leads us to the following:
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Definition: A matrix B is similar to a matrix A if there exists a nonsingular matrix P such that
B=P '4P

Similarity, like congruence, 1s an equivalence relation (Problem 4.125); hence we say that A and B
are similar matrices when B = P~ 'AP.

A matrix A is said to be diagonalizable if there exists a nonsingular matrix P such that B = P 'AP
is a diagonal matrix. The question of whether or not a given matrix A4 is diagonalizable and of finding
the matrix P when A is diagonalizable plays an important role in linear algebra. These questions will be
addressed in Chapter 8.

414 LU FACTORIZATION

Suppose A is a nonsingular matrix which can be brought into (upper) triangular form U without
using any row-interchange operations, that is. suppose A can be triangularized by the following algo-
rithm which we write using computer algorithmic notation.

Algorithm 4.14:  Triangularizing matrix A = (q,,)

Step I. Repeatfori=1,2,...,n—1;

Step 2. Repeatforj=i+1,...,n
(a) Setmy,:=aq;la;
(b) SetR;:=m, R, + R;
[End of Step 2 inner loop.]
{End of Step 1 outer loop.]

Step 3.  Exit.

The numbers m;; are called multipliers. Sometimes we keep track of these multipliers by means of
the following lower triangular matrix L:

1 0 0 ... 0 0

—my, 1 0 0 o0

L= —mal _m32 l - 0 0
LY _mll2 —Mm,y ... _mu.u—l ]

That is, L has Is on the diagonal, Os above the diagonal. and the negative of m;; as its ij-entry below the
diagonal.
The above lower triangular matrix L may be alternatively described as follows. Let ey, e,, ..., ¢

denote the sequence of elementary row operations in the above algorithm. The inverses of these oper-
ations are as follows. Fori= 1,2, ..., n — 1, we have

_m'ij+ RI_’RJ (j=i+!.“-..ﬂl
Applying these inverse operations in reverse order to the identity matrix I yields the matrix L Thus
L=E'E;" - E U

where E,, ..., E, are the elementary matrices corresponding to the elementary operations ¢, ..., ¢;.
On the other hand, the elementary operations e,, ..., e, transform the original matrix 4 into the
upper triangular matrix U. Thus E, --- E; E; A = U. Accordingly,

A=(E'E;" - E;WW =(E]'E;" - E;'NDU = LU
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This gives us the classical LU factorization of such a matrix A. We formally state this result as a
theorem.

Theorem 4.20: Let A be a matrix as above. Then A = LU where L is a lower triangular matrix with 1s
on the diagonal and U is an upper triangular matrix with no 0s on the diagonal.

Remark: We emphasize that the above theorem only applies to nonsingular
matrices A which can be brought into triangular form without any row interchanges.
Such matrices are said to be LU-factorable or to have an LU factorization.

1 2 -3
Example 418. letA=|-3 -4 13 ). Then A may be reduced to triangular form by the operations 3R, + R,
2 1 -5

—R,and - 2R, + R, — R;, and then ()R, + R, — R;:

1 2 -3 1 2 -3
0 -3 1 0 0 7
This gives us the factorization 4 = LU where
1 0 0 1 2 -3
L=|-3 1 0 U=|0 2
2 =@y 0o 0 7

Note that the entries — 3, 2, and -3 in L come from the above elementary row operations, and that U is the
triangular form of A.

Applications to Linear Equations

Consider a computer algorithm M. Let C(n) denote the running time of the algorithm as a function
of the size n of the input data. [ The function C(n) 1s sometimes called the time complexity or simply the
complexity of the algorithm M.] Frequently, C(n) simply counts the number of multiplications and
divisions executed by M, but does not count the number of additions and subtractions since they take
much less time to execute.

Now consider a square system of linear equations

AX =B
where A = (g;;) has an LU factorization and
X =(xg .00. X )7 and B=(b,,....b)"

Then the system may be brought into triangular form (in order to apply back-substitution) by applying
the above algorithm to the augmented matrix M = (A, b) of the system, The time complexity oi the
above algorithm and back-substitution are, respectively,

Cmy=n*2 and  C(n)=n?2

where n is the number of equations.

On the other hand, suppose we already have the factorization A = LU, Then to triangularize the
system we need only apply the row operations in the algorithm (retained by the matrix L) to the column
vector B. In this case, the time complexity is

C(n) ~ n2/2
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Of course, to obtain the factorization A = LU requires the original algorithm where C(n) ~ n®/2. Thus
nothing may be gained by first finding the LU factorization when a single system is involved. However,
there are situations, illustrated below, where the LU factorization is useful,

Suppose that for a given matrix A we need to solve the system

AX =B

repeatedly for a sequence of different constant vectors, say B,, B,, ..., B,. Also, suppose some of the B;
depend upon the solution of the system obtained while using preceding vectors B;. In such a case, it is
more efficient to first find the LU factorization of A, and then to use this factorization to solve the
system for each new B.

Example 4.20. Consider the system

x— 2y— z=k,

2x— Sy— z=k, or AX =B (7))
=Ix 4+ 10y —3z=k;,
i =2 =1 k,
where A = 2 -5 —ljandB=}|k,].
~3 10 -3 Ky

Suppose we want to solve the system for B,, B,, B,, B, , where B, = (1, 2, 3)T and
B+|=B’+XJ. {forj}!]

7

where X is the solution of (/) obtained using B;. Here it is more efficient to first obtain the LU factorization for 4
and then to use the LU factorization to solve the system for each of the B’s. (See Problem 4.73)

Solved Problems

ALGEBRA OF SQUARE MATRICES

1 3 6
41. letA={2 -5 8 |. Find: (a) the diagonal and trace of A;(b) A(u) where u = (2, —3, 5)T;
4 =2 7

(c) A{v) where v = (1, 7, —2).

(a) The diagonal consists of the elements from the upper left corner to the lower right corner of the matrix,
that is, the elements a,,, a;,, a,5. Thus the diagonal of A consists of the scalars 1, —5, and 7. The
trace of A is the sum of the diagonal elements; hencetr A=1—-54+7=13.

1 3 6 2 2—-9+30 23
(b) Auy=Au=|2 -5 Bl —3]=|4+154+40|=|59
4 -2 7 5 8+6+35 49

{¢) By our convention, A(v) is not defined for a row vector v.

42. lLetA= (; _i) (@) Find A% and A°. (b) Find [(A), where f(x) = 2x* — 4x + 5.
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1 2y1 2\ [1+8 2-6 9 —a
2 S - e
(@ ardd (4 —3)(4 -3) (4—12 s+9) (—s 17)

ool 2Y 9 —A\_[9-16 -4434)_ (-7 30
B \4 3-8 17 36 +24 —16 51 60 —67
(b) To find f(A), first substitute 4 for x and 5/ for the constant 5 in the given polynomial

f(x)=2x* —dx + 5:
i (=7 30\ (1 2) (1 0)
fA) =124 4A+5f—1(60 67 44 _3 + 5 01

Then multiply each matrix by its respective scalar:
4 —14 60 -4 -8 £ 50
SA=\ 120 —13a) =16 12)"\o 5
Lastly, add the corresponding elements in the matrices:

)= —14—-4+5 60—8+0 | (—13 52
b= 120—164+0 —134+12+5) \ 104 —117

f) Find g(A), where g(x) = x?> -~ x — 8.

A2=(2 22 2 =(4+6 4—2)=(10 2)
3 -1 6-3 6+1 3 7

2
43. LetA =(3

3 -1

_2_*_102_2 2_
glA)= A A BI—(3 7 3 1 8

(529G D5 -6 o)

i
— -
D
S—

Thus A is a zero of g(x).

44. Given A= (; :) Find a nonzero column vector u = (:) such that A(u) = 3u.

First set up the matrix equation Au = 3u:
1 KAV < ~3*
4 —-3/\y ¥y

Write each side as a single matrix (column vector):

x+3yy (3x
ax—3y)  \3y

Set corresponding elements equal to each other to obtain the system of equations, and reduce it to echelon

form:

x + 3y = 3x . 2x -3y =0 . 2x —3y=0 B
4x — 3y =3y 4x —6y =0 0=0

The system reduces to one homogeneous equation in two unknowns, and so has an infinite number of

solutions. To obtain a nonzero solution let, say, y = 2; then x = 3. That is, u = (3, 2)7 has the desired

property.
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4.7.

1 2 -3
Let 4A={2 5 —1{. Find all vectors u = (x, y, z)" such that A(u) = 0.
5 12 -5
Set up the equation Au = 0 and then write each side as a single matrix:
1 2 =3\/x 0 x+ 2y—3z 0
2 5 —1f{y]l=10 or x+ Sy— z}=[0
5 12 —-5/\z 0, 5x + 12y — 5z 0

Set corresponding elements equal to each other to obtain a homogeneous system, and reduce the system to
echelon form:

x+2y—32=0

2x+4+ Sy— z=0p— + Sz=0
¥ y z ~ y+52=0

x+ 2y—3z=0 x4+2y— 3z=0 {
Sx +12y ~5z2=0 2y +10z =0

In the echelon form, z is the free variable. To obtain the general solution, set z = a, where a is a parameter.
Back-substitution yields y = —Sa, and then x = 13a. Thus, u = (13a, —5a, a)” represents all vectors such
that Au = 0.

t
Show that the collection M of all 2 x 2 matrices of the form (: S) is a commutative algebra of

matrices.

c
d

A+H=(a+c d+b) kA:(ka kl;) AB=(ac+bd ad+bc)

Clearly, M is nonempty. If A = (g b) and B = ( d) belong to M, then
a [
b+d a+c bec +ad bd + ac
also belong to M. Thus M is an algebra of matrices. Furthermore,

ca+db cb+da
BA =
(a’a +cb db+ ca)

Thus BA = AB and so M is a commutative algebra of matrices.

Find all matrices M = (: 'r ) that commute with A = ((l) :)

First find

+ +t +
() g wan (s 50)
2 t z 2+t
Then set AM = MA to obtain the four equations
X+z=X y+t=x+y Zz=2 t=z+1

From the first or last equation, z = 0; from the second equation, x = t. Thus M is any matrix of the form
X ¥
0 x

Let ¢, =(0,...,1,..., 00, where i =1, ..., n, be the (column) vector in R” with 1 in the ith
position and 0 elsewhere, and let 4 and B be m x n matrices.

(@) Show that Ae; is the ith column of A.
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(b) Suppose Ae; = Be, for each i. Show that A = B.
{c) Suppose Au = Bu for every vector u in R". Show that A = B.

(a) Let A={(a;)and let Ae;=(b,,..., b,)" Then
b=Re =(a, -..a)0, ..., 1,....00 =a,
where R, is the kth row of A. Thus
Ae; = (ay;, a3y ..., 0)"

the ith column of A.
(b) Ae; = Be, means A and B have the same ith column for each i. Thus A = B,
(¢) If Au = Bu for every vector u in R”, then Ae; = Be; for each i. Thus A = B.

49. Suppose A is an m x n matrix. Show that: (a) I, A = A, (b) Al, = A. (Thus Al = IA = A when A
is a square matrix.)

We use the fact that I = (J;;) where §;; is the Kronecker delta (Example 4.3).
(@) Suppose I, 4 = (f;). Then

fu = Z 6;&“:;; =0y a; = a;j
k=1

Thus I, A = A, since corresponding entries are equal,
(b) Suppose Al, = (g;;). Then
9 = kZ ay dy; = a;;0;; = a;
=1

Thus Al, = A, since corresponding entries are equal.

4.10. Prove Theorem 4.1. (i) tr (A + B) = tr (A) + tr (B), (11} tr (kA) = k tr (A). (iil) tr (AB) = tr (BA).
(i) Let A + B = (c;). Then ¢;; = a;; + by, so that

n L4

ll’{A+B]= E(‘u= ztalk.'-bll): zau'.‘ Ebu=[rA+er
k=1 k=1 k=1 k=1
(ii) Let kA = {l‘.';j’. Then Ci = kai’q and

k=1 k=1

trAB= Y cy=3 Y agby=Y Ybya,= Y d,=1r B4
i=1

i=1 k=1 k=1 i=1 k=1

4.11. Prove Theorem 4.2. (i) (f + g)(A) = f(A) + g(A), (ii) f(A)g(A) = (fg)(A), (iii) f(A)g(A) = g(A)(A).
Suppose f(x) = ia,- x* and g(x) = i b x’.
i=1 j=1
(i) We can assume r = 5 = n by adding powers of x with 0 as their coefficients. Then

F(x) + glx) = ¥ (a, + b)x’
i=1
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4.12.

Hence
(f+ ghA) = ¥ (a, + b)A’ = ZG,A‘+ Y b, A' = f(A) + g(A)
i=1 =1 i=1

(i) We have f(x)g(x) = Y a;b;x'*%. Then
i

£ (Ax(A) = (Z ﬂrA'XE b, A’) =¥ a;b A7 = (fgKA)

[

(iii) Using f(x)g(x) = g(x) f(x), we have

f(A)g(A) = (faX A) = (gfXA) = g(A) f(A)

Let Dy = ki, the scalar matrix belonging to the scalar k. Show that (a) D, A = kA, (b) BD, = kB,
(¢) Dy + Dy = Dy, and (d) Dy Dy- = Dy

(@ DyA=(ki)A=KkIA) = kA

(b)y BD, = B{(kl) = K{BI) = kB

(c) Dy+D,.=ki+Kl=(k+Kk)M=D,,,

(d) DD, =ikiXKk'l) = kK'(11) = kK'I = Dy,

INVERTIBLE MATRICES, INVERSES

3 5
4.13. Find the inverse of(2 3).

Methed 1. We seek scalars x, y, z, and w for which
3 5yx y) (1 O - 3x+ 5z 3y+5w) (1 0
2 3\z w/ \0 1 2x+3z 2p+3w/ \0o 1

Ix+5:2=1 Iy +5w=0
2x +3z2=0 4 2y +Iw=1

or which satisfy

The solution of the first system is x = —3, z = 2, and of the second system is ¥y = 5, w = — 3. Thus the

inverse of the given matrix is ( ﬁ:; :)

Method 2. The general formula for the inverse of the 2 x 2 matrix A = (a b) is

c d
_ dilA| —bjlA] l d —b
1= =— her Al=ad —
A (-mu a;mq) IAl(—c a) Where |4l be
Thus if A = (; :), then first find | A| = (3X3) — (542) = — 1 # 0. Next interchange the diagonal elements,

take the negatives of the other elements, and multiply by 1/] A|:
3 b -3 5
e — =
= '( -2 3) ( 2 - 3)

1 2 —4 I 3] -4

4.14. Find the inverscof (@) A=} -1 ~—1 Sland () B=11 5 —1

2 7 -3 3 13 -6
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(a)

(b)
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Form the block matrix M = (A4 | I} and row reduce M to echelon form:

1 2 -4 1 0 O I 2 —4: 1 0 O
M={-1 -1 5 0o 1 o]~[0 1t 1! 1 1t 0
¥ T =3 i0 @B i 0o 3 5,-2 0 1
1 2 -4° 1 0 0
~{o 1 1, ¢ 1 o
0o 0 1t -5 -3 1

The left half of M is now in triangular form: hence 4 has an inverse. Further row reduce M to row
canonical form:

l 20 -9 . 2 L 0 0" —16 —11 3
M~{0 1 0 3 3 —%t~1{o 1 0. 1 3 “Ll=wuaiah)
0 0 1 ;3 -3 } 0 0 1 -3 3 i
—16 - 11 3
Thus A ' = 3 3 -1l
- _ 3 1
2 2 ]

Form the block matrix M = (B : I) and row reduce to echelon form:

1 3 -4 ! 3 g 1 0 0

1 5 —1 0 1 ol~l0 2 3:-i 1 0

3 13 -6 .0 O 1 0 4 6 -3 0 1
1 3 -4 1 0 0

~10 2 3 -1 1 0
0 0 0 -1 -2 1

In echelon form, M has a zero row in its left half; that is, B is not row reducible to triangular form.
Accordingly, B is not invertible.

4.15. Prove the following:

(a)
(b)
(c)
(d)
(a)

(b

()

(d)

If A and B are invertible, then AB is invertible and (A4B) '=B '4 .
If A,, A,. ..., A, arcinvertible, then (4,4, - A4,) '=A,"' - A;'A]
A is invertible if and only if A7 is invertible.
The operations of inversion and transposing commute: (A7) ' = (4~ ")".
We have
(ABKB 'A ™" YWY=ABB WA '=AlA "= 447" =1
(B"'A"'WABV=B A 'AB=B"'IB=B 'B=1
Thus B 'A " 'is the inverse of AB.
By induction on n and using Part {a), we have
(Ay - A AY ' =4, - A DAL = A A A )T = A A A
If A is invertible, then there exists a matrix B such that AB = BA = I. Then
(ABY =(BAY =1" andso B'AT=A"B' =1
Hence AT is invertible, with inverse BT. The converse follows from the fact that (A7)" = A.
By Part (¢), B” is the inverse of A7; thatis B =(A”) " ButB=4 '":hence(4 ")V =(47)" .

4.16. Show that, if 4 has a zero row or a zero column, then A4 is not invertible.
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By Problem 3.20, if A has a zero row, then AB would have a zero row. Thus if A were invertible, then
AA™' = I would imply that [ has a zero row. Therefore, A is not invertible. On the other hand, if A has a
zero column, then AT would have a zero row; and so AT would not be invertible. Thus, again, A is not
invertible.

ELEMENTARY MATRICES

4.17. Find the 3-square elementary matrices E,, F,, E; which correspond, respectively, to the row
operations R, <+ R,, —7Ry; -+ R;and —3R, + R, - R,.

1 00
Apply the operations to the identity matrix I, ={0 1 0] to obtain
0 01
010 1 0 0 1 0 0
E;=[1 0 0 E,=|0 1 0 E,=1-3 1 0
0 0 1 o 0 -7 0 0 1

4.18. Prove Theorem 4.9.

Let R; be the ith row of A; we denote this by writing A = (R, ..., R,,). If B is a matrix for which AB is
defined, then 1t follows directly from the definition of matrix multiplication that AB = (R, B, ..., R,, B). We

also let
eg=(0...0T0..0 ~ =i
Here ™ =i means that | is the ith component. By Problem 4.8, ¢;A = R;,. We also remark that

I = (ey, ..., e,)is the identity matrix.

(i) Let e be the elementary row operation R« R;. Then, for ~=iand = = j,

Ea]

E == E{I] =(e|9 LR | E;, ---alr’ia ey em)

and

=

~~
e(A]=(R]I--')'Rj9”-v P rery Rm)
Thus

EA=(e\A, ..., ;A ..., A, ..., e A)=(Ry, ... R, .., R;, ..., R,) = eA)
~

(il Now let ¢ be the elementary row operation kR, — R;, k # 0. Then, for =i
. kR, ..., R)

E=ellf=(ey.i koot and A =(Rys
Thus
P P
EA=(e\A, ....ke1A, .... e, A) = (Ry..... kR,, ..., R,) = elA)

(ifi) Last, let e be the elementary row operation kR; + R, — R;. Then, for = =i,

)

-
e

7 i e
£=e{n=(e|!""kej+‘?l""'iem] and dA}=('R19'-=skRj+ (RS ] Rm}

Using (ke, + e,)A = k(g; A) + ¢, A = kR; + R;, we have
',/“-_‘_\ /_’-‘_‘_‘-‘
EA=(e,A, ..., (ke; + e)A, ..., e, A)=(R,,.... kR, + R;, ..., R,) = e(A)

Thus we have proven the theorem.

4.19. Prove each of the following:
(@) Each of the following elementary row operations has an inverse operation of the same type.

[E,] Interchange the ith row and the jth row: R; > R;.
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4.21.

4.22.

4.23.
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[E,] Multiply the ith row by a nonzero scalar k: kR; - R,, k # 0.
[E;] Replace the ith row by k times the jth row plus the ith row: kR; + R; — R;.

(b) Every elementary matrix E is invertible, and its inverse is an elementary matrix.

(a) Each operation is treated separately.
(1) Interchanging the same two rows twice, we obtain the original matrix; that is, this operation is its
own inverse,
(2) Multiplying the ith row by k and then by k™', or by k™' and then by k, we obtain the original
matrix. In other words, the operations kR; — R, and k™ 'R; — R, arc inverses.
(3) Applying the operation kR, + R; - R, and then the operation —kR; + R; —+ R;, or applying the
operation —kR; + R, = R, and then the operation kR, + R; — R;, we obtain the original matrix.
In other words, the operations kR, + R, = R; and —kR, + R, — R, are inverses.
(b) Let E be the elementary matrix corresponding to the elementary row operation e: e(f) = E. Let ' be
the inverse operation of e and let E’ be its corresponding elementary matrix. Then

[=eel)=e(E)=EFEE and I =ele(l)=eE)=EE

Therefore E' is the inverse of E.

Prove Theorem 4.10.

Suppose A is invertible and suppose A is row equivalent to a matrix B in row canonical form. Then
there exist elementary matrices E,. E,, ..., E, such that E, --- E, E,A = B. Since A is invertible and each
elementary matrix E, is invertible, B is invertible. But if B # I, then B has a zero row; hence B is not
invertible. Thus B = I, and (a) implies (b).

If () holds, then there exist elementary matrices E, E,, ..., E, such that E_--- E; E,A = I, and so
A=(E, - E;E,)"'=E,"E,"--- E_'. But the E; ' are also elementary matrices. Thus (b) implies (c).

If {¢) holds, then A = E,E, --+ E_. The E; are invertible matrices; hence their product, 4, is also
inveruble. Thus (¢) implies (a). Accordingly, the theorem is proved.

Prove Theorem 4.11. If AB = I, then BA = I and hence B = A-L.

Suppose A is not invertible. Then A is not row equivalent to the identity matrix I, and so A is row
equivalent to a matrix with a zero row. In other words. there exist elementary matrices E,, .... E; such that
E -+ E,E,A has a zero row. Hence E, --- E,E,AB=E, - E, E,, an invertible matrix, also has a zero
row. But invertible matrices cannot have zero rows; hence 4 is invertible, with inverse 4 ~'. Then also,

B=IB=(A 'AB=4 (AB)=A4 'I=4"

Prove Theorem 4.12. B ~ A iff there exists nonsingular P such that B = PA.

If B~ A, then B=e¢f..(e;(e,(A))..)=E, - E;E;,A=PA, where P=E ---E,E, is non-
singular. Conversely, suppose B = PA where P is nonsingular. By Theorem 4.10, P is a product of elemen-
tary matrices and hence B can be obtained from A by a sequence of elementary row operations, i.e., B ~ A.
Thus the theorem 1s proved.

Show that B is equivalent to A if and only if there exist invertible matrices P and Q such that
B = PAQ.

If B is equivalent to A, then B=E_ --- E,E AF\F, --- F, = PAQ, where P=E_ --- E, E, and Q =
F,F, --- F, are invertible. The converse follows from the fact that each step is reversible.

Show that equivalence of matrices, written =, is an equivalence relation: (a) A = A, (b)) If A =~ B,
then Bx A, () ifAx Band B= C, then A = C.

(@) A = 1Al where [ is nonsingular; hence 4 > A.
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(6) U A~ Bthen A= PBQ where P and Q are nonsingular. Then B= P 'AQ ' where P~! and Q"' are
nonsingular. Hence B = A.

(¢) IfA=x Band B=C,then A= PBQ and B = P'CQ’ where P, 0, P', Q" are nonsingular. Then

A = P(PCQ)Q = (PP)YA(QQ)
where PP’ and QQ’ are nonsingular. Hence A = C.

4.25. Prove Theorem 4.17.
The proofl is constructive, in the form of an algorithm.
Step 1. Row reduce A to row canonical form, with leading nonzero entries a,, a,;,, ..., G, -
Step 2. Interchange C, and C;,, interchange C; and C,,. ..., and interchange C, and C; . This gives a
'
L |

I,'B 4
matrix in the form (6 0). with leading nonzero entries a,,, a3, ..., 4,,.

Step 3. Use column operations, with the a;; as pivots, to replace each entry in B with a zero; i.e., for
i=1;2, 0050 and j=r+Lr+2....n

apply the operation —b;,C, + C;— C;.

I.'0
The final matrix has the desired form (0'— (5)

SPECIAL TYPES OF MATRICES

. . 8 =57
4.26. Find an upper triangular matrix A such that 4* = (0 2?).

i

Set 4= (g y). Then A% has the form (J:) :) Thus x* =8, so x =2: z* = 27, s0o z=3. Next
Fid Z

calculate A* usingx = 2and z = 3:

2 y\2 ¥ 4 Sy) 2 y\(4 S5y (8 19y
- = 1= =
A (o 3)(0 3) (o o) ™ A=\ 300 9/ 0 =

2 —3
Thus 19y = —57, or y = —3. Accordingly, A = (0 3).

4.27. Prove Theorem 4.3(iii).

iy = z au by; and i = 2, agby
k=1 k=1
Suppose i > j. Then, for any k, either i > k or k > j, so that either a; = 0 or b; = 0. Thus, ¢;, =0, and AB

is upper triangular. Suppose i = j. Then, for k < i, a; = 0; and, for k > i, b,; = 0. Hence c; = a;b;, as
claimed.

4.28. What kinds of matrices are both upper triangular and lower triangular?

If 4 is both upper and lower triangular, then every entry off the main diagonal must be zero. Hence A
is diagonal.
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4.29.

4.30.

4.31.

4.32.
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Prove Theorem 4.4.

W) (A+ AN =AT (AT =AT+ A=A4+ AT
(i) (A— AV =AT— (AN = AT ~A=—(A-A")

(iii) Choose B=1(A + AN and C = YA — A"), and appeal to (i) and (ii). Observe that no other choice is
possible.

. 2 3 : 2 g .
Write 4 = 7 8 as the sum of a symmetric matrix B and a skew-symmetric matrix C.

) —4
Calculate AT=(§ ?).A+ AT=( : 10), and A _-A'“z(g ).Then

8 10 16 0
! - I 0 -2
= — = =—(A—AT) =
B=34+4) & J =3 Q J
x %3
Find x, y,z,s,tif A=4% 4 »]is orthogonal
z 5 t

Let R,, R,, R, denote the rows of A, and let C,, C,, C; denote the columns of A. Since R, is a unit
vector, x> + £ + 8 =1, 0r x = +1. Since R, is a unit vector,  + $ + y? =L, ory= +3%. Since R, - R, =

0, we get 2x/3 + 2 + 2y/3 = 0, or 3x + 3y = — . The only possibility is that x = § and y = —4. Thus
53 %
a={3 3 -4
z s 1

Since the columns are unit vectors,

Led+2=1 $+d4s52=1 t+d+7=1
Thusz= +4%,5s= t4%andt = i%.
Case (i): z = %. Since C, and C, are orthogonal, s = —£; since C, and C, are orthogonal, t = §.
Case (ii): z = —%. Since C, and C, are orthogonal, s = $; since C, and C, arc orthogonal, t = —§.
Hence there are exactly two possible solutions:

S B

A=1% {1 -3 and
i -3 3 =

Lot Lalhs Ll
[P Y E )
|
e b Wit

Suppose A = (f 3) is orthogonal. Show that a* + b* = I and

a b a b
A=(b —-a) or A=(_b a)
Since A is orthogonal, the rows of A form an orthonormal set. Hence
at+ b2 =1 v d =1 ac + bd =0
Similarly, the columns form an orthonormal set, so

@ +ct=1 b2y di=1 ab+cd=0

Therefore, ¢* = 1 — a® = b?, whence ¢ = +b.
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Case (i): ¢ = +bh. Then Ba + d) = 0, or d = —a; the corresponding matrix is (: b).
I
Case (1): c¢= —b.Then b = (d — a) = 0, or d = a; the corresponding matrix is( : b).
= a

4.33. Prove Theorem 4.6.

Let a and b be any real numbers such that a? + b* = 1. Then there exists a real number ¢ such that
a = cos f) and b = sin 0. The result now follows from Problem 4.32.

434. Find a 3 x 3 orthogonal matrix P whose first row is a multiple of u, = (1, 1, 1) and whose
second row is a multiple of u; = (0, —1, 1).

First find a vector u, orthogonal to u, and u,, say (cross product) u; =u, x uy, =(2, —1, —1). Let A
be the matrix whose rows are u,, u,, u,; and let P be the matrix obtained from A by normalizing the rows

of A. Thus
T B 3 W3 I3
A=l0o -1t 1] and P=| 0 —1,/2 /2
2 -1 -1 26 —1f6 —11/6
4.35. Prove Theorem 4.7.
Suppose 4 =(a b).Thn.r:n
¢ d

gt ® \fa ¢ _(a3+b1 ac + bd
\e d\b d) \ac+bd &+ d2
ara=(® c\fa by et +c¢? ab+cd
b dl\e d ab+cd b+ d*
Since AAT = ATA, we get

a +b=a+c A+d=b+ 4 ac + bd = ab + cd

The first equation yields b = ¢*; hence b=cor b= —c.

Case (i): b = ¢ (which includes the case b = —¢ = 0). Then we obtain the symmetric matrix A = (: z)

Case (ii)): b= —c# 0. Then ac + bd = bid — a) and ab + cd = ba — d). Thus b{d — a) = bla — d), and so
2bid — a) = 0. Since b # 0, we get a = d. Thus A has the form

-(5 06 9+ o)

which is the sum of a scalar matrix and a skew-symmetric matrix.

COMPLEX MATRICES

‘ _ , 2+i 3-5 4+8i
4.36. Find the conjugate of the matrix 4 = (6 —i 2-9i 5+ 6:)'

Take the conjugate of each element of the matrix (where a + bi = a — bi):

j_(2+i 3—5i 4+8:')__(2—i 3+ 5i 4—8i)

6—1 2-9 S5+6 6+i 249 5-6i
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4.37.

4.38.

4.39.

4.40.
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2—3i S+ 8i
Find A¥ when A = -4 37Tl
o S |

A = AT the conjugate transpose of A. Hence,

u (2—3;' -4 —6-i (2+3j —4 —6+i)
A" = =

5+8 3-71 5 ) \Ss—8 347 —Si

. 24+6i 5+ 3i\ . ; i :
Write A4 =(9 : ¥ Zi) in the form 4 = B + C, where B is Hermitian and C is skew-
Hermitian.
First find

2—6i 9+ 4 14 + 4i 128 —4+2
A = Ay A% = — A =
(5—3:’ 4+2i) + (14-4.‘ 8 ) A (4+ % —di )

Then the required matrices are

. o f 3 By B w6 —2+4i
B_Q{AJ””‘(?—::;' 4) and C_::M_A)_(ZH —2.‘)

Define an orthonormal set of vectors in C” and prove the following complex analogue of
Theorem 4.5:

Theorem: Let A be a complex matrix. Then the following are equivalent: (¢) 4 is unitary;
(b) the rows of A form an orthonormal set; (c) the columns of A form an orthonormal set.

The vectors uy, 4y, ..., , in C" form an orthonormal set if ¥, * u; = §,; where the dot product in C" is
defined by

(ay, a3, ..., a) (b, by, ....,b)=ab, +a,b; + - +a,b,

and §;; is the Kronecker delta [see Example 4.3(a)].

Let Ry, ..., R, denote the rows of A; then RY,..., R} are the columns of A¥. Let AA" = (c,). By
matrix multiplication, ¢; = R,R] = R;* R;. Then AA" = [iffiR,- R, = 6," iff R,,R,,....R, form an
orthonormal set. Thus (a) and (b) are equivalent. Similarly, A is unitary iff A" is unitary iff the rows of A#
are orthonormal iff the conjugates of the columns of A are orthonormal iff the columns of A are orthonor-
mal. Thus {a) and (c) are equivalent, and the theorem is proved.

Show that A4 (12. —4f di ) is unitary
w = 3 . :
4 — =&

The rows form an orthonormal set:
F-5H3-G-F3HI=EF+H+5=1
G330 (-5 -1 -3=Gi+H+(-3-§=0
(%, —d-%) (-4 -4-=5+0+H=1

Thus A is unitary.
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SQUARE BLOCK MATRICES

4.41.

442

4.43.

4.44.

Determine which matrix is a square block matrix:

1 213,45 I 2VBnE 5
1 1:1:1 1 1 1:1,1 1
A=|9°8776 5 B={9 8:7:6 5
3 .3/3:3 3 3 3:3:3 8
1 3.5.7 9 1 3:5'7 9

Although A is a 5 x 5 square matrix and is a 3 x 3 block matrix, the second and third diagonal blocks
are not square matrices. Thus A is not a square block matrix.
B is a square block matrix.

1 2 3 45
LI
Complete the partitioningof C=19 8 7 6 S5|intoa square block matrix.
33333
13579

One horizontal line is between the second and third rows; hence add a vertical line between the second
and third columns. The other horizontal line is between the fourth and fifth rows; hence add a vertical line
between the fourth and fifth columns. [The horizontal lines and the vertical lines must be symmetrically
placed to obtain a square block matrix.] This yields the square block matrix

2:'3 4:5

Determine which of the following square block matrices are lower triangular, upper triangular,
or diagonal:

1 2:0 _2_,_(3’_?-6 10 0 1 2.0

A=[3 4.5 B g ol5 c=|0:2 3 D=3 4.5

0 06 LRI A 0'4 5 0 67
07 879

A is upper triangular since the block below the diagonal is a zero block.

B is lower triangular since all blocks above the diagonal are zero blocks.

C is diagonal since the blocks above and below the diagonal are zero blocks.

D is neither upper triangular nor lower triangular. Furthermore, no other partitioning of D will make
it into either a block upper triangular matrix or a block lower triangular matrix.

Consider the following block diagonal matrices of which corresponding diagonal blocks have the
same size:

M=diag (All Az,.-., Arl and .N =diag (Bl’ Bz, rany ‘BI"
Find: (@) M + N, (b) kM, (¢) MN, (d) f(M) for a given polynomial f(x).

(@) Simply add the diagonal blocks: M + N = diag (A, + B,, A; + B, ..., A, + B).
(b) Simply multiply the diagonal blocks by k: kM = diag (kA,. kA,, ..., kA4,).
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() Simply multiply corresponding diagonal blocks: MN = diag (A,B,, A, B,, ..., A,B,).
(d) Find f(A,) for each diagonal block A;. Then f(M) = diag (f(A4,),f(A3), ..., f(4)

2,
41

|y e

4.45. Find M? where M =

Since M is block diagonal, square each block :

(; i)(; i)=(|§ ;g)

(5X5) = (25)

(I 1 3\ (16 24)
5 7)(5 ?)_(40 64
7 10!
15 22
Then M2 =| ' 2%
16 24
140 64

CONGRUENT SYMMETRIC MATRICES, QUADRATIC FORMS

1 -3 2
446. letA=]| -3 7 -5, a symmetric matrix. Find (a) a nonsingular matrix P such that P AP
2 -5 8

is diagonal, i.c., the diagonal matrix B = PTAP, and (b) the signature of A.

{a) First form the block matrix (4:1):
1 -3 2'1 0 0
(Ain={-3 7 -5 0 1 0
2 -5 8 0 0 1

Apply the row operations 3R, + R, -+ R, and —2R, + R, — R, to (A ) and then the corresponding
column operations 3C, + C, = C,and —2C, + C; — C4 to A to obtain

1 =3 2'1 0 0 10 0o 1 0 o
0 -2 1, 3 1 0 and then 0 -2 ) 3 1 0
0 1 4.-2 0 1 O 1 S4i=3 0 1

Next apply the row operation R, + 2R, = R, and then the corresponding column operation
C, + 2C, —» C, to obtain

1 0 0 1 0 0 1 0 0 1 0 0
0 -2 I 3 1 0 and then 0o -2 0 3 1 0
0 0 9' -1 | 2 0 0 18 -1 1 2
Now A has been diagonalized. Set
1 3 -1 1 0 0
P=|0 1 1 and then B=P'AP=|0 -2 0
0 0 2 0 0 18

(b} Bhasp = 2 positive and n = | negative diagonal elements. Hencesig 4 =2 — | = 1.
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QUADRATIC FORMS

’ ; . ¢ : 5 —
447. Find the quadratic form g(x, y) corresponding to the symmetric matrix A = ( 3 g)

5 -3y«x x
qx, ¥) = (x, y(_3 8)(y) =(5x -3y, —3Ix + Byy(y)

= 5x? — 3xy — 3xy + By? = 5x? — 6xy + 8)?

4.48. Find the symmetric matrix 4 which corresponds to the quadratic form
q(x, y, z2) = 3x? + 4xy — y* + 8xz — 6yz + 2*

The symmetric matrix A = (a;;) representing g(x,, ..., x,) has the diagonal entry a; equal to the coefli-
cient of x? and has the entries a;; and a; each equal to half the coefficient of x; x;. Thus

3 2 4
A=|2 -1 -3
4 -3 1

4.49. Find the symmetric matrix B which corresponds to the guadratic forms

(@ glx,y)=4ax?+ 5xy — Tp? (b) qlx, y, z) = 4dxpy + 5)°

4 3 .
(a) Here B = ( . 77) (Division by 2 may introduce fractions even though the coeflicients in g are

integers.)
(b} Even though only x and y appears in the polynomial, the expression g(x, y, z) indicates that there are
three variables. In other words,

gix, v, z) = Ox® + 4xy + 5p* + Oxz + Oyz + 0z’
Thus

=

il
== S =]
S W b
o= e R

450. Consider the quadratic form g(x, y) = 3x? 4+ 2xy — »? and the linear substitution, x = s — 3t,
y=25+1
(a) Rewrite g(x, y) in matrix notation, and find the matrix A representing the quadratic form.

(b) Rewrite the linear substitution using matrix notation, and find the matrix P corresponding
to the substitution.

(¢) Find g(s, t) using direct substitution.
(d) Find q(s, t) using matrix notation.

(a) Here gix, y) = (x, y(:: B :X;) Hence A = (? N :) and g(X) = XTAX where X = (x, y)T.

1 -3\ 1 -3
() We have (;) = ( ; ‘:'X:) Thus P = (2 1) and X = PY. where X = (x. )" and ¥ = (s, t)T.
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(¢) Substitute for x and y in g to obtain

qis, 1) =3(s — 30* + s — 3N2s + 1) — (25 + 1)?
= 3(s? — 65t + 91%) + 2(2s* — Sst — 3r?) — (s + 4st + ) = 3s® — 32st + 2017

(d) Here g(X)= XTAX and X = PY. Thus X7 = YTPT Therefore,

1 23 1y —3Y/s
_ _ yTpT o
gty =g¥i= P APY "”’*”(_.3 1)(1 -l)(2 ')(‘)
B 3 —-16\/s _ a2 : 2
s, u(_ y 20Xt) = 352 — 32st + 20¢

[ As expected, the results in (c) and (d) are equal.]

Let L be a linear substitution X = PY, as in Problem 4.50. (a) When is L nonsingular? orthog-
onal? (b) Describe one main advantage of an orthogonal substitution over a nonsingular substi-
tution. (c) Is the linear substitution in Problem 4.50 nonsingular? orthogonal?

(a) L is said to be nonsingular or orthogonal according as the matrix P representing the substitution is
nonsingular or orthogonal.

(b) Recall that the columns of the matrix P representing the linear substitution introduces a new coordi-
nate system. If P is orthogonal, then the new axes are perpendicular and have the same unit lengths as
the original axes.

1 -3
(¢) The matrix P = (2 l) is nonsingular, but not orthogonal; hence the linear substitution is non-

singular, but not orthogonal.

Let g(x, y, 2) = x* + 4xy + 3y* — 8xz — 12yz + 9z°. Find a nonsingular linear substitution
expressing the variables x, y, z in terms of the variables r, s, t so that g(r, s, {) is diagonal. Also
find the signature of g.

Form the block matrix (A4 | /) where A is the matrix which corresponds to the quadratic form:
I 2 -4'1 0 0
(Ain=| 2 i -6 0 1 0
-4 -6 9.0 0 1

Apply -2R, + R, - R, and 4R, + R; — R, and the corresponding column operations, and then
2R, + R; — R, and the corresponding column operation to obtain

1 0o 0 1 0 © 1 0 0 l 0o 0
o —1 2,2 1 0 and then 0 -1 o -2 1 0
4] 2 -7 4 0 1 0 0 -3 ¢ 2 1

Thus the linear substitution x = r — 25, y = s + 21, z = t will yield the quadratic form
gr.s, )=r*—s* -

By inspection,sigg =1 —2= —1.

Diagonalize the following quadratic form g by the method known as “completing the square™:
glx, y) = 2x2 — 12xy + 5)?
First factor out the coefficient of x* from the x? term and the xy term to get

alx. y) = 2(x* — 6xy ) + 557
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Next complete the square inside the parentheses by adding an appropriate multiple of y* and then subtract
the corresponding amount outside the parentheses to get

qlx, y) = Ax? — 6xy + 9y%) + 5y* — 18y? = 2(x — 3y)* — 13y?

(The — 18 comes from the fact that the 9y? inside the parentheses is multiplied by 2.) Let s = x — 3y, t = y.
Then x = s + 31, y = t. This linear substitution yields the quadratic form g(s, f) = 2s* — 131%.

POSITIVE DEFINITE QUADRATIC FORMS
454. Letg(x, y, z) = x> + 2y* — 4xz — 4yz + 722 Is q positive definite?

Diagonalize (under congruence) the symmetric matrix A corresponding to g (by applying
2R, + Ry +Ryand 2C, + Cy = C;,and then R, + Ry—» Ryand C, + Cy - C,):

1 0 -2 1 0 0 | 0 0
A= 0 2 =2]-=]0 2 =-2]-=|0 2 0
-2 -2 7 o -2 3 \Y 0 1

The diagonal representation of g only contains positive entries, 1, 2, and 1, on the diagonal; hence g is
positive definite.

455. Let g(x, y. 2) = x2 + y* + 2xz + d4yz + 322 Is ¢ positive definite?
Diagonalize (under congruence) the symmetric matrix A corresponding to g:

1 0 1 1 0 0 1 0 0
A=|0 1 2]-=10 1 2]—+10 1 o
1 2 3 0 2 2 0 0 -2

There is a negative entry — 2 in the diagonal representation of g; hence g is not positive definite.

4.56. Show that g(x, y) = ax? + bxy + ¢y? is positive definite if and only if @ > 0 and the discriminant
D = b2 - 4ac <.

Suppose v = (x, y) # O, say y # 0. Let t = x/y. Then

q(v) = y*[alx/y)* + b(x/y} + €] = y*(at® + bt + ¢)

However, s = ar? + bt + ¢ lies above the r axis, i.e., is positive for every value of r if and only if @ > 0 and
D = b? — 4ac < 0. Thus q is positive definite if and only if a > O and D < 0.

4.57. Determine which quadratic form g is positive definite:
(a) qx, ) = x* —dxy + 5)? by q(x, y) = x* + 6xy + 3)?
(@) Method 1. Diagonalize by compieting the square:
gx, Yy=x—Axy + 4> + 5P =4y’ =(x =2’ + Y =5 + 1*
where s = x — 2y, t = y. Thus g is positive definite.

Method 2. Compute the discriminant D = b”> — 4ac = 16 — 20 = —4. Since D < 0, g is positive
definite.

(b} Method 1. Diagonalize by completing the square:
glx, ¥) = x* + 6xy + 92 + 3y — 9% = (x + 3))* — 6y* = 5* — 612
where s = x + 3y, t = y. Since —6 is negative, g is not positive definite.
Method 2. Compute D = b? — 4ac = 36 — 12 = 24. Since D > 0, g is not positive definite.
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Let B be any nonsingular matrix, and let M = B”B. Show that (a) M is symmetric, and (b) M is
positive definite.

(@) MT =(BTB)" = B'B'T = B"B = M hence M is symmetric.

(b) Since B is nonsingular, BX # 0 for any nonzero X € R". Hence the dot product of BX with itself.
BX * BX = (BX)T(BX), is positive. Thus

giX) = X"MX = X"(B"B)X = (X"B")BX) = (BX)"(BX) > 0

Thus M is positive definite.

Show that g(X) = || X ||%, the square of the norm of a vector X, is a positive definite quadratic
form.
For X =(x,, X;, .-, X,), we have ¢(X) = xZ + x3 + -+ + x2. Now g is a polynomial with each term

of degree two, and g is in diagonal form where all diagonal entries are positive. Thus ¢ is a positive definite
quadratic form.

Prove that the following two definitions of a positive definite quadratic form are equivalent:

(a) The diagonal entries are all positive in any diagonal representation of g.
(b) ¢(Y) > 0, for any nonzero vector Y in R".

Suppose g(¥) = a,yi + a;y3 + --- + a,y2 If all the coefficients a; are positive, then clearly g(¥Y) > 0
for any nonzero vector Y. Thus (@) implies (b). Conversely, suppose g, < 0. Let ¢, = (0, ..., 1, ..., 0) be the

vector whose entries are all 0 except 1 in the kth position. Then gle,) = a, < 0 for ¢, # 0. Thus not = (a)
implies not = (b). Accordingly, (a) and (b) are equivalent.

SIMILARITY OF MATRICES

4.61.

4.62.

Consider the cartesian plane R? with the usual x and y axes. The 2 x 2 nonsingular matrix

(1)

determines a new coordinate system of the plane, say with s and ¢ axes. (See Example 4.16.)

(a) Plot the new s and ¢ axis in the plane R,
(b) Find the coordinates of (1, 5) in the new system.

(a) Plot the s axis in the direction of the first column u, = (1, —1)" of P with unit length equal to the
length u,. Similarly, plot the r axis in the direction of the second column u, = (3, 2)7 of P with unit
length equal to the length of u, . See Fig. 4-2.

3

_3
(p) Find P '= (1 ;) say by using the formula for the inverse of a 2 x 2 matrix. Then multiply the

5
)

coordinate (column) vector of Q by P ';

ro-(l Y0

Thus Q'(— 22, £) represents Q in the new system.

Let f: R? — R? be defined by f(x, y) = (2x — 5y, 3x + 4y).

(@) Using X = (x, )", write f in matrix notation, i.c., find the matrix A such that f(X) = AX.

(b) Referring to the new coordinate s and ¢ axes of R? introduced in Problem 4.61, and using
Y = (s, t)’, find f (s, t) by first finding the matrix B such that f(Y) = BY.
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4.63.

Fig. 4-2

o )6 e )
o =YW ) D
0-(5 30

Thus f(s, 1) = (s — 321, §s + L)

Consider the space R? with the usual x, y, z axes. The 3 x 3 nonsingular matrix

1 3 -2
P=|-2 -5 2
1 2 1

determines a new coordinate system for R?, say with r, s, t axes. [Alternatively, P defines the

linear substitution X = PY, where X = (x, y, 2)T and Y = (r, s, 1)7.] Find the coordinates of the
point (1, 2, 3) in the new system.

First find P~ '. Form the block matrix M = (P | I) and reduce M to row canonical form:

1 3 =2'1 0 0 1 3 2! I O O

M=|-2 -5 2,0 1 0]~|0 1 =2, 2 1 0

1 2 1.0 0 1 0 —1 I -1 0 1

I 3 =2'1 0 o0 1 T H:23 2 2D

~l0 1 =2,2 1 o]~]O0 1 o'4 3 2

0 0 1 . 11 0O 0 1.1 1 1
I 0 0'-9 -7 -4
~{0 1 o0' 4 3 2
0 0 1, 1 1 1
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Accordingly,
-9 -7 -4 -9 —7 —4a\[1 —47
pP=h==l 4 i 2 and P Q=] 4 3 22 )= 16
1 1 1 | 1 1/\3 6

Thus Q'(—47, 16, 6) represents Q in the new system.

Let f: R* > R? be defined by
fx,v,2)=(x+2y—32,2x+z,x — 3y + 2)

and let P be the nonsingular change-of-variable matrix in Problem 4.63. [Thus, X = PY where
X =(x, 2T and Y = (r, 5, t)".] Find: (a) the matrix A such that f(X) = AX, (b) the matrix B
such that f(Y) = BY, and (o) f(r, s, 1).

(a) The coeflicients of x, y and z give the matrix A:

x 1 2 —3\/x 1 2 -3
yi=12 0 1)l ¥ and so A=]2 0 1
z 1 -3 1/\z 1 -3 1

() Here B is similar to A with respect to P, that is,
-9 -7 —4\/l 2 -3 1 3 -2 1 -19 58
B=P 'AP = 4 3 22 0 -2 -5 21=1|1 12 =27
| 1 I/\1 -3 1 1 2 | 5 15 —11
(¢) Use the matrix B to obtain

fir,s, ) =(r— 195+ 58t, r + 125 — 271, 5r + 155 — 111)

Suppose B is similar to A. Prove tr B = tr A.

Since B is similar to A, there exists a nonsingular matrix P such that B = P~'AP. Then, using

Theorem 4.1,
trB=tr P P'AP=tr PP"'A=1tr A

LU FACTORIZATION

4.66.

1 3 2
Find the LU factorization of 4 = 2 5 6].
-3 -2 7

Reduce A to triangular form by the operations —2R, + R; + R; and 3R, + Ry —+ R,, and then
7R2 + RJ_’RJ:
| 3 2 1 3 2
A~10 —1 21~10 —1 2
0 7 13 c 0 27

Use the negatives of the multipliers — 2, 3, and 7 in the above row operations to form the matrix L, and use
the triangular form of A to obtain the matrix U; that is,

1 0 0 1 3 2
L= 2 1 0 and U= ~1 2
-3 -7 1 0 o 27

(As a check, multiply L and U to verify that A = LU )
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4.67.

4.69.

Find the LDU factorization of the matrix A in Problem 4.66.

The A == LDU factorization refers to the situation where L is a lower triangular matrix with 1s on the
diagonal (as in the LU factorization of A), D is a diagonal matrix, and U is an upper triangular matrix with

Is on the diagonal. Thus simply factor out the diagonal entries in the matrix U in the above LU factor-
ization of A to obtain the matrices D and L. Hence

1 0 0 1 0 0 | 3 2
L= 2 1 0 D=|0 —1 0 U=|0 1 =2
—3 =1 1 0 0 & 0 0 1
1 4 -3
Find the LU factorization of B = 2 8 1].
-5 -9 7

Reduce B to triangular form by first applying the operations — 2R, + R, — R, and 5R; + Ry —» Ry:

1 4 =3
B~{0 0 7
0 11 -8

Observe that the second diagonal entry is 0. Thus B cannot be brought into triangular form without row
interchange operations. In other words, B is not LU-factorable.

1 2 -3 4
: G 2 3 -8 5 .
Find the LU factorization of 4 = ] 3 { 3 by a direct method.
3 8 -1 13
First form the following matrices [ and U:
1 0 0 0O lus g s w

L= Ly 1 0 and U=| 0wy uyy g,

0
lyy, Li; 1 0 0 0 w3z uy,
1 \0 0 0 ug

That part of the product LU which determines the first row of 4 yields the four equations

i‘1-[ “42 l43

u, =1 U =2 Upy = —3 u,=4

and that part of the product LU which determines the first column of 4 yields the equations

Ly, =2, Lyu, =1, lguy, =3 or =2, Iy =1, Iy, =3
Thus, at this point, the matrices L and U have the form
1 0 0 O 1 2 -3 4
(2 0 0 0 {0 Uy wyy uy,
=1 1, 1 of * Y=lo 0 w, u,
3 ’42 "4-3 1 0 0 0 Uayg

That part of the product LU which determines the remaining entries in the second row of A yields the
equations

4+uy,= 3 —6 +uy; = —8 B4uy= §
or Upy = — 1 upy = —2 Uy = —3
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and that part of the product LU which determines the remaining entries in the second column of A yields
the equations

2+!33U22=3' 6+‘42u22=8 or I32='—‘l‘ l‘2=—2
Thus I and U now have the form

1 0 0 0 1 2 =3 4
1 0 = = =
L= 2 0 - —_— 0 1 2 3
1 -1 1 0 0 0 Uyqy Usy
Y =% ke U 0 0 0 o,
Continuing, using the third row, third column, and fourth row of A4, we get
Uy = 2, Uy, = — 1, then lya=2, and lastly Uy, =
Thus
1 0 0 0 1 2 -3 4
2 1 0 0 0o -1 -2 -3
E=ly 1 0 o) ™ YSle o 2 -
3 -2 2 | 0 0 0 3

Find the LDU factorization of matrix A in the Problem 4.69.

Here U should have 1s on the diagonal and D is a diagonal matrix. Thus, using the above LU factor-
ization of A, factor out the diagonal entries in that U to obtain

1 1 2 -3 4
-1 1 2 3
D= d —
> an U 1 -2
3 1

The matrix L is the same as in Problem 4.69.

Given the factorization 4 = LU, where L = (I;;) and U = (y;;). Consider the system AX = B.
Determine (a) the algorithm to find L™ 'B, and (b) the algorithm that solves UX = B by back-
substitution.

(@) The entry I; in the matrix L corresponds to the elementary row operation —I; R; + R; —+ R;. Thus the
algorithm which transforms B into B is as follows:

Algorithm P4.71A: Evaluating L' B
Step 1. Repeatforj=1ton— 1:

Step 2. Repeatfori=j+ 1 ton:
bj== _!Ubf + bj
[End of Step 2 inner loop.]
[End of Step 1 outer loop.]
Step 3. Exit

[The complexity of this algorithm is C(n) = n*/2.}
(b) The back-substitution algorithm follows:
Algorithm P4.71B: Back-substitution for system UX = B
Step 1. x, = b,fu,,
Step 2. Repeatforj=n—1,n—2,..,1

xp=b; —u; ;o1 Xjey — " U XUy,
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Step 3. Exit.
[The complexity here is also C(n) = n%/2.]

1 2 1
4.72. Find the LU factorization of the matrix 4 = 2 3 =
-3 —10 2
Reduce A4 to triangular form by the operations
() —2R, + R,—>R,, (2) 3R, +R,—R,, (3) —4R, + R, —= R,
1 2 1 1 2 1
A~0 —1 1]~]0 -1 1
0 —4 5 0 0 i
1 0 0 1 2 1
Thus L= 2 1 1] and U=|0 -1 |
=3 4 1 0 0 1

The entries 2, —3, and 4 in L are the negatives of the multipliers in the above row operations.

4.73. Solve the system AX = B for B,, B,, By, where A is the matrix in Problem 4.72 and where
B, =(1, 1,1),B, =B, + X,, By = B, + X, (here X, is the solution when B = B)).

(@ Find L 'B, or. equivalently, apply the row operations (1), (2}, and (3) to B, to yield

1 | 1
(1) and {2) th

B,=|1|—— | -1] —— | -1
1 4 8
Solve UX = Blor B = (1, —1, 8) by back-substitution to obtain X, =(—25,9, 8).
(b) Find B, = B, + X, = (1, 1, 1) + (—25, 9, 8) = (—24, 10. 9). Apply the operations (1), (2), and (3) to B,

to obtain {— 24, 58, —63), and then B = (—24, 58, —295).
Solve UX = B by back-substitution to obtain X, = (943, — 353, —295).

(¢) Find B, = B, + X, =(—24, 10, 9) + (943, —353, —295) = (919, —343, —286). Apply the operations
(1), (2), and (3) to B, to obtain (919, — 2181, 2671), and then B = (919, — 2181, 11395).
Solve UX = B by back-substitution to obtain X, = (-- 37,628, 13,576, 11,395).

Supplementary Problems

ALGEBRA OF MATRICES

474. letA= (l

2
0 l),FindA.

k
4.75. Suppose the 2 x 2 matrix B commutes with every 2 x 2 matrix A. Show that B = ( o 2) for some scalar k,

ie., B is a scalar matrix.

476. LetA= ({5) i) Find all numbers & for which A is a root of the polynomial

(@ fix)=x*—17x+10, (b) gix) = x* — 25, (¢) hix)=x*—-4
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10y . : 3
477. LetB= (26 27). Find a matrix A such that A° = B.
¢ 1 00
¢ o1 0 10
478. Let A= 00 0 1 and B=[0 1 1] Find:(a) A" and (b) B", for all positive integers n.
0 00O 2 uE

4.79. Find conditions on matrices A and B so that A*> — B® = (A + B)A — B).

INVERTIBLE MATRICES, INVERSES, ELEMENTARY MATRICES

1 3 -2 2 1 -1 1 -2 0
4.80. Find the inverse of each matrix: (a) | 2 g8 —3],b)|5 2 =312 -3 1].
1 7 | 0 2 1 1 1 5
I 1 1 1 1 2 1 0
; ; - 0 | | 1 0 1 -1 1
4.81. Find the inverse of each matrix: (a) 0 0 i e (h) | 3 | o
0 0 0 1 1 4 =2 4

1 2 -
4.82. Express each matrix as a product of elementary matrices: (a) (3 4). () ( _ > 6)

483. Express A= as a product of elementary matrices.

D =
00 = b2
- W D

4.84. Suppose A is invertible. Show that if AB = AC then B = C. Give an example of a nonzero matrix A such

that AB = AC but B # C.
4.85. If Ais invertible, show that kA is invertible when k # 0, with inverse k™14 1.

4.86. Suppose 4 and B are invertible and A + B s 0. Show, by an example, that A + B need not be invertible.

SPECIAL TYPES OF SQUARE MATRICES
4.87. Using only the elements O and 1. find all 3 x 3 nonsingular upper triangular matrices.

4.88. Using only the elements 0 and 1, find the number of: (a) 4 x 4 diagonal matrices, (b) 4 x 4 upper triangular

matrices, (c) 4 x 4 nonsingular upper triangular matrices. Generalize to n x n matrices.

21 1 4
489. Find all real matrices A such that A2 = B where (@) B = (g 5 S)' B B= (0 B 9).

1 8
490. LletB=|0 9 . Find a matrix A with positive diagonal entries such that 42 = B.
00

L

491. Suppose AB = C where A and C are upper triangular.
(@) Show, by an example, that B need not be upper triangular even when A and C are nonzero matrices.
(b) Show that B is upper triangular when A is invertible.
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492. Show that AB need not be symmetric, even though A and B are symmetric.
493. Let A and B be symmetric matrices. Show that AB is symmetric il and only if A and B commute.

494. Suppose A is a symmetric matrix. Show that (a) A% and, in general, A" is symmetric; (b) f(A) is symmetric
for any polynomial f(x); (¢} PT AP is symmetric.

495. Find a2 x 2 orthogonal matrix P whose first row is (a) (2/,/29, 5/,/29), (b) a multiple of (3, 4).

496. Find a 3 x 3 orthogonal matrix P whose first two rows are multipies of (a) (1, 2, 3) and (0, —2, 3), respec-
tively; (b) (1, 3, 1)and (1, 0, — 1), respectively.

497. Suppose A and B are orthogonal. Show that A", A~', and AB are also orthogonal.
498. Which of the following matrices are normal?
1 1 1 2 —1 3
3 - 1 =2
A=(4 3), l":'=(2 3). C=10 1 1 D= 1 2 1
0 0 1 -3 -1 2

499. Suppose A is a normal matrix. Show that: (a) AT, () A? and, in general A", (¢} B = ki + A are also normal.

2 -2 -4
4.100. A matrix E is idempotent if E* = E. Show that E =| —1 3 4 ] is idempotent.
1 -2 =3

4.101. Show that if AB = A and BA = B, then A and B are idempotent.

1 1 3
4.102. A matrix A is nilpotent of class p if A =0but AP"' #0.Showthat A= 5 2 6
~2 -1 -3

is nilpotent of class 3.

4.103. Suppose A is nilpotent of class p. Show that A7 =0forg > pbut A7 0forg < p.
4.104. A square matrix is tridiagonal if the nonzero entries occur only on the diagonal directly above the main
diagonal (on the superdiagonal), or directly below the main diagonal (on the subdiagonal). Display the

generic tridiagonal matrices of orders 4 and 5.

4.105. Show that the product of tridiagonal matrices need not be tridiagonal.

COMPLEX MATRICES

4.106. Find real numbers x, y, and z so that A4 is Hermitian, where

X+ 2i yi

3
i 3
(@) A=(;::i 0), By={3=2 0 t+z
yi l—xi —1

4.107. Suppose A is any complex matrix. Show that AA® and A% A are both Hermitian.

4.108. Suppose A is any complex square matrix. Show that A + A” is Hermitian and A — A¥ is skew-Hermitian.
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4.109.

4.110.

4.11L

4.112.

4.113.
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Which of the following matrices are unitary?

. ‘ , 1 s s g
A=(d2 —ﬁfZ) B=£(l+l l—:) C:% : i § i

’,‘- 2 . _— . -
V3 i ARl =1 L L4i —04i 0
Suppose A and B are unitary matrices. Show that: (a) A" is unitary, (b) A~ is unitary, () AB is unitary.

3+4 I 1 0
Determine which of the following matrices are normal: A = ( t : 24 31), B = (] i i)'

Suppose A is a normal matrix and U is a unitary matrix. Show that B = U® AU is also normal.

Recall the following elementary row operations:
[Ei] R,«~R;. [E;] kR;—R;,., k%0, [E;] kR;+ R,—R;

For complex matrices, the respective corresponding Hermitian column operations are as follows:
[G] Ci—C;, [G,] kCi—C,, k#0. [G3] kC; + C, - C;

Show that the elementary matrix corresponding to [(;] is the conjugate transpose of the elementary matrix
corresponding to [ E;].

SQUARE BLOCK MATRICES

4.114.

4.115.

4.117.

Using vertical lines, complete the partitioning of each matrix so that it is a square block matrix:

Partition each of the following matrices so that it becomes a block diagonal matrix with as many diagonail
blocks as possible:

1 20 0 0
1 00 30000 010
A=10 0 2}, B=|10 0 4 0 0]}, C=10 0 0
0 0 3 o 0 5 00 0 2 0
0 0 0 0 6
Find M? and M? for each matrix M:
2,0 00 110 0
0!1 4,0 2 310 0
(@) M= (_]:_21 l‘.'O , ) M= 001 2
0i0 0'3 0 0:4 5

Let M = diag {(A4,. ..., 4,) and N = diag (B,, ..., B,) be block diagonal matrices where each pair of blocks
A,, B; have the same size. Prove MN is block diagonal and

MN = diag (A,By, A; B,, ..., A, By
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REAL SYMMETRIC MATRICES AND QUADRATIC FORMS

1 1 -2 -3
1 2 -5 -1 . . ; P
4.118. Let A= 5 5 6 9l Find a nonsingular matrix P such that B = P" AP is diagonal. Also, find
-3 -t 9 11
B and sig A.

4.119. For each quadratic form g(x, y, 2), find a nonsingular linear substitution expressing the variables x, y, z in
terms of variables r, s, t such that g(r, s, t) is diagonal.
(@ qgl(x, y, 2) = x* + 6xy + 8y — 4xz + 2yz — 922
(b) gix, y, z) = 2x* — 3y? + Bxz + 12yz + 2527

4.120. Find those values of k so that the given quadratic form is positive definite:
(@) gix, y) = 2x* — Sxy + ky?

(b) qlx, y) = 3x? — kxy + 12)?
(€) qx, vy, 2)=x2+2xy + 2y + 2xz + byz + kz?

4.121. Give an example of a quadratic form g(x, y) such that g(u) = 0 and g(v) = O but g{u + v) # 0.

4.122. Show that any real symmetric matrix A is congruent to a diagonal matrix with only Is, — 1s, and Os on the
diagonal.

4.123. Show that congruence of matrices is an equivalence relation.

SIMILARITY OF MATRICES

1 -2 =2
4.124. Consider the space R? with the usual x, y, z axes. The nonsingular matrix P ={2 —3 —6 |determinesa
1 1 -7

new coordinate system for R3, say with r, s, 1 axes. Find:

(a) The coordinates of the point Q(1, 1, 1) in the new system,
(b) f(r,s,0)whenf{x,y,2)=(x+y. v+ 22, x — 2),

() glr.s,)wheng(x, y,z)=(x +y— 2z x — 3z 2x + y).

4.125. Show that similarity of matrices is an equivalence relation.

LU FACTORIZATION

4.126. Find the LU and LDU factorization of each matrix :

i & e 2 3 6
@ A={2 s 1|, ® B=|l4a 7 9|
3 4 2 3 5 4

QR
4127 LetA={3 -4 -2
, R R

(a) Find the LU factorization of A.
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4.74.

4.76.

4.77.

4.78.

4.79.

&
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(b) Let X, denote the solution of AX = B,. Find X,. X,, X,, X, when B, =(1, 1, 1)7 and
By, =B,+ X, fork > 0.

Answers to Supplementary Problems

N
(=
=+ g
\""—"’

(@@ k=2, (b)) k= -5, () None
)
2 3
0 010 0001
1 n nn—1)2
(a) A2=000'.AJ=0000,A*=Drork>3 ) BP=[0 1 n
0000 0000
0 0 i
0000 0000
AB = BA
1 TR R R G 8
(@ | —3 3 -4} wm|l-5 2 1), @|-% 3 -4
3 3 1 100 —4 —1 s 3 4
1 -1 0 0 10 —20 4 7
0 I -1 0 3 6 —1 =2
@\ o 1 4 ©® & § -3 -a
0 0 0 2 - N

(b) No product: matrix has no inverse.

All diagonal entries must be ! to be nonsingular. There are eight possible choices for the entries above the

N R YR T
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a88. (@ 221, B 2, (2

2 2 -7
% ok (0 i)‘ (0 —5)’

-2 7 -2 =3
( o 5).( 0 — 5)- (b) None

121
4.90. 31
2
11 12 4 6
4. ]. A= B= —
¥ (U 0)“' (3 4)‘C (o 0)
1 2\/3 3 9 5
Wt (2 2)(3 1)3(12 8)
495. () ( o 5’\’29) (b) ( i é)
—5,/29 21./29) - 3
1//14 2/ /14 314 1//11 3/ /11 /1
496. (a) 0 -2 /13 /B3|, w | 112 0 -142
12/ /1571 =3, /151 -2/ /157 322 -2/22 3 /22
498. A C
i i bl.l. f:'21
a“ azj a bM bz: bza
4104, |7 a“ a“ . by, byy by,
a 033 034 bl»S b44 b45
43 4 b!d bss
11 o\/t 10\ /221
ares. (1t 1ffr 1t 1)={2 3 2
01 1/\0 1 1 i 22
4.106. (@) x = a(parameter), y =0,z =10; () x=3,y=0:z=13
4.109. A B,C
4111, A
/1,2 3,4 5\ 1 2:3:4 5
101 1.1 1 11101
4114 A={9.8 7.6 5|.B=|9 8:7:6 5
2:2 2:2 2 - ST
3'3 3:3 3 3 3¢3'3 3
1 2.0 0 0
1:0 0 30,000 010
4115. A=(0,0 2),B=|/0 0.4 0 0|, C={0 0 ©
0,0 3 00500 020
0 0'0 0 6

(C, itself, is a block diagonal matrix; no further partitioning of C is possible.)

139
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()

4118. P=

4.119. (a)
(b)
()

(d)

4.120. (a)

SQUARE MATRICES, ELEMENTARY MATRICES

4 8
9 8 25 44
M1= 3=
4 9 » M 22 25
9 27
3 4 11 15
M2 — 8 11 MY 30 41
9 127 57 78
24 33 156 213
1 —1 —1 26 1
0 1 3 13 1 )
o o 1 9ofB= —7 =8
o 0 0 7 469

x=r—3—19,v=s+Ttz=1,
glr, s, t) = r* — s? + 36t% rank q = 3.sig g = |

x=r—2t,y=s5+2t,z=1,

qr,s, t) = 2r — 352 + 29t rank g = 3,sigg = |
x=r—2s+ 18t,y=5s-Tt,z=1,

glr.s.0) =r* + s — 62t*, rank g = 3. sigg = 1

X=r—s—ty=s—tz=t,
glx,y,2) =r* + 25’ rank g = 2, sigg = 2

k>2%; (b)) k< —120rk>12; (o) k>S5

4121, glx,y)=x* —y u=(1, D,o=(1, —1)

4.122. Suppose A has been diagonalized to PTAP = diag (a,). Let Q = diag (b,) be defined by
1/ if 0
b= { / ll"" "% 7O Then B = Q7PTAPQ = (PO A(PQ) has the required form.

4.124. (a)
(c)

4.126. (a)

(b)

4.127. (a)

®)

ifg, =0

0(17, 5, 3), (b) f(r,s, 1) =(17r — 61s + 134¢, 4r — 41s + 461, 3r — 255 + 251),

glr. s, t) = (61r + 5 — 3304, 16r + 35 — 911, 9 — 45 — 41)

6
y Xa=[4].By=|6},Xy=| 16],B,={ 22

VX,

86
62

i

[CHAP. 4



Chapter 5

Vector Spaces

5.1 INTRODUCTION

This chapter introduces the underlying algebraic structure of lincar algebra —that of a finite-
dimensional vector space. The definition of a vector space involves an arbitrary field whose elements are
called scalars. The following notation will be used (unless otherwise stated or implied):

K the field of scalars
a b, cork the elements of K
vV the given vector space
u, v, w the elements of V
Nothing essential is lost if the reader assumes that K is the real field R or the complex field C.
Length and orthogonality are not covered in this chapter since they are not considered as part

of the fundamental structure of a vector space. They will be included as an additional structure in
Chapter 6.

52 VECTOR SPACES

The following defines the notion of a vector space or linear space.

Definition: Let K be a given field and let V be a nonempty set with rules of addition and scalar
multiplication which assigns to any y,ve Vasumu+veVandtoanyue V, ke K a
product ku € V. Then V is called a vector space over K (and the elements of V are called
vectors) if the following axioms hold (see Problem 5.3).

[A,] Foranyvectorsu,v,we V,(u +0)+w=u+{v+ w).

[A4,] Thereis a vector in V, denoted by 0 and called the zero vector, for whichu + 0 =u
for any vectoru e V.

[Ay] For each vector ue V there is a vector in V, denoted by —u, for which
u+(—uy=0.

[A,] Foranyvectorsu,ve V,u+v=10v+u

[M,] For any scalar k € K and any vectors u, v € V, k{u + v) = ku + kv.
[M,] Forany scalars a, b € K and any vector u € V, (a + bju = au + bu.
[M,] For any scalars u, b € K and any vector u € V, (abju = a(bu).

[M,] For the unit scalar 1 € K, lu = u for any vectoru € V.

The above axioms naturally split into two sets. The first four arc only concerned with the additive
structure of V and can be summarized by saying that V i1s a commutative group under addition. It
follows that any sum of vectors of the form

U|+v2+“'+vm

141
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requires no parentheses and does not depend upon the order of the summands, the zero vector O is
unique, the negative —u of u is unique, and the cancellation law holds; that is, for any vectors u, v,

we V.
Uu+w=ov+w implies u=v

Also, subtraction is defined by
u—v=u+(—v)

On the other hand, the remaining four axioms are concerned with the “action” of the field K on V.
Observe that the labelling of the axioms reflects this splitting. Using these additional axioms we prove
(Problem 5.1) the following simple properties of a vector space.

Theorem 5.1: Let V be a vector space over a field K.
(i) For anyscalar ke Kand Qe V, k0 = (.
(1) For0e K and any vectoru e V, Ou = (.
(i) Ifku =0, whereke Kandue V,thenk=0o0ru=0.
(ivy Foranyke Kandanyue V,(—ku = k(-u)= —ku

5.3 EXAMPLES OF VECTOR SPACES

This section lists a number of important examples of vector spaces which will be used throughout
the text.

Space K™

Let K be an arbitrary field. The notation K" is frequently used to denote the set of all n-tuples of
elements in K. Here K" is viewed as a vector space over K where vector addition and scalar multiplica-
tion are defined by

(@3, a3, ....a6)+ (by, by, ....0)=(a, + b,a,+ b,,...,a,+ b,)
and
kay, a,, ..., a,) = (kay, kay, ..., ka,)
The zero vector in K" is the n-tuple of zeros,
0=(0,0,...,0)
and the negative of a vector is defined by
—(an, 4z, ..., a)=(—ay, —az,.... —a,)

The proof that K" is a vector space i1s identical to the proof of Theorem 2.1, which we now regard as
stating that R" with the operations defined there is a vector space over R.

Matrix Space M, ,

The notation M, ., or simply M, will be used to denote the set of all m x n matrices over an
arbitrary field K. Then M,, ,, is a vector space over K with respect to the usual operations of matrix
addition and scalar multiplication. (See Theorem 3.1.)



CHAP. 5] VECTOR SPACES 143

Polynomial Space P(r)

Let P(1) denote the set of all polynomials
ag +at+at* +--+att (s=012..)

with coefficients g; in some field K. Then P(z) is vector space over K with respect to the usual operations
of addition of polynomials and multiplication of a polynomial by a constant.

Function Space F(X)

Let X be any nonempty set and let K be an arbitrary field. Consider the set F(X) of all functions
from X into K. [Note that F(X) is nonempty since X is nonempty.] The sum of two functions f,
g € F(X) is the function f + g € F(X) defined by

+ax)=f(x)+g(x) VxeX
and the product of a scalar k € K and a function f € F(X) is the function kf € F(X) defined by
(kfx) =k(x) VxeX

(The symbol ¥ means “for every.”) Then F(X) with the above operations is a vector space over K
(Problem 5.5).
The zero vector in F(X) is the zero function 0 which maps each x € X into 0 € K, that is,

x)y=0 Vxe X
Also, for any function f € F(X), the function —f defined by
(—x) = —f(x) vx e X

is the negative of the function f.

Fields and Subfields

Suppose E is a field which contains a subfield K. Then E may be viewed as a vector space over K as
follows. Let the usual addition in E be the vector addition, and let the scalar product kv of k € K and
v € E be the product of k and v as elements of the field E. Then E is a vector space over K, that is, the
above eight axioms of a vector space are satisfied by E and K.

54 SUBSPACES

Let W be a subset of a vector space V over a field K. W is called a subspace of V if W is itself a
vector space over K with respect to the operations of vector addition and scalar multiplication on V.,
Simple criteria for identifying subspaces follow (see Problem 5.4 for proof).

Theorem 5.2: Suppose W is a subset of a vector space V. Then W is a subspace of V if and only if the
following hold:
(i) Oew

(i1) W is closed under vector addition, that 1s:
Foreveryu,ve W,thesumu 4+ ve W.

(ili) W is closed under scalar multiplication, that 1s:
For every u € W, k € K, the multiple ku € W.
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Conditions (ii) and (iii) may be combined into one condition as in (ii) below (see Problem 5.5 for
proof).

Corollary 5.3: W is a subspace of V if and only if:
(i) Oew
(1) au+ bve Wiloreveryu,ve Wanda,be K.

Example 5.1

(a) Let V be any vector space. Then the set {0} consisting of the zero vector alone, and also the entire space V are
subspaces of V.

(b)) Let W be the xy plane in R? consisting of those vectors whose third component is 0; or, in other words
W = {(a, b, 0): a, b € R}. Note 0 = (0, 0, 0) € W since the third component of 0 is 0. Further, for any vectors
u=(a, b 0)and v = (c,d, 0) in W and any scalar k € R, we have

u+v={a+c b+d 0) and ku = (ka, kb, 0)
belong to W. Thus W is a subspace of V.

(c) Let ¥V =M, , the space of n x n matrices. Then the subset W, of (upper) triangular matrices and the subset W,
of symmetric matrices are subspaces of V since they are nonempty and closed under matrix addition and
scalar multiplication.

(d) Recall that P(r) denotes the vector space of polynomials. Let P (r) denote the subset of P(t) that consists of all
polynomials of degree <n, for a fixed n. Then P (f) is a subspace of P(r). This vector space P {t) will occur very
often in our examples.

Example 5.2. Let U/ and W be subspaces of a vector space V. We show that I itersection U ~ W js also a
subspace of V. Clearly 0 € U and O e W since U and W are subspaces; whe 0e U n W. Now suppose
wve U W. Then u, v e U and v, v € W and, since U/ and W are subspaces,

u+uv kue U and v+vkueW
for any scalar k. Thus u + v, ku € U n W and hence U n W is a subspace of V.

The result in the preceding example generalizes as follows.
Theorem 5.4: The intersection of any number of subspaces of a vector space V is a subspace of V.

Recall that any solution u of a system AX = B of linear equations in n unknowns may be viewed as
a point in K"; and thus the solution set of such a system is a subset of K". Suppose the system is
homogeneous, Le., suppose the system has the form AX = 0. Let W denote its solution set. Since
A0 = 0, the zero vector 0 € W. Moreover, if u and v belong to W, ie, if u and v are solutions of
AX =0, then Au = 0 and Av = 0. Therefore, for any scalars g and b in K, we have

Alau + bv) = aAu + bAv =a0+ b0=04+0=0
Thus au + bv is also a solution of AX = 0 or, in other words, au + bv € W. Accordingly, by the above
Corollary 5.3, we have proved:
Theorem 5.5: The solution set W of a homogenous system AX = 0 in n unknowns is a subspace of K".

We emphasize that the solution set of a nonhomogenous system 4X = B is not a subspace of K" In
fact, the zero vector 0 does not belong to its solution set.
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5.5 LINEAR COMBINATIONS, LINEAR SPANS
Let V be a vector space over a field K and let v, v5,..., v, € V. Any vector in V of the form
ae, +av,+ 0+ agn,

where the g; € K, is called a linear combination of v, v, ..., v,,. The set of all such linear combinations,
denoted by

span (v, Uy, .., Uy)
is called the linear span of vy, v,, ..., t,,.
Generally, for any subset S of V, span S = {0} when S is empty and span S consists of all the linear
combinations of vectors in S.
The following theorem is proved in Problem 5.16.
Theorem 5.6: Let S be a subset of a vector space V.
(i) Then span § is a subspace of V which contains S.
(ii) If W is a subspace of V containing S, then span § € W.

On the other hand, given a vector space V, the vectors u,, u,, ..., u, are said to span or generate or
to form a spanning set of V if

V= Span ("lr Uz, .-y H,.)
In other words, u,, u,, ..., u, span V if, for every v € V, there exist scalars a,, a,, ..., 4, such that
v=aq by +auy + -+ au,

that is, if v is a linear combination of uy, u;, ..., u,.

Example 5.3

(@) Consider the vector space R*. The linear span of any nonzero vector u € R? consists of all scalar multiples of
u; geometrically, span u is the line through the origin and the endpoint of u as shown in Fig. 5-1{a). Also, for
any two vectors u, v € R? which are not multiples of each other, span (u, v) is the plane through the origin and
the endpoints of u and v as shown in Fig. 5-1(b).

() The vectors e, = (1,0, 0), e, = (0, 1, 0) and e, = (0, 0, 1) span the vector space R*. Specifically, for any vector
u = (a, b, ¢) in R?, we have

u=1{a, b, c)=a(l,0,0)+ b0, 1, 0) + (0, 0, 1) = ae, + be, + ce,

That is, u is a linear combination of e, e, &5

(a) (b

Fig. 51
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{¢) The polynomials 1, 1, 1, t*, ... span the vector space P(t) of all polynomials, that is,
P(t) =span (1,1, 1% 1%, ..)

In other words, any polynomial is a linear combination of 1 and powers of t. Similarly, the polynomials
1,1, 1%, ..., t" span the vector space P,(t) of all polynomials of degree <n.

Row Space of a Matrix

Let A be an arbitrary m x n matrix over a field K:

ayy 43 - Gy

a a .
A= 21 22 n

Am1 Om2 <

The rows of A,

Ri= (B35 Byzies Brahvvs R = @iy Gagy v y)

may be viewed as vectors in K" and hence they span a subspace of K" called the row space of A and
denoted by rowsp A. That is,

rowsp A = span (R, R,, ..., R,)

Analogously, the columns of A may be viewed as vectors in K™ and hence span a subspace of K™ called
the column space of A and denoted by colsp A. Alternatively, colsp A = rowsp A".
Now suppose we apply an elementary row operation on A,

() R, R, (i) kR,—»R,, k#0, or (i) kR;+R,—R,

and obtain a matrix B. Then each row of B is clearly a row of A or a linear combination of rows of A.
Hence the row space of B is contained in the row space of A. On the other hand, we can apply the
inverse elementary row operation on B and obtain A; hence the row space of A is contained in the row
space of B. Accordingly, A and B have the same row space. This leads us to the following theorem,

Theorem 5.7: Row equivalent matrices have the same row space.

In particular, we prove the following fundamental results about row equivalent matrices (proved in
Problems 5.51 and 5.52, respectively).

Theorem 5.8: Row canonical matrices have the same row space if and only if they have the same
NONZETO rOWS.

Theorem 5.9: Every matrix is row equivalent to a unique matrix in row canonical form.

We apply the above results in the next example.

Example 5.4. Show that the subspace U of R* spanned by the vectors
u, =(1,2 —1,3) u, =(2.4. 1. -2)  and uy =1(3,6,3, —7)
and the subspace W of R* spanned by the vectors
v, =(1,2 —-4,11) and v, =(2,4, =5, 14)

are equal; that is, U = W,
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Method 1. Show that each u; is a linear combination of v; and v,, and show that each v; is a
linear combination of u,, u,, and u;. Observe that we have to show that six systems of linear
equations are consistent.

Meathod 2. Form the matrix A4 whose rows are the u;, and row reduce A to row canonical
form:

1 2 -1 3\ /1 2 -1 3 12 0 %
A=2 4 1 -2|~[l0 0o 3 -—8]~l0 o 1 —%
3 6 3 -717 \0o 0 6 —-16/ \0 0 0 o0

Now form the matrix B whose rows are v, and ¢, , and row reduce B to row canonical form:

g_(1 % ¢ 11)12—411120%
\2 4 -5 14 o o 3 -8/ \0o 0o 1 -%
Since the nonzero rows of the reduced matrices are identical, the row spaces of 4 and B are
equaland so U = W.

56 LINEAR DEPENDENCE AND INDEPENDENCE

The following defines the notion of linear dependence and independence. This concept plays an
essential role in the theory of linear algebra and in mathematics in general.

Definition: Let V be a vector space over a field K. The vectors vy, ..., v,, € V are said to be linearly
dependent over K, or simply dependent, if there exist scalars a,, ..., a,, € K, not all of them
0, such that

avy +asvy+ - +a,v,=0 (=)
Otherwise, the vectors are said to be linearly independent over K, or simply independent.
Observe that the relation (») will always hold if the a’s are all 0. If this relation holds only in this
case, that is,
a,ty + a,ty + - +a,v,=0 implies a=0,..a,=0

then the vectors are linearly independent. On the other hand, if the relation () also holds when one of
the a’s is not 0, then the vectors are linearly dependent.

A set {v,. ;3. .... v,} Of vectors is said to be linearly dependent or independent according as the
vectors vy, v,, ..., t,, are linearly dependent or independent. An infinite set S of vectors is linearly
dependent if there exist vectors u, ..., 4, in S which are linearly dependent; otherwise S is linearly
independent.

The following remarks follow from the above definitions.

Remark 1: If O is one of the vectors vy, ..., v, say v; = 0, then the vectors must
be linearly dependent; for

e, +0v, +---+00,=1°0+0+---+0=0

and the coeflicient of v, is not 0.

Remark 2: Any nonzero vector v is, by itself, linearly independent; for
ke =0, v#0 implies k=0
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Remark 3: If two of the vectors vy, v,, ..., v, are equal or one is a scalar multiple
of the other, say v, = kr, . then the vectors are linearly dependent. For

v,—kvz+003+”'+0ﬂm=0

and the coefficient of ¢, 15 not 0.

Remark 4: Two vectors v, and v, are linearly dependent if and only if one of
them is a multiple of the other.

Remark 5: [f the set {¢,, ..., v,} is linearly independent, then any rearrangement
of the vectors {v;,.v;,,..., v; } is also linearly independent.

Remark 6: 1If a set § of vectors is linearly independent, then any subset of § is
linearly independeni. Alternatively, if S contains a linearly dependent subset, then S is
linearly dependent.

Remark 7: In the real space R’ linear dependence of vectors can be described
geometrically as follows: (@) Any two vectors u and v are lincarly dependent if and only
if they lic on the same line through the origin as shown in Fig. 5-2(a). (b) Any three
vectors w. v, and w are linearly dependent if and only if they lie on the same plane
through the origin as shown in Fig. 5-2(b).

- |
- v |
{
|
L]
)
0 /
(a) u and v are lincarly dependent (b) u, v, and w are linecarly dependent

Fig. 5-2

Other examples of linearly dependent and independent vectors follow.

The vectors u = (1, — 1, 0), v = (1. 3, —1), and w = (5, 3, —2) are linearly dependent since

3, —L O+ 2L 3 —1)—(53, —-2)=(0,0.0)

Thatis, 3u + 2v — w = 0.

We show that the vectors u = (6, 2, 3, 4). 1+ = (0, 5, — 3. 1), and w = (0, 0, 7, —2) are linearly independent. For
suppose xi + yr + =w = { where x, v and = are unknown scalars. Then

(0,0,0,0) = x(6. 2,3,4) + 10,5, -3, 1)+ 20,0, 7, -2)
={bx,2x + 5y, 3Ix =3y + Tz, 4x + y — 22)

and so0, by the equality of the corresponding components,

6x =0
2x + 5y =0
Ix—-3y+7z=0
dx+ y—2z=0
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The first equation yields x = 0; the second equation with x =0 yields y = 0; and the third equation with
x =0,y =0yields z = 0. Thus

xu+yp+zw=0  implies x=0y=02z=0
Accordingly u, v, and w are linearly independent.

Linear Combinations and Linear Dependence

The notions of linear combinations and linear dependence are closely related. Specifically, for more
than one vector, we show that the vectors vy, v,, ..., v,, are linearly dependent if and only if one of them
is a linear combination of the others.

For suppose, say, p; is a linear combination of the others:

vi=auy A a Uiy G Uy o+ a0,
Then by adding —v; to both sides, we obtain
@G0y + AU U+ G Uiy - a,t, =0
where the coefficient of v; is not 0; hence the vectors are linearly dependent. Conversely, suppose the
vectors are linearly dependent, say,
byv; +---+bv;+ -+ b,v,=0  where b;#0
Then

-1 g -1 =1 . -1
Uj L _bj blvl =S _bj b!_ IUJ 1 _b! b_f"‘]l'_f“‘l — — b_f bml}m

and so v; is a linear combination of the other vectors.
We now formally state a shghtly stronger statement than that above (see Problem 5.36 for the
proof); this result has many important consequences.

Lemma 5.10: Suppose two or more nonzero vectors vy, vy, ..., ¥, are linearly dependent. Then one of
the vectors is a linear combination of the preceding vectors, that is, there exists a k > 1
such that

Uy = O Uy +szz+"°+ck 1V -1

Example §5.6. Consider the following matrix in echelon form:

0 2 3 4 5 6 7
0 0 4 —4 4 —4 4
A=l0 o0 O O 7 & 9
0 0 0 0 0 6 —6
0 0 0 0 0 0 0

Observe that rows R;, R,, and R, have Os in the second column (below the pivot element in R,) and hence any
linear combination of R,, R;, and R, must have a 0 as its second component. Thus R, cannot be a linear
combination of the nonzero rows below it. Similarly, rows Ry and R, have Os in the third column below the pivot
element in R,; hence R, cannot be a linear combination of the nonzero rows below it. Finally, R, cannot be a
multiple of R, since Ry has a 0 in the fifth column below the pivot in R,. Viewing the nonzero rows from the
bottom up, R,. Ry, R,, R,, no row is a linear combination of the previous rows. Thus the rows are linearly
independent by Lemma 5.10.
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The argument in the above example can be used for the nonzero rows of any echelon matrix. Thus
we have the following very useful result (proved in Problem 5.37).

Theorem 5.11: The nonzero rows of a matrix in echelon form are linearly independent.

5.7 BASIS AND DIMENSION

First we state two equivalent ways (Problem 5.30) to define a basis of a vector space V.

Definition A: A set S = {u,, u,,..., u,} of vectors is a basis of V if the following two conditions hold:
(1) wuy,u,, ..., u,are linearly independent,
(2) ugyugz,...,u,span V.

Definition B: A set S = {u,, u,, ..., u,} of vectors is a basis of V if every vector v € V can be written
uniquely as a linear combination of the basis vectors.

A vector space V is said to be of finite dimension n or to be n-dimensional, written
dim ¥V =n
if ¥ has such a basis with n elements. This definition of dimension is well defined in view of the

following theorem (proved in Problem 5.40).

Theorem 5.12: Let V be a finite-dimensional vector space. Then every basis of ¥ has the same number
of elements.

The vector space {0} is defined to have dimension 0. When a vector space is not of finite dimension,
it is said to be of infinite dimension.

Example 5.7
(a) Consider the vector space M, , of all 2 x 3 matrices over a field K. Then the following six matrices form a
basis of M, ,:
1 00 010 (00[) (000 000 000
00 0 0 00 000 1 0 0 010 0 0 1
More generally, in the vector space M, ; of r x s matrices let E;; be the matrix with jj-entry 1 and 0 elsewhere.

Then all such matrices E;; form a basis of M, ,, called the usual basis of M, .. Then dim M, ,=rs. In
particular,e, =(1,0,...,0),e, =10, 1,0, ...,0),...,e,=(0,0,...,0, 1) form the usual basis for K".

(b) Consider the vector space P(t) of polynomials of degree <n. The polynomials 1, t, t%, ..., 1" form a basis of
P(1),and sodim Pt} = n + 1.

Theorem 5.12, the fundamental theorem on dimension, is a consequence of the following
“replacement lemma ” (proved in Problem 5.39):

Lemma 5.13: Suppose {v,, v;, ..., v,} spans V, and suppose {w,, w,, ..., w,} is linearly independent.
Then m < n, and V is spanned by a set of the form

(a0 W a0 0]

Thus, in particular, any n + 1 or more vectors in V are linearly dependent.

Observe in the above lemma that we have replaced m of the vectors in the spanning set by the m
independent vectors and still retained a spanning set.
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The following theorems (proved in Problems 5.41, 5.42, and 5.43, respectively) will be frequently
used.
Theorem 5.14: Let V be a vector space of finite dimension n.
() Anyn + | or more vectors in V are linearly dependent.
(i) Any linearly independent set § = {u,, u,, ..., u,} with n elements is a basis of V.

(i) Any spanning set T = {v,,v,, ..., v,} of ¥ with n elements is a basis of V.

Theorem 5.15: Suppose S spans a vector space V.
(1) Any maximum number of linearly independent vectors in S form a basis of V.
(i) Suppose one deletes from S each vector which is a linear combination of preced-
ing vectors in S. Then the remaining vectors form a basis of V.

Theorem 5.16: Let V be a vector space of finite dimension and let § = {u,, u,, ..., u,} be a set of
linearly independent vectors in V. Then S is part of a basis of V, that is, S may be
extended to a basis of V.
Example 5.8
{a) Consider the following four vectors in R*;
(LLL1) 1L L1 0,01, 1) 0,0,0,1)

Note that the vector will form a matrix in echelon form; hence the vectors are linearly independent. Further-
more, since dim R* = 4, the vectors form a basis of R*.

{b) Consider the following n + 1 polynomials in P (1):
Le—1,0-1%_..,0~1r

The degree of (t — 1)* is k; hence no polynomial can be a linear combination of preceding polynomials. Thus
the polynomials are linearly independent. Furthermore, they form a basis of P (1) since dim P(t) = n + 1.

Dimension and Subspaces

The following theorem (proved in Problem 5.44) gives the basic relationship between the dimension
of a vector space and the dimension of a subspace.

Theorem 5.17: Let W be a subspace of an n-dimensional vector space V. Then dim W < n. In particu-
lariff dim W = n, then W =V,

Example 5.9. Let W be a subspace of the real space R®. Now dim R? = 3; hence by Theorem 5.17 the dimension
of W can only be (, 1, 2, or 3. The following cases apply:

(i) dim W = 0, then W = {0}, a point;

(ij) dim W = |, then W is a line through the origin;
(i) dim W = 2, then W is a plane through the origin;
{iv) dim W = 3, then W is the entire space R

Rank of a Matrix

Let A be an arbitrary m x n matrix over a field K. Recall that the row space of A is the subspace of
K" spanned by its rows, and the column space of A is the subspace of K™ spanned by its columns.
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The row rank of the matrix A is equal to the maximum number of linearly independent rows or,
equivalently, to the dimension of the row space of A. Analogously, the column rank of A is equal to the
maximum number of linearly independent columns or, equivalently, to the dimension of the column
space of A.

Although rowsp A is a subspace of K", and colsp A is a subspace of K™, where n may not equal m, we
have the following important result (proved in Problem 5.53).

Theorem 5.18: The row rank and the column rank of any matrix 4 are equal.

Definition: The rank of the matrix A, written rank A, is the common value of its row rank and column
rank.

The rank of a matrix may be easily found by using row reduction as illustrated in the next example.

Example 5.10. Suppose we want to find a basis and the dimension of the row space of

1 2 0 -1
A=|2 6 -3 -3
i 10 -6 -5

We reduce A to echelon form using the elementary row operations:

1 2 0 -1 1 2 0 -1
A~10 2 =3 —1]~{0 2 =3 -l
0 4 —6 -2 0 0 0 0

Recall that row equivalent matrices have the same row space. Thus the nonzero rows of the echelon matrix, which
are independent by Theorem 5.11, form a basis of the row space of A. Thus dim rowsp A =2 and so rank A = 2.

58 LINEAR EQUATIONS AND VECTOR SPACES
Consider a system of m linear equations in n unknowns x,, ..., x, over a field K:

ay X, ta;x;, + - +a,,x,=b,

3%y + 033X, + +dz, X%, =b, 6.0)

...................................

or the equivalent matrix equation
AX =B

where A = (g;;) is the coefficient matrix, and X = (x;) and B = (b;) are the column vectors consisting of
the unknowns and of the constants, respectively. Recall that the augmented matrix of the system is
defined to be the matrix

........................

Remark 1: The linear equations (5./) are said to be dependent or independent
according as the corresponding vectors, ie., the rows of the augmented matrix, are
dependent or independent.
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Remark 2: Two systems of linear equations are equivalent if and only if the cor-
responding avgmented matrices are row equivalent, i.e., have the same row space,

Remark 3: We can always replace a system of equations by a system of indepen-
dent equations, such as a system in echelon form. The number of independent equa-
tions will always be equal to the rank of the augmented matrix.

Observe that the system (5./) is also equivalent to the vector equation

ap, dys ai, b,

sy az2 a; by
Xy + X +o+x,) =

L Qyi2 amlJ bm

The above comment gives us the following basic existence theorem.

Theorem 5.19: The following three statements are equivalent.
(@) The system of linear equations AX = B has a solution.
(b) B is a linear combination of the columns of A.

(¢) The coefficient matrix A and the augmented matrix (4, B) have the same rank.

Recall that an m x n matrix A may be viewed as a function 4 : K" — K™ Thus a vector B belongs
to the image of A if and only if the equation AX = B has a solution. This means that the image (range)
of the function A, written Im A, is precisely the column space of 4. Accordingly,

dim (Im A) = dim (colsp A) = rank A

We use this fact to prove (Problem 5.59) the following basic result on homogeneous systems of linear
equations.

Theorem 5.20: The dimension of the solution space W of the homogeneous system of linear equations
AX = 01s n — r where n is the number of unknowns and r is the rank of the coefficient
matrix A.

In case the system AX = 0 is in echelon form, then it has precisely n — r free variables, say, x;, x;,,
..-» X;,_.- Let v; be the solution obtained by setting x, = 1 (or any nonzero constant) and the remaining
free variables equal to 0. Then the solutions v,, ..., v,_, are linearly independent (Problem 5.58) and
hence they form a basis for the solution space.

Example 5.11. Suppose we want to find the dimension and a basis of the solution space W of the following
system:

XxX+2y+2z—5+3t=0

x+2y+3z4+s5+ t=0

Ix+6y+Bz+s5+5=0

First reduce the system to echelon form:

x+2y+2z2— s+3t=0
z4+25—2t=0 or
22445—4t=0

x4+2y4 22— s+3=0
z4+25s—2t=0

The system in echelon form has 2 (nonzero) equations in 5 unknowns; and hence the system has 5 — 2 =3 free
variables which are y, s and t. Thus dim W = 3. To obtain a basis for W, set:

(i) y=1,5=0,1=0to obtain the solution v; =(—2,1, 0,0, 0),
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(iij) y=0,5=1,t=0to obtain the solution v, = (5,0, —2, 1,0),
(iii) y=0,s=0,t=1to obtain the solutionv, =(-7,0, 2,0, 1).
The set {v,, v,, v;} is a basis of the solution space W.

Two Basis-Finding Algorithms

Suppose we are given vectors 4y, u,,..., 4, in K". Let

W=Span (u].r Uz, oony uf)

the subspace of K" spanned by the given vectors. Each algorithm below finds a basis (and hence the
dimension) of W,

Algorithm 5.8A (Row space algorithm)

Step 1. Form the matrix A whose rows are the given vectors.
Step 2. Row reduce A to an echelon form.
Step 3. Output the nonzero rows of the echelon matrix.

The above algorithm essentially already appeared in Example 5.10. The next algorithm is illustrated
in Example 5.12 and uses the above result on nonhomogeneous systems of linear equations.

Algorithm 5.8B (Casting-Out algorithm)

Step 1.
Step 2.

Form the matrix M whose columns are the given vectors.
Row reduce M to echelon form.

Step 3. For each column C, in the echelon matrix without a pivot, delete (cast-out) the vector v, from

the given vectors.

Step 4. Output the remaining vectors (which correspond to columns with pivots).

Example 5.12. Let W be the subspace of R® spanned by the following vectors:
vy =(1,2,1,+-273) v, =(2,5 —13 -2 vy =(1,3 —25, -5)
v,=1(3,12 -41) vs=1(56 1. -1, =1)
We use Algorithm 5.8B to find the dimension and a basis of W.

First form the matrix M whose columns are the given vectors, and reduce the matrix 1o echelon form:

| 2 | 3 5 1 2 1 3 5
2 5 3 | 6 0 1 1 -5 —4
1 -1 =2 2 I f~10 -3 -3 -1 -4

-2 3 5 -4 -1 0 7 7 2 9
3 -2 -5 1 -1 0 —8 —8 -8

1 2 1 3 5 1 2 I 3 5
0 1 1 7 -4 0 1 1 7 —4
~| 0 0 0 —16 —16 |~|0 0 0 1 1
0 0 0 37 37 0 0 0 0 0
0 0 0 —48 —48 0 0 0 0 0
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Observe that the pivots in the echelon matrix appear in columns C,, C,, and C, . The fact that column C; does not
have a pivot means that the system xv, + yv; = v, has a solution and hence v, is a linear combination of v, and v,.
Similarly, the fact that column C4 does not have a pivot means that v is a linear combination of preceding vectors.
Accordingly, the vectors v,, v, and t,, which correspond to the columns in the echelon matrix with pivots, form a
basis of W and dim W = 3.

59 SUMS AND DIRECT SUMS

Let U and W be subsets of a vector space V. The sum of U and W, written U + W, consists of all
sums 4 + w where u € U and w € W. That is,

U+W={u+wuel, we W}

Now suppose U and W are subspaces of a vector space V. Note that 0 =0+ 0 e U + W, since
0 e U, 0 e W. Furthermore, suppose u + wand 1’ + w belongto U + W, withu, ' e Uand w, w' € W.
Then

U+rw+ @ +w)=@u+u)+w+w)eU+ W
and, for any scalar k,
ku+w)=ku+kwelU+ W

Thus we have proven the following theorem.
Theorem 5.21: The sum U + W of the subspaces U and W of V¥ is also a subspace of V.

Recall that the intersection U n W is also a subspace of V. The following theorem, proved in
Problem 5.69, relates the dimensions of these subspaces.

Theorem 5.22: Let U and W be finite-dimensional subspaces of a vector space V. Then U + W has
finite dimension and

dim (U + W) = dim U + dim W — dim (U n W)

Example 5.13. Suppose U and W are the xy and yz planes, respectively, in R*. That is,
U={(a b0} and W={0b )}
Note R* = U + W; hence dim (U + W) = 3. Also dim U = 2 and dim W = 2. By Theorem 5.22,
i1=2+2—dim(Un W) or dim (U~ W) =1
This agrees with the facts that U n W is the y axis (Fig. 5-3) and the y axis has dimension 1.
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Direct Sums
The vector space V is said to be the direct sum of its subspaces U and W, denoted by
V=UpW

if every vector v € V can be written in one and only one way as v = u + wwhereue Uandwe W,
The following theorem, proved in Problem 5.70, characterizes such a decomposition.

Theorem 5.23: The vector space V is the direct sum of its subspaces U and W if and only if
@)V =U+Wand@ii)U n W = {0}.

Example 5.14
(@) In the vector space R?, let U be the xy plane and let W be the yz plane:
U={(a,b,0:abeR} and W ={(0, b, c): b, c € R}

Then R® = U + W since every vector in R* is the sum of a vector in U and a vector in W. However, R? is not
the direct sum of U and W since such sums are not unique; for example,

(39 51 7) = [39 1, 0] + (0, 4, 7} and also {l 5 7= (3- -4, ) + (0, 9, 7)
(b) InR? let U be the xy plane and let W be the z axis:
U=(a,b,0):a,beR} and W ={(0,0,¢c): ce R}

Now any vector (a, b, ¢) € R* can be written as the sum of a vector in U and a vector in V in one and only one
way':

(a, b, e) =(a, b, 0)+ (0,0, 0)

Accordingly, R* is the direct sum of U and W, that is, R*=U @ W. Alternatively, R = U@® W since
R'=U+ Wand U n W =1{0}.

General Direct Sums

The notion of a direct sum is extended to more than one factor in the obvious way. That is, V is the
direct sum of subspaces Wy, W, , ..., W, written

V=Waew,e -eWw,
if every vector v € V can be written in one and only one way as

p=w; + Wy + -+ w,
where w, € W, w, e W, ..., w, e W,.

The following theorems apply.

Theorem 5.24: Suppose V=W, @ W, ®--- @ W,. Also, for each i, suppose S; is a linearly indepen-
dent subset of W,. Then

(a) The union S = | J; S; is linearly independent in V.
(b) 1fS;1s a basis of W,, then S = | J; §; is a basis of V.
() dimV =dim W, + dim W, + - -+ + dim W,
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Theorem 5.25: Suppose V = W, + W, + --- + W, (where V has finite dimension) and suppose
dim V = dim W, + dim W, + --- + dim W,

ThenV =W, @ W, ® - @ W,.

5.10 COORDINATES
Let ¥V be an n-dimensional vector space over a field K, and suppose

S={“Is Ugs ey uu}

is a basis of V. Then any vector v € V can be expressed uniquely as a linear combination of the basis
vectors in S, say
v=aguy tayuy + 0+ agu,

These n scalars a,, a,, ..., a, are called the coordinates of v relative to the basis S; and they form the
n-tuple [a,, a,, ..., a,] in K", called the coordinate vector of v relative to S. We denote this vector by
[v]s, or simply [v], when S is understood. Thus

[U]S = [ale a2s Ly a.,]

Observe that brackets [...], not parentheses (...), are used to denote the coordinate vector.

Example 5.15
(@) Consider the vector space P,(t) of polynomials of degree < 2. The polynomials
p =1 pa=t—1 pi=0—1P=1—2t+1

form a basis S of P,(t). Let v = 2t — 5t + 6. The coordinate vector of v relative to the basis § is obtained as
follows.
Set v = xp, + yp, + zp, using unknown scalars x, y, z and simplify:
2 —5t+6=x(}+yt - +zi* =2+ 1)
=x+p—y+azt—2z2+z
=z +(y-22N +(x—y+72)

Then set the coeflicients of the same powers of t equal to each other:

xX—y+ z= 6

y—2z=-5

z= 2

The solution of the above systemis x =3,y = —1,z =2 Thus
U=3pl_p1+2p3 and so [U]=[3! ‘ls 2]
(b) Consider real space R>, The vectors
l‘l =(|s _lv 0) u.'?,:{l’ l! 0} U3 =(09 lr I}

form a basis § of R*. Let v = (5, 3, 4). The coordinates of v relative to the basis § are obtained as follows.
Set v = xu, + yu, + zu,, that is, set v as a linear combination of the basis vectors using unknown scalars
X ¥zl
(5,3, =x(1, —1,0) + {1, 1,0) + 20, 1, 1)

=X, =% 0+0(.5%0)+(0zz2)

={x+y, —x+y+z7
Then set the corresponding components equal to each other to obtain the equivalent system of linear equa-
tions

x+y=35 —x+y+z=13 =4
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The solution of the system is x = 3, y = 2, z = 4. Thus
v =3uy + 2u, + 4u, and so [vls =13, 2, 4]

Remark: There is a geometrical interpretation of the coordinates of a vector v
relative to a basis S for real space R”. We illustrate this by using the following basis of
R? appearing in Example 5.15.

S={u,=(, —1,0), u; =(1, 1,0}, u3 = (0, 1, 1)}

First consider the space R® with the usual x, y, and z axes. Then the basis vectors
determine a new coordinate system of R?, say with x', )/, and 2’ axes, as shown in

Fig. 5-4. That is:

(1) The x" axis is in the direction of u,.

(2) The y' axis is in the direction of u, .

(3) The z" axis is in the direction of u;.

Furthermore, the unit length in each of the axes will be equal, respectively, to the
length of the corresponding basis vector. Then each vector v = (a, b, ¢) or, equivalently,

the point P(a, b, ¢) in R* will have new coordinates with respect to the new x', y, 2’
axes. These new coordinates are precisely the coordinates of v with respect to the basis

5
6
-~
a -~
_____ =y
I ]
5 !
|
|
|
|
|
I _‘.I
I
v=(534=[324]
Fig. 54
Isomorphism of V with K"

Consider a basis § = {u,, u,, ..., u,} of a vector space V over a field K. We have shown above that
to each vector v € V there corresponds a unique n-tuple [v]s in K". On the other hand, for any n-tuple
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[¢i, €2, ..., ¢,] € K7, there corresponds the vector ¢,u, + c;u;, + -+ + ¢,u, in V. Thus the basis §
induces a one-to-one correspondence between the vectors in V and the n-tuples in K”. Furthermore,

suppose
v =Gy + aytiy + -+ a i, and w=bu, +byu; +--+ b,u,
Then
v+w=(a, +bu, +(a, +bu, + - +(a, + b,
kv = (ka,)u, + (kay)uy + --- + (kau,
where k is a scalar. Accordingly,
[v+wls=[a,+by...,a,+b]=[ay,...,a,]+[by.... 0] =[v]s + [W]ls
and
[kvls = [kay, ka,, ..., ka,] = k[a,, a,, ..., ka,] = k[v]s

Thus the above one-to-one correspondence between V and K" preserves the vector space operations of
vector addition and scalar multiplication; we then say that V and K” are isormorphic, written V = K",
We state this result formally.

Theorem 5.26: Let V be an n-dimensional vector space over a field K. Then V and K" are isomorphic.

The next example gives a practical application of the above result.

Example 5.16. Suppose we want to determine whether or not the following matrices are linearly independent:

O IR (R BN )
The coordinate vectors of the above matrices relative to the usual basis [Example 5.7(a)] of M, _, are as follows:
[Al=(1,2, -3,4,0, 1} [B]=(1,3, —4,6,54) [C]=(3, 8, —11,16,10,9)
Form the matrix M whose rows are the above coordinate vectors:
1 2 -3 4 0 1

M=|1 i -4 6 5 4
3 8 —11 16 10 9

Row reduce M to echelon form:
i 2 -3 4 0 1 i 2 -3 4 0 1
M~10 T —1 2 5 3]1~10 P -1 2 5 3
0 2 =2 4 10 6 0 0 0 0 0 0

Since the echelon matrix has only two nonzero rows, the coordinate vectors [A], [B], and [C] span a subspace of
dimension 2 and so are linearly dependent. Accordingly, the original matrices A4, B, and C are linearly dependent.

511 CHANGE OF BASIS

Section 5.10 showed that we can represent each vector in a vector space ¥ by means of an n-tuple
once we have selected a basis S of V. We ask the following natural question: How does our representa-
tion change if we select another basis? For the answer, we must first redefine some terms. Specifically,
suppose 4,, a,, ..., G, are the coordinates of a vector » relative to a basis S of V. Then we will represent
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v by its coordinate column vector, denoted and defined by
a,
02 7
[I'J]5= =(ﬂ1, Az, ..., ﬂ,,)

a,

We emphasize that in this section [v]g is an n x | matrix, not simply an element of K". (The meaning of
[v]s will always be clear by its context.)

Suppose S = {u,, u,, ..., u,} is a basis of a vector space V and suppose S’ = {v,, v, ..., v,} is
another basis. Since S is a basis, each vector in §’ can be written uniquely as a linear combination of the
elements in S. Say

L) =C||u| + C’lz‘uz + -+ C’.,.u,
Uy = Cq Uy +C22u2+ "'+c,,,u,,

Da =C||lu| +cn2u2 + b o cmuull

Let P denote the transpose of the above matrix of coefficients:

Ci1 €21 - Gy
P Ci2 €23 Ca2
cln CZn cun

That is, P = (p;;) where p;; = c;;. Then P is called the change-of-basis matrix (or transition matrix) from
the “old basis™ S to the “new basis™ §".

Remark: Since the vectors vy, v,, ..., v, in § are linearly independent, the matrix
P is invertible (Problem 5.84). In fact (Problem 5.80), its inverse P! is the change-of-
basis matrix from the basis §’ back to the basis S.

Example 5.17. Consider the following two bases of R?:
S ={u, =(1, 2), u; =(3, 5} E={e, =(1,0),e,=(0, 1)}
Fromu, = e, + 2e;, u, = 3e, + 5e, it follows that

e, = —5Su; + 2u,
€= 3u,— u,

Writing the coefficients of u, and u, as columns gives us the change-of-basis matrix P from the basis S to the usual
basis E:
-5 3
P=
(2 )

u, =(1,2)= e + 2,
u2=(31 5}=3el+5e1

Furthermore, since E is the usual basis,

Writing the coeflicients of e, and e, as columns gives us the change-of-basis matrix @ from the basis E back to the

basis S:
1 3
Q“(z s)
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Observe that P and Q are inverses:
-5 3\/1 3 1 0
PQ:( 2 —|)(2 5)=(0 |)=

The next theorem (proved in Problem 5.19) tells us how the coordinate (column) vectors are affected
by a change of basis.

Theorem 5.27: Let P be the change-of-basis matrix from a basis S to a basis §" in a vector space V.
Then, for any vector v € V, we have

Plv]s = [v]s and hence P '[v]s = [V]s

Remark: Although P is called the change-of-basis matrix from the old basis S to
the new basis &', it is P~ ' which transforms the coordinates of v relative to the original
basis § into the coordinates of v relative to the new basis §'.

We illustrate the above theorem in the case dim ¥V = 3. Suppose P is the change-of-basis matrix
from the basis S = {u,, u,, u3} to the basis 8’ = {v,, vy, v3}; say
Uy = Gty + ayt; + Qqtiy
Uz = b|u| + bzuz + b3 U,y

Hence
a b ¢
P= a; bz Cy
Iy b3 c

Now suppose v € V and, say v = k,v; + k, v, + k3 v5. Then, substituting for v,, v,, v, from above, we
obtain
v = ky(auy + aguy + ayuz) + ko(byuy + byug + byua) + ka(c g + ¢ty + c3us)

Thus
k, ak, + bk, + c,k,
[v]ls = | k2 and [vls={ a2k, + bok; + c2 ks
k askl +b3kz+03k3
Accordingly,
a. bl C. k. ﬂlkl + brkz + C|k3
Plvlg =|a; by ca|{ky|=|ark, + bky +cyky | =[v]s

Also, multiplying the above equation by P!, we have
P '[v]s= P 'Plv]s = I[v]s = [v]s

Remark: Suppose S = {u,, u,, ..., u,} is a basis of a vector space V over a field
K, and suppose P = (p,;) is any nonsingular matrix over K. Then the n vectors

Uy = Priltiy + Pailiy + " + Dy liy i=12...,n
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are linearly independent (Problem 5.84) and hence form another basis §' of V. More-
over, P will be the change-of-basis matrix from S to the new basis S'.

Solved Problems

VECTOR SPACES

51. Prove Theorem 5.1.
(i) By axiom [A;], with u = 0, we have 0 + 0 = 0. Hence by axiom [M,],
kO = k(0 + 0) = kO + kO

Adding — k0 to both sides gives the desired result.

(i) By a property of K, 0 + 0 = 0. Hence by axiom [M,], Ou = (0 + O)u = Ou + Ou. Adding —Ouw to both
sides yields the required result.

(iii) Suppose ku = 0 and k # 0. Then there exists a scalar k™! such that k™ 'k = 1; hence
u=lu=(k '‘Ku=k Yku)=k"0=0

(iv) Using u + (—u) = 0, we obtain 0 = kO = k{u + (—u)) = ku + k(—u). Adding —ku to both sides gives
—ku = k(—u).
Using k + (—k) =0, we obtain 0 = Ou = (k + (—k))u = ku + (—Kk)u. Adding —ku to both sides
yields —ku = (—Kju. Thus (—ku = k(—u) = —ku.

5.2. Show that for any scalar k and any vectors u and v, k(u — v) = ku — kv.
Use the definition of subtraction, u — v = u + (—v), and the result k( —v} = —kv to obtain:

ku—vy=kiu +(—v)=ku + k(—v)=ku + (—kv) = ku — kv

53. Let V be the set of all functions from a nonempty set X into a field K. For any functionsf,ge V
and any scalar k € K, let f + g and kf be the functions in V defined as follows:

(f+ ) =fx)+9(x) and  (kMx) = kf(x) Vx e X
Prove that V is a vector space over K.

Since X is nonempty, V is also nonempty. We now need to show that all the axioms of a vector space
hold.

[A,] Letf, g, he V. To show that (f+ g} + h =f+ (g + h), it is necessary to show that the function
(f + g) + h and the function f + (g + h) both assign the same value to each x € X. Now,

(Lf + 9) + I)x) = (f + gKx) + hix) = (J(x) + g(x)) + h(x) Vxe X
(f + (g + h)x) = flx} + (g + h)x) = f(x) + (g{x) + h(x)) Vxe X
But f{x), g(x), and h(x) are scalars in the field K where addition of scalars is associative; hence
(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x})
Accordingly, (f+ gy + h=f+ (g + h).
[4,] Let 0 denote the zero function: {x) = 0, ¥x € X. Then for any function f e V,
(f + 0)x) = f(x) + O(x) = f(x) + 0 = f(x) Vxe X
Thus f + 0 = f, and 0 is the zero vector in V.
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[4;] For any function f € V, let —f be the function defined by (—f)x) = —f(x). Then,
(/+ (=)x) = f(x) + (= Xx) = [(x) = f(x} = 0 = O(x) ¥xe X
Hence f + (—f) = 0.
[A,] Letf geV.Then
(f+ g)x) = f(x) + g(x) = gix) + f(x} = (g + Nx) Vxe X

Hence f + g = g + J. [Note that f(x) + g(x) = g(x) + f(x) follows from the fact that f(x) and g(x) are
scalars in the field K where addition is commutative.]

[M,] Letf ye K Then

(k(f + gx) = K({(f + gXx)) = k{f(x) 4+ g(x)) = kf(x) + kg(x)
= (kf)x) + kg¥x) = (K + kgKx) Vxe X

Hence k{f + g) = kf + kg. (Note that k{f(x) + glx)) = kf(x) + kg(x) follows from the fact that k, f(x)
and g(x) are scalars in the field K where multiplication is distributive over addition.)

[M,] LetfeVanda.be K. Then

(la + b)fKx) = (a + b}f(x) = af(x) + bf(x) = (@ Nx) + bf (x)
= {af + bf Kx), Vx e X

Hence (a + b}/ = af + bf.
[M,] Letfe Vanda be K. Then,
((ab)fMx) = (ab)f(x) = a(bf (x)) = a(bf Nx) = (a(bf}Xx) Vx € X

Hence (ab)f = a(bf).
[M,] Letfe V. Then,for the unit | € K, (If}x) = 1f(x)) = f(x), ¥x € X. Hence 1f = [.

Since all the axioms are satisfied, V' is a vector space over K.

SUBSPACES

5.4.

Prove Theorem 5.2.

For W to be a subspace, conditions (i}, (ii), and (iii} are clearly necessary; we now show them to be
sufficient. By (i), W is nonempty; and by (ii) and (iii), the operations of vector addition and scalar multipli-
cation are well defined for W. Moreover, the axioms [A,], [4,]. [M]. [M.], [M,] and [M,] hold in W
since the vectors in W belong to V. Hence we need only show that [A,] and [A;] also hold in W. Now,
[A,] obviously holds, because the zero vector of V is also the zero vector of W. Finally, if v € W, then
(—~p= —peWandv +(—v) = 0;ie, [4,] holds.

Prove Corollary 5.3.

Suppose W satisfies (i) and (ii). Then, by (i), W is nonempty. Furthermore, if v, w € W then, by (ii),
v+w=1Iv+ 1lwe W;and if v € W and k € K then, by (ii), kv = kv + Ov € W. Thus by Theorem 5.2, W is
a subspace of V.

Conversely, if W is a subspace of V then clearly (i) and (ii) hold in W.

Show that W is a subspace of R® where W = {(a. b, ¢): @ + b + ¢ = 0}, i.e., W consists of those
vectors each with the property that the sum of its components is zero.

0=(0, 0, O)e W since 0+0+0=0. Suppose v=1(a, b, ¢), w=(a, bV, ) belong w0 W, ie,
a+b+c=0anda + b + ¢ = 0. Then for any scalars k and k',

kv + K'w=k(a, b, ¢} + K(a', b, ') = (ka, kb, ke) + (K'd', K'Y, k'c") = (ka + K'd', kb + k'Y, ke + k'c’)
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and furthermore
(ka + K@) + (kb + Kb) + (ke + K'€) = Ka + b + )+ K(@ + b +¢) = k0 + K0 =0
Thus kv + k'w € W, and so W is a subspace of R>,

Let V be the vector space of all square n x n matrices over a field K. Show that W is a subspace
of V where:

(@ W consists of the symmetric matrices, i.e., all matrices A = (a;;) for which a;; = a;;;
(b) W consists of all matrices which commute with a given matrix T'; that is

W={AdeV: AT = TA}.

{a) 0e€ W since all entries of 0 are 0 and hence equal. Now suppose A = (a;;) and B = (b;;) belong to W,
ie,a; =a;and b; = b;;. For any scalars @, b € K, a4 + bB is the matrix whose ij-entry is aa,; + bb;;.
But aa;; + bb; = aa;; + bb;;. Thus a4 + bB is also symmetric, and so W is a subspace of V.

(b} 0 e W since 0T = 0 = TO. Now suppose A, Be W; that is, AT = TA and BT = TB. For any scalars
abek,

(@A + bB)T = (aA)T + (bB)T = a(AT) + &(BT) = a(T A) + b(TB)
= T(aA) + T(bB) = T(aA + bB)

Thus a4 + bB commutes with 7, i.e., belongs to W; hence W is a subspace of V.

Let V be the vector space of all 2 x 2 matrices over the real field R. Show that W is not a
subspace of V where:

(@) W consists of all matrices with zero determinant;
(b) W consists of all matrices A for which 4% = A.

(a) [Rccall that det (j z) =ad — bc.] The matrices A = ('; g) and B = (g (:) belong to W since

1 ©
)doesnot belong to W since det (4 + B) = 1. Hence

det(A) = 0 and det (B) = 0. Butfl+l'$‘=(l:I i

W is not a subspace of V.

1
(b} The unit matrix [ = (0 {l}) belongs to W since

() -0 9-

20
But 2] = (0 2) does not belong to W since

2 0\N2 O 4 0
‘2‘”2“(0 2)(0 )=(o 4)”’

Hence W is not a subspace of V.

Let V be the vector space of all functions from the real field R into R. Show that W is a subspace
of ¥V where W consists of the odd functions, i.e., those functions f for which f(—x) = —f(x).

Let 0 denote the zero function: 0(x) =0, for every x e R. 0 € W since O(—x)=0= —0= —0(x).
Suppose f, g € W, ie,f(—x) = —f(x) and g{ - x) = —g(x). Then for any real numbers a and b,

(¢f + bgX —x) = af (—x) + bg(—x) = —af(x) — bglx) = —(af(x) + bg(x)) = —(af + bg)x)
Hence af + bg € W, and so W is a subspace of V.
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5.10. Let V be the vector space of polynomials ay, + a,t + a,t> + -~ + a,t* (s = 0,1,2, ...), with coef-
ficients a; € R. Determine whether or not W is a subspace of V where:

(a) W consists of all polynomials with integral coefficients;

(b) W consists of all polynomials with degree <3,

(¢) W consists of all polynomials with only even powers of t.

(d) W consists of all polynomials having ./ —1 as a root.

(a) No, since scalar multiples of vectors in W do not always helong to W. For example,
v=3+5t+MeW but fv=%+3+3P¢W

(Observe that W is “ closed ” under vector addition, i.e., sums of elements in W belong to W)

(b), (c), and (d). Yes. For, in each case, W is nonempiy, the sum of elements in W belong to W, and the
scalar multiples of any element in W belong to W.

5.11 Prove Theorem 5.4.

Let {W,:i€ I} be a collection of subspaces of V and let W = () (W,: i e I). Since each W, is a sub-
space, 0 € W, for every i € I. Hence 0 € W. Suppose u, vt € W. Then v, v € W, for every i € I. Since each W, is
a subspace, au + bv € W, for each i € 1. Hence au + bv € W. Thus W is a subspace of V.

LINEAR COMBINATIONS, LINEAR SPANS

5.12. Express v=(1, —2, 5) in R® as a linear combination of the vectors u,, u,, u,; where
e = g Dyl — Tty =l — 5.7,

First set
(1, =2,5=x(1, =3, 2y + 2, —4, -1} + (1. =5 N=(x+2y+z, —3Ix—4y—52,2x—y+ 72)

Form the equivalent system of equations and reduce to echelon form:

X+2y+ z= | x+2y+ z=1 x+2y+ z=1
—3x—4y—5=-2 or 2y—-2z=1 or y-2z=1
x— y+7z= 5 —S5y+35z=13 0 =11

The system does not have a solution. Thus v is not a linear combination of u,, u,, u;.

5.13. Express the polynomial v =t? + 4t — 3 over R as a linear combination of the polynomials
pr==2t+5p,=2-3t,py=t+3.

Set v as a linear combination of p,, p, ., p; using unknowns x, y, z:

2+ A —3=x(t2 -2+ 5+ N2> -3+ 2t + 3)
= xt? — 2xt + Sx + 2yt — 3yt + zt + 3z
=(x+ 2% +(—2x — 3y + 20t + (5x + 32)

Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form:

x+ 2y =i i x + 2y = 1 x4+ 2y = 1
—2x—3y+ z= 4 or ¥+ z= 6 or y+z= 6
5x +3z=-3 — 10y + 3z= —8 13z =52

The system is in triangular form and has a solution. Solving by back-substitution yields x = —3, y = 2,
z=4.Thusv= —3p, + 2p, + 4p,.
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3 1
5.14. Write the matrix E = ( | - 1) as a linear combination of the matrices

1 1 0 0 0 2
A= B = C =
(1 0) (l t) B (0 —1)
Set E as a linear combination of A, B, C using the unknowns x, y, z: E = xA + yB + zC.

3 n /1 1 + 0 0 g 0 2

1 —1)" "1 o 11 Pl el
x x) 0 0 0 2z x x+ 2z
X 0 y ¥ 0 —:z x+y y—z

Form the equivalent system of equations by setting corresponding entries equal to each other:

x=3 x+y=1 x+2z=1 y—z=-—1

Substitute x = 3 in the second and third equations to obtain y = —2 and z = — 1. Since these values also
satisfy the last equation, they form a solution of the system. Hence E =34 — 2B — C.

58.15. Find a condition on a, b, ¢ so that w= (g, b, ¢) is a linear combination of u = (1, —3, 2) and
v = (2, —1, 1), that is, so that w belongs to span (u, v).

Set w = xu + yv using unknowns x and y:
@b =x(l, =3, 2+ M2, — L D)=(x+2y, - 3Ix—y2x+y

Form the equivalent system and reduce to echelon form:

x+2y=a x+2y= a x+2y= a
—Ix— y=b or Sy=3a+b or Sy=3a+b
X+ y=c —3y=—-2a+¢c 0= —a+3b+5c

The system is consistent if and only if a — 36 — 5¢ = 0 and hence w is a linear combination of u and » when
a—3b—5=0.

§5.16. Prove Theorem 5.6.

Suppose S is empty. By definition span § = {0}. Hence span § = {0} is a subspace and § < span §.
Suppose S is not empty, and z € §. Then 1v = v € span S; hence S is a subset of span S. Thus span § is not
empty since § is not empty. Now suppose v, w € span §, say

v=apv, + - +a,r, and w=bw +- - +bw,
where v;, w; € § and q;, b; are scalars. Then
viw=av+ -+ a, v, +bw +--+bow,
and, for any scalar k,
kv = Kayv, + - + a,v,) = kayo, + - + ka, v,

belong to span S since each is a linear combination of vectors in S. Thus span § is a subspace of V.

Now suppose W is a subspace of ¥ containing § and suppose vy, ..., v,, € § € W. Then all multiples
a,ty, -.., a, v, € W, where g; € K, and hence the sum av, + --- + a,,v, € W. That is, W contains all linear
combinations of elements of S. Consequently, span § is a subspace of W, as claimed.

LINEAR DEPENDENCE
5.17. Determine whetheru =1 — 3t + 2t — 3t and v = —3 + 9t — 61> + 9¢> are linearly dependent.

Two vectors are linearly dependent il and only if one is a multiple of the other. In this case, v = —3u.
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5.18. Determine whether or not the following vectors in R? are linearly dependent:

5.19.

u=(, =2, Yo=Q2. L =), w=(7, -4, 1).

Method 1. Set a linear combination of the vectors equal to the zero vector using unknown scalars x, y,
and z:

xl, =2, D+ 2,1, —1) +=2(7, —4, ) =(0,0,0)
Then

(x, =2x, x) + (2y. ¥, —y) + (72, —4z,2) = (0, 0, 0)
or

(x+2y+7z, " 2x+y—4z,x—y+2)=1(0,0,0)

Set corresponding components equal to each other to obtain the equivalent homogeneous system. and
reduce to echelon form:

2y +7z=0 +2y+ Tz=0
x+2y+7z Ty JF x+2y+T7z=0
—2x+ y—4z=0 or 5y +10z=0 42220
x— y+ z=0 —~3y— 62=0 ol

The system, in echelon form, has only two nonzero equations in the three unknowns; hence the system has
a nonzero solution. Thus the original vectors are linearly dependent.

Method 2. Form the matrix whose rows are the given vectors, and reduce to echelon form using the
elementary row operations:

1 -2 1 1 -2 1 1 =2 1
2 1 —1|~]0 5 =3]~{0 5 =3
7 —4 1 0 10 -6 0 0 0

Since the echelon matrix has a zero row, the vectors are linearly dependent. (The three given vectors span a
space of dimension 2.)

Consider the vector space P(z) of polynomials over R. Determine whether the polynomials
w, v, and w are linearly dependent where u=t>+42—-2t43, v=t>+6t2—1t 44,
w=3>+82 -8t + 7.

Set a linear combination of the polynomials u, v and w equal to the zero polynomial using unknown
scalars x, y, and z; that is, set xu + yv + zw = 0. Thus

A -+ DN+ M+ -t + D+ 23+ B2 —Bt+T)=0
or xt} +4xt? — 2xt + 3x + yt + 6yt2 — yt + 4y + 320> + 8z — 8zt + Tz =0
or x+y+32)° +(@x +6y+ 8> +(—2x —y— Bzt + Bx + 4y + 7z) =0
Set the coefficients of the powers of ¢ each equal to 0 and reduce the system to echelon form:

x4+ y+3z=0 X+ y+3z=0

4x + 6y +82=0 - 2y —4z=0 or finally x4+y+3z=0
—-2x— y—8z=0 y—2z2=0 y—22=0

Ix+dy4+7z=0 y—2z=0

The system in echelon form has a free variable and hence a nonzero solution. We have shown that
xt + yv + zw = 0 does not imply that x = 0, y = 0, z = 0; hence the polynomials are linearly dependent.

Let V be the vector space of functions from R into R. Show that f, g, h € V are linearly indepen-
dent, where f(t) = sin t, g(t) = cos t, h(t) = t.
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Set a linear combination of the functions equal to the zero function 0 using unknown scalars x, y, and
z: xf + yg + zh = 0; and then show that x = 0, y = 0, z = 0. We emphasize that x/ + yg + zh = 0 means
that, for every value of t, xf(t) + yg(t) + zh(t) = 0.

Thus, in the equation x sin t 4+ y cos { + zt = 0, substitute

t=0 to obtain x*0+y-1+2-0=0 or y=0
1 =mf2 to obtain x-14+y*0+zn/2=0 or x+nzf2=0
t=m to obtain x'0+W-D+z-m=0 or —y+nz=0

The last three equations have only the zero solution: x =0, y =0, z = 0. Hence f, g and h are linearly
independent.

Let V be the vector space of 2 x 2 matrices over R. Determine whether the matrices 4, B, C e V
are linearly dependent, where:

=Gy ) (o)

Set a linear combination of the matrices A4, B, and C equal to the zerc matrix using unknown scalars x,
¥, and z; that is, set xA + yB + zC = 0. Thus

{0 Do Do o= o)
(s -0

Set corresponding entries equal to each other to obtain the following equivalent system of linear equations:

or

x+y+z=0 x+z=0 x=0 x+y=0

Solving the above system we obtain only the zero solution, x =0, y =0, z=0. We have shown that
xA + yB + zC = 0implies x = 0, y = 0, z = 0; hence the matrices A, B, and C are linearly independent.

Suppose u, v, and w are linearly independent vectors. Show that u + v, u — v, and u — 2v + w are
also linearly independent.

Suppose x(u + v) + Wu — v) + z(u — 2v + w) = 0 where x, y, and z are scalars. Then
X+ XU+ yu — yv + zu — 2zv + zw =0
or (x+y+zutix—-—y—2zp+2zw=0
But u, v, and w are linearly independent; hence the coefficients in the above relation are each 0:

x+y+ z=0
x—y—22=0
z=0

The only solution to the above system is x =0, y =0, z=0. Hence u + v, u — v, and u — 2v + w are
linearly independent.

Show that the vectors v = (1 + i, 2i) and w = (1, 1 + i) in C? are linearly dependent over the
complex field C but are linearly independent over the real field R.
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Recall that two vectors are linearly dependent (over a field K) if and only if one of them is a multiple of
the other (by an element in K). Since

M+gw=(1+)L1+Dh=(1+i2)=v

v and w are linearly dependent over C. On the other hand, v and w are linearly independent over R since no
real multiple of w can equal v. Specifically, when k is real, the first component of kw = (k, k + ki) is real and
it can never equal the first component 1 + i of v which is complex.

BASIS AND DIMENSION

5.24.

5.25.

5.27,

5.28.

Determine whether (1, 1, 1), (1, 2, 3), and (2, — 1, 1) form a basis for the vector space R”.

The three vectors form a basis if and only if they are linearly independent. Thus form the matrix 4
whose rows are the given vectors, and row reduce to echelon form:

1 1 1 1 1 1 1 1 1
A=|[1 2 3]~10 1 21~10 1 2
2 —1 1 0 w=3 el 0 0 5

The echelon matrix has no zero rows; hence the three vectors are linearly independent and so they form a
basis for R?.

Determine whether (1, 1, 1, 1), (1, 2, 3, 2),(2, 5, 6, 4), (2, 6, 8, 5) form a basis of R*.

Form the matrix whose rows are the given vectors, and row reduce to echelon form:

1 1 | 1 1 1 1 ] | 1 1 1 1 1 1 |
1 2 3 2 o 1 2 1 o 1 2 1 a 1 2 1
B=12 s 6 4/”lo 3 a4 20700 o -2 =1{"fo o 2 1
2 6 B 5 0 4 & 3 0o 0 -2 -1 0O 0 0 o0

The echelon matrix has a zero row; hence the four vectors are linearly dependent and do not form a basis
of R%

Consider the vector space P,(t) of polynomials in ¢ of degree <n. Determine whether or not
V4t 4 202 +2,...,0" ' + " form a basis of P(r).

The polynomials are linearly independent since each one is of degree higher than the preceding ones.
However, there are only n polynomials and dim P,(t) = n + 1. Thus the polynomials do not form a basis of

P (1)

Let V be the vector space of real 2 x 2 matrices. Determine whether

T I S I G I ()

form a basis for V.
The coordinate vectors (see Section 5.10) of the matrices relative to the usual basis are, respectively,
[4] =(1,1,0,0) [B]=(0, 1 10) [C1=(0,011) [(P]=(0.0,0,1)

The coordinate vectors form a matrix in echelon form and hence they are linearly independent. Thus the
four corresponding matrices are linearly independent. Moreover, since dim V = 4, they form a basis for V.

Let V be the vector space of 2 x 2 symmetric matrices over K. Show that dim V = 3. [Recall
that A = (a;)) is symmetric iff 4 = A” or, equivalently, g;; = a;;.
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b

C) where a, b, ¢ € K. (Note that there are

An arbitrary 2 x 2 symmetric matrix is of the form A = (:
three * variables.”) Setting
(i) a=0Lb=0,c=0, (i) a=0b=1,¢c=0, (i) a=0,b=0,c=1

we obtain the respective matrices

I 0 0 1 00
neoo)  m-(lo)  =-(Y)
We show that {E,, E,, E,} is a basis of V, that is, that (a) it spans V, and (b) it is linearly independent.

(a) For the above arbitrary matrix A4 in V, we have

b
A=(: c):aE, + bE, + cE,
Thus {E,, E,, E;} spans V.

(b) Suppose xE, + yE, + zE, = 0, where x, y, z are unknown scalars. Thal is, suppose

Lo o)l oo ) o) = € 2-60)

00 1 0 0 1 0 0 y z 00

Setting corresponding entries equal to each other, we obtain x = 0, y = 0, z = 0. In other words,
xE, + yE, + zE; = implies x=0y=0,z=0

Accordingly, {E,, E,, E,} is linearly independent.

Thus [E,, E,, E;} is a basis of ¥ and so the dimension of V is 3.

Consider the complex field C which contains the real field R which contains the rational field Q.
(Thus C is a vector space over R, and R is a vector space over Q.)

(@) Show that C is a vector space of dimension 2 over R.
(b) Show that R is a vector space of infinite dimension over Q.

(@) We claim that {1, i} is a basis of Cover R. Forifve C,thenv=a+bhi=a-1+ b iwherea beR;
that is, {1, i} spans C over R. Furthermore, if x -1 + y*i =0 or x + yi = 0, where x, y € R, then
x =0and y = 0; that is, {1, i} is linearly independent over R. Thus {1, i} is a basis of C over R, and so
C is of dimension 2 over R.

(b)) We claim that, for any n, the set {1, m, =%, ..., 7"} is linearly independent over Q. For suppose
Gy | + a,m + a;n’ + -+ + a,7" = 0, where the g, € Q, and not all the a, are 0. Then r is a root of a
nonzero polynomial over Q: ag + a,x + a, x4 4+ a, x". But it can be shown that r is a transcen-
dental number, i.c., that  is not a root of any nonzero polynomial over Q. Accordingly, the n + | real
numbers I, &, 7%, ..., =" are linearly independent over Q. Thus. for any finite n, R cannot be of dimen-
sion n over Q; R is of infinite dimension over Q.

Let S = {u,, u,, ..., u,} be a subset of a vector space V. Show that the following two conditions
are equivalent: (a) S is linearly independent and spans V, and (b) every vector v € V can be
written uniquely as a linear combination of the vectors in S.

Suppose (a) holds. Since § spans V, the vector v is a linear combination of the u;; say,
v=aiy +au, + -+ agu,
Suppose we also have

v=blu| + bzuz +-'- +bn“l|
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Subtracting, we get
O0=p—v={(a, — bjuy +la;— bJu; + -~ +(a, — b,u,

But the v, are linearly independent; hence the coefficients in the above relation are each 0:
a, _bl =0,az —b2=0,..;,an—b“=0

Therefore, a, = b,, a, = b,, ..., a,= b, ; hence the representation of v as a linear combination of the y; is
unique. Thus {a) implies (b).
Suppose (b) holds. Then S spans V. Suppose
O=cuy +cuy + - +c,u,
However, we do have
0=0u; +0u; +---+0u,

By hypothesis, the representation of 0 as a linear combination of the u; is unique. Hence each ¢; = 0 and the
u; are linearly independent. Thus (b) implies (a).

DIMENSION AND SUBSPACES
5.31. Find a basis and the dimension of the subspace W of R® where:
(@ W={abo:a+b+c=0} b)) W={abc)a=b=c},
(c) W=(a,b,:c=3a}

(@) Note W # R3 since, e.g, (1, 2, 3) ¢ W. Thus dim W < 3. Note u, = (1, 0, —1) and u, = (0, 1, —1) are
two independent vectors in W. Thus dim W = 2 and so u, and u, form a basis of W.

(b) The vector u = (1, 1, 1) € W. Any vector w € W has the form w = (k, k, k). Hence w = ku. Thus u spans
Wanddim W = 1.

(c) W # Rsince, eg, (1, 1, 1) ¢ W. Thus dim W < 3. The vectors u, = (1, 0, 3) and u, = (0, 1, 0) belong
to W and are linearly independent. Thus dim W = 2 and u,, u, form a basis of W.

5.32. Find a basis and the dimension of the subspace W of R* spanned by
uy=(1, -4, -2, 1), u,=(, =3, —1,2). u;=(3, —8, -2,7).
Apply the Row Space Algorithm 5.84. Form a matrix where the rows are the given vectors, and row
reduce it to echelon form:
1 —4 -2 1 1 -4 =2 1 1 —4 -2 1
2|~\0 1 1 1]~10 1 1 1
3 -8 -2 177 \o 4 4 a4/ 0o 0o o0 o

The nonzero rows in the echelon matrix form a basis of W and so dim W = 2. In particular, this means that
the original three vectors are linearly dependent.

533. Let W be the subspace of R* spanned by the vectors
u, =(1, =2,5 -3), u;=(2,3,1, -4) u;=(3,8 -3, -9
(a) Find a basis and the dimension of W. (b) Extend the basis of W to a basis of the whole space
R4,
(a) Form the matrix A whose rows are the given vectors, and row reduce it to echelon form:
1 -2 5 -3 1 -2 5 -3 1 =2 5 -3
A=12 3 1 -4|~10 7 -9 2]~10 7 -9 2
3 8 -3 -5 0 14 —1I8 4 0 0 0 0

The nonzero rows (1, —2, 5, —3) and (0, 7, —9, 2) of the echelon matrix form a basis of the row space
of A and hence of W. Thus, in particular, dim W = 2.
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(b)) We seek four linearly independent vectors which include the above two vectors. The four vectors
(1, —2.5 —=3),(0,7 -9, 2), (0,0, 1, 0), and (0, 0, 0, 1) are linearly independent (since they form an
echelon matrix), and so they form a basis of R* which is an extension of the basis of W.

Let W be the subspace of R® spanned by the vectors u, = (1, 2, —1, 3, 4), u, = (2, 4, -2, 6, 8),

uy =(1,3,2,2,6),u,=(1,4,5, 1, 8), and us = (2, 7, 3, 3, 9). Find a subset of the vectors which
form a basis of W.

Method 1. Here we use the Casting-Out Algorithm 5.8B. Form the matrix whose columns are the given
vectors and reduce it to echelon form:
1 2 1 1 2 1 2 1 1 2 1 2 1 1 2
2 4 3 4 7 0 0 1 2 3 0 0 1 2 3
-1 =2 2 5 3|~l0 o 3 6 S5|~|0 O O0 0 -4
3 6 2 1 3 o 0 -1 -2 -3 o 0 0 0 ©
4 8 6 8 9 0o 0 2 4 1 o 0 o0 0 -5
1 2 1 1 2
0 0 1 2 3
~l0 O O 0 -4
o 0 o0 0 0
0o 0o 0 o0 ©

The pivot positions are in columns C,, C;, Cs. Hence the corresponding vectors u,, u,, us form a basis of
W and dim W = 3.

Method 2. Here we use a slight modification of the Row Reduction Algorithm 5.8A4. Form the matrix

whose rows are the given vectors and reduce it to an “echelon” form but without interchanging any zero
FOWS:

1 2 -1 3 4 1 2 -1 3 4 1 2 -1 3 4
2 4 -2 6 8 0 0 0 0 0 0 0 0 0 0
I & 2 2 gl=lo a4 3 =1 2l=le 1 3 =1 2
1 4 s 1 8 0 2 6 -2 4 0 0 0 0 0
2 7 3 3 9 0 3 5 -3 1 0 0 —4 0 -5

The nonzero rows are the first, third, and fifth rows; hence u,, u,, us form a basis of W. Thus, in particular,
dim W =3.

Let V be the vector space of real 2 x 2 matrices. Find the dimension and a basis of the subspace
W of V spanned by

(1 2 fx 3 (5 12 B 4)
""(—1 3) B‘(l —1) C"(l 1) D‘(+2 5,

The coordinate vectors (see Section 5.10) of the given matrices relative to the usual basis of V' are as
follows:

[A]=[L2, —1,3] [B] =[25.1, —1] [Cl=[5 12 11] [D]=[3.4, -2 5]

Form a matrix whose rows are the coordinate vectors, and reduce it to echelon form:

12 -1 3 1 2 -1 3 I 2 =1 3
2 s 1 -1 o 1 3 -7} o 1 3 =1
s 12 1 1]7lo 2 6 —14a/"lo o o o
3 4 -2 s \o -2 1 -4 \o o0 7 -18
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The nonzero rows are linearly independent, hence the corresponding matrioes( : i), (g ;). and

0 0
(T 1 8) form a basis of W and dim W = 3. (Note also that the matrices A4, B, and D form a basis of W)

THEOREMS ON LINEAR DEPENDENCE, BASIS, AND DIMENSION

5.36.

5.39.

Prove Lemma 5.10.

Since the v, are linearly dependent, there exist scalars a,, ..., a,, not all 0, such that
a,v, + -~ + a,v, = 0. Let k be the largest integer such that a, # 0. Then

a|v|+'°'+alv.+00t+|+"‘+0lﬂ,,,=0 or alU|+"'+a*U‘l=O
Suppose k = 1; then a,v, =0, @, # 0 and so v, = 0. But the v, are nonzero vectors; hence k > 1 and
b= —a 'aw, — - —ag ' v,

That is, v, is a linear combination of the preceding vectors.

Prove Theorem 5.11.

Suppose R,, R,_,, ..., R, are linearly dependent. Then one of the rows, say R,,, is a linear com-
bination of the preceding rows:

‘Rln=aul+lﬂm+l+aul+2Ru+2+”-+all‘Rll (‘}

Now suppose the kth component of R,, is its first nonzero entry. Then, since the matrix is in echelon form,
the kth components of R, , ..., R, are all 0, and so the kth component of (=) is

Opor "0+ Gz "0+ +a,0=0

But this contradicts the assumption that the kth component of R, is not 0. Thus R, ..., R, are linearly
independent.

Suppose {v,, ..., v,} spans a vector space V. Prove:

(@) Ifwe V,then {w,vy,...,v,} is linearly dependent and spans V.

(b) 1If v; is a linear combination of vectors (vy, vy, ..., v;_y), then {vy, ... ;-\, U4y, «.., U}
spans V.

(@) The vector w is a linear combination of the v; since {v;} spans V. Accordingly, {w, vy, ..., v,} is linearly
dependent. Clearly, w with the v; span V since the v; by themselves span V. That is, {w, vy, ..., v,}
spans V.

(b) Suppose v, = kv, + - + k;_v;_,. Let u € V. Since {v;} spans V, u is a linear combination of the v,,
say, u = a,v, + - + a,,,. Substituting for v;, we obtain

u=aw + -+ G U+ afk by o+ k) F a0y + 00+ a0,
=(a, +a;kyoy + - (@ + @k Wiy + Gyl 0 + Gty

Thus {vy, ..., &;_1s Uis s ---» Uy} SPans V. In other words, we can delete v; from the spanning set and
still retain a spanning set.

Prove Lemma 5.13.

It suffices to prove the theorem in the case that the v, are all not 0. (Prove!) Since {v;} spans V, we have
by Problem 5.38 that

{we, Uy a2} ()
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is linearly dependent and also spans V. By Lemma 5.10, one of the vectors in (/) is a linear combination of
the preceding vectors. This vector cannot be w,, so it must be one of the t's, say v;. Thus by Problem 5.38
we can delete v; from the spanning set (/) and obtain the spanning set

{wWisvg oo 00400 B} (2

Now we repeat the argument with the vector w,. That is, since (2) spans V, the set

{thzv vltﬂ'l"jlls vj-tlr"" IT,,} [3]

is linearly dependent and also spans V. Again by Lemma 5.10. one of the vectors in (3) is a linear com-
bination of the preceding vectors. We emphasize that this vector cannot be w, or w, since {w,, ..., w,} is
independent ; hence it must be one of the v's, say v,. Thus by the preceding problem we can delete v, from
the spanning set (3) and obtain the spanning set

Wi Wa B B U e B Vg g e B
We repeat the argument with w, and so forth. AL each step we are able to add one of the w’s and delete

one of the ¢'s in the spanning set. If m < n, then we finally obtain a spanning set of the required form:

LT U T

Last, we show that m > n is not possible. Otherwise, after n of the above steps, we obtain the spanning
set {wy. ..., w,}. This implies that w, , , is a linear combination of w,, ..., w, which contradicts the hypothe-
sis that {w;} is linearly independent.

5.40. Prove Theorem 5.12.

Suppose {u,, u,, ..., u,} is a basis of V, and suppose {v,, v,, ...} is another basis of V. Since {1} spans
V, the basis {v,, v,, ...} must contain n or less vectors, or else it is linearly dependent by Problem 5.39
(Lemma 5.13). On the other hand, if the basis {v,, v,, ...} contains less than n elements, then {u,.u,, ..., u,}
is linearly dependent by Problem 5.39. Thus the basis {v,, r,, ...} contains exactly n vectors, and so the
theorem is true.

541. Prove Theorem 5.14.

Suppose B = {w,, w,,...,w,} isa basis of V.
(i) Since B spans V, any n + | or more vectors are linearly dependent by Lemma 5.13.

(ii) By Lemma 5.13, elements from B can be adjoined to S to form a spanning set of ¥V with n elements.
Since S already has n elements, § itself is a spanning set of V. Thus § is a basis of V.

(iii) Suppose T is linearly dependent. Then some v; is a linear combination of the preceding vectors. By
Problem 5.38, V is spanned by the vectors in T without v; and there are n — | of them. By Lemma
5.13, the independent set B cannot have more than » — 1 elements. This contradicts the fact that B
has n elements. Thus T is linearly independent and hence T is a basis of V.

542, Prove Theorem 5.15.

(i) Suppose {v,, ..., v,} is a maximal linearly independent subset of S, and suppose w € S. Accordingly
{v4, .., U, w} is linearly dependent. No v, can be a linear combination of preceding vectors; hence w
is a linear combination of the v;. Thus w € span v; and hence S < span v,. This leads to

V=span SCSspanp; € V

Thus {v;} spans V and, since it is linearly independent, it is a basis of V.

(i) The remaining vectors form a maximal linearly independent subset of § and hence by part (i) it is a
basis of V.

5.43. Prove Theorem 5.16.
Suppose B = {w,, wy,..., w,} is a basis of V. Then B spans V and hence V is spanned by

SuB= {u,. Mg, .oy by, Wi, Wyy ooy w"}
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By Theorem 5.15, we can delete from S U B each vector which is a linear combination of preceding vectors
to obtain a basis B’ for V. Since § is linearly independent, no u, is a linear combination of preceding
vectors. Thus B’ contains every vector in 8. Thus § is part of the basis B' for V.

5.44. Prove Theorem 5.17.

Since V is of dimension n, any # + 1 or more vectors are linearly dependent. Furthermore, since a

basis of W consists of linearly independent vectors, it cannot contain more than n elements. Accordingly,
dim W < n.

In particular, if {w,, ..., w,} is a basis of W, then, since it is an independent set with n elements, it is
also a basis of V. Thus W = V whendim W = n.

ROW SPACE AND RANK OF A MATRIX

5.45. Determine whether the following matrices have the same row space:
- 1 -1 -1
1 1 5 1 -1 =2
A= ( ) B= ( ) C=l4 -3 -1
2 3 13 3 -2 -3 3 1 3

Matrices have the same row space if and only if their row canonical forms have the same nonzero
rows; hence row reduce each matrix to row canonical form:

O B O I
N e S R S

- 2
L
N

1 -1 -1 1 -1 -1 1 -1 -1 1 0
C=14 -3 —-1|~{0 1 3|~10 1 3 to 0 1 3
3 -1 3 0 2 6 0 0 0 0 0 0,

Since the nonzero rows of the reduced form of A and of the reduced form of C are the same, A and C
have the same row space. On the other hand, the nonzero rows of the reduced form of B are not the same
as the others, and so B has a different row space.

1 3 5 1 2 3
546. Show that A =11 4 Jland B=| —2 -3 —4] have the same column space.
1 1 9 7 12 17

Observe that A and B have the same column space if and only if the transposes AT and B” have the
same row space. Thus reduce A™ and B” to row canonical form:

1 1 1 1 1 1 1 1 1 1 0 3
AT=113 4 1{~10 1 -2]~{0 1 =2 to 0 1 -2
5 3 9 0 -2 4 0 o0 0, 0 0 0
i -2 7 1 =2 7 1 =2 7 1 0 3
B"={2 -3 12]~}0 1 =2{~10 1 =2 to 0 1 -2
3 -4 17 0 2 -4 0 0 0, 0 0 0

Since AT and B” have the same row space, A and B have the same column space.
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5.47. Consider the subspace U = span (u,, u,, u3) and W = span (w,, w,, w;) of R* where:
uy=(1, 1, 1), uy = (2,3, —1), uy =03, 1, —5)
w, =(1, -1, -13), wy =(3, -2, —8), wy=(21, -3)
Show that U = W,

Form the matrix A whose rows are the u;, and row reduce A to row canonical form:

1 -1 1 1 -1 | 0o -2
A=|2 3 —1|~|0 1 tj~lo0 1 1
3 i -5 0 -2 =2 0 0 0
Next form the matrix B whose rows are the w, and row reduce B to row canonical form:
1 -1 -3 1 -1 -3 1 0 -2
B=|3 -2 -8]|~|0 1 L]~{0 1 i
2 t -3 0o 3 3 0 0 o

Since A and B have the same row canonical form, the row spaces of A and B are equal and so U = W.

548, Find the rank of the matrix 4 where:

1 2 -3 | 3

2 1 0 0 =2

@ A=\ , | 4} @ A= 5
-1 4 -2 =) 3

(a) Since row rank equals column rank, it is easier to form the transpose of A and then row reduce to
echelon form:

1 2 -2 -1 1 2 -2 -1 1 2 -2 -1
A= 2 1 -1 4]~10 -3 3 6]~|0 -3 3 6
-3 0 3 -2 0 6 -3 -5 0 0 3 7

Thus rank A = 3.
(#) The two columns are linearly independent since one is not a multiple of the other. Thus rank A = 2,

5.49. Consider an arbitrary matrix 4 = (a;)). Suppose u = (b,, ..., b,) is a linear combination of the
rows R,,..., R, of A;sayu=k,R, + - + k., R,,. Show that

bi=kla’i+k2a2g+”°+kma”‘ (f=l,2,...,ﬂ}
where a,;, ..., a,; are the entries of the ith column of 4.
We are given u = iR, + -+ + kR, ; hence

(b]) nany bn’-_- k](alh ey a]x) + - +k"(am]o L ] am)
={k|a“ b o +k”ﬂ”|1 PP k|ﬂml by ol +kmﬂm}

Setting corresponding components equal to each other, we obtain the desired result.

5.50. Suppose A = (a;;) and B = (b;;) are echelon matrices with pivot entries:

[ P PO and byk,s barys oo s by

1]
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5.51.

Qyj, **** by, ## %+ 222

yj, * * * » by, # % 2 » »

A s brssimugrepunt g s ] Bl busrmmemanesensuns
a,; ** by » »

Suppose A and B have the same row space. Prove that the pivot entries of 4 and B are in the
same positions. that is, prove that j, = k,,j, = k,,...,j, =k,,and r = 5.

Clearly A = 0 if and only if B = 0, and so we need only prove the theorem when r > | and s > 1. We
first show that j, = k,. Suppose j, < k,;. Then the j, th column of B is zero. Since the first row of A is in the
row space of B, we have by the preceding problem,

6y, =¢,04+¢c;04+ - 4¢,0=0

for scalars c;. But this contradicts the fact that the pivot element a,;, # 0. Hence j, > k,, and similarly
ky = j,. Thusj, = k,.

Now let A’ be the submatrix of A obtained by deleting the first row of A4, and let B’ be the submatrix of
B obtained by deleting the first row of B. We prove that A' and B’ have the same row space. The theorem
will then follow by induction since A4’ and B’ are also echelon matrices.

Let R ={a, a,, ..., a_i be any row of A" and let R, ..., R,, be the rows of B. Since R is in the row
space of B, there exist scalars d,, ..., d,, such that R =d\R, + d; R, +--- +d,R,,. Since A is in echelon
form and R is not the first row of A, the j,th entry of R is zero: q; = 0 for i = j, = k,. Furthermore, since B
is in echelon form, all the entries in the k,th column of B are 0 except the first: b,, # 0, but by, =0, ...,
by, = 0. Thus

Oﬁ a'. = dlblll + d20+ T +dﬁr0 = dlbll|

Now by, # 0 and so d; = 0. Thus R is a linear combination of R;, ..., R, and so0 is in the row space of B'.
Since R was any row of A, the row space of A’ is contained in the row space of B'. Similarly, the row space
of B’ is contained in the row space of A". Thus A" and B have the same row space, and so the theorem is

proved.

Prove Theorem 5.8.

Obviously, if A and B have the same nonzero rows then they have the same row space. Thus we only
have to prove the converse.

Suppose 4 and B have the same row space, and suppose R # 0 is the ith row of A. Then there exist
scalars ¢y, ..., ¢, such that

R:CIR|+C2R2+“'+C.R’ ‘I}

where the R, are the nonzero rows of B. The theorem is proved if we show that R = R, or¢; =1 bute, =0
for k # i.
Let a;;, be the pivot entry in R, ie., the first nonzero entry of R. By (/) and Problem 5.49,

Gy, = by + by, + - + ¢, by, (2)

But by the preceding problem b, is a pivot entry of B and, since B is row reduced, it is the only nonzero
entry in the jith column of B. Thus from (2) we obtain q;;, = ¢ b;;,. However, a;;, = 1 and b;;, = 1 since 4 and
B are row reduced; hence ¢; = 1.

Now suppose k # i, and b,, is the pivot entry in R, . By (/) and Problem 5.49,

am=(‘|blk+tzb1h+ Sann +clb.lj. (3}

Since B is row reduced. b, is the only nonzero entry in the jith column of B; hence by (3), a;;, = ¢, by, .
Furthermore, by the preceding problem g, is & pivot entry of A and, since A is row reduced, a;, = 0. Thus
¢, by;, = O and, since b, = 1, ¢, = 0. Accordingly R = R, and the theorem is proved.
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§5.52. Prove Theorem 5.9.

5.53.

Suppose A is row equivalent to matrices A, and A, where A; and A, are in row canonical form. Then
rowsp A = rowsp A, and rowsp A = rowsp A,. Hence rowsp A, = rowsp A,. Since A, and A, are in row
canonical form, A, = A, by Theorem 5.8. Thus the theorem is proved.

Prove Theorem 5.18.

Let A be an arbitrary m x n matrix:

..................

Let R, R,, ..., R, denote its rows:

R,=(a,,0,3,....83,) ..., R,=(0,.0,3,....,0,)
Suppose the row rank is r and that the following r vectors form a basis for the row space:
Sy =(byy. by3. -0, by 83 = (b3 baps o  by)h oo S, = (byy, bras o0 b))
Then each of the row vectors is a linear combination of the §; :
Ry =k S, +k; 38, +--+ k.S,
R, =kyS; + k383 -+ kg S,

R, =k S, + kyy8; 4 - + k.8,

where the k;; are scalars. Setting the ith components of each of the above vector equations equal to each
other, we obtain the following system of equations, each validfori=1,...,n:

ay =kyby+ kyaby + 0+ ky, by
Ay = kyybyy + kaa by + - + ky by

--------------------------------

Thus, fori=1,...,n,

ay; kyy kiz ky,
k k k

a4 b, n L b,, 3] R, b, 2r

aﬂ' ll‘—ml kmz k,..,.

In other words, each of the columns of A is a linear combination of the r vectors

kl:l kn klr
k?l kIZ er
Ikml kml klnr

Thus the column space of the matrix A has dimension at most r, i.e, column rank <r. Hence, column
rank < row rank.

Similarly {or considering the transpose matrix A7) we obtain row rank < column rank. Thus the row
rank and column rank are equal.

Suppose R is a row vector and 4 and B are matrices such that RB and AB are defined. Prove:

(@) RB s a linear combination of the rows of B.
(b) Row space of AB is contained in the row space of B.
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{¢) Column space of AB is contained in the column space of A.
(d) rank AB < rank B and rank AB < rank A.
(a) Suppose R = (a,, a,, ..., a,) and B = (b,). Let B, ..., B, denote the rows of B and B', ..., B its
columns. Then
RB=(R-B'.R-B*...,R- B
= (ﬂ1b|| + azb2| + -+ amb'l, aibiz + azbgz + -+ a,,,b,,,g. eray albu + azbgn + -+ ambnn}
= altb“, bl:' “e-y biﬂ) + az(bzl, blz, svay bzn) 4+ 4+ amlbm,, bmz, ey bm)
=a,B, +a,B,+ " +a,B,
Thus RB is a linear combination of the rows of B, as claimed.

(b) The rows of AB are R; B where R, is the ith row of A. Thus, by part (a), each row of 4B is in the row
space of B. Thus rowsp AB < rowsp B, as claimed.

(¢) Using part (b), we have:
colsp AB = rowsp (AB)" = rowsp B"AT < rowsp A" = colsp A
(d) The row space of AB is contained in the row space of B; hence rank AB < rank B. Furthermore, the
column space of AB is contained in the column space of A; hence rank AB < rank A.
5.55. Let A be an n-square matrix. Show that A is invertible if and only if rank 4 = n.

Note that the rows of the n-square identity matrix [, are linearly independent since I, is in echelon
form; hence rank I, = n. Now if A is invertible then A is row equivalent to I, ; hence rank A = n. Butif A is
not invertible then A is row equivalent to a matrix with a zero row; hence rank A < n. That is, A is
invertible if and only if rank 4 = n.

APPLICATIONS TO LINEAR EQUATIONS

5.56. Find the dimension and a basis of the solution space W of the system
x+2y+ z-3t=0
2x +4y+4z— =0
Ix+6y+7z+ 1=0

Reduce the system to echelon form:

x+2y+ z— =0 XxX+2y+ z—3t=0
224 5H=0 or 224+ 5=0
4z + 10t =0

The free variables are y and t, and dim W = 2. Set:

(i) y=1,z=0to obtain the solution u, =(—2,1,0,0)

(ii) y=0,t = 2to obtain the solution u, = (11,0, —5, 2)

Then {u,, #,} is a basis of W. [The choice y = 0. t = 1 in (ii). would introduce fractions in the solution.]

5.57. Find a homogeneous system whose solution set W is spanned by
(1, —=2,0,3),(1, =1, — 1, 4), (1,0, —2, 5}

Let v = (x, y, z, t). Form the matrix M whose first rows are the given vectors and whose last row is v:
and then row reduce to echelon form:

1 -2 0 3 1 -2 0 3 1 -2 0 3
O L T Y O (TN N S N DO [ !

1 0 -2 5 0 2 =2 2 0 0 2x+y+z —Sx—y+1t

x oy z t 0 2x+y z —3x+1t 0 0 0 0
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The original first three rows show that W has dimension 2. Thus v € W if and only if the additional row
does not increase the dimension of the row space. Hence we set the last two entries in the third row on the
right equal to 0 to obtain the required homogeneous system

Ix+y+z =0
Sx+y —t=0

Let x;,, X;,, -.., X;, be the free variables of a homogeneous system of linear equations with n
unknowns. Let v; be the solution for which x; = 1, and all other free variables = 0. Show that
the solutions v,, v,, ..., v, are linearly independent.

Let A be the matrix whose rows are the v;, respectively. We interchange column | and column i), then
column 2 and column i, . .., and then column k and column i, ; and obtain the k& x n matrix

1 0 0 ... 0 0 ¢y 44y - €4y
B=(.C)= 01 0 ... 0 0 c344y --- €3
0 0 0 0 1 ¢ pas Can

The above matrix B is in echelon form and so its rows are independent; hence rank B = k. Since A and B
are column equivalent, they have the same rank, i.e., rank A = k. But A has k rows; hence these rows, ie.,
the v;, are linearly independent, as claimed.

Prove Theorem 5.20.
Suppose u,, u;, ..., u, form a basis for the column space of A (There are r such vectors since rank
A =r.) By Theorem 5.19, each system AX = u, has a solution, say v;. Hence

Avy=uy, Avy =uy, ..., Av,=u, (1)
Suppose dim W = sand w,, w,, ..., w, form a basis of W. Let
Be{u, vz, ....0,, W, Wi, ..., W}

We claim that B is a basis of K". Thus we need to prove that B spans K" and that B is linearly independent.

(@) Proof that B spans K”. Suppose v € K" and Av = u. Then u = Av belongs to the column space of 4 and
hence Av is a linear combination of the u;. Say

Av=Kku, + ku, + -+ k,u, 2)
Let v’ = v — kv, — kyv; — -+ — k,v,. Then, using (1) and (2),
A(V) = Al — ko, — kv, — -+ —k,v,)
= Av — k,Av, — ky Avy — -+ — k, A,
=Av — kyuy, — kquy — - —ku,=Av— Av =0

Thus v belongs to the solution W and hence v is a linear combination of the w;. Say
vV=cw, +c,w, + - +c,w,.Then

v=0v+ Y ko= Y kv+ 3w
i=1 i=1 j=1
Thus v is a linear combination of the elements in B, and hence B spans K"
(b) Proof that B is linearly independent. Suppose
ayu, +av, + -t auv,+bw +byw, +--+b,w,=0 3
Since w; € W, each Aw; = 0. Using this fact and (/) and (3), we obtain
r 5 F 5
0= A(0) = A(Za,—v, + ijwj) = Y aAv,+ 3 b;Aw,
i=1 J=1

i=1 =1

r =z
= Eaiu;"' ijo=ﬂ|u] +d2u3+"‘+a,u,
i=1 i=1
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Since u,, ..., u, are linearly independent, each a, = 0. Substituting this in (J) yields
b|wl +b1W2 + - +b3W,= 0

However, w,, ..., w, are linearly independent. Thus each b; = 0. Therefore, B is linearly independent.
Accordingly B is a basis of K". Since B has r + s elements, we have r + s = n. Consequently,
dim W =5 = n — r, as claimed.

SUMS, DIRECT SUMS, INTERSECTIONS

5.60. Let U and W be subspaces of a vector space V. Show that: (@) U and W are each contained in
V;(b) U + W is the smallest subspace of V containing U and W, that is, U + W = span (U, W),
the linear spanof U and W:(c) W + W = W.

(@) Letu e U. By hypothesis W is a subspace of V and so 0 € W. Hence u = u + 0 € U + W. Accordingly,

(b

()

U is contained in U + W. Similarly, W is contained in U + W,
Since U + W is a subspace of V containing both U and W, it must also contain the linear span of U
and W, that is, span (U, W) < U + W.

On the other hand, ifve U + Withenv=u+w=1lu+ Ilw where u e U and w € W; hence v is
a linear combination of elements in U u W and so belongs to span (U, W). Consequently
U + W < span (U, W).
Since W is a subspace of V, we have that W is closed under vector addition; hence W 4+ W = W. By
part(a)) W W + W.Hence W + W = W.

Give an example of a subset S of R? such that: (a) § + S c S (properly contained); (b)) S< S + S
(properly contained); (c) S + S = S but S is not a subspace of R%.

(a)
(b)
(c)

Let S = {(0, 5).(0, 6),(0,7),...}. Then S + S = §.
Let S = {(0, 0), (0, 1)}. Then S = S + S.
Let S = {(0,0), (0, 1),(0,2),(0,3),...}. Then S + § = §.

Suppose U and W are distinct 4-dimensional subspaces of a vector space V where dim ¥V = 6.
Find the possible dimensions of U n W.

Since U and W are distinct, U + W properly contains U and W; consequently dim (U + W) > 4.

But dim (U + W) cannot be greater than 6, since dim V =6. Hence we have two possibilities:
(i) dim (U + W) = §, or (ii)dim (U + W) = 6. By Theorem 5.22,

dm (U W)=dm U + dim W —dim (U + W) =8 —dim (U + W)

Thus (i) dim (U n W) =3, or (i) dim (U ~ W) =2

Consider the following subspaces of R*:

U= span [“a lv 0- —l), (l& 2‘ 39 0)1 (29 3) 3} ‘“"1)}
W= span {(l-! 2! 2! _2}! (29 3) 2, —3)9 (l, 35 41 ""3)}

Find (a) dim (U + W) and (b) dim (U n W).

(a)

U + W is the space spanned by all six vectors. Hence form the matrix whose rows are the given six
vectors, and then row reduce to echelon form:

I 1t 0 -1 110 -1
1 2 3 o) [o 1 3 1 o 1 3 1
2 03 3 =1l o 1 3 ]l o 1 2 -
1 2 2 -2/ o 1t 2 -1 0o 0 0 o
2 3 2 -3)/ \e 1 2 - 0o 0 0 o
13 4 -3 0 2 4 -2 6 0 o0 o
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(b)

VECTOR SPACES [CHAP. §

o1 0 -1
0 1 3 1
o o -1 -2
0 o o0 o0
0o o 0 o
0 0 0 0

Since the echelon matrix has three nonzero rows, dim (U + W) = 3.

First find dim U and dim W, Form the two matrices whose rows are the generators of U and W,
respectively, and then row reduce each to echelon form:

1 1 o —1 1 1 o -1 1 1 0 -1

1 2 3 0]l~{o0 1 3 1]~10 1 3 1

2 3 3 -1 0 1 3 1 0 0 0 0
and

1 p. 2 =2 1 . 2 =2 1 2 2 -2

2 3 2 —-3]~10 —-1 =2 1]~{0 —1 -2 1

1 3 4 -3 0 1 2 -1 0 0 0 0

Since each of the echelon matrices has two nonzero rows, dim U = 2 and dim W = 2. Using Theorem
522, ie,dim(U + W)=dim U + dim W — dim (U n W), we have

3=2+2—dim(U n W) or dim (U n W) =1

5.64. Let U and W be the following subspaces of R*:

U={(a,b,c,d:b+c+d=0}, W={abcd:a+b=0,c=2d}

Find a basis and the dimension of: (a) U, (b)) W,(c) U n W,(d) U + W.

(a)

(b)

(c)

We seck a basis of the set of solutions (a, b, ¢, d) of the equation
b+ec+d=0 or O-a+b+c+d=0

The free variables are g, ¢, and d. Set:
(1) a=1,¢c=0d=0to obtain the solution v, = (1,0,0,0)
(2) a=0,¢c=1,d=0to obtain the solution v, = (0, —1,1,0)
(3) a=0,¢=0,d=1to obtain the solution v; = (0, —1,0, I)

The set {v,, v,, v,} is a basis of U, and dim U = 3.

We seek a basis of the set of solutions {q, b, ¢, d) of the system

a+b=0 or a+ b=0
ce=2d c—2d=0

The free variables are b and d. Set
(1} b= 1,d = 0to obtain the solution v, =(—1, 1,0,0)
(2) b=0,d = 1 to obtain the solutionv, = (0,0, 2, 1)
The set {v,, v,} is a basis of W, and dim W = 2.
U rm W consists of those vectors (a, b, ¢, d) which satisfy the conditions defining U and the conditions
defining W, i.e., the three equations
b+c+d=0 a+b =0
at+b =0 or b+c+ d=0
¢ =2 c—2d=0
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5.65.

The free vanable is d. Set d = 1 to obtain the solution v = (3, —3, 2, 1). Thus {v} isa basisof U n W,
and dim (U n W)= 1.

(d} By Theorem 5.22,
dim (U + W)=dim U +dm W —dim(U n W)=34+2—-1=4
Thus U + W = R*. Accordingly any basis of R*, say the usual basis, will be a basis of U + W.

Consider the following subspaces of R*:

U=span {(1,3, —2,2,3), (1,4, —3,4,2),(2 3, —1, —2, 9)}
W = span {(1,3,0,2, 1).(1, 5, —6,6,3),(2,5,3,2, 1)}

Find a basis and dimension of () U + W, (b) U n W.

(a) U + W is the space spanned by all six vectors. Hence form the matrix whose rows are the given six
vectors, and then row reduce to echelen form:

i 3 =3 32 3® H 5 =2 32 N ¥ 3 =2 3 3
1 4 -3 4 2 0 1 —1 2 -1 0 1 -1 2 —1
2 3 -1 -2 9 0 =% 3 =6 3 0 0 0 0 0
it 3 o 2 1) Jo o 2 o -2)71l0o o 2 o -2
it 5 & & 3 0 2 -4 4 0 0 0 -2 o0 2
2 5 3 2 1 G =1 F =3 b 0 0 6 0 —6

1 3 -2 2 3

B 1 =i 3

0o 0 2 0 -2

o o o o o

0 0 0 0 0

0 0 0 0 0

The set of nonzero rows of the echelon matrix,
{(ln 3v “2: 2- 3}t (01 lv - 19 2v - l]’ (Ov 01 21 01 _2”

is a basis of U + W thus dim (U + W) = 3.

(b) First find homogeneous systems whose solution sets are U and W, respectively. Form the matrix
whose first three rows span U and whose last row is (x, y, z, 5, t) and then row reduce to an echelon

form:

1 j -2 2 3 1 3 -2 2 3

1 4 -3 4 2 0 1 -1 2 —1

2 3 -1 -2 9 0 -3 3 —6 3

x oy z s t 0 —3x+y 2x+z —-2x+s —3x+1t
1 3 -2 2 3
0 1 -1 Z -1
6 0 —x+y+z dx—2y+s —6x+y+t
6 0 0 0 0

Set the entries of the third row equal to 0 to obtain the homogeneous system whose solution space
is U:

-x+y+2z=0 dx -2y +s5=0 —6x+y+t=0
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Now form the matrix whose first rows span W and whose last row is (x, y, z, s, #) and then row
reduce to an echelon form:

1 3 0 2 1 1 3 0 2 1

f 5 -6 6 3 0 2 —6 4 2

2 5 3 2 1/ lo -1 ; S, | ]

x y z s t 0 —3x+y z —2X+5 —x+1t
1 3 0 2 1
0 1 -3 2 1

o 0 —9x+3y+2z d4x—2y45 2x—-y+1t

0 0 0 0 0

Set the entries of the third row equal to 0 to obtain the homogeneous system whose solution space
is W:

—Ox+3y4+2=0 dx =2y +s=0 xx—y+t=0

Combine both of the above systems to obtain a homogeneous system whose solution space is
U ~ W, and then solve:

( —x+ y+z =0 = y+ z =0
4x — 2y + s =0 2y+4z+ s =0
< =bx+ y +t=0 ar b —5y — 6z +1t=0
-9 +3y+z =0 —b6y — 8z =0
4x — 2y +s =0 dy+dz+s =0
\ 2x— y +t=0 . y+ 2z +t=0
—x+y+ z =0
- =0
Wy+dz+ s =0 ik St =
2y +4z+ s =0
or Bz+554+2t=0 or
Bz+55+2t=0
4z + 3s = S —=0
s—2u=0 B
There is one free variable, which is t; hence dim (U n W) = 1. Setting t = 2, we obtain the solution

x=lLy=4z= -3 s=4,t=2Thus {{1,4, —3,4, )} isabasisof U n W,

5.66. Let U and W be the subspaces of R? defined by
U={abc)a=b=c}
(Note that W is the yz plane) Show that R* = U @ W.
Note first that U n W = {0}, for v = (a, b, ¢) € U n W implies that
a=0,b=0,c=0

and W = {(0, b, )}

a=b=c and a=0 which implies

We also claim that R* = U + W. For if v = (a. b, ¢} € R?, then
where and

(a,a, a)e U b—ac—aeW

Both conditions, U n W ={0}and R*=U + W,imply R* = U@ W.

v=(a,aa0a)+(0,b—ac—a

§5.67. Let V be the vector space of n-square matrices over a field K.

(@) Show that ¥V = U @ W where U and W are the subspaces of symmetric and antisymmetric
matrices, respectively. (Recall M is symmetric iff M = M7, and M is antisymmetric iff
MT = —M)

Show that ¥V # U @ W where U and W are the subspaces of upper and lower triangular
matrices, respectively. (Note V = U + W)

(b)
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5.68.

(a) We first show that V = U + W. Let A be any arbitrary n-square matrix. Note that
A=HA+ AT} + HA - AT
We claim that (4 + A"} € U and that (4 — A"y e W.For
A+ AN =3A+ A =HAT + ATT) = HA + A7)
that is, {4 + AT)is symmetric. Furthermore,
HA-ANY =HA-ATY =4A" - A= -HA4 - AT)

that is, (4 — A") is antisymmetric.
We next show that U n W = {0}. Suppose M e U n W. Then M = M” and M™ = —M, which
implies M = —M and hence M = 0. Thus U n W = {0}. Accordingly, ¥V = U @ W.

by U n W # {0} since U n W consists of all the diagonal matrices. Thus the sum cannot be direct.

Suppose U and W are subspaces of a vector space V, and suppose that § = {u;} spans U and
S" = {w;} spans W. Show that S U §' spans U + W. (Accordingly, by induction, if S; spans W, for
i=1,2...,nthenS, v u S, spans W, + -+ + W,.)

Letve U+ W.Thenv =u + wwhere ue U and w € W. Since § spans U, u is a linear combination of
the u;’s, and since §’ spans W, w is a linear combination of the w;'s:

u=at; + a3t + 1 + a,u, a;e K
w=bw, +byw, + -+ b,w, b,e K
Thus
=u+w=a|u"' +azu‘1 +"' +a"u£.+b|w’-. +b2w‘h + "'+b_W}_

Accordingly, S U §' = {u;, v;} spans U + W.

Prove Theorem 5.22.

Observe that U n W is a subspace of both U and W. Suppose dim U =m, dim W = p, and dim
(U n W) =r. Suppose {v,, ..., v,} is a basis of U n W. By Theorem 5.16, we can extend {v,;} to a basis of
U and to a basis of W; say,

{l?h...,l?,, Uy, - -y unl-r} and {”lv---rvn Wis ooy wn-r}
are bases of U and W, respectively. Let
B=1{v, ey Uy thyy ey Uy Wy, ey W, )

Note that B has exactly m + n — r elements. Thus the theorem is proved if we can show that B is a basis of
U + W. Since {v,, u;} spans U and {v;, wy} spans W, the union B = {v;, u;, w,} spans U + W. Thus it
suffices to show that B is independent.

Suppose

avy + - +av,+bu + -+t +eyw +-+c,_w,_ =0 N
where a;, b;, c, are scalars. Let
v=auw, + -+auv, +bu +---+b, ,u,, 2
By (1), we also have that
V= —CWy — = Cp Wy, &)

Since {v;, u;} < U, ve U by (2); and since {w,} = W, ve W by (3). Accordingly, ve U n W. Now {v;} isa
basis of U ~ W and so there exist scalars d, ..., d, for which v = d v, + -+ + d,v,. Thus by (3) we have

dv,+-+dyv, +ew ++ep,w,,=0



186

5.70.

5.71.
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But {v;, w,} is a basis of W and so is independent. Hence the above equation forces ¢, =0, ...,¢c,_, =0
Substituting this into (/), we obtain
a\uy + - +a,b‘, + btul +---+ b__,u._r =0

But {v,, u;} is a basis of U and so is independent. Hence the above equation forces a, =0, ..., q, =0,
b, =0Q,....,b,_, =0.

Since the equation (/) implies that the a;, b; and c, are all 0, B = {v;, u;, w,} is independent and the
theorem is proved.

Prove Theorem 5.23.

Suppose ¥ = U @ W. Then any v € V can be uniquely written in the form v = u + w, where u € U and
w € W. Thus, in particular, ¥ = U + W. Now suppose v e U n W. Then:

(1) v=v+0 where velU,0e W; and 2) v=0+v where Oel,ve W

Since such a sum for v must be unique, v = 0. Accordingly, U n W = {0}.

On the other hand, suppose V =U + Wand U n W = {0}. Let v € V. Since V = U + W, there exist
ue U and we W such that v = u + w. We need to show that such a sum is unique. Suppose also that
v=u + w where ' e U and w € W._Then

Uu+w=u +w and so Uu—t=w—w
Butu—u' e Uand w —we W;hence,by U n W = {0},

u—u=0w-—-w=0 and so u=u,w=w

Thus such asum forv e Visuniqueand ¥V = U @ W.

Prove Theorem 5.24 (for two factors): Suppose V = U @ W. Suppose S = {u,, ..., u,} and
S ={wy, ..., w,} are linearly independent subsets of U and W, respectively. Then:
(a) S u § is linearly independent in V; (b) if S is a basis of U and §' is a basis of W, then S U §
is a basis of V; and (¢) dim V = dim U + dim W.

(@) Supposca,u; + - + a,u, +b,w, + -+ + b,w, =0, where a;, b; are scalars. Then
0={a|u| b +amu!ll)+{blw| D +b,,w,,}=0+0

where 0, ayuy +--- + a,u, e Uand 0, byw, + - + b,w, € W. Since such a sum for 0 is unique, this
leads to

au;, + - +a,u,=0 bw, +-+b,w,=0
Since § is linearly independent, each g; = 0, and since §' is linearly independent, each b; = 0. Thus
S u §'is linearly independent.

(b) By part (a), S§ u § is linearly independent, and, by Problem 5.68, S w S  span V. Thus § u §' is a basis
of V.

(¢} Follows directly from part (b).

COORDINATE VECTORS

5.72.

5.73.

Let S be the basis of R? consisting of u, = (2, 1) and u, = (1, —1). Find the coordinate vector [v]
of v relative to S where v = (a, b).

Set v=1xu; + yu, to obtain (g, b))=(2x+y,x—y). Solve 2x + y=a and x — y=b to obtain
x = (a + b)/3, y = (a — 2b)/3. Thus [v] = [(a + b)/3, (a — 2b)/3]).

Consider the vector space P,(t) of real polynomials in ¢ of degree <3.
(@) Showthat S = {1,1—¢ (1 — )% (1 — £)*} is a basis of P(t).
(b) Find the coordinate vector {u} of u = 2 ~ 3t + t* + 2> relative to S.
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(@) The degree of (1 — 1)* is k; hence no polynomial in S is a linear combination of preceding polynomials.
Thus the polynomials are linearly independent and, since dim P,(f) = 4, they form a basis of P,(t).

(b) Set u as a linear combination of the basis vectors using unknowns x, y, z, 5:

u=2-3t+2+23=x{1)+ Wl — )+ A1 —1)* + s(1 —1)?
=x()+ W1 —0)+2(1 =2t + 1) +s{1 — 3t + 32 — 1)
=x+y—yr+z— 2zt + zt* + 5~ 3st + 3Ist* — st3
=(x+y+z+s)+(—y—2z—3s)t +(z + Isp? + (—s)®

Then set the coeflicients of the same powers of t equal to each other:
xX+y+z+s=2 —y—2z2—35= -3 z+3s=1 —s5=2
Solving, x =2, y= —5,z=7,5s = —2. Thus [u] =[2, —-5,7, -2].

2 Ay, : . .
5.74. Consider the matrix A = ( ) in the vector space V of 2 x 2 real matrices. Find the coordi-

ot (© (0 ). e wat b
(D 9k el 9l D-C )

Thus x =2, y=3, z=4,t = —7. Hence [4] =[2, 3, 4, —7], whosc components are the clements of A
written row by row.

. . 1 0\ {0 1
nate vector [A] of the matrix A relative to {( 0 0), ( 0 0),

of V.
We have

Remark: The above result is true in general, that is, if A is any m x n matrix in
the vector space V of m x n matrices over a field K, then the coordinate vector [A] of
A relative to the usual basis of V is the mn coordinate vector in K™ whose com-
ponents are the elements of 4 written row by row.

CHANGE OF BASIS

This section will represent a vector of v € V relative to a basis S of V by its coordinate column
vector,

a,

a,
[v]S*_“ = [ah ﬂz,...,ﬂ”]r

(which is an n x | matrix).

5.75. Consider the following bases of R?:
Si={u, =(1, =2), u; =3, —4)} and S; ={v, =(1,3), v, =3, 8)}

(@) Find the coordinates of an arbitrary vector v=:(a, b) in R? relative to the basis
S 1= {ul.! “z}r

(b) Find the change-of-basis matrix P from S, to S;,.

(¢) Find the coordinates of an arbitrary vector v =(a, b) in R? relative to the basis
SZ = {vlv 5’2}-

(d) Find the change-of-basis matrix Q from S, back to §,.
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(e) Verify thatQ = P~ L.
(/) Show that P[v], = [v]s, for any vector v = (a, b). (See Theorem 5.27.)
(9) Show that P™'[v]s, = [v]s, for any vector v = (a, b). (See Theorem 5.27.)

(a) Letv = xu, + yu, for unknowns x and y:

(a 3 1 N 3 or x+3y=a or x+3y=a
b/ T\ - -4 —2x—4y=»b 2y=2a+b
Solve for x and y in terms of aand b to get x = —2a — b, y = a + 4b. Thus

(a.b)=(—2a—3bju, +(a+ by, o [(a b))y, =[—2a—3b.a+4b]"

(b) Use (a) to write each of the basis vectors v, and v, of §, as a linear combination of the basis vectorsu,
and u, of §,:

vp=(L3)=(-2—Pu + (1 + Duy = (— 4y + (P
Uy =(3', 8]=(—'6—' lzh[ +{3 + 4]"2 = *18u| + 7“2

Then P is the matrix whose columns are the coordinates of v; and v, relative to the basis §,, that is,

(75 79)

(¢) Letv=xp, + yv, for unknown scalars x and y:

ay (1 i 3 or x+3y=a or x+3y=a
b) = M\3 8 Ix+8y=5b —y=b-13a
Solve for x and y to get x = —8a + 3b, y = 3a — b. Thus

(@ b)=(—8a+3by, +(Ba—bw, or [(a b)]S,=[—8a+3b, 3a~b]"

(d) Use (¢} to express each of the basis vectors u, and u, of §; as a linear combination of the basis vectors
voand v, of §, :

u, :{lq _2) #{‘_8 - 6}”[ +{3 + 2)[4‘2 = —‘1401 + 5')1
Uy = (3, —4) = (—24 — 120, + (9 + 4w, = —36v, + 130,

—-14 36
Write the coordinates of u, and u, relative to S, as columns to obtain Q = ( )

5 13
(14 36y -4 -18) /1 0\
@ QP_( 5 13 3 7)'(0 I)_

(f) Use (a), (b), and (c) to obtain

% 18\ —8a+3b) [—2a—3b\
ol (75 TN s )= (20 ) -t

(g) Use (a),(c), and (d) to obtain

B _[(—14 =36\(—2a—3b\ (—8a+3b\
P '[v]s.—Q[v]s.—( s ,3X ut 3b )—( 3a_b)—[v]s:

Suppose the following vectors form a basis S of K":
vy =(ay, @z, -..,a,), v, =(by, by, ..., b)), Sy v,=(cy, €35 ..., C)

Show that the change-of-basis matrix from the usual basis E = {¢,} of K" to the basis S is the
matrix P whose columns are the vectors v,, p,, ..., v,, respectively.
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5.77.

Since ey, e,, ..., ¢, form the usual basis E of K", we have

v, =(a,,65,....,a)=a,e, +a;e; + - +a,e,
vz =(b" bz, e wy bnls 'blel +b2£z + e + bne.

...........................................

a, b, €
b
P= a, b & ]
aﬂ b' cﬂ}

as claimed.

Consider the basis § = {u, = (1,2, 0), u, = (1, 3, 2), u; = (0, 1, 3)} of R>. Find:
(@) The change-of-basis matrix P from the usual basis E = {e,, e,, &5} of R? to the basis S,
(b)) The change-of-basis matrix Q from the above basis S back to the usual basis E of R?,

(@) Since E is the usual basis, simply write the basis vectors of § as columns:
110
P={2 3 1
0 2 3

(b) Method 1. Express cach basis vector of E as a linear combination of the basis vectors of S by first
finding the coordinates of an arbitrary vector v = (a, b, ¢) relative to the basis S. We have

a 1 1 0 x4+ y =a
bl=x{2]+M13]+21 or 2x+43y+ z=b
c 0 2 3 2y+3z=c¢

Solvefor x, y,ztogetx=Ta—3b+c,y=—6ba+3b—c,z=4a—2b + c. Thus
v={(a b,c)=(Ta—3b+ cJu, + (—6a + 3b— cJu, + (4a — 2b + cju,

or [vls=[(a, b, )ls=[Ta—3b+c, —6a+3b-c,d4a—2b+c]"

Using the above formula for [¢] and then writing the coordinates of the e; as columns yields
el =(l,0, U'Jm 7"1 —6!13 +4H3 ? _"3 l
e;=(0,1,0)= —3u, +3u, —2u, and Q=| -6 3 -1
83=(0'-,0, l]= u]_ u2+ "3 4 —2 l

Method 2. Find P~ ! by row reducing M = (P | ) to the form (I | P™"):

0 1 0 0 1 1 0!
M= 0 1 0]~10 1 .
0 2 3.0 0 1 0 2 3,

, 1 1 01 0 0
1:-2 1 o)j~lo 1 0!-6 3 -1
]
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7 -3 1
ThusQ=P '=[-6 3 —1}.
4 -2 1

Suppose the x and y axes in the plane R? are rotated counterclockwise 45° so that the new x’
axis is along the line y = x, and the new )’ axis is along the line y = — x. Find (a) the change-of-
basis matrix P and (b) the new coordinates of the point A(S, 6) under the given rotation.

(a} The unit vectors in the direction of the new x" and y’ axes are, respectively,

u = (/2222 and  w, =(—/2/2 J2/2)

(The unit vectors in the direction of the original x and y axes are, respectively, the usual basis vectors
for R2.) Thus write the coordinates of i, and - as columns to obtain

p-(22 -2
N NGY;)
(b) Multiply the coordinates of the point by P~ ':
(L 7
—V212 J22/\6

[Since P is orthogonal, P! is simply the transpose of P.]

_ (nﬁ;z

Consider the bases S = {1, i} and §' = {1 + i, 1 + 2i} of the complex ficld C over the real field R.
Find (a) the change-of-basis matrix P from the $-basis to the $'-basis, and (b) find the change-of-
basis matrix Q from the $'-basis back to the S-basis.

(g} We have

1+ i=11)+1() (1
142i= 120 M P‘(l 2)

2 -1
(b) Use the formula for the inverse of a 2 x 2 matrix to obtain Q = P~ ' = ( I l)'

Suppose P is the change-of-basis matrix from a basis {y;} to a basis {w,}, and suppose Q is the
change-of-basis matrix from the basis {w;} back to the basis {u;}. Prove that P is invertible and
Q=P

Suppose, fori=1,2,...,n,

W; = aguy + Gty + o+ au, = Y G ()
i=1
and,forj=1,2,...,n,
uj=bjlw. +bI2w2+'+th"= zbﬁw& (2}
k=1

Let A =(a;)and B = (b;,). Then P = A" and Q = B”. Substituting (2) into (/) yields

W = j:z.ai'(é.bﬁ w,) = u=il (}i a; bﬁ)wﬁ

Since the {w;} is a basis ) a;;b, = §, where &, is the Kronecker delta, that is, 6, = 1 if i = k but §, = 0 if
i # k. Suppose AB = (c;). Then ¢, = &, . Accordingly, AB = I, and so

QP=BTAT =(ABY =1" =1
Thus Q@ = P\
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581. Prove Theorem 5.27.
Suppose S = {u,,...,u,} and §' = {w,,..., w,}, and suppose, fori =1, ..., n,

n
W; = U, + ;U4 b e + a,u, = Zaou
=

Then P is the n-square matrix whose jth row
(@y;. G255 ---, ) ()

Also suppose v = k,w, + kywy + - + k,w, = ¥ k;w;. Then
i=1

[v]s = ['klj' kzp cees 'knj]r (2)
Substituting for w; in the equation for v, we obtain

v= ik‘w, = |=i1 é“u".’) = jg' (i:lau k,)uj

i=1
= !Z{aukl +ay;k, + 0 +ag k)
=1

Accordingly, [v]s is the column vector whose jth entry is
a,_,k|+auk2 +"'+a,ukn (3)

On the other hand, the jth entry of P[v]g is obtained by multiplying the jth row of P by [v]s., that is,
(/) by (2). However, the product of (1) and (2) is (3); hence P[v];. and [v]s have the same entries. Thus
P[v]s = [v]s, as claimed.

Furthermore, multiplying the above by P~ ! gives P~ '[v]y = P~ 'P[v]s = [v]s.

MISCELLANEOUS PROBLEMS

5.82. Consider a finite sequence of vectors S = {v,, v,, ..., v,}. Let T be the sequence of vectors
obtained from S by one of the following “elementary operations™: (i) interchange two vectors,
(i1) multiply a vector by a nonzero scalar, (iii) add a multiple of one vector to another. Show that
S and T span the same space W. Also show that T is independent if and only if S is independent.

Observe that, for each operation, the vectors in T are linear combinations of vectors in S. On the other
hand, each operation has an inverse of the same type (Prove!); hence the vectors in § are linear
combinations of vectors in T. Thus § and T span the same space W. Also, T is independent if and only if
dim W = n, and this is true if and only if S is also independent.

5.83. Let A = (a;) and B = (b;)) be row equivalent m x n matrices over a field K, and letv,, ..., v, be
any vectors in a vector space V over K. Let

u| =a“vl +alzvz+'“+ﬂ“l}" W1=b“0| +blzvz+"'+blnvn
Uy = day Uy +azzvz -l-“‘+a2,,v,, W2=bzlvl +’bzzvz+"'+b2"vn
Uy, = QpyUy + Qpa Uy + *** + Ay Up Wy = by + bz + - + b ¥,

Show that {1;} and {w,} span the same space.

Applying an “clementary operation” of Problem 5.82 to {u;} is equivalent to applying an elementary
row operation to the matrix A. Since 4 and B are row equivalent, B can be obtained from A by a sequence
of elementary row operations; hence {w;} can be obtained from {u;} by the corresponding sequence of
operations. Accordingly, {u;} and {w,} span the same space.
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Letv,,..., v, belong to a vector space V over a field K. Let

Wy =a, Uy +a,30; + -+ a,,0,
Wy = a0y + Q3305 + - + a,, v,

Wy = 4, U, + a, Uy & memaf ap, Uy

where g;; € K. Let P be the n-square matrix of coefficients, i.e., let P = (a;)).

(@) Suppose P is invertible. Show that {w;} and {v;} span the same space; hence {w;} is indepen-
dent if and only if {v;} is independent.

(b) Suppose P is not invertible. Show that {w,} is dependent.

(c) Suppose {w;} is independent. Show that P is invertible.

(@) Since P is invertible, it is row equivalent to the identity matrix /. Hence by the preceding problem {w,}
and {v;} span the same space. Thus one is independent if and only if the other is,

(b) Since P is not invertible, it is row equivalent to a matrix with a zero row. This means that {w,} spans a
space which has a spanning set of less than n elements. Thus {w;} is dependent.

() This is the contrapositive of the statement of (b) and so it follows from (b).

Suppose that A,, A,, ... are linearly independent sets of vectors, and that 4, € 4, < ---. Show
that the union A = A, U A, U --- is also linearly independent.

Suppose A is linearly dependent. Then there exist vectors v,, ..., v, € A and scalars a,, ..., a, € K, not
all of them 0, such that

alvt+azvz+"'+aﬂu”=0 {!]
Since A = U A, and the v; € A, there exist sets A4, , ..., A, such that

v,€A4;,v, €A LU, €A

1 izy -

Let k be the maximum index of the sets A4; : k = max (i, ..., i,). It follows then, since 4, = 4, < ---, that
each A, is contained in A4,. Hence v,, v, ..., v, € A, and so, by (/), A, is linearly dependent, which
contradicts our hypothesis. Thus A is linearly independent.

Let K be a subfield of a field L and L a subfield of a field E: that is, K € L < E. (Hence K is a
subfield of E.) Suppose that E is of dimension n over L and L is of dimension m over K. Show
that E is of dimension mn over K.

Suppose {v,, ..., v,} is a basis of E over L and {a,, ..., a,} is a basis of L over K. We claim that
{gvj:i=1,...,mj=1,.._,n}isabasis of E over K. Note that {a;v;} contains mn elements.

Let w be any arbitrary element in E. Since {v,, ..., v,} spans E over L, w is a linear combination of the
v; with coeflicients in L:

w=b|vl+b;v;+“'+b,v,, bJEL {.’)
Since {a,,..., a,} spans L over K, each b, € L is a linear combination of the a; with coeflicients in K:
by =kya, + ka8, + - + kya,
bz = k2|a1 + kzzﬂ'z L S k?mam

bn = kulal + ku“z ik o kmnam
where k;; € K. Substituting in (/), we obtain

W= {kl Ial gt o klmam]vl +(k21al Rk - k:m“..]”z galaad +{knlal Fonee 4 kumamwn
=kyaw + -+ ka. v +kyaw, + -+ kaa e, v Y kgaw, + 0 + ka0,

= z kﬁ(aivj)
i
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where k; € K. Thus w is a linear combination of the g;v; with coeflicients in K; hence {a,r,} spans E
over K.
The proof is complete if we show that {g;v,} is linearly independent over K. Suppose, for scalars
xy; € K, Y xula;v) = 0; that is,
iJ
(Xt + X12030, + 0 F X1 G, U)) + 0 F (X @1V + X2 G2V + 0 F Xy G, U,) =0
or (X118 + X128, + 7+ X a0y + 0 (X 8y F X8, + 0+ X a0, =0

Since {vy, ..., v,} is linearly independent over L and since the above coefficients of the v; belong to L, each
coefficient must be 0:

x“dl + Ilzaz + P + Ilmd,,,=0,..., I,,.dl +I_302 4 = +Imam=0
But {a,, ..., a,} is linearly independent over K; hence, since the x; € K,
Xit =U'.J.’t2=0,...,I|,,,=0,...,x,,| =0,x,,2=0,....x,_=0

Accordingly, {a;v;} is linearly independent over K and the theorem is proved.

Supplementary Problems

VECTOR SPACES

587. Let V be the set of ordered pairs (a, b} of real numbers with addition in ¥ and scalar multiplication on ¥V
defined by
(g by+(c,dy=(a+c, b+ d and k(a, b) = (ka, 0)
Show that V satisfies all of the axioms of a vector space except [M,]: lu=u. Hence [M,] is not a
consequence of the other axioms.
5.88. Show that the following axiom [ A,] can be derived from the other axioms of a vector space.
[A,] For any vectorsu,ve V,u+v=v+u
5.89. Let V be the set of infinite sequences (a,, 4,, ...} in a field K with addition in V and scalar multiplication on
V defined by
[ﬁt. adsy, ...) + (bl‘ bz, ...) = (at +bl' a; + b;g B |
kia,, a,,..)=(ka,, kay, ..)
where a,, b;, k € K. Show that V is a vector space over K.
SUBSPACES
§90. Determine whether or not W is a subspace of R* where W consists of those vectors (a, b, c) € R? for which
@a=2b;(ya<b=<c;ab=0;(da=b=c;(e)a= b
591. Let V be the vector space of n-square matrices over a field K. Show that W is a subspace of V il W consists
of all matrices which are (a) antisymmetric (4™ = — A), (b) (upper) triangular, (c) diagonal, (d) scalar.
592. Let AX = B be a nonhomogeneous system of linear equations in n unknowns over a field K. Show that the

solution set of the system is not a subspace of K".
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593. Discuss whether or not R? is a subspace of R>.

594. Suppose U and W are subspaces of ¥V for which U u W is also a subspace. Show that either U < W or
Wwel.

595. Let V be the vector space of all functions from the real field R into R. Show that W is a subspace of V in
each of the following cases.

(@) W consists of all bounded functions. [Here f: R—R is bounded if there exists M € R such that
If(x)] < M,¥xeR.]

(b) W consists of all even functions. [Here f: R — R is even if f(—x) = f(x), ¥x € R.]
(¢) W consists of all continuous functions.

(d) W consists of all differentiable functions.

(e) W consists of all integrable functions in, say, the interval 0 < x < 1.

(The last three cases require some knowledge of analysis.)

596. Let V be the vector space (Problem 5.106) of infinite sequences (a,, a,, ...) in a field K. Show that W is a

subspace of ¥ where (a) W consists of all sequences with 0 as the first component, and (b) W consists of all
sequences with only a finite number of nonzero components.

LINEAR COMBINATIONS, LINEAR SPANS

597. Show that the complex numbers w = 2 + 3i and z = 1 — 2i span the complex field C as a vector space over
the real field R.

598. Show that the polynomials (1 — ¢)*, (1 — )%, 1 — t, and 1 span the space P,(t) of polynomials of degree <3.

5§99. Find one vector in R* which spans the intersection of U and W where U is the xy plane: U = {(g, b, 0)},
and W is the space spanned by the vectors (1, 2, 3)and (1, — 1, 1).

5.100. Prove that span § is the intersection of all the subspaces of V containing §.

5.101. Show that span S = span (S u {0}). That is, by joining or deleting the zero vector from a set, we do not
change the space spanned by the set.

5.102. Show thatif § = T, then span S < span T.
5.103. Show that span (span S} = span S.
5.104. Let W, W,, ... be subspaces of a vector space V for which W s W, c---, Let W =W, u W, u---.

(a) Show that W is a subspace of V. (b) Suppose S; spans W, fori=1,2,....Show that §=8§, u §, U ---
spans W.

LINEAR DEPENDENCE AND INDEPENDENCE

5.105. Determine whether the following vectors in R* are lincarly dependent or independent:
@ (1,3, -1,4,3,8 —57,(294,23) (b (1, -241),210 -3,0, -61,4)

5.106. Let V be the vector space of polynomials of degree <3 over R. Determine whether u, v, w € V are linearly
dependent or independent where:

@ u=r -4 +2u4+3v=>+22+4—1L,w=2—t>-3t+5
(b) u=t2—=52-2t+3v=0>—4 -3t +4,w=2 -7 -7t +9
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5.107.

5.108.

5.109.

5.110.

5.111.

Show that (a) the vectors (1 — i, i) and (2, —1 + i) in C? are linearly dependent over the complex field C but
are linearly independent over the real field R; (b) the vectors (3 + /2, 1 + /2) and (7, 1 + 2,/2) in R? are
linearly dependent over the real field R but are linearly independent over the rational field Q.

Suppose {uy, ..., u,, wy, ..., w,} is a linearly independent subset of V. Prove that span ; N span w; = {0}.
(Recall that span u; is the subspace of V spanned by the u;.)
Suppose vy, v, ..., b, are linearly independent vectors. Prove the following:

(a) {a,vy,av,,...,a,v,} is linearly independent where each a; # 0.

b {vy, ..., v_,, W, .y ---, 1,} is linearly independent where w=b,v, + --+ + b,v; + --- + b, v, and
b; # 0.

Suppose (a,,. ..., @), --., (Gpys -- -, 4,,,) are linearly independent vectors in K", and suppose v,, ..., v, are
linearly independent vectors in a vector space V' over K. Show that the vectors

Wy=a 0+ ay v, W =agty, + 0 a g
are also linearly independent.

Suppose A is any n-square matrix and suppose u,, U, ..., i, are 1 x 1 column vectors. Show that, il Au,,
Au,, ..., Au, are linearly independent (column) vectors, then u,, i, , ..., 1, are linearly independent.

BASIS AND DIMENSION

5112

5.113.

5114,

5.115.

5.116.

5.117.

Find a subset of u,, u,, uy, u, which gives a basis for W = span (u,, u,, uy, u,) of R® where:
(a) l"] = (li ]! ]b 2v 3}' u? = []' 2‘7 _]i _2: ])’ uj = (31 Si - ]7 '—2, s}l ud = (]12) ls _]vd)
(b) U, = (lr —‘2, l: 39 _'1]: Uy = (_2)49 -"2v '_61: 2}! Uy = “1 _3r 1,23 I)r Uy = (3| _Tt 31 8? _]]
© w,=(LOLO, ) u,=(10L21L0Wu;=(1.2.3, LDu,=(1.2.1,1,1)
@ wy=0LO0LLNu=1201)u=(0,1,234,u,=(4254C06)
Let U and W be the following subspaces of R*:

U={abcd:b—2c+d=0} W={{abecd:a=db=2}
Find a basis and the dimension of (a) U, (b) W, (c} U n W.

Find a basis and the dimension of the solution space W of each homogeneous system:

x4+2y—22425— t=0 x+2y— z4+3s—4t=0

xX+2y— z43—-2t=0 2x+ 4y —2z2— s+ 5t=0

2x+4y—Tz+ s+ t=0 2x+4y—2z2+4s—2 =0
(a) (b)

Find a homogeneous system whose solution space is spanned by the three vectors
(1, ~2,0,3, -1) (2,325 -3) (=31, 3<2)
Let V be the vector space of polynomials in ¢ of degree <n. Determine whether or not each of the following
is a basis of V:
@ {L1+l+e4+ 14240 14040440+
B {+tr+d2+03 2407 4

Find a basis and the dimension of the subspace W of P(t) spanned by the polynomials

(@ u=+22 -2A+lLv=0>+3 -t+dandw=20+ =71 =17
)y u=2+=-3+2v=20+*+t—4,andw=4r> + 3t — 5t + 2



196 VECTOR SPACES [CHAP. 5

5.118. Let V be the space of 2 x 2 matrices over R. Find a basis and the dimension of the subspace W of ¥V

spanned by the matrices
1 1 2 - 1 -7
(-1 5) (—s 7) and (—5 l)

(<& )

ROW SPACE AND RANK OF A MATRIX

5.119. Consider the following subspaces of R3:

U,=span[(1, 1, —=1), (2,3 —1),(3, 1, —5)]
U,=span [(1, =1, —3),(3, =2, —8),(2, 1, —-3)]
Us=span [(1, 1, 1), (1, =1, 3, (3, =1, 7]

Determine which of the subspaces are identical.

5.120. Find the rank of each matrix:

1 i =2 S 4 1 2 -3 -2 -3 1 1 2 2 1
1 4 1 3 5 1 K. 0 —4 4 5 5 3 -1
1 4 2 4 3 3 8 -7 -2 —11 5 8 1 -6 1
2 7 -3 6 13 2 1 -9 —10 -3 -1 =2 2 5 -8
(@) (b) (9 (@)

5.121. Show that if any row is deleted from a matrix in echelon (row canonical) form then the resulting matrix is
still in echelon (row canonical)} form.

5.122. Let A and B be arbitrary m x n matrices. Show that rank (4 + B) < rank A + rank B.

5.123. Give examples of 2 x 2 matrices A and B such that:

(4) rank (4 + B) <rank A, rank B () rank (A + B) > rank A, rank B
(b) rank (4 + B) = rank 4 = rank B

SUMS, DIRECT SUMS, INTERSECTIONS
5.124. Suppose U and W are 2-dimensional subspaces of R3. Show that U n W # {0}.

5.125. Suppose U and W are subspaces of V' and that dim U = 4, dim W = §, and dim V' = 7. Find the possible
dimensions of U n W.

5.126. Let U and W be subspaces of R* for whichdim U = I, dim W = 2,and U ¢ W.Show that R®* = U @ W.

5.127. Let U be the subspace of R® spanned by
(L3 -3 -1, -4 (1,4, —1, -2, -2) 2,9,0, -5 —2)
and let W be the subspace spanned by
(1,6,2, ~2,3) (2,8, —1, —6, =5 (1,3, —1, —5, —6)
Find (g) dim (U + W), (b)dim (U ~ W).
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5.128. Let V be the vector space of polynomials over R. Find (a) dim (U + W), (b) dim (U ~ W), where

5.129.

5.130.

5.131

5.132.

5.133.

5.134.

5.135.

5.136.

5.137.

5.138.

U=span (' +4rF —t+ 3,13 + 512 + 5, 3t> + 1002 — 5t + 5)
W=span(£*+ 42+ 6,2 +202 -t +520 +22 -3 +9)

Let U be the subspace of R® spanned by

[l- _lv "-—l, _2-0] (ls _2v _210t _3} and (]1 -19 _'2" _2| 1)
and let W be the subspace spanned by
(L, =2, -3,0, -2 (L, —1, =3, 2, -4 and (1, =1, —-2,2 -5)

(a) Find two homogencous systems whose solution spaces are U and W, respectively.
(b} Find a basis and the dimension of U n W,

Let U,, U,, and U, be the following subspaces of R*:
U ={abcra+b+c=0} U,={(a.b,c):a=c} Uy=1{(0,0,c):ceR}
Show that: (@) R*= U, + U, (R’ = U, + U,,(c) R*= U, + U,. When is the sum direct?

Suppose U, V, and W are subspaces of a vector space. Prove that
(UnN+UnW)ycsUn(V+W
Find subspaces of R? for which equality does not hold.

The sum of arbitrary nonempty subscts {not necessarily subspaces) S and T of a vector space V is defined
by S + T = {s +1:5 € §,1 € T}. Show that this operation satisfies:

(@) Commutativelaw: S+ T =T+ § ) S+{0}={0}+S5S=S§
(b) Associative law: (S, + 8;) + 5, =5, +(5; + §3) d S+V=V+85=V

Suppose W,, W;, ..., W, are subspaces of a vector space V. Show that:

(@) span(W,, W,, ... W)=W, + W+ -+ W,
(b) IfS;spans Wfori=1,...,r,thenS, v S, u--- U S, spans W, + W, +--- + W,.

Prove Theorem 5.24.
Prove Theorem 5.25.

Let U and W be vector spaces over a field K. Let ¥ be the set of ordered pairs (1, w) where u belongs to U
and wto W: V = {(4, w): ue U, we W}, Show that V is a vector space over K with addition in V and
scalar multiplication on V defined by

(Lw+(,w)=(u+uv,w+w) and Kk, w)=(ku, kw)

where 1, &' € U, w, w' € W, and k € K. (This space V is called the external direct sum of U and W)

Let V¥ be the external direct sum of the vector spaces U and W over a field K. (See Problem 5.136.) Let
U ={1,0)ue U}and W = {(0, w): w e W}. Show that
(@) U and W are subspaces of ¥ and that Vv = U @ W;

(b} U is isomorphic to U under the correspondence u« (u, 0}, and that W is isomorphic to W under the
correspondence w ++ (0, w);

(c} dim V =dim U + dim W.

Suppose V = U@ W. Let ¥ be the external direct product of U and W. Show that ¥ is isomorphic to ¥
under the correspondence v = u + W (1, w).
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COORDINATE VECTORS

5.139. Consider the basis S = {1, = (1, —2), u, = (4, —7)} of R2. Find the coordinate vector [v] of v relative to §
where (@) v =(3,5), (M e =(1, 1), and () v = (a, b).

5.140. Consider the vector space P,(t) of polynomials of degree <3 and the basis S = {1, t + 1, 1? + 1, 1* + t*} of
P,(1). Find the coordinate vector of v relative to S where (@) v =2 — 3t + 12 + 2t*; (W) v =3 — 2t — t*; and
(dv=a+ bt + et + di>.

5.141. Let S be the following basis of the vector space W of 2 x 2 real symmetric matrices:

o 20 e )

Find the coordinate vector of the matrix A ¢ W relative to the above basis S where () 4 =( ; —5)

1 2
and (b)) A = ( 5 4).

CHANGE OF BASIS

5.142. Find the change-of-basis matrix P from the usual basis E = {(1, 0), (0, 1)} of R? to the basis S, the change-
of-basis matrix Q from § back to E, and the coordinate vector of v = (a, b) relative to § where
@ §={1.2.(39] ) §=1{25067
() S={(1. —3.6. -8)} @ §=1{23),4 5

5.143. Consider the following bases of R%: S = {u; = (1, 2), 4, = (2, 3)} and §" = {v, = (1, 3), v, = (1, 4)}. Find:
(a) the change-of-basis matrix P from § to §', and (b) the change-of-basis matrix Q from §' back to S.

§.144. Suppose that the x and y axes in the plane R? are rotated counterclockwise 30° to yield new x’ and y’ axes
for the plane. Find: (@) the unit vectors in the direction of the new x' and )’ axes, (b) the change-of-basis
matrix P for the new coordinate system. and (c) the new coordinates of each of the following points under
the new coordinate system: A(1, 3), B(2, —5), C{a, b).

5.145. Find the change-of-basis matrix P from the usual basis E of R? to the basis 8, the change-of-basis matrix Q
from § back to E, and the coordinate vector of ¢ = (a4, b, ¢) relative to § where S consists of the vectors:
(G] l"l =(11 ]’0]1 u1=[0r ls 2}> ﬂ3=(0, lﬁ l) (C] ul =“-121 t}v "2={I-3t4)» ﬂ3=[2,5,6]
(B) u,=(L0O,1),u,=(1,1,2),u;=(1,24)

5.146. Suppose S,, S,, and §, are bases of a vector space V, and suppose P is the change-of-basis matrix from S,

to §, and Q is the change-of-basis matrix from S, to §,. Prove that the product PQ is the change-ol-basis
matrix from §, to §,.

MISCELLANEOUS PROBLEMS

5.147. Determine the dimension of the vector space W of n-square: (a) symmetric matrices over a field K,
{b) antisymmetric matrices over K.

5.148. Let V be a vector space of dimension n over a field K, and let K be a vector space of dimension m over a
subfield F. (Hence V may also be viewed as a vector space over the subfield F.) Prove that the dimension of
V over F is mn.
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5.149. Lett,, t;,..., 1, be symbols, and let K be any field. Let V' be the set of expressions
ayty +at,+---+a,t, where g ek
Define addition in V by
(ayty +aty + - +a,t)+ (b, +bhyty+ - +bt)=(a, + b, +(a; + b))ty + - +(a, + b,
Define scalar multiplication on V by
kia,t, +azt, + -+ + a,t,) = kayt, + kayt, +--- + ka,t,

Show that V is a vector space over K with the above operations. Also show that {t,, ..., t,} is a basis of V
where,fori=1,...,n,

'i=0!|‘+“'+0“u|+1!i‘+0‘1+|+"'+0‘n

Answers to Supplementary Problems

590. (a) Yes. (d) Yes.
(h) Nojeg,(1,2,3)e Whbut —2(1,2,3) ¢ W. (&) No;eg,(9,3,00e Whbut 29,3, 0¢ W.
{c) No;eg.,(l1,0,0),(0, 1, 0) € W, but not their sum.

5.92. X =0is not asolution of AX = B.

593. No. Although one may “identify” the vector (a, b) € R? with, say, (a, b, 0) in the xy plane in R?, they are
distinct elements belonging to distinct, disjoint sets.

595. {a) Letf g e W with M, and M, bounds for f and g, respectively. Then for any scalars a, b € R,

I(af + bgkx)| = | af(x) + bg(x}| < |af(x)| + |bg(x)] = |all fx)| + |blig(x)] < |aiM, + |bI M,
That is, |a| M, + |b| M, is a bound for the function af + bg.
(b) (af + bg¥ —x) = af(—x) + bg(—x) = af(x) + bglx) = (af + bgkx).

599. (2, —5,0).
5.105. (a) Dependent, (b) Independent.
5.106. (@) Independent, (b} Dependent.
5107. (@) @ —1+D)=(1+)l—iik ) L 1+2/2=06-/23+/21+2.
5.112. (@) gty ug;  (B) upty; (0 Uy up,us,ugs  (d) wy,ty,us.
5113. (a) Basis, {(1,0,0,0),(0,2, 1,0),(0, —1,0, 1)}; dim U = 3.
(b) Basis, {(1,0.0.1),(0,2, 1.0)}; dim W = 2.

(c) Basis, {(0,2,1,0)}; dim (U n W) = L. Hint. U n W must satisfy all three conditions on a, b, ¢ and d.

5114. (a) Basis, {(2 —1,0,0,0),(4,0,1, —1,0),(3,0, 1,0, 1)}; dim W = 3.
(b) Basis, {(2, —1,0,0,0),(1,0,1,0,0); dim W = 2.

Sx+y—z—s =0

5.115.
{x+y—z —-t=0



5.116.

5.117.

5.118.

5.119.

5.120.

5.123.

5.125.

5.127.

5.128.

5.129.

5.130.

5.131.

5.139.

5.140.

5.141.

5.142.

5.143.

5.144.

VECTOR SPACES

(a) Yes, () No. Fordim V¥ = n + 1, but the set contains only n elements.
(@) dim W =2, (h) dim W =3

dim W =2

U,and U,.

@ 3, B 2 () 3 (@ 2

it SE 10 0 0
« “'=(o o)"[":( 0 0) 2 "‘:(o o)’B=(o :)
i 0 0o 2
©) "“(0 0)’B=(0 o)

dim(Un W)y=2,30rd.

(@dim(U +W)=3, (B)dim(U n W)=2.

(@) dim (U + W) =3, dm(U n W)= 1.
@ Ix+4dy—z —t=0 {4x+2y —s =0
g dx+2y +s =0 9x+2y+2z +1=0

# {1, -2, —5,0,0),(0,0,1,0, —)}.dim (U n W) =2.

The sum is direct in (b) and (¢).

In R2, let U, ¥, and W be, respectively, the line y = x, the x axis, and the y axis.

(@) [—41,11], () [—11,3] () [—7a—4b,2a+b]

(@) [4, -2, —-1,2] b [4 -1, -1,0], () [a-b+c—db—-c+dc—dd)

(@ [2,—-1,1}, (» [3.1,-2]

o=@ Yo-(3 Du-(3t)

o r=(3 Yo-(3 (%

@ r-C Po-(] Dra-(1)
G She-(F (")

(L ) we-(5 )

@ /323 (-4532)
_(V¥2 -}
o e )

d P=

g
<
I

[CHAP. 5
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© [A4]=[/3 -3V +3./3)2)
[B] = [(2/3 + 52,2 - 5./3)2],
[C1 = [(\/3a — b2, (a + /3b)2]

5.145. Since E is the usual basis, simply let P be the matrix whose columns are u,, u,, 5. Then Q = P~ ! and

[v]=P 'v = Qv
1 0 0 1 o 0 a

(@ P=|1 I 1L0= I -1 1), vl = a-h+c¢
0 2 1 =2 2 -1 —2a+2b—c
1 1 1 0 -2 1 -2b+c

) P=|0 1 2L0=| 2 3 =2)[vl={2a+3b~-2
| 2 4 -1 -1 1 —a—-b+c
1 1 2 -2 2 -1 —2a+2—c

@ P=(2 3 5}o=(-7 4 —t)@l=(-Ta+4—c
1 6 5 -3 1 Sa—3b+¢

5147. (@) nn+1)2, (b) nn—1)2

5.148. Hint: The proof is almost identical to that given in Problem 5.86 for the special case when ¥ is an extension
field of K.



Chapter 6

Inner Product Spaces, Orthogonality

6.1 INTRODUCTION

The definition of a vector space V involves an arbitrary field K. In this chapter we restrict K to be
either the real field R or the complex field C. Specifically, we first assume, unless otherwise stated or
implied, that K = R, in which case V is called a real vector space, and in the last sections we extend our
results to the case that K = C, in which case V is called a complex vector space.

Recall that the concepts of “length” and “orthogonality™ did not appear in the investigation of
arbitrary vector spaces (although they did appear in Chapter 2 on the spaces R" and C"). In this chapter
we place an additional structure on a vector space V to obtain an inner product space, and in this
context these concepts are defined.

As in Chapter 5, we adopt the following notation (unless otherwise stated or implied):

4 the given vector space
u, v, w vectors in V'
K the field of scalars
a b, c ork scalars in K

We emphasize that V shall denote a vector space of finite dimension unless otherwise stated or
implied. In fact, many of the theorems in this chapter are not valid for spaces of infinite dimension. This
is illustrated by some of the examples and problems.

6.2 INNER PRODUCT SPACES
We begin with a definition.

Definition: Let V be a real vector space. Suppose to each pair of vectors u, v € V there is assigned a
real number, denoted by {u, v). This function is called a (real) inner product on V if it
satisfies the following axioms:

[1,] (Linear Property) {au, + bu,, v) = alu,, v) + b{u,, v)
[1,] (Symmetric Property) {u, v) = {v, u)
[Is] (Positive Definite Property) {u, u) > 0; and (i, u> = 0 if and only if u = 0.

The vector space V with an inner product is called a (real) inner product space.

Axiom [I,] is equivalent to the following two conditions:
(@) <uy+uy, vy = {u, vy + {uy, v and (b) <ku, vd = k{u, w)
Using [1,] and the symmetry axiom [/,], we obtain
{uy cvy + dvy) = {evy + dvy, u) = vy, u) + d{v,, u) = ey, v,) + d{u, v;)

202
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or, equivalently, the two conditions
@ (o, +00=Cv)+ o) and  (B) Cu kod = k(u, o)

That is, the inner product function is also linear in its second position (variable). By induction, we
obtain

{ayu, + -+ +a,t,, v) =a,{u,v) +au, t> + - +a,u,v)
and

(ur blvl + bz vz p e b,l{,} = bl(“* v'l> + b2<u1 UZ) g ba(”p UJ)

Combining these two properties yields the following general formula:

<Za,ru,-, E ijj — Z zajbj<ui, -UJ)
i=1 i=1

i=1 j=1

The following remarks are in order.

Remark 1: Axiom [1,] by itself implies that
0,0 =00, 0)=0{v,0)> =0
Accordingly, [1,], [1,], and [1,] are equivalent to [I,], [,], and the following axiom:
[I3] Ifu+#0,then {u, u) >0

That is, a function satisfying [I,], [1,], and [[4] is an inner product.

Remark 2: By [/,], (i, u) is nonnegative and hence its positive real square root

exists. We use the notation
Null = /{u, uy

This nonnegative real number || u || is called the norm or length of u. This function does
satisfy the axioms of a norm for a vector space. (See Theorem 6.25 and Section 6.9.)
The relation || u ||2 = {(u, u> will be frequently used.

Example 6.1. Consider the vector space R". The dor product (or scalar product) in R” is defined by
urv=a;b, +ab, +--+a,b,

where u = (a;) and v = (b;). This function defines an inner product on R". The norm [ u | of the vector u = (a) in
this space follows:

il = i = AT T

On the other hand, by the Pythagorean Theorem, the distance from the origin O in R? to the point P{g, b, c),
shown in Fig. 6-1, is given by /a* + b* + ¢%. This is preciscly the same as the above defined norm of the vector
v=1(a, b, ¢) in R*. Since the Pythagorean Theorem is a consequence of the axioms of Euclidean geometry, the
vector space R" with the above inner product and norm is called Euclidean n-space. Although there are many ways
to define an inner product on R”, we shall assume this as the inner product on R", unless otherwise stated or
implied; it is called the usual inner product on R".
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Al

- h

Fig. 6-1

Remark: Frequently, the vectors in R" are represented by n x 1 column matrices.
In such a case, the usual inner product on R" (Example 6.1) may be defined by

{u, vy = u'v

Example 6.2

(a)

()

Let V be the vector space of real continuous functions on the interval a < t < b. Then the following is an inner
product on V:

b
o= j S g(r) dt

where f(t) and g(t) are now any continuous functions on [a, b].

Let V be again the vector space of continuous functions on the interval a <t < b. Let w{t) be a given contin-
uous function which is positive on the interval a < t < b. Then the following is also an inner product on V:

o= J w(t) (1) g(t) dt

In this case, w{t) is called a weight function for the inner product.

Example 6.3

(a)

Let V denote the vector space of m x n matrices over R. The following is an inner productin V:
(A, B) =tr (B"A)
where tr stands for trace, the sum of the diagonal elements. If A = (a;)) and B = (b;;), then
(A, BY=tr(BTA)= Y ¥ a;;by;

i=1 j=1

the sum of the products of corresponding entries. In particular,
lAf?=<A, A>=Y Y a}
i=1 j=1

the sum of the squares of all the elements of 4.
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(b) Let V be the vector space of infinite sequences of real numbers (a,, a,, ...} satisfying

af

=al+al+ --<wo

ingk

i

i.e., the sum converges. Addition and scalar multiplication are defined componentwise:
(4, @5, -- Y+ (b, by, ..)=(a, + by,a; + b,,..)
kia,, a5, ...) = (ka,, kay, ...)
An inner product is defined in V by
{ay, a3, .. 5 (by. by, .. ) =aby +ayby + -

The above sum converges absolutely for any pair of points in V (Problem 6.12); hence the inner product is well
defined. This inner product space is called /,-space (or Hilbert space).

6.3 CAUCHY-SCHWARZ INEQUALITY, APPLICATIONS

The following formula (proved in Problem 6.10) is called the Cauchy—Schwarz inequality; it is used
in many branches of mathematics.

Theorem 6.1 (Cauchy-Schwarz): For any vectorsu, v € V,
{u, v)? < (u, w){v,v)  or equivalently, |<u,v)|<|u]|v]

Next we examine this inequality in specific cases.

Example 6.4
(@) Consider any real a,, ..., a,, by, ..., b,. Then by the Cauchy-Schwarz inequality,
(@b, + a;b; + -~ +a,b) < (al + -+ al)b] + -~ + b)
that is, (u * v)? < J|u |2 || v | where u = (a)and v = (b).

(b) Let f and g be any real continuous functions defined on the unit interval 0 < ¢ < 1. Then by the Cauchy-
Schwarz inequality,

1 ] 1 1
KLY = U Sty dl) SJ; S dt _[] gOda=11ngl?
1]

Here V is the inner product space of Example 6.2(a).

The next theorem (proved in Problem 6.11) gives basic properties of a norm; the proof of the third
property requires the Cauchy-Schwarz inequality.

Theorem 6.2: Let V be an inner product space. Then the norm in V satisfies the following properties:
[N,] lvll>20;and |v] =0if and only if v = 0.

[N.] lkoll =1kllvl.
[Ns] fue+vel <Hull +1{vl.

The above properties [N,], [N,], and [N,] are those that have been chosen as the axioms of an
abstract norm in a vector space (see Section 6.9). Thus the above theorem says that the norm defined by
an inner product is an actual norm. The property [N,] is frequently called the triangle inequality
because if we view u + v as the side of the triangle formed with u and v (as shown in Fig. 6-2), then [N,]
states that the length of one side of a triangle is less than or equal to the sum of the lengths of the other
two sides.



206 INNER PRODUCT SPACES, ORTHOGONALITY [CHAP. 6

The following remarks are in order.

Remark 1: If | u| = 1, or, equivalently, if {u, u)> = 1, then u is called a unit vector
and is said to be normalized. Every nonzero vector v € ¥V can be multiplied by the
reciprocal of its length to obtain the unit vector

. 1
vV=——010

el

which is a positive multiple of v. This process is called normalizing v.

Remark 2: The nonnegative real number d(u, v) = || u — v is called the distance
between u and v; this function does satisfy the axioms of a metric space (see Theorem
6.19).

Remark 3: For any nonzero vectors u, v e V, the angle between u and v is
defined to be the angle 0 such that 0 < # < n and

{u, v)

cos 8 =
lwl o]

By the Cauchy-Schwarz inequality, —1 < cos # < 1 and so the angle 6 always exists
and is unique.

64 ORTHOGONALITY

Let V be an inner product space. The vectors u, v € V are said to be orthogonal and u is said to be
orthogonal to v if

{u,v) =0

The relation is clearly symmetric; that is, if u is orthogonal to v, then {v, u) = 0 and so » is orthogonal
to u. We note that 0 € V is orthogonal to every v € V for
O0,v) =Ov, v =0, v>)=0

Conversely, if u is orthogonal to every v € V, then {u, u) = 0 and hence u = 0 by [/,]. Observe that u
and v are orthogonal if and only if cos 6 = 0 where @ is the angle between u and v, and this is true if and
only if u and v are “ perpendicular,” i.e., 6 = n/2 (or 8 = 90°).

Example 6.5
(a) Consider an arbitrary vector u = (a,, 4. ..., 4,) in R". Then a vector v = (x,, X,, .... x,) is orthogonal to u if

{u,v) =ax, +a,x; + +a,x,=0
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In other words, v is orthogonal to u if v satisfies a homogeneous equation whose coefficients are the elements
of u.

(b) Suppose we want a nonzero vector which is orthogonal to v, =(1, 3, 5) and v, = (0, 1, 4) in R. Let
w = (x, y, z). We want

O0=(u,wd=x+3y+52 and O={v,,w)=y+4z
Thus we obtain the homogeneous system
x+3y+52=0 y+4z=0
Set z=1 to obtain y = —4 and x = 7; then w = (7, —4, 1) is orthogonal to v, and v,. Normalizing w, we

obtain
W = w/llwll = (7//66, —4/,/66, 1/,/66)

which is a unit vector orthogonal to v, and v, .

Orthogonal Complements
Let S be a subset of an inner product space V. The orthogonal complement of S, denoted by S§*
(read “S perp”) consists of those vectors in V which are orthogonal to every vector u € S:
St ={veV:{vu)=0forevery ue S}
In particular, for a given vector v in V, we have
ut ={veV:{v,u)=0}

That is, u' consists of all vectors in ¥ which are orthogonal to the given vector u.
We show that S* is a subspace of V. Clearly 0 € S* since 0 is orthogonal to every vector in V. Now
suppose v, w € S*. Then, for any scalars a and b and any vector u € S, we have

{lav + bw, u) = alv,ud + b{w,ud =a*0+b*0=0

Thus av + bw € S* and therefore §* is a subspace of V.
We state this result formally.

Proposition 6.3: Let S be a subset of an inner product space V. Then S* is a subspace of V.

Remark 1: Suppose u is a nonzero vector in R*. Then there is a geometrical
description of u*. Specifically, u* is the plane in R* through the origin O and perpen-
dicular to the vector u, as shown in Fig. 6-3.

Fig. 6-3
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Remark 2: Consider a homogeneous system of linear equations over R:

A1 X, Fagx, + -+ a,x,=0
Ay Xy + Q3% 4+ + Ay, %, =0

Gy Xy + Gy X3 + " + Gy X, =0

Recall that the solution space W may be viewed as the solution of the equivalent
matrix equation AX = 0 where A = (a;;) and X = (x;). This gives another interpreta-
tion of W using the notion of orthogonality. Specifically, each solution vector
v = (x,, X5, ..., X,) is orthogonal to each row of 4; and consequently W is the orthog-
onal complement of the row space of A.

Example 6.6. Suppose we want to find a basis for the subspace u* in R* where u = (1, 3, —4). Note u" consists of
all vectors (x, y, z) such that

<(I9 y) z]u (]s 3. —4]> =0 or x+3y—4z=(}
The free variables are y and z. Set

(1) y= —1.z =0 to obtain the solution w, = (3, —1,0)
(2} y =0,z = | to obtain the solution w;, = (4,0, 1)

The vectors w, and w, form a basis for the solution space of the equation and hence a basis for u'.

Suppose W is a subspace of V. Then both W and W* are subspaces of V. The next theorem, whose
proof (Problem 6.35) requires results of later sections, is a basic result in linear algebra.

Theorem 6.4: Let W be a subspace of V. Then V is the direct sum of W and W', that is,
V=WaWw'.

Example 6.7. Let W be the z axis in RY, e, W = {(0, 0, ¢): c € R}. Then W' is the xy plane, or, in other words,
W' = {(a, b. 0): a, b € R} as shown in Fig. 6-4. As noted previously, R* = W@ W'

‘z
W
/

4
| / -
| wl

Fig. 6-4

6.5 ORTHOGONAL SETS AND BASES, PROJECTIONS

A set S of vectors in V is called orthogonal if each pair of vectors in S are orthogonal, and S is called
orthonormal if S 1s orthogonal and each vector in S has unit length. In other words, S = {u,, u,, ..., u,}
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is orthogonal if
{up, up) =0 for i#j

and S is orthonormal if
0 fori##j
1 fori=j

ug, ;) =6;; = {

Normalizing an orthogonal set S refers to the process of multiplying each vector in S by the recipro-
cal of its length in order to transform S into an orthonormal set of vectors.

A basis S of a vector space V is called an orthogonal basis or an orthonormal basis according as S is
an orthogonal set or an orthonormal set of vectors.

The following theorems, proved in Problems 6.20 and 6.21, respectively, apply.

Theorem 6.5: Suppose S is an orthogonal set of nonzero vectors. Then S is linearly independent.

Theorem 6.6 (Pythagoras): Suppose {u,, u,, ..., u,} is an orthogonal set of vectors. Then
Huy +up + -+ 12 = Juy 12+ N 2 40 + g, |2
Here we prove the above Pythagorean Theorem in the special and familiar case for two vectors.
Specifically, suppose {u, v> = 0. Then
lu+oP=Cu+vu+vd=quu)+2{u,vd +<{v, 0D ={uu) +{v,vd> = Juf*+{v|?

which gives our result.

Example 6.8
(@) Consider the usual basis E of Euclidean 3-space R*:
E={e,=(1,0,0)e;=(010),e =00 1)}
It is clear that
(e.e) =<{e,e) =<{e;,e3>=0 and (e €,) =<e;, ;) =(e;,e3) =1
Thus E is an orthonormal basis of R®. More generally, the usual basis of R" is orthonormal for every ».

(b) Let V be the vector space of real continuous functions on the interval —z < t < n with inner product defined
by (f, g> = |* . f(t)g(r) dt. The following is a classical example of an orthogonal subset of V':

{1,cos t,cos 2t, ..., sin t,sin 2¢, ...}
The above orthogonal set plays a fundamental role in the theory of Fourier series.
() Consider the following set S of vectors in R*:
S={u=(1,2 -3,4,v=03,41 -2w=(3 -2,1,1}

Note that
) =3+8-3+8=0 uywd)=3—-4-3+4=0 {e,w)=9-84+1-2=0
Thus S is orthogonal. We normalize § to obtain an orthonormal set by first finding
lul?=1+4+9+16=30 lol2=9+16+ 1 +4 =730 Nwi2=9+4+1+1=15

Then the following form the desired orthonormal set of vectors:
(1/4/30, 2/,/30, —3/,/30, 4/,/30)
b = (3/4/30. 4/,/30, 1/,/30, —2/,/30)
W = (31/15, =2/,/30, 11,/15, 1/,/15)
Wealsohaveu +v+w=(74, —1,3)and lu+v+w||?=49+ 16 + 1 + 9=75. Thus
Null2+ el +Iwli?=30+304+15=75=|utv+w|?
which verifies the Pythagorean Theorem for the orthogonal set S.

i
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Example 6.9. Consider the vector u = (1, 1, 1, 1) in R*. Suppose we want to find an orthogonal basis of u*, the
orthogonal complement of 1. Note that u' is the solution space of the linear equation

x+y+z+1=0 ()

Find a nonzero solution v, of (/), say v, = (0, 0, 1, — 1). We want our second basis vector v, to be a solution to (/)
and also orthogonal to v,, i.e., to be a solution of the system

x+y+z+1t=0 z—1t=0 (2)

Find a nonzero solution v, of (2), say v, = (0, 2, — 1, —1). We want our third basis vector to be a solution of (/) and
also orthogonal to v, and v, , i.e., to be a solution of the system

X+y+z+1t=0 2y —z—1=0 z—1=0 (3

Find a nonzero solution of (3), say v; = (—3, 1, 1, 1). Then {v,, v,, v5} is an orthogonal basis of u*. (Observe that
we chose the intermediate solutions v, and v, in such a way that each new system is already in echelon form. This
makes the calculations simpler.) We can find an orthonormal basis for u* by normalizing the above orthogonal
basis for u*. We have

lo,I?=0+0+14+1=2 o1’ =04+44+14+1=6 les2=9+1+1+1=12

Thus the following is an orthonormal basis for u*.

2, = (0,0, 14/2, —1//2) vy = (0, 2/./6, —1//6, —1/,/6) vy = (=312, 14 /12, 11./12, 1/,/12)

Example 6.10. Let S consist of the following three vectors in R*:

u=(1,21) u, =(2,1, —4) uy=(3, -2, 1)
Then § is orthogonal since uy, u,, and u, are orthogonal to each other:
<ﬂ|,“2>=2+2—4=0 (“.,H3>=3—4+l=0 <H2,H3)=6—2—4:0

Thus S is linearly independent and, since S has 3 elements, § is an orthogonal basis for R.
Suppose we want to write v = (4, 1, 18) as a linear combination of u,, u,, u,. First set ¢ as a linear com-
bination of u,, u;, u, using unknowns x, y, z as follows:

@LI18)=x(1,1L1)+y2 1, -4 +2z3 -2,1) (1)
Method 1. Expand (/) to obtain
x+2y+3z=4 x+y—22=1 x—4y +z=18

fromwhichx =4,y = -3,z =2 Thus v = 4u, — 3u; + 2u,.
Method 2. (This method uses the fact that the basis vectors are orthogonal, and the arith-
metic is much simpler.) Take the inner product of (/) with u, to get

(4, 1,18 -(1,2, D =x(1.2, 1) - (1, 2, 1) or 24 = 6x or x=4

(The two last terms drop out since u, is orthogonal to u, and to u,.) Take the inner product of
(1) with u, to get

4,1,18)-(2, 1, -4 =p2, 1, -4 - (2,1, —4) or —63=21y or y=-3
Finally, take the inner product of (J) with u, to get
4.1,18) -3, —2, 1} =123, -2, 1}-(3, =2, 1) or 28 = 14z or z
Thus v = 4u, — 3u, + 2u,.

i
[¥]

The procedure in Method 2 in Example 6.10 is true in general; that is,

Theorem 6.7: Suppose {u,,u,, ..., u,} is an orthogonal basis for V. Then, for any v € V,

. <U, ul> (U, 1‘2) - <IJ, uar>

BT T e T

(See Problem 6.5 for the proof))
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Remark: The above scalar,

_nud  (nw
T uw)y g l?
is called the Fourier coefficient of v with respect to u; since it is analogous to a coeffi-

cient in the Founier series of a function. This scalar also has a geometric interpretation
which is discussed below.

Projections
Consider a nonzero vector w in an inner product space V. For any v € V, we show (Problem 6.24)
that
_ oWy (v, w)

Twow)y w?

is the unique scalar such that v = v — cw is orthogonal to w. The projection of v along w, as indicated
by Fig. 6-5, is denoted and defined by

_ {v, w) Lo, w)

= W=
{w, w) I wii?

The scalar c is also called the Fourier coefficient of v with respect to w or the component of v along w.

proj (v, w) = ew

Fig. 6-5
Example 6.11
(@) We find the component ¢ and the projection cw of v = (1, 2, 3, 4) along w = (1, —3, 4, —2) in R*. First we
compute

o,wd=1—-6+12—-8=—-1  and IwliZ=1+9+16+4=30
Then ¢ = —+5 and proj (v, w) = cw = (— 15, To» —Tzs,ful

(b) Let V be the vector space of polynomials with inner product {f, g> = {5 f(t)g(r) dt. We find the component
(Fourier coefficient) ¢ and the projection cg of f(t) = 2t — 1 along g(1) = 1. First we compute

1 5 Iil t3 1 ] 1 . ls 1 l
_ 3 _ e _ Pl 2 — _ B e 2
{fyg>= J; (2t — 1) dt [2 3]0 = g, 4> L 1+ dt [S:L s

Then ¢ = £ and proj (f, g) = cg = 5t*/6.
The above notion may be generalized as follows.

Theorem 6.8: Suppose w,, w,, ..., w, form an orthogonal set of nonzerc vectors in V. Let v be any

vector in V. Define v’ = v — ¢;w, — c;w; — --- — ¢, w, where
b ST WD . _ {w,wy) . _Ko,w
olwa i’ Tl I? ’ " lwll?

Then ¢ is orthogonal to w;, w,, ..., w,.
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Note that the ¢; in the above theorem are, respectively, the components (Fourier coefficients)
of v along the w;, Furthermore, the following theorem (proved in Problem 6.31) shows that
oW, + - + ¢, w, is the closest approximation to v as a linear combination of wy, ..., w,.

Theorem 6.9: Suppose w,, w,, ..., w, form an orthogonal set of nonzero vectors in V. Let v be any
vector in V and let c; be the component of v along w;. Then, for any scalars g, ..., q,,

r
v — EC,‘W&
k=1

=

r
v~ Y apwy
k=1

The next theorem (proved in Problem 6.3_2) is known as the Bessel inequality.

Theorem 6.10: Suppose {e,, e,, ..., ¢} is an orthonormal set of vectors in V. Let v be any vector in V
and let ¢; be the Fourier coefficient of v with respect to ;. Then

.
Yaslv)?
k=1

Remark: The notion of projection includes that of a vector along a subspace as
follows. Suppose W is a subspace of V and v e V. By Theorem 64, V = W@ W',
hence v can be expressed uniquely in the form

v=w+w where we W, w e Wt

We call w the projection of v along W and denote it by proj (v, W). (See Fig. 6-6.) In
particular, if W = span (w,, ..., w,) where the w; forms an orthogonal set, then

pl‘Oj (I}, W) = Clwl + CZ wz 40 4 C.-W..

where ¢, is the component of v along w;, as above.

P
p
[ 3 5
v v — proj (v, W)
o &
proj (v, W) e
W

Fig. 6-6

6.6 GRAM-SCHMIDT ORTHOGONALIZATION PROCESS

Suppose {v,, v;, ..., v,} is a basis for an inner product space V. One obtains an orthogonal basis
{wi, wa, ..., w,} for V as follows. Set

w, = vl
Wy =1 _<vz‘,_wl>w
F R e i
| wy l?
{v3, wy) vy, wp)
W3 = U3 — 1 W2
I wy 2 [ wa ll*
o = <v||! wi> <vn’ Wz} o <vn’wn—|,> e
s - 2 1 = 2 R T -
T wldl i wall? [w, (I 7°
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In other words, for k = 2, 3, ..., n, we define
W =0 — Wy — CaWiy — """ — Cp k-1 Wi-1

where ¢;; = v, w;)/ll w; |? is the component of v, along w;. By Theorem 6.8, each w, is orthogonal to
the preceding w's. Thus w,, w,, ..., w, form an orthogonal basis for V as claimed. Normalizing each w,
will then yield an orthonormal basis for V.

The above construction is known as the Gram-Schmidt orthogonalization process. The following
remarks are in order.

Remark 1: Each vector w, is a linear combination of v, and preceding w’s; hence
by induction each w, is a linear combination of v, v, ..., v,

Remark 2: Suppose w,, w,, ..., w, are linearly independent. Then they form a
basis for U = span w;. Applying the Gram—Schmidt orthogonalization process to the
w, yields an orthogonal basis for U.

Remark 3: In hand calculations, it may be simpler to clear fractions in any new
w, by multiplying w, by an appropriate scalar, as this does not affect the orthogonality
(Problem 6.76).

The following theorems, proved in Problems 6.32 and 6.33, respectively, use the above algorithm
and remarks.

Theorem 6.11: Let {v,, v;, ..., v,} be any basis of an inner product space V. Then there exists an
orthonormal basis {u,, u,, ..., u,} of V such that the change-of-basis matrix from {v;}
to {u;} is triangular; thatis, fork=1, ..., n,

Uy = Uy + Gl + -+ A Uy

Theorem 6.12: Suppose S = {w,, w;, ..., w,} is an orthogonal basis for a subspace W of V. Then one
may extend S to an orthogonal basis for V, that is, one may find vectors w,, ,, ..., w,,
such that {w,, w,, ..., w,} is an orthogonal basis for V.

Example 6.12. Consider the subspace U of R* spanned by
U‘ = l’l‘ l. l| l} '—’2 =(lv 2- 4' -S] v]. = (l) _3r _4l _2}

We find an orthonormal basis for U by first finding an orthogonal basis of U using the Gram-Schmidt algorithm.
First set w, = v, = (1, 1, 1, 1). Next find

. vz, Wy»
, — 12
Il wy ||2

Set w, =(—2, —1, 1, 2). Then find

w, =(1, 2,4, S)—ITZ(I, LLD=(-2 -112)

(v, wyd {iy, Wy —8 -7
- » =l Yo O L LY e Dl N
e e e )" 102 )
_(8 11 137
“\sT 100 1075

Clear fractions to obtain wy = (16, — 17, — 13, 14). Last, normalize the orthogonal basis
wy=(1, L, 1, 1) w, =(=2 —1,1,2) wy == (16, —17, — 13, 14)
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Since || w, || = 4, | w, 1* = 10, || wy || = 910, the following vectors form an orthonormal basis of U:

1 1
ﬂlzétl,], l,l] “2=_('21'_lv112] Uy =

J10 /510

Example 6.13. Let I be the vector space of polynomials f(1) with inner product (f, g> = [*, f()glr) dt. We
apply the Gram-Schmidt algorithm to the set {1, t, t%, *} to obtain an orthogonal basis { fo, f,, f2, f5] with integer
coefficients for the subspace U of polynomials of degree < 3. Here we use the fact that if r + s = n then

! L b 2/(n + 1) if nis even
[N = " dt = =
Eot2 J._. ‘ [n+l:|! {0 if n is odd

(16, —17, —13, 14)

First set f, = 1. Then find

Let f; = t. Then find

:_ AL o
1y Gty
Multiply by 3 to obtain f; = 31> — L. Next find

ta _ '(‘3! l> i l _ (Iss t) t — '(ta'o 3:2 - l)‘
A, 10 {6 Gt2 - 1,32~ 1)

Multiply by 5 to obtain fy = 5t — 31. That is, {1, 1, 3¢* — 1, 5> — 31} is the required orthogonal basis for U.

B2—1n=3-0-1 -—%!—0{3!2— I}=t3—§r

Remark: Normalizing the polynomials in Example 6.13 so that p(1) = 1 for each
polynomial p(t) yields the polynomials

1, t, 432 — 1), (5t — 31)

These are the first four Legendre polynomials (which are important in the study of
differential equations).

6.7 INNER PRODUCTS AND MATRICES

This section investigates two types of matrices which play a special role in the theory of real inner
product spaces V: positive definite matrices and orthogonal matrices. In this context, vectors in R" will
be represented by column vectors. (Thus {u, ¢> = u"v denotes the usual inner product in R")

Positive Definite Matrices

Let A be a real symmetric matrix. Recall (Section 4.11) that 4 is congruent to a diagonal matrix B,
i.c., that there exists a nonsingular matrix P such that B = PTAP is diagonal, and that the number of
positive entries in B is an invariant of 4 (Theorem 4.18, Law of Inertia). The matrix A4 is said to be
positive definite if all the diagonal entries of B are positive. Alternatively, A is said to be positive definite
if XTAX > 0 for every nonzero vector X in R".

1 0 -1
Example 6.14. Let 4 = 0 1 —2]. We reduce A to a (congruent) diagonal matrix (see Section 4.11) by
-1 =2 8
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applying R, + R;—» R; and the corresponding column operation C, + C;—C,, and then applying
2R2+R3—PR3and2C2+C3—VCJ:
1 0o o0 1 o 0
A~|0 1 =-2t~|0 1 0
0 -2 7 O o 3

Since the diagonal matrix has only positive diagonal entries A is a positive definite matrix.

d b

and only if the diagonal entries ¢ and d are positive and the determinant
det (A) = ad — bc = ad — b? is positive.

b b
Remark: A 2 x 2 symmetric matrix 4 = (: )= (a d) is positive definite if

The following theorem, proved in Problem 6.40, applies.

Theorem 6.13: Let A be a real positive definite matrix. Then the function {u, v) = u” Av is an inner
product on R”.

Theorem 6.13 says that every positive definite matrix A determines an inner product. The following
discussion and Theorem 6.15 may be viewed as the converse of this result.

Let V be any inner product space and let S = {u,, u,, ..., u,} be any basis for V. The following
matrix A is called the matrix representation of the inner product on V relative to the basis S:

g, 4y uguy) oo (U, U

Cug,uy) Cup,up) ... Cuy,uy

(un, ul,) <uu:! uz} A (uﬂ' ull>
That is, A = (a;;) where g;; = {u;, u;).
Observe that A is symmetric since the inner product is symmetric, that is, {u;, u;> = (u;, u;). Also,
A depends on both the inner product on V and the basis S for V. Moreover, if S is an orthogonal basis
then A is diagonal, and if § is an orthonormal matrix then A is the identity matrix.

Example 6.15. The lollowing three vectors form a basis S for Euclidean space R*:

u,=(1,1, 0) u, = (1, 2,3) uy = (1, 3,5)
Computing each (u;, u;) = {(u;, u;) yields:
(g, up»)=1+140=2 Cup,u>)=14+24+0=3 {up, u32=1+3+0=4
(g, ) =1+4+9=14 {ug,uz) =14+6+15=22 Cuz,u>=1+9+25=35
2 3 4
Thus A=|3 14 22
4 22 35

is the matrix representation of the usual inner product on R? relative to the basis S.
The following theorems, proved in Problems 6.41 and 6.42, respectively, apply.

Theorem 6.14: Let A be the matrix representation of an inner product relative to a basis S for V.
Then, for any vectors i, v € ¥V, we have

Cu, v) = [u]TA[v]
where [u] and [v] denote the (column) coordinate vectors relative to the basis S.
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Theorem 6.15: Let A be the matrix representation of any inner product on V. Then A is a positive
definite matrix.

Orthogonal Matrices

Recall (Section 4.6) that a real matrix P is orthogonal if P is nonsingular and P~! = PT, that is, if
PP”™ = PTP = |. This subsection further investigates these matrices. First we recall (Theorem 4.5) an
important characterization of such matrices.

Theorem 6.16: Let P be a real matrix. Then the following three properties are equivalent:
(i) Pisorthogonal, thatis, P" = P~ 1,
(ii) The rows of P form an orthonormal set of vectors.
(iii) The columns of P form an orthonormal set of vectors.

(The above theorem is true only using the usual inner product on R". It is not true if R" is given any
other inner product.)

cos 0 sin H) or
—sin cos 8

Remark: Every 2 x 2 orthogonal matrix has the form (

0 in @
o?s . ) for some real number 8 (Theorem 4.6).
sin# —cos@

Example 6.16
TSN VNI TN E
LetP=| © l{ﬁ - ljﬁ . The rows are orthogonal to each other and are unit vectors, that is, the rows

46 —11/6 —1//6

form an orthonormal set of vectors. Thus P is orthogonal.

The following two theorems, proved in Problems 6.48 and 6.49, respectively, show important
relationships between orthogonal matrices and orthonormal bases of an inner product space V.

Theorem 6.17: Suppose E = {¢;} and E’ = {¢]} are orthonormal bases of V. Let P be the change-of-
basis matrix from the basis E to the basis E'. Then P is orthogonal.

Theorem 6.18: Let {e,, ..., ¢,} be an orthonormal basis of an inner product space V. Let P = (g;;) be
an orthogonal matrix. Then the following n vectors form an orthonormal basis for V:

€. =a,€, +aye; + - +a,e, (i=12,....n)

6.8 COMPLEX INNER PRODUCT SPACES

This section considers vector spaces V' over the complex field C. First we recall some properties of
complex numbers (Section 2.9). Suppose z € C, say, z = a + bi where a, b € R. Then

Z=a—bi zz = a? + b? and |z] = /a? + b?

Also, for any z, z,, z, € C,

21+22=Z_|+£ ZIZI=-Z_1.ZZ 2=Z

and zisreal ifand only if z = z.
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Definition: Let V be a vector space over C. Suppose to each pair of vectors u, v € V there is assigned a
complex number, denoted by (u, v). This function is called a (complex) inner product on V
if it satisfies the following axioms:

[I1] (Linear Property) {au, + bu,, v) = alu,, v) + blu,, v)

[12] (Conjugate Symmetric Property) {u, v) = (v, u)
[I%] (Positive Definite Property) (u, u) > 0; and (u, u) = 0if and only if u = 0.

The vector space V over C with an inner product is called a (complex) inner product space.

Observe that a complex inner product differs only slightly from a real inner product space (only
[1%] differs from [I,]). In fact, many of the definitions and properties of a complex inner product space

are the same as that of a real inner product space. However, some of the proofs must be adapted to the
complex case.

Axiom [I7] is also equivalent to the following two conditions:

(@) Cuy +uy, ) =Cu, ) + (up, v) and (b) <Cku, v) =k{u, v)
On the other hand,

{u, kv = <kv, u) = k¢v, u)> = k{v, ud = k&u, v)

(In other words, we must take the conjugate of a complex scalar when it is taken out of the second

position of the inner product.) In fact, we show (Problem 6.50) that the inner product is conjugate linear
in the second position, that 1s,

{uy avy + bvy) = adu, vy) + 5(“- vy)
One can analogously prove (Problem 6.96)

{ayuy + ayuy, byvy + byvy) = 0151‘(“1, v1) + abyuy, v2) + a3 b uy, 0> + a3 b,<u,, v,
and, by induction,

(Zﬂ,-u,-, Zb"vj> --_—Z ﬂif;j(u,-, U‘>
i=1 i=1 iLJ
The following similar remarks are in order:

Remark 1: Axiom [IT] by itself implies that <0, 0} = (Ov, 0> =0<v, 0> = 0.
Accordingly, [1*], [1%], and [I%] are equivalent to [IT], [/3] and the following axiom:

(3] u#0, then {u,ud >0

That is, a function satisfying [IT], [I3], and [I%"] is a (complex) inner product on V.

Remark 2: By [/%], <u, u) = {u, u). Thus {u, u) must be real. By [I{], <{u, u)
must be nonnegative, and hence its positive real square root exists, As with real inner
product spaces, we define | u | = /<u, u) to be the norm or length of u.

Remark 3: Besides the norm, we define the notions of orthogonality, orthogonal
complement, orthogonal and orthonormal sets as before. In fact, the definitions of
distance and Fourier coefficient and projection are the same as with the real case.
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Example 6.17. Let u = (z;) and v = (w,) be vectors in C". Then
(ﬂ, vy = Zz,,fv,=z,ﬁ#. + Zzi’z‘f R Z”\TV“
k=1

is an inner product on C" called the usual or standard inner product on C". (We assume this inner product on C"
unless otherwise stated or implied.) In the case that u and v are real, we have w; = w; and

<U, l)>= z}“’. +22ﬁ?2 A ¢ zn\;’,,:ZlWl +za3w, + -+, W,
In other words, this inner product reduces to the analogous one on R" when the entries are real.
Remark: Assuming u and v are column vectors, then the above inner product
may be defined by {u, v) = u"1.

Example 6.18

(@) Let V be the vector space of complex continuous functions on the (real) interval a < t < b. Then the following
is the usval inner product on V:

o= -[ (g dt

{b) Let U be the vector space of m x n matrices over C. Suppose A = (z;;) and B = (w,)) are elements of U. Then
the following is the usual inner product on U

(A.By=tr B'A=73 % w;z,
i=t j=1
As usual, BY — B”, that is, BY is the conjugate transpose of B.

The following is a list of theorems for complex inner product spaces which are analogous to the
ones for the real case (Theorem 6.19 is proved in Problem 6.53).

Theorem 6.19 (Cauchy—Schwarz): Let ¥ be a complex inner product space. Then
I<w, 3l < [lullfiv]

Theorem 6.20: Let W be a subspace of a complex inner product space V. Then V= W @ W7.

Theorem 6.21: Suppose {u,, u,, ..., u,} is an orthogonal basis for a complex vector space V. Then, for
anyve V,

e <I.?, "l) <U, H2>

(v, U
U gt u, Il; =y
Iy I Iy 112

+ +
lu >

Theorem 6.22: Suppose {u,, u,, ..., u,} is a basis for a complex inner product space V. Let 4 = (g;))
be the complex matrix defined by a;; = (u;, u;). Then, for any u,v € V,

{u, v) = [u] "A[v]

where [u] and [v] are the coordinate column vectors in the given basis {u,}. (Remark:
This matrix A is said to represent the inner product on V)

Theorem 6.23: Let A be a Hermitian matrix (ie., A” = A7 = A) such that X7AX is real and positive
for every nonzero vector X € C". Then {u, v) = u” Ab is an inner product on C".

Theorem 6.24: Let A be the matrix which represents an inner product on V. Then A is Hermitian, and
XTAX is real and positive for any nonzero vector in C".
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69 NORMED VECTOR SPACES
We begin with a definition.

Definition: Let V be a real or complex vector space. Suppose 10 each v € V there is assigned a real
number, denoted by || v |. This function | « | is called a norm on V if it satisfies the follow-
ing axioms:

[N, lvl>0;and [jv] =0ifand only if v = 0.
[N.] lkell=|k|lvl.
[Na] llu+vol<lul +Qv].

The vector space V with a norm is called a normed vector space.

The following remarks are in order.

Remark 1: Axiom [N,] by itself implies that 0] = [Ov}] =0 v|l = 0. Accord-
ingly, [N,], [N,], and [ N,] are equivalent to [ N,], [N,], and the following axiom:

[Ny] Iiv#0, then vl >0
That is, a function || * || satisfying [N, ], [N.],and [N,]is a norm on a vector space V.

Remark 2: Suppose V is an inner product space. The norm on V defined by
lvil = /<v, v) does satisify [N,], [N,], and [N;]. Thus every inner product space V
is a normed vector space. On the other hand, there may be norms on a vector space V
which do not come from an inner product on V.

Remark 3: Let V be a normed vector space. The distance between two vectors
u, v € V is denoted and defined by d{u. v) = | u — v|.

The following theorem is the main reason why d(u, v) is called the distance between u and v.
Theorem 6.25: Let V be a normed vector space. Then the function d(u, v) = ||u — v| satisfies the
following three axioms of a metric space:
[M,] du, v)>0;andd(u v)=0ifand onlyifu =

[M,] du,v)=dr, u).
[Mi] du, v) <du, w) + diw, v).

Norms on R” and C*

The following define three important norms on R" and C™:
@y, ..., a)ll, = max (&)
@y, ..., a)lly =la,| +[az| +--- +]a,]
Mar - adllz = /1@y P + 1@z + -+ + 14,2

(Note that subscripts are used to distinguish between the three norms.) The norms || « ||, | * {,, and
Il = ll, are called the infinity-norm, one-norm, and rwo-norm, respectively. Observe that || = ||, is the norm
on R"(C") induced by the usual inner product on R"(C”). (We will let d_ , d,, and d, denote the corre-
sponding distance functions.)
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Example 6.19. Consider the vectors u = (I, — 5, 3)and v = (4, 2, —3) in R,
(@) The infinity-norm chooses the maximum of the absolute values of the components. Hence
lul,=5 and Jol,=4
(b) The one-norm adds the absolute values of the components. Thus
lulfy=14+5+3=9 and lofl,=4+2+3=9

{¢) The two-norm is equal to the square root of the sum of the square of the components (i.e, the norm induced
by the usual inner product on R3). Thus

Rull, =/1+25+9=./35 and Jol,=/16+4+9=/29
(@ Sinceu—v=(1-4,-5—23+ 3)=(-3, —7,6), we have
dfu. o= 7 i v)=3+T+6=16 dylu, v) = /9 + 49 + 36 = /94

Example 6.20. Consider the cartesian plane R? shown in Fig. 6-7.

(a) Let D, be the set of points u = (x, y) in R? such that ||ujj; = 1. Then D, consists of the points (x, y) such that
flufiZ = x* + y* = 1. Thus D, is the unit circle as shown in Fig. 6-7.

(b) Let D, be the set of points u = (x, y) in R? such that ||u|l, = 1. Then D, consists of the points (x, y) such that
lufl, =1x|+ ly|= 1. Thus D, is the diamond inside the unit circle as shown in Fig. 6-7.

() Let D, be the set of points u = (x, y) in R? such that | u||, = 1. Then D, consists of the points (x, y) such that
flull, = max {Ix],{y]) = 1. Thus D, is the square circumscribing the unit circle as shown in Fig. 6-7.

Fig. 6-7

Norms on Cla, b]

Consider the vector space V = C[a, b] of real continuous functions on the interval a < t < b. Recall
that the following defines an inner product on ¥:

b
{fg= ‘[ SO g di
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Accordingly, the above inner product defines the following norm on V¥ = C[a, b] (which is analogous to
the || * ||, norm on R"):

Iflz= I (/] dt

The following example defines two other norms on V = C[a, b].

Example 6.21

(@ Let || fli, =2 1/(0)] dr. (This norm is analogous to the || * ||, norm on R") There is a geometrical description
of | f1l; and the distance d,(f, g). As shown in Fig. 6-8, || f ||, is the area between the function | /| and the 1
axis, and d,(/, g) is the area between the functions fand g.

1
1 Al

(/1.

b ! a \_/ T b (|

(@ IS, is shaded (b) d,(/, g) is shaded
Fig. 6-8

(b) Let § fll, = max (| f()]). (This norm is analogous to the || * | on R") There is a geometrical description of
Il f i, and the distance function d_( f, ). As shown in Fig. 6-9, || f [ . is the maximum distance between f and
the t axis, and d_( f, g) is the maximum distance between fand g.

1@ /
.

a \_/ b 4 a \J/ ~b p;

S
glt)

@ ISl (by de(f 9)
Fig. 6-9

Solved Problems

INNER PRODUCTS
6.1. Expand {Su, + 8u,, 6v, — Tv,).
Use the linearity in both positions to get

(Suy + 8uy, 6vy — Tvg) = (Suy, 60, > + (Suy, —Tvy) + (Buy, 6v> + (Buy, —~Tvy)
= 30uy, v, > — 35{u,, vy) + 48(u,, vy) — 56<u,, v,
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[Remark: Observe the similarity between the above expansion and the expansion of (5a + Bb}6c — 7d) in
ordinary algebra.]

6.2. Consider the following vectors in R*: u=(1,2,4), v =(2, =3, 5, w=4, 2, —3). Find: (@) u* v,
B)u-w,(c)v-w, (d) (u+v)-w, () ul. () lvi () Tu+vi
(a) Multiply corresponding components and add togetu+v =2 — 6 + 20 = 16.
b u-w=4+4-12= -4
© v-w=8B—-6—15=—13.

(d First find u+0v=(3, —1, 9. Then (u+v)"w=12—-2— 27 = —17. Alternatively, using [I,],
u+v) w=u-w+ov-w=—-4—13=—17.
(¢) First find || u|? by squaring the components of u and adding:

Jul?=124+224+42=14+4+16=21 andso [ul=.,/21

() lv|?=4+94+25=38andso o] = ./38.
(9) From(dhu+v=(3, —1,9).Hence |u+v|>=9+1+81=9%and [u+v]=./91

6.3.  Verify that the following is an inner product in R?:
u, ) = X,y — X ¥y — X2 ¥y + 3%, 2 where u=(xy, X2, v =(y1, y2)

Method 1. We verify the three axioms of an inner product. Letting w = (z,, z,), we find
au + bw = a(x,, x;) + bz, z) = (ax, + bz,, ax; + bzy)
Thus

{au + bw, v} = {{ax,, ax; + bzz)* {.Vh ¥
= (axy + bz,)y, — (ax, + bz,)y; — (ax, + bzy)y, + 3(ax, + bz,)y,
=alx,yy — x1¥2 — X2 ¥1 + I, y2) + Mzyy, — 2y, — 2, + 32, ))
= alu, vy + blw, v)

and so axiom [1,] is satisfied. Also,
ouy =YXy — YiXa — Y2 Xg + 3y Xy = Xy — Xy ¥ — Xa ¥y + 35y = (u v
and axiom [],] is satisfied. Finally,
{uu)=x3 =2 x, +3x3=x? —2x,x, + x2 4+ 2x3 = (x; —x3)2 + 2x2 >0

Also, (u, u) = 0ifand only if x, =0, x; = 0, 1.e,, u = 0. Hence the last axiom [[;] is satisfied.

Method 2. We argue via matrices. That is, we can write {u, v)> in matrix notation:

ot} )
= Y2

Since A is real and symmetric, we need only show that A is positive definite. Applying the elementary row
operation R, + R, - R, and then the corresponding elementary column operation C, + C, — C,, we

transform A into diagonal form ((IJ g) Thus A is positive definite. Accordingly, ¢u, v} is an inner product.

6.4, Consider the vectors u = (1, 5) and v = (3, 4) in R?. Find:
(@) <{u, v) with respect to the usual inner product in R?,
(b) <u, v) with respect to the inner product in R? in Problem 6.3,
(c) | v] using the usual inner product in R2,
(d) |l v| using the inner product in R? in Problem 6.3.
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(@ <u,vd)=34+20=23.

B (urdy=1-3-1-4-5-343-5-4=3—-4_15+60=44

© NelP=<(u,d>=4(3,4.3,49) =9+ 16=25; hence | v| = 5.

@ Nol?=<v,v)={3,4,(3,4)=9—12—12 + 48 = 33; hence | v | = /33.

6.5. Consider the vector space V of polynomials with inner product defined by [§ f(t)g(t) dt and the
polynomials f(£) = 1 + 2, g(t) = 3t — 2, and h(t) = t* — 2t — 3. Find: (@) {f, ¢) and {f, h) and
(b) 1| f | and [ g |- (c) Normalize f and g.

(@) Integrate as follows:

i 1
(f,g>=-[(t+2)[3t—2]dt=j(3l2+4t—4)dl=[t3+212—4t]¢')= -1
o o

‘ 2 B P L
<ﬂh>=J‘“+2Il’ -2‘-3)&“—[:—-—7—6[]0_ _T
]
(b) L= {f+2)(1+2)dr=-—andﬂf||—V(ﬁf)+./19 =_V

(g,g>=.[ (3t — 2)(3t — 2) = 1; hence ||g[[=ﬁ=1.

3

(c) Since Ilfll—‘/_f— m Jﬁ

g=g=3t-2

(t + 2). Note g is already a unit vector since || g| = 1; hence

6.6. Let V be the vector space of 2 x 3 real matrices with inner product {4, B) = tr BTA and con-

sider the matrices
9 8 7 1 2 3 3 -5 2
A_(G 5 4) B“(4 5 6) C'(! 0 —)
Find: (a) (A, B, (A, C), and {B, C); (b) {24 + 3B, 4C); and (c) | A || and | B}. (d) Normalize
A and B.
(a) [Use {A,B) =tr BTA= 3} Y a;b,;, the sum of the products of corresponding entrics.]
i=1 j=1
(A, BY>=94+16+4+214+24+254+24 =119
A, C>=27—40+144+6+0—16= —9
B,C>=3—-10+6+4+0—-24=-21

21 22 23 12 -20 8
(b) F‘ind2A+38=(24 - 26)3114:146’-(4 o _ 1) Then

{(2A+ 3B, 4C> =252 — 440+ 184 + 96 + 0 — 416 = —324
Alternatively, using the linear property of inner products,
(2A +3B,4C) =8B{A, C) + 1B, C>=8(—9 + 12(-21) = -324

(c) [Use I4)% = (A4, A =Y Y a}, the sum of the squares of all the elements of A.]
i=i j=1

IAR2 =¢A A>D=92+82+72+6*+52+4*=271 andso A =./271
IBI2=(B,BY=12+224+32 442 +5*+6*=91 andso | B| =./91
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. 1 o /211 8./211 1./21

= AEuAllAz,/iﬁA:(sf\/ﬁ 5/ /77 4;J:.ﬁ?)
§=__I_B=_I__B=(l!\/§f 291 3fJ9_l)
4//91 5//91 6/,/91

6.7. Find the distance d(u, v) between the vectors:
(@ uw=(1,357andv=(4 —2,8, 1)in R?;
(b)) u=1t+2andv=3t—2where (u,v) = g u(t)o(t) dr.
Use d{u, v) = Jlu —o|.
(@) u—v=(—3,5 —3,6). Thus
lu—vi?=9+254+49+36=79 andso d, )= lu—v| =79
() u—v=—-2t+4.Thus

1
Jlu—v)?=C{u—2v,u—1ro) =-L(—2t+4)(—2r+4)dt

! 4 128
=j[4t’—16:+16)d1=[3t’—812+16tl=—
(4]

3
Hence d(u, v)=ﬁ= }Jﬁ

6.8. Find cos 6 where @ is the angle bet\yccn:

(@ u=(,—-32andv=(215)inR%
) u=(1,3, —54andov=(2 —3,4, 1)in R*;
() f()=2t— 1 and g(t) = 1*, where (£, g> = [ f(D)glt) dt:

(d) A=(2 l)andﬂz(g -;),where (A, B) =tr BTA.

3 -1
Cu, v)
Use cos § = ———,
% lulllol

(@) Compute(u,v)=2+3+10=9,|uih’= 1 49+4=14,|v|>2=4 + 1 + 25 = 30. Thus,

9 g
0= =
BT= Ta/m Jies

(b) Here Cu,v)=2—-9-204+4=-23 ful’=14+94+25+16=51, [v|?’=44+9+16+1=30

Thus
- =3 . =13
J51/30  3./170
(¢) Compute
¢ o - I O R |
— 3 — 2 = — —-— — A e —

1

1
IIfIIz=(ﬁf}=L!412—41+1)d!=3

Thus cos 8 = ¢ = \/E
(14/3X1/5) 6

¥
and ug||==<g.g>=J;t‘dr=%
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6.9.

6.10.

6.11.

(d) Compute <4, B)=0-146—-3=2 |A|I?’=4+1+9+1=15 |B|’=0+14+4+9=14
Thus

Verify each of the following:

(a) Parallelogram Law (Fig. 6-10): Ju+ v |2 + u—vo]2 =2||uli? + 2| v |2

(b) Polar form for <u, v) (which shows that the inner product can be obtained from the norm
function): {u, v> = 4(lu+ v )12 — u—v|?).

Expand each of the following to obtain:
lutol®=<utvutod=ul®+2uv)+|v|? (0
fu—vll* =<u—v,u—0)=lull® -2 v) + Jv)? @
Add (/) and (2) to get the Parallelogram Law (a). Subtract (2) from (/) to obtain
lu+el?~lu—0v|?=4{u v)

Divide by 4 to obtain the (real) polar form (b). (The polar form for the complex case is different.)

Fig. 6-10

Prove Theorem 6.1 (Cauchy—Schwarz). [{(u, v )| < |Ju]l || v]{.
For any real number ¢,
(tu+vtu+ vy =12u u)+2t{u, V) + (m vy =12 | w2 + 20w, v + w12
Leta= |lu|% b= 2{u, v),and ¢ = |v||% Since || tu + v {|* = 0, we have
at’ + bt +c=0

for every value of t. This means that the quadratic polynomial cannot have two real roots. This implies that
b? — 4ac <0 or b? < 4ac. Thus
u, v <4 |ul? o)’

Dividing by 4 gives us our result. (Remark: The Cauchy-Schwarz inequality for complex inner product
spaces appears in Problem 6.53))

Prove Theorem 6.2.
If v#0, then {v,v) >0 and hence [[v] = /<{v,0) >0 K v =0 then {0, 0)=0. Consequently
0] = /0 = 0. Thus [N,] is true.
We have || kv {2 = <k, kvy = k*{p, vy = k2 || v | 2. Taking the square root of both sides gives [N,].
Using the Cauchy-Schwarz inequality, we obtain
lu+ vl =<u+v,u+ )=y uw) + <, 0) + {y, ) + (o, 0)
<lul?+25ulliol + Mol =ul +4o)?

Taking the square root of both sides yields [ N,].
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Let (a,, a,, ...) and (b,, b,, ...) be any pair of points in /,-space of Example 6.3(b). Show that the
inner product is well defined, ie., show that the sum ) a;b; = a,b, + a,b, + --- converges

absolutely.

By Example 6.4{a) (Cauchy-Schwarz inequality),

n n ab oo
layby )+ 4+ |a,b,| < Zaf\/Zb?s\/za?Jbe
i=1 i=1 i

i=1 =1

which holds for every n. Thus the (monotonic) sequence of sums S, = |a,b,| + --* + |a, b,| is bounded, and
therefore converges. Hence the infinite sum converges absolutely.

ORTHOGONALITY, ORTHOGONAL COMPLEMENTS, ORTHOGONAL SETS

6.13.

6.14.

6.15.

Find k so that the following pairs are orthogonal:
(@ u=(1,2k 3)ande =3,k 7, —5)in R*;
(b) f(@) =1t + kand g(t) = t* where (£, ¢> = [ f()gl) dt.

(@) First find Cuod=(, 2, k 33, k 7 —5=3+2k+7k—15=9k—12. Then set
Cu, vy =9% —12=0to find k = %.

(b) First find
1 1 1 y 5 !4 371 1 k
(ﬁg>=L[t+k}t dt=J;(l‘ +M}dr=[3+_] =2+3

I k 3
Set {f, > =Z+3=0!00btﬂjnk‘—— —Z.

Consider u = (0, 1, —2, 5)in R*. Find a basis for the orthogonal complement u* of u.
We seek all vectors (x, y, z, 1) in R* such that
A 1,2,0,00,1, =250 =0 or Ox+y—2z+5=0
The free variables are x, z, and t. Accordingly,

(1) Setx=1,z=0,t=0to obtain the solution w, = (1,0, 0, 0).
(2) Set x=0,z=1,1=0to obtain the solution w, = (0, 2, 1, 0).
(3) Setx=0,z=0,t=1toobtain the solution w; = (0, —5,0, 1).

The vectors w,, w,, w, form a basis of the solution space of the equation and hence a basis for u*.

Let W be the subspace of R® spanned by u = (1,2, 3, —1,2)and v = (2, 4, 7, 2, —1). Find a basis
of the orthogonal complement W+ of W.

We seek all vectors w = (x, y, z, s, t) such that
wmuwy= x+2y+3z—- s+2=0
w,p=2x+4dy+7z2+ 25— t=0
Eliminating x from the second equation, we find the equivalent system
x+2y+32z— s+2=0
z4+4s5—5t=0
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6.16.

6.17.

6.18.

The free variables are y, 5, and ¢. Therefore,

(1) Sety= —1,5=0,t=0to obtain the solution w; = (2, —1,0.0, 0).
(2) Sety=0,5=1,1=0to find the solution w, = (13,0, —4, 1,0).
(3) Sety=0,5=0,t=1to obtain the solution wy = (—17,0, 5,0, I).

The set {w,, w,, w3} is a basis of W+,

Let w = (1, 2, 3, 1) be a vector in R*. Find an orthogonal basis for wt.

Find a nonzero solution of x + 2y + 3z + t = 0;say v, = (0, 0, 1, —3). Now find a nonzero solution of
the system

X+2y+3z+1=0 z-3=0
say v, = (0, -5, 3, 1). Lastly, find a nonzero solution of the system
x+2y+3z+t=0 —S5y+32+1t=0 z2—3t=0

say vy = (—14, 2,3, 1). Thus ¢y, ;,, v; form an orthogonal basis for w'. (Compare with Problem 6.14, where
the basis need not be orthogonal.)

Let S consist of the following vectors in R*:
u, =(1, 1, 1) u, =(1,2, —3) uy =(5 —4, -1)
(@) Show that S is orthogonal and S is a basis for R>.
(b) Write v = (1, 5, —7) as a linear combination of u,, u, ., u,.
(aq) Compute
upuy)=142-3=0 {uj,uz3d>=5-4-1=0 {uy,u>=5—-8+4+3=0

Since each inner product equals 0, S is orthogonal and hence § is linearly independent. Thus S is a
basis for R? since any three linearly independent vectors form a basis for R>.

(b) Letv = xu, + yu, + zu, for unknown scalars x, y, z, ie.,

(1,5, =T =x(1, 1, 1) + W1, 2, —=3) + z(5, —4, — 1) (N
Method 1. Expand (/) obtaining the system
x+y+5z=1 x+2y—4z=15 x—3y—z= -7

Solve the system to obtain x = —4, y =12 z = — &

Method 2. (This method uses the fact that the basis vectors are orthogonal, and the arithmetic is
simpler.) Take the inner product of (/) with u, to get

(LS -7, L)y=x(1,,)-(L LD or —1=3x or x=—1%
(The two last terms drop out since u, is orthogonal to u, and to u,.) Take the inner product of (/) with
u, to get
(L5 —7-(1,2 =3)=p1L2, -3)- (1,2, -3} or 32=14y or y=4¥
Take the inner product of (/) with u; to get
(L5 —7)-(5 -4, —-1)=2z5 —4, -1)-(5 —4, —1) or —8 =42z or z

]
i
He

In either case, we get v = (— ), + (3)u, — (Fus

Let S consist of the following vectors in R*:
u, =(1,10, -1 uy = (1,21, 3) u;=(1, 1, =9,2) ue = (16, —13, 1, 3)



228

6.19.

INNER PRODUCT SPACES, ORTHOGONALITY [CHAP. 6

(a) Show that S is orthogonal and a basis of R*.

(b) Find the coordinates of an arbitrary vector v = (a, b, c, d) in R* relative to the basis S.

(@) Compute
U cu;=142+0-3=0  u u3=1414+0-2=0 Uy ru,=16-134+0-3=0
Uy Uy =1+42-9+6=0 w u,=16-264+14+9=0 uj-u,=16—13—-94+6=0

Thus S is orthogonal and hence S is linearly independent. Accordingly, S is a basis for R* since any
four linearly independent vectors form a basis of R*.

(b) Since S is orthogonal, we need only find the Fourier coefficients of v with respect to the basis vectors,
as in Theorem 6.7. Thus

_Anu) a+b-—d X _Lvuzy a+b—-9c+2
YT a3 P Quy, u) 87
" _ {vu) a+2b+c+3d X _ {vu) 16a—13b+c+3d
2T lug, upy 15 T lug,u)y 435

are the coordinates of v with respect to the basis S.

Suppose S, S,, and S, are subsets of V. Prove the following:
(@) Sc s+ (b) IfS,C S, then S3C 1 (¢) §* =(span8)*

(@) Letw € S. Then {w,v) = 0for every v € S*; hence w € §**. Accordingly, S < S**.

(b) Let we S3. Then {w,v) =0foreveryve S,. Since S, € §,, {w, v) =0foreveryv e §,. Thus w € S1,
and hence S < St.

(c) Since S C span §, we have (span 5)* C S*. Suppose u € S and suppose v € span S*. Then there exist
Wi, Wa, ..., Wy in § such that

v=aw, +a;wy+ -+ a,w,
Then, using u € §*, we have

Qu, vy =<y, aywy + a;wy + - + aywe) = a, i, wid + a (i, wad + 0 + 6 {u, )
=l‘11 .0+az.0+‘-' +al.0=0

Thus u € (span 5)*. Accordingly, §' < (span 5)*. Both inclusions give S = (span S)*.

Prove Theorem 6.5.
Suppose S = {u,, u,, ..., u,} and suppose
auy; + aau; + -+ aqu, =0 (N
Taking the inner product of (1) with u,, we get
0=C0,u,>=<{ayu; + a;u; + -+ +a,u,, u,»

=a, Uy, uy) +a{uy, u, >+ + au,, u)
= a;(“u u]} + a, 0+ - +a,*0:a,{u,, U|>

Since u, # 0, we have {u,, 4, # 0. Thus a, = 0. Similarly, for i = 2, ..., r, taking the inner product for (1)
with u;,

0=1<0,u)={<au; +--- +a,u,, u;)
=a,{uy, U + -+ alu, up)y + o0+ adu,, w) = alu;, up)
But {w;, 4> # 0 and hence g; = 0. Thus § is linearly independent.
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6.21. Prove Theorem 6.6 (Pythagoras). | u, +-- + u, [ = {|u, || + - + | a0, }].
Expanding the inner product. we have

luy +uy + o du, P =Cuy+uy + - +up,uy +uy + 0 +u)d
=Cuy, ) + (uga ) + 0+ Uy, ) + Yy, up)

i*®j

The theorem follows from the fact that {u;, u;> = || 4; ||* and {u;, u;> = Ofor i # j.

6.22. Prove Theorem 6.7.
Suppose v = k,u; + kyuy + -+ + k,u,. Taking the inner product of both sides with u, yields
(1', ul) = (k.l{] + kz": + -+ ku“nv “l)
= ky{uy, uy) + kz{"zr )+ 4k (uy, u)
=k up ud + k04 -+ + k.0 =k,{u,, >
Thus k, = {v, u, )/{u,, u, ). Similarly, fori =2, ..., n,
(o, u) =<kyuy + kyup + - + ku,, u)
= ky{uy, 4> + k:(“z- u>+ o+ k!r(uar u;
= k[-o  pE k;(ui, ll,) + "+ k.»(): k‘(ui, uf)

Thus k; = {v, u;)/<u;, u;>. Substituting for k, in the equation u == k,u, + --* + k,u,, we obtain the desired
result.

6.23. Suppose E = {e,, e,, ..., ¢,} is an orthonormal basis of V. Prove:

(a) Foranyue V,wehaveu= (u, e e, + (u, e;0e, + - + (u, e,)e,.
(b) <aye, +--- +a,e,, bie, +--- +b,e,) =ab, +a, by + -+ +a,b,.
() Foranyu,ve V,wehave {u, v) = (u, e, 0<v, &,> + - + {u, &,)¢v, e,
(a) Supposcu = ke, + ky k; + -~ + k,e,. Taking the inner product of u with e,,
e, =C(kyey + ke, + - + ke, €,)
= kl("]’ 9]) + k?.(ellel) Fomtirak ku<en, e|>’
=k 1 +k,"0+---+k,"0=k,
Similarly, fori =2, ..., n
(") ei>=<klel A +kiei'+“' +kneulet>
=ki{ep.e) + -+ ke, e+ + k.<e,, e;‘)
=k|’0+“'+ki‘|+“'+k,"0=k£
Substituting (u, ¢;) for k; in the equation u = ke, + - - + k,e,, we obtain the desired resuit.
(b) We have

Zﬂci‘.—, Ebjej> = E 'a_ibj(ei: 9;) = zaibi<eh e+ zaibj<ei$ fj)
i=1 j=1 i,j=1 i=1

i j= i1

But {e;, g;> = Ofori # j,and (e, ;> = 1 fori = j; hence, as required,
Y ae;, Zb)‘-’j> = Y aib=ab; + ayby + -+ +a,b,
i=1 J=1 i=1

(c) By (a), we have
u=d(u,ede, +- + {u eye, and v={<vere + - +<v e e,

Thus, by (), _
(us v) = (H, €, )(ua el} he <uv eZ)(”ﬁ e!) Ao <“v eu)(vs err)
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[CHAP. 6
PROJECTIONS, GRAM-SCHMIDT ALGORITHM, APPLICATIONS
6.24. Suppose w # 0. Let v be any vector in V. Show that

c=Smw) oWy

T wmew)  fw]?
is the unique scalar such that v = v — cw is orthogonal to w.

In order for ¢ to be orthogonal to w we must have

v—cw,w)=0 or

v, w) —ec{w,w) =0 or
Thus ¢ = (v, w)/{w, w). Conversely, suppose ¢ = {v, w)/{w, w). Then

o, W) = ew, w)
v —cow,w) =, wy—clw.wd=<Lpw)—

(e, w)
b =0
(w, W) N
6.25. Find the Fourier coefficient ¢ and the projection of v = (1, —2, 3, —4) along w=(1, 2, 1, 2)
in R%,
Compute (v, wp)=1—4+3—-8=—8and [w|?=14+4+144=10 Then c= —f = —% and
proj (v, w) = cw = (—%, -4, -4, —§).
6.26.

Find an orthonormal basis for the subspace U of R* spanned by the vectors
vl :(lg li 15 1)

v;=(1,1,24) vy =(1,2, —4, —3)
First find an orthogonal basis of U using the Gram-Schmidt algorithm. Begin the algorithm by setting
w, = u, = (1,1, L, 1). Next find

Uiy, W
”z—< 2 1>

8
||W,||2 L _(lv lsz\)‘;]_Z(I’ I$ 1, I}_(-'ls “'I:O;Z)
Setw, =(—1, —1,0, 2). Then find
(o3, W)

wy
| w, 2

3

_ vy, wy)

fl wy ||2

—4 -9
w,=(L2 —4, —-3]-—7(1. L.E l)——ar{—l, —-1,0.2
:(*v %9 _3. ”

u, =%(l, L L1

Clear fractions to obtain w, = (1, 3, —6, 2). Last, normalize the orthogonal basis consisting of w,, w,, w,.
Since || w, |2 =4, | w, |*> = 6,and || wy |* = 50, the following vectors form an orthonormal basis of U

Uy = \/E("—l- -10,2)
6.27.

1
uy =——=I(1,3, -6, 2}
’ Sﬁ

Let V be the vector space of polynomials f(t) with inner product {f, g> = |5 f(t)g(t) di. Apply
integer coefficients.

the Gram-Schmidt algorithm to the set {1, t, t2} to obtain an orthogonal set {f,, f,, f} with
First set f, = 1. Then find

1) 3 1
I—ET;"TS 1 I—T 1—!-‘*5
Clear fractions to obtain f; = 2t — 1. Then find
2 S5 a1
A1

1 i
- (U e D=2 21— 8 1y=1y2 L
I NI 2t—1)=t I 1 Tli[2r Iy=1 :+6
Clear fractions to obtain f, = 6t — 61 + 1. Thus {1, 2t — 1, 6t — 6t + 1} is the required orthogonal sct.
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6.28. Suppose v=(1, 3, 5, 7). Find the projection of v onto W (or, find w e W which minimizes
| v — w]}) where W is the subspace of R* spanned by:

(ﬂ) “] ={l9 19 I’ l)aﬂd u2=(l$ _3| 4» _2)
B ov,=(1L1L1)andv, =(1,2,3,2)

(a) Since u, and u, are orthogonal, we need only compute the Fourier coefficients:

_({nuy 1434547 16

ed

L A R T i

_(mu) 1-9420-14 -2 I
2T w1 +9+16+4 30 15

w=proj (v, W) = c,u; + cquy =41, 1, 1, 1) — 15(1, =3, 4, -2} = (53, %, 1%, )

{b) Since v, and v, are not orthogonal, first apply the Gram-Schmidt algorithm to find an orthogonal
basis for W, Set w, = v, = (1, 1, 1, 1). Then find

8
uz—gﬁ’—f')wl=(l,2,3,2)--(l.l, 1,1)=(~1,0,1,0)
wi 4
Set wy, = (—1,0, 1, 0). Now compute

et —1+40+3+0
27 w2 1404140

(w1 +34547
Coflw P 14141

Thenw = proj (v, W) =c,wy + c;w, =41, 1, 1, 1) = 3(—1,0,1,00=(7, 4, 1, 4).

16 -6
=-I—4 and —T——:}

cy

6.29. Suppose w, and w, are nonzero orthogonal vectors. Let v be any vector in V. Find ¢, and ¢, so
that ¢ is orthogonal to w, and w, where v = v — ¢, w; — ;3 w,.

If v' is orthogonal to wy, then
0=(v—cw, — 3wy, WD =0, W) — ¢, {wy, Wy — €Wy, W;)
= (v, W) — e {wy, wi) — €0 = (o, W) — oy {wy, wy)
Thus ¢, = {v, wy )/{w,, w,>. (That is, ¢, is the component of v along w,.) Similarly, if v is orthogonal to
w,, then
0 = (l’ —C|W| = Ca3 Wy, W3> = (L‘, w]) = Cz(“’z- w1>

Thus ¢, = (v, w,)/{w,, w,). (That is, ¢, is the component of v along w, .)

6.30. Prove Theorem 6.8.
Fori=1,2, ..., rand using {w;, w;> = 0for i # j, we have

v—cywy —cawy— = — €, W, WD =0, W) — ¢ {wy, W) — - —cwywy — -+ —clw,, wp
=Wy —c,*0— - —clwi, W) —--—¢,*0
= (v, W) — cw;, W) = (B, W) — 0 Wo) {wi, Wi
(wi? w.‘)
=0

Thus the theorem is proved.
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6.31.

6.33.

6.36.

INNER PRODUCT SPACES, ORTHOGONALITY [CHAP. 6

Prove Theorem 6.9.

By Theorem 6.8, v — Y. ¢, w, is orthogonal to every w; and hence orthogonal to any linear combination
of w,, w,, ..., w,. Therefore, using the Pythagerean Theorem and summing from k = 1 tor,

2 2 2
”"’Z‘H“’tﬂ = "‘HE("&‘“&)“"&“

U*—Z(.‘kw,‘

2
v—zt‘nwa+2(q—dahﬁﬂ =

2

Zfle—3 cow,

The square root of both sides gives us our theorem.

Prove Theorem 6.10 (Bessel inequality).

Note that c; = (v, e;) since |le;| = 1. Then, using {e;, e;> = 0 for i # j and summing from k= 1to r,
we get

0<{v—Y cuep.v—3 ¢4, e.> ={nv)— 2<ﬂ~ 2. f‘u"n) +Y e
=) -Y 2lve)+Y F=(nv)-Y 22+ Y ¢
=y~ d
This gives us our inequality.

Prove Theorem 6.11.

The proof uses the Gram-Schmidt algorithm and Remarks 1 and 2 of Section 6.6. That is, apply
the algorithm to {r;} to obtain an orthogonal basis {w,, ....w,}, and then normalize {w,} to obtain an
orthonormal basis {u;} of V. The specific algorithm guarantees that each w, is a linear combination of
vy, --., Uy, and hence each u, is a linear combination of v, ..., v, .

Prove Theorem 6.12.

Extend S to a basis §'= {w,,...,w,,v,.,, ..., v} for V. Applying the Gram-Schmidt algorithm to
§', we first obtain w,, w,, ..., w, since S is orthogonal and then we obtain vectors w,, ,, ..., w, where
{wi, w3, ..., w,} is an orthogonal basis for V. Thus the theorem is proved.

Prove Theorem 6.4.

By Theorem 6.11, there exists an orthogonal basis {u,, ..., w,} of W; and, by Theorem 6.12, we can
extend it to an orthogonal basis {u,, u,, ..., u,} of V. Hence u,,,, ..., u, € W*. Ifv e V, then

v=a,u, + - +a,u, where au; + - +aueW, a, U+ " +a,u, W

Accordingly, V = W + Wi,

On the other hand, if w e W ~ W, then {(w, w) = 0. This yields w = 0; hence W n W' = {0}.

The two conditions, V = W + W' and W ~ W' = {0}, give the desired result VV = W @ W*.

Note that we have proved the theorem only for the case that V¥ has finite dimension; we remark that
the theorem also holds for spaces of arbitrary dimension.

Suppose W is a subspace of a finite-dimensional space V. Show that W = WL,
By Theorem 6.4, V = W @ W* and, also, V¥ = W' @ W**. Hence
dim W =dim V — dim W* and dim W** = dim V — dim W*
This yields dim W = dim W', But W < W** [Problem 6.19(a)], hence W = W' ag required.
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INNER PRODUCTS AND POSITIVE DEFINITE MATRICES

b2 o= O
N

1
6.37. Determine whether or not A is positive definite where A = | 0
|

Use the Diagonalization Algorithm of Section 4.11 to transform A into a (congruent) diagonal matrix.
Apply —R, + Ry —+ R, and —~C, + C; =+ C; and then —2R, + R;—+ R, and —2C, + C; - C; to

obtain
1 0 0 1 0 0
A~{0 1 2]~10 1 0
0 2 2 0 0 -2

There is a negative entry — 2 in the diagonal matrix ; hence A is not positive definite.

6.38. Find the matrix A which represents the usual inner product on R? relative to each of the follow-
ing bases of R?:
@ {v,=(13)0,=(25), (b) {w,=(,2),w,=(4 -2}

(a) Compute (v =1+9=10, (B, 03> =2+ 15=17, vy, 1) =4+25=29. Thus

L1 17
S \17 29/
5 0
() Compute (w,, w;>=1+4=5 (w,wy)=4-4=0,{w,, w,>=16+4 =20 Thus 4= o 20/}

(Since the basis vectors are orthogonal, the matrix A is diagonal.)

6.39. Consider the vector space V of polynomials f(r) of degree <2 with inner product
g =T[4 fDg() de.
(@) Find ¢f, g> wheref(t) =1t + 2and g{t) = t* — 3t + 4.
(b) Find the matrix A of the inner product with respect to the basis {1, t, t*} of V.
(¢} Verify Theorem 6.14 by showing that {f, g> = [ /1" A[g] with respect to the basis {1, t, t*}.
1 1 t4 ‘3 1 46
(a) (f,g}=f (t+2){:’-—3t+4)d:=Jl (3~ — 2t +8)dt =|:—-——!2+8t:| =—
" - 4 3 . 3
() Here we use the fact that,ifr + s =n,
! ol 2/(n + 1) if nis even
<""’>=_[_,”'=[n+1] ={o i nis odd

-1

Then <1, 1> =2,{1, 1> =0,¢1,?) =4, <t. t) = 4 (6, t*) = 0. (1%, 1*) = £. Thus
2 0 3
A={0 } 0©
{0 %
() Wehave [f]" = (2, 1,0)and [¢]" = (4, — 3, 1) relative to the given basis. Then
4 4

=3=@ L -3 =%={®
I 1

2 0
[f1"Alg) =2 1,000 %

i 0

Wi O win
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6.40.

6.41.

6.42.

INNER PRODUCT SPACES, ORTHOGONALITY [CHAP. 6

Prove Theorem 6.13.
For any vectors u,, u;, and v,
(v, + uy, 0) = (U, + uy)"Av = (u] + ul)Av = ul Av + ufAv = {uy, v) + uy, v)
and, for any scalar k and vectors u, v,
{ku, v) = (ku)T Av = kuTAv = k{u, v}

Thus [I,] is satisfied.
Since u” Av is a scalar, (uT4v)" = u" Av. Also, AT = A since A is symmetric. Therefore,

{u, ) =uTAv = (W Av)" = vTAT"T = v" Au = (v, u)

Thus [1,] is satisfied.

Lastly, since A is positive definite, X" AX > 0 for any nonzero X € R". Thus, for any nonzero vector v,
{v, vy = v Av > 0. Also, €0, 0> = 0740 = 0. Thus [I,] is satisfied. Accordingly, the function {u, v) = u” Av
is an inner product.

Prove Theorem 6.14.
Suppose § = {w,, w3, ..., w,} and 4 = (k;;). Hence k;; = {w;, w;). Suppose

U=a,wy, +a;w; + - +a,w, and v=>byw, +bywy+--+b,w,

Then
{u,v) = E zalb_[(wh W) (H
i=1 j=1
On the other hand,
kyy ki ki (b,
k k ... k b
()" A[] = (ay. Gy, v @) 20 7P R
kny  kna kun/ \ba
by
n n L] b n n
=(Z“&"m Y aikiz, ... Za:ka..) 2= > Yabk, (7]
i=1 i=1 i=1 ; i=1 i=1
b,

Since k;; = {w,, w;), the final sums in (/) and (2) are equal. Thus {u, v} = [u]"A[v].

Prove Theorem 6.15.

Since {w;, w;> = {w;, w,> for any basis vectors w; and w;, the matrix A is symmetric. Let X be any
nonzero vector in R™. Then [u] = X for some nonzero vector u € ¥. Using Theorem 6.14, we have
XTAX = [u]T A[u] = {u, u) > 0. Thus A is positive definite.

INNER PRODUCTS AND ORTHOGONAL MATRICES

6.43.

Find an orthogonal matrix P whose first row is u, = (4, %, ).

First find a nonzero vector w, = (x, y, 2) which is orthogonal to u,, i.e., for which

X
O0=C(u,w)==-+—+—= or x+2y+22=0

|
o
-

One such solution is w,=(0, 1, —1). Normalize w, to obtain the second row of P, ie,
uy = (0, 1/2, —1//2)
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Next find a nonzero vector w, = (x, y, z) which is orthogonal to both u, and u,, i.e., for which

2
0=(u,,w3}=§+%+? =0 or x+2+22=0
Uil ol il pr y— z=0

L]
(]

Set z = —1 and find the solution w, = (4, —1, —1). Normalize w, and obtain the third row of P, ie.,

uy = (4/3/18, —1/,/18, —1/./18). Thus,

i E i

0 12 -11/2
43/2 —1/3/2 —-13/2

We emphasize that the above matrix P is not unique.

P

1 1 -1
644, Let A=|1 3 4 |. Determine whether or not (a) the rows of A are orthogonal, (b) A is
7 -5 2

an orthogonal matrix, and (c) the columns of A are orthogonal.
(@) Yes, since
(L1, =) (1,3,4=1+3-4=0 (L1, -7, -5=7—-5-2=0
(,3,4)-(7. -52)=7-15+8=0

(b) No, since the rows of A are not unit vectors, e.g, (I, 1, ~ 1) =1+1+1=3.
(¢) Nojeg (I, ,LD-(1,3, =5)=14+3-35=-3120

645. Let B be the matrix obtained by normalizing each row of 4 in Problem 6.44. (g) Find B. (b) Is B
an orthogonal matrix? (c) Are the columns of B orthogonal?
(@) We have

I, =DiP=1+14+1=3 B(L3,4)12=14+9+16=26
17, —5,2)[2=49+ 25 +4 =18

3 13 13
B=(1//26 3,/26 4/,/26
UJST8 —5I/18  2/78
(b) Yes, since the rows of B are still orthogonal and are now unit vectors.

(c} Yes, since the rows of B form an orthonormal set of vectors, then, by Theorem 6.15, the columns of B
must automatically form an orthonormal set.

6.46. Prove each of the following:
(@) P is orthogonal if and only if PT is orthogonal.
(b) If Pis orthogonal, then P! is orthogonal.
(c) [If P and Q are orthogonal, then PQ is orthogonal.
(@) We have (PT)" = P. Thus P is orthogonal iff PPT = I iff PTTP” = [ iff P7 is orthogonal.
(/) We have PT = P~ ' since P is orthogonal. Thus, by (a), P~ " is orthogonal.
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6.49.

INNER PRODUCT SPACES, ORTHOGONALITY [CHAP. 6

(¢) Wehave PT=P 'and Q" =Q ' Thus
(PQXPQ)" = PQQTPT = PQQ™'P™' =1
Thus (PQ)" = (PQ)™ ', and so PQ is orthogonal.

Suppose P is an orthogonal matrix. Show that:
(@) <Pu, Pv) = {u, v) foranyu,ve V; (b) | Pull =|lul foreveryue V.
(a) Using P'P = I, we have
{Pu, Pv) = (Pu)"(Pv) = u"PTPv = uTv = {u, v)
(b} Using PTP = I, we have
| Pull® = {Pu, Pu) = u"PTPu = uTu= (u, ud = jul?
Taking the square root of both sides gives us our result.

Prove Theorem 6.17.
Suppose
e =bye, +bpe,+ -+ bye, i=1...,n N
Using Problem 6.23(b) and the fact that E’ is orthonormal, we get
8 =<ej, € =byb;, + bbby +--- + by by, (4]
Let B = (b,;) be the matrix of coefficients in (/). (Then P = B".) Suppose BB" = (c;). Then
¢;;=byubjyy + bp by +--- + b, b, ()]

By (2) and (3), we have c;; = §;;. Thus BB" = I. Accordingly, B is orthogonal, and hence P = B” is
orthogonal.

Prove Theorem 6.18.
Since {e,} is orthonormal, we get, by Problem 6.23(b),
(e, € = ayay;+dyay;+ - + a8, =<{C;, Cp

where C; denotes the ith column of the orthogonal matrix P = (g;)). Since P is orthogonal, its columns form
an orthonormal set. This implies {¢}, ¢/} = {C;, C;> = §;;. Thus {¢}} is an orthonormal basis.

COMPLEX INNER PRODUCT SPACES

6.50.

6.51.

Let ¥ be a complex inner product space. Verify the relation
{u, av, + bvy) = au, v,> + blu, vy
Using [13], [I%], and then [1%), we find
{u, av; + bvy) = (avy + by, u) = alvy, u) + b{vy, u) = alvy, u) + 5@2. uy = alu, vy + b<u, vy)

Suppose {u, v) = 3 + 2i in a complex inner product space V. Find:

(@) (2 — 4iu, v); (b) <u, (4 + 3v); (@ <3 — 6iu, (5 — 2ijp)
(@) <2 — i, v) = (2 — 4i)(u, v) = (2 — 4iX3 + 2i) = 14 — 18i

B) u@+3>=@+3) u, ) =@ -3)3+2)=18—i

(€) 3 — 6iju, (5 — 2iw) =(3 — 65 — 2i)<u, vy = (3 — GIKS + 2i)3 + 2i) = 137 — 30i
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6.52.

6.53.

Find the Fourier coefficient (component) ¢ and the projection cw of v = (3 + 4i, 2 — 3i) along
w = (5 + i, 2i)in C.

Recall ¢ = (v, w)/{w, w). Compute
o, w) =3+ 4iXS+ ) +(2— 3N2) = (3 + 4iX5 — i) + (2 — 3iX—2i)
=19+ 17i—6—4i=13 + 13i
W, w)=25+1+4=230
Thus ¢ = (13 + 13i)/30 = 4§ + 13i/30. Accordingly,
proj (v, w) = cw = (§% + 39715, — 4 + i/195)

Prove Theorem 6.19 (Cauchy—Schwarz). [{(u, v)| < |u| | v].

If v = 0, the inequality reduces to 0 < 0 and hence is valid. Now suppose v # 0. Using zZ = | z]? (for
any complex number z) and (v, u) = (u, vy, we expand || u — (u, v)tv||2 = 0 where t is any real value:
0 < flu— {u, vdw||* = {u — (u, vdt, u — {u, viW)
= (u, uy — (u, V31U, ©) — (u, V)1, 1) + (u, vO<u, vy2(v, v)
= llull® — 2t|<u, 0D1* + IKu, D o |)?

|<u, I
o)’
both sides, we obtain the required inequality.

Sett=1/]|lv|?tofind 0 < ||u|® — from which |{u, v)|* < |02 | v | . Taking the square root of

Find an orthogonal basis for u* in C* where u = (1, i, 1 + i).

Here u* consists of all vectors w = (x, y, z) such that

wuwy=x—iy+(1—-0z=0
Find one such solution, say w, = (0, 1 — i, i). Then find a solution of the system
x—iy+(1—iz=0 (I+iy—iz=0
Here z is a free variable. Set z = 1 to obtain y = i1 + i) = (1 + i)/2 and x = (3i — 3)2. Multiplying by 2
yields the solution w, = (3i — 3, 1 + i, 2). The vectors w, and w, form an orthogonal basis for u".
Find an orthonormal basis of the subspace W of C? spanned by
v, =(L,i,0and v, =(1,2,1 —i).
Apply the Gram-Schmidt algorithm. Set w, = v, = (1, {, 0). Compute

(v, wi) _ ] 1-2i _ l ] l :
By w,=(,21-1i- 3 {l.i,ﬂ)—(2+!,l 2l,l ;)

3 ffw, n?
Multiply by 2 to clear fractions obtaining w, = (1 + 2i, 2 —i, 2 — 2i). Next find |w, || = ﬁ and then
fl wo|l = /18, Normalizing {w,, w,} we obtain the following orthonormal basis of W :

{“ =(L S 0) " =(l+2f 2—i 2—2:‘)}
VN A AR/ TN
Find the matrix P which represents the usual inner product on C* relative to the basis
{1,i,1 — i}.
Compute
A, 1> =1 ,i)=i=— QLl—ip=T—i=1+i

G, iy=ii=1 G l—i=i1—D=—1+i A—-L1—iy=2

-
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Then. using {u, v) = {v, u), we have

(As expected, P is Hermitian, that is, P¥ = P))

NORMED VECTOR SPACES
6.57. Consider vectorsu = (1,3, —6,4) and v = (3, —5, 1, —2)in R*. Find:
(@ lul,and v, (€ luli;and o],
(b) lull, and jv]l, (d) d.(u v), dy(u, v) and d,(u, v)
(2} The infinity-norm chooses the maximum of the absolute values of the components. Hence
lul, =6 and vl =35
(b) The one-norm adds the absolute values of the components. Thus
lul,=1+3+6+4=14 lelly=3+5+1+2=11

(c) The two-norm is equal to the square root of the sum of the squares of the components (i.e., the norm
induced by the usual inner product on R3), Thus

lull,=/T+9+36+16=./62 and Jol,=9+25+1+4=./39
(d) Firstfindu —v=(—2,8 —7,6). Then

dofu,v)=lu—vl,=8
duvy=lu—v||,=2+8+7+6=23
dyu, v) = lu—vll; = /4 + 64 + 49 + 36 = /153

6.58. Consider the function f(t) =t — 4t in C[0, 3]. (@) Find || f ... (b) Plot f(1) in the plane R
(c)Find || f||,-(d) Find || ||,

(a) We seek | [ 1. = max (| f{r}]). Since f(¢} is differentiable on [0, 3], | f{¢)| has 2 maximum at a critical
point of f{¢), i.c, when the derivative (1) = 0, or at an endpoint of {0, 3]. Since f'(f) = 2t — 4, we set
2t — 4 = 0 and obtain ¢t = 2 as a critical point. Compute

f()=4-8=—4 fO=0-0=0 fB)=9-12=-3
Thus || f i, =1f@)]=|—-4] =4
{(b) Compute f(r) for various values of t in [(, 3], e.g.,

t JO 1 2 3
fl o =3 —4 -3

Plot the points in R? and then draw a continuous curve through the points as shown in Fig. 6-11.

() We seck | fll,=[3|f(0lde As indicated by Fig. 6-11, f(r) is negative in [0, 3]; hence
| f()| = —(1* — 41) = 4t — ¢*. Thus

3 t33
I|f||,=j~ (41—12}dl=[2!’—§] =18—9=9
1]

(]

" o 5 i k)
@ Iifl§=.[ [f(2y)* dt =L(t"—8t3+ 16:%&::['?_2:% “:] ':3
0

Thus | £, = /13

— i

it
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6.59.

|

-

|

=
ta T
el

F

_2-|-

-3 4

_5 4

Fig. 6-11

Prove Theorem 6.25.

fu#uv then u—v #0, and hence d(u, v) = |u — vl > 0. Also, d(u, ) = |lu — ull = |Gl =0. Thus
[M,] is satisfied. We also have

du,v)=lu—vll=ll —lv—-wl=|-1{lv—ul=llvo—~u|=db u
and

du,v)=lu—vli=lw—w+w-0)l <lu—wl+lw—rvi=duw +dw, v}
Thus [M,] and [M,] are satisfied.

Supplementary Problems

INNER PRODUCTS

6.60.

6.61.

6.62.

Verify that the following is an inner product on R? where u = (x,, x;) and v = (y,, y,):

flu, v) = x4y = 23y, — 2x2 ¥ + 5x, ¥,

Find the values of k so that the following is an inner product on R? where u = (x,, x,} and v = (y,, y,):
S, v =xy -3xy,- 3y +kgy,

Consider the vectors u = (1, —3)and v = (2, 5)in R%. Find:

(@) {u, v) with respect to the usual inner product in R?.

(b) <u, v) with respect to the inner product in R? in Problem 6.60.
(¢) llv| using the usual inner product in R?,

(d) | v vsing the inner product in R? in Problem 6.60.

Show that each of the following is not an inner product on R® where u = (x,, x5, x3)and v = (y,, y3, }a):

(@) Cuv)=x91+x3¥, and (b)) Ku,v) =xp,x3+ ¥y X293

Let ¥ be the vector space of m x n matrices over R. Show that {4, B) = tr (B" A) defines an inner product
in V.
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6.65.

6.66.

INNER PRODUCT SPACES, ORTHOGONALITY [CHAP. 6

Let ¥ be the vector space of polynomials over R. Show that (/. ¢ = | f(t) g(t) dt defines an inner product
in V.

Suppose [{u, )| = [lu |l | v|. (That is, the Cauchy—Schwarz inequality reduces to an equality.) Show that u
and v are linearly dependent.
Suppose f(i, v} and g(u, v) are inner products on a vector space V over R. Prove:

(a) The sum f + g is an inner product on V where (f + g) (1. v} = f(u. v) + glu. v).
(b) The scalar product K, for k > 0, is an inner product on V where (kf Xu, v) = kf (u, v).

ORTHOGONALITY, ORTHOGONAL COMPLEMENTS, ORTHOGONAL SETS

6.68.

6.70.

6.71.

6.72.

6.73.

6.74.

6.75.

6.76.

6.77.

Let ¥ be the vector space of polynomials over R of degree < 2 with inner product {f, g) = {§ f(t)}g(t) dt.
Find a basis of the subspace W orthogonal to h(f) = 2t + 1.

Find a basis of the subspace W of R* orthogonal to u, = (1, —2,3,4)and u, = (3, -5, 7, 8).
Find a basis for the subspace W of R® orthogonal to the vectors u; =(1,1,3,4, 1)and u, = (1,2, 1, 2, 1).
Let w = (1, —2, — 1, 3) be a vector in R*. Find (a) an orthogonal and (b} an orthonormal basis for w.

Let W be the subspace of R* orthogonal to u, = (1, 1, 2, 2) and u, = (0, 1, 2, —1). Find (a) an orthogonal
and (b} an orthonormal basis for W. (Compare with Problem 6.69.)

Let S consist of the following vectors in R*:
“l=(l! ls ]v I} u2={lr l,—l,—l] "3':{1)_*]- l)""} u‘:[l.—l,—l, 1}

(a) Show that S is orthogonal and a basis of R*.

(b)) Writev = (1, 3, —35, 6) as a linear combination of u, u,, us, u,.

(¢) Find the coordinates of an arbitrary vector v = (a, b, ¢, d) in R* relative to the basis S.
(d) Normalize S to obtain an orthonormal basis of R®.

Let V be the vector space of 2 x 2 matrices over R with inner product {4, B) = tr (B"A). Show that the
following is an orthonormal basis of V':

o o} oMo D6 3)

Let V be the vector space of 2 x 2 matrices over R with inner product (4, B) = tr (B" A). Find an orthog-
onal basis for the orthogonal complement of (a) the diagonal and (b) the symmetric matrices.

Suppose {u,, u,, .., 4,} is an orthogonal set of vectors. Show that {k,u,, k,u,, ..., k,u,} is orthogonal for
any scalars k, k,, ..., k,.

Let U and W be subspaces of a finite-dimensional inner product space V. Show that: (a} (U + W) =
Ut Wt and (B)(U n W) = Ut + Wt

PROJECTIONS, GRAM-SCHMIDT ALGORITHM, APPLICATIONS

6.78.

Find an orthogonal and an orthonormal basis for the subspace U of R* spanned by the vectors
vy =(L1LLEv,=(1, -1,22vy=(1,2, —3, —4).
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6.79.

6.81.

6.82.

6.83.

Let V be the vector space of polynomials f(f) with inner product {f, g> = |3 f(t)gl1) di. Apply the Gram-
Schmidt algorithm to the set {1, t, 12} to obtain an orthogonal set { fg, f;, f;} with integer coefficients.

Suppose v = (1, 2, 3, 4, 6). Find the projection of v onto W (or find w € W which minimizes | v — w ||) where
W is the subspace of R® spanned by:

@ u,=0,2,1,2 )andu, =(1, —1,2, — 1, 1); B vy,=(,2,,2,)andp,=(1,0, 1,5 —1)
Let V = C[—1, 1] with inner product {f, g> = [L, f(t)g(t) di. Let W be the subspace of V of polynomials

of degree <3. Find the projection of f{t) = t* onto W, [Hint: Use the (Legendre) polynomials 1, 1, 3t — 1,
5¢* — 3t in Example 6.13.)

Let V = C[0, 1] with inner product {f, g» = [§ f(t)g(r) dr. Let W be the subspace of V of polynomials of
degree <2. Find the projection of f(t) = t* onto W. (Hint: Use the polynomials 1, 2t — 1, 612 — 6t + 1 in
Problem 6.27.)
Let U be the subspace of R* spanned by the vectors

Ulz{l, l: ]’ l} Dz={l, _ltziz) vs:(llzr _33 __4}
Find the projection of v = (1, 2, — 3, 4) onto U. (Hint: Use Problem 6.78.)

INNER PRODUCTS AND POSITIVE DEFINITE MATRICES, ORTHOGONAL MATRICES

6.84.

6.85.

6.87.

6.88.

6.90.

6.91.

Find the matrix A which represents the usual inner product on R? relative to each of the following bases of
R?:(a) {v, = (1,4), v, = (2, —3)} and (b) {w, = (1, —3), w, = (6, D)}
Consider the following inner product on R*:

Sl v)=x1y, — 2192 — 2x2 ¥y + 5x3 52 where u = (x,,x;) and v=(yy,)

Find the matrix B which represents this inner product on R? relative to each basis in Problem 6.84.

Find the matrix C which represents the usual basis on R? relative to the basis S of R? consisting of the
vectors:uy = (1, 1, 1), uy = (1,2, 1}, uy = (1, — 1, 3).

Consider the vector space V of polynomials (1) of degree <2 with inner product {f, g> = (3 f(£)gl(t) d1.

(a) Find {Jf; g)> wheref(t) =1t + 2and g(t) = t* — 3t + 4.
(b) Find the matrix A of the inner product with respect to the basis {1, t, t*} of V.
{c) Verify Theorem 6.14 that {f, g> = [f]7A[g] with respect to the basis {1, t, t*}.

Determine which of the following matrices are positive definite:

1 3 3 4 4 2 6 —7
(@) (3 5). ®) (4 ?), © (2 1), @ (_7 9)

Determine whether or not A is positive definite where

2 -2 1 1 1 2
(@ A=] -2 3 -2 hy A=]1 2 6
1 -2 2 2 6 9

Suppose A and B are positive definite matrices. Show that: (a) A + B is positive definite; (b) kA is positive
definite for k > 0.

Suppose B is a real nonsingular matrix. Show that: (a) BTB is symmetric, and (b) B"B is positive definite.



242

6.92,

6.93.

6.94.

INNER PRODUCT SPACES, ORTHOGONALITY [CHAP. 6

1
Find the number and exhibit all 2 x 2 orthogonal matrices of the form (; :)

Find a 3 x 3 orthogonal matrix P whose first two rows are multiples of u = (1, 1, 1) and v = (1, -2, 3),
respectively.

Find a symmetric orthogonal matrix P whose first row is (4, £, §). (Compare with Problem 6.43))

Real matrices A and B are said to be orthogonally equivalent if there exists an orthogonal matrix P such
that B = PTAP. Show that this relation is an equivalence relation.

COMPLEX INNER PRODUCT SPACES

6.96.

6.98,

6.99.

6.100.

6.101.

6.102.

6.103.

6.104.

Verify that

{ayuy; + aztiy, byu, + byvy) = “151'("1’ v,y + '1151(“1, vy) + "1151(“2 s U+ “252‘("2; vy
m n
More generally, prove that < Y au, ¥ ijj> =¥ a;bCu;, v).
i=1 ji=1 i j
Consider u = (1 4+ 4, 3,4 —i)and v = (3 — 4i, | + i, 2i) in C3. Find:
(@) <u,v), (b) <v, up, (¢} Nlul, d levl, () dlu, v).

Find the Fourier coefficient ¢ and the projection cw of

(@) u=B+i5—-2alongw=(5+1il + iyin C2;
(b)) u=(1—1i3i1+ijalongw=(1,2—i3+ 2i)inC>.

Let u = (z,, z;) and v = (w,, w,) belong to C2. Verify that the following is an inner product on C?:

Sl vy =z, Wy + (1 + dz,wy + (1 — i)z, + 3z, w,

Find an orthogonal basis and an orthonormal basis for the subspace W of C* spanned by u, = (1, i, 1) and
u, = (1 +i0,2).

Let u = (z,, z,) and v = (w,, w,) belong to C2. For what values of a, b, ¢, d € C is the following an inner
product on C2?

flu, v} =az,w, + bz,w, + cz,w, +dz,w,
Prove the following polar form for an inner product in a complex space V:
Cuvy = tu+ vl —dlu—v|* + Hu+iv)? —{llu—iv|?
{Compare with Problem 6.9(b).]

Let V be a real inner product space. Show that:

i) llull=|lvlifandonlyif u + v, u —v) =0;
(i) Ju+vl®=ul®+|v|?ifandonlyif (u, v) = 0.

Show by counterexamples that the above statements are not true for, say, C2.

Find the matrix P which represents the usual inner product on C* relative to the basis {1, 1 + i, 1 — 2i}.
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6.105. A complex matrix A is unitary if it is invertible and A~ = A". Alternatively, A is unitary if its rows
{columns) form an orthonormal set of vectors (relative to the usual inner product of C"). Find a unitary
matrix whose first row is: (a) a multiple of (1, | —i); (b) (4, 31, 3 — Li).

NORMED VECTOR SPACES

6.106. Consider vectors u = (1, —3.4. 1, —2)and v = (3,1, —2, —3, 1) in R>. Find:

(@ llull,and|vl, (¢) luli;and v,
(#) llull,and o], (d) d,(u, v), dfu, v) and dyu. v)

6.107. Consider vectors u = (1 + i, 2 —4i)and v = (1 — i, 2 + 3i}in C% Find:

(@ lull,and o], (@) lul,and |v],
() llull; and v i, (d d(u o), d(u, v) and dy(u, v)

6.108. Consider the functions f{t) = 5t — t* and g(t) = 3t — t* in ([0, 4]. Find: (a) d(f. ¢). (b) d,lf. g), and
(e dy( £, g).

6.109. Prove that:(a) || - ||, is a norm on R";(b) | * |, is a norm on R".

6.110. Prove that:(a) || * ||, is a norm on C[a, b];(b) || * | is a norm on (g, b].

Answers to Supplementary Problems

66l. k>9

662 (@ —13, (b)) -7, (& VB (@ /29

6.63. Letw =(0,0 1). Then {u, u) = 0 in both cases.

6.68. {71* — 51,1212 — 5}

6.69. {(1,2,1,0),(4,4,0, 1))

670. (-1,0,0,0,1),(—-6.2,0,1,0,(—5.21,0,0)

671 (@ (0.0.3,1),(0,3 —3,1,(210, -9.3); (B (0,0,3, 1)/,/10.(0, 3, —3, 1)///19,(2, 10, —9, 3)/,/194
672 (@ (0.2 —1,0(—151L25:; () (0,2, —1,0//5(—151,2 5//255

6.73. () v=(5 + 3u, — 13u; + 9u,)/4
(¢ [vl={a+b+c+da+b—-c—da-b+tc—da—b-—c+d]4

0 0 -1
a5 @ N ) w w0
678. w,=(LLL1)w,=(0,—-21L1),wy=(12 -4, -1,-7).

679. fo=1fi=t—1fi=31—6t42
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6.87.

6.88.

6.92.

6.93.

6.97.

6.98.

6.100.

6.101.

6.103.

6.104.

INNER PRODUCT SPACES, ORTHOGONALITY

(@) proj (v, W)= (21,27, 26,27, 21)/8

(b) First find orthogonal basis for W:w, =(1,2,1,2, 1), w, =(0,2,0, —3, 2). Then
proj (v, W) = (34, 76, 34, 56, 42)/17

proj (f, W) = 101319 — 5t/21

proj (f; W) = 3t*/2 — 3t/5 + %5

proj (v, U) = (— 14, 158, 47, 89)/70
17 —10 10 0
(@ (—-IO 13)‘ &) (0 40)
65 — 58 23
@ (—68 73)’ ® (23 8)
3 4 3
4 6 2
2 11

L35
@ # o [+ 114
b it

»

@ No, (B yes, (o) no, (d) yes
(@) Yes, (b)) no

Four: ( \/%;3 ffﬁ)(_ \/3;3 \/_ﬁf ( \/én —\/ffs)’(‘ \/%;3 ~:/f13)

W3 3 13
=(|fJ1_4 ~2//14 3/\/1_5)
SI38 ~2//38 —31/38,

¥ 3 3
I -3 3
(A B

(@ —4, G 4 () /28, @ J3, (o J
(@ c=(19-50)/28, (B c=(3+ 619

{oy = (L i, D /3, v, = (20, | — 34, 3 — i}/, /24}

a and d real and positive, ¢ = b and ad — be positive.

u=(1,2), v = (i, 2i)

1 1—i 1+ 2
P=|1+i 2 —2+ 3
1—-2F —2-—3i 5

[CHAP. 6
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L

N 3 3i -4
14/3  (1—-i/3 i2 —11/2 0
W 49 (nwﬁ ﬁuﬁ} ® ( } o —w ~;+i-‘)

6.106. (a) 4and3, (b) Iland13, () ./3and /24, (d) 6,19,and9
6.107. (a) /20and /13, () /2+/20and /2+ /13, (9 /22and /15, (4 7,9,and /53

6.108. (a) 8, (b 16 (9 *°



Chapter 7

Determinants

7.1 INTRODUCTION

Each n-square matrix A = (a;;) is assigned a special scalar called the determinant of A, denoted by
det (A)or |A| or

ayy Gy ... Gy
azl azz &aa (11"
apy Anz Ay

We emphasize that an n x n array of scalars enclosed by straight lines, called a determinant of order n, is
not a matrix but denotes the determinant of the enclosed array of scalars, i.e., the enclosed matrix.

The determinant function was first discovered in the investigation of systems of linear equations.
We shall see that the determinant is an indispensable tool in investigating and obtaining properties of
square matrices.

The definition of the determinant and most of its properties also apply in the case where the entries
of a matrix come from a ring.

We begin with the special case of determinants of orders one, two, and three. Then we define a
determinant of arbitrary order. This general definition is preceded with a discussion of permutations,
which is necessary for our general definition of the determinant.

7.2 DETERMINANTS OF ORDERS ONE AND TWO

The determinants of orders one and two are defined as follows:

lay, | =ay,
a;, ay;

=dyfz; — a4z
ay, dzz

Thus the determinant of a 1 x 1 matrix A = (a,) is the scalar a,, itself, that is, det (4) = |a,, | = a,,.
The determinant of order two may easily be remembered by using the following diagram:

+ —

Tl

That is, the determinant is equal to the product of the elements along the plus-labeled arrow minus the
product of the elements along the minus-labeled arrow. (There is an analogous diagram for determi-
nants of order three but not for higher-order determinants.)

Example 7.1

(a) Since the determinant of order one is the scalar itself, we have det (24) =24, det(—6)= —6, and
det(t+2)=1t+2

246



CHAP. 7] DETERMINANTS 247

() I; :|=(5H3)"-(4](2)=15~3=7 and | 1|=(2](6]_“H—4l'=12+4=16.

—4 6

Consider two linear equations in two unknowns:

a|x+bly=61
ax+byy=c,

Recall (Problem 1.60) that the system has a unique solution if and only if D = a,b, — a, b, # 0; and
that solution is

_ bycy —bic,y _ a5 —azg
albz — 02 bl albz = ﬂz bl

The solution may be expressed completely in terms of determinants:

Cy bl a ¢

x=_&=bzc|‘—blcz= c; b, y=£1=ﬂ1°z"azcl L
D albz — G, bl a, bl D albg — 4, b. ay bl

a, b, a; b,

Here D, the determinant of the matrix of coefficients, appears in the denominator of both quotients. The
numerators N, and N, of the quotients for x and y, respectively, can be obtained by substituting the
column of constant terms in place of the column of coefficients of the given unknown in the matrix of
coefficients.

2x—3y=7
Ix+5y=1"
The determinant D of the matrix of coefficients is

Example 7.2. Solve by determinants: {

=N —-B3N—-3)=10+9=19

2 -3
D=
-

3

Since D # 0, the system has a unique solution. To obtain the numerator N, replace, in the matrix of coefficients, the
coefficients of x by the constant terms:

7 -3
N"_ll 5

=) —(IX-3)=35+3=38

To obtain the numerator NN, replace, in the matrix of coefficients, the coefficients of y by the constant terms:

2
N, = 3 :‘={2){1)—(3](T)=2—21=—l9
Thus the unique solution nf the evstem ic
N, 38 N, -19
=== == =
*=p~p~? @ y=j=7g !

Remark: The result in Example 7.2 actually holds for any system of n linear
equations in n unknowns, and this general result will be discussed in Section 7.5. We
emphasize that this result is important for theoretical reasons; in practice, Gaussian
elimination, not determinants, is usually used to find the solution of a system of linear
equations.
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7.3 DETERMINANTS OF ORDER THREE

Consider an arbitrary 3 x 3 matrix A = (a;;). The determinant of A is defined as follows:

ayy 4y dy3
det (A) = |a,, a,, a,3|=a,,8;,a;33 + 430,305, + ay3a;3,a;,

Gy, a3, da; T 0130503 — dy30,,033 — 0y,A3303,

Observe that there are six products, each product consisting of three elements of the original matrix.
Three of the products are plus-labeled (keep their sign) and three of the products are minus-labeled
(change their sign).

The diagrams in Fig. 7-1 may help to remember the above six products in det (A). That is, the
determinant is equal to the sum of the products of the elements along the three plus-labeled arrows in
Fig. 7-1 plus the sum of the negatives of the products of the elements along the three minus-labeled
arrows. We emphasize that there are no such diagrammatic devices to remember determinants of higher
order.

Fig. 7-1

2 1 1
0 5 —2|=(2X5K4) + (1X—2X1) + (1X—3KO) — (1XSK1) — (— 3N —2X2) — (4X1XO)
1 -3 4

—40-240-5-12—-0=2I

The determinant of the 3 x 3 matrix 4 = (g;;) may be rewritten as:

det (A) = a,,(a;; @yy — az3a3;) — @;3(83,837 — Ay3a31) + ay3(a3,a3; — 33 a34)

Qy; Gy dyy diy a3y dp;
=dyy — 4y, + ayy

33 diy ayy djy ayy dj;

which is a linear combination of three determinants of order two whose coefficients (with alternating
signs) form the first row of the given matrix. This linear combination may be indicated in the form
Qyy- Q2 Gy iy Gy Gy gy, Gz Q3
Qyy|dz Gzy; dp3| —ayp|GQy 4dz; G|+ 43|40 Gy dz3
A3y Qa3 dy; a3y 432 Gy ay; 0433 ds;

Note that each 2 x 2 matrix can be obtained by deleting, in the original matrix, the row and column
containing its coefficient.
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Example 7.4

1 2 3 1 2 3 1 2 3 1 2 3

4 -2 3Il=1(4 -2 |—214 -2 3[+3|4 -2 3

0 5 —1 0 5 —1 0 5 —1 0 5 -1
—2 3 4 3 4 -2

=t 3 -||"2|0 —t|+3’0 5|

12-15)-2(—4+0)+320+0)= —13+8+4+60=55

74 PERMUTATIONS

A permutation o of the set {1, 2, ..., n} is a one-to-one mapping of the set onto itself or, equiva-
lently, a rearrangement of the numbers 1, 2, ..., n. Such a permutation ¢ is denoted by

1 2 ... nm o . ‘ ‘
" v J2 i n o G =JyJz---In where j; = a(i)

The set of all such permutations is denoted by S,,, and the number of such permutations is n!. If g € §,,,
then the inverse mappingo '€ S,; and if 6, T € S,, then the composition mapping ¢ » 7 € S,. Also, the
identity mappinge =0 -6~ ' € §,.(Infact,e =12 ... n)

Example 7.5
{a) There are 2! = 2 + | = 2 permutations in S,:the permutations 12 and 21.
thy There are 3! =3 -2 -1 = 6 permutations in §,:the permutations 123, 132, 213, 231, 312, 321.

Consider an arbitrary permutation ¢ in S,; say 0 = j, j, ... j,. We say a is an even or odd permu-
tation according to whether there is an even or odd number of inversions in a. By an inversion in o,
we mean a pair of integers (i, k) such that i > k but i precedes k in 6. We then define the sign or parity of
o, written sgn g, by

I ifgiseven

Sg’"":{—l if  is odd

Example 7.6

() Consider the permutation ¢ = 35142 in S,. For each element, count the number of elements smaller than it
and to the right of it. Thus

3 produces the inversions (3, 1) and (3, 2);
5 produces the inversions (5. 1), (5. 4). (5. 2):
4 produces the inversion (4, 2);

(Note that 1 and 2 produce no inversions.) Since there are, in all, six inversions, ¢ is even and sgn ¢ = 1.
(b) The identity permutation ¢ = 123 ... n is even because there are no inversions in &

(¢) InS,,the permutation 12 is even and 21 is odd.
In S,, the permutations 123, 231 and 312 are even, and the permutations 132, 213 and 321 are odd.

{d) Let 7 be the permutation which interchanges two numbers i and j and leaves the other numbers fixed, that is,
i) = j =i k) =k k+#i,j
We call 7 a transposition. If i < j, then

=12 i+ ). (j-Dilj+1..n
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There are 2(j — i — 1) + 1 inversions in 1 as follows:
(7 D (s x), (x, 1) where x =i+ 1,...,j— 1

Thus the transposition t is odd.

75 DETERMINANTS OF ARBITRARY ORDER
Let A = (a;;) be an n-square matrix over a field K:

(111 alz s an aln

A Ay 3z ... Up,

Apy Qpz .. dpy

Consider a product of n elements of 4 such that one and only one element comes from each row and
one and only one element comes from each column. Such a product can be written in the form
Qy5,82j; ~"" Qpjy

that is, where the factors come from successive rows and so the first subscripts are in the natural order
1, 2, ..., n. Now since the factors come from different columns, the sequence of second subscripts form a
permutation ¢ = j, j, ... j, in §,. Conversely, each permutation in S, determines a preduct of the above
form. Thus the matrix 4 contains n! such products.

Definition: The determinant of 4 = (a;), denoted by det (4) or | A, is the sum of all the above n!
products where each such product is multiplied by sgn ¢. That is,

|Al = 2 (sgn o)a,;,a;;, - 4y,

L

or [A]l= ) (SBN 6)a10(1y8202) " Anatm
a &Sy

The determinant of the n-square matrix A is said to be of order n.

The next example shows that the above definition agrees with the previous definition of determi-
nants of orders one, two, and three.

Example 7.7

(a) Let A =(ay,) beal x | matrix. Since S; has only one permutation which is even, det (4) = a,,, the number
itself.

(b) Let A =(a;)bea2 x 2 matrix. In §,, the permutation 12 is even and the permutation 21 is odd. Hence

Gy Gy

det (A) =

=a,,8; — a,,0
11822 12921
21 822

(¢) Let A=(a;) bea3 x 3 matrix. In S, the permutations 123, 231 and 312 are even, and the permutations 321,
213 and 132 are odd. Hence
dy; G4z Q43
det (A) =|ay, az; Q3] =@,,8;;053 + dy30;3083; + 61303, 033 — (1303, A3y — G)305,033 — 0,305,
Ay Gy 933

As n increases, the number of terms in the determinant becomes astronomical. Accordingly, we use
indirect methods to evaluate determinants rather than its definition. In fact, we prove a number of
properties about determinants which will permit us to shorten the computation considerably. In partic-
ular, we show that a determinant of order n is equal to a linear combination of determinants of order
n — 1 as in case n = 3 above.
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7.6 PROPERTIES OF DETERMINANTS

We now list basic properties of the determinant.
Theorem 7.1: The determinants of a matrix 4 and its transpose AT are equal; that is, | 4| = | A7].

By this theorem, proved in Problem 7.21, any theorem about the determinant of a matrix A which
concerns the rows of A will have an analogous theorem concerning the columns of A.
The next theorem, proved in Problem 7.23, gives certain cases for which the determinant can be
obtained immediately.
Theorem 7.2: Let A be a square matrix.
(a) If A has a row (column) of zeros, then | A| = 0.
(b) If A has two identical rows (columns), then | 4| = 0.
(¢) If Ais triangular, i.e, A has zeros above or below the diagonal, then | A| = product
of diagonal elements. Thus in particular, | /| = 1 where I is the identity matrix.

The next theorem, proved in Problem 7.22, shows how the determinant of a matrix is affected by
the elementary row and column operations.
Theorem 7.3: Suppose B is obtained from A by an elementary row (column) operation.
(a) If two rows (columns) of A were interchanged, then |B| = — | A|.
(b) If a row (column) of A was multiplied by a scalar k, then | B| = k| A|.

(¢) [If a multiple of a row (column) was added to another row (column), then | B| = | 4]|.

We now state two of the most important and useful theorems on determinants.

Theorem 7.4: Let A be any n-square matrix, Then the following are equivalent :
(i) Aisinvertible:ie., A has an inverse A~ ',
(i) AX = 0 has only the zero solution.
(iii) The determinant of A is not zero: | A| # 0.
Remark: Depending on the author and text, a nonsingular matrix A4 is defined to
be an invertible matrix A, or a matrix A for which | A| # 0, or a matrix A for which

AX = 0 has only the zero solution. The above theorem shows that all such definitions
are equivalent.

Theorem 7.5: The determinant is a multiplicative function. That is, the determinant of a product of
two matrices A and B is equal to the product of their determinants: | AB| = | A|| B|.

We shall prove the above two theorems (Problems 7.27 and 7.28, respectively) using the theory of
elementary matrices and the following lemma (proved in Problem 7.25).

Lemma 7.6: Let E be an elementary matrix. Then, for any matrix A, |EA| = | E||A|.

We comment that one can also prove the preceding two theorems directly without resorting to the
theory of elementary matrices.
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Recall that matrices A and B are similar if there exists a nonsingular matrix P such that
B = P ' AP. Using the multiplicative property of the determinant (Theorem 7.5), we are able to prove
(Problem 7.30):

Theorem 7.7: Suppose A and B are similar matrices. Then | 4| = | B|.

7.7 MINORS AND COFACTORS

Consider an n-square matrix A = (q;;). Let M;; denote the (n — 1)-square submatrix of 4 obtained
by deleting its ith row and jth column. The determinant | M;;| is called the minor of the element g;; of 4,
and we define the cofactor of 4;;, denoted by A,;. to be the “signed ™ minor:

Aij =(— inl Mul

Note that the “signs” (— 1)'*# accompanying the minors form a chessboard pattern with +’s on the
main diagonal:

We emphasize that M;; denotes a matrix whereas A4;; denotes a scalar.

Remark: The above sign (— 1)"*/ of the cofactor A;; is frequently obtained using
the checkerboard pattern. Specifically, beginning with “ + ™ and alternating signs, i.e.,

+, —. +. —. .... count from the main diagonal to the appropriate square.
2 3 4
Example 7.8. Consider the matrix A ={5 6 7
g8 9 1
2 3 4|
IMysl=|5 6 7 =|§ :|:18—24= —6and 50 Ay =(—1P2"*[Myy] =(—1)-(—6) =6
g 9 1

The following theorem, proved in Problem 7.31, applies.

Theorem 7.8: The determinant of the matrix A = (a;;) is equal to the sum of the products obtained by
nuultiplying the elements of any row (column) by their respective cofactors:

|Al =auA, + g Ay + - +a, Ay = Eﬂ.‘in_.-
=

and Al =a ;A j+ay;A; + -+ a,;A,;= Zaiinj
=1

The above formulas for | A| are called the Laplace expansions of the determinant of 4 by the ith
row and the jth column, respectively. Together with the elementary row (column) operations, they offer
a method of simplifying the computation of | A |, as described below.

Evaluation of Determinants

The following algorithm reduces the evaluation of a determinant of order n to the evaluation of a
determinant of order n — 1.
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Allgorithm 7.7 (Reduction of the order of a determinant)

Here A = (a;) is a nonzero n-square matrix with n > 1.
Step 1. Choose an element a;; = 1 or, if lacking, a;; # 0.

Step 2. Using a;; as a pivot, apply elementary row [column] operations to put Os in all the other
positions in the column [row] containing g;;.

Step 3. Expand the determinant by the column [row] containing a;;.

The following remarks are in order.

Remark 1: Algorithm 7.7 is usually used for determinants of order four or more.
With determinants of order less than four, one uses the specific formulas for the
determinant.

Remark 2: Gaussian elimination or, equivalently, repeated use of Algorithm 7.7
together with row interchanges, can be used to transform a matrix A into an upper
triangular matrix whose determinant is the product of its diagonal entries. However,
one must Keep track of the number of row interchanges since each row interchange
changes the sign of the determinant. (See Problem 7.11.)

5 4 2 0
2 3 1 =2
ol P sl g
fowg w]

Example 7.9. Compute the determinant of A = by Algorithm 7.7.

Use a,, = | as a pivot to put 0s in the other positions of the third column, that is, apply the row operations
—2R, + R, + R,, 3R, + R, » R,, and R, + R, —+ R,. By Theorem 7.3(c), the value of the determinant does not
change by these operations; that is,

5 4 2 1 1 -2 0
1A] = 2 3 1 -2 _ 2 3 1 -2

-5 -7 -3 9 1 2 0
1 -2 -1 4 3 1 0 2

Now if we expand by the third column, we may neglect all terms which contain 0. Thus
-2 0 5

1
T -2 5
|,4|={—l)“3f ; :} _;'; = -1 2 I=—-9—-18+5-30-3+4)= —(—38)=38
31 1 0 2 L.

78 CLASSICAL ADJOINT

Consider an n-square matrix 4 = (q;;) over a field K. The classical adjoint (traditionally, just
“adjoint™) of A, denoted adj A, is the transpose of the matrix of cofactors of A:

All '421 ] Aul
adj A o 12 Azz b Anz
Aln A2n AIIH

We say “classical adjoint” instead of simply “adjoint” because the term adjoint is currently used for an
entirely different concept.
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2 3 —4
Example 7.10. Let A={0 —4 2 1. The cofactors of the nine elements of A are
1 -1 5

-4 2 o 2 0 —4
Al':+—l 5:“"l8 A|z=—l 5= 2 A|3=+l —l= 4
3 -4 2 -4 2 3
A== , == gy o B M= =, = B
3 —4 2 —4 2 3
A3|=+_4 2:_10 A32=_0 2=_4 A33=+0 _4=‘_8
The transpose of the above matrix of cofactors yields the classical adjoint of A:
—18 —11 =10
adj A = 2 14 -4
4 5 -8
The following theorem, proved in Problem 7.33, applies.
Theorem 7.9: For any square matrix A,
A-(adj A)=(adj A)* A = |A|I
where [ is the identity matrix. Thus, if | 4| # 0,
1
A~' =——(adj A)
4]
Theorem 7.9 gives us another method of obtaining the inverse of a nonsingular matrix.
Example 7.11. Consider the matrix 4 of Example 7.10 for which | 4| = —46. We have
2 3 —4\[—-18 —-11 -—10 —46 0 0 1 c o
Aladj A)=[0 -4 2 2 14 —-4)=| 0 -4 O)|=-46/0 1 O
I -1 5 4 5 -—8 0 0 —46 0 0 1
= —461 = |A|l

Furthermore, by Theorem 7.9,

: —18/(—46) —11)(—46) —10/(—46) 5]
A_'Zm[adj A) = 2/(—406) 14/(— 46} —4/(—46) | = —-—}'j — 7
4/(-46)  5/(—46) —8B/(—46) oy

2t B
I Mg

7.9 APPLICATIONS TO LINEAR EQUATIONS, CRAMER’S RULE

Consider a system of n linear equations in n unknowns:

A Xy +ayax; + 0+ a,x,=b
Ay Xy + 032X+ 4 az,x,=h,
Ay Xy + Ay X3 + + Upp Xp = bn

The above system can be written in the form AX = B where 4 = (a,;) is the (square) matrix of coeffi-
cients and B = (b;} is the column vector of constants. Let A; be the matrix obtained from A4 by replacing
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the ith column of 4 by the column vector B. Let D = det (4) and let N, =det (4) fori=1,2,..., n.
The fundamental relationship between determinants and the solution of the above system follows.

Theorem 7.10: The above system has a unique solution if and only if D # 0. In this case the unique
solution is given by

x; = N,/D, x5 = N,/D, x,=NJD

The above theorem, proved in Problem 7.34, is known as “Cramer’s rule” for solving systems of
linear equations. We emphasize that the theorem only refers to a system with the same number of
equations as unknowns, and that it only gives the solution when D # 0. In fact, if D = 0 the theorem
does not tell whether or not the system has a solution. However, in the case of a homogeneous system
we have the following useful result (to be proved in Problem 7.65).

Theorem 7.11: The homogeneous system Ax = 0 has a nonzero solution if and only if D = | 4| = 0.

2x+ y- z=3
Example 7.12. Solve, using determinants:{ x+ y+ z=1,
x—2y—3z=4

First compute the determinant D of the matrix of coefficients:

2 1 -1
D=1{1 1 l|=—6+14+24+14+4+3=5
1 -2 -3

Since D # 0, the system has a unique solution. To compute N,, N,, and N, replace the coefficients of x, y, and z in
the matrix of coefficients by the constant terms:

31 -1

Ne=[1 1 I|=-9444+24+4+6+3=10
4 -2 -3
2 3 -1

Ny=(1 1 1|=—=643-441-8+9=—5
t @ =3
2 1 3

N,=[1 1 1|{=84+1-6-3+4—-4=0
1 -2 4

Thus the unique solutionisx = N /D=2, y=N,/D= ~1,2=N_/D = 0.

7.10 SUBMATRICES, GENERAL MINORS, PRINCIPAL MINORS

Let A = (a;;) be an n-square matrix. Each ordered set i, i,, ..., i, of r row indices, and each ordered
set ji,j2» - --» jr Of r column indices, defines the following submatrix of A of order r:
ah_h ﬂhlh - ﬂ.—._k
Alrjpoep = | G0 Gan o G

AGoiv Gz o Gy
The determinant | A{": /2 =+ /| is called a minor of A of order r and

(_1}11+i3+---+l}+j| +j;+v“+j,'A_ii'|,!;.u..irl
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is the corresponding signed minor. (Note that a minor of order n — 1 is a minor in the sense of Section
7.7 and the corresponding signed minor of order n — 1 is a cofactor.) Furthermore, if i; and j; denote,
respectively, the remaining row and column indices, then

LAl
is the complementary minor.

Example 7.13. Suppose A = (a;) is & 5-square matrix. The row subscripts 3 and 5 and the column subscripts 1

and 4 define the submatrix
A;:;=(¢131 ﬂu)
Qsy Qsg

and the minor and signed minor are, respectively,

layg)=|Pr G

= 03,054 — G34 05, and (1?3144 = — 1Ay 8)
agq Gy

The remaining row subscripts are 1, 2, and 4 and the remaining column subscripts are 2, 3, and 5; hence the
complementary minor of | A} ¢} is
ay; Uy a5
143331 = (a1, ay; as

Gqy; G4z Gy
Principal Minors

A minor is principal if the row and column indices are the same or, in other words, if the diagonal
elements of the minor come from the diagonal of the matrix.

Example 7.14. Consider the following minors of a 5-square matrix A = (a;)):

G2 G4 O Gei: Ey5 Big
a a
Ml = | 8y2 a“ 045 Mz = “21 623 azs M3 = 22 25
a a
tisz Q54 Gdss G5y dsy dss 3.

Here M, and M, are principal minors since all their diagonal elements belong to the diagonal of A. On the other
hand, M, is not principal since a,, belongs to the diagonal of M, but not to that of A.

The following remarks are in order.

Remark 1: The sign of a principal minor is always + 1 since the sum of the row
and identical column subscripts is even.

Remark 2: A minor is principal if and only if its complementary minor is also
principal

Remark 3: A real symmetric matrix A is positive definite if and only if all the
principal minors of 4 are positive.

7.11 BLOCK MATRICES AND DETERMINANTS

The following is the main result of this section.

Theorem 7.12: Suppose M is an upper (lower) triangular block matrix with the diagonal blocks
A, Ay, ..., A,.Then

det (M) = det (A,) det (A,) --- det (4,)

The proof appears in Problem 7.35.
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2 3.4 7 8

-1 5.3 2 1

Example 7.15. Find [M|whereM={ 0 0 ' 2 1 5
0 0!3 -1 4

o 0's5 2 6

Note that M is an upper triangular block matrix. Evaluate the determinant of each diagonal block:

2 3 2 1 5
l_] 5|=1|:H~3=l3 3 -1 4)=—12+20+304+25—-16—18=129
5 2 6

Then | M| = (13)29) = 377

A B
Remark: Suppose M = ( C D) where A, B, C, D are square matrices. Then it is

not generally true that |M| = | A || D| — | B]| C|. (See Problem 7.77.)

7.12 DETERMINANTS AND VOLUME

Determinants are related to the notions of area and volume as follows. Let u,, u,, ..., u, be vectors
in R". Let S be the (solid) parallelepiped determined by the vectors; that is,

S={au, +au, +--+a,u,:0<a <lfori=1,..,n}
(When n = 2, S is a parallelogram.) Let V(S) denote the volume of S (or area of § when n = 2). Then
V(S) = absolute value of det (4)

where A is the matrix with rows u,, u,, ..., u,. In general, V(S) = 0 if and only if the vectors u,, .., u,
do not form a coordinate system for R", i.e., if and only if the vectors are linearly dependent.

713 MULTILINEARITY AND DETERMINANTS
Let V be a vector space over a field K. Let & = V", that is, .«f consists of all the n-tuples

A= (Ah Azs Ay Au)

where the A, are vectors in V. The following definitions apply:
Definition: A function D: o — K is said to be multilinear if it 1s linear in each of the components; that

is:

(i) IfA;= B+ C, then

DAy=D...,B+C,..)=D(....,B,..)+ D(..,C,..)
(i) If A; = kB where k € K, then
D(A)=D(...,kB...)=kD(..., B, ..)

We also say n-linear for multilinear if there are n components.
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Definition: A function D: &/ — K is said to be alternating if D(A) = 0 whenever A has two identical
elements; that 1s,

D(A,, Ay, ..., A)=0 whenever A, =A;,i#j

Now let M denote the set of all n-square matrices 4 over a field K. We may view A4 as an n-tuple
consisting of its row vectors A,, A,, ..., A4,; that is, we may view A4 in the form A = (4,, A,, ..., 4,).
The following basic result (proved in Problem 7.36) applies (where I denotes the identity matrix):

Theorem 7.13: There exists a unique function D: M — K such that
(i) D is multilinear, (i) D is alternating, () DI =1

This function D is none other than the determinant function; that is, for any matrix
AeM,DA)=|A|.

Solved Problems

COMPUTATION OF DETERMINANTS OF ORDERS TWO AND THREE

7.1.  Evaluate the determinant of each of the following matrix:

G G G

3 -2

" = —8-5=-13

6 5
l2 3|=(6)(3]ﬂ(5](2}=i3—10=8, |

-5
l=l5+8=23, I !

=, w=p

72.  Find the determinant of (' -3 7 )
=1 43

t—5 7
-1 t43

=(t—N+P+T=>—-2—15+7=*—-2t—8

7.3. Find those values of k for which Ii ;Cl =0,

k k
4 2k
determinant is Zero.

Sct' |=2k’—4k=0,or 2kik —2)=0. Hence k =0; and k =2 That is, if k = 0 or k = 2, the
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7.4.

715.

7.6.

Evaluate the determinants of the following matrices:

| 3 a, b, ¢
@ {2 4 -1}, B {ax by ¢
| 5 =2 (25 b3 Cy

Use the diagrams in Fig. 7-1.

P -2 3
(@ {2 4 —1{=(1X4~—2)+ (=20~ IX1) + 3N5N2) — (IX4K3) — (SN — N1} — (—2X—2K2)
1 5 —-2|=-8+2+30—-124+5-8=9

a b, ¢
() laz b, ¢yl =abycy +byejay + eibya; —aybyey — byeya, —c3bya,
ay by ¢

L= = T
- =]

2
Compute the determinant of | 5
8

First simplify the entries by subtracting twice the first row from the second row, that is, by applying
—2R, + R, =+ R,

2 3 4 2 3 4
b 6 =11 0 —1|=0-24+36-0+18-3=27
B 9 1 B 9 |
Find the determinant of 4 where:
LR [ t+3 -1 1
@ A={2 41 -1}, B A={ 5 t—-3 |
1 —4 1 6 -6 t+4

(@) First multiply the first row by 6 and the second row by 4. Then

3 -6 -2
6-4|A1=241A4]1=|3 2 —4|=6+244+24+4—-48+18=28
1 -4 l

Hence | A| = 35 = 2. (Observe that the original multiplications eliminated the [ractions, so the arith-
metic is simpler.)

(b) Add the second column to the first column, and then add the third column to the second column to
produce Os: that is, apply C, + C, > C,and C; + C;, = C;;:

t+2 0 1
|Al={t+2 -2 1
0 t—2 44

Now factor ¢ + 2 from the first column and 1 — 2 from the second column to get

l 0 1
| Al =t + 20t — 2){ 1 1 1
0 1 t+4
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Finally subtract the first column from the third column to obtain

1 0 0
A=+ 2 -2 1 O [=(+2D—-2+49
0 1 t+4

COMPUTATION OF DETERMINANTS OF ARBITRARY ORDERS

2 5 -3 -2
. -2 -3 2 -5
7.7. Compute the determinant of 4 = .
1 3 =2 2
—1 -6 4 3
Use a3, = 1 as a pivot and apply the row operations —2R; + R, — R,, 2R; + R, — R,, and
Ry +R,—R,:
ST EEE BTEE
=7 7 i i -2 -1
M=l 3 2 2Tl 3 -2 o7 2
-3 2 5
-1 -6 4 3 0 -3 2 5
=10+3-364+36—-2—15=—4
| 2 2 3
: i -2
78. Evaluate the determinant of 4 = 3 {: : (2) .
4 -3 0 2
Use a,, = | as a pivot, and apply 2C, + C; — C;:
1 2 4 3
1 0 0 0 . 3 3
|A] = 3 7 9|~ -1 7 -2|=—(28+24—244+63+3248)=-131
4 -3 6 2 -3 82
6 2 | 0 5
2 1 1 -2 1
7.9. Find the determinant of C = 1 1 2 =2 3
3 0 2 3 -1

-1 -1 -3 4 2

First reduce | C| to a determinant of order four, and then to a determinant of order three. Use ¢,, = 1
as a pivot and apply —2R, + R, > R,, —R; + R; + R,,and R; + Ry - R:

; ?_: : :: s 4 3 1 1 4 5
=l-1 1 3
|C|="10‘°2322|=g;g{;
¥ 8 & 3 1 2 2 3 t 2 2 1
1 0 -2 2 3
1 4 5
= 5 3 —5/=214+20+50+ 15+ 10- 140= -24
S
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7.10. Find the determinant of each of the following matrices:

/5 6 71 8 5 6 71 6
0o 0 0 0 -3 5 -3
@ A=l 5 5 _7/ By B={, o _3 of
8 4 2 6 2 7 8 7
2 3 4 5
0 -3 7 -8
@ C=lg o s &
0 0 0 4

(@) Since A has a row of zeros, det (A) = 0.
(b) Since the second and fourth columns of B are equal, det (B) = 0.
(c) Since C is triangular, det (C) is equal to the product of the diagonal entries. Hence det (C) = —120.

7.11. Describe the Gaussian elimination algorithm for calculating the determinant of an m-square
matrix A = (a;;).

The algorithm uses Gaussian elimination to transform A inte an upper triangular matrix (whose deter-
minant is the product of its diagonal entries). Since the algorithm involves exchanging rows, which changes
the sign of the determinant, one must keep track of such changes using some variable, say SIGN. The
algorithm will also use “pivoting™: that is, the element with the greatest absolute value will be used as the
pivot. The algorithm follows.

Step 1. Set SIGN = 0. [This initializes the variable SIGN.]

Step 2. Find the entry g, in the first column with greatest absolute value.
{a) Ifa; =0, then set det (A) = 0 and ExiT.
(b) [Ifi# 1, then interchange the first and ith rows and set SIGN = SIGN + 1.

Step 3. Use a,, as a pivot and clementary row operations of the form kR, + R, — R, to put Os below a, ;.
Step 4. Repeat Steps 2 and 3 with the submatrix obtained by omitting the first row and the first column.
Step 5. Continue the above process until A is an upper triangular matrix.

Step 6. Set det (A) = (—1)Na, a,, --- 4,,, and EXIT.

Note that the clementary row operation of the form kR, — R, (which multiplies a row by a scalar), which is
permitted in the Gaussian algorithm for a system of linear cquations, is barred here, as it changes the value
of the determinant.

7.12. Use the Gaussian elimination algorithm in Problem 7.11 to find the determinant of

3 8 6
A= -2 -3 1
5 10 15
First row reduce the matrix to an upper triangular form keeping track of the number of row inter-
changes:
5 10 15 5 10 15 5 10 15 5 10 15
A~f{ -2 -3 1|~|0 1 71~10 2 -3]~]|0 2 -3
3 8 6 0 2 -3 0 1 7 \0 0 g
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A i1s now in triangular form and SIGN = 2 since there were two interchanges of rows. Hence
A = (13N (5)(2)(3) = 85.

0921 0.185 0476 0.614
0.782 0.157 0.527 0.138
0.872 0484 0.637 0.799(
0312 0555 0.841 0448

7.13. Evaluate | B| =

Multiply the row containing the pivot a; by 1/a;; so that the pivot is equal to 1:

1 0.201 0.517 0.667 1 0201 0.571 0.667
0.782 0.157 0.527 0.138 0 0 0.123 —0.384
LB |=521 0.872 0484 0.637 0.799| L 0 0.309 0.196 0.217
0.312 0.555 0.841 0.448 0 0492 0.680  0.240
0 0123 —0384 0 —-0320 |
= 0.921(0.309 0.196 0.217| = 0921{—0.384) | 0.309 0196 0217
0.492 0.680 0.240 0.492 0.680 0.240
0 0 1

= 0921(—0.384)|0.309 0.265 0.217{ = 0921(—0.384)

‘0.309 0‘265|
0492 0.757 0240

0492 0.757

= 0.921(—0.384%0.104) = —0.037

COFACTORS, CLASSICAL ADJOINTS

2 1 -3 4
. . 5 -4 7 =2 . . :
7.14. Consider the matrix 4 = 1 0 6 _3l Find the cofactor of the 7 in A, that is, A,;.
3 -2 5 2
We have
2 1 - 4
5 -4 3 -2 s L 4
Apy=(—17*"° =—14 0 —3|=—-(0-9-32-0-12—-8)=—(—6l)=6l
4 0 6 -3 3 2 2

The exponent 2 + 3 comes from the fact that 7 appears in the second row, third column.

1 11
7.15. Consider the matrix B=}2 3 4]. Find: (a) | Bl, (b) adj B. and (c) B™ ' using adj B.
5 8 9

(@ |B|=27+20+16-15—-32—18= —2
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(b) Take the transpose of the matrix of cofactors:

3 4 2 4 2 3\
8 9] |5 9 s 8
=5 2 1\T (-5 1 1
aij=—]I "—'l=—| 4 3| ={ 2 4 -2
8 9 59 5 8 D L3
11 1t 11 N -
3 4 2 4 2 3
(¢) Since|B|#0,
. —1 1
o H : 5 I i ) -3
B ' =——(ad] B) = — 2 4 2|=-1 =2 1
121 B W T ;3
- -2 F3 —'l'

7.16. Consider an arbitrary 2-square matrix A = (g 3) (@) Find adj A. (b) Show that
adj (ady 4) = A.

L (+1d] —|c|f_( d —c)"_ d -
() am“l_(—lbl +Ial) \-b g “(—‘ g

oo _of d —bYy { +]al —I—CIT_“"T_"”_
() “‘J““’l’""“‘i‘(ﬁc a)‘(-l—bl +|d|) ‘(b d) h(c d)_A

DETERMINANTS AND LINEAR EQUATIONS, CRAMER’S RULE
7.17. Solve the following systems by using determinants,

{ax—Zby= c

A — S 2 where ab # 0

—2b
First find D = ]3:: ) = —5ab + 6ab = ab. Since D = ab # 0, the system has a unique solution.
Next find

a c
3a 2c

c —-2b
= — = — nd =
% —sb Sbe + 4bc bc a N,

Then x = N,/D = —bhcfab = —c/aand y = N /D = —acjab = —c/b.

N, = = 2ac — 3ac = —ac

Iy+2x=z+1
7.18. Solve, using determinants: { 3x + 2z = 8 — 5y
3z—1 =x—-2

First arrange the equations in standard form:

xx+3y— z=1
Ix+5y+2:=8
x—2y—3z=—1

Compute the determinant D of the matrix of coefficients:

2 3 -1
D=|3 5 2[=—-304+64+6+5+84+27=22
1 -2 -3
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Since D # 0, the system has a unique solution. To compute N,, N, and N,, replace the corresponding
coefficients of the unknown in the matrix of coefficients by the constant terms:

1 3 -1
N,=| 8 5 2l=—I15—-6416—-5+44+72=66
-1 -2 -3
2 1 -1
N,=|3 8 2/=—484+24+3+84+444+9=-22
-1 -3
2 3 1
N.=[3 5 §8=-104+24-6-5+324+9=44
t -2 -1
Hence
N 66 N —22 N. 44
=—-£=——~= ";—!:———.-— =—=_—._——~=
*=p p~? A REY) : b e
7.19. Solve the following systern by using Cramer's rule:
2%, + X3+ 5x3 4+ x3= 5
X+ X;—3x3—4x, = —1

3xl +6x2 “—2x3+ X4= 8
2%, + 2x; + 2x3 — 3xy = 2

Compute
2 1 5 1 5 1 5 1
1 1 -3 -4 -1 1 -3 -4
— —_— N — _— —
P 3 06 -2 1 b0 ! g8 6 -2 1 20
E 2 2 -3 2 2 2 3
2 5 5 1 2 1 5 1
i1 -1 -3 -4 1 1 -1 —4
= = = N i =
N 3 8 -2 1 % Y713 e 8 0
2 2 2 -3 2 2 2 =3
21 5 5
1 i = el
Ne=l3 ¢ _2 g~ %
2 2 7 2

Thenx, = Ny/D =2,x;, = No/D =%, x; =N,/D=0,x,=N/D=%

7.20. Use determinants to find those values of k for which the following system has a unique solution:
kx + y+ z=1
x+ky+ z=1
x+ y+kz=1

The system has a unique solution when D # 0, where D is the determinant of the matrix of coeflicients.
Compute

=k + 1+l —k—k—k=k-3k+2=(k—-D*k+2)

i

1
k 1
1 k
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Thus the system has a unique solution when (k — 1)*(k + 2) # O, that is, when k # 1 and k # —2. (Gaussian
elimination indicates that the system has no solution when k = — 2, and the system has an infinite number
of solutions when k = 1.)

PROOF OF THEOREMS

7.21.

7.22,

723.

Prove Theorem 7.1. | AT| = A |.
If A = (a;), then A” = (b;), with b;; = a;;,. Hence
14T = Z (s8N by b2002) " Bagim = Z (sgn @)a, ) 19212 " Copmy,

™ gE S,
Let r = ¢ '. By Problem 7.43, sgn t = sgn 6, and G,(;), 18x21.2 *** Gy, n = G101y G221~ ey - HenCE
| A7 = z (s80 1)1, 8202) " Ciretmy

ecS,

However, as ¢ runs through all the elements of S,, = = ¢~ also runs through all the elements of S,. Thus
| AT| =] AL

Prove Theorem 7.3(a). It two rows (columns) of A are interchanged, then | B|=—| A |.

We prove the theorem for the case that two columns are interchanged. Let t be the transposition
which interchanges the two numbers corresponding to the two columns of A4 that are interchanged. If
A = (a;) and B = (b;)), then b;; = a,,;; . Hence, for any permutation o,

blal]ibhth T bnrrtni = alta[l}azwﬂi T anwm
Thus
[Bl= % (sgn 0)by01)b202) " * Prom = Z (58N 0)4)4001)P200(2) " Crvatmy
Te Sy aa S,
Since the transposition 1 is an odd permutation. sgn tc = sgn 1 * sgn ¢ = —sgn ¢. Thus sgn ¢ = —sgn 10.
and so

|B|= — z (Sgl‘l Io)alm{llazmﬂ’l T gt
o€ S,

But as ¢ runs through all the elements of §,, ro also runs through all the elements of S,; hence
Bl =—4].

Prove Theorem 7.2.

{a) Each term in | 4| contains a factor from every row and so from the row of zeros. Thus each term of
|A]is zeroand so | A| = 0.
{b) Suppose | + 1 # 0 in K. If we interchange the two identical rows of 4, we still obtain the matrix A.
Hence, by Problem 7.22,|A| = — |A|andso | A| = 0.
Now suppose 1 + | =01in K. Then sgn ¢ = | for every o € S,,. Since A has two identical rows, we
can arrange the terms of A into pairs of equal terms. Since each pair is 0. the determinant of A4 is zero.

(¢) Suppose A4 = (a;) is lower triangular, that is, the entries above the diagonal are all zero: a;; = 0 when-
ever i < j. Consider a term ¢ of the determinant of A4:

t =(sgn 0)a,; ay;, - a,, where 6 = iyi; -~ i

Suppose i; # 1. Then 1 < i, and so a,;, = 0; hence t = 0. That is, each term for which i, # 1 is zero.
Now suppose i, = 1 but i, # 2. Then 2 < i, and so a,;, = 0: hence t = 0. Thus each term for
which i, # 1 or i, # 2 is zero.
Similarly we obtain that each term for which i, # 1 ori, # 2 or --- or i, # n is zero. Accordingly,
|A| =a,,8;; " a,, = product of diagonal elements.
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7.24,

1.25.

7.26.

7.27.

1.28.
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Prove Theorem 7.3.

(g) Proved in Problem 7.22.

(b) If the jth row of A4 is multiplied by k, then every term in | 4| is multiplied by k and so |B| = k| A|.
That is,

|1B| = Z (sgn @)a,;,ay;, ~** (kay) - @y, =K z (sgn o)ay;,ay,, Gy, = k| A]|
o

(¢) Suppose ¢ times the kth row is added to the jth row of 4. Using the symbol A to denote the jth
position in a determinant term, we have

,.-—""’—-'“'-
| Bl =}, (sgn 6)ay,ay;, -~ (cay, + az) - ay,
o
s s
=C ) (58N 0)ay;,gy, " Bygy Gy, + D, (SN Oy, Qg iy =" Sp,
T a

The first sum is the determinant of a matrix whose kth and jth rows are identical; hence, by
Theorem 7.2(b), the sum is zero. The second sum is the determinant of 4. Thus
|IBl=c-0+|A]|=]|A4]

Prove Lemma 7.6. If £ is an elementary matrix, then | EA|=|E||A]|.

Consider the following elementary row operations: (i) multiply a row by a constant k # 0; (ii) inter-
change two rows; (iii) add a multiple of one row to another. Let E, E,, and E, be the corresponding
elementary matrices. That is, E,, E,, and E; are obtained by applying the above operations, respectively, to
the identity matrix I. By Problem 7.24,

lE =klT|=k E;| = == -1 |Ey) = |1 =1

Recall (Theorem 4.12) that E, A is identical to the matrix obtained by applying the corresponding operation
to A. Thus, by Theorem 7.3,

|E\A|=k|A| =|E,|[A] |E;Al= — | Al =|E,|] 4] |EsA| = 14| = 114]=|Es|| A

and the lemma is proved.

Suppose B is row equivalent to a square matrix 4. Show that |B| =0 ifand onlyif| 4| = 0.

By Theorem 7.3, the effect of an elementary row operation is te change the sign of the determinant or
to multiply the determinant by a nonzero scalar. Therefore | B| = 0 il and only if | 4] = 0.

Prove Theorem 7.4.

The proof is by the Gaussian algorithm. If A4 is invertible, it is row equivalent to /. But |{| # 0; hence,
by Problem 7.26, | A| # 0. If A is not invertible, it is row equivalent to a matrix with a zero row; hence,
det A = 0. Thus (i) and (iii) are equivalent.

If AX = 0 has only the solution X = 0, then A is row equivalent to I and 4 is invertible. Conversely, if
A is invertible with inverse A~ ', then

X=IX=(A"'AX =AY AX)=A4A"'0=0
is the only solution of AX = 0. Thus (i) and (ii) are equivalent.

Prove Theorem 7.5. | AB| =|A| [ B].

If A4 is singular, then AB is also singular and so |AB| =0 = |A||B|. On the other hand, if 4 is
nonsingular, then A = E_ --- E, E,, a product of elementary matrices. Then, using Lemma 7.6 and induc-
tion, we obtain

|AB| = |E, - E;E\B|=|E,| - |E,||E, ]| B]| = | A]| B|
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7.29.

Suppose P is invertible. Show that | P~ | =|P|™ .
P 'P=1Hencel=|1|=|P 'P|=|P '||Pl,andso |P '|=|P| "

7.30. Prove Theorem 7.7. Suppose A and B are similar matrices, then |A | = | B|.

7.31.

732

Since A and B are similar, there exists an invertible matrix P such that B = P 'AP. Then by the
preceding problem, |B| = | P "AP| = |P " '||A||P| = |A||P || P| = | A|.

We remark that although the matrices P~ ' and 4 may not commute, their determinants [P~ '] and
] A | do commute since they are scalars in the field K.

If A = (a;), prove that | A| = a;,4;, + a;; A;; + -~ + a;, A;,, where A, is the cofactor of g;;.

Each term in | 4 | contains one and only one entry of the ith row (a;,, a;;, -.., a;,) of A. Hence we can
write | 4| in the form

Al = a, A} + ap AR + - + a, Af,

(Note A is a sum of terms involving no entry of the ith row of A.) Thus the theorem is proved if we can
show that

A?,‘ = A.‘j T ""’”‘HIIMrjl

where M,; is the matrix obtained by deleting the row and column containing the entry g;;. (Historically, the
expression A% was defined as the cofactor of g;;, and so the theorem reduces to showing that the two
definitions of the cofactor are equivalent.)

First we consider the case that i = n, j = n. Then the sum of terms in | 4 | containing a,, is

O ’4:- = Unn z (Sg“ o}a,,,.,a;,(g, T G-t ain- 1)
L

where we sum over all permutations ¢ € S, for which a(n) = n. However, this is equivalent (prove!) to
summing over all permutations of {1, ..., n — 1}, Thus A% = |M,, | =(—1)"""| M, |-

Now we consider any i and j. We interchange the ith row with each succeeding row until it is last, and
we interchange the jth column with each succeeding column until it is last. Note that the determinant | M|
is not affected since the relative positions of the other rows and columns are not affected by these inter-
changes. However, the “sign” of | A | and of A} is changed n — i and then n — j times. Accordingly,

Al = (=1 M| = (=1 M)

Let A = (g;;) and let B be the matrix obtained from A by replacing the ith row of 4 by the row
vector (b;y, -.., b;,). Show that

|B| = b; Ay + by Aiz + - + b, Ay
Furthermore, show that, for j # i,
aj Ay +a A+ +a,A,=0  and @ ;A a3 A+ a4, =0
Let B = (b;)). By Theorem 7.8,
|Bl= by By + b;3B;; +--- + b,,B,,
Since B,; does not depend upon the ith row of B, B;; = A;;forj =1, ..., n. Hence
1B| =bjy Ay + by Ay + -+ + b A,

Now let A’ be obtained from A by replacing the ith row of 4 by the jth row of A. Since A" has two
identical rows, | 4’| = 0. Thus, by the above result,

| A% =apdy +apAp+ - +a A, = 0

Using | A'| = | A), we also obtain that a,; A,; + a;; Ay, + "= + Gy A = 0.
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7.33. Prove Theorem 7.9. A - (adj A) = (adj A) A=A | I.

Let A = (a;) and let A - (adj A) = (b;)). The ith row of A is

(@, @iz -y @) ()

Since adj A is the transpose of the matrix of cofactors, the jth column of adj A is the transpose of the
cofactors of the jth row of A4: That is,

(Aj, Ay .ony Ag)T (2)
Now by, the ij-entry in A - (adj A), is obtained by multiplying (/) and (2):
bij=a,4; + 6,4+ +a, A,

By Theorem 7.8 and Problem 7.32,

e 4] fi=j

YTlOo ifi#)
Accordingly, A *(adj A) is the diagonal matrix with each diagonal clement |A|. In other words,
A (adj A) = |A|l Similarly, (adj 4)- 4 = | AL

7.34. Prove Theorem 7.10. AX = B has unique solution iff D # 0 in which case x; = N,/D.

7.35.

7.36.

By previous results, AX = B has a unique solution il and only if A is invertible, and A4 is invertible il
andonlyif D=|A| #0.
Now suppose D # 0. By Theorem 7.9, A" = (1/D)¥adj A). Multiplying AX = B by A~ ' we obtain

X = A7'AX = (1/DXadj A)B n
Note that the ith row of (1/DXadj A4)is (1/DXA,;, Ay, ..., A). T B=(b,, by, ... b)) then, by (/),
x;=(1/DXbyA}; + b, Ay; +--- + b, A)

However, as in Problem 7.32, b A; + b, A3; + -~ - + b, A,; = N;, the determinant of the matrix obtained
by replacing the ith column of A by the column vector B. Thus x; = (1/D)N;, as required.

Prove Theorem 7.12.
We need only prove the theorem for n = 2, that is, when M is a square block matrix of the form

M= (g g) The proof of the general theorem follows easily by induction.

Suppose A =(a;) is r-square, B = (b;) is s-square, and M = (m,;) is n-square, where n =r + 5. By
definition,

dct M e Z (Sgll Ght“n}mzo‘z} =" mm{”}

ae Sy

Ifi > randj <r, then m;; = 0. Thus we need only consider those permutations o such that
ofr+Lr+2,..,r+sy={r+Lr+2...,r+s} and ofl,2,....r}={1,2,...,r}
Let o,(k) = a(k)for k < r, and let o,(k) = ofr + k) — rfor k <s. Then

(sgn 0)my g1y Mag2) " " Mpgmy = (SBN 01081 4,01)820,(2) " CroznSBD 02)010,00P2022) " Branie

which implies det M = (det A)det B).

Prove Theorem 7.13.

Let D be the determinant function: D{A4) = | A|. We must show that D satisfies (i), (i1), and (iii), and that
D is the only function satisfying (i), (ii), and (iii).
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By Theorem 7.2, D satisfies (ii) and (iii); hence we need show that it is multilinear. Suppose the ith row
of A = (a;) has the form (b;, + ¢;y, b;; + €3, ..., byy + ¢;,). Then

D(A) = D(A,, ....B;+ C;, ..., A)
=2 (B0 )1,y " Gim 1, ot~ hBioti F Cio) " Fnoi
Sa
=§(35n Naiony *** Biotr *** Cnotmy "';(5311 0)ara1y " Ciot " Cmotmy
= D{Alv XS ] Bh seay AJ'FD(An LARE Cir LS ] Anl

Also, by Theorem 7.3(b),
D{AI! e kAl' sene An) = kD{AIi T Ai’ e An)

Thus D is multilinear, i.e., D satisfies (i).
We next must prove the uniqueness of D. Suppose D satisfies (i), (ii), and (iii). If {e,, ..., e,} is the usual
basis of K", then by (iii), D(e,, €5, .-, €,) = D(I) = 1. Using (ii) we also have that

Die;,, €,,.-.,€)=sgn o where o = iyiy - i, (N
Now suppose A = (a;;). Observe that the kth row 4, of A is
Ay = (0, Gy, -- ., O ) = a2, + a8, + -+ a,,e,
Thus
D{A) = Dfa, e, +- - + a,,e,, d1€; + "+ Ayp€y, ey €y + 20 + 4, .€)
Using the multilinearity of D, we can write D{A4) as a sum of terms of the form

D(A) = Z D(a, & Oz, €455 -5 Oni, €3)
s Z {ﬂu.ﬂziz e ﬂ.s,)D{fm €ir9c0s fi.) 2)

where the sum is summed over all sequences i,i, --- i, where i, € {1, ..., n}. If two of the indices are equal,
say i; = i, but j # k, then by (1),

D(eiv €izv ""ef.)=0

Accordingly, the sum in (2) need only be summed over all permutations ¢ = i,i, ‘- - i,. Using (/), we finally
have that

D(A) = Z (@y3,82;, - @ )D€y, €55 ..., €)

T

=Y (sgn o)ay; ay, " a, where ¢ = iyi, -~ i,
o

Hence D is the determinant function and so the theorem is proved.

PERMUTATIONS
7.37. Determine the parity of ¢ = 542163.

Method 1. We need to obtain the number of pairs (i, j) for which i > j and i precedes j in ¢. There are:

3 numbers (5, 4 and 2) greater than and preceding 1,
2 numbers (5 and 4) greater than and preceding 2,

3 numbers (5, 4 and 6) greater than and preceding 3,
I number (5) greater than and preceding 4,

0 numbers greater than and preceding 3,

0 numbers greater than and preceding 6.

Since3+2+3+41+0+0=9iso0dd, ois an odd permutation and so sgn ¢ = —1.
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Method 2. Bring ! to the first position as follows:

54 20063 to 154263

Bring 2 to the second position:

1%63 o 1 2546 3

Bring 3 to the third position:

lzm to 1 23546

Bring 4 to the fourth position:

123%6 o 1 23456

Note that 5 and 6 are in the “correct™ positions. Count the number of numbers “jumped™:
34+2434+1=29 Since9is odd, ¢is an odd permutation. (Remark: This method is essentially the same as
the preceding method.)

Method 3. An interchange of two numbers in a permutation is equivalent to multiplying the permu-
tation by a transposition. Hence transform o to the identity permutation using transpositions; such as,

5.4 2.1 6 3

>N

14 25 6 3

1 2 4.5 6.3

123>56<4

1 2 3 4765
1 2 3 4 5 6
Since an odd number, 5, of transpositions was used (and since odd x odd = odd), ¢ is an odd permutation.

7.38. Let o = 24513 and 7 = 41352 be permutations in S5. Find:

(a) the composition permutationt - o, (b) o = 1, (c) ¢ .

Recall that ¢ = 24513 and r = 41352 are short ways of writing

{12345 4 L fr2345s
°=\2 4 51 3 an "\ 135 2

which means
oll)=2 a(2) =4 ad)=35 ad)=1 and a(5) =3
and
l)=4 2)=1 7(3) =3 4) =5 and 7(5) =2
(a) Theeflfect of s andthenton 1,2, ..., 5is as follows:
1 2 3 45
e | | 1L | |
2 4 51 3
L L4
1 5 2 4 3

1 4 5
'["hu:r.l'nﬂr=(1 ),ortoa=15243.

2 43
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7.39.

() Theeffect of randthenoonl, 2, ..., 5is as follows:

12345
LI A A A
41352
ol L 111
12534

Thus ¢ « T = 12534.

(¢) By definition, ¢ ~'(j) = k il and only if 6(k) = j; hence

g2 45U _(1 2345 —
1 2345/ \a15 23 roe =

Consider any permutation ¢ = j, j, - - j,. Show that, for each inversion (i, k) in o, there is a pair
(i*, k*) such that

i*<k* and  o(i*) > o(k*) )

and vice versa. Thus ¢ is even or odd according as to whether there is an even or odd number of
pairs satisfying (7).

Choose i* and k* so that o{i*) = i and 6(k*) = k. Then i > k if and only if o{i*) > o(k*), and i precedes
kin o if and only if i* < k*.

7.40. Consider the polynomial g = ¢(x,, ..., x,) = [ ] (x, — x)). Write out explicitly the polynomial

741.

7.42.

g = glxy, X3, X3, Xg). bl

The symbol ﬂ is used for a product of terms in the same way that the symbol Z is used for a sum of
terms. That is, [] (x; — x,) means the product of all terms (x, — x;) for which i < j. Hence

<

g =g(Xy -0 Xg) = (xy — X2)x; — X3)x;p — XgHx7 — XaHxz — Xglx3 — Xg)

Let o be an arbitrary permutation.- For the above polynomial g in Problem 7.40, define
olg) = l_[ (Xotp — xnlj“]" Show that
i<j
_ ) g ifoiseven

olg) = {—g if ¢ is odd

Accordingly, o(g) = (sgn a)g.
Since ¢ is one-to-one and onto,
o(g) = n (X = Xei) = n (x; — x;)

i<j i<jori>j
Thus o{g) = g or olg) = — g according as to whether there is an even or an 0dd number of terms of the form
(x; — x;) where i > j. Note that for each pair (i, j) for which

[<j and a(i) > ol j) (N
there is a term (x,,, — X, in o(g) for which o(i) > o(j)- Since o is even if and only if there is an even
number of pairs satisfying (1), we have a(g) = g if and only if ¢ is even; hence o(g) = —g if and only if ¢ is
odd.
Let ¢, t € S,. Show that sgn (1 = &) = (sgn 7)sgn 6). Thus the product of two even or two odd

permutations is even, and the product of an odd and an even permutation is odd.
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Using Problem 7.41, we have
sgn (t « o)g = (r = o)g) = tl(a(g)) = t((sgn o)g) = (sgn t}sgn o)g
Accordingly, sgn (t = ¢) = (sgn T}sgn o).

Consider the permutation ¢ = j, j, ... j,. Show that sgn ¢ ' = sgn ¢ and, for scalars q;;, show
that

i1z "7 Opy = Qg Qg "7 By,
where o ' = kk, ... k,.

We have 6! « ¢ = ¢, the identity permutation. Since ¢ is even, ¢ ' and ¢ are both even or both odd.
Hence sgn ¢~ ! = sgn o.

Since ¢ = j,j; ... j, 1S a permutation, a;,,4;,; ~ - G, = O,3,05, "~ 4, . Then k,, k,, ..., k, have the
property that

olky) = 1, ofkp) = 2, ..., afk) = n
Lett =k|k2 . k,,.Thctl fori= l, syl
(o o i) = oft(i)) = alk)) = §

Thus o ¢ t = ¢, the identity permutation; hence t = ¢ 1.

MISCELLANEOUS PROBLEMS

7.44.

7.45.

1 a b+c
Without expanding the determinant, show that |1 b ¢ +a|=0.
1 ¢ a+b

Add the second column to the third column, and remove the common factor from the third column;
this yields

1 a b+c¢ l a a+b+c 1 a 1
1 b c+al=|l b a+b+ci=@a+b+|l b 1|=(@+b+ck0)=0
Il ¢ a+b 1 ¢ a+b+c 1 ¢ 1

(We use the fact that a determinant with two identical columns is zero.)

Show that the difference product g(x,, ..., x,) of Problem 7.40 can be represented by means of
the Vandermonde determinant of x,, x5, ..., X,_, X defined by:

1 | l
Xy Xy e X X
s 2 2 2 2
Vo i(x) =1 xq X2 e Xp—y X
n=1 el | n=1 n=1
Xy 2 cee Xpoy X

This is a polynomial in x of degree n — 1, of which the roots are x,, x,, ..., x,_,; moreover, the
leading coeflicient (the cofactor of x"~ ') is equal to V,_ ,(x,_,). Thus, from algebra,

Vo100 = (x — x Xx — x3) =+ (x — Xp- 1)V 2(X0-1)
so that, by recursion,

Voalx) =[x = xq) = (x = x JI00x, 0 — %0) o (X = X 2)I V- 50X, 2)

=[x—x) - (x—x, Jx, 1 —x)) - (xp—y — % 2] - [xz — x;)]
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It follows that

Vi) =[] Ga—xp=(—1"""2 [] (x;-x)

LEIEN N lci<j<nm

Thus glx,., ..., %) = (= P 2¥,_(x,).

7.46. Find the volume V(S) of the parallelepiped S in R? determined by the vectors u, = (1, 2, 4),
u, =(2, 1, —3),and uy =(5,7,9).

| 2 4
Evaluate the determinant |2 1 —3|=9-30+5—-20+21 —-36=10. Thus Vi{S) =0 or, in
5 7 9

other words, u,, u, and uy lie in a plane.

7.47. Find the volume V(S) of the parallelepiped S in R* determined by the vectors
Uy ={29 —1v4- —3)| Uy =(" l? ]$01 2): Ly =(3v29 39 ) l), Uy = (ls _2129 3}

Evaluate the following determinant, using u,, as a pivot and applying C,+ C, - C, and

_2CI+C4—'C‘:
2 =1 4 —3 1 - § =]
-t 1+ o 2f|l0o 1 o o |1 # -
3y 2 3 <\ Lls 2 3 -s/712 3 =3
w2 2 3| l=1 =2 g 9 F¥ 2 17
=21+20—-10—3+ 10— 140 = —102
Hence V(S) = 102
34000
2 5000
748. Finddet (M)where M ={0 9 2 0 0|
0 506 7
0 0 4 3 4
Partition M into a (lower) triangular block matrix as follows:
3 4:0:0 0
2.5,0,00
M=|0_9,2,0 0
0 5.0,6 7
0 0:4:3 4
Evaluate the determinant of each diagonal block:
3 4 6 7
e - =7 = = - E=
2 5‘ 15—-8 120 =2 '3 4| 24-21=13

Hence |M|=7-2-3 =42,

7.49. Find the minor, signed minor, and complementary minor of A} 3 where

1 0 4 —1\
3 2 —2 5
0 I -3 7
6 —4 -5 -1
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The row subscripts are | and 3 and the column subscripts are 2 and 3; hence the minor is

0 4
1 -3

Q3 dya|

G3; (33
and the signed minor is

(1323 A = —(—8) =4
The missing row subscripts are 2 and 4 and the missing column subscripts are 1 and 4. Hence the comple-
mentary minor is

a a
1.4 21 24
IAz.a =

_|3 5

. -1|= ~3-30=—33

Gy, Gy

7.50. Let A= (a;) be a 3-square matrix. Describe the sum S, of the principal minors of orders
(@k=1,H0k=2()k=23.
(¢) The principal minors of order one are the diagonal elements. Thus §, = a,, + a;, + a;; = tr A, the
trace of A.

(b) The principal minors of order two are the cofactors of the diagonal elements. Thus §, = A, + 4,,
+ Ay, where A; is the cofactor of a;;.

(c) Thereis only one principal minor of order three, the determinant of 4. Thus §, = det ( ,:1}.

7.51. Find the number N, and the sum S, of all principal minors of order (g) k = 1, (B) k = 2. (c) k = 3,
and (d) k = 4 of the matrix

1 30 —1
-4 2 5 1
= 1 0 3 =2

3 -2 | 4

Each (nonempty) subset of the diagonal (or, equivalently, each nonempty subset of {1, 2, 3, 4}) deter-
n n!

mines a principal minor of 4, and N, =
(@ N, =(‘:)=4and
S;=111+12|+3|+|4]=1+2+3+4=10
4
(b) N, =(2) = 6and

3_13+|0+1—|+2 5+21+3—2
2704 27|t 3713 &4lTjo 3|7 |-2 47t 4

=14+3+7+6+10+14=54

¢y N,= (:) = 4 and

1 k] 0 1 3 -1 l 0 -1 2 5 1
S5, =1-4 2 51+|—-4 2 1 +1]1 3 21+ O 3 -2
1 0 3 3 -2 4 3 1 4 -2 | 4

=57 +65+ 22 + 54=198
(d Ns=1and S, =det (4) = 378.
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b
7.52. Let V be the vector space of 2 by 2 matrices M = (3 d) over R. Determine whether or not
D : V — R is 2-linear (with respect to the rows) where: (@) D(M) = a + d, (b) D(M) = ad.

{a) No. For example, suppose 4 = (I, 1) and B = (3, 3). Then

1 1 2 2
D(A, B) = L'J(3 3) =4 and D(24, B) = [{3 3) =5#2D(A, B)

(b)) Yes. Let A =(a,, a,), B=(b,, b;),and C = (c,, c,); then

D(A, C) = D(‘TI :2) =ayCa and D(B, C) = D(b| bz) =b,c,
2

¢, [
Hence for any scalars s, r € R.

sa, + th, sa; + th,

D(sA + 1B, C) = D( )= (sa, + thy)c,
Cy Ca

= s(ay¢;) + tbycy) = sD(A, ©) + tD(B, C)

That is, D is linear with respect to the first row.
Furthermore,

D(C, A):D(“ ")=cla, and  D(C, B)=D| " “)=c.b,

a, 4
Hence for any scalars s, t € R,

c C
C,ad +tB)=D . g =
DG, ad + 15 (sa, +th, sa, + tbz) €ilsaz + tby)

= s{e,a3) + t{c,by) = sD(C, A) + tD(C, B)

That is, D is linear with respect to the second row.
Both linearity conditions imply that D is 2-linear.

7.53. Let D be a 2-linear, alternating function. Show that D(4, B) = — D(B, A). More generally, show
that if D is multilinear and alternating, then

Dovis Avvoin Bosidy= =Dz, Bosisolini)
that is, the sign is changed whenever two components are interchanged.
Since D is alternating, D(4A + B, A + B) = 0. Furthermore, since D is multilinear,

0=D(A+ B, A+ B)y=D(4, A+ B) + D(B, A + B)
= D(A, A) + D{A, B) + D(B, A) + D(B, B)

But D(A, A) = 0 and D(B, B) = 0. Hence
0 = D(A, B) + D(B, A} or D{A, By = — D(B, A)
Similarly,

0=D(..,A+B,...,A+ B, ..)
X BN N N N S OO T % TN S, .
=B, A B o Yo Dl Bl )

andthus D(..., A,...,B,..)=—-D(..,B, ..., A, ..}
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Supplementary Problems
COMPUTATION OF DETERMINANTS
7.54. Compute the determinant of each matrix:
2 1 1 3 -2 -4 -2 -1 4 7 6
@ |lo 5 =2, ®» |2 5 -1}, (@ 6 -3 -2, @@ |1 2
1 -3 4 0 6 1 4 i 2 3 =2
7.55. Evaluaie the determinant of each matrix:
r—2 4 3 t—1 3 -3 t+3 -1 1
(@) o+l =24, @B | =3 t+5 -3, (9 7 -5 1
0 0 -4 -6 6 y-—4 6 -6 1+2
756. For each matrix in Problem 7.54, determine those values of ¢ for which the determinant is zero.
i 2 2 3 2 1 3 2
) ) I 0o -2 0 0 r =2
7.57. Evaluate the determinant of each matrix: (a) 3 —1 i -2 (b) 1 a4 3l
4 -3 0 2 2 2 -1
7.58. Evaluate each determinant:
1 2 -1 3 1 1 3 5 7 9 1 2 3
2 -1 1 -2 3 2 4 2 4 2 5 4 3
(a) 310 2 -1, ®»|0O 0o 1 2 3, (@|0 O 6
5 1 2 -3 4 0 0 5 6 2 0 0 0
-2 3 -1 1 =2 0 0 2 3 | 0 0 0

COFACTORS, CLASSICAL ADJOINTS, INVERSES

7-59a

7.60.

7.61.

7.62.

1
letA=|3 . Find (a) adj A4, and (b) A~ 1.
1

e i ]
-0 N

Find the classical adjoint of each matrix in Problem 7.57.
Determine the general 2 by 2 matrix A for which A = adj A.

Suppose A is diagonal and B is triangular; say,

a, 0 ... 0 b‘ Cy2 Cip
P LS 3 IR % Can
0 0 ... a, 0 0 ... b,

(@) Show that adj A is diagonal and adj B is triangular.

[CHAP. 7
5
1
1
4 5
i 1
5 1
7 4
2 3
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(b) Show that B is invertible iff all b, # 0; hence A is invertible iff all a; # 0.
(¢) Show that the inverses of A and B (if either exists) are of the form

a|_' 0 Fo 0 bl_| dll wea d,u
|0 a0 goi_| O bt
0 0 .. at 0 0 .. b

That is, the diagonal elements of 47! and B! are the reciprocals of the corresponding diagonal
elements of 4 and B.

DETERMINANTS AND LINEAR EQUATIONS

7.63. Solve by determinants: (a) {3" + 5y =8 (b {2x —3y=—1I

4x —2y=1’ 4x + Ty = —1

2x — S5y +2z=17 2243 = y+ Ix
7.64. Solve by determinants: {a) x+2y—4z=13, 1] x—3=2y+ 1.

Ix—4y—6z=35 Iy+ z=2 —2x

7.65. Prove Theorem 7.11.

PERMUTATIONS

7.66. Determine the parity of these permutations in S,: (a) 0 = 32154, (b) T = 13524, (c) n = 42531.
7.67. For the permutations o, t and x in Problem 7.66, find (@) t < 6, (P) n 0 0,(c) o~ ', (d) T .

768. Letzt e S,. Show that t ¢ o runs through S, as o runs through §,; thatis, S, = {tc 0: 0 € §,}.

7.69. Let o€S, have the property that o(n) =n. Let ¢* €S, , be defined by o*%(x) = o(x). (a) Show that
sgn o* = sgn ¢. (b) Show that as ¢ runs through S,, where o(n) = n, ¢* runs through S, _,: that is,
S,.1={o*:0€8,,0n=n}.

7.70. Consider a permutation 6 = j, j, ... j,. Let {e;} be the usual basis of K", and let A be the matrix whose ith

rowise;,ie, A =(e;,e;,...,e,) Show that |A| = sgn a.

MISCELLANEOUS PROBLEMS

7.71.  Find the volume V(S) of the parallelepiped § in R? determined by the vectors:
(a)uy = (1, 2, -3), u, = [30 4, — 1), Uy = (2, —-1, 5), lb} u = (]I 1, 3)* u; = (1, -2, _4]) Uy = {4n I 2}

7.72.  Find the volume V(S) of the parallelepiped S in R* determined by the vectors:
ul=(11- —‘2, 51 _l} u2=(2! 19 _2! l] UJ:‘J'IO? 1, -2} u4=‘1! -1, 41 _l}

7.73.  Find the minor M, the signed minor M,, and the complementary minor M, of A}:§ where:

1 2 3 2 1 I -1 5
1 0 -2 3 2 -3 1 4
3 —1 2 50 0 -5 2 1
4 -3 0 -1 3 0 5 -2

(@) A= b) A=
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7.74.

7.75.

1.76.

777

7.78.

7.79.

7.80.

7.81.

7.82.

7.83.
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For k = 1, 2, 3, find the sum S, of all principal minors of order k for:

1 3 2 1 5 -4 1 -4 3
@ A=|2 —4 3|, ¢k B=(2 6 1}, @ c=|2 1 5
5 —2 1 3 -2 0 4 -7 11

For k = 1, 2, 3, 4, find the sum S, of all principal minors of order k for

1 2 3 -1
1 -2 0 5
A=lo 1 -2 2
4 0 =) =g

Let A be an n-square matrix. Prove | k4| = k"| A|.

A B
Let A, B, C and D be commuting n-square matrices. Consider the 2n-square block matrix M = ( c D)'

Prove that |M| = | A|| D| — | B|| C|. Show that the result may not be true if the matrices do not cormmute.

Suppose A is orthogonal, that is, ATA = I. Show that det (4) = + 1.

[

{(with respect to the rows) where: (a) D(M) = ac — bd, (b) D(M) = ab — cd, (c) D(M) = 0, and (d) D(M) = 1.

b : R
Let V be the space of 2 x 2 matrices M = (a d) over R. Determine whether or not D: V — R is 2-linear

Let ¥ be the space of m-square matrices viewed as m-tuples of row vectors. Suppose D : V — K is m-linear
and alternating. Show that if A, A,, ..., 4, are linearly dependent, then D{(A4,, ..., A,) = 0.

Let V be the space of m-square matrices (as above), and suppose D: ¥V — K. Show that the following
weaker statement is equivalent to D being alternating:
DA, Az, ..., A)=0 whenever 4; = A;, , for some i
Let V be the space of n-square matrices over K. Suppose B € V is invertible and so det (B) # 0. Define
D : V = K by D(A) = det (AB)/det(B) where A € V. Hence
D(A,, A;. .., A))=det (A4,B, A, B, ..., A, B)/det (B)
where A, is the ith row of A and so A4; B is the ith row of AB. Show that D is multilinear and alternating,

and that D{f) = 1. {This method is used by some texts to prove | AB| = | A]| B|.)

Let A be an n-square matrix. The determinantal rank of A is the order of the largest square submatrix of A
{obtained by deleting rows and columns of A) whose determinant is not zero. Show that the determinantal
rank of 4 is equal to its rank, i.e, the maximum number of linearly independent rows (or columns).

Answers to Supplementary Problems

754. (@) 21, (h —11, (9 100, (d) O

755, (a) (t+ 2t — 3Nt — 4), b)) €+ 2% — 4), © t+2%0—-9

756. (@) 3.4,-2; (b 4,-2; () 4 -2
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757. (@ -—131, (b)) -—55
758. (@ —12, (b) —42, (c) —468
I 0 -2 ~1 0 74
759. adjA=| -3 -1 6], A '={ 3 1 -6
2 I =5 -2 =1 5

-6 —29 -26 -2 21 —14 —-17 -19
I et e LN e O

—13 1 28 —18 17 7 —19 —18

k 0
o an(t )
763 (@ x=%#y=% ) x=-fhy=1
764. (@) x=5,y=1,z=1 (b) Since D = 0, the system cannot be solved by determinants.
766. sgno=1,sgnt= —1 sgnn=—1
767. (@) 100=53142, (b) meo= 52413, (¢) o '=32154, (d) t7'=14253
771. (@ 30, (b) O
7.72. 17
773. (@) —3,-3,—1; (b)) -23,-23,-10
774. (a0 —2,—17,73; (b) 7,10, 105; (c) 13,54,0
775 S,=-6,5;=13,8,=62,8,=-219
7.79. (a) Yes, (h) No, (c) Yes, (d) WNo



Chapter 8

Eigenvalues and Eigenvectors, Diagonalization

8.1 INTRODUCTION

Consider an n-square matrix 4 over a field K. Recall (Section 4.13) that A induces a function
J: K" — K" defined by

J(X)=AX

where X is any point (column vector) in K". (We then view A as the matrix which represents the
function f'relative to the usual basis E for K".)
Suppose a new basis is chosen for K", say

S = {1, g5 ooy th}

(Geometrically, § determines a new coordinate system for K") Let P be the matrix whose columns are
the vectors u,, u,, ..., u,. Then (Section 5.11) P is the change-of-basis matrix from the usual basis E to
S. Also, by Theorem 5.27,

X' =P 'X
gives the coordinates of X in the new basis S. Furthermore, the matrix
B= P 'AP

represents the function f in the new system S: that is, f(X") = BX".
The following two questions are addressed in this chapter:

(1) Given a matrix A4, can we find a nonsingular matrix P (which represents a new coordinate system
S), so that

B =P 'AP

is a diagonal matrix? If the answer is yes, then we say that A is diagonalizable.

(2) Given a real matrix A4, can we find an orthogonal matrix P (which represents a new orthonormal
system S) so that

B =P AP
is a diagonal matrix? If the answer is yes, then we say that A is orthogonally diagonalizable.

Recall that matrices 4 and B are said to be similar (orthogonally similar) if there exists a non-
singular (orthogonal) matrix P such that B= P "' AP. What is in question, then, is whether or not a
given matrix A is similar (orthogonally similar) to a diagonal matrix.

The answers are closely related to the roots of certain polynomials associated with A. The particu-
lar underlying field K also plays an important part in this theory since the existence of roots of the
polynomials depends on K. In this connection, see the Appendix (page 446).

8.2 POLYNOMIALS IN MATRICES
Consider a polynomial f(t) over a field K ; say
fW=a, "+ ---+at+a,

280
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Recall that if A is a square matrix over K, then we define
fA)=a,A"+ - +a,A+apl

where I is the identity matrix. In particular, we say that 4 is a root or zero of the polynomial f{t) if
J(A) =0.

Example 8.1. LclA:(; i).andlctf(r}=2t‘—3t+7,g{¢]=t‘—5:-—2,*rhen
1 2\? 1 2 1 0 18 14
ﬂA}=Z(3 4) “3(3 4)+7(0 I)=(21 39)
1 2\? 1 2 1 0 0 0
and "(””=(3 4) _5(3 4)_2(0 1)2(\0 0)
Thus A is a zero of g{r).

The following theorem, proved in Problem 8.26, applies.

Theorem 8.1: Let f and g be polynomials over K, and let A be an n-square matrix over K. Then
() (/+ ghA) =1(A) + g(4)
(i) (fgKA) = f(A)glA)
(i) (KNA) = K(A) for all ke K
(iv)  f(AgtA) = g(A)f(A)

By (iv), any two polynomials in the matrix A commute.

8.3 CHARACTERISTIC POLYNOMIAL, CAYLEY-HAMILTON THEOREM

Consider an n-square matrix A over a field K :

Gyy Gy ... Gy,

a a Fr el )
A = 21 22 2n

a,, Qay3 cee Gy,

The matrix tl, — A, where I, is the n-square identity matrix and ¢ is an indeterminate, is called the
characteristic matrix of A:

t—ay, — @y ... T Oy,

_a2 r_azz . w _az

tl,— A= ! .
Qny ) t—a,,

Its determinant
A, (1) =det (t, — A)

which is a polynomial in ¢, is called the characteristic polynomial of A. We also call
Ay r)=det(ti, — A)=0
the characteristic equation of A,
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Now each term in the determinant contains one and only one entry from each row and from each
column; hence the above characteristic polynomial is of the form

Aut) =t —ay Nt —ay;) - (t—a,,)
+ terms with at most n — 2 factors of the form t — g;
Accordingly,
Afty=1t"—(ay, + a3, +---+ a, "' + terms of lower degree

Recall that the trace of A is the sum of its diagonal elements. Thus the characteristic polynomial
A (1) = det (tI, — A) of A is a monic polynomial of degree n, and the coefficient of 1"~ * is the negative of
the trace of A. (A polynomial is monic if its leading coefficient is 1.)

Furthermore, if we set t = 0 in A (), we obtain

Af0)=|—A|=(-1y]A4]

But A ,(0) is the constant term of the polynomial A ,(r). Thus the constant term of the characteristic
polynomial of the matrix A is (— 1)"| A | where n is the order of A.
We now state one of the most important theorems n linear algebra (proved in Problem 8.27):

Cayley—Hamilton Theorem 8.2: Every matrix is a zero of its characteristic polynomial.

2
Example 8.2. letB = (; 2). Its characteristic polynomial is

r 2
-3

A(r)=|rf—BI=| _2‘={t—l)(1—2}—6=t’—3r—4

As expected from the Cayley-Hamilton Theorem, B is a zero of Afz):

7 L — —
A‘B’zsz_m_“:(s) 13)+(—; —6) +( 3 —40):(3 g)
Now suppose A and B are similar matrices, say B = P~' AP where P is invertible. We show that A
and B have the same characteristic polynomial. Using tf = P~ tIP,
{t] —=B|={tI — P YAP| = |P tIP — P 1AP|
=|P Yl — AP|=|P ||t - A||P|
Since determinants are scalars and commute, and since | P~ || P| = 1, we finally obtain
|t — B|=|tI — A]

Thus we have proved

Theorem 8.3: Similar matrices have the same characteristic polynomial.

Characteristic Polynomials of Degree Two and Three

Let A be a matrix of order two or three. Then there is an easy formula for its characteristic poly-
nomial A(t). Specifically:

(1) Suppose A4 = (a“ a,z). Then

Az, 433
a, 4,

A(f) = t2 — (a,, + ay)t + = 1% — (tr A}t + det (4)
azy 4y

(Here tr A denotes the trace of A4, that is, the sum of the diagonal elements of 4.)
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dyy Gyz a3
(2) Suppose A =|a,;, a;; @;3) Then
dyy d3z2 dj

;2 djz; ay; 43 ayy g3

ayy Gy 4y
)5- Qyy Q23 Q33

At = t* — (a,y + az; + asy)t? +(

Qyz djy 3y Qi3 dyy 4p;

a3y Q33 O3
=13 —(tr A)? + (A + Ay; + Azs)t — det (A)
(Here A,,, A,,, A3; denote, respectively, the cofactors of the diagonal elements a, ;, a,,, a33.)
Consider again a 3-square matrix A = (a;;). As noted above,
S,=tr A4 S;=A;, + Az; + Ay, Sy = det (A4)

are the coefficients of its characteristic polynomial with alternating signs. On the other hand, each §, is
the sum of all the principal minors of A of order k. The next theorem, whose proof lies beyond the scope
of this Outline, tells us that this result is true in general.

Theorem 8.4: Let A be an n-square matrix. Then its characteristic polynomial is
At)=1t"— S;t" "' + §,1" 2 — - + (- 1)"S,

where S, is the sum of the principal minors of order k.

Characteristic Polynomial and Block Triangular Matrices

A,
0 A,

t’_Al _B
”_M_( 0 tf—Az)

is also a block triangular matrix with diagonal blocks tI — A, and tI — A, . Thus, by Theorem 7.12,

Suppose M is a block triangular matrix, say M = ( ) where A, and A, are square matrices.

Then the characteristic matrix of M,

tI-A; =B

o A=t A 4l

|£f—M|=l

That is, the characteristic polynomial of M is the product of the characteristic polynomials of the
diagonal blocks A, and A,.
By induction, we obtain the following useful result.

Theorem 8.5: Suppose M is a block triangular matrix with diagonal blocks A, A,, ..., A,. Then the
characteristic polynomial of M is the product of the characteristic polynomials of the
diagonal blocks A;, that is,

Aplt) = A, (DAL,(1) -~ AL (1)
Example 8.3. Consider the matrix

9 —1! 5 7T
8 3! 2 -4
M‘o 0, 3 6
0 0:-1 8
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-1
Then M is a block triangular matrix with diagonal blocks 4 = (z 3) and B = ( 4 6). Here

—1 8
trd=9+3=12 det (4) =27+ ¥ =135 and so A=t —12t+35=0-5-17)
trB=34+8=11 det(B)y=24 + 6 =30 and so Agt) =12 — L1t + 30 = (1 — 5}z — 6)

Accordingly, the characteristic polynomial of M is the product
AylD) = A (A1) = (1 — 5)*(t — 6%t — T

84 EIGENVALUES AND EIGENVECTORS

Let A be an n-square matrix over a field K. A scalar 1 € K is called an eigenvalue of A if there exists
a nonzero (column) vector v € K" for which

Ar = Ar

Every vector satisfying this relation is then called an eigenvector of A belonging to the eigenvalue A
Note that each scalar multiple kv is such an eigenvector since

Alkv) = k(Av) = k(Av) = Alkv)

The set E; of all eigenvectors belonging to 4 is a subspace of K" (Problem 8.16), called the eigenspuce of
2. (If dim E; = 1, then E; is called an eigenline and .. is called a scaling factor.)

The terms characteristic value and characteristic vector (or proper value and proper vector) are some-
times used instead of eigenvaluc and eigenvector.

Example 8.4. Lect A = (; ;) and let v, =(2,3)" and v, = (1, — 1)". Then

=, 204
ey W)Yo

Thus ¢, and v, are eigenvectors of A belonging, respectively. to the eigenvalues A, =4 and 4, = —1 of A.

and

The following theorem, proved in Problem 8.28, is the main tool for computing eigenvalues and
eigenvectors (Section 8.5).

Theorem 8.6: Let A be an n-square matrix over a field K. Then the following are equivalent:
(i) A scalar i € K is an eigenvalue of A.
(1)) The matrix M = Al — A is singular.
(iii) The scalar 4 is a root of the characteristic polynomial A(t) of A.

The eigenspace E; of 1 is the solution space of the homogeneous system MX = (4] — 4A)X =0.
Sometimes it 1s more convenient to solve the homogeneous system (4 — AI)X = 0; both systems, of
course, yield the same solution space.

Some matrices may have no eigenvalues and hence no eigenvectors. However, using the Fundamen-

tal Theorem of Algebra (every polynomial over C has a root) and Theorem 8.6, we obtain the following
result.
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Theorem 8.7: Let A be an n-square matrix over the complex field C. Then 4 has at least one eigen-
value.

Now suppose A is an eigenvalue of a matrix A. The algebraic multiplicity of A is defined to be the
multiplicity of 4 as a root of the characteristic polynomial of A. The geometric multiplicity of 4 is defined
to be the dimension of its eigenspace.

The following theorem, proved in Problem 10.27, applies.

Theorem 8.8: Let A be an eigenvalue of a matrix A. Then the geometric multiplicity of A does not
exceed its algebraic multiplicity.

Diagonalizable Matrices

A matrix A is said to be diagonalizable (under similarity) if there exists a nonsingular matrix P such
that D = P! AP is a diagonal matrix, i.e., if A is similar to a diagonal matrix D. The following theorem,
proved in Problem 8.29, characterizes such matrices.

Theorem 89: An n-square matrix A4 is similar to a diagonal matrix D if and only if 4 has n linearly
independent eigenvectors. In this case, the diagonal elements of D are the corresponding
eigenvalues and D = P ' AP where P is the matrix whose columns are the eigenvectors.

Suppose a matrix A can be diagonalized as above, say P~'AP = D where D is diagonal. Then A
has the extremely useful diagonal factorization
A=PDP!

Using this factorization, the algebra of 4 reduces to the algebra of the diagonal matrix D which can be
easily calculated. Specifically, suppose D = diag (k,, k,, ..., k,). Then

A™ = (PDP 'y = PD™"P~ ! = P diag (k}, ..., k) P!
and, more generally, for any polynomial f{(z),

f(A) =f{PDP‘1) = Pf{D)P“' = P diag (f(k,), ..., [tk ) P!
Furthermore, if the diagonal entries of D are nonnegative, then the following matrix B is a “square

root” of A:
B = P diag (\/k,, ..., Jk,) P!
that is, B = A.

1
Example 8.5. Consider the matrix A = ( 3 By Example 8.4, A has two linearly independent eigenvectors

3 2

ere-(§ 00 2C -

As expected, the diagonal elements 4 and — 1 of the diagonal matrix B are the eigenvalues corresponding to the
given eigenvectors. In particular, 4 has the factorization

O

2
2

2 1 2 1 _ 1 3 N . .
and 1) Set P = 3 i andso P7! = 3/ Then A is similar to the diagonal matrix
1
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Accordingly,

2 1y/256 O\ 4 103 102
4 _ 4p-1 _ i
A= PO7P (3 —IX 0 1)(% -3 153 154

Furthermore, if f(t) = t* — 7t* + 9t — 2, then
1y —-14  oyi ¥ [(-17 2
= o —-9A3 -2 3 —16

Remark: Throughout this chapter, we use the fact that the inverse of the matrix

w N

flA) = PADP " = (

/ o
P= (ﬂ b) is the matrix Pl= ( d\P| b;’lPl)
c d —c/{P|  af|P|

That is, P~ is obtained by interchanging the diagonal elements a and d of P, taking
the negatives of the nondiagonal elements b and ¢, and dividing each element by the
determinant | P|.

The following two theorems, proved in Problems 8.30 and 8.31, respectively, will be subsequently
used.

Theorem 8.10: Let v, ..., v, be nonzero eigenvectors of a matrix A belonging to distinct eigenvalues
Ayy-.-n Ay Then vy, ..., v, are linearly independent.

Theorem 8.11: Suppose the characteristic polynomial A(t) of an n-square matrix 4 is a product of n
distinct factors, say, A(t) = (t — a, Nt — a;) - (t — a,). Then A is similar to a diagonal
matrix whose diagonal elements are the a;.

8.5 COMPUTING EIGENVALUES AND EIGENVECTORS, DIAGONALIZING MATRICES

This section computes the eigenvalues and eigenvectors for a given square matrix A and determines
whether or not a nonsingular matrix P exists such that P~ 'AP is diagonal. Specifically, the following
algorithm will be applied to the matrix A.

Diagonalization Algorithm 8.5:

The input is an n-square matrix A.
Step 1. Find the characteristic polynomial A(t) of A.
Step 2. Find the roots of A(r) to obtain the eigenvalues of A.

Step 3. Repeat (a) and (b) for each eigenvalue 4 of 4:

(@) Form M = A — AI by subtracting i down the diagonal of A4, or form M’ = il - A by
substituting t = A in tf — A.

(b) Find a basis for the solution space of the homogeneous system MX = 0. {These basis
vectors are linearly independent eigenvectors of 4 belonging to 4)
Step 4. Consider the collection S = {v,, v,, ..., v,,} of all eigenvectors obtained in Step 3:
(@) Ifm # n, then A is not diagonalizable.
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(b) Ifm = n, let P be the matrix whose columns are the eigenvectors v,, v, ..., v,. Then
‘ll

bl
D=P 'AP = ?

Ay

where 4, is the eigenvalue corresponding to the eigenvector ;.

4
Example 8.6. The Diagonalization Algorithm is applied to A = ( 2)

1.

3 -1

The characteristic polynomial A(t) of A is the determinant

.

=2 3 — 10 = (1 —
_ 8 igd ={*—3—=10=(@~-5t+2)

A(;]=|U+AI=|I

Alternatively, tr A=4 — 1 =3and |A|= —4 — 6 = —10;50 At) = £* — 3t — 10.

Set A(t) =(t — 5Kt + 2) = 0. The roots A; = 5and A; = —2 are the eigenvalues of A.

()

(1)

We find an eigenvector v, of A belonging to the eigenvalue 4, = 5.
-1

3
belonging to A, = 5 form the solution of the homogeneous system MX = 0, that is,

-1 2\/x 0 —x+2y=0
= —_ 2 =
( 3 —6)(y) (0) or {3x—6y=0 *® =
The system has only one independent solution; for example, x =2, y = 1. Thus v, = (2, 1) is an eigen-
vector which spans the eigenspace of A, = 5.

Subtract A, = 5 down the diagonal of 4 to obtain the matrix M =( _z) The eigenvectors

We find an eigenvector v, of 4 belonging to the eigenvalue 4, = —2.

Subtract —2 (or add 2) down the diagonal of A4 to obtain M = (6

3 f) which yields the homoge-

neous system

{6x+2y=0 or Ix+y=0

Ix+ y=0

The system has only one independent solution; for example, x = —1, y = 3. Thus v, =(—1, 3) is an
eigenvector which spans the eigenspace of 1, = —2.

Let P be the matrix whose columns are the above eigenvectors: P == (f _;) Then P! =( :} z) and
—7

D=

P~ 1AP is the diagonal matrix whose diagonal entries are the respective eigenvalues:

o-rar=(3 00 G -6 )

Accordingly, 4 has the “diagonal factorization™

A=pDpp~! =(:: _;X; _g)(—i ;)

Iff(t) = t* — 46 — 31 + 5, then we can calculate f(5) = 55, f(—2) = 41; thus

oS-
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5 1
Example 8.7. Consider the matrix B = 4 I)' Here tr B=5+1=6 and |B|=5+4=9. Hence
A(r) =12 — 61 + 9 = (1 ~ 3)? is the characteristic polynomial of B. Accordingly, A = 3 is the only eigenvalue of B.

2 1

Subtract 4 = 3 down the diagonal of B to obtain the matrix M =( 4 5

) which corresponds to the

homogeneous system

22+ y=0
{ ¥ or x+y=0

—4x —2y=0

The system has only one independent solution; for example, x = 1, y = —2. Thus v = (1, —2) is the only indepen-
dent eigenvector of the matrix B. Accordingly, B is not diagonalizable since there does not exist a basis consisting
of eigenvectors of B.

2
Example 8.8. Consider the matrix A =(l

A(t) = £ + 1 is the characteristic polynomial of 4. We consider two cases:

). Here r A=2-2=0 and |A|=—4+4+5=1 Thus

(@) A is a matrix over the real field R. Then A(f) has no (real) roots. Thus A has no eigenvalues and no eigen-
vectors, and so A is not diagonizable.

(b) A is a matrix over the complex field C. Then A(t) = (t — ilt + i) has two roots, i and —i Thus A has two
distinct eigenvalues i and —i, and hence A has two independent eigenvectors. Accordingly, there exists a
nonsingular matrix P over the complex field C for which

(i)

Therefore, A is diagonalizable (over C).

8.6 DIAGONALIZING REAL SYMMETRIC MATRICES

There are many real matrices A which are not diagonalizable. In fact, some such matrices may not
have any (real) eigenvalues. However, if A is a real symmetric matrix, then these problems do not exist.
Namely:

Theorem 8.12: Let A be a real symmetric matrix. Then each root 4 of its characteristic polynomial is
real.

Theorem 8.13: Let A be a real symmetric matrix. Suppose 1 and v are nonzero eigenvectors of A
belonging to distinct eigenvalues A, and Z,. Then u and v are orthogonal, ie.,
Cu, v = 0.

The above two theorems gives us the following fundamental result:

Theorem 8.14: Let A be a real symmetric matrix. Then there exists an orthogonal matrix P such that
D = P~ ' AP is diagonal.

We can choose the columns of the above matrix P to be normalized orthogonal eigenvectors of A;
then the diagonal entries of D are the corresponding cigenvalues.

Example 8.9. Let A =( ; _g) We find an orthogonal matrix P such that P 'AP is diagonal. Here

trA=2+4+5=7and |A|=10—4 = 6. Hence Alt) =t? — 7t + 6 = (t — 6¥t — 1) is the characteristic polynomial
of A. The eigenvalues of A are 6 and 1. Subtract i = 6 down the diagonal of 4 to obtain the corresponding
homogeneous system of linear equations

—4x — 2y =0 —2x—y=0
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A nonzero solution is v, = (1, —2). Next subtract 4 = 1 down the diagonal of A to find the corresponding homo-
geneous system
+x—2y=0 —2x +4y =0

A nonzero solution is (2, 1). As expected from Theorem 8.13, v, and v, are orthogonal. Normalize v, and v, to

obtain the orthonormal vectors
uy = (1//5. =21/5) u; = 2//5,11,/5)

Finally let P be the matrix whose columns are i, and u,, respectively. Then

=( 15 2/,ﬁ) ol P"AP=(6 0)

-21/5 11./5 0 1
As expected, the diagonal entries of P~ ' AP are the eigenvalues corresponding to the columns of P.

Application to Quadratic Forms

Recall (Section 4.12) that a real quadratic form g¢(x,, x,, ..., x,) can be expressed in the matrix form
g(X)=XTAX

where X = (x,, ..., x,)7 and 4 is a real symmetric matrix, and recall that under a change of variables
X = PY, where Y = (y,, ..., y,) and P is a nonsingular matrix, the quadratic form has the form

q(Y)= YTBY

where B = PTAP. (Thus B is congruent to A))

Now if P is an orthogonal matrix, then P* = P~ '. In such a case, B= PTAP = P 'AP and so B is
orthogonally similar to 4. Accordingly, the above method for diagonalizing a real symmetric matrix A4
can be used to diagonalize a quadratic form g under an orthogonal change of coordinates, as follows.

Orthogonal Diagonalization Algorithm 8.6:

The input is a quadratic form g(X).
Step 1. Find the symmetric matrix A which represents g and find its characteristic polynomial A(z).
Step 2. Find the eigenvalues of A, which are the roots of A(r).
Step 3. For each eigenvalue A of 4 in Step 2, find an orthogonal basis of its eigenspace.
Step 4. Normalize all eigenvectors in Step 3 which then forms an orthonormal basis of R".
Step 5. Let P be the matrix whose columns are the normalized eigenvectors in Step 4.

Then X = PY is the required orthogonal change of coordinates. and the diagonal entries of PTAP
will be the eigenvalues 4, ..., 4, which correspond to the columns of P.

87 MINIMUM POLYNOMIAL

Let A be an n-square matrix over a field K and let J(A4) denote the collection of all polynomials f(r)
for which f(A4) = 0. [Note J(A) is not empty since the characteristic polynomial A () of A belongs to
J(A).] Let m(t) be the monic polynomial of minimal degree in J(A). Then m(t) is called the minimum
polynomial of A. [Such a polynomial m(t) exists and is unique (Problem 8.25).]

Theorem 8.15; The minimum polynomial m(t) of A divides every polynomial which has A4 as a zero. In
particular, m(t) divides the characteristic polynomial A(z) of A.

(The proof is given in Problem 8.32.) There is an even stronger relationship between mit) and A(2).
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Theorem 8.16: The characteristic and minimum polynomials of a matrix A have the same irreducible
factors.

This theorem, proved in Problem 8.33(b), does not say that m(tf) = A(t); only that any irreducible
factor of one must divide the other. In particular, since a linear factor is irreducible, m{t) and A(t) have
the same linear factors; hence they have the same roots. Thus we have:

Theorem 8.17: A scalar A is an eigenvalue of the matrix A if and only if A is a root of the minimum
polynomial of A.

2 2 -5
Example 8.10. Find the minimum polynomial m(t) of A ={ 3 7 —15).
I 2 —4
First find the characteristic polynomial A(t) of A:
t—2 =2 5
A =tI—A|l=| =3 -7 15 |=-5+7-3=0—1—-3

—~f =7 F44

Alternatively, A(t) =t — (tr A)?> + (A, + Apy + At — |A| =03 = 51 + Tt — 3 = (t — 1)*(t — 3) (where A is
the cofactor of g; in A).

The minimum polynomial m{t) must divide A(t). Also, each irreducible factor of A(r), that is, t — | and t — 3,
must also be a factor of m(1). Thus m(t) is exactly only of the following:

=@ =3K-1) or glt) =(t — It — 1)?
We know, by the Cayley-Hamilton Theorem, that g(A) = A(4) = 0; hence we need only test f(t). We have

1 2 =5\/-1 2 =5 0 0 0
LA =A—-—DA-3)=]|3 6 —15 3 4 —15]=10 0 0
1 2 -5 1 2 -1 0 0 0

Thus f(t) = m(t) = (t — 1t — 3) = * — 4t + 3 is the minimum polynomial of A.

Example 8.11. Consider the following n-square matrix where a # 0:

A a 0 ... 00
0 4 a 00
T e e
00 0 A a
0 0 0 0 i

Note that M has A's on the diagonal, a’s on the superdiagonal, and Os elsewhere. This matrix, especially when
a = 1, is important in linear algebra. One can show that

SWy=@-2ar
is both the characteristic and minimum polynomial of M.
Example 8.12. Consider an arbitrary monic polynomial f(t) =" +a,_,t"" ' +--- + a,t +a,. Let 4 be the

n-square matrix with 1s on the subdiagonal, the negatives of the coefficients in the last column and Os elsewhere as
follows:

00 ... 0 —a
1 0 0 —a,
A=]o0 1 0 —a,

......................
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Then A is called the companion matrix of the polynomial f(f). Moreover, the minimum polynomial m(t} and the
characteristic polynomial A(t) of the above companion matrix A are both equal to f{(1).
Minimum Polynomial and Block Diagonal Matrices

The following theorem, proved in Problem 8.34, applies.

Theorem 8.18: Suppose M is a block diagonal matrix with diagonal blocks A,, 4,. ..., 4,. Then the
minimum polynomial of M is equal to the least common multiple (LCM) of the
minimum polynomials of the diagonal blocks A;.

Remark: We emphasize that this theorem applies to block diagonal matrices,
whereas the analogous Theorem 8.5 on characteristic polynomials applies to block
triangular matrices.

Exampie 8.13. Find the characteristic polynomial A(f) and the minimum polynomial m(t) of the matrix

2 5000
02000
A=10 0 4 2 0O
00 3 50
00 00 7

Note A4 is a block diagonal matrix with diagonal blocks

2 5 4 2

Then A(r) is the product of the characteristic polynomials A,(t), A,(t), and A(t) of A;, A,, and A;, respectively.
Since A, and A, are triangular, A, (1} = (t — 2)* and A,(t) = (1 — 7). Also.

Ay =17 —(tr A+ A= =N+ 14 =(t —20—7T)

Thus Alt) = (t — 2)*(¢ — 7). [As expected, deg A(1) = 5.]
The minimum polynomials m, (t), m,{t), and ms(¢) of the diagonal blocks A,, A, and Aj;, respectively, are equal
to the characteristic polynomaials; that is,

m(t) = (1 — 2y my(t) = (t — 2}t — 7) myy=1—7
But m(r) is equal to the least common multiple of m, (1), m(t), ms(t). Thus mit) = (t — 2)’(1 ~ 7).

Solved Problems

POLYNOMIALS IN MATRICES, CHARACTERISTIC POLYNOMIAL

81. LetA= (l _i) Find f(A) where: (a) f(1) = t* — 3t + 7, and (b) f(t) = 12 — 61 + 13.

o (1 =2y (1 —2) (I 0)
(@ (A=A 3A+7!'—(4 5) 34 5 +70 1
_(-7 —12 —3 6\ (7 0Oy (-3 —6)
2 17) P o2 <is) o 7)7 iz o
W R —6 12y /13 0\ (0 ©
(b) f(A1=A‘—6A+'3'=(24 11)*(“24 —30)+(0 13):(0 0)

[Thus A is a root of f(1).]
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) 2 -3
8.2. Find the characteristic polynomial A(z) of the matrix 4 = ( 5 1).

Form the characteristic matrix (I — A:

a-a=(y )45 (5 .2)

The characteristic polynomial A(f) of A is its determinant:

t—2 3

mr}=|;;_,4|=| 2 ]l=(t—2m-l)+15=:’—3:+17

Alternatively, tr A =2+ 1=3and|A| =2+ 15 = 17; hence A(t) = +* — 3t + 17.

1 6 -2
8.3. Find the characteristic polynomial A(t) of the matrix 4 =} —3 2 0}
0 3 -4
t—1 =6 2
A =jtIi—Al=] 3 t-2 0 =(t—1Xt— 2+ — 18+ 18t +4)=1> + 1 — 81 + 62
0 -3 t+4
) 2 0 1 -2 1 6
Al‘emal“fﬁly, tr14=l+2—4=““1, Al|= 3 _4 = _By A22: 0 —4 = "'49 A3}= oy 2 L

24 18=20,A,, + Ay + Ay =—8—4+20=8and|A| = —8 + 18 — 72 = —62. Thus
Ay =13 — (tr A2 + (Ayy + Aga + At — Al =0+ 17 — 8t + 62

84. Find the characteristic polynomials of the following matrices:

1 2 3 4 2 § 7 -9
0 2 8 -6 1 4 -6 4
@ R=lg o 3 _sf ® S=ly o 6 s
0 0 0 4 0 0 2 3

{a) Since R is triangular, A(f) = (¢t — 1)}t — 2}t — 3)(t — 4).

(b) WNote S is block triangular with diagonal blocks A, = (T :) and A, = (g - 3). Thus

A1) = A, (DA 4,(t) = (¢ — 61 + 3)t* — 9t + 28)

EIGENVALUES AND EIGENVECTORS

1 4
85 LetA= ( 3). Find: (a) all eigenvalues of 4 and the corresponding eigenspaces, (b) an invert-

2
ible matrix P such that D=P '4P is diagonal, and (¢) A° and f(4) where
flt) =t* — 3t — 7t + 6t — 15.

(@) Form the characteristic matrix tf — A of A:

t 0 1 4 t—1 —4
a—a=ly g 9~(Z% oy @
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The characteristic polynomial A(t) of A is its determinant:

T
A=l — Al = =1 -4—-5=3-
)=l I |_2 3 4 5K+ 1)

Alternatively, tr A=1+3=4 and [A] =3 — 8= —5, s0o Alt) =t* — 4t — 5. The roots i, = 5 and
4, = — 1 of the characteristic polynomial A(t) are the eigenvalues of A.

We obtain the eigenvectors of A belonging to the eigenvalue 4, = 5. Substitute t = 5 in the char-

. . . . 4 —4 y : ’

acteristic matrix (/) to obtain the matrix M = ( 2 2). The eigenvectors belonging to 4, = 5 form

the solution of the homogeneous system MX = 0, that is,

4 —4\/x _(0) m 4x —4y=0 _o
2 2hy) " \o —Zegzy=0 o FTYS

The system has only one independent solution; for example, x = 1, y = 1. Thus v, = (1, 1) is an ¢igen-
vector which spans the eigenspace of 4, = 5.

We obtain the eigenvectors of A belonging to the eigenvalue i, = —1. Substitute t = — 1 into
-2 -4
tI — Atoobtain M = ( 5 4) which yields the homogeneous system
—2x—4y =0
or +2y=0
{- Ix — 4y =0 ek
The system has only one independent solution; for example, x =2, y = —1. Thus v, = (2, —1) is an

eigenvector which spans the eigenspace of 4, = — 1.

1 2
(b} Let P be the matrix whose columns are the above eigenvectors: P = ( | l) Then D= P 'AP is

the diagonal matrix whose diagonal entries are the respective eigenvalues:

oo e DG

[Remark: Here P is the change-of-basic matrix from the usual basis E of R? to the basis § = [v,, v,}.
Hence D is the matrix representation of,the function determined by A in this new basis.]

(¢) Use the diagonal factorization of A,

; 1 2\/5 oy %
A= 1=
el (1 —1)(0 —1)(3: 1
and 5° = 3125 and (—1)® = — 1 to obtain:
Ast,,DsP_I:(l 2)(3125 0\¥ ¥\ _[1041 2084
1 -1 0 -1\ -4 1042 2083

Also, since f(5) = 90 and f( 1) = — 24,

~ Y 2y oyd R\ _[14 76
flA) = Pf(D)P ‘(] _)(0 —24X5 ‘i)'(as 52)

Find all eigenvalues and a maximal set S of linearly independent eigenvectors for the following

matrices:
5 6 5 —1
(@) A‘(s -2) ®) C=(1 3)

Which of the matrices can be diagonalized ? If so, find the required nonsingular matrix P.

(@) Find the characteristic polynomial A(t) = t* — 31 — 28 = (¢t — 7)t + 4). Thus the eigenvalues of A are
Ay=Tand 4, = —4.
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- 6
(i) Subtract 4, = 7 down the diagonal of A to obtain M =( ) which corresponds to the

-9
system
—2x +6y=0
or x—3y=0
{ 3x -9y =0 ¥
Here v, = (3, 1) is a nonzero solution (spanning the solution space) and so v, is the eigenvector of
A=T

i . . 6 )
(i) Subtract A, = —4 (or add 4) down the diagonal of A to obtain M = (g 2) which corresponds to
the system 3x + 2y = 0. Here v, = (2, — 3) is a solution and hence an eigenvector of 1, = —4.

Then S = {v; = (3, 1), v; = (2, —3)} is a maximal set of linearly independent eigenvectors of 4. Since §
is a basis for R?, A is diagonalizable. Let P be the matrix whose columns are v, and v,. Then

32 7 0
P= “1AP =
(] _3) and P 'AP (0 _)

(b) Find A(f) = 1* — 8t + 16 = (t — 4)~. Thus 4 = 4 is the only eigenvalue. Subtract 4 = 4 down the diago-

1
nal ofCloobtainM=(l ‘

v = (I, 1) is a nonzero solution of the systerm and hence v is an eigenvector of C belonging to 4 =4.
Since there are no other eigenvalues, the singleton set § = {v =(1, 1)} is a maximal set of linearly
independent eigenvectors. Furthermore, C is not diagonalizable since the number of linearly indepen-
dent eigenvectors is not equal to the dimension of the vector space R?, In particular, no such non-
singular matrix P exists.

) which corresponds to the homogeneous system x + y = 0. Here

e 2 . 5 .
Let A = ( ) Find: (a) all eigenvalues of A and the corresponding eigenvectors; (b) an invert-

1 3
ible matrix P such that D = P~ 'AP is diagonal; (c) A°; and (d) a “ positive square root” of A,
i.e., a matrix B, having nonnegative eigenvalues, such that B* = A.

(a) Here A(t)=1*> —tr A+ |A|=1>—5t +4 = (1 — 1)t — 4). Hence 1, = | and 4, = 4 are eigenvalues of
A. We find corresponding eigenvectors:

(i) Subtract 4, = 1 down the diagonal of A to obtain M = (: ;) which corresponds to the homo-

geneous system x + 2y = 0. Here v, = (2, —I) is a nonzero solution of the system and so an

eigenvector of A belonging to 4, = 1.

-2
1

homogeneous system x — y = 0. Here v, = (1, 1) is a nonzero solution and so an eigenvector of A
belonging to 4; = 4.

(ii) Subtract A; =4 down the diagonal of A to oblain M = ( f) which corresponds to the

(b) Let P be the matrix whose columns are v, and v;. Then

2 1 . 10
(20 e oerara(t 9)

(¢) Use the diagonal factorization of 4,

A ) (Y (i

R ) (N (o

to obtain



CHAP. 8]

()

EIGENVALUES AND EIGENVECTORS, DIAGONALIZATION 295

+
Here ( ‘0! ;2) are square rocts of D. Hence

(3 9 DG D

is the positive square root of A.

I -1

4
88. Suppose A =|2 5 —2|. Find: (a) the characteristic polynomial A(t) of A4, (b) the eigen-
1

1 2

values of A, and (c) a maximal set of linearly independent eigenvectors of A. (d) Is A diagonal-
izable? If yes, find P such that P~ ' AP is diagonal.

(a)

(b)

(c)

We have
1—4 -1 1
Ay =\tI —Aj=| =2 =5 2 |=¢~111? +3%1 — 45
—1 -1 =2

Alternatively, A(t) = 1* — (ir A)? + (A, + Ay + Ayt — VAl =11 — 1112 + 391 — 45. (Here A, is the
cofactor of a;; in the matrix A.)

Assuming A(t) has a rational root, it must be among +1, +£3, +5, +9, +15, +45. Testing by syn-
thetic division, we get
3] 1-11+39-45
3-24+45
- 8+15+ 0

Thus ¢ = 3 is a root of A(t) and ¢ — 3 is a factor, giving

A= =32 =Bt + 15 =@ =3t =N —=3=0-31-5

Accordingly, 4, = 3 and 4, = 5 are the eigenvalues of A.
Find independent eigenvectors for each eigenvalue of A.
1 1 -1
(i) Subtract i, =3 down the diagonal of 4 to obtain the matrix M =] 2 2 -2 which
1 I -1
corresponds to the homogeneous system x + y —z =0. Here u = (1, —1,0) and v = (1, 0, 1) are
two independent solutions.
-1 1 -1

(1) Subtract i, = 5 down the diagonal of A 10 obtain M = 2 0 —2 Jwhich corresponds to
1 1 -3
the homogeneous system
—-x+y— z=0
2x —2z2=0 or {x - Ak
X+y—3z=0 y=2=0

Only z is a free variable. Here w = (1, 2, 1) is a solution,

Thus {u = (1, —1,0), v = (1,0, 1), w = (1, 2, 1)} is a maximal set of linearly independent eigenvectors of
A

Remark: The vectors u and v were chosen so they were independent solutions of the homo-
geneous system x + y — z = (). On the other hand, w is automatically independent of u and v
since w belongs to a different eigenvalue of A. Thus the three vectors are linearly independent.
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(d) A is diagonalizable since it has three linearly independent eigenvectors. Let P be the matrix with
column u, v, w. Then

1 11 3
P=|-1 0 2 and P AP = 3
01 1 5
3 -1 1
Suppose B ={ 7 -5 1 | Find: (a) the characteristic polynomial A(t) and eigenvalues
6 -6 2

of B; and (b) a maximal set S of linearly independent eigenvectors of B. (¢) Is B diagonalizable? If
yes, find P such tht P 'BP is diagonal.

() We have:

fr(B)=3—5+?.=0.B“=—10+6=—4,323=6-6=0,B-43=— 15 +?=~—8,
IBl=—30-6-42+30+18+14=-16

Therefore, A() =¥ — 12t + 16 = (1 — 2)2(t + 4) and 50 A = 2 and A = 4 are the eigvenvalues of B.

(by Find a basis for the cigenspace of each eigenvalue.

(i) Subtract A = 2 down the diagonal of B to obtain the homogeneous system

1 -1 I\ /x 0 x— y+z=0 . il
7 =7 1f{y]l={0o] o {Ix-Ty+z=0 or { y”_n
6 -6 0f\z/ \o 6x—-6y =0 =¥ =

The system has only one independent solution,e.g, x= lL,y=1,z=0.Thus u = (1, 1, 0) forms a
basis for the eigenspace of A = 2.
(i1) Subtract A = — 4 (or add 4) down the diagonal of B to obtain the homogeneous system

7 -1 1\ /x 0 Ix— y+ z=0

Tx—y+z=0
7 -1 IHyl={0 or Ix— y+ z=0 or -
6 —6 6/\z 0 6x — 6y + 6z =0 T

The system has only one independent solution, e.g, x =0, y=1,z= 1 Thusv = (0, I, 1) forms a
basis of the eigenspace of A = — 4.
Thus § = {u, v} is a maximal set of linearly independent eigenvectors of B.

(¢) Since B has at most two independent eigenvectors, B is not similar to a diagonal matrix, i.e.. B is not
diagonalizable.

Find the algebraic and geometric multiplicities of the eigenvalue A = 2 for matrix 8 in Problem
8.9.

The algebraic multiplicity of A = 2 is two since ¢ — 2 appears with exponen1 2 in A(r). However, the
geometric multiplicity of A = 2 is one since dim £, = L.

1
2
real matrix. Is 4 diagonalizable? If yes, find P such that P~ ' AP is diagonal.

—1 2 : ;
Let A =( ]). Find all eigenvalues and corresponding eigenvectors of A assuming A is a

The characteristic polynomial of 4 is A{t) = t? + 1 which has no root in R. Thus A, viewed as a real
maltrix, has no eigenvalues and no eigenvectors, and hence A is not diagonalizable over R.



CHAP. 8] EIGENVALUES AND EIGENVECTORS, DIAGONALIZATION 297

8.12. Repeat Problem 8.11 assuming now that A is a matrix over the complex field C.

The characteristic polynomial of A is still A(t) = 2 + 1. (It does not depend on the field K.) Over C,
A(t) does factor; specifically, A(t) = t* + 1 = (t — ikt + i). Thus A, = i and i, = —i are eigenvalues of A.

(i) Substitute t =i in tI — A to obtain the homogeneous system

i=1 1 \/x\ (0 (i—x+y=0 o ~
(“2 ‘HXP)_(O) o {—2x+(i+ny=0 o = Dehys0

The system has only one independent solution, e.g, x =1, y =1 — i. Thus v, =(1, 1 — i) is an eigen-
vector which spans the eigenspace of 4, = i.

(i) Substitute t = —iinto t/ — A4 to obtain the homogeneous system

il B sy (—i—1x+y=0 . )
(‘2 “‘IXy)_(O) o {—Zx+(-!'-~lly=0 I e

The system has only one independent solution, e.g., x = 1, y = | + i Thus v, = (1, 1 + i) is an eigen-
vector of A which spans the eigenspace of 4, = —1i.

As a complex matrix, A4 is diagonalizable. Let P be the matrix whose columns are v, and v,. Then
1 1 < i 0
P_(l-f l+i) and P AP_(G __;_)

813, LetB= (i T) Find: (a) all eigenvalues of B and the corresponding eigenvectors; (b) an invert-

ible matrix P such that D = P 'BP is diagonal; and (c) BS.

(@@ Here Aty =t*—tr B+ |Bl=t?—3t—10=(— 5Nt +2). Thus i, = 5 and 4, = —2 are the eigen-
values of B.

-3 4

3 -4

homogeneous system 3x — 4y = 0. Here v, = (4, 3) is a nonzero solution.

(i) Subtract 4, = 5 down the diagonal of B to obtain M = ( ) which corresponds to the
.. . . . 4 4 ;
(ii) Subtract i, = —2 (or add 2) down the diagonal of B to obtain M = (3 3) which corresponds to

the system x + y = 0 which has a nonzero solution v, = (1, —1).

(Since B has two independent eigenvectors, B is diagonalizable.)
(h) Let P be the matrix whose columns are v, and v, . Then

4 1 5 0
] 3 = l —
P ( 3 l) and D=P 'BP (0 B 2)

(¢) Use the diagonal factorization of B,

R

to obtain (5° = 15625, (—2)° = 64):

4 1N/15625 0O\/1
B® = pDepP ' = >
i (3 —l)( 0 64)(%

[ 2 3
8.14. Determine whether or not A4 is diagonalizable where A =|0 2 3 |.
3

Since A is triangular, the eigenvalues of A are the diagonal elements 1. 2, and 3. Since they are distinct,
A has three independent eigenvectors and thus A is similar to a diagonal maitrix (Theorem 8.11). (We
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emphasize that here we do not need to compute eigenvectors to tell that 4 is diagonalizable. We will have
to compute eigenvectors if we want to find P such that P~ ' AP is diagonal.)

8.15. Suppose 4 and B are n-square matrices.

(a)
(b)
()

@
(a)

(b}

(o)

(d}

Show that 0 is an eigenvalue of 4 if and only if 4 is singular.
Show that AB and BA have the same eigenvalues.

Suppose A4 is nonsingular (invertible) and 4 is an eigenvalue of A. Show that 2
eigenvalue of 4",
Show that A and its transpose AT have the same characteristic polynomial.

! is an

We have that O is an eigenvalue of 4 if and only if there exists a nonzero vector v such that
A(v) = Ov = 0; Le, if and only if 4 is singular.
By part (@) and the fact that the product of nonsingular matrices is nonsingular, the following state-
ments are equivalent: (i) 0 is an eigenvalue of AB, {ii) AB is singular, (iii) A or B is singular, (iv) BA is
singular, (v} 0 is an eigenvalue of BA.

Now suppose 4 is a nonzero eigenvalue of AB. Then there exists a nonzero vector v such that

ABv = Av. Set w = Buv. Since 4 # 0 and v # 0,
Aw = ABv=JAv#0 and so w0
But w is an eigenvector of BA belonging to the eigenvalue A since
BAw = BABv = Biv = iBv = iw
Hence A is an eigenvalue of BA. Similarly, any nonzero eigenvalue of BA is also an eigenvalue of AB.

Thus AB and BA have the same eigenvalues.
By part (a) 4 # 0. By definition of an eigenvalue, there exists a nonzero vector v for which A(v) = Av.
Applying A" to both sides, we obtain v = A~ '(iv) = A4 '(v). Hence A~ '(t) = 2 'v; thatis, 1 ' is an
eigenvalue of A 1.
Since a matrix and its transpose have the same determinant, |t! — A} = |(t] — A)"| = |t] — A7|. Thus
A and AT have the same characteristic polynomial.

8.16. Let 4 be an eigenvalue of an n-square matrix A4 over K. Let E;, be the eigenspace of 4, i.e., the set
of all eigenvectors of A belonging to 4. Show that E, is a subspace of K", that is, show that:
(a)ifv e E;, then kv € E, for any scalar ke K; and (b)ifu,v e E;,thenu+ v e E,.

(a)

(b)

Since v € E;, we have A(v) = iv. Then
A(kv) = kA(v) = KAv} = A(kv)

Thus kv € E,. [We must allow the zero vector of K" to serve as the *eigenvector ” corresponding to
k = 0, to make E; a subspace.]
Since u, v € E;, we have A(u) = Av and A(v) = iv. Then

Alu + v) = A} + Aw) = du + iv = Hu + v)

Thusu+vekE,;.

DIAGONALIZING REAL SYMMETRIC MATRICES AND REAL QUADRATIC FORMS

X PV ; g o
8.17. Llet A= (2 3). Find a (real) orthogonal matrix P for which PTAP is diagonal.

The characteristic polynomial A(t) of A is

e | —2’

:2—— —— — i
i g il t 6t +5=0—-3%)—-1

ﬂ{r}=IrI~AF=|

and thus the eigenvalues of 4 are 5and 1.
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Subtract A =5 down the diagonal of A to obtain the corresponding homogeneous system of linear

equations

—2x+2y=0 2x—2y=0

A nonzero solution is v, = (1, 1). Normalize ¢, to find the unit solution u, = {U\/i Ijﬁ].

Next subtract 1 = 1 down the diagonal of A4 to obtain the corresponding homogeneous system of

linear equations

2x + 2y =0 2x + 2y =0

A nonzero solution is v, = (1, — 1). Normalize v, to find the unit solution u, = (1 f\/f, - lfﬁ].

Finally let P be the matrix whose columns are u, and u,, respectively; then

P=(”‘/i U‘ﬁ) and P"AP:(S 0)
12 —1/2 01

As expected, the diagonal entries of P AP are the eigenvalues of A.

It -8 4

8.18. Suppose C =| —8 —1 —2|. Find: (a) the characteristic polynomial A(t) of C; (b) the eigen-

4 -2 -4

values of C or, in other words, the roots of A(t); (c) a maximal set § of nonzero orthogonal
eigenvectors of C; and (d) an orthogonal matrix P such that P 'CP is diagonal.

(a)

(b)

()

We have
Aty =0 —(tr O)* + (C; + Cyy + Cy3)t = | C} =1 — 61* — 135t — 400
[Here C,; is the cofactor of ¢;;in C = (c;).]
If A1) has a rarional root, it must divide 400. Testing t = — 5, we get
~5]1— 6-135—-400

-~ 5+ 55+ 400
1—11— 80+ 0

Thus ¢ + 5 is a factor of A(f) and
Aft) = (t + SHt? — 11t — 80) = (1 + 5)*(t — 16)

Accordingly, the eigenvalues of C are 2 = — 5 (with multiplicity two) and i = 16 (with multiplicity
one).

Find an orthogonal basis for each eigenspace.
Subtract 4 = —5 down the diagonal of C to obtain the homogeneous system

16x — 8y +4z=0 —8x+4y—2z=0 4x —2y+2z=0

That is, 4x — 2y + z = 0. The system has two independent solutions. One solution is v, = (0, 1, 2). We
seek a second solution v, = (a, b, ¢) which is orthogonal to v, ; i.e., such that

da—2b+c=0 andalso b—2c=0

One such solution s 1, =(—5, —8, 4).
Subtract 4 = 16 down the diagonal of C to obtain the homogeneous system

—5x—8y+4z=0 —8x — 17y —2z2=0 4x -2y — 202 =0

This system yields a nonzero solution v, = (4, —2, 1). (As expecied from Theorem 8.13, the eigenvector
vy is orthogonal to v, and v, ) _
Then v,, v, v, form a maximal set of nonzero orthogonal eigenvectors of C.
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(d) Normalize vy, v,, v, to obtain the orthonormal basis
u =0 14/5 29 u, =(—5/105, —8/,/105, 4/, /105)  u, =(4//21, —2/./21. 1/,/21)

Then P is the mairix whose columns are u,, u,, us. Thus

0 —5,/105  4//21 —5
P=|1/5 —-8.,/105 —2//21] and PiCP= -5
25 4105 14/, 16

8.19. Let g(x, ) = 3x* — 6xy + 11y~ Find an orthogonal change of coordinates which diagonalizes q.

Find the symmetric matrix A4 representing g and its characteristic polynomial A(t):

A=(_3 —3) ad At B

= =(t — Nt —
311 R 14t + 24 =(t — 20t — 12)

The eigenvalues are 2 and 12; hence a diagonal form of g is
qx, y) = 2x* + 12y?
The corresponding change of coordinates is obtained by finding a corresponding set of eigenvectors of A.
Subtract 4 = 2 down the diagonal of A to obtain the homogeneous system

x—=3v=0, -3x+9=0
A nonzero solution is v, = (3,1). Next subtract A = 12 down the diagonal of A to obtain the homogeneous
system

-9%-3y=0, -3x-y=0

A nonzero solution is v; = (—1, 3). Normalize ¢, and v, to obtain the orthonormal basis

u, = (3/,/10, 1,,/10) u, = (—1/,/10, 3/,/10)

The change-of-basis matrix P and the required change of coordinates follow:

(3,*‘/ 10 -1/ 10) (x) P(x) {x = (3% — ) /10
P= and = , or
1/ /10 3/, /10 y y y =+ 3y) /10

One can also express x” and )’ in terms of x and y by using P~ ' = P”, that is,

x = (3x + 1/,/10 ¥ =(=x+35),/10

8.20. Consider the quadratic form g(x, y, z) = 3x* + 2xy + 3y* + 2xz + 2yz + 3z2. Find:

(a) The symmetric matrix 4 which represents g and its characteristic polynomial A(t),
(b) The eigenvalues of A or, in other words, the roots of A(f),

{c) A maximal set § of nonzero orthogonal eigenvectors of A.

(d) An orthogonal change of coordinates which diagonalizes q.

(@) Recall A = (q;) is the symmetric matrix where g, is the coefficient of x? and g,; = a, is one-half the
coefficient of x; x;. Thus

301 1 t-3 -1 -1
A=|1 3 1 and  Alt)=| -1 -3 —1|=0"—%%+24r—-20
1 1 3 -1 -1 t-3
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If A(t} has a rational root, it must divide the constant 20, or, in other words, it must be among
+1, +2, 44, +5, +10, +20. Testing t = 2, we get
21 1-9+24-20
2—-14+420
1-7+104+0

Thus ¢ — 2 is a factor of A(t), and we find
AMty=(t —2)1* — Tt + 10) = (t — 2)*(t — 5)
Hence the eigenvalues of A are 2 (with multiplicity two) and 5 (with multiplicity one).

Find an orthogonal basis for each eigenspace.
Subtract A = 2 down the diagonal of A to obtain the corresponding homogeneous system

x+y+z=0 x+y+z=0 x+y+z=0

That is, x + y + z = 0. The system has two independent solutions. One such solution is v, = (0, 1, —1).
We seek a second solution v, = (a, b, ¢} which is orthogonal to v, ; that is, such that
a+b+c=0 b—ec=0

For example, v; =(2, —1, —1). Thus vy ={0, 1, —1), v, = (2, —1, —1) form an orthogonal basis for
the eigenspace of 4 = 2,
Subtract A = 5 down the diagonal of A to obtain the corresponding homogeneous system

and also

—2x+y+z=0 x—2y+z=0 x+y—2z=0

This system yields a nonzero solution v, = (1, 1, 1). (As expected from Theorem 8.13, the cigenvector v,
is orthogonal to v, and v,.)
Then vy, v,, v; form a maximal set of nonzero orthogonal eigenvectors of A.

Normalize v,, v,, v4 to obtain the orthonormal basis

uy = 0, 1/4/2, —1/3/2) u, = (26, —11/6, —1/,/6)

Let P be the matrix whose columns are u,, u,, u;. Then

0 26 11/3 2
1/2 -1/6 1,/3] and PTAP= 2
—-1/2 -1 /6 IL/3 5

Thus the required orthogonal change of coordinates is

uy = (1//3, 11/3. 1//3)

P =

N
- Z.z
yo XY, 7
J2 6 /3

g ooy T
3

Under this change of coordinates, g is transformed into the diagonal form
Q(x‘v }"1 zt} = 2x"? + 2_}"2 + 522

MINIMUM POLYNOMIAL

8.21. Find the minimum polynomial m(t) of the matrix A= { 6

4 =z 3
-3 4
3 -3 3
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First find the characteristic polynomial A(t) of A:

=2 1 .|
A=t —Al=| -6 t+3 —-4|=—-4>+5t-2=(—-—-1)P
-3 2 t—3

Alternatively, A(t) =1 — (tr A2 +(A,, + Ay, + Ayt —|A| =11 — 4t + 5t — 2 = (1 — 2)t — 1).. (Here
A is the cofactor of g;; in A))

The minimum polynomial m(t) must divide A{t). Also, each irreducible factor of A(¢), that is, t — 2 and
t — 1. must also be a factor of m{r). Thus m(t) is exacily only of the following:

Jy=(—2—1) or  gt)=(t—2Nt — 1)?

We know, by the Cayley—Hamilton Theorem, that g(A) = A(A) = 0; hence we need only test f(r). We
have
2 =2 23 =2 2 0 0 0
fiAy=(A-2A-DN=|6 -5 a)le -4 4)J=(0 0 o0
3 -2 1J\3 -2 2 0 0 0
A.

Thus f{t) = m(t) = (t — 2}t — 1) = 1? — 3t + 2 is the minimum polynomial of
ioa
8.22. Find the minimum polynomial m(t) of the matrix, where a #0. B={0 4
0 0

The characteristic polynomial of B is A(f) = (t — #)*. [Note m(t) is exactly one of t — 4, (t — 3)?, or
(t — 4] We find (B — Al)? # 0; thus m(t) = A} = (t — A)*.

(Remark: This matrix is a special case of Example 8.11 and Problem 8.61.)

2 O

b

4 1 0 0 0O
04100
8.23. Find the minimum polynomial m(t) of the following matnix: M'=|0 0 4 0 0
0 0 0 4 1
0 00 0 4
Here M’ is block diagonal with diagonal blocks
4 1 0
A={0 4 1] and B‘=(: D
0 0 4

The characteristic and minimum polynomial of A4’ is f(1) = (t — 4), and the characteristic and minimum
polynomial of B’ is ¢(t) = (t — 4)*. Thus A(t) = f(t)g(t) = (t — 4)° is the characteristic polynomial of M’, but
m{t) = LCM [ f{1), git)] = (t — 4)* (which is the size of the largest block) is the minimum polynomial of M'.

8.24. Find a matrix 4 whose minimum polynomial is:

(@ fiy=1>—8t2 +5t+17, B =134+ 5+6
Let A be the companion matrix (see Example 8.12) of f(t). Then
0 0 0 —6
a8 =¢ 1 0 0 =5
@ A=|1I 0 =51 (h)y A=
0 { 8 0 1 0 4
0 0 1 3
(Remark: The polynomial f(t)is also the characteristic polynomial of A.)
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8.25. Show that the minimum polynomial of a matrix A4 exists and is unique.

By the Cayley—Hamilton Theorem, A4 is a zero of some nonzero polynomial (see also Problem 8.37).
Let n be the lowest degree for which a polynomial f{1) exists such that f(A4) = 0. Dividing f(¢) by its leading
coeflicient, we obtain a monic polynomial m(t} of degree n which has A as a zero. Suppose m'(t) is another
monic polynomial of degree n for which m'(A4) = 0. Then the difference m{t) — m'(1} is a nonzero polynomial
of degree less than n which has 4 as a zero. This contradicts the original assumption on n; hence m{r) is the
unique minimum polynomial.

PROOFS OF THEOREMS
8.26. Prove Theorem 8.1. (i) (f + g)(A) = f(A) + g(A), (ii) (fR)A) = f(A)g(A), (iii) (kKf WA) = kf(A).
Suppose f=a,t"+ - +a,t + agand g = b, t™ + -+ + bt + b,. Then by definition,
f(A=a, A"+ - +a,A+agl and HA) = b, A" +--- + b, A 4 h,]
(i} Suppesem < mnandletb; =0ifi > m. Then

f+g=(a,+b}" + - +(a, + b))t +(ay + by)

Hence
S+ ghA) = (a, + bJA" + -+ + (a, + b))A + (a, + b)l
=g, A"+ b, A"+ -+ a,A+ b A+ ayl + byl =f(A) + g(A)
n+m
(i) By definition. fg = ¢, """ 4 - + 64t + co = 3 ¢, t* where
k=0

K
ch=dob,+ab, y+ - +aby=Y ab,_,
P

ntm

Hence (fykA) = ¥ ¢, A*and

k=0

ntm

S(Ag(A) = ( iaiA‘) )m:bjA-‘) = 2 ia,b,A”f = ¥ ¢, A* = (fgA)
-0 =0 i=0 j=0 k=0
(iii) By definition, kf = ka,t" + - -+ + ka,t + ka,, and so
(KNA)y=ka, A" + --- + ka A + kay I = k(@a, A" + -~ + a A + ag ) = kf(A)
(iv) By (ii), gl A)/(A) = (gf XA) = (fg A} = flAH A).

8.27. Prove the Cayley-Hamilton Theorem 8.2. Every matrix is a root of its characteristic polynomial.

Let A be an arbitrary n-square matrix and let A(2) be its characteristic polynomial; say,
A=t —A|=t"+a,_ "'~ - +a,t +a

Now let B(t) denote the classical adjoint of the matrix 1/ — A. The elements of B(t) are cofactors of the
matrix t{ — A and hence are polynomials in t of degree not exceeding n — 1. Thus

Bity=B, " '+--4+ B+ B,

where the B; are n-square matrices over K which are independent of z. By the fundamental property of the
classical adjoint (Theorem 7.9), (t/ — A)B(t) = |l — A}l, or

(!f-—AlB,,_.!"" it +B|! + BD}=(‘”+Q”_|[' '+"‘+a|f+ﬂo]f
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Removing parentheses and equating the coefficients of corresponding powers of 1,

BI'I' 1= I
Bﬂ_,z g AB",_| =4, |.,
Eﬂ_a_AB"_z=ﬂn_.1’

.......................

Multiplying the above matrix equations by A", 4" ™', .., A, I, respectively,

A'B,_, = A"
A"-|Bn-2 - An'Bn-l = 4,. lA“_l
An—ZBu_J — A" IIB"M2 =ﬂn_114"_3

AB, — A’B, = a,A
—Aﬂo = ﬂﬂ’
Adding the above matrix equations,
0=A"+qg,_ A" "+ - +a,A+ayl

or A(A) = 0, which is the Cayley~-Hamilton Theorem.

Prove Theorem 8.6.

The scalar A is an eigenvalue of 4 if and only if there exists a nonzero vector v such that
Av = v or {(Ahw— Av =0 or (Al — Ajp=0

or M = il — A is singular, In such a case 4 is a root of A(t) = |t] — A|. Also, v is in the eigenspace E; of 1 if
and only if the above relations hold; hence v is a solution of (I — 4)X = 0.

Prove Theorem 8.9.

Suppose A has n linearly independent eigenvectors v,, v,, ..., v, with corresponding eigenvalues
Ay A3, .0es &,. Let P be the matrix whose columns are v,, ..., t,. Then P is nonsingular. Also, the columns
of AP are Av,, ..., Av,. But Av, = Av,. Hence the columns of AP are 4,v,. ..., 4,v,. On the other hand, let
D = diag (4, 4,, ..., 4)), that is, the diagonal matrix with diagonal entries 4,. Then PD is also a matrix
with columns 4; v, . Accordingly,

AP = PD and hence D=P 4P

as required.
Conversely, suppose there exists a nonsingular matrix P for which

P 'AP =diag (4,, 4;,....4) =D andso AP =PD

Let v, v,, ..., v, be the column vectors of P. Then the columns of AP are Ay, and the columns of PD are
Ay Uy . Accordingly, since AP = PD, we have

Av. = j-lv“ Apz = 12[’2' teey Av“ = i,,v,,

Furthermore, since P is nonsingular, v,, v, ..., v, are nonzero and hence, they are eigenvectors of A
belonging to the eigenvalues that are the diagonal elements of D. Moreover, they are linearly independent.
Thus the theorem is proved.
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8.30.

8.32.

Prove Theorem 8.10.

The proof is by induction on n. If n = 1, then v, is linearly independent since v, # 0. Assume n > 1.
Suppose
aywy + a vy + - +a,v,=0 n

where the g; are scalars. Multiply (/) by A and obtain
a,Avy + a; Av, + - + a, Av, = A0=0

By hypothesis, Av; = A;v;. Thus on substitution we obtain

aoy Fazdavs + 00 +a, A, =0 2
On the other hand, multiplying (/) by 4,, we get

a v, +a, A0y + - +a,Av,=0 (Kj]
Subtracting (3) from (2) yields

ay(Ay — A0y + axldy — Aoy + o+ ay (A — A0,y =0

By induction, v,, v,, ..., v,_, are linearly independent; hence each of the above coefficients is 0. Since the 4,
are distinct, 4; — 1, # O for i # n. Hence a, = -+ = a,_; = 0. Substituting this into (/), we get a,v, = 0, and
hence a, = 0. Thus the v, are linearly independent.

Prove Theorem 8.11.

By Theorem 8.6, the a; are eigenvalues of A. Let v; be corresponding eigenvectors. By Theorem 8.10,
the v, are linearly independent and hence form a basis of K™. Thus A is diagonalizable by Theorem 8.9.

Prove Theorem 8.15. The minimum polynomial m(t) of A divides f(r) whenever f(A) = 0.

Suppose f(1) is a polynomial for which f{A4) = 0. By the division algorithm, there exist polynomials g()
and r(t) for which f(1) = m(t)g(t) + r{t) and r{t) = O or deg r(t) < deg m{t). Substituting ¢ = A in this equation,
and using that f(A) = 00 and m{A4) = 0, we obtain r(A) = 0. If {1} # 0, then r{1) is a polynomial of degree less
than mit) which has A as a zero; this contradicts the definition of the minimum polynomial. Thus A1) = 0
and so f(t) = m{t)g(t), i.e, mit) divides f{(t).

Let m(t) be the minimum polynomial of an n-square matrix A.

(@) Show that the characteristic polynomial of A4 divides (m(t))".
(b) Prove Theorem 8.16. m(r) and A(r) have the same irreducible factors.
(@) Suppose mit) =t +¢,'" ' + -+ + ¢, t + ¢,. Consider the following matrices:

---------------------------------

.....................

AISO, TAB'_|=f"*'[Ar+('|Ar_l+"'+C,_1A+C,.')
=c, I — m{A)
=c,I
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Set Bity=1t" 'By+1t"?B,+---+1tB, ,+B,_,
Then
(il —A)-Blt)=(@By+1t" "B, +-+1B,_;)— (' "ABy + " "*AB, +--- + AB, )
=By + (B, — ABy) + "B, — AB,) + -+ + (B,_, — AB,_,) — AB,_,
=T 4" T yre,r T4+ e, 1l +c,1
= m(t)]

Taking the determinant of both sides gives [t] — A{| B(t)| = |m{t)f | = (m{1))". Since | B(t)| is a poly-
nomial, | t] — A| divides (m{t}))"; that is, the characteristic polynomial of A divides (m{¢))".

(h) Suppose f(t} is an irreducible polynomial. If f(r) divides m{t) then, since m{t) divides A(z), f(1) divides
A(t). On the other hand, if f(t) divides A(r) then, by part (a), f(¢) divides (m{t))". But f(1} is irreducible;
hence f{(1) also divides m{t). Thus m{t) and A(r) have the same irreducible factors.

Prove Theorem 8.18.

We prove the theorem for the case r = 2. The general theorem follows easily by induction. Suppose

A 0 - .
M= (0 B) where A and B are square matrices. We need to show that the minimum polynomial m{t) of

M is the least common multiple of the minimum polynomials g(t) and h(t) of A and B, respectively.
Since mi{1) is the minimum polynomial of M, m(M) = (MOAI MOB}) =0 and hence m(A) =0 and

m(B) = 0. Since g(1) is the minimum polynomial of A, g(t) divides mft). Similarly, h(t) divides m(t). Thus m(r)
is a multiple of g(t) and h(t).
: flay 0 00 .
Now let f(r) be another multiple of 4(t) and h(t); then f{M)} = 0 fB) = 00 = 0. But mi1) is
the minimum polynomial of M; hence m{t) divides f(t). Thus m(t) is the least common multiple of g{r)
and h(t).

Suppose A is a real symmetric matrix viewed as a matrix over C.
(a) Prove that {Au, v) = (u, Av) for the inner product in C".
(b) Prove Theorems 8.12 and 8.13 for the matrix A.

(a) We use the fact that the inner product in C" is defined by <u. v) = u"i. Since A is real symmetric,
A=AT = A Thus

A, vy = (Aw)D = u" A5 = " Ab = u" Av = u, Av)
(h) We use the fact that in C", Cku, v) = k{u, v5 but {u, ko) = k¢u, 0.
(1) There exists v # 0 such that Av = Av, Then
A, v) = (i, v) = {Av, v) = (v, Avd = (v, iv) = Kb, 1D

But ¢v, »> # O since v # 0. Thus 4 = 7 and so 4 is real.
(2) Here Au = A,uand Av = A, v and, by (1), 2, is real. Then

Al('"' 1?) = (’{1“) U) -~ (AH, U) = (H, Al}) = {H, ‘Il U> = j’l(“v I.'-‘> = AI{“‘ v>

Since 4, # 4,, we have (i, v) = 0.

MISCELLANEOUS PROBLEMS
8.36. Suppose A be a 2 x 2 symmetric matrix with eigenvalues 1 and 9 and suppose u = (1, 3)7

is an eigenvector belonging to the eigenvalue 1. Find: (a) an eigenvector v belonging to the
eigenvalue 9, (b) the matrix A, and (c) a square root of A, ie., a matrix B such that B> = A.
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8.37.

8.39.

(@) Since A is symmetric, v must be orthogonal to . Set v = (—3. 1)".
(b) Let P be the matrix whose columns are the eigenvectors u and v. Then, by the diagonal factorization of

A, we have
amrr (000 ok B-(E Y

(Alternatively, A is the matrix for which Au = v and Av = %)
(¢} Use the diagonal factorization of A to obtain

AN (I Y R

Let A be an n-square matrix. Without using the Cayley-Hamilton theorem, show that 4 is a
root of a nonzero polynomial.

Let N = n®. Consider the following N + 1 matrices
I. A, A% ..., AY

Recall that the vector space V of n x n matrices has dimension N = n?. Thus the above N 4 | matrices are
linearly dependent. Thus there exist scalars a,, a,, a,, ..., ay, not all zero, for which

ay AV 4+ -+ a A+ agl =0
Thus A is a root of the polynomial f(¢) = ayt” + -+ 4+ a,t + ay.

Suppose A is an n-square matrix. Prove the following:

(a) A is nonsingular if and only if the constant term of the minimum polynomial of A is not
zero.

(b) If A is nonsingular, then 4 ' is equal to a polynomial in A of degree not exceeding n.
(@) Suppose f{t) = +a,_" " + -+ + a;1 + 4, is the minimum (characteristic) polynomial of A. Then

the following are equivalent: (i) A is nonsingular, (ii) O is not a root of f(t), and (iii) the constant term a,,
is not zero. Thus the statement is true.

(b) Let m(t) be the minimum polynomial of 4. Then m{ty=1"+a,_ "' + -~ + a;t + a,, where r < n.
Since A is nonsingular, @, # 0 by part (a). We have
mA)=A"+a, A '+ +a,A+a,1 =0

Thus

|
—— A" e AP ta A=

Ay

Accordingly,

1
A7V = —a—{A"' +a,_ A2+ +al)
(1]

Let F be an extension of a field K. Let 4 be an n-square matrix over K. Note that 4 may also be
viewed as a matrix A over F. Clearly |t — A| =|tI — A|, that is, A and A have the same
characteristic polynomial. Show that A and A also have the same minimum polynomial.

Let m(t) and m'(t) be the minimum polynomials of A and A, respectively. Now m(t) divides every
polynomial over F which has A as a zero. Since mit) has A as a zero and since m(r) may be viewed as a
polynomial over F, m'(t) divides m{t). We show now that m(t) divides m'(1).
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Since m'(t) is a polynomial over F which is an extension of K, we may write
m(1) = fi(0b, + 310, + -+ + f(0)b,
where f{) are polynomials over K, and b, ..., b, belong to F and are linearly independent over K. We have
m(A) = [{(A)b; + [1(A)b; + -+~ + f(A)b, =0 ()
Let af} denote the ij-entry of f,(4). The above matrix equation implies that, for each pair (i, ),
ayb, +aPby + - +aPh, =0
Since the b, are linearly independent over K and since the o}’ € K, every a = 0. Then
fi(A) =0, f,(A)=0, ..., f{4)=0

Since the f{t) are polynomials over K which have A as a zero and since m{t) is the minimum polynomial of
A as a matrix over K, m{t) divides each of the f{1). Accordingly, by (I}, m{t) must also divide m'(t). But monic
polynomials which divide each other are necessarily equal. That is, m{t) = m'(t), as required.

Supplementary Problems

POLYNOMIALS IN MATRICES
840. Let f()=2>—-5t+6 and gt)=1'—2> +t+ 3. Find [f(A), g(4), f(B), and g(B) where

I

1
841, LetA= (; l)' Find A%, A%, A"

g8 12 0
842. LetB=|0 8 12]. Find a real matrix 4 such that B = 43,
0 0 8§

8.43. Show that, for any square matrix 4, (P"'4AP)" = P~ ' A"P where P is invertible. More generally, show that
f(P~'AP) = P 'f{A)P for any polynomial f(r).

8.44. Let f(¢) be any polynomial. Show that (a) f(AT) = (f(A4)), and (b) if A is symmetric, then f(A) is symmetric.

EIGENVALUES AND EIGENVECTORS

B45. Let A =( ; ;’) Find: {(a) all eigenvalues and linearly independent eigenvectors; (b) P such that

D = P~ 'AP is diagonal; (c) A'® and f(A) where f(1) = ¢* — 5t* + Tt — 2t + 5; and (d) B such that B? = A.
846. For each of the following matrices, find all eigenvalues and a basis for each eigenspace:

311 1 2 2 1 1 0
@ A=|2 4 2} b B=| 1 2 -1} @ c=lo 1 o
1 1 3 -1 1 4 0 0 1

When possible, find invertible matrices P,, P,, and P, such that P;'AP,, P;'BP,, and P;'CP, are
diagonal.
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- -1
Consider the matrices A = (? l) and B = ( ]; 3), Find all eigenvalues and linearly independent

eigenvectors assuming (a) A and B are matrices over the real field R, and (b) A4 and B are matrices over the
complex field C.

Suppose v is a nonzero eigenvector of matrices A and B. Show that v is also an eigenvector of the matrix
kA + k'B where k and k' are any scalars.

Suppose r is a nonzero eigenvector of a matrix A belonging to the eigenvalue Ai. Show that for n >0, v is
also an eigenvector of A" belonging to A"

Suppose 4 is an eigenvalue of a matrix A. Show that f(4) is an eigenvalue of f(A) for any polynomial f(r).
Show that similar matrices have the same eigenvalues.

Show that matrices A and A7 have the same eigenvalues. Give an example where 4 and A" have different
eigenvectors.

CHARACTERISTIC AND MINIMUM POLYNOMIALS

8.53.

Find the characteristic and minimum polynomials of each of the following matrices:

25000 31000 A0 000
0 2 000 0 3 00 02 000

A=10 0 4 2 0 B=]0 0 3 1 0O C=10 0 4 0 0
00350 000 3 1 000 420
00007 0000 3 0000 A

1 10 200

let A={0 2 0] and B={0 2 2) Show that A and B have different characteristic polynomials
0 01 0 01

(and so are not similar), but have the same minimum polynomial. Thus nonsimilar matrices may have the
same minimum polynomial.

ti— A —B

A B
Consider a square block matrix M =( ) Show that tI — M = ( -C i-D

cC D ) is the characteristic

matrix of M.
Let A be an n-square matrix for which A* = 0 for some k > n. Show that A" = 0.
Show that a matrix 4 and its transpose AT have the same minimum polynomial.

Suppose f(t) is an irreducible monic polynomial for which f(A) = 0 for a matnx A. Show that f{(1) is the
minimum polynomial of A.

Show that A is a scalar matrix kI if and only if the minimum polynomial of A is m(t) =t — k.
Find a matrix A whose minimum polynomial is (a) t® — 5t7 + 6t + 8, (b)) t* — 5> — 2t + Tt 4+ 4.

Consider the following n-square matrices (where a # 0):

010 ..00 A a0 00
001 ..00 0 ) a 00
Niwi | espsennanvims o [ [
0 00 0 I 000 ia

<
>
o ]
Lo ]
=
[=]
<
(=}
(=
a
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Here N has 1s on the first diagonal above the main diagonal and Os elsewhere, and M has A’s on the main
diagonal, a’s on the first diagonal above the main diagonal and 0s elsewhere.

(@) Show that, for k < n, N* has Is on the kth diagonal above the main diagonal and Os elsewhere, and
show that N*" =0.

(b} Show that the characteristic polynomial and minimal polynomial of N is f{t) = ™
(c) Show that the characteristic and minimum polynomial of M is g(t) = (t — 4)". (Hint: Note that

M = Al + aN)
DIAGONALIZATION

862. Letd= (:: b) be a matrix over the real field R. Find necessary and sufficient conditions on a, b, ¢, and d

d
so that A is diagonalizable, i.e., has two linearly independent eigenvectors.

8.63. Repeat Problem 8.62 for the case that A is a2 matrix over the complex field C.

864. Show that a matrix A is diagonalizable if and only if its minimum polynomial is a product of distinct linear
factors.

8.65. Suppose E is a matrix such that E* = E.
{a) Find the minimum polynomial m{¢) of E.

U) where r

I
(b} Show that E is diagonalizable and, moreover, E is similar to the diagonal matrix 4 = ( {; 0

is the rank of E.

DIAGONALIZATION OF REAL SYMMETRIC MATRICES AND QUADRATIC FORMS

8.66. For each of the following symmetric matrices A, find an orthogonal matrix P for which P* ' AP is diagonal:

1 2 5 4 7 K}
(a) A=(2 _2), (b) A=(4 -I)‘ (c) A=(3 _1)

8.67. Find an orthogonal transformation of coordinates which diagonalizes each quadratic form:

(@) gix, y) = 2x? — 6xy + 10y?%, (b) gix, y) = x* + Bxy — 57

8.68. Find an orthogonal transformation of coordinates which diagonalizes the following quadratic form
g(x, y, 2) = 2xy + 2xz + 2yz.

869. Let A be a 2 x 2 real symmetric matrix with eigenvalues 2 and 3, and let u = (1, 2) be an eigenvector
belonging to 2. Find an eigenvector v belonging to 3 and find A.

Answers to Supplementary Problems
-2 -3 —40 39
B0 ) =( 5 -27)’ ) =(-65 —27) Hox= (3 ;} 9‘3’=(3 :i)

R R
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2 ab
842. Hint: let A={0 2 c|.Set B= A*and then obtain conditions on g, b, and c.
0 0 2
- - 3 2
845, (@ A, =Lu=(3, -2s4i,=20=(2 —1) @& P={_, _
iy AT ( 4093 6138)fm (2 —6) iy B (—3+4ﬁ —~6+6ﬁ)
C = B = s
—2046 —3066 2 9 322 @4-32
846. (@) A, =2u=(,-1L0,v=(L0, —1)i,=6w=(L21)
() A =3u=(1,1,0,0=(1,01):i=1,w=(2 —1,1)
(€ A=Lu=(1,0,0,v=(00,1)
i 1 1 1 i 2
Let P, =| —1 0 2)and P, ={1 0 -1 |. P, does not exist since C has at most two linearly
0 -1 1 0 1 1

independent eigenvectors, and so cannot be diagonalized.

847. (a) For A, A =3, u= (1, —1); B has no eigenvalues (in R);
(b) ForA,A=3u=(1,—1);for B.A, = 2i,u=(1,3 —2i); A, = —2i,v = (1, 3 + 2i).

852 Let A= ({l} :) Then 1 =1 is the only eigenvalue and v = (1, () spans the eigenspace of i = 1. On the
0

other hand, for A" = (I ), A = 1 is still the only eigenvalue, but w = (0, 1) spans the eigenspace of 4 = 1.

85% (@ AWM =(t— 2% —T2imt)=(c—2% —7)
B) AW = (t — 3); mlt) = (¢ — 3
(© AWy=(—Aimin=1-2

0 0 0 —4
. 1 0 0 -7
860. () A=[1 0 —6), {b}AzO {6
g 1 3 0 o 1 5

865 (@) IfE=1I mit)=(t — 1);if E =0, m{t) = t; otherwise mit) = t{t — 1).
(b) Hint: Use (a)

2%/ —lfﬁ) - P_( 21/5 -1fﬁ) & P_(afvﬁ -uv’iﬁ)
—1]1\/5 2,\/3 : - _1/\/5 2';‘/3 Y - llm 3{\/1—6

867. (@) x=0(x— /10, y= +30/10, B x=0x — /5y = + 2)./5

868. x=x/\/I+yIN2+21/6,y=xI\/I-yIV2+21/6,z=x1/3-22//6

869. v=(2,—1)4 =(__15; ‘_é)

8.66. (a) P=(



Chapter 9

Linear Mappings

9.1 INTRODUCTION

The main subject matter of linear algebra is finite-dimensional vector spaces and linear mappings
between such spaces. Vector spaces were introduced in Chapter 5. This chapter introduces us to the
linear mappings. First, however, we begin with a discussion of mappings in general.

9.2 MAPPINGS

Let A and B be arbitrary nonempty sets. Suppose to each element of A there is assigned a unique
element of B; the collection of such assignments is called a mapping (or map) from A into B. The set A is
called the domain of the mapping and B is called the codomain. A mapping f from A into B is denoted by

f:A—-B

We write f(a), read “f of a.” for the element of B that f assigns to a € A; it is called the value of f at a or
the image of  under f.

Remark: The term function is used synonymously with the word mapping,
although some texts reserve the word function for a real-valued or complex-valued
mapping, i.e., one which maps a set into R or C.

Consider a mapping f: A - B. If A" is any subset of A, then f(A') denotes the set of images of
elements of A’; and if B is any subset of B, then f ~(B’) denotes the set of elements of 4 each of whose
image lies in B':

S(A)={fl@:aec A} and [ "B)={acA:f(a)e B}
We call f(A’) the image of A" and f '(B') the inverse image or preimage of B'. In particular, the set of all
images, i.e., f(A), is called the image (or range) of f.

To each mapping f: A — B there corresponds the subset of A x B given by {(a, f(a)):ae A}. We

call this set the graph of f. Two mappings f: A - B and g : A — B are defined to be equal, written [ = ¢,

if f(a) = gla) for every a € A, that is, if they have the same graph. Thus we do not distinguish between a
function and its graph. The negation of f = g is written f # g and is the statement:

There exists an a € A4 for which f(a) # g(a).

Sometimes the “barred” arrow + is used to denote the image of an arbitrary element x € A under
a mapping f : A — B by writing
x—f(x)

This is illustrated in the following example.

Example 9.1

(@) Letf: R — R be the mapping which assigns to each real number x its square x?:

2

X+ X or f(x)=x?

Here the image of —3 is 9 so we may write f(—3} = 9.

312
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() Consider the 2 x 3 matrix A = (; _i ?) If we write the vectors in R® and R? as column vectors, then A
determines the mapping F : R® — R? defined by
vi—+Av  thatis Flv) = Av veR?
3 3
Thusife=| 1], then F{v]=Au=(l -3 ) :("0),
5 2 a4 i)\, 12

{c) Let V be the vector space of polynomials in the variable ¢ over the real field R. Then the derivative
defines a mapping D:V — V where, for any polynomial fe V, we let D(f)=df/dt. For example,
D(3:2 — 5t + 2) =6t — 5.

(d) Let V be the vector space of polynomials in ¢ over R [as in (c)]. Then the integral from, say 0 to | defines a
mapping J : V — R where, for any polynomial f € V, we let J(f) = [3 f(1) dt. For example,

i
J{3t’—5r+2)=[{3;’-—51+2)dt=§
0

Note that this map is from the vector space V into the scalar field R whereas the map in (c) is from V into
itself.

Remark: Every m x n matrix A over a field K determines the mapping
F : K" - K™ defined by

v— Ap

where the vectors in K" and K™ are written as column vectors. For convenience, we
shall usually denote the above mapping by A, the same symbol used for the matrix.

Composition of Mapping

Consider two mappings f: A - B and g: B — C illustrated below:
I a
@ ——®——0O
Let a € A; then f(a) € B, the domain of g. Hence we can obtain the image of f(a) under the mapping g,
that is, g( f(a)). This map

ar=g(f(a))

from A into C is called the composition or product of f and g, and is denoted by g - f. In other words,
(g © f): A — C is the mapping defined by

(g » f)a) = g(fla)

Our first theorem tells us that composition of mappings satisfies the associative law.

Theorem 9.1: Letf:A—B,g:B—+C.andh:C—D. Thenh(g-f)=(hog)ef
We prove this theorem now. If a € A, then

(h - (g = f)a) = hllg = fXa)) = Hg(f(a))
and ((h > g) o f)a) = (h < gk f1a)) = h(g(f(a))

Thus(h o (g </a)=((h < g) - fla)foreveryae A,andsohc(geof)=(heg)-f
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Remark: Let F: A — B. Some texts write aF instead of F(a) for the image of
a € A under F. With this notation, the composition of functions F: A4 —+ B and
G:B— Cisdenoted by F < G and not by G « F as used in this text.

Injective (One-to-One) and Surjective (Onto) Mappings
We formally introduce some special types of mappings.
Definition: A mapping f: A — B is said to be one-to-one (or one-one or 1-1) or injective if different
elements of A have distinct images; that is,
ifa#d implies  f(a) # f(a')
or, equivalently, if f(a) =f(a) implies a=ada

Definition: A mapping f: A — B is said to be onto (or f maps A onto B) or surjective if every b € B is
the image of at least one a € A.

A mapping f: A = B which is both one-to-one and onto is said to be a one-to-one correspondence
between A and B or bijective.

Example 9.2

(@ Letf:R—R,g:R—R, and h:R — R be defined by f(x) = 2% g(x) = x* — x and k(x) = x*. The graphs of
these mappings are shown in Fig. 9.1. The mapping f is one-to-one: geometrically, this means that each
horizontal line does not contain more than one point of f. The mapping ¢ is onto; geometrically, this means
that each horizontal line contains at least one point of g. The mapping h is neither one-to-one nor onto; for
example, 2 and —2 have the same image 4, and — 16 is not the image of any element of R.

_//

0 0 0

flx)y = 2= gley = &3 —=x h(x) = x2
Fig. 9-1
() Let A be any set. The mapping f: A — A defined by f(a) = a, i.e, which assigns to each element in A itself, is
called the identity mapping on A and is denoted by 1, or 1 or I.
(¢) Letf: A— B. Wecall g: B— A the inverse of f, written f ~ *, if
feg=1z and gof=1,

We emphasize that [ has an inverse if and only if f is both one-to-one and onto (Problem 9.11). Also, if be B
then f (b} = a where a is the unique element of A for which f(a) = b.

93 LINEAR MAPPINGS

Let V and U be vector spaces over the same field K. A mapping F: V - U is called a linear
mapping (or linear transformation or vector space homomorphism) if it satisfies the following two condi-
tions:



CHAP. 9] LINEAR MAPPINGS 315

(1) Foranyu,we V, Flv + w) = F(v) + F(w).
(2) Foranyk e K and any v € V, F(kv) = kF(p).

In other words, F : V — U is linear if it “ preserves " the two basic operations of a vector space, that of
vector addition and that of scalar multiplication.

Substituting k = 0 into (2) we obtain F(0) = 0. That is, every linear mapping takes the zero vector
into the zero vector.

Now for any scalars g, be K and any vectors v, w € V we obtain, by applying both conditions of
linearity,

F(av + bw) = F(av) + F(bw) = aF(v) + bF(w)
More generally, for any scalars g; € K and any vectors v; € V we obtain the basic property of linear
mappings:
Flayww, + ayvy + - +a,v,) =a,F(v,) + a, Flvy)) + - + a, F(v,)

Remark: The condition F(av + bw) = aF(v) + bF(w) completely characterizes
linear mappings and is sometimes used as their definition.

Example 9.3

(a) Let A be any m x n matrix over a field K. As noted previously, 4 determines a mapping F : K" = K™ by the
assignment vi— Ar. (Here the vectors in K" and K™ are written as columns.) We claim that F is linear. For, by
properties of matrices,

F(v + w) = Alv + w) = Av + Aw = F(v) + F(w)
and F(kv) = A(kv) = kAv = kF(v)
where v, we K" and k € K.

(b) Let F:R* - R? be the "projection™ mapping into the xy plane: F(x, y, z) = (x, y, 0). We show that F is linear.
Letv=(a, b, c)and w = (&', V', '). Then

Fo+w=Fa+a. b+b.c+c)=(a+a,b+d,0)
=(a, b, 0) + (&', ¥, 0) = F(v} + F(w)
and, for any k € R,
F(kv) = Fika, kb, kc) = (ka, kb, 0) = k(a, b, 0) = kF(z)
That is, F is linear.

(¢} Let F:R?— R? be the “translation” mapping defined by F(x, y) = (x + 1, y + 2). Note that F(0) = F(0, 0) =
(1, 2) # 0. That is, the zero vector is not mapped onto the zero vector. Hence F is not linear.

(d) Let F:V — U be the mapping which assigns 0 € U to every v € V. Then, for any v, w € V and any k € K, we
have

Flo +w)y=0=0+0= F©) + Flw) and Fikv) = 0 = kO = kF(v)

Thus F 1s linear. We call F the zero mapping and shall usually denote it by 0.

(e} Consider the identity mapping I : ¥ — V' which maps each v € V into itself. Then, for any v, w € V and any q,
b € K, we have

Hav + bw)} = av + bw = al(v) + bl{w)
Thus I is linear.

(/) Let ¥ be the vector space of polynomials in the variable r over the real field R. Then the derivative mapping
D: V - V and the integral mapping J : V — R, defined in Example 9.1(c) and (d), are lincar. For it is proven in
calculus that for any u, v € ¥ and k € R,
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calculus that for any u. v € ¥ and k e R,
dy + 1) du dr d(ku) du

de - E + dr a dt de
that is, Dy + v) = D(u) + D(r) and Diku) = k D(u); and also.

1 ] 1
J Lukt) + ofe)] ot =J ey dt + I (1) ot
0 1] L]

L] 1
and J. ku(t)y dt = k J:. u(r) di
L]

that 15, Ju + ) = Mu) + J(v) and J(ku) = kI(u).

(g) Let F:V — U be a linear mapping which is both one-to-one and onto. Then an inverse mapping F ™' : U = V
exists. We will show (Problem 9.15) that this inverse mapping is also linear.

Our next theorem (proved in Problem 9.12) gives us an abundance of examples of linear mappings;
in particular, it tells us that a linear mapping is completely determined by its values on the elements of a
basis.

Theorem 9.2: Let V and U be vector spaces over a field K. Let {v,. r,, ..., v,} be a basis of ¥ and let
Uy, Uy, ..., u, be any vectors in U. Then there exists a unique linear mapping F : ¥V - U
such that F(v,) = u,, F(v;) = u3, ..., Flv,) = u,.

We emphasize that the vectors u,, ..., u, in Theorem 9.2 are completely arbitrary; they may be
linearly dependent or they may be equal to each other.

Vector Space Isomorphism

The notion of two vector spaces being isomorphic was defined in Chapter 5 when we investigated
the coordinates of a vector relative to a basis, We now redefine this concept.
Definition: Two vector spaces V and U over K are said to be isomorphic if there exists a bijective

linear mapping F : ¥V — U. The mapping F is then called an isomorphism between V and U.

Example 9.4. Let V be a vector space over K of dimension n and let S be a basis of ¥. Then, as noted previously,
the mapping vi— [v]s, which maps each v € ¥ into its coordinate vector relative to the basis S, is an isomorphism
between V and K"

94 KERNEL AND IMAGE OF A LINEAR MAPPING
We begin by defining two concepts.

Definition: Let F: V' — U be a linear mapping. The image of F, written Im F, is the set of image points
inU:
Im F ={ue U: F() = u for some v € V}
The kernel of F, written Ker F, is the set of elements in ¥V which map into0 € U:
Ker F = {ve V: F(v) = 0}

The following theorem is easily proven (Problem 9.22):
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Theorem 9.3: Let F: V — U be a linear mapping. Then the image of F is a subspace of U and the
kernel of F is a subspace of V.

Now suppose that the vectors vy, ..., v, span V and that F: ¥V — U is linear. We show that the
vectors F(vy). ..., F(v,) € U span Im F. For suppose u € Im F; then F(v) = u for some vector v e V.
Since the ¢; span V and since v € V, there exist scalars a,, ..., g, for which

v =a‘L‘1 +02[}2 + ran. + ﬂ,,v,,.
Accordingly,

u=F@)= Fla,v, + ayv, + - + a,v,)=a,F(v) + a, Flv,) + -+ + a,F(v,)
and hence the vectors F(v,), ..., F(v,) span Im F.
We formally state the above useful result.

Proposition 9.4: Suppose vy, v3,...,0, span a vector space V and F:V - U is linear. Then
F(v,), F(v,), ..., F(v,) span Im F.
Example 9.5
(@) Let F:R? - R? be the projection mapping into the xy plane. That is,
Fix, y, 2) =(x, y, 0)
(See Fig. 9-2.) Clearly the image of F is the entire xy plane. That is,
Im F = {(a, b,0):a, beR}
Note that the kernel of F is the z axis. That is,
Ker F = {(0. 0, ¢): c € R}

since these points and only these points map into the zero vector 0 = {0, 0, 0).

v = {a, b, c}

¥
‘F(t'} = (a.b,0)

Fig. 9-2

(b) Let V be the vector space of polynomials over R and let T : V' — V be the third-derivative operator, that is,
TLf()] = d*ffde
[Sometimes the notation T = D?, where D is the derivative mapping in Example 9.1(c), is used.] Then
Ker T = {polynomials of degree < 2}
[since T(ar? + bt + ¢) = 0 but T(1") # 0 for n > 2]. On the other hand,
ImT=V

since every polynomial f(z) in ¥ is the third derivative of some polynomial.
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(¢) Consider an arbitrary 4 x 3 matrix A over a field K:

a, a, a,
by by by
oy Cy Cy
dl dl d3

which we view as a linear mapping 4 : K> - K% Now the usual basis {e,, e,, e;} of K* span K* and so their
values Ae,, Ae,, Aey under A span the image of 4. But the vectors Ae,, Ae,, and Ae, are the columns of A:

a a; @), a, a, a, a, z a,
h, b, b b h, b, b b
Ae, = YT o= ). Aey = I 1 T
€ € €y 0 Ty €y €3 €3 0 [
dl dz d; d] dl dl da dl
Uy a; dy 0 ay
U LN e T
Cp €3 €y i €3
dy dy dsy d,

thus the image of A is precisely the column space of A.
On the other hand, the kernel of A consists of all vectors v for which Ar = 0. This means that the kernel
of A is the solution space of the homogeneous system AX = 0.

Remark: The above result is true in general. That is, if 4 is any m x n matrix
viewed as a linear mapping A4 : K" - K™ and E = {¢;} is the usual basis of K", then
Ae,, ..., Ae, are the columns of A and

Ker A = nullsp A and Im A = colsp A

Here colsp A means the column space of A (Section 5.5) and nullsp A means the null
space of A, 1.e., the solution space of the homogeneous system AX = 0.

Rank and Nullity of a Linear Mapping

So far we have not related the notion of dimension to that of a linear mapping F: V — U. In the
case that V is of finite dimension, we have the following fundamental relationship.

Theorem 9.5: Let V be of finite dimension and let F : V — U be a linear mapping. Then
dim V = dim (Ker F) + dim (Im F) (9.0)

That is, the sum of the dimensions of the image and kernel of a linear mapping is equal to the
dimension of its domain.

Equation (9./) is easily seen to hold for the projection mapping F in Example 9.5(a). There the
image (xy plane) and the kernel (z axis) of F have dimensions 2 and 1, respectively, whereas the domain
R? of F has dimension 3.

Remark: Let F: V — U be a linear mapping. Then the rank of F is defined to be
the dimension of its image, and the nullity of F is defined to be the dimension of its
kernel: that is,

rank F = dim (Im F) and nullity F = dim (Ker F)
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Thus Theorem 9.5 yields the following formula for F when V has finite dimension:
rank F + nullity F = dim V

Recall that the rank of a matrix A was originally defined to be the dimension of its column space and of
its row space. Observe that if we now view A as a linear mapping, then both definitions correspond
since the image of A is precisely its column space.

Example 9.6. Let F: R* = R? be the linear mapping defined by

Fix,y,s,)=(x—y+s+0,x+25—t, x+y+ 35— 3)
(a) Find a basis and the dimension of the image of F.
Find the image of the usual basis vectors of R*:
F(1,0,0,0)=(1, 1, 1) F0.0,1,0)=(1, 2,3)
Fi0,1,0,00=(-10,1) F(0,0,0, 1} = (L, —t, —3)

By Proposition 94, the image vectors span Im F; hence form the matrix whose rows are these image vectors
and row reduce to echelon form:

11 1 111 R
1 0 0 1 2 0o 1 2
t 2 3/7lo 1 2]7{o o o
I -1 =3 0 -2 —4 0 0 0

Thus (1, 1, Iy and (0, 1, 2) form a basis of Im F; hence dim (Im F) = 2 or, in other words, rank F = 2.

(b} Find a basis and the dimension of the kernel of the map F.
Set Flr) = O where v = (x, y, z, 1):

Fix, p.s,8)=(x—y+s+t,x+25—t,x+y+3s—=3=(0,0,0)

Set corresponding components equal to each other to form the following homogeneous system whose solution
space is Ker F:

x—y+29+ :=g = Bk S+2‘=g x—y+s+ t=0
x 25— 1= or y+ s—2A= or y+s5—2=0
X+y+3—3%=0 Zy+2s—4=0

The free variables are s and ¢; hence dim (Ker F) = 2 or nullity F = 2. Set:

() s= —1,t =0, to obtain the solution (2, I, —1,0),
(i) s=0,t =1, to obtain the solution (1, 2, 0, {).

Thus (2,1, —1,0) and (1, 2, 0, 1) form a basis for Ker F. (Observe that rank F + nullity F = 2 + 2 = 4, which
is the dimension of the domain R* of F.)

Application to Systems of Linear Equations

Consider a system of m linear equations in n unknowns over a field K :

G X + a2, + 0+ ay,x, = by
31X, + 4 Xo 4+ ay, X, = bz

..........................................
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where A =(a;;) is the coefficient matrix, and x =(x;) and b =(b,) are the column vectors of the
unknowns and of the constants, respectively. Now the matrix 4 may also be viewed as the linear
mapping

A:K"— K"
Thus the solution of the equation Ax = b may be viewed as the preimage of b € K™ under the linear
mapping A : K" -+ K™. Furthermore, the solution of the associated homogeneous equation Ax = 0 may

be viewed as the kernel of the linear mapping 4 : K" - K™
Theorem 9.5 on linear mappings gives us the following relation:

dim (Ker A) = dim K" — dim (Im A) = n — rank A

But # is exactly the number of unknowns in the homogeneous system Ax = 0. Thus we have recovered
Theorem 5.20.

Theorem 9.6: The dimension of the solution space W of the homogeneous system of linear equations
AX = 0is n — r where n is the number of unknowns and r is the rank of the coefficient
matrix A.

9.5 SINGULAR AND NONSINGULAR LINEAR MAPPINGS, ISOMORPHISMS

A linear mapping F : V — U is said to be singular if the image of some nonzero vector under F is 0,
i.e., if there exists v € V for which v # 0 but F(v) = 0. Thus F : V — U is nonsingular if only 0 € V maps
into 0 € U or, equivalently, if its kernel consists only of the zero vector: Ker F = {0}.

One fundamental property of nonsingular mappings follows (see proof in Problem 9.29).

Theorem 9.7: Suppose a linear mapping F : V — U is nonsingular. Then the image of any linearly
independent set is linearly independent.

Isomorphisms

Suppose a linear mapping F : ¥V — U is one-to-one. Then only 0 € ¥ can map into 0 € U and so F
is nonsingular. The converse is also true. For suppose F is nonsingular and F(v) = F(w); then
F(v — w) = F(v) — F(w) =0 and hence v — w = 0 or v = w. Thus F(v) = F(w) implies v = w, that is, F is
one-to-one. Thus we have proven.

Proposition 9.8: A linear mapping F : V — U is one-to-one if and only if it is nonsingular.

Recall that a mapping F : ¥V — U is called an isomorphism if F is linear and if F 1s bijective, ie., if F
is one-to-one and onto. Also, recall that a vector space V is said to be isomorphic to a vector space U,
written V =~ U, if there is an isomorphism F : V —» U.

The following theorem, proved in Problem 9.30, applies.

Theorem 9.9: Suppose V has finite dimension and dim V = dim U. Suppose F : V — U is linear. Then
F is an isomorphism if and only if F is nonsingular.

9.6 OPERATIONS WITH LINEAR MAPPINGS

We are able to combine linear mappings in various ways to obtain new lincar mappings. These
operations are very important and shall be used throughout the text.
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Suppose F: ¥V -» U and G: V - U are linear mappings of vector spaces over a field K. We define
the sum F + G to be the mapping from ¥ into U which assigns F(v) + Gv)tov e V:

(F + G)v) = F(v) + G(v)

Furthermore, for any scalar k € K, we define the product kF to be the mapping from V into U which
assigns kF(v)tov e V:

(kF){v) = kF(v)
We now show that if F and G are linear, then F + G and kF are also linear. We have, for any vectors
v,we V and any scalarsa, be K,
(F + GXav + bw) = F(av + bw) + Glav + bw)

= aF(v) + bF(w) + aG(v) + bG{w)

= a(F(v) + G(v)) + b(F(w) + G(w))

= a(F + G)v) + b(F + G)w)
and (kF)av + bw) = kF(av + bw) = k(aF(v) + bF(w))

= akF(v) + bkF(w) = a(kF)}v) + b(kF)}w)

Thus F + G and kF are linear.
The following theorem applies.

Theorem 9.10: Let V¥ and U be vector spaces over a field K. Then the collection of all linear mappings
from V into U with the above operations of addition and scalar multiplication forms a
vector space over K.
The space in Theorem 9.10 is usually denoted by
Hom (V, U)
Here Hom comes from the word homomorphism. In the case that ¥ and U are of finite dimension, we
have the following theorem, proved in Problem 9.36.

Theorem 9.11: Suppose dim V¥ = m and dim U = n. Then dim Hom (V, U) = mn.

Composition of Linear Mappings

Now suppose that ¥V, U, and W are vector spaces over the same field K, and that F: V — U and

G : U — W are linear mappings:
F G
®——0——®

Recall that the composition function G - F is the mapping from V into W defined by
(G o F)v) = G(F(v)). We show that G - F is linear whenever F and G are linear. We have, for any
vectors v, w € V and any scalars a, b € K,
(G = F)av + bw) = G(F(av + bw)) = G{aF(v) + bF(w))
= aG(F(v)) + bG(F(w)) = a(G = FYv) + b(G o F)w)

That is, G = F is linear.
The composition of linear mappings and the operations of addition and scalar multiplication are
related as follows (see proof in Problem 9.37):

Theorem 9.12: Let V, U, and W be vector spaces over K. Let F, F’ be linear mappings from V into U
and G, G’ linear mappings from U into W, and let k € K. Then
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() Go(F+F)=GeF+GoF
(i) G+G)oF=GcF+G«F
(i) k(G F)=(kG) « F = G o (kF)

9.7 ALGEBRA A(})) OF LINEAR OPERATORS

Let V be a vector space over a field K. We now consider the special case of lincar mappings
F:V = V,ie, from V into itself. They are also called linear operators or linear transformations on V.
We will write A(V), instead of Hom (V, V), for the space of all such mappings.

By Theorem 9.10, A(V) is a vector space over K ; it is of dimension n? if V is of dimension n. Now if
F,G € A(V), then the composition G < F exists and is also a linear mapping from V into itself, ie.,
G o F € A(V). Thus we have a “multiplication” defined in A(V). [We shall write GF for G < F in the
space A(V).]

Remark: An algebra A over a field K is a vector space over K in which an
operation of multiplication is defined satisfying, for every F, G, H € 4 and every k € K,
() F(G+ H)=FG+ FH
(i) (G + HYF = GF + HF
(iii) k(GF) = (kG)F = G(kF)
If the associative law also holds for the multiplication, i.e., if forevery F, G, H € A,
(iv) (FG)H = F(GH)
then the algebra A is said to be associative.

The above definition of an algebra and Theorems 9.10, 9.11, and 9.12 give us the following basic
result.

Theorem 9.13: Let V be a vector space over K. Then A(V) is an associative algebra over K with
respect to composition of mappings. If dim V = n, then dim A(V) = n’.

In view of the above theorem, A(V) is frequently called the algebra of linear operators on V.

Polynomials and Linear Operators

Observe that the identity mapping [: V — V belongs to A(V). Also, for any T € A(V), we have
TI=IT =T. We note that we can also form “powers” of T; we use the notation T> =T < T,
T*=To T ¢ T,.... Furthermore, for any polynomial

pix)=ao+a,x +a,x*+---+a,x" a€ekK

we can form the operator p(T) defined by
T =apl +a,T+a,T*+---+a,T"

(For a scalar k € K, the operator kI is frequently denoted simply as k.) In particular, if p(T) = 0, the
zero mapping, then T is said to be a zero of the polynomial p(x).
Example 9.7. Let T : R* - R? be defined by T(x, y, z) = (0, x, y). Now if (a, b, ¢} is any element of R, then

(T+ Na, b, e)={0,a,b)+(a,b,c)=(a,a+ b, b+c)
and Ta, b, ¢} = T*0. a, b) = T(0, 0, a) = (0, 0, 0)
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Thus we see that T? = 0. the zero mapping [rom V' into itself. In other words. T is a zero of the polynomial
plx) = x>,

98 INVERTIBLE OPERATORS

A linear operator T:V -V is said to be invertible if it has an inverse, ie., if there exists
T e AV)suchthat TT '=T'T = 1.

Now T is invertible if and only if it is one-to-one and onto. Thus in particular, if T is invertible,
then only 0 € V can map into itself, i.e., T is nonsingular. The converse is not true in general as seen by
the following example.

Example 9.8. Let I/ be the vector space of polynomials over K, and let T be the operator on ¥ defined by
Tag +ait + - +a,=apgt+a,1> +-+a,r*"' (5=012.)
ie. T increases the exponent of t in each term by 1. Now T is a linear mapping and is nonsingular, However, T is

not onto and so is not invertible.

The space V of Example 9.8 is infinite-dimensional. The situation changes significantly when V has
finite dimension. Specifically, the following theorem applies.

Theorem 9.14: Suppose T is a linear operator on a finite-dimensional vector space V. Then the follow-
ing four conditions are equivalent:
(i) T is nonsingular, i.e., Ker T' = {0}.
(ii) T is injective, i.e., one-to-one.
(1ii) T is surjective, i.e., onto.
(iv) T is invertible, i.e., one-to-one and onto.
Proposition 9.8 tells us that (i) and (ii) are equivalent. Thus, to prove the theorem, we need only

show that (i) and (iii) are equivalent. [It will then follow that (iv) is equivalent to the others.] By
Theorem 9.6,

dim ¥ = dim (Im T) + dim (Ker T)

If T is nonsingular, then dim (Ker T) =0 and sodim V = dim (Im T). This means that ¥V =Im Tor T
is surjective. Thus (i) implies (iii). Conversely, suppose T is surjective. Then ¥V =Im T and so
dim ¥ = dim (Im 7). This means that dim (Ker T) = 0 and hence T is nonsingular. Thus (iii) implies
(1). Accordingly, the theorem is proved. (The proof of Theorem 9.9 is identical to this proof.)

Example 9.9. Let T be the operator on R? defined by T'(x, y) = (3, 2x — ). The kernel of T is (0, 0)}; hence T is
nonsingular and, by Theorem 9.14, invertible. We now find a formula for T~ '. Suppose (s. t) is the image of (x. y)
under T': hence (x, v) is the image of (s, f) under T~ ': that is, T(x, y} = (s, £y and T~ (s, 1) = (x, y). We have

Tx, )=y, 2x —y) =15, 1) and so y=s5x—y=t

Solving for x and y in terms of s and ¢, we obtain x=3s+ 3, y=s. Thus T ' is given by the formula
T Ns ) = (35 + 31, 5).
Applications to Systems of Linear Equations

Consider a system of linear equations over K and suppose the system has the same number of
equations as unknowns, say n. We can represent this system by the mairix equation

Ax=b (*)
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where A is an n-square matrix over K which we view as a linear operator on K". Suppose the matrix 4
is nonsingular, i.e., the matrix equation Ax = 0 has only the zero solution. Then the linear mapping A is
one-to-one and onto. This means that the systemn (*) has a unique solution for any b € K”. On the other
hand, suppose the matrix A is singular, i.e., the matrix equation Ax = 0 has a nonzero solution. Then
the linear mapping A is not onto. This means that there exist b € K" for which (%) does not have a
solution. Furthermore, if a solution exists it is not unique. [Review Problem 1.63(ii).] Thus we have
proven the following fundamental result:

Theorem 9.15: Consider the following system of linear equations with the same number of equations
as unknowns:
@y xy +ayx;+ 0+ ay,x, = by
ay Xy + Gy %+ -+ ay, X, = b,

X, + 0y X3+ + a8, %X, =b,

(¢) If the corresponding homogeneous system has only the zero solution, then the
above system has a unique solution for any values of the b;.

(b) If the corresponding homogeneous system has a nonzero solution, then: (i) there
are values for the b; for which the above system does not have a solution;
(i1) whenever a solution of the above system exists, it is not unique.

Solved Problems
MAPPINGS
9.1, State whether or not each diagram in Fig. 9-3 defines a mapping from A4 = {a, b, ¢} into
B = {x, y, z}.

{a) WNo. There is nothing assigned to the element b € A.
(b) No. Two elements, x and z, are assigned to ¢ € A.
(c) Yes

e

b
Fig. 9-3

9.2. Let the mappings f: A —» B and g: B--C be defined by the diagram in Fig. 9-4. Find:
{a) the composition mapping (g < f) : A — C, and (b) the image of the mappings f, ¢, and g - f.

A f B

— k=

Fig. 9-4
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9.3.

94.

9.5.

9.6.

(@) 'We use the definition of the composition mapping to compute:

(g »¥a) = g(f(a)) = g(y) =1t
(g = Kb} = g(fib)) = glx) =5
g-fhe)=glflch =g =1

Observe that we arrive at the same answer if we “follow the arrows ™ in Fig. 9-4:
a—y-—+i h-ox-—s c—>y-at

(b} By Fig. 9-4, the image values under the mapping f are x and y, and the image values under g are r, s,
and r: hence

Im f= {x, y} and Im g = {r, 5. t}

Also, by (a), the image values under the composition mapping ¢ -f are 1 and s; accordingly,
Im (g - f) = !s, 1]. Note that the images of g and g - f are different.

Consider the mapping F : R* — R? defined by F(x. y, z) = (yz, x?). Find:
(@) F(2,3,4, (b) F5 —=2,7), () F Y0,0),1ie, all vectors v € R* such that F(r) = 0.

{a) Substitute in the formula for F to get F(2,3.4)=(3-4.2%) =(12,4).
b F5, —-227=(-2+7,5)=(—14,25.
(c) Set F{v) = 0 where v = (x, y, z), and then solve for x, y, z:

F(x, y. 2) = (vz. x%) = (0, 0) or vz=0 and x*=0

Thus x = 0 and either y = 0 or z = 0. In other words, x =0, y = 0 or x =0, z = 0. Accordingly, v lies
on the z axis or the y axis.

Consider the mapping G:R?® = R? defined by G(x, y. 7) = (x + 2y — 4z, 2x + 3y + z). Find
G~ (3, 9).

Set G{x, y, z} = (3, 4) to get the system

x+2y—4z=13 o x+2y—4z=3 x+2y—4z=13
T or
x+3y+ z=4 —y+92= -2 y—92=2

Here z is a frec variable. Set z = g, a € R. to obtain the general solution
x = —14a -1 y=9%+2 z=a
In other words, G~ (3, 4) = {(— 14a — 1, 9a + 2, a)}.

Consider the mapping F : R* = R* defined by F(x, y) = (3y, 2x). Let S be the unit circle in R2,
that is, the solution set of x> + y* = 1. (a) Describe F(S). (b) Find F~'(S).

{a) Let (a, b) be an element of F{S). Then there exists (x, y) € § such that F(x, v} = {aq, b). Hence:
(3y, 2x) = (a, b) or y=a,2x=0b or y=a/3, x = h{2
Since (x. y) € S, that is, x* + y* = 1, we have
(b2 +@3*=1 or a9 +bia=1

Thus F(8) is an ellipse.

(h) Let F(x. y} = (a, b) where (a, b) € S. Then {3y, 2x) = (a, b} or 3y = a, 2x = b. Since (a, b) € §, we have
a® + b* = 1. Thus (3y)* + (2x)? = 1. Accordingly, F !(8) is the ellipse 4x? + 9y? = 1.

Let the mappings f and g be defined by f(x) = 2x + 1 and g(x) = x> — 2. Compute formulas for
the mappings (a) ¢ « f, (b) f - g, and (¢) g + g (sometimes denoted by g?).
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9.7.

9.8.

(a)

(b)
(c)
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Compute the formula for g - fas follows:
Ge =g/ =9gZx + N=2x+ 1) —2=4x" +4x — |
Observe that the same answer can be found by writing
y=f(x)=2x +1 and  z=g{y)=y* -2
and then eliminating y as follows: z = 2 — 2 = (2x + 1) — 2 = 4x? + 4x — |.

(fo ) =1(gON =1(x* =21 =2Ax* = ) + 1 = 2x* - 3
(goghx) =glgx) =g(x* —2) = (x? — 2)* ~ 2 =x*—4x? + 2

Suppose f: A - B and g : B - C; hence the composition (g < f): A - C exists. Prove:

(a)
(b)
(c)
(d)
(a)

(b)

{c)

(@

If f and g are one-to-one, then g < f1s one-to-one.

If fand g are onto mappings, then g - fis an onto mapping.

If g o fis one-to-one, then f is one-to-one.

If g - f1s an onto mapping, then g is an onto mapping.

Suppose (g« /¥x) = (g » SY3). Then g(f(x)) = g/ (). Since ¢ is one-to-one, f(x) = f(y). Since f is
one-to-one, x = y. We have proven that {g - f}¥x) = (g = fXy) implies x = y; hence g < fis one-to-one.
Suppose ¢ € C. Since ¢ is onto, there exists b € B for which g(b) = c. Since f is onto, there exists a € A
for which f(a) = b. Thus (g - fXa) = g(f(a)) = g(b) = c; hence g - fis onto.

Suppose [ is not one-to-one. Then there exist distinct elements x, y € A for which f(x) = f(y). Thus

(g < fXx) = g(f(x)) = g(f(¥)) = (g = f)y); hence g - fis not one-to-one. Therefore, if g - fis one-to-one,
then f must be one-to-one.

If a € A, then (g -~ f)a) = g{ f(a)) € g(B); hence (g - fHA) < g(B). Suppose g is not onto. Then g(B) is
properly contained in C and so (g = f}A) is properly contained in C; thus g < f is not onto. Accord-
ngly if g « fis onto, then g must be onto.

Prove that a mapping f: 4 — B has an inverse if and only if it is one-to-one and onto.

Suppose [ has an inverse function f ' :B— A and hence f ' f=1, and fof ™' = 1. Since 1, is

one-to-one, [ is one-to-one by Problem 9.7(c), and since 1, is onto, fis onto by Problem 9.7(d). That is, fis
both one-to-one and onto.

Now suppose [ is both one-to-one and onto. Then each b € B is the image of a unique element in A,

say b. Thus if f(a) = b, then a = b; hence () = b. Now let ¢ denote the mapping from B to A defined by
b b. We have:

(@)
(1)

(g = fXa) = Q{f(a}}=glb)==5=a.f0reverya € A;henceg o f=1,.
(f = gXb) = f(g(b)) = f(B) = b, for every b € B; hence f» g = 1.

Accordingly, f has an inverse—the mapping g.

LINEAR MAPPINGS

9.9,

Show that the following mapping is linear: F: R® — R defined by F(x, y, z) = 2x — 3y + 4z.

Letv ={a. b, c)and w = (&, ¥/, ). hence
v+w=(a+d,b+¥F,c+c) and  kv=(ka kb, kc) keR

We have F(v) = 2a — 3b + 4c and F(w) = 2a’ — 3b" + 4¢”. Thus

and

Fo+w)=Fla+ad, b+b,ct+tc)=a+a)—-3b+b)+44c+ )
=(2a—3b+4c) + (20’ — 3V + 4¢') = F(v) + F(w)

F(kv) = F(ka, kb, kc) = 2ka — 3kb + 4kc = k{Za — 3b + 4¢c) = kF(p)

Accordingly, F is linear.
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9.10. A mapping F : R? - R?is defined by F(x, y) = (x + 1, 2y,x + y). Is F linear?
Since F(0, 0) = (1. 0. 0) # (0. 0, 0), F cannot be linear.

9.11. Let V be the vector space of n-square matrices over K. Let M be an arbitrary but fixed matrix in
V.Let T: V — V be defined by T(4) = AM + MA, where A € V. Show that T is linear.

For any A, B € ¥ and any k € K, we have

T(A + B)=(A+ BIM + M(A + B)= AM + BM + MA + MB
=(AM + MA) + (BM + MB) = T(A) + T(B)

and T(kA) = (kAM + M(kA) = K(AM) + kM A) = K(AM + M A) = kT(A)

Accordingly, T is linear.

9.12. Prove Theorem 9.2.

There are three steps to the proof of the theorem: (1} Define the mapping F:V — U such that
Flv) =u;, i =1, ..., n.(2) Show that F is linear. (3) Show that F is unique.

Step 1. Let ve V. Since {vy,...,p,} is a basis of V, there exist unique scalars a,, ..., a, € K for which
v=a,vy, +a,v, + - +a,v,. Wedefine F: vV - U by

Foy=au, + au; + -+ + a,u,
(Since the a; are unique, the mapping F is well-defined.) Now,fori=1,..., n,

v;=0u ++lv; + -+ 0p,
Hence Flo)=0u, + -+ lu; + -+ + O0u, = u,

Thus the first step of the proof is complete.
Step 2. Suppose v = a,v, + a,v; + - +a,v,andw=byu, + b,v, +--* + b,v,. Then
v4+w=(a, + b, +la;+ bu, +-- +(a, + by,
and, for any k € K, kv = ka,v, + ka,v; + --- + ka,v,. By definition of the mapping F,
Fo)=au, + ayu, + - + a,u, and F(w)=bu, + byv, + -+ + b,v,
Hence F(v + w) = (ay + b)uy + (a3 + by)u; + -+ +(a, + bu,
={a,uy + azu; + - -+ a,u) +(buy + buy + -+ b ou)
= F(v) + F(w)
and F(kv) = kla,u, + ayuy + -+ + a,u,) = kF(v)
Thus F is linear.
Step 3. Suppose G: V — U is linear and G{v) = u;,i=1,...,n1f
v=a;0y +a;0; + -+ a,u,

then Glv) = Glaye, + a0 + - + a,v,) = a,Glv,) + a, Gly) + -+ + a,Glv,)
=a,uy + azuy, + - + a,u, = Fly)

Since G(v) = F(v) for every v € ¥, G = F. Thus F is unique and the theorem is proved.

9.13. Let F: R? — R? be the linear mapping for which
F(1,2)=(2,3) and FO,1)=(1,4)
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9.14.

9.15.
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[Since (1, 2) and (0, 1) form a basis of R?, such a linear map F exists and is unique by Theorem
9.2.] Find a formula for F, that is, find F(a, b).

Write (g, b) as a linear combination of (1, 2) and (0, 1) using unknowns x and y:
(@, b) = x(1, 2) + W0, 1) = (x, 2x + )) SO a=x,b=2x+y
Solvefor x and yin termsof aand htoget x =a, y = —2a + b. Then
Fla, b) = xF(1, 2) + yF(0, 1) = a(2, 3) + (—2a + b)1, 4) = (b, —5a + 4b)
Let T:V —» U be linear, and suppose v,,..., v, € ¥ have the property that their images

T(vy), ..., T(v,) are linearly independent. Show that the vectors vy, ..., v, are also linearly
independent.

Suppose that, for scalars a,, ..., a,, ayv, + a;v; + - + a,v, = 0. Then
0=T0)=Ta,w, +a;v,+ - +a,p)=a,T(v)) + a; T(vy) + -+ + a, T(v,)

Since the T(v;) are linearly independent, all the a; = 0. Thus the vectors v,, .... v, are linearly independent.

Suppose the linear mapping F : ¥V — U is one-to-one and onto. Show that the inverse mapping
F~':U — V 1s also linear.

Suppose u, v’ € U. Since F is one-to-one and onto, there exist unique vectors v, v’ € ¥V for which
F(v) = uand F(r') = . Since F is linear, we also have

Fo+v)y=Fu)+ F')=u+ v and Fikv) = kF{v) = ku
By definition of the inverse mapping, F " '(u) = v, F '(¢) = v, F "(u + v} = v + ¢, and F~'(ku) = kv. Then
Flu+uw)y=v+u=F Y+ F '(v) and FVku) = kv = kF~ Y(u)

and thus F~! is linear.

IMAGE AND KERNEL OF LINEAR MAPPINGS

9.16.

9.17.

Let F : R® - R? be the linear mapping defined by
Fix, y.z,5,t)=(x+2y+2z—3s+4.2x + Sy +4z — Ss + 5¢, x +4y + 5z —s — 2t)
Find a basis and the dimension of the image of F.
Find the images of the usual basis vectors of R®:
F(1,0,0,0,0) =(1, 2, 1) F(0.1,0,0,0)=(2 54 FI0,0.1,0,00=(1,4,5)
F0,0,0,1,0) = (-3, -5, - 1) F(0,0,0,0,1)= (4,5, -2

By Proposition 9.4, the image vectors span Im F: hence form the matrix whose rows are these image
vectors, and row reduce to echelon form:

1 2 1 1 2 L 1 2 !
2 5 4 0 1 2 0 1 2
1 4 51~10 2 4]1~10 0 0
-3 -5 -1 0 1 2 0 0 0
4 5 -2 0 -3 -6 0 0 0

Thus (1, 2, 1) and (0, I, 2) form a basis of Im F, and so dim(Im F) = 2,

Let G: R? - R? be the linear mapping defined by G(x, y, 2) =(x + 2y —z, y + z, x + y — 2z).
Find a basis and the dimension of the kernel of G.



CHAP. 9] LINEAR MAPPINGS 329

Set G(v) = O where © = (x, y, 2):
Gx, y,z)=(x+2y -z, y+z,x+y— 22)=(0,0,0)

Set corresponding components equal to each other to form the homogeneous system whose solution space
is the kernel W of G:

X+2y— z=0 X+2y—z=0 > 0
] F o=

y+ z=0 or y+z=0 or XLy a
X+ y—22=0 —~y—z=0 y+z=

The only free variable is z; hence dim W = 1. Let z=1; then y = —1 and x = 3. Thus (3, —1, 1) forms a
basis for Ker G.

1 2 3 1
9.18. Consider the matrix mapping 4: R* = R® where 4 = 1 3 5 —2). Find a basis and

3 8 13 -3
the dimension of (a) the image of 4, and (b) the kernel of A.

(1) The column space of 4 is equal to Im A. Thus, now reduce A" to echelon form:

1 3

1 1 I A 1 13
47— 2 3 8| (o 1 2 N L
35 13 0 2 4 0 0 0
R 0~ % 0 0 o0

!

Thus {{1, 1, 3), (0, 1, 2)} is a basis of Im A4 and dim (Im A4) = 2.

(b} Here Ker 4 is the solution space of the homogeneous system AX = 0 where X = (x, y, z, ). Thus
reduce the matrix A of coefficients to echelon form:

t o2 3 1\ f1 2 3 - ;
o 1 2 -3|~fo 1 2 -3 or {"* SR
o 2 4 -6/ \0o 0 0 o0 yrsoae

The free variables are z and . Thus dim (Ker 4) = 2. Set:
(i) z=1,r=0,to get the solution {1, —2, 1, 0},
(i) z=0,t=1,to get the solution (—7, 3,0, 1).

Thus {1, —2, 1, 0) and {—7, 3, 0, 1) form a basis for Ker A.

I 2 5
9.19. Consider the matrix map B : R® —+ R where B = 3 5 13}. Find the dimension and a
-2 -1 -4

basis for {a) the kernel of B, and (b) the image of B.
(a) Reduce B to echelon form to get the homogeneous system corresponding to Ker B:

1 2 5 1 2 5 1 2 5
B=| 3 5 13)~lo -1 —2)~|o 1 2| or {x+2y+5z=0
-2 -1 -4/ \o 3 & \o o0 0 y#Ir=l

There is one free vaniable z so dim (Ker B) = 1. Set z = 1 to get the solution (— 1, —2, 1) which forms
a basis of Ker B.
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9.20.

9.21.
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(b)) Reduce BT to echelon form:

1 j -2 1 i -2 1 3 =2
B'=|2 5 —1j~|0 -1 3|~|0 -3
5 13 -4 0 -2 6 0 0 0

Thus (1, 3, —2) and (0, 1, — 3} form a basis of Im B.

Find a linear map F : R? -+ R* whose image is spanned by (1, 2,0, —4) and (2,0, -1, —3).

Method 1. Consider the usual basis of R*: e, =(1,0,0), e, = (0. 1, 0}, &5 = (0, 0, 1). Set
Fle,) =(1,2,0, —4) Fle;) =(2,0, -1, =3}  and Fle,) =(0,0,0,0)

By Theorem 9.2, such a linear map F exists and is unique. Furthermore, the image of F is spanned by the
F(e;); hence F has the required property. We find a general formula for F(x, y, z):

F(x, y, 2} = F(xe, + ye; + ze,) = xF(e,) + yFle,) + zF(e,)
=x(1,2,0, =4} + ¥2,0, —1, —3)+ 20, 0, 0, 0)
= (x + 2y, 2x, —y, —4x — 3y)

Method 2. Form a 4 x 3 matrix A whose columns consist only of the given vectors; say,

1 2 2

2 0 0

A=l o —1 -1
oy d w3

Recall that A determines a linear map A : R* = R* whose image is spanned by the columns of A. Thus A4
satisfies the required condition.

Let V be the vector space of 2 by 2 matrices over R and let M = ({1) i) Let F:V = V be the
linear map defined by F(4) = AM — MA. Find a basis and the dimension of the kernel W of F.

We seek the set of (x y ) such that F(x y)g((} 0).
s 1 s 0 0

F(x _(x v\1 2) 1 2)(x y

s 1) \s t)\o 3 0 3/N\s 1

(x 2x+3y x+25s y+2t

s 2543t/ 3s 3t

B —2s 2x+2y—2 00

T\ =25 2s 0 0

2x +2y—-2t=0 X+y—1t=0
Thus { 2s—0 O { s=D

The free variables are y and r; hence dim W = 2. To obtain a basis of W set

(@) y= —1,t=01to0obtain thesolutionx=1,y=—1,5=0,t =0;
() y=0,t=1toobtainthesolutionx =1, y=0,5s=0,t =1

1 -1 1 0\ . :
Thus {(0 0), ( 0 l)} is a basis of W.
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9.22. Prove Theorem 9.3. If F:V — U is linear, then Im ¥ and Ker ¥ are subspaces.

9‘2’3‘

9.24.

(@) Since F(0) = 0, we have 0 € Im F. Now suppose u, ¥’ € Im F and a. b € K. Since u and «' belong to the
image of F, there exist vectors v, v’ € V such that F(r) = u and F(¢') = «'. Then

F(av + b’} = aF(v) + bF(t') = au + bu' € Im F

Thus the image of F is a subspace of U.

(b) Since F(0) = 0, we have 0 € Ker F. Now suppose v, w € Ker F and a, b € K. Since » and w belong to
the kernel of F, F(v} = 0 and F(w) = 0. Thus

F(av + bw) = aF(v) + bF(w) = a0 + b0 =0 and so av + bw € Ker F
Thus the kernel of F is a subspace of V.

Prove Theorem 9.5. dim V = dim (Ker F} + dim (Im F).

Suppose dim (Ker F)=r and {w,,...,w,} is a basis of Ker F, and suppose dim (Im F)=s5s and
{uy, ..., u} is a basis of Im F. (By Proposition 9.4, Im F has finite dimension.) Since u; € Im F, there exist
vectors vy, .... v, in ¥ such that F(y,) = u,, ..., F(r,) = u,. We claim that the set

B={w,...,w,v, ...,0}

is a basis of V, that is, (i) B spans V, and (ii) B is linearly independent. Once we prove (i) and (ii), then
dim ¥V = r + s = dim (Ker F) 4 dim (Im F).

(i} BspansV.
Let ve V. Then F(v) € Im F. Since the u; span Im F, there exist scalars a,, ..., a, such that

F(v) = ayu, + -~ + a,u,. Set ¥ = a,v, + --* + a,v, — v. Then

F{#) = Fla,vy + -+ + a,0, — v) = a, F(ry) + -+ + a, Flv,) — Fv)
=auy + - +au,— Flo)=0

Thus @ € Ker F. Since the w,; span Ker F, there exist scalars by, ..., b, such that

p=bw, + -+ bw=av,+ - +av,—v

Accordingly,
v=a,6, + - +a,u,—bw —-=b.w,
Thus B spans V.
(i) B is linearly independent.
Suppose
Xyw, + -+ Xw, i+ yo,=0 1)

where x;, y; € K. Then
O=F0) = F(x,wy + -+ X,w, + y,u, + " + y, 0
=x, Fwy))+ - +x, Fw)+ y, Flv,))+ -+ y.Flv) 2)

But F(w;) = 0 since w; € Ker F, and F(v;) = ;. Substitution in (2) gives y,u, + -~ + y,u, = 0. Since
the u; are linearly independent, each y; = (. Substitution in (I) gives x,w, + - + x,w, = 0. Since the
w; are linearly independent, each x; = 0. Thus B is linearly independent.

Suppose F: V - U and G : U —» W are linear. Prove:
(a) rank (G - F) < rank G (b) rank (G o F) < rank F
(a) Since F(V) < U, we also have G(F(V)) € G(U) and so dim G(F(V)) < dim G(U). Then
rank (G < F) = dim (G = FYV)) = dim (G(F(V))) < dim G{U) = rank G
(h) We have dim (G(F(V))) < dim F(V). Hence
rank (G = F) = dim (G » F)XV)) = dim (G(F(V))) < dim F(V) = rank F
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Suppose f:V = U is linear with kernel W, and that f(v) =w Show that the “coset”
v+ W ={v+ w:we W} is the preimage of u, that is, / '(u) = v + W.

We must prove that (i) f () € v + W and (ii) v + W < f ~ (). We first prove (i). Suppose v’ € f ™ '(u).
Then (v} = v and so

JO' =) =ft) - fly=u—-u=0

thatis,’ —ve W.Thust' =v+ (' —t)e v+ Wand hence f " '(u) = v + W.
Now we prove (ii). Suppose ¢' € v + W. Then ¢' = v + w where we W. Since W is the kernel of f,
f(w) = 0. Accordingly,

J@)=fe+w) +f) +fW=f)+0=[(v) =u
Thus v € f "(u)andsov + W < f ~(u).

SINGULAR AND NONSINGULAR LINEAR MAPPINGS, ISOMORPHISMS

9.26.

9.27.

Determine whether or not each linear map is nonsingular. If not, find a nonzero vector v whose
image is 0.

(@) F:R?-—R?defined by F(x, y) = (x — y, x — 2y).

(b)) G:R? - R?defined by G(x, y) = (2x — 4y, 3x — 6y).

(a) Find Ker F by setting F(v) = 0 where v = (x, V)

x— y=0 - {x-—y=[}

— -_2?=
(x »X J] (01 0' or {x __2y=0 —y=

The only solution is x = 0, y = 0; hence F is nonsingular.
(b) Set G(x, y) = (0, 0) to find Ker G:
2x — 4y =0
(2x — 4y, 3x — 6y) =(0,0)  or { . ofr  x—2y=0
Ix—6y=0

The systermn has nonzero solutions since y is a free variable; hence G is singular. Let y = 1 to obtain the
solution v = (2, 1) which is a nonzero vector such that G{v) = 0.

Let H : R® = R? be defined by H(x, y, z2) = (x + y — 2z, x + 2y + z, 2x + 2y — 3z). (@) Show that
H is nonsingular. (b) Find a formula for H ™.

(a) Set Hix, y, z) = (0, 0, 0); that is, set
(x+y—22, x+2y+2z 2x+ 2y —32)=(0,0,0)

This yields the homogeneous system

X+ y—2z2=0 x+y—2z:=0
x+2y+ z=0 or y+3z=0
2x+2y—3:z=0 z=10

The echelon system is i triangular form so the only solution is x =0, y =0, z = 0. Thus H is non-
singular.
{b) Set H(x, y, 2) ={a, b, ¢) and then solve for x, y, z in terms of a, b, ¢:

x+ y—2z=a x+y—2z=a
X+2y+ z=b or y+3z=b—-a
2x +2y—3z=c¢ z=¢—2a

Solving for x, y, z yields x = —8a — b + S5¢,y = 5a + b — 3¢,z = — 2a + ¢. Thus
H Ya,b,o)=(—8a—b+ 55 +b—3, —2a+¢)
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9.28,

9.29.

9.30.

or, replacing a, b, ¢ by x, y, z, respectively,
H ',y 2)=(—8x — y+ 52, 5x + y — 3z, ~2x + 2)

Suppose F: V — U is linear and that V is of finite dimension. Show that ¥ and the image of F
have the same dimension if and only if F is nonsingular. Determine all nonsingular linear map-
pings T : R* - R,

By Theorem 9.5, dim ¥ = dim (Im F) + dim (Ker F). Hence ¥V and Im F have the same dimension if
and only if dim (Ker F) = 0 or Ker F = {0}, p.e., if and only if F is nonsingular.

Since dim R? is less than dim R*, we have dim (Im T) is less than the dimension of the domain R* of
T- Accordingly, no linear mapping T : R* -+ R? can be nonsingular.

Prove Theorem 9.7.

Suppose v,, v3, ..., U, are linearly independent vectors in V. We claim that F(v,), F(v,), ..., F(v,) are
also linearly independent. Suppose a,F(v,) + a, F(v3) + -+ + a, Flv,) = 0, where a, € K. Since F is linear,
Flap, + a,v; + -+ + a,u,) =0; hence

avy +ayvy + - +a,p, € Ker F

But F is nonsingular, i.e., Ker F = {0}: hence a,v, + a,v, + *-- + a,v, = 0. Since the v; are linearly inde-
pendent, all the g, are 0. Accordingly, the F(v) are linearly independent. Thus the theorem is proved.

Prove Theorem 9.9.

If F is an isomorphism, then only 0 maps to 0, so F is nonsingular. Suppose F is nonsingular. Then
dim (Ker F)=0. By Theorem 9.5, dim ¥ = dim (Ker F) + dim (Im F). Thus dim U =dim V¥ =
dim (Im F). Since U has finite dimension, Im F = U and so F is surjective. Thus F is both one-to-one
and onto, 1.e., F is an isomorphism.

OPERATIONS WITH LINEAR MAPPINGS

9.31.

9.32.

9.33.

Let F:R*— R? and G : R* — R? be defined by F(x, y, z) = (2x, y + z) and G(x, y, z) = (x — z, y),
respectively. Find formulas defining the maps (a) F + G, (b) 3F, and (¢) 2F — 5G.

(@) (F+ GXx,y, 2)= F(x, y, 2) + {G{x, y, 2)
=@2x,y+2)+(x—z pP=03x—2z2y+12)

(b) (3F)x, y, z) = 3F(x, y, z) = 3(2x, y + 2) = (6x, 3y + 32)

(¢) (2F — 5GKx, y, z) = 2F(x, y, 2) — 5G(x, y, z) = 22x, y + 2} — S5(x — 2, ¥)
= (4x, 2y + 22} + (—5x + 5z, —S5p) =(—x + Sz, 3y + 22)

Let F:R*>->R? and G:R? - R? be defined by F(x, y, 2) = (2x, y + 2) and G{x, y) = (3, x),
respectively. Derive formulas defining the mappings (@) G < F,(b) F - G.

(@ (G- FXx,y, 2)=G(F(x, y, z2)) = G2x, y + z) =y + 2, 2X)
(b) The mapping F o G is not defined since the image of G is not contained in the domain of F.

Prove: (a) The zero mapping 0, defined by Ov) = O e U for every v € V, is the zero element of
Hom (V, U). (b) The negative of F € Hom (V, U) is the mapping (— 1)F, 1.e, —F = (—1)F.

{@) Let F € Hom (¥, U). Then, forevery v e ¥,
(F + 0)v) = Fiv) + Or) = F(t} + 0 = Flp)
Since (F + 0)pv) = F(v)foreveryve V,F + 0 = F.
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9.35.

9.36.
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() ForeveryveV,
(F + (= 1)F¥v) = F(r) + (- 1)F(r) = F(r) — F(v) = 0 = Mr)

Since (F + (— 1)F){v) = Ov) lorevery v € V, F + (—1)F = 0. Thus {(— 1)F is the negative of F.

Suppose F,, F,, ..., F, are linear maps from ¥ into U. Show that, for any scalars a,, a,, ..., a,,
and for any v € V,

(@ F,+a,F,+- - +a,F)v)=a,Fv)+a,Fyv)+ - +a,Fv)

By definition of the mapping a,F,, (4, F v} = a,F (v); hence the theorem holds for n = 1. Thus by
induction,
@F,+a;Fy+-- +a,F N} =(a,F o)+ (a,Fy + - + a,F )Nv)
=a F\(v) +a,Fyv) + -~ +a,F )

Consider linear mappings F : R® - R%, G : R? -+ R?, H : R® - R? defined by
Flx,pz)=(x+y+ 2z, x+y) Gix, y,2)=(2x + 2z, x + 1) H(x, y, z) = (2y, x)
Show that F, G, H are linearly independent [as elements of Hom (R, R%)].

Suppose, for scalars a, b, ¢ € K,
aF + bG +cH =10 (H

(Here 0 is the zero mapping.) For e, = (1, 0.0) € R?, we have

(aF + bG + cH)e;) = aF(0, 1, 0) + bG(O, 1, 0) + cH(0, 1, 0)
=a(l, 1)+ b0, 1} + (2, 0) = (a + 2¢, a + b) = Ke;) = (0, 0)

and e,) = (0, 0). Thus by (/).{a + 2b, a + b + ¢) = (0. 0) and so

a+2h=0 and a+b+c=0 (2)
Similarly for e, = (0, 1, 0) € R*, we have

(aF + bG + cH¥Ye,) = aF(0, 1, 0) + bG(0, 1, 0) + cH(0, 1, 0)

=all, 1)+ b0, 1)+ (2, 0)=(a + 2c, a + b) = We;) = (0, 0)
Thus a+2c=0 and a+b=0 (K]
Using (2) and (3) we obtain a=0 b=0 ¢c=0 (4)
Since (/) implies (4), the mappings F, G, and H are linearly independent.

Prove Theorem 9.11. If dim V = m and dim U = »n, then dim Hom (V, U} = mn.

Suppose {v,, ..., v, } is a basis of V and {u,, ..., u,} is a basis of U. By Theorem 9.2, a linear mapping
in Hom (¥, U) is uniquely determined by arbitrarily assigning elements of U to the basis elements v; of V.
We define

F,; € Hom (V, U) i=1....mj=1...n

to be the linear mapping for which F(r)) = u;, and F;{»,) = 0 for k # i. That is, F;; maps v, into u; and the
other v's into 0. Observe that {F;;} contains exactly mn elements; hence the theorem is proved if we show
that it is a basis of Hom (V, U).

Proof that {F;} generates Hom (V. U). Consider an arbitrary function F € Hom (¥, U). Suppose
F(vy) = wy. F(vy) = wy. ..., F(v,)) = w,,. Since w, € U/, it is a linear combination of the u's; say,

Wi = Gty + Gty + 00+ @y, k=1,....m a;ekK (n
Consider the linear mapping G = } ¥} a,;F,;. Since G is a linear combination of the F;, the proof that

i=1 J=3

{F;} generates Hom (V, U) is complete if we show that F = G.



CHAP. 9] LINEAR MAPPINGS 335

We now compute G(r,), k = 1, ..., m. Since F fv,) = Ofor k # iand F,{v,) = u;,

Gw) =Y Y a;Fifvn)= Y a;Ffe)= } agu;
i=1 I=t

i=1 j=1
= Oy Uy + Qg Uy + -+ Gy Uy

Thus by (I}, G(v,} = w, for each k. But F(r,) = w, for each k. Accordingly, by Theorem 9.2, F = G; hence
{F;} generates Hom (V, U).
Proof that {F,;} is linearly independent. Suppose, for scalars ¢;; € K,

Z%‘F-‘;=0
i=1 j=1
Fory,k=1,.._.m,
U=m’v,‘)= z Z ciIFU{v*}= E CI}FU{UI:) = z (-.nju,
=1 j=1 j=1 =i

= C“Hl + f,.zuz + -+ C*u““

But the y; are linearly independent; hence for k=1, ..., m, we have ¢,, =0, ¢, =0, ..., ¢, = 0. In other
words, all the ¢;; = 0 and so {F;} is linearly independent.

9.37. Prove Theorem 9.12.
(i) ForeveryveV,
(G o (F + F))v) = G((F + F{v)) = G(F(v) + F'(v))
=GF) + GIF(e)=(G - F}v) + (G« Fo)=(G - F + G « F'Xv)
Thus G - (F+ F)=Ge F+Go F.
() ForeveryveV,
(G + G) » FXv) = (G + G'XF(v)} = G(F()) + G'(F(r))
=G Fv) + (G = F)v)=(G - F + G' < FXv)
Thus(G+ G)e F=G-F+ G < F.
(i) Foreveryve V,
(K(G = F)Xv) = KG o F)v) = k(G(F(v))) = (kGXF(v)) = (kG = F)v)
and (MG « F))v) = k(G = FXv} = KG(F(v))) = G(kF(v)) = G((kF)v)) = (G - kF)v)

Accordingly, k(G « F) = (kG) » F = G « (kF). (We emphasize that two mappings are shown to be equal
by showing that they assign the same image to each point in the domain.)

ALGEBRA OF LINEAR OPERATORS

9.38. Let F and G be the linear operators on R? defined by F(x, y) = (y. x) and G(x, y) = (0, x). Find
formulas defining the operators (a) F + G, (b) 2F — 3G, (¢) FG, (d) GF, (e) F%, (f) G*.
(@) (F + GXx, y) = Fix, y} + G(x, y} = (J, x) + (0, x} = (y, 2x).
(b} (2F - 3G)x, y) = 2F(x, y} — 3G(x, y) = 2y, x) — 30, x) = (Zy, —x)
(¢) (FGXx, y) = F(Glx, y)) = F(0, x) = (x, 0).
(d) (GF)x, y) = G(Flx, y)) = Gly. x) = (0, y).
(e) F¥x,y) = F(F(x, y)} = F(y, x} = (x, y). Note F? = [, the identity mapping.
N G¥x. ) = G(G(x, y)) = G(0, x) = (0, 0). Note G? = 0, the zero mapping.
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9.39. Consider the linear operator T on R? defined by T(x, y, z) = (2x, 4x — y, 2x + 3y — z). (a) Show
that T is invertible. Find formulas for: (b)) T™', (c) T? and (d) T~ 2.

9.40.

9.41.

(@)

(b)

()

@

Let W = Ker T. We need only show that T is nonsingular, i.e,, that W = {0}. Set T{(x, y, z) = (0, 0, 0)
which yields

T(x, p, 2) =(2x,4x — y, 2x + 3y — 2} = (0, 0, Q)
Thus W is the solution space of the homogeneous system
2x =0 4x—y=0 2x +3y—z=0

which has only the trivial solution (0, 0, 0). Thus W = {0}; hence T is nonsingular and so T is
invertible.

Set T(x, y,z) = (r. s, t) [and so T ! (#, 5, 1) = (x, y. z)]. We have
(2x,4x — y,2x + 3y —z) =(n, 5, 1) or Zx=rd4x —y=5852x+3y—z=1
Solve for x, y, zin terms of r, s, f to get x = -&r‘y =2 —s,z=Tr—3s —t Thus
T s )=Frn2r—sTr—3s—1) or T 'Yx 2 =(%x 2x—y Ix — 3y —2z)
Apply T twice to get
THx, y. 2) = T(2x, 4x — y, 2x + 3y — 2}
= [4x, 42x) — (4x — y), 2(2x) + H4x — y) — (2x + 3y — 2)]
=(4x,4x + y, 14x — 6y + 2)
Apply 77" twice to get
T Hx, y,2)= T"z('!-x. 2x — y, Ix — 3y — z)
= [4x, 2{(4x) — (2x — y), UEX) — 32x — y) — (Tx — Iy — 2)]
=(3X, — X+, —Ex + 6y +2)

Let ¥V be of finite dimension and let T be a linear operator on V¥ for which TR = I, for some
operator R on V. (We call R a right inverse of T.) (a) Show that T is invertible. (b) Show that

R =

(@)

(b)
(c)

T ~'. (c) Give an example showing that the above need not hold if V is of infinite dimension.

Let dim V = n. By Theorem 9.14, T is invertible il and only if T is onto; hence T is invertible if and
only if rank 1" = n. We have n = rank / = rank TR < rank T < n. Hence rank T = n and T is invert-
ibie.

TT'=T 'T=LThenR=IR=(T 'TVR=T TR =T "1=T"".

Let V be the space of polynomials in ¢ over K: say, pf) = a, + a,t + a;t> + --- + a,*. Let T and R
be the operators on V defined by

TP =0+a, +ayt+--+a," ' and  R(p))=agt +ayt’ + - +a, "
We have
(TRXp(1) = T(R(p) = T(agt + ayt* + -+ a, " Y =ag + a;t + -+ + a,t = plt)
and so TR = I, the identity mapping. On the other hand, if k € K and k # 0, then
(RTYk) = R(T(K)} = R(0} =0 + k
Accordingly, RT # 1.

Let F and G be the linear operators on R? defined by F(x, y) = (0, x) and G(x, y) = (x, 0). Show
that GF = 0 but FG # 0. Also show that G = G.
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9.42.

9.43.

9.44.

(GF)x, y) = G(F(x, y)) = G(0, x) = (0, 0). Since GF assigns 0 = (0, 0) to every (x, y) € RZ, it is the zero
mapping: GF = 0.

(FGXx, y) = FIG(x. y)} = Fix, 0) = (0, x). For example, (FG¥4, 2) = (0, 4). Thus FG # 0, since it does
not assign 0 = (0, 0) to every element of R2.

For any (x, ¥} € R?, G¥(x, y) = G(G(x, y)) = G(x, 0) = (x, 0) = G(x, y). Hence G* = G.

Consider the linear operator T on R? defined by T(x, y) = (2x + 4y, 3x 4 6y). Find: (a) a for-
mula for T7!, (b) T~ (8, 12), and (¢) T~ (1, 2). (d) Is T an onto mapping?

(@) T issingular, e.g, T(2, 1) = (0, O); hence the linear operator T~ ': R? - R? does not exist.

(b T (8, 12) means the preimage of (8, 12} under T. Set T(x, y) = (8, 12) to get the system

{2x+4y=8

+2y=4
I+ep=12 O X7

Here y is a free variable. Set y = a, where a is a parameter, to get the solution x = ~2¢ + 4, y = a.
Thus T~' (8,12) ={(—2a +4.a): a e R}.
{c) Set T(x, y) = (1, 2) to get the system
2x + 4y =1 3x + 6y =2

The system has no solution. Thus T~ '(1, 2} = ¢, the empty set.
(d) Wo, since, e.g., (1, 2) has no preimage.

Let S = {v,, v;, v3} be a basis of V and let 8’ = {uy, u,} be a basis of U. Let T': V¥ — U be linear.
Also, suppose

T(vy) = byuy + by u, and A=

( I) i*1 2 %2 ( 1 1)
T(v a,u; + du a, b C
1 {".3) Cylty + Colhy

a, b, ¢,

Show that, for any ¢ € V, A[v]s = [T(v)]s (Where the vectors in K2 and K are column vectors).
Supﬁ)ﬁe = klvl + k2 vy + k3 U3; then [U]s = [kl' k:, ks]:r- AIS’O
T(v) =k, T(vy) + k; T(vy) + k3 T(vs)

= ky(a,u, + azuy) + kylbyuy + byuy) + kyleyuy + ¢y u,)
= (alkl + b'kz + f|k3)ul + {azkl + bzk: + fz ks}uz

Accordingly,
_{aky + bk, + c,ka)
[T(vj]S‘ - (ﬂz kl + bz kz + (‘2 ’(3
Computing, we obtain
k,
a b C alkl +b|k2+clk3)
A - 1 1 1 s S T
ficka (a; b, c,) k2 (a,k, £ ok, +rky) ~ TS

3

Let k be a nonzero scalar. Show that a linear map T is singular if and only if kT is singular.
Hence T is singular if and only if — T is singular.

Suppose T is singular. Then T'(v) = 0 for some vector v # 0. Hence
kTH) = kT(v) = k0 =0

and so kT is singular.
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Now suppose KT is singular. Then (kTw) = 0 for some vector w # 0; hence
Tlkw) = kT(w) = (kTHw) = 0
But k # 0 and w # 0 implies kw # 0; thus T is also singular.

Let E be a linear operator on V for which E? = E. (Such an operator is termed a projection.) Let
U be the image of E and W the kernel. Show that: (a) if u € U, then E(u) = u, i.e, E is the
identity map on U; (b) if E # 1, then E is singular, i.e, E(t) = Oforsomev 20:(c) V=U @ W.

(@) Ifue U, the image of E, then E(v) = u for some v € V. Hence using E? = E, we have
u= E(v) = E*v) = E(E(v)) = E(u)

(by If E # I then, for some v € V, E(v) = u where v # u. By (i), E(u) = u. Thus

Ev—u=Euv)— Eu)=u—u=20 where v—u#0
(c) Wefirst showthat V = U + W. Letve V.Set u = E(v) and w = v — E(r). Then
v=FEx)+v—Ep)=u+w
By definition, u = E(v) € U, the image of E. We now show that w € W, the kernel of E:
E(w) = E(v — E(v)) = E(v) — E*v) = E(v) — E(t) =0

andthuswe W.Hence V = U + W.

We next show that U n W = {0}. Let ve U n W. Since v € U, E(v) = v by (a). Since v € W,
E(r) = 0. Thusv = E(v) =0and so U n W = {0}.

The above two properties imply that V = U @ W.

Find the dimension d of (@) Hom (R?, R?), (b)) Hom (C>, R?), (¢) Hom (V, R?) where V = C?
viewed as a vector space over R, (d) A(R?), (e) A(C?), (f) A(V) where V = C? viewed as a vector
space over R.

{a) Since dim R*® = 3 and dim R? = 2, we have (Theorem 9.i11)d =3 - 2 = 6.

(b)) C3*is a vector space over C and R? is a vector space over R; hence Hom (C3, R?) does not exist.

(¢} As a vector space over R, ¥V = C? has dimension 6. Hence (Theorem 9.11)d = 6 - 2 = 12,

(d)y A(R?*) = Hom (R} R} anddim R? = 3;henced =32 =9,

(e} A(C*) = Hom (C3, C*)anddim C* = 3. henced =3* =9,

(f) Since dim V = 6, d = dim A(V) = 62 = 36.

Supplementary Problems

MAPPINGS

247.

9.48.

9.49.

Determine the number of different mappings from {a, b} into {1, 2, 3}.

Let the mapping g assign to each name in the set {Betty, Martin, David, Alan, Rebecca} the number of
different letters needed 10 spell the name. Find (a) the graph of g, and (b) the image of g.

Figure 9-5 is a diagram of mappings f: A+ B, g: B—- A, h:C— B, F: B— (C and G: A - C. Determine
whether each of the following defines a composition mapping and, if it does, find its domain and codomain:
@g LB hef(©QF - f(G-fle)g«h(fYh-Goyg.
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9.50.

9.51.

9.52.

Fig. 9-5

Letf:R— R and g : R — R be defined by f(x) = x* + 3x + | and g(x) = 2x — 3. Find formulas defining the
composition mappings (@) f = ¢, (b} g < [,(c) g « g, (d) [ = f.

For each of the following mappings /: R —+ R find a formula for the inverse mapping: {(a) f(x) = 3x — 7, and
(b f(x) = x>+ 2.

For any mapping f: A -+ B.showthatlz - f=f=f.1,.

LINEAR MAPPINGS

9.53.

9.54.

9.55.

9.56.

9.57.

9.58.

9.59.

9.60.

9.61.

9.62.

9.63.

9.64.

Verify that the operators T and R of Problem 9.40(c) are linear.

Let V be the vector space of » x n matrices over K; and let M be a fixed nonzero matrix in V. Show that
the first two mappings T:V — V are linear, but the third is not linear: (i) T(A4) = MA, (ii)
T(4) = MA — AM, (ii1) T(A) = M + A.

Find T(a, b) where T: RZ -+ R*is defined by T(1,2) = (3, —1, 5)and 710, 1) = (2, 1, — 1).

Give an example of a nonlinear map F : V — U such that F~'(0) = {0} but F is not one-to-one.

Show that if F: ¥ — U is linear and maps independent sets into independent sets then F is nonsingular.

Find a 2 x 2 matrix 4 which maps u, and u, into r, and ¢,, respectively, where: (a) u, = (1, 3)", 4, =
(L@ and oy, = (=250, =3, =)D uy =2, =4, uz =(—-1,2) and v, = (1, )7, 0, = (1, 3)".

Find a 2 x 2 singular matrix B which maps (1, 1)7 into (1, 3)".

Find a 2 x 2 matrix C that has an eigenvalue 4 = 3 and maps (1, 1)" into {1, 3)".

Let T:C—C be the conjugate mapping on the complex field C. That is, T(z) = Z where z € C, or
T(a + bi) = a — bi where a, b € R. (a) Show that T is not linear if C is viewed as a vector space over itseifl.

(b) Show that T is linear if C is viewed as a vector space over the real field R.

Let F : R? - R? be defined by F(x, y) = (3x + 5y, 2x + 3y), and let S be the unit circle in R% (S consists of
all points satisfying x> + y* = 1) Find: (a) the image F(S), and (b) the preimage F~ '(3).

Consider the linear map G : R* = R? defined by G(x, y, z) = (x + y + z, y — 22, y — 3z) and the unit sphere
5, in R* which consists of the points satisfying x? + y? + z? = 1. Find: (a) G(S,), and (b)) G~ (S,).

Let H be the plane x + 2y — 3z =4 in R? and let G be the linear map in Problem 9.63. Find: (a) G(H), and
(b) G~ '(H).
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KERNEL AND IMAGE OF LINEAR MAPPINGS

9.65.

9.66.

9.67.

9.68.

9.69.

9.70.

For the following linear map G, find a basis and the dimension of (i) the image of G, (ii) the kernel of G:
G :R® » R? defined by G(x, y,z) = (x + y, y + 2).

Find a linear mapping F : R? —» R? whose image is spanned by (1, 2, 3) and (4, 5, 6).
Find a linear mapping F : R* —» R* whose kernel is spanned by (1, 2, 3, 4)and (0, 1, 1, 1).

Let F: ¥ - U be linear. Show that (a) the image of any subspace of V is a subspace of U and (b) the
preimage of any subspace of U is a subspace of V.

Each of the following matrices determines a linear map from R* into R*:

1 7 0 I 1 0 2 =1
@@ A=12 -1 2 —1 ) B= 2 3 -1 I
1 -3 z2 -2 -2 0 -5 3

Find a basis and the dimension of the image U and the kernel W of each map.

Consider the vector space V of real polynomials f(r) of degree 10 or less and the linear map D*: V — ¥
defined by d*f/dt*, i.e., the fourth derivative. Find a basis and the dimension of (a) the image of D%, and
(b) the kernel of D*.

OPERATIONS WITH LINEAR MAPPINGS

9.71.

9.72.

9.73.

9.74.

9.75.

9.76.

Let F:R* < R? and G:R* - R? be defined by F(x, y, z) = (y, x + z) and G(x, y, z) = (2z, x — y). Find
formulas defining the mappings F + G and 3F — 2G.

Let H : R? = R? be defined by H(x, ¥) = (y, 2x). Using the mappings F and G in Problem 9.71, find formu-
las defining the mappings: (@) H « Fand H- G,(b) Fc Hand G- H, (¢} H <« (F + Gyand H <« F + H - G.

Show that the following mappings F, G, and H are linearly independent:

(@ F, G, H e Hom (R? R?) defined by F(x, y) = (x, 2y), G(x, ¥} = (3, x + y), H(x, y) = (0, x).
(h) F,G, H e Hom (R R)defined by F(x, y,2) = x + y + 2, G(x, y, 2) = y + 2, H{x, y, 2) = x — z.

For F, G € Hom (¥, U), show that rank (F + G) < rank F + rank G. (Here V has finite dimension.)

Let F: V- U and G: U — V be linear. Show that if F and G are nonsingular then G - F is nonsingular.
Give an example where G » F is nonsingular but G is not.

Prove that Hom (V, U) does satisfy all the required axioms of a vector space. That is, prove Theorem 9.10.

ALGEBRA OF LINEAR OPERATORS

9.77.

9.78.

9479.

Suppose F and G are linear operators on V and that F is nonsingular. Assume V has finite dimension.
Show that rank (FG) = rank (GF) = rank G.

Suppose V = U@ W. Let E, and E, be the linear operators on V defined by E (v) = u, E,(v) = w, where
v=u+w, uel, weW. Show that: (a) E2=E, and EZ =E,, ie, that E, and E, are projections;
(b) E, + E, = 1. the identity mapping; {c) E,E, =0and E, E, = 0.

Let E, and E, be linear operators on V satisfying (a), (b), (¢) of Problem 9.78. Prove: V =Im E, ® Im E,.
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9.80.

9.81.

9.82.

9.83.

9.84.

Show that if the linear operators F and G are invertible, then FG is invertible and (FG) ' = G~ 'F~ .

Let V have finite dimension, and let T be a linear operator on V such that rank 7? = rank 7. Show that
Ker T~ Im T = {0}.

Which of the following integers can be the dimension of an algebra A(V) of linear maps: S, 9, 18, 25, 31, 36,
44, 64, 88, 1007

An algebra A is said to have an identity element 1 if {1 * g =a - [ = a for every a € A. Show that A(V) has
an identity element.

Find the dimension of A(V) where: (a) V = R*, (b) V = C*, (¢) V = C* viewed as a vector space over R,
(d) V = polynomials of degree < 10.

MISCELLANEOUS PROBLEMS

9.85.

9.86.

987,

9.88.

9.89,

9.90.

Suppose T: K" -+ K™ is a linear mapping. Let {e, ..., ¢,} be the usual basis of K" and let A be the m x n
matrix whose columns are the vectors T{e,), ..., T(e,), respectively. Show that, for every vector v e K",
T(v) = Ar, where v 1s written as a column vector.

Suppose F: ¥V — U is linear and k is a nonzero scalar. Show that the maps F and kF have the same kernel
and the same image.

Show that if F: ¥V — U is onto, then dim U < dim V. Determine all linear maps T : R? = R* which are
onto.

Let T:V — U be linear and let W be a subspace of V. The restriction of T to Wis the map T, : W= U
defined by Ty{w) = T(w), for every w € W. Prove the following: (a} Ty, is linear. (b) Ker Ty, = Ker T n W.
(c)Im T,, = TIW).

Two operators F, G € A(V) are said to be similar if there exists an invertible operator P € A(V) for whic'a
F = P~ 'GP. Prove the following: (a) Similarity of operators is an equivalence relation. (b) Similar operato rs
have the same rank (when V has finite dimension).

Let v and w be ¢elements of a real vector space V. The line segment L from v to v + w is defined to be the set
of vectors v + twfor 0 < t < 1. (See Fig. 9-6.)
(¢g) Show that the line segment L between vectors v and u consists of the points:

(i) {—-thw+ufor0<s1<1, () tyo+tyufort, +t,=11,20,1,20.

(b} Let F:V — U be linear. Show that the image F(L} of a line segment L in V is a line segment in U.

(U 28 '8
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A subset X of a vector space V is said to be convex if the line segment L between any two points (vectors)
P, Q € X is contained in X.

(@) Show that the intersection of convex sets is convex.
(b) Suppose F: ¥V — U is linear and X is convex. Show that F(X) is convex.

Answers to Supplementary Problems

Nine.
(a) {(Betty, 4}, (Martin, 6), (David, 4), (Alan, 3), (Rebecca, 5)}. () Imageofg = {3,4,5,6}.
(@ (gof):A—=A, () No. (¢ (Fof):A=C, (d No, () (geh):C— A4,

(f) (heGeg):B—B.

(@) (foghx)=ax*—6x+1, (o) (gogkx)=4x—9,
(bl (9‘ Uflx} = 2x2 + 6x — l, (d] {fcfxx} = xd' + 6:‘:3 + I4x2 + I5x + 5.

@ [MM)=x+7/3 (b [ '(=yx-2
T(a,b)=(—a + 2b, —3a + b, 7a — b).
Choose V = U = R? and F(x, y) = (x?, y?).
—17 5
@ ( 23 —6)’

(b) No such matrix exists, as u, and u, are dependent but v, and v, are not.

(; g). {Hint: Send (0, 1)7 into (0, 0)".]

(_[2} 2) [Hint: Send (0, 1)T into (0, 3)".]

(@) 13x? —d2xy + 34y =1, (b) 13x% + 42xy + 24y% = 1.

(@) x? — 8xy + 26y* + 6xz — 38yz + 1422 = 1, ) x*+2xy +3y° + 2xz - 8yz + 1422 = 1.
a) x—y+2z=4, hy x—12z=4.

@) (1,00 1), rank G = 2; () (I, —1, 1), nullity G = 1.

Fl(x, y, 2) = (x + 4y, 2x + 5y, 3x + 6y).

Fix, y, 2, 1) =(x+ y—2z,3x +y — 1, 0).

(ay {(1,2,1),(0, 1, 1)} basis of Im A; dim (Im A) = 2.

14, -2, —5,0),(1, —3, 0, 5)} basis of Ker 4; dim (Ker 4) = 2.
(6} Im B=R*{(—1, %, 1, 1)} basis of Ker B; dim (Ker B) = 1.
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9.70.

9.71.

9.72.

9.82.

9.84.

(@ Lt .. 5rankD*=7; (b |1, 1% % nuility D* = 4.

(F+GXx,y,2)=(y+22,2x — y + 2), 3F — 2G)}x, y, ) = (3y — dz, x + 2y + 3z).

(@ (HeFXx, p,z)=(x+ 1.2y, (H > Gix,y, 2} =(x — y,4z). (b} Not defined.

(€ (He(F+O)xpz)=(HoF +HoGKx,y,2)=2x—y+ 2z 2y + 42).

Squares: 9, 25, 36, 64, 100.

(@ 16, (b} 16, () 64, (d) 121.
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Chapter 10

Matrices and Linear Mappings

10.1 INTRODUCTION
Suppose § = {uy, u,, ..., u,} is a basis of a vector space V over a field K and, for v € V, suppose
v=auy +au; + -+ a,u,

Then the coordinate vector of v relative to the basis S, which we write as a column vector unless
otherwise specified or implied, is denoted and defined by

a,

gy
[U]S= =[al* ﬂz----a“n]r
aﬂ

Recall [Example 9.4] that the mapping v+ [v]s, determined by the basis S, is an isomorphism between
V and the space K”.

This chapter shows that there is also an isomorphism, determined by the basis S, between the
algebra A(V) of linear operators on V and the algebra M of n-square matrices over K. Thus every linear
operator T : ¥ — V will correspond to an n-square matrix [ T']5 determined by the basis S.

The question of whether or not a linear operator T can be represented by a diagonal matrix will
also be addressed in this chapter.

102 MATRIX REPRESENTATION OF A LINEAR OPERATOR

Let T be a linear operator on a vector space V over a field K and suppose § = {u,, 4,, ..., 4,} isa
basis of V. Now T(u,), ..., T(u,) are vectors in ¥ and so each is a linear combination of the vectors in
the basis S; say,

T(uy) = ajuy + ajup + -+ agu,
T(uy) = ayuy + ayuy + -+ + az,u,

.....................................

The following definition applies.

Definition: The transpose of the above matrix of coeflicients, denoted by my(T) or [T], is called the
matrix representation of T relative to the basis S or simply the matrix of T in the basis §;

that is,
dyy dp py
Q3 4y [/}
[(Tls=
Qyp aln Qpn

{The subscript $ may be omitted if the basis S is understood.)

344
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Remark: Using the coordinate (column) vector notation, the matrix representa-
tion of T may also be written in the form

that is, the columns of m(T) are the coordinate vectors [T(u,)], .... [ T(u,)].

Example 10.1

{a) Let V be the vector space of polynomials in t over R of degree <3, and let D: V¥ - V be the differential
operator defined by D(p(t)) = d(p(t))/dt. We compute the matrix of D in the basis {1, t, ¢?, 1*}.

D(1) =0 =0+0t+ 082 + 03 0100
D(t) =1 =1+0t+ 0%+ 0 0 20
D=2 =o+2+0+0° M PI=l5 6 0 3
D(t*) =32 =0+ 0t + 32 4+ 03 0 00O

[Note that the coordinate vectors D(1), D(t), D(t?), and D(t?) are the columns, not the rows, of [D].]

(b)) Consider the linear operator F : R? — R? defined by F(x, y) = (4x — 2y, 2x + y) and the following bases of R?:
S={u, =(,1), u, =(—1, 0)} and E=1{e, =(1,0) e, =(0, 1)}
We have

Fiu)=F(L, =2, 3) =31, 1)+ (=1, 0) = 3u, + u,
Flu) = F(— 1,0 =(—4, -2)= —2AL, D+ A—-1,0)= —2u, + 2u,

3

: _'i) is the matrix representation of F in the basis S. We also have

Therefore, [Flg = (

Fle,) = F(1,0) = (4, 2) = 4e, + 2e,
Fleg) = F(O, ) = (=2, 1)= —2¢, + ¢,

Accordingly, [F]; = (; ;

) is the matrix representation of F relative to the usual basis E.

(¢) Consider any n-square matrix A over K (which defines a matrix map A : K" -+ K") and the usual basis E = {e;}
of K" The Ae,, Ae,, ..., Ae, are precisely the columns of 4 (Remark on Example 9.5) and their coordinates
relative to the usual basis E are the vectors themselves. Accordingly,

[Alg= A

that is, relative to the usual basis E, the matrix representation of a matrix map A is the matrix A itself.

The following algorithm will be used to compute matrix representations.

Algorithm 10.2

Given a linear operator T on V and a basis § = {u,, ..., u,} of V, this algorithm finds the matrix
[ T]s which represents T relative to basis S.

Step 1. Repeat for each basis vector u, in S:

(a) Find T(u,).

(b)) Write T(u,) as a linear combination of the basis vectors u,, ..., u, to obtain the coordi-
nates of T(u,) in the basis S.
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Step 2. Form the matrix [T]s whose columns are the coordinate vectors [T(u,)]s obtained in
Step I(b).
Step 3. Exit.

Remark: Observe that Step 1(b) is repeated for each basis vector u,. Accordingly,
it may be useful to first apply:

Step 0. Find a formula for the coordinates of an arbitrary vector v relative to the
basis S.

Our first theorem, proved in Problem 10.10, tells us that the “action™ of an operator T on a vector
v is preserved by its matrix representation:

Theorem 10.1: Let S = {u,, u,, ..., u,} be a basis for V and let T be any linear operator on ¥. Then,
for any vectorv e V, [T]s[vls = [T(v)])s-

That is, if we multiply the coordinate vector of v by the matrix representation of T, then we obtain
the coordinate vector of T(v).

Example 10.2. Consider the differential operator D : V' — V in Example 10.1(a). Let
py=a+bt+ct* +dr* andso  D(p(t)) = b + 2ct + 3dt*
Hence, relative to the basis {1, 1, 2, *},
[(pit] =[a, b,c,d]” and [D(p(t)] = [b, 2¢, 3d, 017
We show that Theorem 10.1 does hold here:

01 0 O\/a b

0 0 2 O)fb 2c
DA = o o 3 ll.| =5 = DX

0 0 0 0/\d 0

Now we have associated a matrix [77] to each T in A(V), the algebra of linear operators on V. By
our first theorem, the action of an individual operator T is preserved by this representation. The next
two theorems, (proved in Problems 10.11 and 10,12, respectively), tell us that the three basic operations
with these operators,

(i) Addition,
(i) Scalar multiplication,
(i) Composition

are also preserved.

Theorem 10.2: Let S = {u,, u,, ..., u,} be a basis for a vector space V' over K, and let M be the
algebra of n-square matrices over K. Then the mapping m: A(V) - M defined by
m(T) =[T]s is a vector space isomorphism. That is, for any F, G € A(V) and any
k € K, we have

(i) m(F + G)=m(F)+ m(G) or [F + G]=[F]+[G),
(i) m(kF)=km(F) or [kF]=k[F],

(iii) m is one-to-one and onto.
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Theorem 10.3: For any linear operators G, F € A(v),

mG e« F)=mGmF) or  [Go-F]=[G][F]
(Here G - F denotes the composition of the maps G and F.)

We illustrate the above theorems in the case dim ¥ = 2. Suppose {u,, u,} is a basis for V, and F
and G are linear operators on V for which

Flu,)=au, + au, G(uy) = c 1y + ¢ u,
F(u1)=b|u| + bz Uy G(u2)=d1u, +d1u2
_ a, bl _ <y dl
Then LF1= (az bz) S ( )

We have
(F + G)u,) = Flu)) + Glu,) = a,1; + a,u; + ¢ u, + cyu;
= (ay + cy)u; + (a; + cx)uy
(F + G)u,) = F(u,) + Guy) = by, + byu, +dyu, +d,u,y
= (b, +dy)uy + (b; + dy)u,

a +¢, by +d a, b ¢ d
Th - 1 1 1 l) P ( 1 l) ( 1 l) L F
H [F ® G] (az + Ca bz + dz (5] b2 * ('2 dz [ ] + {G]
Also, for k € K, we have

(kF)u,) = kF(u,;) = Ka,u, + ayu,) = ka,u; + ka, u,
(RFHM;) = kF{uz} = k(blul + bz uz) = kbluj + kbz uz

_(kay Kb\ fa bl) _
w1 = e ) =4 5) =
Finally, we have
(G © F)u,) = G(F(4,)) = Gla,u, + a,u;) = a,G(u,) + a; Glu,)
= al(C,ul + Cy u}') + ﬂz(dlul + d: uzl
= (ay¢, + adu, +(a,c, + aydr)u,y
(G o F)uy)) = G(F(uy) = G(b,u, + b,u;) = b,G(u,) + b, G(u,)
= by(cyuy + cau;) + by(dyuy + dyu,)
=(byey + byduy + (biey + badyu,

Thus

Accordingly,
[G . Pj - (alf.'l + a3 -d] blcl + bz dl) - (Cl d.)(a1 bl) - [G][F]

ﬂ|('3 + 'ﬂz dz blCZ + bz dz {,'2 dz az bz

103 CHANGE OF BASIS AND LINEAR OPERATORS

The above discussion shows that we can represent a linear operator by a matrix once we have
chosen a basis. We ask the following natural question: How does our representation change if we select
another basis? In order to answer this question, we first recall a definition and some facts.
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Definition: Let S = {u,, u;, ..., u,} be a basis of V and let § = {v,, v;, ..., r,} be another basis.
Suppose, fori=1.2,....n,

by = Uy + 4 Uy + 0+ AUy,
The transpose P of the above matrix of coefficients is termed the change-of-basis (or
transition) matrix from the “old™ basis S to the “new™ basis S".
Fact 1. The above change-of-basis matrix P is invertible and its inverse P~ is the change-of-basis
matrix from §° back to S.

Fact 2. Let P be the change-of-basis matrix from the usual basis E of K" to another basis S. Then P is
the matrix whose columns are precisely the elements of S.

Fact 3. let P be the change-of-basis matrix from a basis S to a basis 8" in V. Then (Theorem 5.27), for
any vectorrv € V,

Plvly =[v]s and P '[v]s=[v]s
(Thus P! transforms the coordinates of ¢ in the “old™ basis S to the “new” basis S'.)

The following theorem, proved in Problem 10.19, answers the above question, that is, shows how
the matrix representation of a linear operator is affected by a change of basis.

Theorem 10.4: Let P be the change-of-basis matrix from a basis § to a basis § in a vector space V.
Then, for any linear operator T on V,

[(T)y =P '[TLsP

In other words, if 4 is the matrix representing T in a basis S, then B = P~ ' 4P is the matrix which
represents T in a new basis §* where P is the change-of-basis matrix from S to §'.

Example 10.3. Consider the following bases for R?:
E={e,=(1,0,¢,=(0, 1)} and S={u =(1, —=2), u, = (2. =5)}

Since E is the usual basis of R?, we write the basis vector in S as columns to obtain the change-of-basis matrix P

from E 1o §:
1 2
P=(_2 _3)

Consider the linear operator F on R? defined by F(x, y) = (2x — 3y, 4x + y). We have

P‘(€|I=F{],0}={l4)=2f1+4(’2 - 2 -3
Flep = FO, 1) = (=3, D= —3¢, + ¢, °ndbence ”’"(4 1)

is the matrix representation of F relative to the usual basis E. By Theorem 104,

g_piap( 5 Y2 Y ' [ 4 o
B A2 —1f\e tA-2 —5) 18 —41

is the matrix representation of F relative to the basis §.

Remark: Suppose P = (g;;) is any n-square invertible matrix over a field K, and
suppose S = {u,, u, ..., u,} is a basis for a vector space V over K. Then the n vectors,

U = Ay dyy + 0+ d U, St e AR

are linearly independent and hence they form another basis §' for V. Furthermore, P is
the change-of-basis matrix from the basis S to the basis §'. Accordingly, if A is any
matrix representation of a linear operator T on V, then the matrix B = P~ '4P is also
a matrix representation of T.
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Similarity and Linear Operators

Suppose A and B are square matrices for which there exists an invertible matrix P such that
B = P 'AP; then (Section 4.13) B is said to be similar to A or is said to be obtained from 4 by a
similarity transformation. By Theorem 10.4 and the above remark, we have the following basic result.

Theorem 10.5: Two matrices A and B represent the same linear operator T if and only if they are
similar to each other.

That is, all the matrix representations of the linear operator T form an equivalence class of similar
matrices,

Now suppose f is a function on square matrices which assigns the same value to similar matrices;
that is, f(A) = f(B) whenever A is similar to B. Then f induces a function, also denoted by f, on linear
operators T in the following natural way: f(T) = f([T]s) where § is any basis. The function is well-
defined by Theorem 10.5. Three important examples of such functions are:

(1) determinant, {2) trace, and (3) characteristic polynomial

Thus the determinant, trace, and characteristic polynomial of a linear operator T are well-defined.

Example 10.4. Let F be the linear operator on R? defined by F(x, y) = (2x — 3y, 4x + y). By Example 10.34, the
matrix representation of T relative to the usual basis for R? is

2 =3
()
Accordingly:

(i) det (T)=det(4) =2 + 12 = 14 is the determinant of T.
(i) rT=trA4=2+1=3isthetraceof T.
(iii) A {t) = A (1) = 1? — 3t + 14 is the characteristic polynomial of 7.

By Example 10.3, another matrix representation of 7' is the matrix

44 101
B=
(- 18 —41)
Using this matrix, we obtain:

(i) det(T)=det(4)= —1804 + 1818 = 14 is the determinant of T.
(i) tr7T=tr4d=44—41 =3isthetraceofl T.
(iii) Ar) = Agt) = t* — 3t + 14 is the characteristic polynomial of T.

As expected, both matrices yield the same results.

104 DIAGONALIZATION OF LINEAR OPERATORS

A linear operator T on a vector space F is said to be diagonalizable if T can be represented by a
diagonal matrix D. Thus T is diagonalizable if and only if there exists a basis § = {u, u,, ..., u,} of ¥
for which

T(uy) = kyu,
T(uy) = kau,

................................

In such a case, T is represented by the diagonal matrix
D = diag (ky, k3. .--, k)
relative to the basis S.
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The above observation leads us to the following definitions and theorems which are analogous to the
definitions and theorems for matrices discussed in Chapter 8.
A scalar A € K is called an eigenvalue of T if there exists a nonzero vector v € V for which

T(v) = v

Every vector satisfying this relation is called an eigenvector of T belonging to the eigenvalue 4. The set
E, of all such vectors is a subspace of V called the eigenspace of i. (Alternatively, 2 is an eigenvalue of T
if Al — T is singular and, in this case, E; is the kernel of AT — T)

The following theorems apply.

Theorem 10.6: T can be represented by a diagonal matrix D (or T is diagonalizable) if and only if
there exists a basis § of V consisting of eigenvectors of T. In this case, the diagonal
elements of D are the corresponding cigenvalues.

Theorem 10.7: Nonzero eigenvectors u,, u,, ..., u, of T, belonging, respectively, to distinct eigen-
values 4,, 4,, ..., 4,, are linearly independent. (See Problem 10.26 for the proof.)

Theorem 10.8: T is a root of its characteristic polynomial A(t).

Theorem 10.9: The scalar 2 is an eigenvalue of T if and only if A is a root of the characteristic
polynomial A(t) of T.

Theorem 10.10: The geometric multiplicity of an eigenvalue A of T does not exceed its algebraic multi-
plicity. (See Problem 10.27 for the proof.)

Theorem 10.11: Suppose A4 is a matrix representation of T. Then T is diagonalizable if and only if 4 is
diagonalizable.

Remark: Theorem 10.11 reduces the investigation of the diagonalization of a
linear operator T to the diagonalization of a matrix 4 which was discussed in detail in
Chapter 8.

Example 10.5

(a) Let V be the vector space of real functions for which § = {sin @, cos 0} is a basis, and let D be the differential
operator on V. Then

D(sin ) = cosf! = Osin 0) + lcos 0)
D{cos fl) = —sin ! = — 1{sin ) + O(cos 6)

0 1\,
Hence A = (__ | 0) is the matrix representation of D in the basis S. Therefore,

AMty=t2—=(tr A +|A|=t>+1

is the characteristic polynomial of both A and D. Thus A4 and D have no (real) eigenvalues and, in particular,
D is not diagonalizable.

(b) Consider the functions &*, ", ..., ¢ where a|, a,, ..., a, are distinct real numbers. Let D be the differential
operator; hence D(e™) = g, ¢*. Accordingly, the lunctions ¢*' are eigenvectors of D belonging to distinct
eigenvalues. Thus, by Theorem 10,7, the functions are linearly independent.

(c) Let T:R? — R? be the linear operator which rotates each vector r € R? by an angle f) = 90° (as shown in Fig.
10-1). Note that no nonzero vector is a multiple of itself. Hence T has no eigenvalues and so no eigenvectors.
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T(v)

Lo = 40C v

Fig. 10-1

Now the minimum polynomial m{t) of a linear operator T is defined independently of the theory of
matrices, as the monic polynomial of lowest degree which has T as a zero. However, for any polynomial
J),

fiT)y=0 ifand only if  f(4)=0

where A4 is any matrix representation of T. Accordingly, T and A have the same minimum polynomial.
Thus all theorems in Chapter 8 on the minimum polynomial of a matrix also hold for the minimum
polynomial of a linear operator T.

10.5 MATRICES AND GENERAL LINEAR MAPPINGS

Lastly, we consider the general case of linear mappings from one space into another. Let ¥V and U
be vector spaces over the same field K and, say, dim ¥V =m and dim U = n. Furthermore, let
e={v,vy,...,0,) and f = {u,, u,,..., u,} be arbitrary but fixed bases of ¥ and U, respectively.

Suppose F : ¥ — U is a linear mapping. Then the vectors F(v,), ..., F(v,,) belong to U and so each is
a linear combination of the u, ; say

F(vy) = a,uy + ajpup; + - +a,,u,
F(v)) = ay,u; + ajoup; + -+ + aj,u,

.....................................

F(Um) = Oy Uy + Ao Uy +-+ Uy Uy,

The transpose of the above matrix of coefficients, denoted by [F]/, is called the matrix representation of
F relative to the bases e and f:

ay, dap, Ay

f_ |2 G2 Gz
[Fli =

Qyp Qap Qmp,

(We will use the simple notation [F] when the bases are understood.)
The following theorems apply.

Theorem 10.12: For any vector v € V, [F}{[v], = [F(v)],-

That is, multiplying the coordinate vector of v in the basis e by the matrix [F]/, we obtain the
coordinate vector of F(v) in the basis .

Theorem 10.13: The mapping F— [F] is an isomorphism from Hom (V, U) onto the vector space of
n x m matrices over K. That is, the mapping is one-to-one and onto and, for any
F, G € Hom (V, U)and any k € K,

[F+ Gl =[F]+ [G] and [kF] = k[F]
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Remark: Recall that any n x m matrix 4 over K may be identified with the
linear mapping from K™ into K" given by v+ Av. Now suppose V and U are vector
spaces over K of dimensions m and n, respectively, and suppose e is a basis of ¥ and f
is a basis of U. Then in view of the preceding theorem, we shall also identify 4 with the
linear mapping F : ¥ — U given by [F(1v)], = A[v]).. We comment that if other bases
of ¥V and U are given, then 4 is identified with another linear mapping from ¥ into U.

Theorem 10.14: Lete, f, and g be bases of ¥, U, and W, respectively. Let F: V - U and G: U - W be
linear mappings. Then

(G - F)i = [GY[F),
That is, relative to the appropriate bases, the matrix representation of the composition of two linear
mappings is equal to the product of the matrix representations of the individual mappings.

Our next theorem shows how the matrix representation of a linear mapping F : V — U is affected
when new bases are selected.

Theorem 10.15: Lect P be the change-of-basis matrix from a basis e to a basis €” in V, and let Q be the
change-of-basis matrix from a basis f to a basis f" in U. Then, for any linear mapping
F:V—-U,

[F1l =Q '[F)P
In other words, if A represents the linear mapping F relative to the bases e and f, then
B=Q '4aP

represents F relative to the new bases €’ and "
Our last theorem, proved in Problem 10.34, shows that any linear mapping from one space into
another can be represented by a very simple matrix.

Theorem 10.16: Let F: V — U be linear and, say, rank F = r. Then there exist bases of ¥ and of U
such that the matrix representation of F has the form

I, 0
A={"'
(6 o)
where 1, is the r-square identity matrix.

The above matrix A is called the normal or canonical form of the linear map F.

Solved Problems

MATRIX REPRESENTATIONS OF LINEAR OPERATORS

10.1. Suppose F: R? —» R? is defined by F(x, y) = (2y, 3x — y). Find the matrix representation of F
relative to the usual basis E = {e, = (1, 0), e; = (0, I)}:

Note first that if (4, b) € R?, then (g, b) = ae, + be;.

.F(e|)= F(], 0}={0‘ 3} =0€l _‘_32,2 _(D 2)
Fleg) = F(O, ) =(2, —1)=2¢, — e, and [Fls = v

It is seen that the rows of [F], are given directly by the coeflicients in the components of F(x, y). This
generalizes to any space K".
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102. Find the matrix representation of the linear operator F in Problem 10.1 relative to the basis
S = {u, = (1. 3),u; = (2, 9)}.

First find the coordinates of an arbitrary vector (a, b) € R? with respect to the basis S. We have

a -—x] i 2 or x+2y=a

b/ T\3 5 Ix+5y=b

Solve for x and y in terms of @ and b to get x = 2b — 5a and y = 3a — b. Thus
{a, b) = (—5a + 2b, + (3a — bju,

We have F(x, y) = (2y, 3x — y). Hence

Flu,) = F(1, 3) = (6,0) = —30u, + 18u,
Flu,) = F(2, 5) = (10, 1) = —48u, + 29,

)

a"d[F]s=( 18 29/

{Remark: We emphasize that the coeflicients of u, and u, are written as columns, not
rows, in each matrix representation.)

10.3. Let G be the linear operator on R? defined by G(x, y, z) = (2y + z, x — 4y, 3x).
(a) Find the matrix representation of G relative to the basis
S={w,=(L L 1),w,=(1,10),wy,=(1,00)}
(b) Verify that [G][¢] = [G(r)] for any vector v € R.

First find the coordinates of an arbitrary vector (a, b, ¢) € R? with respect to the basis S. Write (a, b, ¢
as a linear combination of w,, w,, w; using unknown scalars x, y, and z:

@b c)=x(1,, D)+ WL, LO+2(1,0,0=(x+y+2z x+yx
Set corresponding components equal to each other to obtain the system of equations
x+y+z=a x+y=b x=c
Solve the system for x, y,and zinterms of g, b, and ctofind x =¢c,y=b — ¢,z =a — b. Thus
(a, b, ¢} = cw, + (b — c)w, + (a — b)w, or equivalently [la b, )] =[c,b—c,a—b]"
(@) Since G(x, y, 2) = (2y + z, x — 4y, 3x),

G{wl) = G(Iv lr l} = (3, _31 3) = 3“’. e 6“'1 + 6W3
G(w,) = G(1, 1, 0) = (2, —3, 3) = 3w, — 6w, + 5w,
Giwa) =G(1,0,0) = (0, 1, 3) = 3w, — 2w, — w,

Write the coordinates of G{w,), G{w,), G{w,) as columns to get

3 3 3
[G1=|—-6 -6 -2
6 S5 -1

(b) Write G(v) as a linear combination of w,, w,, w; where v = (g, b, ¢) is an arbitrary vector in R*:
Glr) = Gla, b, ¢) = (2b + ¢, a — 4b, 3a) = 3aw, + (—2a — 4byw,; + (—a + 6b + c)w,
or, equivalently,
[G(t)] = [3a, —2a — 4b, —a + 6b + c]"
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Accordingly,
3 3 3 c 3a
[Glv]={ -6 —6 —2)b—c|=| ~20a—ab |=[Gw)
6 5 —1f\a—¢b —a+6b+c
12 : . N
Let A= 3 4 and let T be the linear operator on R? defined by T(v) = Av (where v is written

as a column vector). Find the matrix of T in each of the following bases:

(@) E={e, =(1,0),e,=(0,1)},ie,theusuval basis; and (b)) S={u, =(1,3),u,=(27)

1 2\/1 1

{a) T(e,) = (3 4)(0) = (3) = le, + e,
1 20 2

mea=(3 $)1)- (4) =y

Observe that the matrix of T in the usual basis is precisely the original matrix A which defined T.

1 2
and thus [T = ( 3 4)

See Example 10.1{c).

(b) From Problem 10.2, (4, b) = (—5a + 2b)u, + (3a — b)u,. Hence

1 231 7

T(u,) = (3 4X3) = (15) = —5u, + 6uy
1 2\ 2 12

T(u,) = (3 4X5) = (26) = —8u, + 10u,

Each of the sets (a) {1, ¢, €, te'} and (b) {e*, te*, t?e'} is a basis of a vector space ¥ of functions
f: R—> R. Let D be the differential operator on V, that is, D(f) = df/dt. Find the matrix of D in
each given basis,

-5 -8
and thus [T]s=( 6 10)

(a) D(l) =0 = (1) + O(1) + O(e') + O(e') 01t 00
D(r) = 1 =D +00) + 0N + 0y =0 © 0 0
D(¢) = ¢ = 0(1) + O(D) + 1(¢') + O(te) 0011
Dite') = ' + t& = 0(1) + 0(t) + 1(e") + 1(te") 0 001

b) Die*) = 3e™ = 3(e) + Oze™) + O(r%e™) 310
D(te*) = e* + 3te® = I(e™) + 3(te™) + O(t’¢™) andthus [D]=[0 3 2
D(r2e™) = 21e™ + 32 = 0fe™) + 2te™) + 3(1%e™) 003

Let V be the vector space of 2 x 2 matrices with the usual basis

=0 o}&=(o op 5= ohe=(o D}

1 2
Let M = (3 4) and T be the linear operator on V defined by T(A4) = MA. Find the matrix

representation of T relative to the above usual basis of V.
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10.7.

10.8.

10.9.

We have
1 21 0 1 0
1 20 1 0 1
1 20 0O 2 0
T{E3)=ME3=(3 4)(1 0)=(4 0)=2E,+0E +4E, + 0E,
1 230 0 0 2
Hence
1 0 2 0
01 0 2
(T1~{3 o 4 0
0O 3 0 4

{Since dim ¥ = 4, any matrix representation of a linear operator on ¥ must be a 4-square matrix.)

Consider the basis § = {(1, 0), (1, 1)} of R2 Let L: R?— R? be defined by L(1, 0) = (6, 4) and
L(1, 1) = (1, 5). (Recall that a linear map is completely defined by its action on a basis) Find
the matrix representation of L with respect to the basis §.

Write (6. 4) and then (1, 5) each as a linear combination of the basis vectors to get

L{1,0) = (6, 4) = 21, 0) + 4(1, 1) (2 -4
L= (LS i, OfE S O [L]~( 5)

Consider the usual basis E = {e,, e,, ..., e,} of K". Let L: K" —» K" be defined by L(e;) = v;.
Show that the matrix A representing L relative to the usual basis E is obtained by writing the
image vectors vy, v;, ..., U, as columns.

Suppose v; = (G;y, G, ---. 4,)- Then Lfe) =v;, =a;, e, + a,e, + - + q,e,. Thus

fyy  fdy 4y
i} @y dy; LY
yp iy 2

For each of the following linear operators L on R?, find the matrix 4 which represents L (relative
to the usuval basis of R?):

(@) Lisdefined by L(1,0) = (2, 4) and L(0, 1) = (5, 8).
(b) L is the rotation in R? counterclockwise by 90°.
(¢} L is the reflection in R? about the line y = — x.

(a) Since (1, 0) and (0, 1) do form the usual basis of R?, write their images under L as columns (Problem

[0.8) to get
2 5
. (4 8)

(h) Under the rotation L, we have I{1,0) = (0, 1) and L(0, 1) = (~1,0). Thus A = (? _(l})'

-1
(¢} Under the reflection L, we have L{1,0) =(0, — lyand L{0, 1) =(—1,0). Thus A = (_? 0).
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Prove Theorem 10.1. [Tg[vls = [T (V)]s
Suppose, fori=1,...,n,

n
T(u) = apuy + apuy + -+ + A, = Z U
=1

Then [ T]; is the n-square matrix whose jth row is
(ﬂ”‘s Gyjy enny lyj) )]

Now suppose

0=k, + kotty + - + ku, = ¥ ki

i=1
Writing a column vector as the transpose of a row vector,
[D]S = (kl'r kll L ka}T (2)
Furthermore, using the linearity of T,

T(v)= }:_,ks“.c)= ik.-'ﬂ“el= i" i“u’“ﬁ)
i=1 i=t \j=1

i=t
L] L} n
= Z (Zﬂuk‘)u}. = Z(ﬂuki + aljkl e a"jk“)uj
=1 \i=1 i=1
Thus [ T(v)]s is the column vector whose jth entry is
ayiky + ayky + -0 +a,k, 3

On the other hand, the jth entry of [ T]g[v]s is obtained by multiplying the jth row of [T]s by [v]s, i.e., (1)
by (2). But the product of (/) and (2) is (3); hence [T]s[v]s and [T(v)]s have the same entries. Thus
(T1s[v]s = [T(t)]s-

Prove Theorem 10.2. (1) [F + G) = |F1 4+ [G], (i) [kF] = k{F).
Suppose, fori=1,...,n,

F(ui} = i ﬂ,-juj and G{ui] = i b.—juj
i=1

=1

Consider the matrices A = (g;;) and B = (b;;). Then [F] = AT and [G] = B". We have,fori=1,...,n,

i«F + GXup) = F(u) + Glu) = Y, (a;; + byu;
=1

Since A + B is the matrix (a;; + b;;), we have
[F+Gl=(A+ BY =AT+ BT =[F] + (]
Also,fori=1,...,n,

(kFYu) = kF(u) = k ), agu; = 3 (kagu;
i=1 i=t

Since kA is the matrix (ka,), we have
[kF] = (kA)" = kA" = k[F]

Lastly, m is one-to-one since a linear mapping is completely determined by its values on a basis, and m is
onto since each matrix A = (a,)) iIn M is the image of the linear operator

Flu) = Y a,u; VA s
i=1

Thus the theorem is proved.



CHAP. 10] MATRICES AND LINEAR MAPPINGS 357

10.12. Prove Theorem 10.3. [G < F] = [G]|F)-

Using the notation in Problem 10.11, we have

(G -~ FXu,) = G(F(u)) = G( Zﬂqﬂj) = E a;; Glu;)
J=1 i-1

- g:ta,,(é,lhﬂ “l) - ‘é‘ ( J: la”bﬁ)%

Recall that AB is the matrix AB = (c,) where ¢, = Y a;;b, . Accordingly,
i=1

[G - F1=(AB)" = BTA" = [G][F]

Thus the theorem is proved.

10.13. Let 4 be a matrix representation of an operator T. Show that f(A4) is the matrix representation of
f(T), for any polynomial f(t). [Thus f(T) = 0 if and only if f(4) = 0.]

Let ¢ be the mapping T+ A, i.e., which sends the operator 7 into its matrix representation 4. We
need to prove that ¢(f(T)) = f(A). Suppose f(1) = a,1" + --- + a,t + a,. The proof is by induction on n, the
degree of f(1).

Suppose n = 0. Recall that ¢(1’) = I where I’ is the identity mapping and [ is the identity matrix. Thus

ST = Plag 1) = ag ¢(I') = ap I = f(A)

and so the theorem holds for n = (.
Now assume the theorem holds for polynomials of degree less than n. Then, since ¢ is an algebra
isomorphism,

(TN =@, T +a,_T" "+ +a,T +a,l
= a, (NAT" )+ Pla, T ' 4o 4 a,T +agl')
=a,AA" "+ (g, A" "+ +a,4 +a, 1) = f(A)

and the theorem is proved.

10.14. Let V be the vector space of functions which has {sin @, cos )} as a basis, and let D be the
differential operator on V. Show that D is a zero of f(t) = ¢* + 1.

Apply f{D) to each basis vector:

f(D)sin ) = (D + I)Xsin ) = D*sin®) + Isin ) = —sin 0 +sin@ =0
f(D}cos 0) = (D? + Iicos ) = D?*(cos 0) + l{cos 8) = —cos 1  cos 0 =0

Since each basis vector is mapped into 0, every vector r € V is also mapped into 0 by f(D). Thus f(D) = 0.
[This result is expected since, by Example 10.5(a). (1) is the characteristic polynomial of I).]

CHANGE OF BASIS, SIMILAR MATRICES
10.15. Let F : R? - R? be defined by F(x, y) = (4x — y, 2x + y) and consider the following bases for R?:

E={e, =(1,0), e, = (0, 1)} and S={u, =1, Ma;=(2,5)

(a) Find the change-of-basis matrix P from E to S, the change-of-basis matrix Q from § back to
E, and verify that Q = P ',
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(b) Find the matrix A that represents F in the basis E, the matrix B that represents F in the
basis S, and verify that B = P~ ' 4P.
{c) Find the trace tr F, the determinant det (F), and the characteristic polynomial A(t) of F.

(a) Since E is the usual basis, write the elements of S as columns to obtain the change-of-basis matrix

P-( )

Solving the system u, = e, + 3e,, u, = 2¢; + Se,, for e, and e, yields

e, = —5Su, + 3u, -5 2
nd th =
€; = 21“" Uy a us Q ( 3 ‘_I

1 2\f -5 2 1 0
PQ:(:'. 5)( 3 —1)=(0 1)='
(b) Write the coefficients of x and y as rows (Problem 10.3) to obtain
4 —I
y
G )
Since F(x, y) = (4x — y, 2x + ) and (g, b) = (—5a + 2b)u, + (3a — bu,,

F(HI) = F(]'! 3} =(1, 5) = Su. —_ 2u2 ~ ( 5 3)
Fluy) = F(2, 5 = (3, 9) = 3u, and thus  B={ _

-5 2y4 -1\1 2 5 3
-1 - =
d AP*( 3 41X2 lXa 5) (-2 0)
(¢) Use A (or B) to obtain

rF=trA=4+1=5 det (Fy=det (A)=4+2=6
M) = > — (tr At + det(A) =12~ 5t + 6

We have

We have

N
=]

10.16. Let G be the linear operator on R? defined by G(x, y, z) = (2y + z, x — 4y, 3x) and consider the

(a)

(b)
()

usual basis E of R? and the following basis S of R*:
S={w,=(L 1, 1),w,=(1, 1,0}, wy =(1,0,0)}
Find the change-of-basis matrix P from E to S, the change-of-basis matrix Q@ from S back to
E, and verify that Q = P~ .
Verify that [G]s = P '[G] P.
Find the trace, determinant, and characteristic polynomial of G.
(a) Since E is the usual basis, write the elements of § as columns to obtain the change-of-basis matrix

111
P=|1 10
1 0 0

By the familiar inversion process (see Problem 10.3) we obtain

e, = 0w, + 0w, + lw, 0
(?3=1w,—-lw1 +OW3 l



CHAP. 10] MATRICES AND LINEAR MAPPINGS 359

We have
i 1 1\ /0 0 1 1 0 0
PO =11 1 oo 1 —-1}]={0 1 0)=1
1 0 of\t -1 0 0 0 1
0 2 1 3 3 3
(b) From Problems 10.1 and 10.3, [G]g={1 —4 0}and [G]ls=1 -6 —6 —2]| Thus
3 0 0 6 5 -1
0 0 o 2 1\ /1 | 1 3 3 3
P GIP={0 I -1t —4 OBl | 0)={-6 -6 -2|=[G]s
1 -1 0/\3 0 0/\1 0 0 6 5 -1
(¢) Use [G]g (the simpler matrix) to obtain
rG=0-44+0=—4 det(G)=12 and Af)=1" 442 — 5t — 12

10.17. Find the trace and determinant of the following operator on R*:
T(x, y,z)=(ay,x +a,y+asz,byx+ b,y +byz,c;x +c,y +¢52)
First find a matrix representation 4 of T. Choosing the usual basis E,

a; G 43
A= b| bz b:;
C; €3 €4
Then
trT=trA=a,+b;+ ¢
and

det (T) = det (A) = a,byc3 + a;byc; + aybyc; — aybycy — aybycy — ayb,c,

10.18. Let V be the space of 2 x 2 matrices over R, and let M = (; i) Let T be the linear operator

on V defined by T(A) = M A. Find the trace and determinant of T.

We must first find a matrix representation of T. Choose the usual basis of V to obtain (Problem 10.6)
the following matrix representation:

1 0 2 0
01 0 2
[M1=13 640
030 4

Thentr T=1+4+1+44+ 4 =10and det (T)=4.

10.19. Prove Theorem 10.4. [T, ] = P-T]P.
Let v be any vector in V. Then, by Theorem 5.27, P[v]s. = {v]g. Therefore,
P™'[T)sP[t]y = PT'[ T[] = P~ ' [T(W)]s = [T®)]s
But [T]s[r]s = [T(w)]s ; hence
P '[TIsPlvls = [T)s[v)s
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Since the mapping vi—[v]s is onto K", we have P '[T]sPX = [T]s X for every X € K". Thus
P Y[T]sP = [T]s.. as claimed.

DIAGONALIZATION OF LINEAR OPERATORS, EIGENVALUES AND EIGENVECTORS

10.20.

10.21.

Find the eigenvalues and linearly independent eigenvectors of the following linear operator on
R?, and, if it is diagonalizable, find a diagonal representation D:  F(x, y) = (6x — y, 3x + 2y).

First find the matrix A which represents F in the usual basis of R? by writing down the coeflicients of x

and y as rows:
. 6 —1
k] 2

The characteristic polynomial A(r) of F is then
Aty=t2—(tr At +|A| =22 =8 +15=(t — 3t — 5)
Thus A, = 3 and 4, = § are eigenvalues of F. We find the corresponding eigenvectors as follows:

(i) Subtract 4, = 3 down the diagonal of A to obtain the matrix M = (; |

homogeneous system 3x — y = 0. Here ¢, = (1, 3) is a nonzero solution and hence an eigenvector of F
belonging to 4, = 3.

) which corresponds to the

|
e G
x — y = 0. Here v, = (1, 1) is a nonzero solution and hence an eigenvector of F belonging to A, = 5.

(i) Subtract 4, = 5 down the diagonal of A to obtain M =( ) which corresponds to the system

Then S = {v,, v,} is a basis of R? consisting of eigenvectors of F. Thus F is diagonalizable, with the matrix

representation D = (3 O)
P 05

Let L be the linear operator on R? which reflects points across the line y = kx (where k # 0). See
Fig. 10-2.

(@) Show that v, = (k, 1) and v, = (1, —k) are eigenvectors of L.
(b) Show that L is diagonalizable, and find such a diagonal representation D.

y
G(P)

Gl A y=ky

Fig. 10-2

(a) The vector vy = (k, 1) lies on the line y = kx and hence is left fixed by L, that is, L{v,) = v,. Thus v, is
an eigenvector of L belonging to the cigenvalue i, = 1. The vector v, = (1, —k) is perpendicular to the
line y = kx and hence L refiects v, into its negative, that is, I{v;) = —v,. Thus v, is an eigenvector of
L belonging to the eigenvalue 4, = —1.
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10.22.

10.23.

10.24.

10.25.

{b) Here S = {v,, v,} is a basis of R? consisting of eigenvectors of L. Thus L is diagonalizable with the

1 0
diagonal representation (relative to S) D = (0 _ l)'

Find all eigenvalues and a basis of each eigenspace of the operator 7 : R® - R? defined by
T(x, y,2) = (2x + ¥, ¥y — 2, 2y + 4z). Is T diagonalizable? If so, find such a representation D.

First find the matrix A which represents T in the usual basis of R* by writing down the coefficients of
x, ¥, z as rows, and then find the characteristic polynomial A(r) of 7. We have

2 | 0 -2 =1 0
A=[Tl=] 0 1 -1 }andsoAn=ti-A'=| 0 -1 1 |=@-2)(t-3)
0 2 4 0 -2 -4

Thus A = 2 and A = 3 are the eigenvalues of T,

We find a basis of the eigenspace E, of A = 2. Subtract A = 2 down the diagonal of A to obtain the
homogeneous system

¥ =0 0
-y-z =40 or ‘}‘ :(1
2 + 27 =0 X HE=

The system has only one independent solution, eg, x =1, y =0, z = 0. Thus u = (1, 0, 0) forms a basis of
the eigenspace E,.

We find a basis of the eigenspace £, of A = 3. Subtract A = 3 down the diagonal of A to obtain the
homogeneous system

-X+ ¥ = 0
x=y = 0
-2y -z =0 or n 4z =0
2y 42 =0 - T

The system has only one independent solution,eg, x =1,y =1,z= —2. Thus v =(1, 1, —2) forms a basis
of the cigenspace E,.
Observe that T is not diagonalizable, since T has only two linearly independent eigenvectors.

Show that 0 is an eigenvalue of T if and only if T is singular.

We have that 0 is an eigenvalue of T if and only if there exists a nonzero vector ¢ such that
T(r) = Ov = 0, i.e,, if and only if T is singular.

Suppose 4 is an eigenvalue of an invertible operator T. Show that A ! is an eigenvalue of 77"

Since T is invertible, it is also nonsingular; hence, by Problem 10.23 4 # 0.
By definition of an eigenvalue, there exists a nonzero vector v for which T(v) = Av. Applying T to
both sides, we obtain v = T~ '(Av) = AT " '(v). Hence T !(v) = 2~ 'p; that is, 2~ is an eigenvalue of T~ ".

Suppose dim ¥V =n. Let T:V — V be an invertible operator. Show that 7' 1s equal to a
polynomial in T of degree not exceeding n.

Let m(t) be the minimum polynomial of 7. Then m{t) =t + a,_ "' + - + a,t + a,, where r < n.
Since T is invertible, a, 0. We have

mN=T+a,_,T '+ +a,T+a, /=0
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Hence

1
—i(r’" +a, ., T+~ +a,DT=I and T"=—a—{T""+a, T4+ a,l)
tg (]
10.26. Prove Theorem 10.7.

The proof is by induction on n. If n = 1, then u, is linearly independent since u, # 0. Assume n > 1.
Suppose

aguy +azuy + 0+ au, =0 (n
where the g, are scalars. Applying T to the above relation, we obtain by linearity
a, Ty +a, Tuy) +---+a, T(u)=T0)=0

But by hypothesis T(i,) = 4;u;; hence

a Ay, +aydauy + o +adu, =0 (2)
On the other hand, multiplying (/) by 4,.

A gty + ay Agtiy + 0+ A, Aty =0 (3
Now subtracting (3) from (2),

ag(dy — AJuy + ay(A; — AJuy + - 4+ ay_ (Ao y — Ay, =0

By induction, u,, i, .., u,. , are linearly independent; hence each of the above coefficients is 0. Since the A
are distinct, 4, — A, # 0 for i # n. Hence a, = --- = a,_, = 0. Substituting this into () we get a,u, = 0, and
hence a, = 0. Thus the u; are linearly independent.

10.27. Prove Theorem 10.10.

Suppose the geometric multiplicity of A is r. Then the eigenspace E, contains r linearly independent
eigenvectors v,, ..., v,. Extend the set {v,} to a basis of V say: {v, ... v,. w,, ... w,}. We have
T(vy) = Avy
T(vy) = Avy

T(v,) = v,
T(W1}=ﬂ1‘v| +"‘+ﬂ,,v,+bnwl+'“+bhws
T(wy) = a0y + - +ag v, + byywy + - + by w

T(w)=a,.v +*+agv, +bywy +-+ +bw

The matrix of T in the above basis is

0 4 0:012 32 ayz

............. I,.-a----o.a---..~

00 ... Alay, a - a, | [M1A
M= -———————-—% ———————————— — --—-:.-_

0 0 ... t):b,,t by ... b,, O:B

0 0. 0:'b:z by, b,,

1
............ T, - -
\0 0 * O:bts bls bs.s}

where A = (a,)" and B = (b;)".

Since M is a block triangular matrix, the characteristic polynomial of A1,, which is (¢ — A)", must divide
the characteristic polynomial of M and hence that of T. Thus the algebraic multiplicity of 2 for the operator
T is at least r, as required.
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10.28. Let {v,,..., v,} be a basis of V. Let T : V — V be an operator for which T(v,) = 0, T(v,;) = a,,v,,
T(vy) = ayyv, + a3 vy, ..., Tv)=a,,v, + - + 4, , 10, . Show that T" = 0.
It suffices to show that
Tiw) =0 ()
forj=1,...,n For then it follows that
Tv) = T {T) = T"40)=0, forj=1,...,n

and, since {v,, ..., t;,} is a basis, T" = 0.
We prove (*) by induction on j. The case j = 1 is true by hypothesis. The inductive step follows
(forj=2,...,n)from
THop) = T (T = T Nayo, + - +a; ;_40;_4)
=ay T o)+ 4 a; 5,77 (;-)
=ﬂ110+“'+ﬂj_j lOﬁO

Remark: Observe that the matrix representation of T in the above basis is triangular with
diagonal elements O:

0 ay; ay Gy
0 0 ay 2
0 o 0 Oy n-t
0 0 0 0

MATRIX REPRESENTATIONS OF LINEAR MAPPINGS
10.29. Let F : R* - R? be the linear mapping defined by F(x, y, z) = (3x + 2y — 4z, x — 5y + 3z2).
(@) Find the matrix of F in the following bases of R* and R?:

S={w, =1L 1 w,=(1,0),w, =(1,0,0) § ={u; =(1, 3), u; = (2, 5)}
(b) Verify that the action of F is preserved by its matrix representation; that is, for any v € R?,
[FISTels = [F)s

() From Problem 10.2, (a, b) = (—5a + 2bju, + (3a — bju,. Thus
F(w'] = .F(l, 1. I) = (1, ‘—'I) = -‘?N' + 4“2
Fiw,)=F(1, 1,00 =(5, —4)= —33u, + 19,
Fwsy) =F(1,0,00 =3, ) = — 13u, + 8u,
Write the coordinates of F(w,), F(w,), F(w,)} as columns to get

. =T =A% =43
[FE:( a 19 s)

(b) Ifv = (x, y, z) then, by Problem 103, v = zw, + (y — z)w; + (x — y)w,. Also,
Fi) =(Bx + 2y — 4z, x — Sy + 3z) = (—13x — 20y + 26z)u, + (8x + 11y — 15z)u,

—13x — 20y + 262)

Hence [l =(y-zx—y" and [Fo)ls = ( 8x + tly — 15z

7 -33 -43) g (—l3x—20y+262
y—z|=

4 19 8 8x+uy-:5z)=[p(”']5‘

Thus [FETels = (_
x—y
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10.30. Let F: K" — K™ be the linear mapping defined by
Flxy, X3y s X ) =(@1,%X) 4+ - " 4 Q1aXpy QX + 77 F QppXps ooy QuiXy + 7 + App X,)

Show that the matrix representation of F relative to the usual bases of K" and of K™ is given by

Ay 4y, Qyp
[F] = dyy Gy Uan
Apy Gy U
That is, the rows of [F] are obtained from the coefficients of the x; in the components of
FlXgciy X ):
We have
F(1,0, ..., 0) = (ayy, A2y, -5 Gpy) dyy Gy ... dy,
FO,1,..., 0 =la;z, A2+ .., Gpa) and thiss [F] = O3y dzz ... g,
FO,0, ..., 1) =(ay,, G,, -\ Gpp) Qpy Uy o

10.31. Find the matrix representation of each of the following linear mappings relative to the usual
bases of R":

F:R? - R? defined by F(x, y) = (3x — y, 2x + 4y, 5x — 6y)
F:R*— R? defined by F(x, y, 5, ) =(3x —4y + 25 — 51, Sx + Ty — s — 21)
F :R* - R* defined by F(x, y, z2) = (2x + 3y — 82, x + y + z, 4x — 5z, 6y)

By Problem 10.30, we need only look at the coefficients of the unknowns in F(x, y,...). Thus

% g 2 3 -8

B F ol B wnf 11 1

(F1= ; : [F]=(5 7 -1 —2) S PR
- 0 6 0O

10.32. Let T : R? - R? be defined by T(x, y) = (2x — 3y, x + 4y). Find the matrix of T relative, respec-
tively, to the following bases of R?:

E={e, =(1,0),e,=(0, 1)} and S={u, =(1,3)u,=(2275)
(We can view T as a linear mapping from one space into another, each having its own basis.)
From Problem 10.2, (a, b) = (—5a + 2bl; + (3a — b, . Hence

T{Ei] = T(l,{])::(Z, l} = -——But + 5‘“2 s (—B 23
Ty = T(O, 1) = (3, 4) = 23u, —13, 2rotus  [Th={ 5

2 5 -3
1 —4 7
F(v) = Av where v is written as a column vector. Find the matrix representation of F relative to
the following bases of R? and R2.

S={w,=0,1,1),w,=(1, 1,0), wy = (1, 0, 0)} S = {u, =(1,3),u, = (2, 5}

10.33. Let A =( ) Recall that A determines a linear mapping F : R® - R? defined by
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From Problem 10.2, (a, b) = (—5a + 2bju, + (3a — bju, . Thus

2

F(wﬂ:(l

2
Flw,) = (l

2

F{w,) =(1

5
—4

Wh

—4

1

_)1=
7
-3
7
_7)0:
0

—

e ==

(4)-

(-

(1)-

Writing the coefficients of F(w,), F(w,), F(w;) as columns yields

tr1t = (

—12
8

—41

10.34. Prove Theorem 10.16. For F: V — U, there exist bases for which [F] =

—8
24 5

—12u, + 8u,
—4lu, + 24u,
—811. + 5“2

)

I 0
0 0)
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Suppose dim ¥ = m and dim U = n. Let W be the kernel of F and U’ the image of F. We are given
that rank F = r; hence the dimension of the kernel of Fis m — r. Let {w,, ..., w,,_,} be a basis of the kernel

of F and extend this to a basis of V:

T L R W

Set u, = Flvy), u; = F(v,), ..., u, = F(v)

We note that {u,, ..., u,} is a basis of U’, the image of F. Extend this to a basis
Sy B Mg e}

of U. Observe that

ﬂv[) ==u.=lul+0ﬂ2+"‘+0u,+0u”_l+--*+0u.
Fv) =u,=0u +lu;+---+0u,+0u,,+ - +0u,
Fv,) =t =0uy +0uy + -+ lu, +O0uyy + - +0u,
F(Wl) =0 =0ul-|-0uz+-..+0ur+0ur+l+“ +0U..
F(Wp- ) =0 =Ouy +Oup + -+ + 0u, + Oy + -~ + Ou,

Thus the matrix of F in the above bases has the required form.

Supplementary Problems

(@) Tix,y.2)=(x,y0)

B T, p2)=2x~Ty—42,3x+y+4z,6x—8y+12)

© Tix,y,2)=(z,y+z,x+y+2)

MATRIX REPRESENTATIONS OF LINEAR OPERATORS

10.35. Find the matrix representation of each of the following linear operators T on R? relative to the usual basis:
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10.36. Find the matrix of each operator T in Problem 10.35 with respect to the basis
S={u, =(L,1,0), u, =(1, 2, 3),uy =(1, 3, 5)}
10.37. Let D be the differential operator, i.e., D(f) = df/dt. Each of the following sets is a basis of a vector space V
of functions f: R — R. Find the matrix of D in each basis:
(@) €', e, te¥}, (b) {sint, cost}, (c) {e¥, te™ 1*ed}, () {1, sin 31, cos 3t}

10.38. Consider the complex field C as a vector space over the real field R. Let T be the conjugation operator on
C, that is, T(z) = z. Find the matrix of 7" in each basis: (a) {1, i}. and (b) {1 + i, 1 + 2i}.

10.39. Let V be the vector space of 2 x 2 matrices over R and let M = (a z) Find the matrix of each of the
c
following linear operators T on V in the usual basis (see Problem 10.18):

(@) T(A)= MA, (hy T(A)= AM, () T(A)=MA—- AM

10.40. Let 1, and 0, denote the identity and zero operators, respectively, on a vector space V. Show that, for any
basis S of V, (a) [1,]s = I, the identity matrix, (b} [0y ]s = 0. the zero matrix.

CHANGE OF BASIS, SIMILAR MATRICES

1041. Consider the following bases of R*: E = {e, = (1,0), e, = (0, 1)} and § = {u, = (1,2), u, = (2. 3)}.

{(a) Find the change-of-basis matrices P and Q from E to S and from S to E, respectively. Verify Q = P™'.
(b) Show that [v]; = P[v]s for any vector v € R2.
(c) Verify that [T)g= P~ '[T] P for the linear operator T(x, y) = (2x — 3y, x + y).

10.42. Find the trace and determinant of each linear map on R*:
(@ Flx,y,z)=(x+3y,3x—2z.x — 4y — 32), ) Gx,v,2)=(x+y—z.x+ 3y, 4y + 32)
10.43. Suppose S = {u,, u,} is a basis of ¥ and T : V — V is a linear operator for which T(u,) = 3u, — 2u, and

T(u,) = uy + 4u,. Suppose §' = {w,, w,} is a basis of V for which w, = u, + u, and w, = 2u, + 3u,. Find
the matrix of T in the basis §'.

10.44. Consider the bases {1, i} and {1 + i, 1 + 2i} of the vector space C over the real field R. (a) Find the
change-of-basis matrices P and Q from S to §" and from §' to S, respectively. Verify that Q = P ". (b) Show
that [T]s. = P~ '[T] P for the conjugate operator T in Problem 10.38.

DIAGONALIZATION OF LINEAR OPERATORS, EIGENVALUES AND EIGENVECTORS

10.45. Suppose v is an eigenvector of operators T, and T,. Show that v is also an eigenvector of the operator
aT, + bT, where a and b are any scalars.

10.46. Suppose v is an eigenvector of an operator T belonging to the eigenvalue 4. Show that for n > 0, v is also
an eigenvector of 7" belonging to A"

10.47. Suppose 4 is an eigenvalue of an operator T and f(f) is a polynomial. Show that f(4) is an eigenvalue of

AT).

10.48. Show that a linear operator T is diagonalizable if and only if its minimum polynomial is a product of
distinct linear factors,
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10.49.

Let L and T be linear operators such that LT = TL. Let 4 be an eigenvalue of T and let W be its
eigenspace. Show that W is invariant under L, i.e., L(W) < W.

MATRIX REPRESENTATIONS OF LINEAR MAPPINGS

10.50.

10.51.

10.53.

10.54.

10.55.

10.35.

10.36.

10.37.

10.38.

10.39.

10041 L]

Find the matrix representation relative to the usual bases for R" of the linear mapping F:R®—R?
defined by F(x, y,z) = (2x — 4y + 9z, 5x + 3y — 2z).

Let F: R* - R? be the linear mapping defined by F(x, y, z) = (2x + y — 2, 3x — 2y + 42). Find the matrix
of F in the following bases of R* and R*:

S = {wl = (L 1’ I)v wz = (lr lv 0}’ WS = {13 '07 0}} S' o {Dl = “: 3), I"I = (1! 4’}
Verify that, for any vector v € R®, [FI§ [v]s = [F(t)]s..

Let § and §’ be bases of V, and let 1,, be the identity mapping on V. Show that the matrix of 1, relative to
the bases S and §’ is the inverse of the change-of-basis matrix P from S to §'; that is, [1,]5 = P L.

Prove Theorem 10.12.
Prove Theorem 10.13.

Prove Theorem 10.15.

Answers to Supplementary Problems

1 3 5 15 51 104 0 1 2
@ {0 -5 —10}, by | —49 —191 351}, ) | —1 2 3
0

0 3 6 29 116 208 1 0
1 o0 o . s 1 0 . . o .
0 0 2 0 5 0 0 3 0
1 (1] 3 4
el (0 4)‘ 2 (—2 —3)
a 0 b 0 a ¢ 00 0 —c¢ b 0
0 a 0 b b d 0 0 —b a-d ] b
(e) c 0 d 0 ®) 0 0 a ¢/ © ¢ 0 d—a -c
0 ¢ 0 d 0 0 b d 0 c —-b )

~y
]
——
B -
w2
S
[\
I
—_—
|
[ I
!
)

)
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10.42.

10.43.

10.44,

10.50.

(a)

(-

8
2

MATRICES AND LINEAR MAPPINGS

-~2.13, 6% + 22 — 20t — 13;

M)

by 7,2,6% — 7 + 14t — 2

[CHAP. 10



Chapter 11

Canonical Forms

11.1 INTRODUCTION

Let T be a linear operator on a vector space of finite dimension. As seen in Chapter 10, T may not
have a diagonal matrix representation. However, it is still possible to “simplify” the matrix representa-
tion of T in a number of ways. This is the main topic of this chapter. In particular, we obtain the
primary decomposition theorem, and the triangular, Jordan and rational canonical forms.

We comment that the triangular and Jordan canonical forms exist for T if and only if the character-
istic polynomial A(f) of T has all its roots in the base field K. This is always true if K is the complex
field C but may not be true if K is the real field R.

We also introduce the idea of a guotient space. This is a very powerful tool and will be used in the
proof of the existence of the triangular and rational canonical forms.

11.2 TRIANGULAR FORM

Let T be a linear operator on an n-dimensional vector space V. Suppose T can be represented by
the triangular matrix

dy; 4y ay,
= dazz Az
Oyp

Then the characteristic polynomial of T,
Aty =|tl — Al =(t — ayy Nt — a3;3) - (t — a,,)

is a product of linear factors. The converse is also true and is an important theorem, namely (see
Problem 11.28 for the proof),

Theorem 11.1: Let T: ¥V — V be a linear operator whose characteristic polynomial factors into linear
polynomials. Then there exists a basis of ¥ in which T is represented by a triangular
matrix.

Theorem 11.1 (Alternate Form): Let 4 be a square matrix whose characteristic polynomial factors
into linear polynomials. Then A is similar to a triangular matrix, ie.,
there exists an invertible matrix P such that P~ ' AP is triangular.

We say that an operator T can be brought into triangular form if it can be represented by a
triangular matrix. Note that in this case the eigenvalues of T are precisely those entries appearing on
the main diagonal. We give an application of this remark.

369
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Example 11.1. Let A be a square matrix over the complex field C. Suppose 2 is an eigenvalue of A% Show that
Lor —\/Z is an eigenvalue of A.
We know by Theorem 1 1.1 that A is similar to a triangular matrix

iy & ...
e *
B=|
My
Hence A7 is similar to the matrix
pf * *
2
Bz - 5] .
2
My
Since similar matrices have the same eigenvalues, 2 = p? for some i. Hence y; = \/I or i; = —./ 4 is an eigenvalue

of A,

11.3 INVARIANCE

Let T : ¥V — V be linear. A subspace W of V is said to be invariant under T or T-invariant if T maps
W into itself, i.e, if v € W implies T(v) € W. In this case T restricted to W defines a linear operator on
W ; that is. T induces a linear operator T: W — W defined by T{w) = T(w) for every w € W.

Example 11.2
(a) Let T:R3>—R? be the linear operator which rotates each vector about the z axis by an angle 6 (Fig. 11-1);
T(x, v,z)=(xcos § — ysin 8, x sin § + y cos 8, z)

Observe that each vector w = (4, b, 0) in the xy plane W remains in W under the mapping T, hence, W is
T-invariant, Observe also that the z axis I/ is invariant under 7. Furthermore, the restriction of T to W
rotates each vector about the origin O, and the restriction of T to U is the identity mapping of U.

z Tiv)

‘ﬂ o<

. S

.

rap T(w)

E) gt .
""-.\/ w

x 10

Fig. 11-1

(b) Nonzero eigenvectors of a linear operator T :V — ¥V may be characterized as generators of T-invariant
1-dimensional subspaces. For suppose T(v) = Av, v # 0. Then W = {kp, k € K}, the 1-dimensional subspace
generated by v, is invariant under T because

T(ke) = kT(v) = kiv) = kive W
Conversely, suppose dim U =1 and u# 0 spans U, and U is invariant under 7. Then T(u) e U' and so

T(u) is a multiple of u, i.e., T(w) = pu. Hence u is an eigenvector of T

The next theorem, proved in Problem 11.3, gives us an important class of invariant subspaces,
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Theorem 11.2: Let T: V — V be any linear operator, and let f(t) be any polynomial. Then the kernel
of f(T)is invariant under T.

The notion of invariance is related to matrix representations (Problem 11.5) as follows.

Theorem 11.3: Suppose W is an invariant subspace of T: ¥V — V. Then T has a block matrix repre-

A B
sentation ( 0 C) where A is a matrix representation of the restriction 7 of T to W.

11.4 INVARIANT DIRECT-SUM DECOMPOSITIONS
A vector space V is termed the direct sum of subspaces W, ..., W,, written
V=W oW,e  -@Ww,
if every vector v € V can be written uniquely in the form
b=w,+ w4+ 4w, with  w, e W,

The following theorem, proved in Problem 1.7, applies.

Theorem 11.4: Suppose W,, ..., W, are subspaces of V, and suppose

Wi s Winghs s {Wen, oo W}

are bases of W, .... W,, respectively. Then V is the direct sum of the W; if and only if
the union B = {w 1, .., Wyns --ey Wyps o205 Wy, } 15 @ basis of V.

Now suppose T:V — V is linear and V is the direct sum of (nonzero) T-invariant subspaces
) Sl

V=Woe oW, and TW) < W, i=1...,r

Let T; denote the restriction of T to W,. Then T is said to be decomposable into the operators T, or T is
said to be the direct sum of the T, written T = T, @ - - - @ T,. Also, the subspaces W,, ..., W, are said to
reduce T or to form a T-invariant direct-sum decomposition of V.

Consider the special case where two subspaces U and W reduce an operator T:V — V; say,
dim U = 2 and dim W = 3 and suppose {u,, u,} and {w,, w,, w.} are bases of U and W, respectively.
If T, and T, denote the restrictions of 7 to U and W, respectively, then

Twy) = byywy + byawy + byyw,
T;(Wz)_: bZI'vl + bzz Wz ““ b23'93
Ty(wy) = by wy + by wy + bazw,

Ty) =aju; + a1,
T\(uy) = ayuy + dyru,

by, by by

_ @11 4n _
Hence A= (a i ) and B=|by, by, by,
2 T bys by3 bss

are matrix representations of T, and T,, respectively. By Theorem 11.4, {u,, u,, w;, w,, w3} is a basis
of V. Since T(w)= T\(u) and T(w;) = T(w;), the matrix of T in this basis is the block diagonal

matrix (A 0
0 B/
A generalization of the above argument gives us the following theorem.

Theorem 11.5: Suppose T :V — ¥ is linear and V is the direct sum of T-invariant subspaces, say
Wi, ..., W, If A, 1s a matrix representation of the restriction of T to W, then T can be
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represented by the block diagonal matrix

A, © 0
M| 0 A 0
0 0 A

The block diagonal matrix M with diagonal entries 4,, ..., A4, is sometimes called the direct sum of
the matrices A,, ..., A,and denotedby M = A, @ --- @ A4,.

1.5 PRIMARY DECOMPOSITION

The following theorem shows that any operator 7 : ¥V — V is decomposable into operators whose
minimum polynomials are powers of irreducible polynomials. This is the first step in obtaining a canon-
ical form for 7.

Primary Decomposition Theorem 11.6: Let 7 : V' — V be a linear operator with minimum polynomial
mt) = f1(t)"(6)"* - - - fLe)™

where the f(t) are distinct monic irreducible polynomials.
Then V is the direct sum of T-invariant subspaces W, ..., W,
where W, is the kernel of f(T)* Moreover, f{(t)" is the
minimum polynomial of the restriction of T to W..

Since the polynomials f{t)" are relatively prime, the above fundamental result follows (Problem
11.11) from the next two theorems.

Theorem 11.7: Suppose T :V — V is linear, and suppose f(t) = g(t)h(t) are polynomials such that
f(T)=0 and g(t) and h(f) are relatively prime. Then V is the direct sum of the
T-invariant subspaces U and W, where U = Ker g(T) and W = Ker h(T).

Theorem 11.8: In Theorem 11.7. if f(¢) is the minimum polynomial of T [and g(t) and k{t) are monic],
then g(t) and h(r) are the minimum polynomials of the restrictions of T to U and W,
respectively.

We will also use the primary decomposition theorem to prove the following useful characterization
of diagonalizable operators (see Problem 11.12 for the proof).

Theorem 11.9: A linear operator T : ¥V — V 1s diagonalizable if and only if its minimum polynomial
m(t) is a product of distinct linear polynomials.

Theorem 11.9 (Alternate Form): A matrix A is similar to a diagonal matrix if and only if its minimum
polynomial is a product of distinct linear polynomials.

Example 11.3. Suppose A # [ is a square matrix for which A3 = I. Determine whether or not A is similar to a
diagonal matrix if A is a matrix over (i) the real field R, (ii) the complex field C.

Since A* = I, A is a zero of the polynomial f(t) = 1> — 1 = (t — IX¢* + t + 1). The minimum polynomial m(t)
of A cannot be t — 1, since A # I. Hence

mit)=t>+¢t+1 or mt)=1"—-1

Since neither polynomial is a product of linear polynomials over R, A is not diagonalizable over R. On the other
hand, each of the polynomials is a product of distinct linear polynomials over C. Hence A is diagonalizable over C.
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1.6 NILPOTENT OPERATORS

A linear operator T : ¥ — V is termed nilpotent if T" = 0 for some positive integer n; we call k the
index of nilpotency of T if T* = 0 but T* ' # 0. Analogously, a square matrix 4 is termed nilpotent if
A" = 0 for some positive integer n, and of index k if A¥ =0 but A*~! # 0. Clearly the minimum poly-
nomial of a nilpotent operator (matrix) of index k is m(t) = t*; hence 0 is its only eigenvalue.

The fundamental result on nilpotent operators follows.

Theorem 11.10: Let T: ¥ — V be a nilpotent operator of index k. Then T has a block diagonal matrix
representation whose diagonal entries are of the form

010 ... O 0
0 0 1 00
N=] e
0 00 01

(i.e., all entries of N are O except those just above the main diagonal, which are 1).
There is at least one N of order k and all other N are of orders <k. The number of N
of each possible order is uniquely determined by T. Moreover, the total number of N
of all orders is equal to the nullity of T.

In the proof of the above theorem (Problem 11.16), we shall show that the number of N of order i is
equal to 2m; — m;,, — m; ,, where m; is the nullity of T%

We remark that the above matrix N is itself nilpotent and that its index of nilpotency is equal to its
order (Problem 11.13). Note that the matrix N of order 1 is just the | x 1 zero matrix (0).

11.7 JORDAN CANONICAL FORM

An operator T can be put into Jordan canonical form if its characteristic and minimum poly-
nomials factor into linear polynomials. This is always true if K is the complex field C. In any case, we
can always extend the base field K to a field in which the characteristic and minimum polynomials do
factor into linear factors; thus in a broad sense every operator has a Jordan canonical form. Analo-
gously, every matrix is similar to a matrix in Jordan canonical form.

Theorem 11.11: Let T:V — V be a linear operator whose characteristic and minimum polynomials
are, respectively,
A=@—A)" - (t=4)" and  mt)=(— i)™ (- A)™
where the A, are distinct scalars. Then T has a block diagonal matrix representation J
whose diagonal entries are of the form

i 10 0 0
0 4 | 0 0
F e .
0 0 0 A 1
0O 0 0 0 4

For each 4; the corresponding blocks J;; have the following properties:

(i) There is at least one J;; of order m;; all other J;; are of order <m;.
(i) The sum of the orders of the J;; is n;.
(iii) The number of J;; equals the geometric multiplicity of 4;.
(1v) The number of J;; of each possible order is uniquely determined by T.
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The matrix J appearing in the above theorem is called the Jordan canonical form of the operator T.
A diagonal block J,; is called a Jordan block belonging to the eigenvalue 4, . Observe that

A 1 O 0 0 4 0 0 0 010 0 0

0 4 1 0 0 0 4 0 0 0 01 0 0

...................... =1 VRN, 5 - NNy

0 0 0 A 1 0 0 0 0 0 00 0 1

0O 0 0 0 4 0 0 .0 4 0 0 0 0 0
That 1s, Jy=41+N

where N is the nilpotent block appearing in Theorem 11.10. In fact, we will prove Theorem 11.11
(Problem 11.18) by showing that T can be decomposed into operators, each the sum of a scalar oper-
ator and a nilpotent operator.

Example 11.4. Suppose the characteristic and minimum polynomials of an operator T are, respectively,
A= —2%~-3* and mi)=(—2P—3)?
Then the Jordan canonical form of T is one of the following matrices:

2 1!

The first matrix occurs if 7 has two independent eigenvectors belonging to the eigenvalue 2; and the second matrix
occurs if T has three independent eigenvectors belonging to 2.

118 CYCLIC SUBSPACES

Let T be a linear operator on a vector space V of finite dimension over K. Suppose v € V and
v # 0. The set of all vectors of the form f(T)Xv), where f(t) ranges over all polynomials over K, is a
T-invariant subspace of V called the T-cyclic subspace of V generated by v; we denote it by Z(v, T) and
denote the restriction of T to Z(v, T) by T,. By Problem 11,56, we could equivalently define Z(v, T) as
the intersection of all T-invariant subspaces of V containing v.

Now consider the sequence

v, T(v), T*v), T*(v), ...

of powers of T acting on v. Let k be the least integer such that T*(r) is a linear combination of those
vectors which precede it in the sequence; say,

™M)= —a,_\T*"'(v)— - —a, T(t) — o0
Then mf)=1t"+a, '+ +at+a

is the unique monic polynomial of lowest degree for which m (T)Xv) = 0. We call m(t) the T-annihilator
of vand Z(v, T).

The following theorem (proved in Problem 11.29) applies.
Theorem 11.12: Let Z(v, T), T,, and m,(t) be defined as above. Then:

() Theset {v, T(v), ..., T* *(v)} is a basis of Z(v, T); hence dim Z(v, T) = k.
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(i) The minimum polynomial of T, is m,(z).

(iii) The matrix representation of T, in the above basis is just the companion matrix

(Example 8.12) of m(t):
0 0 0 0 —a,
1 00 ... 0 —a
010 0 —a;
=i e
0 00 0 =03
0 00 1 —a_,

11.9 RATIONAL CANONICAL FORM

In this section we present the rational canonical form for a linear operator T : V — V. We empha-
size that this form exists even when the minimum polynomial cannot be factored into linear poly-
nomials. (Recall that this is not the case for the Jordan canonical form.)

Lemma 11.13: Let T: V — ¥V be a linear operator whose minimum polynomial is ()" where f(f) is a
monic irreducible polynomial. Then ¥V is the direct sum

V = Z{Ul) T)@ ”"@Z(Ur, T)
of T-cyclic subspaces Z(v;, T) with corresponding T-annihilators

@ @, ... e n=n>n=-"2n,

Any other decomposition of V into T-cyclic subspaces has the same number of com-
ponents and the same set of T-annihilators.

We emphasize that the above lemma, proved in Problem 11.31, does not say that the vectors v;
or the T-cyclic subspaces Z(v;, T) are uniquely determined by T'; but it does say that the set of
T-annihilators is uniquely determined by T. Thus T has a unique matrix representation

C,
C;

C,

r

where the C; are companion matrices. In fact, the C; are the companion matrices of the polynomials

S
Using the primary decomposition theorem and Lemma 11.13, we obtain the following fundamental
result.

Theorem 11.14: Let T : V — V be a linear operator with minimum polynomial
m(t) = f,{y" L™ - [L)™
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where the f{¢) are distinct monic irreducible polynomials. Then T has a unique block
diagonal matrix representation

Cll

Co

where the C,; are companion matrices. In particular, the C;; are the companion
matrices of the polynomials f{t)"’ where

m, =n;, 2"132"'2’71"1-“9"’:: 51 2”&22'”2”8&

The above matrix representation of T is called its rational canonical form. The polynomials f(t)"’ are
called the elementary divisors of T.

Example 11.5. Let V be a vector space of dimension 6 over R, and let T be a linear operator whose minimum
polynomial is m{t) = (¢ — ¢ + 3}t — 2)%. Then the rational canonical form of T is one of the following direct sums
of companion matrices:

D) C*—1+NBA* -1+ 3)DC(t - 2P

(i) C@* -1+ 3)@ Clt —- 2} ® ({1 — 2))
(i) C*—t+3)@A-2)@Ct—2)®Ct — 2)
where C{(f (1)) is the companion matrix of f(r); that is,

(M (i) (iii)

11.10 QUOTIENT SPACES

Let V be a vector space over a field K and let W be a subspace of V. If v is any vector in V, we
write v + W for the set of sums v + w with w e W:

v+ W={b+w:we W}

These sets are called the cosets of W in V. We show (Problem 11.22) that these cosets partition V into
mutually disjoint subsets.

Example 11.6. Let W be the subspace of R? defined by
W = {(a, b): a= b}

That is, W is the line given by the equation x — y = (. We can view v + W as a translation of the line, obtained by
adding the vector v to each point in W. As shown in Fig. 11-2, v + W is also a line and is parallel to W. Thus the
cosets of W in R? are precisely all the lines parallel to W.
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u v+ W

~ ;

Fig. 11-2

In the following theorem we use the cosets of a subspace W of a vector space ¥ to define a new
vector space; it is called the quotient space of V by W and is denoted by V/W.

Theorem 11.15: Let W be a subspace of a vector space over a field K. Then the cosets of W in V form
a vector space over K with the following operations of addition and scalar multiplica-
tion:

M G+ W+w+Wy=u+ov)+ W
(i) kiu+ W) =ku+ W,where k € K.

We note that, in the proof of Theorem 11.15 (Problem 11.24), it is first necessary to show that the
operations are well defined; that is, wheneveru + W = + Wandv + W = v’ + W, then

N W+ +W=@W+)+W and () ku+ W =ku' + W, forany ke K

In the case of an invariant subspace, we have the following useful result, proved in Problem 11.27.

Theorem 11.16: Suppose W is a subspace invariant under a linear operator T:V —» V. Then T
induces a linear operator T on V/W defined by T(v + W) = T(v) + W. Moreover, if
T is a zero of any polynomial, then so is T. Thus the minimum polynomial of T
divides the minimum polynomial of T.

Solved Problems

INVARIANT SUBSPACES

11.1. Suppose T : ¥ — V is linear. Show that each of the following is invariant under 7: (a) {0}, (b) V,
(c) kernel of T, and (d) image of T.

(a) We have T(0) = 0 € {0}; hence {0} is invariant under T.

(b) Foreveryv e V, T(v) € V; hence V is invariant under 7.

(¢) Letue Ker T. Then T(u) = 0 € Ker T since the kernel of T is a subspace of V. Thus Ker T is invari-
ant under 7.

(d) Since T(v) € Im T for every v € V, it is certainly true when v € Im T. Hence the image of T is invari-
ant under T.
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Suppose {W} is a collection of T-invariant subspaces of a vector space V. Show that the inter-
section W = ('}; W, is also T-invariant,

Suppose v € W; then v € W, for every i. Since W, is T-invariant, T(v) € W, for every i. Thus T(v)e W
and so W is T-invariant.

Prove Theorem 11.2. Ker f(T) is invariant under 7.

Suppose v € Ker f(T), i.c,, [(THv) = 0. We need to show that T(v) also belongs to the kernel of f{T),
e, [ITHT(¥)) = (SAT) « THv) = 0. Since f(t)t = tf{t), we have f(T) > T = T = f(T). Thus

(AT TXe) = (T « f(TIv) = TLf(TH) = T(O) =0
as required.

. . . 2 )
Find all invariant subspaces of 4 = ( ) viewed as an operator on R?.

I =2

By Problem 11.1, R? and {0} are invariant under A. Now if A has any other invariant subspace, it must
be [-dimensional. However, the characteristic polynomial of A is

t—2 5
—1

)= —_ =
Aty = [ul — A] 42

|=t2+l

Hence A has no eigenvalues (in R) and so 4 has no eigenvectors. But the 1-dimensional invariant subspaces
correspond to the eigenvectors; thus R* and {0} are the only subspaces invariant under A.

Prove Theorem 11.3.
We choose a basis {w, ..., w,} of W and extend it to a basis {w,, ..., w,, v, ..., 1,} of V. We have

Twy) = T(w)) = aywy + - + a,w,
f‘(w,] =T(wy) = a;w, + -+ +azw,

.......................................

f{wr] = T(wr) = arlwl e arr w,
Tw) =byw +- - +b,w, +cy 0, + - +c,0,
T(vy) =byywy + -+ + by w, + 50y + - + 00
T(UJ = Ihsl.wll G el - bsrwr + Calty +oert Coe Uy
But the matrix of T in this basis is the transpose of the matrix of coefficients in the above system of

equations. (See page 344.) Therefore it has the form (g B) where A is the transpose of the matrix of

' &
coeflicients for the obvious subsystem. By the same argument, A is the matrix of T relative to the basis {w,}
of W.

Let T denote the restriction of an operator T 1o an invariant subspace W, ie., T(w) = T(w) for
every w € W. Prove:

(i) For any polynomial £(2), f(TXw) = f(TXw).
(ii) The minimum polynomial of T divides the minimum polynomial of 7.
(i) Iff(t) = Ooriff(e)is a constant. i.e., of degree 1, then the resuit clearly holds.
Assume deg f = n > 1 and that the result holds for polynomials of degree less than n. Suppose that
S =a,"+a,_ " "+ + a0+ ag
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Then fTYw) =@, T" +a,_ 7" + - + ayI}w)
= (@, T KT + (@, T+ + ap Dw)
= (@, T WTW) + (@ T 4 -0 + agIiw)
= f(TKw)

(i) Let m(t) denote the minimum polynomial of 7. Then by (i), m{TXw) = m{TKw) = &w) = 0 for every
w € W; thatis, T is a zero of the polynomial m{t). Hence the minimum polynomial of T divides mir).

INVARIANT DIRECT-SUM DECOMPOSITIONS

11.7.

11.8.

Prove Theorem 11.4.
Suppose B is a basis of V. Then, for any v € V,
v=apWy ot A Wi, o AWy G, W, =Wy Wy o W,
where w; = a;,w,, + -+ + a,, w,, € W,. We next show that such a sum is unique. Suppose
v=w; +wh+ o W, where w; € W
Since {w;,, ..., wy,} is a basis of W;, w; = b, ;w;; + - - + b, w;, and so
v=bywyy + bW, bW+ b, W,

Since B is a basis of V, g, = b;;, for each i and each j. Hence w; = w} and so the sum for v is unique.
Accordingly, V is the direct sum of the W,.

Conversely, suppose V is the direct sum of the W,. Then for any ve V, v =w, + --- + w, where
w; € W,. Since {w;;} is a basis of W,, each w, is a linear combination of the w;; and so v is a linear
combination of the elements of B. Thus B spans V. We now show that B is linearly independent. Suppose

apwy + o G, Wiy o R G W 0 G W, =0

Note that a;w;, + - + a;, w;, € W.. We also have that 0 =0+ 0+ --- + 0 where 0 € W;,. Since such a
sum for 0 is unique,
ar]w‘]+"'+ainiw‘“‘=0 fOl‘l'-‘=1,...,r

The independence of the bases {w;,} imply that all the a's are 0. Thus B is linearly independent and hence is
a basis of V.

Suppose T : ¥ — V is linear and suppose T = T; @ T, with respect to a T-invariant direct-sum
decomposition V = U @ W. Show that:

(¢) mft) is the least common multiple of m,(f) and m,(f) where m(t), m,(r), and m,(f) are the
minimum polynomials of T, T}, and T,, respectively.

(b) A1) = A,(t) A,(t), where A(t), A, (1) and A,(t) are the characteristic polynomials of T, T; and
T, , respectively.

(a) By Problem 11.6, each of m,(t) and m(t) divides m(t). Now suppose f(t) is a multiple of both m,(1) and
m,(t); then f(T,NU) = O and f(T,YW)=0.Letv € ¥;thenr = u + wwith u € U and w e W. Now

T =f(Tw+ f(Tw=f(TYu+f(T)w=0+0=0
That is, T is a zero of f(t). Hence m(t) divides f(z), and so m{t) is the least common multiple of m,(f) and
mz(f}.
A 0

(b) By Theorem 11.5, T has a matrix representation M = (0 B) where A and B are matrix representa-

tions of T, and T, respectively. Then,

i — A 0

= =2 — B|=A0) At
0 H~BI el — Allt] | (D) Ax()

Ay=|tI — M| =

as required.
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Prove Theorem 11.7.

Note first that U and W are T-invariant by Theorem 11.2. Now since g(t) and h(t) are relatively prime,
there exist polynomials r{t) and s(t) such that

rt)g(t) + s{t)hit) = 1
Hence, for the operator T, AT)gT) + s(TWT) =1 (%)
Let v € V; then by (%), v=nrHT)gTXv) + s(TT)v)

But the first term in this sum belongs to W = Ker A(T). In [act, since the composition of polynomials in T is
commutative,

WTWTT o) = HTITIMT Ko) = HT)f (TKe) = ATHO) = 0

Similarly, the second term belongs to U. Hence ¥V is the sum of U and W.
To prove that V = U @ W, we must show that a sum v =u + w with ue U, we W, is uniquely
determined by v. Applying the operator {T)g(T) to v = u + w and using g{T)}u) = 0, we obtain

AT Y) =TT Xw) + (T)g(THw) = {T)gTKw)
Also, applying (=) to w alone and using h(T)}w) = 0, we obtain

w=HT)gTXw) + S(TI(TYw) = HT)g(T}w)

The last two equations together give w = r(T')g(T)v), and so w is uniquely determined by v. Similarly, u is
uniquely determined by v. Hence V = U @ W, as required.

Prove Theorem 11.8: In Theorem 11.7 (Problem 11.9), if f(z) is the minimum polynomial of T
[and g(t) and h(r) are monic], then g(t) is the minimum polynomial of the restriction T, of T to
U and k(r) is the minimum polynomial of the restriction T; of T to W.

Let m,(f) and m,(t) be the minimum polynomials of T, and T, respectively. Note that g(7;) = 0 and
HT,) = 0 because U = Ker ¢g(7T) and W = Ker K(T). Thus

m,(t) divides g{t) and m(t) divides hir) (hH

By Problem 11.9, f{t) is the least common multiple of m(t) and m,(t). But m{#) and m,(t) are relatively
prime since g(t) and hit) are relatively prime. Accordingly, f(t) = m,(t)m,(t). We also have that f(f) = g(f)h().
These two equations together with (/) and the fact that all the polynomials are monic, imply that
g(t) = m(t) and h{1r) = m,(t), as required.

Prove the Primary Decomposition Theorem 11.6.

The proof is by induction on r. The case r = 1 is trivial. Suppose that the theorem has been proved for
r — 1. By Theorem 11.7 we can write V as the direct sum of T-invariant subspaces W, and ¥, where W, is
the kernel of f;,(T)™ and where ¥, is the kernel of f,(T)™ - -- f(T)". By Theorem 11.8, the minimum poly-
nomals of the restrictions of T to W, and ¥, are, respectively, f,(t)** and ()" - -- f (t)™.

Denote the restriction of T to ¥ by T,. By the inductive hypothesis, ¥, is the direct sum of subspaces
W,, ..., W, such that W; is the kernel of f(T,)™ and such that f{t)” is the minimum polynomial for the
restriction of T, to W,. But the kernel of f(T)*, for i = 2, ..., r is necessarily contained in ¥, since f(t)"
divides f5(t)"* -+~ f(#)*. Thus the kernel of f{T)™ is the same as the kernel of f{7,)™ which is W,. Also, the
restriction of T to W, is the same as the restriction of T, to W, (for i = 2, ..., r); hence f{t)* is also the
minimum polynomial for the restriction of 7 to W,. Thus V¥ = W, @ W, @ - - - @ W, is the desired decompo-
sition of T

Prove Theorem 11.9. T is diagonalizable iff m(t) is a product of distinct linear factors.
Suppose m{t) is a product of distinct linear polynomials; say,

mit) =(t — ANt —4;) - (t = 1)
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where the A; are distinct scalars. By Theorem 11.6, V is the direct sum of subspaces W,, ..., W, where
W, = Ker (T — A4, 1). Thus if v € W, then (T — 4, I)Xv) = 0 or T(v) = 4,v. In other words, every vector in W,
is an eigenvector belonging to the eigenvalue A;. By Theorem 11.4, the union of bases for W, ..., W is a
basis of V. This basis consists of eigenvectors and so T is diagonalizable.

Conversely, suppose T is diagonalizable, ie., ¥ has a basis consisting of eigenvectors of 7. Let
Ay ...y A be the distinct eigenvalues of 7. Then the operator

STY=(T = i IXT — A1) - AT = 4,1)

maps each basis vector into 0. Thus f(T) =0 and hence the minimum polynomial m{t) of T divides the
polynomial

JO=(@—A)t—2)---(t—4)

Accordingly, m(t) is a product of distinct linear polynomials.

NILPOTENT OPERATORS, JORDAN CANONICAL FORM
11.13. Let T : V — V be linear. Suppose, for v € V, THv) = 0 but T* '(v) # 0. Prove: ’
(@) Theset S = {v, T(v), ..., T* '(v)} is linearly independent.
(b) The subspace W generated by § is T-invariant.
(¢) The restriction T of T to W is nilpotent of index k.
(d) Relative to the basis {T* " '(v). ..., T(v), v} of W, the matrix of T is of the form

010 ..00

Hence the above k-square matrix is nilpotent of index k.

(a) Suppose
av+a, T+ a, Tw)+ - -+ a7 () =0 (+

Applying T* ' to (+) and using T*v) = 0, we obtain aT* (v} = 0; since T* '(v) # 0, a = 0. Now
applying T 2 to (+) and using 7¥(v} = 0 and a = 0, we find a, T*~ ') = 0; hence a, = 0. Next apply-
ing T*~* to (») and using T*(v) = 0 and a = a, = 0, we obtain a, T* '(v) = 0; hence a, = 0. Contin-
uing this process, we find that all the a's are 0; hence § is independent.

(h) Letrve W.Then
v=bv+b,T(W)+ b, Tv) + - + b, T* (1)
Using TXt) = 0, we have that
T =bTW)+ b, TH) +--- + b, T )e W
Thus W is T-invariant.
(¢} By hypothesis, T(v) = 0. Hence, fori =0, ..., k — 1,
THT) = T** () =0

That is. applying T to each generator of W, we obtain 0: hence 7* = 0 and so T is nilpotent of index
at most k. On the other hand, 7 '(v) = T '(v) # 0: hence T is nilpotent of index exactly k.
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(d) For the basis {T* (), T* v), ..., T(v), v} of W,
T(T* W) = THv) = 0
nr ey = ™ '(v)
T ) = ™ *(v)

..........................................................

o
=
]
=]

0 01 0 0
000 ... 01
000 00

11.14. Let T:V - V be linear. Let U = Ker T and W = Ker T'''. Show that (a) U = W, and
() T(W)c U.

(a) Suppose ueU=KerT. Then Tiw=0 and so T Y uy=T(Tu)=T0)=0  Thus
ue Ker 7°*' = W. But this is true for every u € U; hence U < W.

(b) Similarly, if we W = Ker T°"', then T'"*'(w)=0. Thus T**'(w) = TH(T(w)) = T{0) =0 and so
T(W)c U.

11.15. Let T: ¥V — V be linear. Let X =Ker T° %, Y = Ker T*" ', and Z = Ker T". By Problem 11.14,
X c Y c Z. Suppose

{7 R T TP T SO T R 1, f o coa Uy Oporeois O Waowswa Wi
are bases of X, Y, and Z, respectively. Show that
S={uy,...,u, T(w,), ..., T(w)}
is contained in Y and is linearly independent.

By Problem 11.14, T(Z) < Y and hence § < Y. Now suppose S is linearly dependent. Then there exists
a relation

au +--+au+bTw)+---+bTw)=0

where at least one coefficient is not zero. Furthermore, since {u;} is independent, at least one of the b, must
be nonzero. Transposing, we find

bT(w)+ - +bTw)= —au, — - —a,u,€X =Ker T" 2
Hence Ti_z(blT(wl}‘l' o+ b, T(w)) =0
Thus T"Ybyw, + - +bhw)=0 andso bw,+ - +bwe¥=KeT!

Since {y,, v_,} generates Y, we obtain a relation among the u;, v; and w, where one of the coeflicients, i.c.,
one of the by, is not zero. This contradicts the fact that {y;, v;, w,} is independent. Hence S must also be
independent.

11.16. Prove Theorem 11.10.

Suppose dim V =n Let W, =Ker T, W, =Ker T2, ..., W, = Ker T*. Let us set m; = dim W,
fori=1,..., k. Since T is of index k, W, = V and W, | # V and so m; _, < m, = n, By Problem 11.14,

WMeW,cs---eW=V
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Thus, by induction, we can choose a basis {u,, ..., u,} of ¥ such that {u,, ..., u,,} is a basis of ;.
We now choose a new basis for ¥ with respect to which T has the desired form. It will be convenient
to label the members of this new basis by pairs of indices. We begin by setting

!J(l.k}= m-1+l’v(2’k)==“m—1+2=-":dmk_mt-lsk]=um
and setting
o{l, k— 1) = To(l, k), 2, k — 1) = To(2, K), ..., vlmy — m,_y, k — 1) = Tofm, — my_ 4, k)
By Problem 11.15, Sy ={up ety L E—= 1), 0y —my k= 1)}

is a linearly independent subset of W _,. We extend S, to a basis of W,_, by adjoining new elements (if
necessary) which we denote by

olm —my_ + Lk— U, olmy—my_, +2,k—=1),...,00m_, —my_,, k—1)
Next we set
(k=2 =Tl k=12, k—)=Tuo2 k—1),....0lm_ —my_5, k—2)=Tvlm, _, —m_,, k—1)
Again by Problem 11.15,
Sy={ty, sty 5, L k—2) o, oy, —my 5, k —2)}
is a linearly independent subset of W,_ , which we can extend to a basis of W,_, by adjoining elements
oy — Mg+ Lk—2}vim_y —my_a+ 2, k—2), ..., 0{m_y—m_5,k—2)

Continuing in this manner we get a new basis for I which for convenient reference we arrange as follows:

ol k), ..., vlm—m_, k)

k=1, ...,o0m—m_ k=1, ....,0o0m_, —m_,, k—1)

............................................................................................

ol,2), ovm—m_,2), . ome, —m_y, 2), ..., oy — my, 2)
[{1, l]', g U{m,‘—mh_l, l), cruy l{mk_!—m*_z. l),.”, L{mz—m" l],”., dﬂ'h,l)

The bottom row forms a basis of W], the bottom two rows form a basis of W}, etc. But what is important

for us is that T maps each vector into the vector immediately below it in the table or into 0 if the vector is
in the bottom row. That is,

oi,j—1) forj>1

Tv(i,}')={ ] forj=1

Now it is clear [see Problem 1[1.13(d)] that T will have the desired form if the u{i, j) are ordered lexico-
graphically: beginning with 11, 1) and moving up the first column to i1, k), then jumping to (2, 1) and
moving up the second column as far as possible, etc.

Moreover, there will be exactly

m, —m,_, diagonal entries of order k
(my_y — mg_p) — (my — my_ ) = 2m, , — m, — m,_, diagonal entries of order k — 1

.......................................................

2my —m, —m, diagonal entries of order 2
2m; —m, diagonal entries of order 1

as can be read off directly from the table. In particular, since the numbers m,, ..., m, are uniquely deter-
mined by T, the number of diagonal entries of each order is uniquely determined by T. Finally, the identity

my=(my—my_ ) +2m_y —me—my_j)+ -+ (2my —my — my) + 2my — my)
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shows that the nullity m, is the total number of diagonal entries of T'.

01 1 01 0 01 11
00111 0 0 000
Let A={0 O 0 O O|.ThenA>=|0 0 0 O O |and A*=0; hence A is nilpotent of
0 0000 000 0O
0 00 00O 0 00 00O

index 3. Find the nilpotent matrix M in canonical form which is similar to 4.

Since A is nilpotent of index 3, M contains a diagonal block of order 3 and none greater than 3. Note
that rank A = 2; hence nuility A =5 — 2 = 3. Thus M contains 3 diagonal blocks. Accordingly M must
contain one diagonal block of order 3 and two of order 1; that is,

1 0!0 0O
0 1,0 0
0

Prove Theorem 11.11.

By the primary decomposition theorem, T is decomposable into operators T,,..., T,, that is,
T=T,® - &T,, where (t — i)™ is the minimum polynomial of T;. Thus in particular,

(-4 =0,.. . (T.—-4I"=0
Set N;=T,— AL Thenfori=1,...,r,

T, =N+ 41 where NT" =

That is, T; is the sum of the scalar operator A;1 and a mipotent operator N;, which is of index m; since
(t — A;y™ is the minimum polynomial of T;.

Now by Theorem 11.10 on nilpotent operators, we can choose a basis so that N, is in canenical form.
In this basis, 7, = N; + A;[ is represented by a block diagonal matrix M; whose diagonal entries are the
matrices J,;. The direct sum J of the matrices M, is in Jordan canonical form and, by Theorem 11.5, is a
matrix representation of T.

Lastly we must show that the blocks J;; satisfy the required properties. Property (i) follows from the
fact that N, is of index m;. Property (ii) is true since T and J have the same characteristic polynomial.
Property (iii) is true since the nullity of N; = T; — 4,1 is equal to the geometric multiplicity of the eigenvalue
;. Property (iv) follows from the fact that the 7; and hence the N, are uniquely determined by 7.

Determine all possible Jordan canonical forms for a linear operator T : ¥ — V whose character-
istic polynomial is A(1) = (t — 2)%(t — 5)*

Since t — 2 has exponent 3 in A(t), 2 must appear three times on the main diagonal. Similarly 5 must
appear twice. Thus the possible Jordan canonical forms are

2

1
2_

2

==
- b=

0] (ii) (iii)



CHAP. 11] CANONICAL FORMS 385
21 2 1, .
2 1, 20 il
2. Ty 12"
------ o e | e G e
t 5, ' 5 : 1 5 "
| P - I__r_ '__i.....
: 5 i 5 v 5
(iv) ) (iv)
11.20. Determine all possible Jordan canonical forms J for a matrix of order 5 whose minimal poly-

nomial is m(t) = (t — 2)%

J must have one Jordan block of order 2 and the others must be of order 2 or 1. Thus there are only
two possibilities:

or J

Note that all the diagonal entries must be 2 since 2 is the only eigenvalue.

QUOTIENT SPACE AND TRIANGULAR FORM

11.21.

11.22.

11.23.

Let W be a subspace of a vector space V. Show that the following are equivalent: (Jue v + W,
(ii)u—veW,(i)veu+ W.
Suppose w € v + W. Then there exists w, € W such that u = v + w,. Hence u — v = wy, € W. Con-

versely, suppose ¥ — v € W. Then u — v = w, where w, € W. Hence u = v + wy € W. Thus (i) and (ii) are

equivalent.
We also have:u —ve Wil —(u—v)=v—ue Wiff v € u + W. Thus (ii) and (iii) are also equivalent.

Prove: The cosets of W in V partition V into mutually disjoint sets. That is:

(i) any two cosets u + W and v + W are either identical or disjoint; and
(i) eachr e V belongs to a coset; in fact, v e v + W.

Furthermore, u+ W =v+ W if and only if u —ve W, and so (v + w) + W =v + W for any
we W.

Letv e V. Since 0 e W, we have v = v + 0 € v + W which proves (ii).

Now suppose the cosets ¥ + W and ¢ + W are not disjoint; say, the vector x belongs to both u + W
and v + W. Then u — x € W and x — v € W. The proof of (i) is complete if we show that u + W =v+ W.
Let u + w, be any element in the coset u + W. Since u — x, x — v, and w, belong to W,

(M+w)—v=@U—x)+{x—0v)+wye W

Thus u + wy € v + W and hence the coset ¥ + W is contained in the coset v + W. Similarly v + W is
contained inu + Wandsou + W =0v + W.

The last statement follows from the fact that u + W=v + W if and only if ue v + W, and, by
Problem 11.21, this is equivalent tow — v e W.

Let W be the solution space of the homogeneous equation 2x + 3y + 4z = 0. Describe the cosets
of Win R*,
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W is a plane through the origin O = (0, 0, 0), and the cosets of W are the planes parallel to W as
shown in Fig. 11-3. Equivalently, the cosets of W are the solution sets of the family of equations

2x+3y+4z=k keR
In particular the coset v + W, where v = (a, b, ¢), is the solution set of the linear equation
2x + 3y + 4z =2a+ 3b + 4c or Ax—a)+ 3y —b)+MHz—¢c)=0

Fig. 11-3

11.24. Suppose W is a subspace of a vector space V. Show that the operations in Theorem 11.15 are
well defined; namely, show thatifu + W =u' + Wand v + W =1t + W, then:

@ wW+vy+W=@w+)Y+ W and b) ku+ W=Fku'+ W, for any k € K.

(@) Since u+ W=v+W and v+ W =0+ W, both u—« and v —1' belong to W. But then
w+o)— W +v)=w—ul+(v—v)eW.Hence(u+ o)+ W=w +v)+ W.

(b) Also, since u—weW implies kiu—u)eW, then ku—ku' =klu—u)e W; accordingly
i+ W =ky + W.

11.25. Let V be a vector space and W a subspace of V. Show that the natural map n:V - V/W.
defined by n(r) = v + W, is linear.

For any u, v € V and any k € K, we have
nu+v)=u+v+W=u+W+o+W=nlu+np)
and nikvy = kv + W = k(v + W) = kn(v)

Accordingly, 3 is linear.

11.26. Let W be a subspace of a vector space V. Suppose {w;, ..., w,} is a basis of W and the set of
cosets {t, ..., 0}, where #; = v; + W, is a basis of the quotient space. Show that B is a basis of
V where B = {v,, ..., v, Wy, ..., W,}. Thus dim ¥ = dim W + dim (V/W).

Suppose u € V. Since {;} is a basis of V/W,
u=u+W=av, +a,0; + - +a,n,
Hence u = a,v; + -~ + a,v, + w where w € W. Since {w;} is a basis of W,
=avy + - +a,v,+byw + -+ b w,
Accordingly, B spans V.



CHAP. 11] CANONICAL FORMS 87

11.27.

11.28.

We now show that B is linearly independent. Suppose
ooy + e, +dywy - +d,w, =0 N
Then b+ -+, f,=0=W

Since {7;} is independent, the c's are all 0. Substituting into (/), we find d,w, + --- + d,w, = 0. Since {w,} is
independent, the d's are all 0. Thus B is linearly independent and therefore a basis of V.

Prove Theorem 11.16.

We first show that T is well defined, ie, if u+ W=v+ W then Tu+ W)=T@w + W). If
u+ W=uv+ Wthenu— ve W and, since W is T-invariant, T(u — v) = T(4) — T(v) € W. Accordingly,

Tu+W)=Tuw+W=Tw)+ W =T+ W)

as required.

We next show that T is linear. We have

T+ WM+ +Wh=Tu+v+W)=Tu+o)+ W=Tu + Tt) + W
=T+ W+ T+ W =Tu+ W)+ T + W)
and
T(kiu + W) = T(ku + W) = T(ku) + W = kT(w) + W = KT} + W) = kT(u + W)

Thus T is linear.
Now, for any coset u + W in V/W,

THu+ W)=THwW + W=T(Tw) + W = T(Tw) + W)=T(Tu+ W) =THu + W)
Hence T2 = T2. Similarly 7" = T for any n. Thus for any polynomial
f=a, "+ - +a,=Yat
JYu + W) =f(Thu) + W =} a, Ty + W =} a(T'(u) + W)
=Y aqTu+ W)=Y a;Tu+ W)= a, TYu + W) = f(T)u + W)

and so f(T) = f(T). Accordingly, if T is a root of f(t) then T =0=W = f(T), 1e. T is also a root of f{(f).
Thus the theorem is proved.

Prove Theorem 11.1.

The proof is by induction on the dimension of V. If dim V = 1, then every matrix representation of T
isa 1 x 1 matrix, which is triangular.

Now suppose dim V¥ = n > I and that the theorem holds for spaces of dimension less than n. Since the
characteristic polynomial of T factors into linear polynomials, T has at least one eigenvalue and so at least
one nonzero eigenvector v, say T(v) =a,,v. Let W be the 1-dimensional subspace spanned by v. Set
V = v/W. Then (Problem 11.26) dim ¥ = dim ¥ — dim W = n — 1. Note also that W is invariant under
T. By Theorem 11.16, T induces a lincar operator T on ¥ whose minimum polynomial divides the
minimum polynomial of T. Since the characteristic polynomial of T is a product of linear polynomials, so is
its minimum polynomial; hence so are the minimum and characteristic polynomials of 7. Thus ¥ and T
satisfy the hypothesis of the theorem. Hence. by induction, there exists a basis {i,, ..., 7,} of ¥ such that

T(vy) = a,, 0,
T(¥;) = a3 U3 + ay305

T{En) =an1ﬁ2 + au!'?.! +-- 4+ amﬁu

Now let v,, ..., v, be elements of V which belong to the cosets ©,, ..., ¥,, respectively. Then {v, v, ..., v,}
is @ basis of V¥ (Problem 11.26). Since T(0;) = a,, v, we have

T(My) = a0, =0 andso  T(v))~ayv,e W
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But W is spanned by v; hence T(v;) — a,, v, is a multiple of v, say

T(v)) — @y =ayv andso  T(vy) = a0 + a;, 0,

Similarly,fori=3,...,n,

T(D.*) = Qi3 — dpyVy — " — Ul € W and so T(ﬂil = ;v + Qaly + - + a; v

Thus T() =a,,v

T(vy)) = a0 + a;,v,

.......................................

Tw) =a,v+a,v,+ -+ +a,,uv,

and hence the matrix of T in this basis is triangular.

CYCLIC SUBSPACES, RATIONAL CANONICAL FORM
11.29. Prove Theorem 11.12.

]

(i)

(ii)

By definition of my(t), T*(v) is the first vector in the sequence v, T(¢), T?(v), ... which is a linear
combination of those vectors which precede it in the sequence: hence the set B = {v, T(v), ..., T '(v)}
is linearly independent. We now only have to show that Z(v, T) = L{B), the linear span of B. By the
above, T'(v) € L(B). We prove by induction that T"(») € L(B) for every n. Suppose n > k and
T '(v) € I{B), ie., T" '(v) is a linear combination of v, ..., T* (). Then T™(v) = T(T" "(v)) is a
linear combination of T(v), ..., TXv). But T*(v} € L{B); hence T"(v) € L(B) for every n. Consequently
f(T)v) € L{B) for any polynomial f(t). Thus Z(v, T) = L{B) and so B is a basis as claimed.

Suppose m{t) = ¢ + b,_,t*"' + -~ + by is the minimal polynomial of T,. Then, since v € Z(v, T),
0 =m(TN) = m(T)t) = Tv) + b, , T* " '0) + -+ + bov

Thus T%u) is a linear combination of o, T(v), ..., T* " '(v), and therefore k < s. However, m (T) = 0
and so m(T,) = 0. Then m(t) divides m () and so s < k. Accordingly k = s and hence m,(t) = mit).

Tiv) = T(v)

Twy = T(v)

TUT* o)) = ™ ')
TT ') = THe) = —apv — a, T()—a; TXp) — - —a,_, T* ()

By definition, the matrix of T, in this basis is the transpose of the matrix of coefficients of the above
system of equations; hence it is C, as required.

11.30. Let T: V — V be linear. Let W be a T-invariant subspace of V and T the induced operator on
V/W. Prove: (@) The T-annihilator of v € V divides the minimum polynomial of T. (b) The
T-annihilator of ¢ € V/W divides the minimum polynomial of T.

(a)

(b)

The T-annihilator of v € V is the minimum polynomial of the restriction of T to Z{v, T) and therefore,
by Problem 11.6, it divides the minimum polynomial of T.

The T-annihilator of ¢ € V/W divides the minimum polynomial of T, which divides the minimum
polynomial of T by Theorem 11.16.

Remark. In case the minimum polynomial of T is f(t)" where f(t) is 2 monic irreducible polynomial,

then the T-annihilator of v € V and the T-annihilator of & € V/W are of the form f(t)* where m < n.

11.31. Prove Lemma 11.13.

The proof is by induction on the dimension of V. If dim V = 1, then V is itself T-cyclic and the lemma

holds. Now suppose dim ¥ > 1 and that the lemma holds for those vector spaces of dimension less than
that of V.
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Since the minimum polynomial of T is f(t)", there exists v, € V such that f(T)"” '(v,) # 0; hence the
T-annihilator of v, is f(f)". Let Z, = Z(v,, T) and recall that Z, is T-invariant. Let V = V/Z, and let T be
the linear operator on V induced by 7. By Theorem 11.16, the minimum polynomial of T divides f(t)*;
hence the hypothesis holds for ¥ and T. Consequently, by induction, ¥ is the direct sum of T-cyclic
subspaces; say,

V=26, He® - ®zG, T

where the corresponding T-annihilators are f(t)2, ..., f(f",n=2n, > - 2 n,.
We claim that there is a vector v, in the coset i, whose T-annihilator is f(¢)™, the T-annihilator of b, .
Let w be any vector in 0, . Then f(T)"*(w) € Z,. Hence there exists a polynomial g(t) for which

J(T)'*(w) = g(TKe,) ()
Since f(t)* is the minimum polynomial of T, we have by (),
0 = f(TY(w) = fF(T)"""g(TXv,)

But f(T)" is the T-annihilator of v;; hence f(t)" divides f(t)" "g(t) and so g(t) = f(t)"h(t) for some poly-
nomial h(t). We set

vy =w— h(T)v,)

Since w — v, = H{T)r,) € Z,, v, also belongs to the coset #,. Thus the T-annihilator of v, is a multiple of
the T-annihilator of ¥,. On the other hand, by (/)

J(TYHug) = f(TYHw — K(T)v)) = f(TY™(w) — g(TKvy) = 0

Consequently the T-annihilator of v, is f(1)™ as claimed.
_ Similarly, there exist vectors vy, ..., v, € V such that v; € v; and that the T-annihilator of v; is f(t)", the
T-annihilator of 7;. We set

Zz = at‘z, T}, aaay Z,.= le.’r, T]‘

Let d denote the degree of f(t) so that f(t)* has degree dn;. Then since f(t)* is both the T-annibilator of v,
and the T-annihilator of 1;, we know that

{v;, T@), ..., T*" ')} and {5, T, ..., T ')}
are bases for Z(v,, T) and Z(v;, T), respectively,fori=2, ... r. But V = Z(@w;, Y@ -+ ® Z(1,, T); hence
fin T W@k vy s T YEN
is a basis for V. Therefore by Problem 11.26 and the relation T%(%) = T4v) (see Problem 11.27),
{0 oo T " Y} 03, oo T¥ " Yook ooy By ey T ()}

is a basis for V. Thus by Theorem 114, V = Z(v,, TV --- @ Z(v,, T), as required.
It remains to show that the exponents n,, ..., n, are umquely determined by T. Since d denotes the
degree of f(1),

dimV =dn, +---+n) and dim Z; = dn, i=1...,r

Also, if s is any positive integer then (Problem 11.59) f(T)(Z)) is a cyclic subspace generated by f(T)%(v;) and
it has dimension d(n; — s) if n; > s and dimension 0 if n; < s.

Now any vector v € V can be written uniquely in the form v = w, + --- + w, where w; € Z;. Hence
any vector in f(T)(V) can be written uniquely in the form

JTYE) = f(TY(wy) + -~ + f(TY(w,)
where f(TY(w) € f(T)(Z,). Let t be the integer, dependent on s, for which
Ny > 8 ..., >80, 28
Then fITFVY=f(THZ,) @ @f(TIZ)
and so dim (A(TY(V) = dl(n, —s) + --- + (n, — 5)] (*)
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The numbers on the left of (») are uniquely determined by T. Set s = n — 1 and () determines the number
of n; equal to n. Next set s = n — 2 and (+) determines the number of n; (if any) equal to n — 1. We repeat
the process until we set s = 0 and determine the number of n; equal to 1. Thus the n; are uniquely deter-
mined by T and V, and the lemma is proved.

11.32. Let V be a vector space of dimension 7 over R, and let T: V — V be a linear operator with
minimum polynomial m(f) = (t> 4+ 2}(t + 3)°. Find all the possible rational canonical forms for 7.

The sum of the degrees of the companion matrices must add up to 7. Also, one companion matrix
must be (2 + 2 and one must be (¢ + 3)’. Thus the rational canonical form of T is exactly one of the
following direct sums of companion matrices:

B C?+2)@Ct* + 2@ C(( + 3))

i) C(? + 2@t + @t + 3)?)
(i) C*+2@CHt+INOC +3)DCt + 3)

That is,
T b o —2!
i 0. 1 0, i
0 =1, W0 a7
TR Y ‘10 =274
e o s il e e i o o [} 1
00 —27 0 1 -9
1 | o PR | NPT 18 e e
'ro0 =27 0 -9
o 1 —9 8
1] (ii)
0 -2
1 0,
''''' I e e ST T |
0 0 —27.
0 —275
LR L
=¥
PRSNG| DR
s |
(iii)
PROJECTIONS

11.33. Suppose V = W, @ --- @ W,. The projection of V into its subspace W, is the mapping E: V —» V
defined by E(v) = w, wherev = w, + -+ + w,, w; € W,. Show that () E is linear, and (b) E* = E.

(@) Since the sum v =w, + --- + w,, w; € W is uniquely determined by v, the mapping E is well defined.
Suppose, foru e V,u=w) + - + w,, w; € W,. Then

v u=(w, + W)+ (W, + W) and kv = kw, 4 -+ + kw, kw;, w, + wi € W,
are the unique sums corresponding to v + u and kv. Hence
E(v + u) = w, + wi = E(v) + E(u) and E(kv) = kw, + kE(v)

and therefore E is linear.
(b) We have that wy=0+4+-+04+w,+0+--4+0

is the unique sum corresponding to w, € W,; hence E(w,) = w,. Thenforany v e V,
EX(v) = E(E(v)) = E(w,) = w, = E(v)
Thus E? = E, as required.
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11.34. Suppose E: ¥V — V is linear and E?> = E. Show that: (a) F(u) = u for any ue Im E, ie, the
restriction of E to its image is the identity mapping; (b) V is the direct sum of the image and
kernel of E: that 1s, V = Im E @ Ker E; (¢) E is the projection of V into Im E, its image. Thus,
by Problem 11.33, a linear mapping T : V — V is a projection if and only if T? = T'; compare
Problem 9.45.

(@) Ifu e Im E, then there exists v € V for which E(v) = u; hence
Eu) = E(E@}) = E*() = Ev) =u
as required.
{b) Letve V. Wecan write v in the form v = E(v) + v — E(v). Now E(v) € Im E and, since
Etv — E(v)) = E(v) — E*(v) = E(2) — E(t) =0

v — F(v) € Ker E. Accordingly, V = Im E + Ker E.

Now suppose w € Im E n Ker E. By (i), E(w) = w because w € Im E. On the other hand, E(w) =0
because w € Ker E. Thus w = 0 and so Im E n Ker E = {0}. These two conditions imply that V is the
direct sum of the image and kernel of E.

(¢) Let ve V and suppose v =u + w where u € Im E and w e Ker E. Note that E(u) = u by (i), and
E(w) = 0 because w € Ker E. Hence

Em=Eu+w) =Eu+Ew=u+0=u
That is, E is the projection of V into its image.

11.35. Suppose V = U ® W and suppose T : V — V is linear. Show that U and W are both T-invariant
if and only if TE = ET where E is the projection of V into U.

Observe that E(t) € U forevery v € V,and that (i) E() =t iffv e U, (i) Er) = Q0 iffv e W.
Suppose ET = TE. Letu € U. Since E(u) = u,

T(u) = T(E)) = (TEXu) = (ET)u) = E(T(w)) e U
Hence U is T-invariant. Now let w € W. Since E(w) = 0,
E(T(w)) = (ETKw) = (TEXw) = T(E(w)) = T(0) =0 and so T(iw) e W

Hence W is also T-invariant.

Conversely, suppose U and W are both T-invariant. Let v € V and suppose v = u + w where ue T
and w e W, Then T(u) € U and T(w) € W; hence E(T(u)) = T(u) and E(T(w)) = 0. Thus

(ETXo) = (ET)u + w} = (ETXu) + (ETYw) = E(T(u)) + E(T(w)) = T(u)
and (TE)v) = (TEXu + w) = T(E(u + w)) = T(u)
That is, (ET)Xv) = (TEXv) for every v € V; therefore ET = TE as required.

Supplementary Problems

INVARIANT SUBSPACES
11.36. Suppose W is invariant under 7 : I’ — V. Show that W is invariant under f(T) for any polynomial f(t).

11.37. Show that every subspace of V is invariant under / and 0, the identity and zero operators.
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11.38.

11.39.

11.40.

1141,

11.42.
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Suppose W is invariant under T, : V -+ V and 7, : V — V. Show that W is also invariant under 7} + T,
and T\ T;.

Let T:V — V be linear and let W be the eigenspace belonging to an eigenvalue 4 of T. Show that W is
T-invariant.

Let V be a vector space of odd dimension (greater than 1) over the real field R. Show that any linear
operator on V has an invariant subspace other than V or {0}.

Determine the invariant subspaces of 4 = (2 ) viewed as a linear operator on (i) R, (i) C2.

5 -2

Suppose dim ¥ = n. Show that T : ¥V — V has a triangular matrix representation if and only if there exist
T-invariant subspaces W, ¢ W, < --- < W, = V for whichdim W, =k, k=1,....n

INVARIANT DIRECT SUMS

11.43.

11.44.

11.45.

11.46.

The subspaces W,, ..., W, are said to be independent il w, + --- + w, = 0, w; € W}, implies that each w; = 0.
Show that span (W)= W, @ --- @ W, if and only if the W, are independent. [Here span (W) denotes the
linear span of the W,.]

Show that V=W, @--- @ W, if and only if (i) V¥ =span (W) and, for k=1, 2, .. r, (i) W, n span
(WIS"Hm 1!“fl:+lv"‘i “:}2{0}'

Show that span (W)} = W, @ --- @ W, if and only if dim span (W) = dim W, + --- + dim W,.
Suppose the characteristic polynomial of T : V¥ — V is A(t) = f,(t)"f2(t)" - - - f{t)™ where the f{(t) are distinct

monic irreducible polynomials. Let V = W, @ --- @ W, be the primary decomposition of V into T-
invariant subspaces. Show that f{t)" is the characteristic polynomial of the restriction of T to W;.

NILPOTENT OPERATORS

11.47.

1148,

11.49.

11.50.

11.51.

Suppose T, and T, are nilpotent operators which commute, 1e., T, T, = T,7,. Show that T, + T, and T, T,
are also nilpotent.

Suppose A is a supertriangular matrix, i.e., all entries on and below the main diagonal are 0. Show that A4 is
nilpotent.

Let V be the vector space of polynomials of degree <n. Show that the derivative operator on V is nilpotent
of index n + L.

Show that the following nilpotent matrices of order n are similar:

01 0 ..0 00 .. 00
00 1 0 10 00
................... and 0 1 0 0
0 0 0 1 i S | (U
00 0 0 00 10

Show that two nilpotent matrices of order 3 are similar if and only if they have the same index of nilpo-
tency. Show by example that the statement is not true for nilpotent matrices of order 4.
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JORDAN CANONICAL FORM

11.52.

11.53.

11.54.

11.55.

Find all possible Jordan canonical forms for those matrices whose characteristic polynomial A(r) and
minimum polynomial m(t) are as follows:

(@) Alr) =@ — 2% — 3%, mit) = (t — 2)%(¢ — 3)?

(B) AWy = — 7 mit)=(t— 7

(© Alty=(t—2),mit)=(t —2)°

(d)  Ale) = (t - 3t — 5)°, mlr) = (¢t — 3)°(t — S)*

Show that every complex matrix is similar to its transpose. (Hint: Use its Jordan canonical form and
Problem 11.50.)

Show that all n x n complex matrices A for which A" = I but A* I for k < n are similar.

Suppose A is a complex matrix with only real eigenvalues. Show that A is similar to a matrix with only real
entries,

CYCLIC SUBSPACES

11.56.

11.57.

11.58.

11.59.

Suppose T : V — V is linear. Prove that Z(z, T) is the intersection of all T-invariant subspaces containing v.

Let f(t) and g(1) be the T-annihilators of u and v, respectively. Show that if f(t) and g(r) are relatively prime,
then f(t)g(t) is the T-annihilator of u + v.

Prove that Z(u, T) = Z(v, T) il and only if g(T)Yu) = v where g(t) is relatively prime to the T-annihilator
ofu.

Let W = Z(v, T), and suppose the T-annihilator of v is f(t)" where f(t) is a monic irreducible polynomial of
degree d. Show that f(T){W) is a cyclic subspace generated by f(T)(v) and it has dimension d(n — s)if n > s
and dimension 0if n < 5.

RATIONAL CANONICAL FORM

11.60.

11.61.

11.62.

11.63.

11.64.

Find all possible rational canonical forms for:

(@) 6 x 6 matrices with minimum polynomial m(t) = (t? + 3}t + 1)?
(b) 6 x 6 matrices with minimum polynomial m(r) = (t + 1)}
(¢) 8 x 8 matrices with minimum polynomial m{t) = (2 + 2)*(¢ + 3)

Let A be a 4 x 4 matrix with minimum polynomial m(t) = (¢2 4 1)¢t? — 3). Find the rational canonical form
for Aif A is a matrix over () the rational field Q, (b) the real field R, (c) the complex field C.

Find the rational canonical form for the Jordan block

(=R
o OO

1
A
0
0

=T = R I

Prove that the characteristic polynomial of an operator T : V — V' is a product of its elementary divisors.

Prove that two 3 x 3 matrices with the same minimum and characteristic polynomials are similar,
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11.65. Let C(f(2)) denote the companion matrix to an arbitrary polynomial f(t). Show that f(f) is the characteristic
polynomial of C(f(¢)).

PROJECTIONS

11.66. Suppose V = W, @ --- @ W,. Let E; denote the projection of V into W,. Prove: (i) E;E; =0, i #j; and
@iyl =E, +---+E,.

11.67. Let E,, ..., E, be linear operators on V¥ such that: (i) Ef = E,, ie, the E, are projections; (ii) EE;= 0,1 +# j;
(i) =E, +--- + E, Provethat V=ImE, @ ---®ImE,.

11.68. Suppose E: V — V is a projection, ie., E* = E. Prove that E has a matrix representation of the form

I, 0

(0' 0) where r is the rank of E and I, is the r-square identity matrix.

11.69. Prove that any two projections of the same rank are similar. (Hint: Use the resuit of Problem 11.68.)

11.70. Suppose E: V¥V — V is a projection. Prove: (i) - E is a projection and V =Im E®Im (I — E); and

(ii) I + E is invertible (if 1 + 1 # 0).

QUOTIENT SPACES

1171,

1172,

11.73.

11.74.

11.75.

11.76.

11.77.

11.78.

Let W be a subspace of V. Suppose the set of cosets {v, + W, v, + W, ..., v, + W} in V/W is linearly
independent. Show that the set of vectors {v, v,, ..., v,} in V is also linearly independent.

Let W be a subspace of V. Suppose the set of vectors {u,, u,, ..., u,} in V is linearly independent, and that
span (u;) n W = {0}. Show that the set of cosets {u, + W, ..., u, + W} in V/W is also linearly indepen-
dent.

Suppose V = U @ W and that {u,, ..., u,} is a basis of U. Show that {u, + W, ..., u, + W} is a basis of
the quotient space V/W. (Observe that no condition is placed on the dimensionality of V or W)
Let W be the solution space of the linear equation

ax, +a;x;+ - +a,x,=0 aq, e K

and let v =(b,, b,,..., b,) € K". Prove that the coset v + W of W in K" is the solution set of the linear
equation

a,x, + a,x;+ - +a,x,=b where b=ab, + - +a,h,

Let ¥ be the vector space of polynomials over R and let W be the subspace of polynomials divisible by #*,
that is, of the form ag t* + a,t° + -+ 4 a,_ 4" Show that the quotient space V/W is of dimension 4.

Let U and W be subspaces of V such that W = U < V. Note that any coset u + W of W in U may also be
viewed as a coset of W in V since u € U implies u € V; hence U/W is a subset of V/W. Prove that (1) U/W
is a subspace of V/W, and (ii) dim (V/W) — dim (U/W) = dim (V/U).

Let U and W be subspaces of V. Show that the cosets of U n W in V can be obtained by intersecting each
of the cosets of U in V by each of the cosets of Win V:
VAU nWi={{u+ U)n (' + W), v' e V}

Let T: ¥ — V" be linear with kernel W and image U. Show that the quotient space V/W is isomorphic to
U under the mapping 6: V/W — U defined by Hv + W)= T(v). Furthermore, show that T=icf o g
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where 1 : ¥V —+ ¥/W is the natural mapping of V into ¥/W, ie. n(v)=v + W,and i: U — ¥’ is the inclusion
mapping, i.e. i{u) = w. (See Fig. 11-4.)

4L (a)

11.52. (a)

{0)

R?and {0}, (b)) C%{0}, W, = L{2, 1 — 2i), W, = L{2. 1 + 2i).
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Chapter 12

Linear Functionals and the Dual Space

12.1 INTRODUCTION

In this chapter we study linear mappings from a vector space V into its field K of scalars. (Unless
otherwise stated or implied, we view K as a vector space over itself) Naturally all the theorems and
results for arbitrary linear mappings on ¥ hold for this special case. However, we treat these mappings
separately because of their fundamental importance and because the special relationship of V to K gives
rise to new notions and results which do not apply in the general case.

122 LINEAR FUNCTIONALS AND THE DUAL SPACE
Let ¥V be a vector space over a field K. A mapping ¢ : V — K is termed a linear functional (or linear
form)if, forevery u,v e V andevery a, b € K,
¢lau + bv) = ad(u) + bd(v)

In other words, a linear functional on V is a linear mapping from V into K.

Example 12.1
(@) Let m;: K" —+ K be the ith projection mapping, ie., n{a,. a,, ..., a,) = g;. Then =, is linear and so it is a linear
functional on K".

{b) Let V be the vector space of polynomials in ¢ over R. Let J: ¥ — R be the integral operator defined by
J(p(t)) = [§ p(t) di. Recall that J is linear; and hence it is a linear functional on V.

{c) Let V be the vector space of n-square matrices over K. Let T : ¥ — K be the trace mapping
T(A)=ay,, + a4+ +a,, where A4 = (a;;)

That is, T assigns to a matrix A the sum of its diagonal elements. This map is linear (Problem 12.24) and so it
is a hnear functional on V.

By Theorem 9.10, the set of linear functionals on a vector space V' over a field K is also a vector
space over K with addition and scalar multiplication defined by

(@+odv)y=¢)+alv) and  (k¢)v) = klv)

where ¢ and o are linear functionals on V and k € K. This space is called the dual space of V and is
denoted by V'*,

Example 12.2. Let V¥ = K", the vector space of n-tuples which we write as column vectors. Then the dual space
¥'* can be identified with the space of row vectors. In particular, any linear functional ¢ = (a,, ..., a,) in V* has the
representation
Xy
X
¢(111"-)x;}=(a1vaz1'“1an :

Xn

1

397
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or simply
MII’ . x,,] == ﬂlxt + ﬂz.l'z + -+ a"xn

Historically, the above formal expression was termed a linear form.

123 DUAL BASIS

Suppose V is a vector space of dimension n over K. By Theorem 9.11 the dimension of the dual
space V* is also n (since K is of dimension 1 over itself). In fact, each basis of V determines a basis of V*
as follows (see Problem 12.3 for the proof):

Theorem 12.1: Suppose {v,, ..., v,} is a basis of V over K. Let ¢,, ..., ¢, € V* be the linear function-
als defined by

1oifi=j
o) =g {0 ifi#)

Then {¢,,..., ¢,} is a basis of V*.

The above basis {¢;} is termed the basis dual to {v;} or the dual basis. The above formula, which
uses the Kronecker delta é,;, is a short way of writing
G1(vy) = 1L, ¢4(02) =0, 4(v3) =0, ..., $y(v,) =0
@2(0) =0, Pavz) = 1, Palv3) =0, ..., ¢lv,) = 0

.........................................................

¢n{vl-‘f = 0'- ¢n‘.l‘12) = 01 IR ¢n(vu- l} = 0- l‘;b,,(v.,) =1

By Theorem 9.2 these linear mappings ¢, are unique and well-defined.

Example 12.3. Consider the following basis of R?: {v, = (2, 1), v, = (3, 1)}. Find the dual basis {¢,, ¢,}.
We seck linear functionals ¢ ,(x, y) = ax + by and ¢,(x, ¥} = cx + dy such that

Pylvy) =1 ¢y(vy) =0 ¢i(v,) =0 bilv)) =1

Thus
dv) =42, 1) =2a+b=1
$iv)) =3, )=3a+b=0

$av) = o2 =2 +d =0
dAv,) = ¢,(3, N=3c+d=1

Hence the dual basis is {¢{x, y) = —x + 3y, do(x, y) = x — 2y}.

} or a=—-1L,b=3

} or c=1,d= -2

The next theorems give relationships between bases and their duals.

Theorem 12.2: Let {v,, ..., v,} be a basis of ¥ and let {¢,, ..., ¢,} be the dual basis of V*. Then for
any vector u € V,

u = ¢,(uv, + ¢,lthv, + - + ¢ (up, (12.h
and, for any linear functional o € V'*,
o = o(vy)d, + olv)@; + -+ + alv,)d, (12.2)

Theorem 12.3: Let {v,....v,} and {w,, ..., w,} be bases of ¥ and let {¢,, ..., ¢,} and {o,, ...,0,} be
the bases of V* dual to {r;} and {w;}, respectively. Suppose P is the change-of-basis
matrix from {v;} to {w;}. Then (P~ ')" is the change-of-basis matrix from {¢;} to {s;}.
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124 SECOND DUAL SPACE

We repeat: Every vector space V has a dual space V* which consists of all the linear functionals on
V. Thus V* itself has a dual space V** called the second dual of V, which consists of all the linear
functionals on V'*.

We now show that each v € V determines a specific element & € V**. First of all, for any ¢ € V* we
define

W) = $(v)

It remains to be shown that this map o: V* — K is linear. For any scalars a, b € K and any linear
functionals ¢, o € V*, we have

tlad + bo) = (ad + bolv) = ad(v) + bo(v) = ai{¢) + bilo)
That is, 9 is linear and so & € V**. The following theorem, proved in Problem 12.7, applies.

Theorem 12.4: If V has finite dimension, then the mapping v o is an isomorphism of ¥ onto VV**,

The above mapping v— ¢ is called the natural mapping of V into V** We emphasize that this
mapping is never onto ¥** if ¥ is not finite-dimensional. However, it is always linear and, moreover, it
is always one-to-one.

Now suppose V does have finite dimension. By Theorem 124, the natural mapping determines an
isomorphism between V' and V** Unless otherwise stated we shall identify ¥ with V** by this
mapping. Accordingly, we shall view V as the space of linear functionals on V* and shall write
V = V**. We remark that if {¢,} is the basis of ¥'* dual to a basis {v;} of V, then {v;} is the basis of
V** — V which is dual to {¢,}.

125 ANNIHILATORS

Let W be a subset (not necessarily a subspace) of a vector space V. A linear functional ¢ € V* is
called an annihilator of W if ¢(w) = 0 for every w e W. i.e.. if (W)} = {0}. We show that the set of all
such mappings, denoted by W? and called the annihilator of W, is a subspace of V*. Clearly 0 € W°.
Now suppose ¢, 0 € W°. Then, for any scalars a, b € K and for any w e W,

(ad + bo)(w) = ad(w) + ba(w) = a0 + b0 = 0

Thus a¢ + bo € W° and so W2 is a subspace of V*.
In the case that W is a subspace of V¥, we have the following relationship between W and its
annihilator W°. (See proof in Problem 12.11.)

Theorem 12.5: Suppose V has finite dimension and W is a subspace of V. Then:
(i) dim W + dim W° = dim V and (i) w=w

Here W ={ve V: ¢(v) =0 for every ¢ € W°} or, equivalently, W = (W°° where W°° is
viewed as a subspace of ¥ under the identification of V and V**.

The concept of an annihilator enables us to give another interpretation of a homogeneous system of
linear equations

auxl +a12x2 + - +ﬂ|,,x,,=0
azlxl + azzx; b it +az”xﬂ=0 (*)

Ay Xy + Qo Xo + "+ Ay Xy, =0

Here each row (a;,, a;,, ..., @;,) of the coeflicient matrix A = (q;;) is viewed as an element of K" and each
solution vector ¢ = (x,, x;, ..., X,) is viewed as an element of the dual space. In this context, the
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solution space S of (») is the annihilator of the rows of 4 and hence of the row space of A. Consequent-
ly, using Theorem 12.5, we again obtain the following fundamental result on the dimension of the
solution space of a homogeneous system of linear equations:

dim § = dim K" — dim (rowsp 4) = n — rank A

126 TRANSPOSE OF A LINEAR MAPPING

Let T:V — U be an arbitrary linear mapping from a vector space V into a vector space U. Now
for any linear functional ¢ € U*, the composition ¢ « T is a linear mapping from V into K:

v » U » K

That is, ¢ - T € V*. Thus the correspondence
¢=¢eT

is a mapping from U* into V*; we denote it by T* and call it the transpose of T. In other words,
T': U* - V*is defined by

T(®)=¢ T
Thus (TY¢)XNr) = ¢ T(v)) foreveryv e V.

Theorem 12.6: The transpose mapping T* defined above is linear.

Proof. For any scalars a, b € K and any linear functionals ¢, o0 € U*,
Tad + bo) =(a¢ + ba) - T =al¢ - T) + blo - T) = aT(¢) + bT0)
That is, T" is linear as claimed.
We emphasize that if T is a linear mapping from V into U, then T' is a linear mapping from U*
into V*;

e

V U*

The name “transpose” for the mapping 7" no doubt derives from the following theorem, proved in
Problem 12.16.

U v

Theorem 12.7: Let T:V — U be linear, and let 4 be the matrix representation of T relative to bases

{v;} of ¥V and {u;} of U. Then the transpose matrix A7 is the matrix representation of
T': U* - V* relative to the bases dual to {u;} and {v;}.

Solved Problems

DUAL SPACES AND BASES

12.1. Consider the following basis of R*: {v, = (1, —1, 3), v, =(0, 1, —1), v; = (0, 3, —2)}. Find the
dual basis {¢,, ¢, ¢a}-
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12.2.

We seek linear functionals
Pylx, v, Z)=a,x +a,y + a5z dax, y, 2l =byx +byy+ byz Gax, Y. 2)=c;x + 3y 4+ €3z
such that dylvy) =1 ¢ilvg) =0 ¢ilv3) =0

¢dy(vy)) =0 ¢alvy) =1 diva) =0
&s(v,) =0 Pa(v;) =0 dafvy) =1

We find ¢, as follows:
bioy) = @y(l, =1, 3} =a, —a, + 3a, =1
¢’|{Uz)=¢'|(0s lt -1} = ady — 53=0
¢1lvy) = ¢4(0, 3, —2) = 3a; — 2a,=0

Solving the system of equations, we obtain a, = 1, @, = 0, a; = 0. Thus ¢,(x, y, z) = x.
We next find ¢, :
d’?.("’!) o '1’1(]! - 11 3} = b]_ = b! -+ 3b3 = 0

$alvz) = 6,00, 1, — 1) = b:"‘ b3= 1
¢alv3) = ¢3(0,3, =)= 3b, —2b;=0

Solving the system, we obtain by = 7, b, = —2, b; = — 3. Hence ¢,(x, y, 2} = Tx — 2y — 3z,
Finally, we find ¢, -
¢3{Ul) = ¢3{Iv - [' 3) =€ — 02 + 3C3, =0
¢3{U2) = ¢3{0l 1! - l) o fz - C3, = 0
¢3(U3) = ¢3(0| 3| _2) = 35‘2 = 2C3_ = 1

Solving the system, we obtain ¢, = —2,¢c, = 1, ¢y = 1. Thus ¢4(x, y,2) = —2x + y + 2.

Let V be the vector space of polynomials over R of degree <1,1e, V = |a + bt:a, b € R}. Let
¢.: V> Rand ¢;: V — R be defined by

1 2
&) = J. fndt  and  ¢,(f() = J‘ f() dt
o 0

(We remark that ¢, and ¢, are linear and so belong to the dual space V*.) Find the basis
{v,,v,} of ¥V which is dual to {¢,, ¢,}.

Let v, = a + bt and v, = ¢ + dt. By definition of the dual basis,
$i(vy) = 1, @3lv)) =0 and  ¢y(v)) =0, Palv;) = 1
Thus

1 A
¢1(v1]=£[a+br}dr= a+ib=1
2 4 or a=2 b= -2
¢z(”1)=j{ﬂ+b!}dr=2a+2b=0

0

E.

1 -
¢l(l’2}=J. ((.'+d[} dt= ¢ + _i,d’=0
: 1 ot C=—l;‘2‘d:1

2
¢:(vzl=J;{c+d:}dz=2c+2d=l

In other words, {2 — 2t, —} + t} is the basis of V' which is dual to {¢,, ¢,}.
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Prove Theorem 12.1.

We first show that {¢, ..., ¢,} spans V'*. Let ¢ be an arbitrary element of '*, and suppose

ﬂvl] = kls ﬂvl] = RZ’ rrey MU,J = kn
Seto = k¢, +--- + k,¢,. Then

olvy) = (kydy + - + k,dNvy) = kydylvy) + kapalv)) + -+ + k¢, {vy)
=kl'1 +kz'0+“'+k”'0=kl
Similarly, fori=2,...,n,
alvy =k, + - + kM) = kyby(vd + - + kdlv) + - + k,dfv) =k

Thus ¢lv)) =olv) for i =1, ..., n. Since ¢ and o agree on the basis vectors, ¢ =a =k, ¢, +--- + k,¢,.
Accordingly, {¢,, ..., ¢,} spans V'*.
It remains to be shown that {¢,, ..., ¢,} is linearly independent. Suppose

@y +aydy+ -+ a,h,=0
Applying both sides to v,, we obtain

0=0v,) =(a,¢, + - + a,¢Nv,) = ayd,{v)) + ay dy(vy) + - - + a, P fvy)
=a *1+a,°0+--+a,-0=a,
Similarly, fori=2,..., n,
0=0(v) =(a1d, + ~ + au@vi) = @ @y(v) + - + G Pfv) + -~ + a,dfv) = a;
Thatis,a, =0,...,a, = 0. Hence {¢,. ..., ¢,} is linearly independent and so it is a basis of V'*.

Prove Theorem 12.2.

Suppose
U=a,v, + aty + -+ a,n, (1)
Then

dilu) = aydy(v)) + ay Pylvy) + - +a, v )=a, -1 +a, 0+ --+a,0=a,
Similarly, fori=2,...,n,
Odu) = aydfvy)) + - + ;P v) + - + a,P{v) = a

That is, ¢,(u) = a,, ¢,(u) = a,, ..., ¢ ,fu) = a,. Substituting these results into (J), we obtain (/2.1).
Next we prove (12.2). Applying the linear functional o to both sides of (12.1),

a{u} = ¢,(ue(v,) + d(ulole) + - + ¢N(H}U{vn]
= o(vy )¢, (4) + olvy)d(u) + --- + olv, )P (u)
= (a(vy )¢, + olvy)d, + - + alv, )P, Xu)

Since the above holds for every u € V, 0 = o{v )¢, + o(v,)d, + -+ + a(v,)d, as claimed.

Prove Theorem 12.3.

Suppose
Wy =dagy +a,v + 0+ a,,u, 6y =by b, +byd+--+ b, ¢,
Wy = a5ty +dzt; + 7+ 4a,,0, Gy =bydy + by +---+ by 0,
Wo=2a,b; + 8,03 + -+ a,v, 6u=bul¢l +bnl¢'2 Aerea +bnn¢u

where P = (¢;;) and Q = (b;;). We seek to prove that @ = (P~ ')".
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Let R; denote the ith row of Q and let C; denote the jth column of P?. Then
Ri a (bﬂ' biz L TR bin} and Cj a {a]h 'ajl'r veey ajﬂ]T
By definition of the dual basis,

al{wj’ = (b-l'1¢l + bf2¢2 7. N L bin'i’.nl“jlvl + ajv, + 00 + “jnvn}
P bilajl + bi:ajz 4 o bhﬂh = Rle= 6[}

where §;; is the Kronecker delta. Thus

RC: BiC: = REC 10 ...0
opr - |R2C1 ReCr o RG| [0 1 0| _,
R.C, R,C, R,C, 0 0 f

and hence @ = (P") ' = (P~ ') as claimed.

12.6. Suppose V has finite dimension. Show that if v € V, v # 0, then there exists ¢ € V* such that
@v) # 0.

We extend {v} to a basis {v, r,. ..., v,} of V. By Theorem 9.2, there exists a unique linear mapping
¢ : V — K such that ¢{v) = 1 and ¢(v) = 0,i = 2, ..., n. Hence ¢ has the desired property.

12.7. Prove Theorem 12.4. If V has finite dimension, then V is isomorphic to V**.

We first prove that the map v+ 0 is linear, i.e, for any vectors v, w € ¥V and any scalars a, b € K,
— - - . -
av + bw = ad + bw. For any linear functional ¢ € V*,

av + bw(g) = Plav + bw) = adlt) + bd(w) = aild) + b) = (ad + b))

Since @ + bw(¢) = (ab + b)) for every ¢ € V*, we have av + bw = ab + bi. Thus the map v is
linear.

Now suppose v € V, v # 0. Then, by Problem 12.6, there exists ¢ € V* for which ¢(r) # 0. Hence
#(¢) = ¢(r) # 0 and thus d # 0. Since v # 0 implies © # 0, the map v— ¢ is nonsingular and hence an
isomorphism {Theorem 9.9).

Now dim V = dim ¥* = dim I"** because V' has finite dimension. Accordingly, mapping v+ is an
isomorphism of ¥ onto F**

ANNIHILATORS

12.8. Show that if ¢ € V* annihilates a subset S of V, then ¢ annihilates the linear span L(S) of S.
Hence 8° = (span (S))°.
Suppose v € span (S). Then there exist w,, ..., w, € S for which v = a,w, + a,w, + --- + a,w,.

Plv) = aypw,)) +a, Pplw) + -+ a,Pplw)=a,0+a,0+---+a,0=0

Since v was an arbitrary element of span (3). ¢ annihilates span (S} as claimed.

129. Let W be the subspace of R* spanned by v, = (1, 2, —3,4)and v, = (0, 1,4, —1). Find a basis of
the annihilator of W.

By Problem 128, it suffices 10 find a basis of the set of linear functionals of the form
Mx, y, z. w) = ax + by + cz + dw for which ¢(r,) = 0 and ¢(v,) = 0:

$1,2, =3, 4)=a+2b—-3c+4d=0
$0, 1,4, —1)= btdc— d=0

The system of equations in unknowns a, b, ¢, 4 is in echelon form with free variables ¢ and d.



404 LINEAR FUNCTIONALS AND THE DUAL SPACE [CHAP. 12

Set ¢ = 1, d = 0 to obtain the solution a =11, b= —4, ¢ =1, d = 0 and hence the linear functional

dilx, y,z,w)=11x — 4y + z.
Set ¢ = 0, d = — I to obtain the solutiona = 6,b = —1,¢ = 0,d = — 1 and hence the linear functional

balx, p 2z, W) =6x — y — w.
The set of linear functionals {¢,, ¢,} is a basis of W°, the annihilator of W.

12.10. Show that: (a) for any subset S of ¥, S € §°%; and (b)if S, < S,, then 59 < 59.
(@) Let ve S. Then for every linear functional ¢ € S°, #(¢) = ¢(v) = 0. Hence © € (§%)°. Therefore, under
the identification of V¥ and V**, v € §'°. Accordingly, § < §°°.

(b) Let ¢ € §3. Then ¢{v) = O for every v € S,. But S, € S, ; hence ¢ annihilates every element of S, i.e,
¢ € SY. Therefore S9 < SY.

12.11. Prove Theorem 12.5. (i) dim V = dim W + dim W?, (ii) W™ = W.
(i) Suppose dim ¥ = n and dim W =r < n. We want to show that dim W° = n — r. We choose a basis
fwy, ..., w,} of W and extend it to the following basis of V, say {w,, ..., w,, vy, ..., v, ,}. Consider the
dual basis

{¢]s i | ¢rt O'], iy Ul—r}
By definition of the dual basis, each of the above o’s annihilates each w; ; hence g, ..., a,_, € W° We

claim that {o;} is a basis of W°. Now {q;} is part of a basis of ¥'* and so it is linearly independent.
We next show that {¢;} spans W°. Let ¢ € W°. By Theorem 12.2,

o =olw\lp, + - + alw)l, + alv))o, + - +alv,_Jo,_,
=04, + --- + 0¢, + olv))o, + -~ + olv,.. )Jo,_,
=ofv))o, + - +olv,_Jo,_,
Consequently {a,...., 0,_,} spans W° and so it is a basis of W°. Accordingly, as required
dim W% =n —r =dim ¥ — dim W.
(i) Suppose dim V =n and dim W =r, Then dim V* =n and, by (i), dim W° =n —r. Thus by (i),

dim W = n — (n — 1) = r; therefore dim W = dim W, By Problem 12.10, W < W%, Accordingly,
w prie w()l]_

12.12. Let U and W be subspaces of V. Prove: (U + W)° = U® n WP,

Let ¢ € (U + W)°. Then ¢ annihilates U + W and so, in particular, ¢ annihilates U and W. That is,
¢ € U%and ¢ € W° hence p € U° n WO Thus (U + W)° < U° n WO,

On the other hand, suppose ¢ € U° n W, Then ¢ annihilates U and also W. If v € U + W, then
v =u+ w where ue U and w € W. Hence o{t) = o(u} + o(w) =0 + 0 = 0. Thus ¢ annihilates U + W, ie,
a € (U + W)°. Accordingly, U + W° < (U + W)°.

Both inclusion relations give us the desired equality.

Remark: Observe that no dimension argument is employed in the proof; hence the result holds for
spaces of finite or infinite dimension.

TRANSPOSE OF A LINEAR MAPPING

12.13. Let ¢ be the linear functional on R* defined by ¢{x, y) = x — 2y. For each of the following linear
operators T on R?, find (TY¢)Xx, y):

(@) T(x ) =(x0) () T(x, y) = (3. x +y), (© T(x, ¥)=(2x — 3y, 5x + 2y)
By definition of the transpose mapping, T'(¢) = ¢ = T, that is, (T(¢)Nv) = ¢(T(r)) for every vector v.
Hence:

(@ (T{PWx, y) = HT(x, y)) = $(x,0) = x
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B (TNx, =T, =Py, x+y)=y—-Ax+ y)=—2x —y
(©) (T(PNx, y) = ¢(T(x, y)) = $(2x — 3y, 5x + 2y) = (2x — 3y) — 2ASx + 2y) = —8x — Ty

12.14. Let T: V — U be linear and let 7" : U* — V* be its transpose. Show that the kernel of T" is the
annihilator of the image of T, ie, Ker T* = (Im T)°.

Suppose ¢ € Ker T'; thatis, T(¢)=¢ « T = 0. lfu € Im T, then u = T(v) for some v € V; hence

) = HT() = (¢ > THv) =Wv) =0

We have that ¢(u) = 0 for every u € Im T'; hence ¢ € (Im T)°. Thus Ker 7* < (Im T)°.
On the other hand, suppose ¢ € (Im T)°; that is, o{Im T) = {0}. Then, for everyve V,

(Tov) = (g = THv) = o(T(1)) = 0 = Op)

We have (T*(e)Xv) = O(v) for every v € V; hence TY(o) = 0. Thus o € Ker T* and so (Im T)® < Ker 7"
Both inclusion relations give us the required equality.

12.15. Suppose V and U have finite dimension and suppose T :V — U is linear. Prove: rank T =
rank T".

Suppose dim V = n and dim U = m. Also suppose rank T = r. Then, by Theorem 12.5,
dim(Im 7T =dimU—dim(Im7T)=m—rank T=m—r
By Problem 12.14, Ker T° = (Im T)°. Hence nullity T' = m — r. It then follows that, as claimed,

rank T'=dim U* —nullity T'=m—(m —r)=r=rank T

12.16. Prove Theorem 12.7. If A represents T, then A7 represents 77,
Suppose

T(v)) = a4y +au; +--- +a,,u,
T(vy) = ay,u) + auy + - + ay,u,

-------------------------------- (1}
T(U,,,} = Gyt + Gty + 0 + apply
We want to prove that
T(oy)=a,, ¢, + a3 ¢+ +a, ¢,
T(a))=a12¢, + Ay ¢y + - + apy by, @

..........................................

T‘ltf”) =aln¢'l + a2u¢2 + +am¢m

where {a,} and {¢,} are the bases dual to {i} and {v,}, respectively.
Let v € ¥V and suppose v = kv, + kv, + -+ + k,v,,. Then, by (1),
W) =k T(v)) + k T(va) + -~ + k,, T(v)
= k|(ﬂllu] + -4 dl,,u_) + k:(azlul +---+ azuu') +--- + kA%]“] e R ﬂ_.ld,,)
=(kyay + ka3, + -+ kpapy)uy + oo 4 (K8, + kyay, + 000 + kpa, ),
= Z(klﬂu +kyay + - + kpany
i=1

Henceforj=1,...,m,

(Ta X)) = a{T(v)) =0 i(klﬂu +kyau+--+ kmami}u.[)

i=1

=k1a”+kza;j+'“+k“aﬂ (3)
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On the other hand, forj=1,...,n,

(‘h;‘#n + 5Pzt 4 Gy PpXV) = (a1, + 820, + -+ QP Nkivy H kv + oo+ k)
=klalj+k2azj+..-+k-amj ‘4)

Since v € V was arbitrary, (3) and (4) imply that
T'(aj}=alj¢l+32j¢'2+”'+a.m¢m j=1...,n
which is (2). Thus the theorem is proved.

Let A be an arbitrary m x n matrix over a field K. Prove that the row rank and the column rank
of A are equal.

Let T : K® — K™ be the linear map defined by T(v) = Av, where the elements of K" and K™ are written
as column vectors. Then A is the matrix representation of T relative to the usual bases of K" and K™, and
the image of T is the column space of A. Hence

rank T = column rank of 4
By Theorem 12.7, AT is the matrix representation of 7 relative to the dual bases. Hence
rank T* = column rank of A7 = row rank of A

But by Problem 12.15, rank T = rank T'; hence the row rank and the column rank of A are equal. (This
result was stated earlier as Theorem 5.18, and was proved in a direct way in Problem 5.53.)

Supplementary Problems

DUAL SPACES AND DUAL BASES

12.18.

12.19.

12.20.

12.21.

12.22.

12.23.

12.24.

Define linear functionals ¢:R*—=R and 6:R*>R by @(x,y,2)=2x—3y+2z and alx, y, 2) =
4x — 2y + 3z. Find: (a) ¢ + a, (b) 3¢, (¢) 2¢ — 5.

Let V be the vector space of polynomials over R of degree <2. Let ¢,, ¢,, and ¢, be the linear functionals
on V defined by

(1) = J;f(ﬁ dt ¢ =1(1) &3 = f(0)

Here f(t) = a + bt + ct € V and f'(t) denotes the derivative of f(t). Find the basis {£,(t), fy(t) f(6)} of V
which is dual to {¢|. ¢2. ¢3}.

Suppose u, v € V and that ¢(u) = 0 implies ¢(r) = O for all ¢ € V*. Show that v = ku for some scalar k.
Suppose ¢, a € V* and that ¢(v) = 0 implies o(v) = 0 for all v € V. Show that & = k¢ for some scalar k.

Let V be the vector space of polynomials over K. For a € K, define ¢,: V — K by ¢,/(r)) = f(a). Show
that: (a) ¢, is linear; (b) if @ # b, then ¢, # ¢,

Let V be the vector space of polynomials of degree <2. Let a, b, ¢ € K be distinct scalars. Let ¢,, ¢, and

¢, be the linear functionals defined by ¢ (f(1)) = f(a), /(1) = f(b), $.(f(t) = f(c). Show that {¢,, ¢,, ¢ ]
is linearly independent, and find the basis { f,(1), £5(t), f5(1)} of V which is its dual.

Let V be the vector space of square matrices of order n. Let T: V — K be the trace mapping: that is
T(A) = ayy + a3, ++-* + a,,, where A = (a,)). Show that T is linear.
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12.25. Let W be a subspace of V. For any linear functional ¢ on W, show that there is a linear functional o on V
such that a(w) = ¢(w) for any w € W, i.e,, ¢ is the restriction of & to W.

12.26. Let le,, ..., ¢,} be the usual basis of K" Show that the dual basis is {n,, ..., n,} where n; is the ith
projection mapping: that is, nfa,, ..., 4,) = q;.

12.27. Let V be a vector space over R. Let ¢, ¢, € V* and suppose ¢ : V — R defined by o{r) = ¢,(v)p,(v) also
belongs to V*. Show that either ¢, =0 or ¢, = 0.

ANNIHILATORS

12.28. Let W be the subspace of R* spanned by (1, 2, —3, 4), (1, 3, —2. 6), and (1, 4, —1, 8). Find a basis of the
annihilator of W.

12.29. Let W be the subspace of R? spanned by (1, 1, 0) and (0, 1, 1). Find a basis of the annihilator of W.

12.30. Show that, for any subset S of V, span (S) = §°° where span (S) is the linear span of S.
1231. Let U and W be subspaces of a vector space V of finite dimension. Prove: (U n W)° = U° + W°.

12.32. Suppose V = U @ W. Prove that ¥° = U° @ W'

TRANSPOSE OF A LINEAR MAPPING

12.33. Let ¢ be the linear functional on R? defined by ¢(x, y) = 3x — 2y For each of the following linear map-
pings T : R* —» R, find (T'(¢))x, y, 2).

(@ Tx,pz)=(x+yy+2; (B Txyz=(x+y+22x—y)
1234. Suppose T, : U —» V and T, : V — W are linear. Prove that (T, « T,)' = T = Th.
12.35. Suppose T : V - U is linear and V has finite dimension. Prove that Im 7" = (Ker T)°

12.36. Suppose T : V - U is linear and u € U. Prove that u € Im T or there exists ¢ € V* such that T(¢) = 0 and
¢(u) = 1.

12.37. Let V be of finite dimension. Show that the mapping T+ T' is an isomorphism from Hom (V, V) onto
Hom (V*, V*). (Here T is any linear operator on V.)

MISCELLANEOUS PROBLEMS

12.38. Let V be a vector space over R and let ¢ € V*. Define:
W'={ve V@ >0} W ={veV:d¢()=0)} W~ ={veV:¢{v)<0}
Prove that W', W, and W™ are convex (see Problems 9.90 and 9.91).
12.39. Let V be a vector space of finite dimension. A hyperplane H of V may be defined as the kernel of a nonzero
linear functional ¢ on V. [Under this definition a hyperplane necessarily * passes through the origin,” i.c.

contains the zero vector. Show that every subspace of V is the intersection of a finite number of hyper-
planes.
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Answers to Supplementary Problems

(@) 6x — Sy + 4z, (b) 6x —9y + 3z, (c) —16x + 4y — 13z

() Letf(t) = r. Then ¢,(f(1) = a # b = ¢,{f(1)), and therefore ¢, # ¢, .

2 —(b+on+ be
(a — b)}a —¢)

{fl(!] = 1 fsz} =

2 —(a+c)+ac t* —(a+ b} +ab

Gaareg T ekt

{0,0y.2) =5x —y+ 2, ¢alx, y. 2. 1) = 2y — 1}

(Px.y,z)=x—y+z}

(@ (T(PXx.y.2)=3x+y—2z

b)) (T(PNx,y,2)= —x+ 5y + 3z

}

[CHAP. 12



Chapter 13

Bilinear, Quadratic, and Hermitian Forms

13.1 INTRODUCTION

This chapter generalizes the notions of linear mappings and linear functionals. Specifically, we
introduce the notion of a bilinear form. (Actually, the notion of a general multilinear mapping did
appear in Section 7.13.) These bilinear maps also give rise to quadratic and Hermitian forms. Although
quadratic forms occurred previously in the context of matrices, this chapter is treated independently
of the previous resuits. (Thus there may be some overlap in the discussion and some examples and
problems.)

13.2 BILINEAR FORMS

Let V be a vector space of finite dimension over a field K. A bilinear form on V is a mapping
f:V x V - K which satisfies:

() f(auy + buy, v) = af (uy, v) + bf (uy, v)

() f(u av, + bvy) = af (w, v,) + Bf (u, vy)
for all @, b € K and all u;, v; € V. We express condition (i) by saying f is linear in the first variable, and
condition (ii) by saying fis linear in the second variable.

Example 13.1

{a) Let ¢ and o be arbitrary linear functionals on V. Let f: V x V — K be defined by f(u, v) = ¢{u)a{v). Then fis
bilinear because ¢ and ¢ are each linear. (Such a bilinear form fturns out to be the “tensor product™ of ¢ and
o and so is sometimes written f = ¢ ® a.)

(b) Let fbe the dot product on R"; that is,
fluvy=u-v=a,b, +a,b, +-- +a,b,
where u = (a;) and v = (b)). Then f'is a bilinear form on R".
{c) Let A =(a;)beanyn x nmatrix over K. Then A may be identified with a bilinear form f on K", where

Ayy iy ..o A\ Y,

Ay dzz ... Gz, Y V2
X TS AT AT B Xy e g

aul anz e au ¥a

= I QXY =X Yy @ xyy, +0 ta,,x,y,
i j=1

The above formal expression in variables x;, y, is termed the bilinear polynomial corresponding to the matrix
A. Equation (/3.1) below shows that, in a certain sense, every bilinear form is of this type.
We will let B(V) denote the set of bilinear forms on V. A vector space structure is placed on B(V) by
defining f+ g and kf as follows:
(f + g)u, v) = f(u, v) + glu, v)
(kf u, v) = kf (u, v)
for any f, g € B(V) and any k € K. In fact,
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Theorem 13.1: Let ¥ be a vector space of dimension n over K. Let {¢, ..., ¢,} be any basis of the
dual space V*. Then {f;:i,j=1,...,n} is a basis of B(V) where f; is defined by
fidu, v) = ¢ (v). Thus, in particular, dim B(V) = n’.

(See Problem 13.4 for the proof.)

133 BILINEAR FORMS AND MATRICES

Let f be a bilinear form on V, and let S = {u,, u,, ..., u,} be a basis of V. Suppose u, ve V and
suppose

u=a,ty; + - +a,u, and v=byu, + - +byu,
Then
flu, v)=f(auy + -+ a,u,, byu; +---+b,u,)
= azby fluy, u,) + a\b; f(uy, u) + --- + a, b, fu,, u,)
= ) a;b; f(u;, u)
YE

Thus fis completely determined by the n? values f(y;, u ns
The matrix A = (a;;) where a;; = f(u;, u;) is called the matrix representation of f relative to the basis
S or, simply, the matrix of fin §. It “ represents” fin the sense that

by
b

S0 = X aby S w) = (@, ooy 6| 7 | = [0 AL 3.1
b,

for all u, v € V. [As usual, [u]g denotes the coordinate (column) vector of u € V in the basis S.]

We next ask, how does a matrix representing a bilinear form transform when a new basis is select-
ed? The answer is given in the following theorem, proved in Problem 13.6. (Recall Theorem 10.4 that
the change-of-basis matrix P from one basis S to another basis $' has the property that [u]s = Pluls.,
foreveryue V.)

Theorem 13.2: Let P be the change-of-basis matrix from one basis S to another basis S'. If A 1s the
matrix of fin the original basis S, then

B = PTAP

is the matrix of f in the new basis §’.

The above theorem motivates the following definition.

Definition: A matrix B is said to be congruent to a matrix A if there exists an invertible (or:
nonsingular) matrix P such that B = PTAP.

Thus by Theorem 13.2 matrices representing the same bilinear form are congruent. We remark that
congruent matrices have the same rank because P and P" are nonsingular; hence the following defini-
tion is well framed.
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Definition: The rank of a bilinear form fon V, written rank f] is the rank of any matrix representation.
We say that f is degenerate or nondegenerate according as rank f<dim V or rank
f=dim V.

134 ALTERNATING BILINEAR FORMS
A bilinear form fon V is said to be alternating if
() flo,v)=0
for every v € V. If f'is alternating, then
O=f(u+ov,u+0v)=f(uu+f(uv)+fo,u+f(v,v)
and so (i) f(uw, v)= —f(v.w)

for every u, ve V. A bilinear form which satisfies condition (ii) is said to be skew-symmetric (or
antisymmetric). If 1 + 1 # 0 in K, then condition (ii) implies f(v, v) = —f(v, v} which implies condition
(i). In other words, alternating and skew-symmetric are equivalent when 1 + 1 # 0.

The main structure theorem of alternating bilinear forms, proved in Problem 13.19, follows.

Theorem 13.3: Let / be an alternating bilinear form on V. Then there exists a basis of V in which fis
represented by a matrix of the form

0 1 . -
Moreover, the number of (_ ) U)s is uniquely determined by f(because it is equal to
1 rank f).

In particular, the above theorem shows that an alternating bilinear form must have even rank.

135 SYMMETRIC BILINEAR FORMS, QUADRATIC FORMS
A bilinear form f on V is said to be symmetric if
Sy, v) = f(v, u)
for every u, v € V. If A is a matrix representation of f, we can write
fX, Y)=XTAY =(XT4Y)" = YTATX
(We use the fact that X" AY is a scalar and therefore equals its transpose.) Thus if f is symmetric,
YTATX =f(X, Y)=f(Y, X)=YTAX
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and since this is true for all vectors X, Y it follows that A = A or A is symmetric. Conversely if 4 is
symmetric, then fis symmetric.
The main result for symmetric bilinear forms, proved in Problem 13.11, is given in

Theorem 13.4: Let f be a symmetric bilinear form on V over K (in which 1 + 1 # 0). Then V has a
basis {v,, ..., v} in which f is represented by a diagonal matrix, ie., f(v;, v;) = 0 for
i3 J.

Theorem 13.4 (Alternate Form): Let A be a symmetric matrix over K (in which 1 + 1 # 0). Then there
exists an invertible (or nonsingular) matrix P such that PTAP is
diagonal. That is, A is congruent to a diagonal matrix.

Since an invertible matrix P is a product of elementary matrices (Theorem 4.10), one way of obtain-

ing the diagonal form PTAP is by a sequence of elementary row operations and the same sequence of
elementary column operations. These same elementary row operations on I will yield P7.

Definition: A mapping ¢ : V — K is called a quadratic form if g(v) = f(v, v) for some symmetric bilinear
formfon V.

Now if f'is represented by a symmetric matrix A = (g;;), then g is represented in the form

Gy Gy .- Gua\ [ %

Gy, Gz ... Qg X3
aX)=f(X, X)=XTAX =(x,, ..., x,) "

anl an2 ﬁm, xn

2 2 2
=za.~jx,-xj=ﬂ“xl+a12xz+“'+a“x,,+2 zaqx‘x!
i

i<j
The above formal expression in variables x; is termed the guadratic polynomial corresponding to the
symmetric matrix A. Observe that if the matrix A is diagonal, then g has the diagonal representation
aqX)=XTAX = a,,x} + a3, x3 + - + a,, x2

that is, the quadratic polynomial representing g will contain no “cross product™ terms. Moreover, by
Theorem 13.4, every quadratic form has such a representation (when 1 + 1 # 0).
If 1 4+ 1 £ 0in K, then the above Definition can be reversed to yield

S, v) = $[g(u + v) — q(w) — g(v)]
which is the so-called polar form of f.

13.6 REAL SYMMETRIC BILINEAR FORMS, LAW OF INERTIA

In this section we treat symmetric bilinear forms and quadratic forms on vector spaces over the real
field R. These forms appear in many branches of mathematics and physics. The special nature of R
permits an independent theory. The main result, proved in Problem 13.13, follows.

Theorem 13.5: Let f be a symmetric bilinear form on V over R. Then there is a basis of V in which f'is
represented by a diagonal matrix; every other diagonal representation has the same
number p of positive entries and the same number n of negative entries. The difference
s = p — nis called the signature of f.
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A real symmetric bilinear form fis said to be nonnegative semidefinite if
q) =f(v,v) 20
for every vector v; and is said to be positive definite if
qgv)=f(e,v) >0
for every vector v # 0. By Theorem 13.5,

(1) fis nonnegative semidefinite if and only if s = rank (f),
(i1) fis positive definite if and only if s = dim V,

where s is the signature of f.

Example 13.2. Let f be the dot product on R"; that is,
fuvy=u v=ab, +ayb, +--- +a,b,
where u = (a;) and v = (b;). Note that fis symmetric since
fl,v)=urv=v-u=f(v,u)
Furthermore, fis positive definite because
Suw=al+at+--+a2>0

when u # (.

In Chapter 14 we will see how a real quadratic form g transforms when the transition matrix P is
orthogonal. If P is merely nonsingular, then g can be represented in diagonal form with only 1s and
— 1s as nonzero coefficients. Specifically,

Corollary 13.6: Any real quadratic form ¢ has a unique representation in the form
gxy, oo X)) =Xt + - + x: — :+1 — e —x2
where r = p + n is the rank of the form.

The above result is sometimes referred to as the Law of Inertia or Sylvester’'s Theorem.

13.7 HERMITIAN FORMS

Let V be a vector space of finite dimension over the complex field C. Let f: ¥V x V — C be such that

(i) flau, + buy, v) = af (u,, v) + bf(u;, v)

(i) fu, v) =f(v, u)
where a, b € C and u;, v € V. Then f'is called a Hermitian form on V. (As usual, k denotes the complex
conjugate of k € C.) By (i) and (ii),

f(w, av, + bvy) =Flav, + bvy, w) = & (o, W) + b (v, W
— El.f(vll u) + bf[t'l’ u) = af{“’ Ul) + Ef(u, Uz’

That is,
(iii) f(u, av, + bvy) = af(u, vy) + bf (u, v,)

As before, we express condition (i) by saying f is linear in the first variable. On the other hand, we
express condition (iii) by saying [ is conjugate linear in the second variable. Note that, by (ii), we have
(v, v) = f(v, v) and so f(v, v) is real for every v e V.
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The results of Sections 13.5 and 13.6 for symmetric forms have their analogues for Hermitian forms.
Thus, the mapping g : V — R, defined by g(v) = f(v, v), is called the Hermitian quadratic form or complex
quadratic form associated with the Hermitian form f. We can obtain ffrom ¢ in the polar form

S, v) = 4lq(u + v) - qlu — v)] + 3lq(u + iv) — qlu — iv)]

Now suppose S = {u,, ..., U,} is a basis of V. The matrix H = (h;;) where h;; = f(u;, u;) is called the
matrix representation of f in the basis S. By (i), f(«;, u)) = f(u;, u,); hence H is Hermitian and, in partic-
ular, the diagonal entries of H are real. Thus any diagonal representation of f contains only real entries.
The next theorem, to be proved in Problem 13.33, is the complex analog of Theorem 13.5 on real
symmetric bilinear forms.

Theorem 13.7: Let f be a Hermitian form on V. Then there exists a basis $ = {u,, ..., u,} of V in
which f is represented by a diagonal matrix, i.e., f(u;, u;) = 0 for i # j. Moreover, every
diagonal representation of f has the same number p of positive entries, and the same
number n of negative entries. The difference s = p — n is called the signature of f.

Analogously, a Hermitian form f'is said to be nonnegative semidefinite if
q(v) = f(v, ) 2 0
for every v € V, and is said to be positive definite if
q@) =f(v, v) >0
for every v # 0.

Example 13.3. Let [ be the dot product on C"; that is,
S vy=urv=z,Ww, +z;W + - + 2z, W,
where u = (z)) and v = (w,). Then fis a Hermitian form on C". Moreover, f is positive definite since, for any v # 0,

S u)=2z,z, + 2,2, + --- +z“2,,=|z,|2+|z2|2+---+|z,,|3>0

Solved Problems

BILINEAR FORMS
13.1. Letu = (x4, X5, x3)and v = (y,, ¥y, ¥,), and let
Flu v) = 3%y, — 2%y, + 5%, 5y + Txa ¥y — 8x3 3 + 4X3)2 — X33
Express f in matrix notation.
Let A be the 3 x 3 matrix whose ij-entry is the coefficient of x; y;. Then

3 =2 0 W
S v)=XTAY =(x;,x,. x5 7 =8|y,
0 4 —1/\y,

13.2. Let A be an n x n matrix over K. Show that the mapping f defined by
X, Y)=XTAY
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is a bilinear form on K"
Foranya, be K and any X;, ¥, € K",

faX, +bX,, Y)=(aX, + bX,)TAY = (aXT + bX)AY
=aX|AY + bX} AY = af (X, Y) + bf(X,, )

Hence f'is linear in the first variable. Also,
f(X, aY, + bY;) = XTA(aY, + bY;) = aXTAY, + bXTAY, = of (X, Y,) + bf(X, Y,)

Hence fis linear in the second variable, and so fis a bilinear form on K",

13.3. Letfbe the bilinear form on R? defined by

Sy x2) (V15 ¥2)) = 2%,y — 3x,¥; + X3 ¥,
(a) Find the matrix A of fin the basis {u; = (1, 0), u, = (1. 1)}.
(b) Find the matrix B of fin the basis {v, = (2, 1), v, = (1, —1)}.
(c) Find the change-of-basis matrix P from the basis {u;} on the basis {v;}, and verify that
B=PTAP.
(a) Set A =(a;;) where a;; = f(u;, u)):
ayy = fluy, ) =f(1,0.(1LOY)=2-0+0= 2
a2 =fluy, ) =f(1L,0) (L NY=2-34+0= -1
az = flu, u))=f((1,1),(1,0)=2-0+0= 2
Gz = flug, wx))=f(L 1), (L 1)) =2-3+1= 0

Thus A = (; _{l}) is the matrix of fin the basis {u,, u,}.

(b) Set B = (b;;) where b,; = f(v;, v)):

byi =f(vy, vy) =f(2, 1), (2, 1)) =8—-6+1=3
by, =floy, v))=f((2, 1), (1, —1)) =4+6—-1=9
byy =f(va, vy) =f((1, —1),(2. 1)) =4-3-1=0
by = floy, ) =f((1. =1), (L, =) =2+3+1=6

39
Thus B = (0 6) is the matrix of fin the basis {,, v,}.

(¢) We must write », and v, in terms of the u;:

vy =(2,1) =(L0O+(L1) = u, +u,
vp=(1, =1)=2(1,0)— (L, 1) = 2u, —u,

1 2 5 1 1
ThenP—(l _l)andsoP —(2 al).Thus
i V2 —1\t 2 3 9
T - = =
il (1 *:)(z o)(r -1) (o 6) -

13.4. Prove Theorem 13.1.

Let {u;, ..., u,} be the basis of V dual to {¢,}. We first show that { f;;} spans B(V). Let f € B(V) and
suppose f(y;, u)) = a;;. We claim that f = Y. a;; f;. It suffices to show that

f(usr h“)t(z ﬂg,-f;jlu,, "J for s.t= [ E |
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We have
(Q a; fidu u) = ay; fifug, w) =, a;¢luddfu) =3 a,8,,8; = a, = flu,, u)
as required. Hence { f;;} spans B(V). Next, suppose Ya,f;=0Thenfors, t=1,...,n
0 = Ou,, u) = (3 a;; fiu,, u) = a,,
The last step follows as above. Thus { f;} is independent and hence is a basis of B(V).

13.5. Let [f] denote the matrix representation of a bilinear form f on V relative to a basis {u,, ..., u,}
of V. Show that the mapping f+—[f] is an isomorphism of B(V) onto the vector space of
n-square matrices.

Since f is completely determined by the scalars f(u;, u)), the mapping fi—[ f] is one-to-one and onto. It
suffices to show that the mapping fi— [ /] is a homomorphism; that is, that

Laf + bg] = al f] + bLg] (%)
However, fori,j=1,...,n,

(af + bg¥u,, u) = af (u;, u) + bglu;, u))
which is a restatement of (). Thus the result is proved.

13.6. Prove Theorem 13.2. B = P-'AP represents f relative to a new basis.

Let u, v € V. Since P is the change-of-basis matrix from § to §', we have P[u]y = [u]g and also
P[v]y = [v]s; hence [uls = [ulg P". Thus

S(u, v) = [ul§ A[v])s = [ul. PTAP[v]
Since u and v are arbitrary elements of V, PT AP is the matrix of fin the basis §'.

SYMMETRIC BILINEAR FORMS, QUADRATIC FORMS
13.7. Find the symmetric matrix which corresponds to each of the following quadratic polynomials:
(@ qglx,y,2)=3x*+4dxy—y* +8xz—6yz+z> (b) qix,y,z)=x*—2yz + xz

The symmetric matrix A = (g;) representing g(x,, ..., x,) has the diagonal entry a; equal to the coeffi-
cient of x7 and has the entries a;; and a; each equal to half the coefficient of x, x;. Thus

3 2 4 1 0 1

2 -1 -3 0 0 —1

4 -3 1 1 -1 o
(a) (b)

13.8. For the following real symmetric matrix A, find a nonsingular matrix P such that PTAP is
diagonal and also find its signature:

1 -3 2
A= -3 7 -5
2 -5 8
First form the block matrix (A, I):
1 -3 o R | 0 0
An={-3 7 -5'0 1 0
2 -5 8.0 o0 1
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13.9.

13.10.

13.11.
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Apply the row operations 3R, + R, = R, and —2R, + R; —+ R, to (A, [) and then the corresponding
column operations 3C, + C, -+ C, and —2C, + C; =+ C4 to A to obtain

1 -3 2!/ 1 0 © t 0 0' 1 0 O
0 =2 1! 3 1 0 and then 0 -2 '3 1 0
0o 1 4,-2 0 1 0 1 4,-2 0 1

Next apply row operation R, + 2R, —+ R, and then the corresponding column operation C, + 2C, —+ C,
to obtain

1 0 0' 1 0 O 1 0 0' 1 0O 0
0 -2 t'! 3 1 0] andthen [0 —2 0! 3 1 0

0 0 9 -1 1 2 0 0 18 —1 1 2
i 3 -1 1 0 0
Now A has been diagonalized. Set P = 0 1 l];then PTAP={0 -2 0]).
0 0 2 0 0 I8

The signatureof Aiss =2 — 1= 1.

Suppose 1 + 1 # 0in K. Give a formal algorit