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Preface

The aim of this series of problem-solvers is to provide a selection of worked
examples in algebra designed to supplement undergraduate algebra courses.
We have attempted, mainly with the average student in mind, to produce
a varied selection of exercises while incorporating a few of a more challenging
nature. Although complete solutions are included, it is intended that these
should be consulted by readers only after they have attempted the questions.
In this way, it is hoped that the student will gain confidence in his or her
approach to the art of problem-solving which, after all, is what mathematics
is all about.

The problems, although arranged in chapters, have not been ‘graded’
within each chapter so that, if readers cannot do problem »n this should not
discourage them from attempting problem n+1. A great many of the ideas
involved in these problems have been used in examination papers of one sort
or another. Some test papers (without solutions) are included at the end of
each book; these contain questions based on the topics covered.

TSB, EFR
St Andrews






Background reference material

Courses on abstract algebra can be very different in style and content.
Likewise, textbooks recommended for these courses vary enormously, not
only in notation and exposition but also in their level of sophistication. Here
is a list of some major texts that are widely used and to which the reader
may refer for background material. The subject matter of these texts covers
all six books in the Algebra through practice series, and in some cases a great
deal more. For the convenience of the reader there is given below an indication
of which parts of which of these texts is more relevant to the appropriate
chapters of this book.

[1] L. T. Adamson, Introduction to Field Theory, Cambridge University Press,
1982.
[2] F. Ayres, Jr, Modern Algebra, Schaum’s Outline Series, McGraw-Hill, 1965.
[3] D. Burton, 4 First Course in Rings and Ideals, Addison-Wesley, 1970.
[4] P. M. Cohn, Algebra, Vol. I, Wiley, 1982.
[5]1 D. T. Finkbeiner 11, Introduction to Matrices and Linear Transformations,
Freeman, 1978.
[6] R. Godement, Algebra, Kershaw, 1983.
[7] J. A. Green, Sets and Groups, Routledge and Kegan Paul, 1965.
[8] I. N. Herstein, Topics in Algebra, Wiley, 1977.
[9] K. Hoffman and R. Kunze, Linear Algebra, Prentice Hall, 1971.
[10] S. Lang, Introduction to Linear Algebra, Addison-Wesley, 1970.
[11] S. Lipschutz, Linear Algebra, Schaum’s Outline Series, McGraw-Hill, 1974.
[12] I. D. Macdonald, The Theory of Groups, Oxford University Press, 1968.
[13] S. MacLane and G. Birkhoff, Algebra, Macmillan, 1968.
[14] N. H. McCoy, Introduction to Modern Algebra, Allyn and Bacon, 1975.
[15] 1. J. Rotman, The Theory of Groups: An Introduction, Allyn and Bacon,
1973.
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[16} L. Stewart, Galois Theory, Chapman and Hall, 1973.
{17] 1. Stewart and D. Tall, The Foundations of Mathematics, Oxford University
Press, 1977.

References useful for Book 2

1: Matrices and linear equations  [2, Chapter 14}, [S, Chapters 1, 4],

[9, Chapter 1], [10, Chapter 3], [11, Chapters 2, 3].

2: Inverses and determinants  [2, Chapter 14], [5, Chapter 5], [9, Chapter 1]
[10, Chapter 7], [11, Chapters 3, 8].

3: Eigenvalues and diagonalisation  [2, Chapter 15], [11, Chapter 9].

4: Vector spaces  [2, Chapter 15], [S, Chapter 2], [9, Chapter 2],

[10, Chapter 2], [11, Chapters 4, 5].

5: Linear mappings  [5, Chapter 3], (9, Chapter 3], [10, Chapter 4],
[11, Chapters 6, 7].

6: Inner product spaces {5, Chapter 8], [9, Chapter 8], [10, Chapter 6],
[11, Chapter 13].

In [2] the author uses ‘rTow canonical matrix’ for Hermite normal form, and
writes linear mappings on the right. In [5] the author uses ‘reduced echelon
form’ for Hermite normal form. This also occurs in [9], and in [11]. The
term ‘null space’ is used in {9] for kernel. Also, some of these texts use
‘characteristic vectors’ and ‘characteristic values’ for eigenvectors and
eigenvalues.



1: Matrices and linear equations

The basic laws of matrix algebra: associativity of products (when they are
defined), distributivity of multiplication over addition (when meaningful),
and the like should be well known to the reader. We often use notation such
as Mat,,, »,(IR) to denote the set of m x n matrices whose entries belong to
the set IR of real numbers. We often write 4 € Mat,,, ,,,(IR) in the form
A = [a;j]mxn» and the identity n x n matrix as I, = [§;;] where

1 ifi=j;

by = s ].’

0 ifi#j.
We assume that the reader is familiar with the transpose 4'= [aji]nxm of
A = [a;j],n xn, With the notions of symmetric (4 = A4) and skew-symmetric
(4'=—A4) matrices and the properties (4')'=A4, (4 + B)'=A4'+ B,
(4B)! = BA".

We have included in this introductory section a few questions relating
matrices to two-dimensional coordinate geometry, which is one of the appli-
cations of matrices that is usually covered at this level.

Another basic application is to the solution of systems of linear equations.
We assume that the reader has the necessary background knowledge. This
includes the reduction of an m x n matrix to row-echelon form and then to
Hermite (normal) form. In particular, the reader should know that the rank
of an m x n matrix is the number of non-zero rows in any row-echelon form,
and that a system of equations Ax = b has a solution if and only if the rank
of the coefficient matrix 4 is the same as that of the augmented matrix 4|b.
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1.1 Compute the following matrix products:

1

0
1t 3 2]f1 2
1 3 0 47[0 1
;{2 1 00 1];
2 1 1 0Jf1 o0
1 0 11 1
0 1
. 1
3 01 A1 1 1 )
2 =2 0f |1 =1 ,3[1234]
-1 1 2j|0 1 2
4
1
[1234]2
At
4

1.2 Compute the matrix product

a h g|l|x
x y 111k b fl|¥»|.
g [ c|]|l
Hence express in matrix notation the equations
@ x*+ 9%y +y*+8 +5y+2=0;
x? p?
® ;;+?= 1
(©) xy=d’;
@) y*=dax.

0 1 -1 -1
1.3 Ifd= [ ] and B = [ ] prove that
01 0 0

(A+B)*#A*+24B + B*
but that
(A+ByP=A%+34B+34B*+ B®.
1.4 Let 4 be the matrix



1.5
1.6

1.7

1.8

1.9

1: Matrices and linear equations

0 a a*> &
0 0 a &
0 0 0 «

0 0 0 O

Define the matrix B by

B=A4-3142+143—34%+...
Show that this series has only finitely many terms different from zero and
calculate B. Show also that the series

1 1
B+—B*+ —B3+...
2! 3!
has only a finite number of non-zero terms and that its sum is 4.

Find all X € Mat,,,(IR) such that X* = I,.

Find all 4 € Mat,, ,(C) such that 4%= —,. Show that there are no 2 x 2 real
diagonal matrices A with A2= —I,, but that there are infinitely many 2 x 2
real matrices A with 42=—I,. Deduce that for every even positive integer n
there are infinitely many n x n real matrices A with 4> = —1I,. Is this so for
every odd positive integer n?

Show that every A € Mat,,,(€) which is such that 4% = 0 may be written in
the form

[ ab a* ]

—b%* —ab

for some a, b € €. Is it true that every 4 € Mat,,,(IR) such that 4> = 0 is of
this form with ¢, b € IR?

a
Show that a real 2 x 2 matrix [

] may be expressed as a product
c

x
[ ] [u v]forsome x,y,u,v € IR if, and only if, ad = bc.
y

For A, B € Mat,,,(IR) define [AB] = AB — BA.
(a) Prove that the following identities hold:
() [[4BIC]+ [[BClA] + [[CA]B] = 0;
(i) [ +B)C]= [AC] + [BCT;
(i) [[{4BICID]+ [[[BCID]A] + [[ICD]A]B] + [[[DA]B]C] = 0.
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1.10

111

1.12

1.13

1.14

1.15

Matrices and vector spaces

(b) Show by means of an example that in general
[[4B]C]# [4[BCY).

Consider the complex 2 x 2 matrices

i o0 o 14 0 ii
S A S PR RS AT
0 ——%i —% 0 3i O

(@) Show that AB =-BA forallA,B€ X,Y,Z with4 #B.

(b) Compute AB —BA for each distinct pair A,B €{X,Y,Z} and com-
ment on your answer.

(¢) Prove that the 3 x 3 real matrices

00 O 0 0 1 0 —1 0
X=|0o 0 -1, Y=|l0 o0 0, Z'=[{1 0 O
01 0 |I-1 00 0 0 0

satisfy the same propertiesas X, Y, Z.

(@) Show that if 4 and B are 2 x 2 matrices then the sum of the diagonal
elements of AB — BA is zero.

(b) If E is a 2 x 2 matrix and the sum of the diagonal elements of £ is
zero show that E? = )\, for some scalar A.

(¢) Deduce from (a) and (b) that if 4, B, C are 2 x 2 matrices then

(AB — BAY*C = C(AB — BA)?.

Let 4, B be n x n matrices with 4 symmetric and B skew-symmetric. Deter-
mine which of the following are symmetric and which are skew-symmetric:

AB+BA; AB-—BA; A%, B*, APBIAP,

Let x and y be n x 1 matrices. Show that the matrix 4 = xy* — yxt is of size
nx n and is skew-symmetric. Show also that xty and ytx are of size 1 x 1
and are equal.

If xtx = y'y = [1] and xty = y*x = [k], prove that 4% = (k> —1)A.
If A is a square matrix such that 42=4 and (4 —A")*=0 prove that
(AAY)? = A4,

Suppose that in the cartesian plane the coordinate axes are rotated in an anti-
clockwise direction through an angle &. Show that the ‘new’ coordinates
(x',»") of the point P whose ‘old’ coordinates are (x, y) are given by



1.16

1.18

1.19

1.20

1: Matrices and linear equations

=l
2 Ry [
y y
where Ry is the rotation matrix

[ cosd  sin 19]

—sin9 cos &1
Prove that, for rotations & and ¢,

ROR¢ ’%R@_,_v =R¢R19.
The hyperbola x2—y?=1 is rotated anti-clockwise about the origin through
45°; find its new equation.

Two similar sheets of graph paper are pinned together at the origin and the
sheets are rotated. If the point (1, 0) of the top sheet lies directly above the
point (35, $4) of the bottom sheet, above what point of the bottom sheet
does the point (2, 3) of the top sheet lie?

For every point (x,y) of the cartesian plane let (x', y") be its reflection in the
x-axis. Find the matrix M such that

MEN

In the cartesian plane let L be a line passing through the origin and making an
angle ¥ with the x-axis. For every point (x, y) of the plane let (xz,yy) be its
reflection in the line L. Prove that

Xy, [cos 29 sin2¢ ] [x]
[yL] sin 28 —cos 28] Ly )
In the cartesian plane let L be a line passing through the origin and making an

angle ¥ with the x-axis. For every point (x, ) of the plane let (x*, y*) be the
foot of the perpendicular from (x, y) onto L. Prove that

[x*] [ cos? ¢ sinﬂcosﬁ][x]
y*] lsindcosd®  sin?9 2l

Find the Hermite normal form of each of the following matrices:
1 2 3 1 2 3 21 3
31 2 [3 1 215 [3 1 34.
5 5 8 2 31 01 3
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1.21

1.22

1.23

1.24

1.25

Matrices and vector spaces

Reduce to row-echelon form the augmented matrix of the system of equations
x+ 2y +3t=1
x+2y+3z+3t=3
X + z+ =3
x+ y+ z4+2t=1.

Deduce that the system has no solution.

For what value of X does the system of equations
x+ y + t=4
2x — 4r=7
x+ y+z =5
x—3y—z—10t=2A
have a solution? Find the general solution when A takes this value.

What conditions must the integers a, b, ¢ satisfy in order that the system of
equations

2Zw—x+y—3z=a
wtx—y =p
wt+x—y—3z=c

has integer solutions?

Ifa, b, c,d € IR are all greater than O prove that the system of equations
x+y+ z+ t=a
x—y— z+ t=b
—x—y+ z+ r=¢
—3x+y—3z—Tt=d

has no solutions.

Show that the equations
2+ y+ z=—6f
yx + 3y + 2z=128
xx+ y+(y+1)z=4
have a unique solution except when y =0 and when y = 6. If ¥y =0 prove

that there is only one value of 8 for which a solution exists and find the
general solution in this case. Discuss the situation when y = 6.
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1.26  Show that the equations
x—y —u—5t=a«a
X+ y— z—4u+ t=§
x+ y+ z—du—6t=7
x+4y+2z2—8u—5t=6
have a solution if and only if
8a—B—11y+ 556 =0.
Find the general solution whena=g=—1,y=3,6§=8



2: Inverses and determinants

An n x n matrix M has an inverse if there is a (necessarily unique) n x n
matrix M~ such that MM ™! =I,, = M™' M. (Note. It can in fact be shown that
one of these equations is enough; if MX = I, then XM = I,,.) Inverses have
the properties that (M) =M and (AB)' =B 'A"'. Elementary row
operations may be used in deciding whether or not M is invertible, Briefly, to
apply an elementary row operation to M is equivalent to pre-multiplying M
by an elementary matrix E (namely, that which is obtained by applying the
row operation in question to I,,). Starting with an array Mil, and applying
a sequence of row operations we obtain a sequence
M\, > EME,»>E,E\M|E,E,~ ...~ EM|E

where E=E,E,_; -.-E,F,. Choosing E,,...,E, such that EM is the
Hermite form of M, we have that EM = I,, if and only if £ = M, Thus, if the
Hermite form of M is I,, then M is invertible, and its inverse is obtained by
applying to I, the same sequence of row operations as was applied to M.
If the:Hermite form of M is not ,, then M is not invertible.

The determinant of an n x r matrix M is denoted by det M or |M|. The
determinant of a 2 x 2 matrix

a1 an
A= [
a1 an
is the cross-product |4|=a,ay; —a,a,,. The determinant of an nxn
matrix is defined inductively as

Z €621,001)%92,0(2) * * * %n,a(n)
o

where the sum is over all permutations ¢ of {1,...,n}, and €4 is 1 if o is an
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2: Inverses and determinants

even permutation and —1 if ¢ is an odd permutation. This definition (and what
it involves in general) will not be required. What is assumed is that the reader
has (at least on trust!) a knowledge of the Laplace expansion method of
computing det M, namely that if M;; is the matrix obtained from M by deleting
the ith row and the jth column then
det M = i (—I)Hi a;j det Mi]'-
j=1

This is the Laplace expansion of det M via the ith row; it can be shown that it
is independent of the choice of i. A similar result holds for columns. Elemen-
tary row and column operations are used to create zero entries often before
applying a Laplace expansion, in evaluating determinants. Fundamental
properties of determinants are that det M = det M*, det AB = det 4 .det B
and, if M is invertible, det M™! = (det M)™*.

Find the inverses of the following matrices:

(31 2] s 32 [1 00
1 2 1f; 12 3 1]; |1 2 0].
111 7 5 3 1 2 3

Determine the values of the real number x for which the matrix

x 2 0 3
1 2 3 3
1 01 1
1 11 3

is invertible.

Let A € Matg4(IR) be given by

-

02 00 00
f 05 0 00O
A= 0 g 0¢c 0O
0 0h O dO
0 00 k 0 e
10 0 0 0 m O]

Prove that A4 is invertible if and only if a, ¢, e, f, h, m are non-zero, and find
A~Yin this case.
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2.4  Given the matrices
b+8c 20—2b 4b—4c 0
A=|4—4a c¢+8 2a—2|, P=|2
2b—2a 4a—4b a+8b 1

N O =
o = N

find P! and evaluate P~' AP. Hence evaluate det A.
2.5 If A€ Maty,4(IR) is given by

1 1 1 1
A= a x b ¢
a® x* b* ¢?
a® x3 b 8

express det A as a product of factors.

2.6  Solve the equation

det

Q& 8 8 ¥
/R | X 8
QR X & 8
% & /& &

2.7 Consider the 4 x 4 real matrix
? 7
y: oy a?
zZ a
yzt? ozt ? ¢t
Show that, whatever the entries marked ? may be, this matrix has determinant
(x —ay)(y —az)(z —at)t.
2.8 Let B, = [B;;] € Mat,,,(IR) be defined by

b ifi<j;
By=1a ifi=j+1;
—b  ifi>j+1.

Prove that det B,,_; = (—1)"b(a — b)" 2.

10



2: Inverses and determinants

Hence show that if 4, = [e;;] € Mat,(IR) is given by

b ifi<j,;
o=y a ifi=j;
—b ifi>j
then det 4,, = (a + b) det A,, _, — b(a — b)* 1.

Deduce that
det A, =3%{@+b)y"+ (@—>b)"}.
29 LetA, = [o;] €Mat,,,(IR) be given by
0 ifli—jl>1;
oy = 1 ifli—jl=1;
2cosd¥ ifi=j.
If A, =detA,, prove that A,,, —2 cos & Apyy + A, =0. Hence show by
induction that, for 0 <9 <,
_sin(n+1)9
"7 sind
2.10 Let A, = [a;] € Mat,,(IR) be given by
b; ifi#j,
ay=ya;tb; ifi=j<n;
b, ifi=j=n
Prove that det 4,, = b, [T’ a;.
If B, = [B;;] € Mat,,,,(IR) is given by
by ifi#f;
B'fz‘a,.+b,- ifi=j,
prove that det B, = det A, + a,, det B,,_;. Hence deduce that

n n
det By =] a;+ 3. (b,- Ha,-).
i=1 =1 j*i

1=

2.11 A real matrix A = [a;;]nx,, is said to be dominated by its diagonal elements if,
for1<r<n,

a,l> T layl.
i#r

Prove that if 4 is dominated by its diagonal elements then det 4 # 0.

11
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2.12 If A and B are square matrices of the same order prove that

dt[A B] det (4 + B) det (4 — B)
€ =dag € el .
B 4

P
213 letM= [ Q] where P, Q, R, S are square matrices of the same order with

P non-singular. Find a matrix N of the form [B C] such that

I P'Q ]
0 S—RPQ|

Hence show that if PR =RP then det M = det (PS —RQ), and that if
PQ = QP then det M = det (SP — RQ).

e

12



3.1

3: Eigenvalues and diagonalisation

In this chapter the emphasis is on the notions of eigenvalue and eigenvector
of a square matrix A. These are respectively a scalar A and a non-zero column
matrix x such that Ax = Ax. In order to compute the A and the x one begins
by considering the system of equations (4 —AJ,)x = 0. These have a non-
zero solution if and only if det (4 —A,) = 0. The left hand side of this
equation is a polynomial of degree n which, when made monic, becomes the
characteristic polynomial x4 (X) of A. The zeros of the characteristic poly-
nomial are thus the eigenvalues. It can be shown that every n x n matrix A
satisfies its characteristic polynomial (the Cayley-Hamilton theorem). The
minimum polynomial m 4(X) of 4 is the monic polynomial of least degree
satisfied by 4. It has degree less than or equal to that of x4 (X) and divides
X4 (X).

If the nx n matrix 4 has n distinct eigenvalues A,,...,A, and if
X1, ...,Xn are corresponding eigenvectors then the matrix P whose ith
column is x; for each i is such that P! exists and P"'AP =D where
D = [dy] = diag {\y, ..., N} is the diagonal matrix with dy; = ); for every i.
When A is real and symmetric, P can be chosen to be orthogonal (P! = Pt);
this is achieved by normalising the eigenvectors. The same procedure may be
applied when A has less than n distinct eigenvalues provided that one can find
n linearly independent eigenvectors,

Determine the characteristic polynomial and the minimum polynomial of
each of the following matrices (4, B, C, D)

1 —4 0 1 23 1 1 O 0 0 2
2 =2 -2 |01 2f;f(—=1 1 14; (1 O —1
—25 1 =2 0 0 1 0 1 —1 01 1

13
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If A, B €Mat,,, ,(IR) are such that I, — AB is invertible, prove that so also is
I, — BA.

Deduce that, for all 4, B € Mat,,, ,(IR), AB and BA have the same eigen-
values.

Let 4, B be square matrices over € and suppose that there exist rectangular
matrices P, Q over € such that 4 = PQ and B = QP. If h(X) is any polynomial
with complex coefficients prove that 4 h(4) = Ph(B) Q.

Hence show that, if my(X), mg(X) are the minimum polynomials of
A, B respectively, then Amg(4) = 0 = Bm,(B). Deduce that one of the
following holds:

my(X) =mp(X); my(X)=Xmp(X); mp(X)=Xmy(X).

Express the r x r matrix

as the product of a column matrix and a row matrix, Hence find its minimum
polynomial,

Given the real n.x n matrix A = [a;;] let k = max |a;|. Prove that, for all
positive integers r,
[[A"1] < k"2,
For every scalar 8, associate with 4 the infinite series
Sg(A)=1,+pA + A%+ ...+ A+ ...,
We say that Sg(4) converges if each of the series
8+ BlA);+ B2 [A]+ - -+ B[4+ -
converges. Prove that
(@) Sg(A) converges if |8 < 1/nk;
(b) if Sg(A) converges then I, — B4 has an inverse which is the sum
of the series.
Deduce that if 4 is a real n x n matrix and X is an eigenvalue of A then
N <n.max |al.

14
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3.6

3.7

3.8

3.9

3.10

3: Eigenvalues and diagonalisation

Show that the matrix
-2 -3 =3
-1 0 -1
5 5 6

has only two distinct eigenvalues. Find corresponding eigenvectors.

Find the eigenvalues, and one eigenvector for each eigenvalue, of each of the
following matrices:

(1 0 1 -2 5 7
01 0; {1 0 —1f.
(1.0 1 -1 1 2

For each of the matrices
[—3 —7 19 —4 0 -3
-2 -1 8|, |1 3 1
-2 =3 10 4 -2 2

find a matrix T such that T7'4T is diagonal.

i
[ cos & sinz?]

1 i
Show that [ ] and [1] are eigenvectors of

—sind cosd

1 i
Ifp= [ i 1] compute the product P'AP,
i

a b
LetA =[ d]where a,b,c,d> 0. Prove that
c

(@) the eigenvalues of 4 are real and distinct;

(b) A has at least one positive eigenvalue;

(¢) corresponding to the largest eigenvalue of A there are infinitely
many eigenvectors with both components positive.

For each of the following matrices determine an orthogonal matrix P such
that P'4P is diagonal with the diagonal entries in increasing order of

15



Book 2: Matrices and vector spaces

magnitude:

o = O

1
0
1

o = O

o
3.11 Suppose that the real matrix 4 =[ ﬁ] has distinct eigenvalues A, A,. If

P= [x‘
1
positive integer r, A" = PD"P™,
Consider the system of recurrence relations defined by

A
12} prove that P71AP = D = diag {\,, \,}. Deduce that, for every

Upsy = 0y + By,

Up+p = Up,

forn=0,1,2,....

Uy a B
U,= [ ] and A4 =[ ]
Up 1 O

express these relations in matrix form and deduce that U, = 4" ~1U,. Hence

Using the matrices

show that
¢ hY4
“n=)\1_)\2(u1_>\2u0)+)\I_M()\luo_ul)-
3,12 Let T, be the tridiagonal n x n matrix
(1 -4 0 ... 0 0]
1 —4
0o 5 1 0
T,=
0 1 —4
10 0 0 ... 5 1]

and let A,=detT,. For n>2 let r, =

1
where 4 = [1

A"~ 2 and hence show that
Ap = 55" — (4.

16

0 ] and deduce that r,

Ap
[ ] Show that r, =Ar,_,
n—1

= A""2r,. By diagonalising 4, find
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3.14

3.15

3: Eigenvalues and diagonalisation

For every positive integer n, determine the nth power of the matrix

2 20
A={1 2 1}
1 2 1

Solve the system of equations
Xn41=2Xp+ 6yp
Yn+1=6x,— 3y,

given that x, =0 and y; = —1.

Given the matrix
6.5 —25 25
A=1{-25 65 —25
0 0 4
find a matrix B such that B2 = 4.

17
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4.5

4: Vector spaces

We consider vector spaces V over only the fields @, IR, € and Z,,. The sub-
space spanned (or generated) by the set {vy, ..., v,} is the set of linear com-
binations of vy, ...,v, and is written span{vy,...,u,} or {uy,...,v,).
A linearly independent spanning set is called a basis. The number of elements
in a basis is independent of the basis and is the dimension dim V of V. If, for
example, the ground field is IR and V is of dimension n then V can be re-
garded as the set IR" of n-tuples of real numbers. Every linearly independent
subset of ¥ can be extended to a basis. A basis is therefore a maximal inde-
pendent subset; it can also be described as a minimal generating set. If W is
a subspace of ¥ then dim W < dim ¥ with equality if and only if W= V.

Fori=1,...,n let a; =(ay,a;,, - . .,4;,). Prove that {ay,...,a,}is a basis
of IR" if and only if A = [a;7],x, is invertible.

Determine which of the following are bases for IR3:
(a) {(1’ 1’ 1), (1’23 3)’ (2’—1’ 1)};
(b) {(1’ 1’ 2)7(13 2’ 5)’ (57 3’ 4)}'

Show that {(1,1,0,0),(—1,—1,1,2),(1,—1, 1, 3),(0, 1,—1, —3)} is a basis
of IR* and find the coordinates of the vector (a, b, ¢, d) relative to this basis.

Extend the linearly independent set {(1, —1, 1, —1),(1, 1, —1, 1)} to a basis
for IR®.

Which of the following statements are true? Give a proof for those which are
true and a counter-example for those which are false.
(@ {(x;,x;) €IR?|x,<x,}is a subspace of IR?.
(b) If {a;, a5, as} is a basis for IR> and b is a non-zero vector in IR3
then {b + a,,a,,a;}is also a basis of IR3.

18
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4.8

4.9

4.10

4. Vector spaces

(¢) If {xy,...,x,} is a linearly dependent set of vectors in IR" then
r<n.

(d) If {x,, ..., x,}is a spanning set for IR" thenr >n.

(e) The subspace {(x, x, x) | x € IR} of IR? has dimension 3.

(f) The subspace of IR?® spanned by {(1, 2, 1), (2, 2, D}is {(x + y,
2y, ») | x,y €IR}.

(g) The subspace of IR® spanned by {(1, 2, 1),(2,2, D}is {(2x, 2x +
2y, x+y)|{x,y €IR}

(h) If P, Q are subspaces of a finite-dimensional vector space then
we have that P C @ implies dim P < dim Q.

(i) If P, Q are subspaces of a finite-dimensional vector space then
we have that dim P< dim Q implies P C Q.

(7) The only n-dimensional subspace of IR" is IR" itself.

Determine whether or not the following subsets of IR* are subspaces:
@ U={(@,b,c,d)la+b=c+d};
®) U={(@,b,c,d)la+b=1};
(¢) U={(a,b,c,d)|a®+b*=0};
@) U={(@a,b,c,d)|a®>+ b2 =1}
(¢) U={(a+2b,0,2a—b,b)|a,b<IR};
(HU={(a+2b,a,2a—b,b)|a,bEIR}.

Which of the following criteria are correct for a non-empty subset U of a real
vector space V to be a subspace of V?

(@) (vx,y€eU)(Va,bEIR) ax+byel,

(b) (Vx,y€U)(Va € IR) ax+y€eUu,

(¢) (Vx,y€U)Va€<IR) ax+ay €U,

d) (Vx,y €U)Va EIR) ax—ay €U

Let ¥ be a real vector space and suppose that v, . .., vy are linearly indepen-
dent vectors in V. If v = Z¥_,g;v; where each g; € IR, prove thatv— vy, . . .,
v — vy, are linearly independent if and only if Z¥_;q; #1.

Let V be a vector space and let X, Y be subspaces of V. Suppose that
dim V=10, dim X =8 and dim Y =9. What are the possible values of
dim (X NY)

Show that there are
n=2(n — 2" -1y - (22— D22 1)
non-singular # x n matrices each of whose entries is 0 or 1.
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. Let Ay,..., Ay €EMat,,,,(IR). Let X and Y be invertible m xm and n x n

matrices respectively, and let B € Mat,,, ,(IR). Prove that
(@) {A4,, ..., A} s a linearly independent subset of Mat,,,,(IR) if
and only if {XA,Y, ..., X4, Y} is a linearly independent subset
of Maty, x»(IR); .
(b) if {AB,...,4;B}is a linearly independent subset of Mat,,  ,(IR)
then {A4,..., 4} isalinearly independent subset of Mat,,, » ,(IR).
Give an example to show that {4, ..., Ay} being linearly independent
need not imply that {A4,B, ..., A;B} is linearly independent.

Find bases of Mat, ,,(Q) that consist

(@) of matrices 4 with A%>=4;

(b) of invertible matrices;

(c¢) of matrices with determinant 1.
Show that it is impossible to find a basis of Mat,,,(@) consisting of com-
muting matrices. For which values of n is it possible to find such a basis of
Mat,; » (Q)?

Let V be a real vector space and let by, b, € V be linearly independent. If
a,,a,€ V are given by

ay=01by+ayb,, a;=p1b,+Bb,
where a;, a, B1, B2 € IR, prove that the subspace generated by {ay, a,}
coincides with that generated by {b, b,} if and only if

o, o
det[l 2]#0.

1 2

Let U be the subspace of IR* spanned by
X={(,2,1,3),(7,5,5,5,(3,2,2,1),(2,1,2, D}
Given that x =(6 + X\,1 +A,—1 + A, 2+ }) belongs to U, find X. For this
value of A, does x have a unique expression as a linear combination of the
vectors of X?
Find a basis for U and extend this to a basis for IR*.

Prove that ¥ = {a + b+/2 | @, b € Q} is a vector space over Q.

Let V be the real vector space of continuous functions f : IR - IR. Which of
the following subsets are subspaces of V?

(@ wmi={fevifG)eak
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4: Vector spaces

®) W,={feVIf3)=r)}k
() Ws={feVIfG)=0}%
@ Wa={fEVIDfE)=1}.
Find W; N W} in the cases where W; and W are subspaces.

Let Z; be the field of integers modulo 3. Consider the Zj-vector space
Z3={(a,b,c)|a,b,c €Zs}. Which of the following subsets are linearly
independent?

@) 4,={(1,2,0),(2,1,0)}

®) 4,=4{(1,1,1),(1,0,1),(1,0,0),(0,0, 1)};

(C) A3 = {(1’ 2’ 0)7 (1, la 1)9 (25 0’ 1)}’

d) A,={(1,0,1),(1,1,0),(0,1, 1)}.

Prove that {(3 —i, 2 + 2i,4), (2, 2 + 4i, 3), (1 —i, —2i,—1)} is a basis of the
C-vector space €3, Express each of (1,0,0), (0,1,0), (0,0,1) as a linear
combination of these basis vectors.

Consider the vector space Z3. How many elements does it have? How many
different bases are there?

If V is a vector space of dimension 3 over IR and if {x,, x,, x5} is a basis of
V, prove that {x;+x,,Xx,+x3,x3+x,} and {x,,x,+x,,%x,+x,+ x5} are
also bases of V. Is this still true if we replace ¥ by Z3?

The set Map (IR, IR) of all mappings from IR to IR is a real vector space under
addition and scalar multiplication. Let n be a positive integer and let E, be
the set of all mappings f : IR - IR given by a prescription of the form

n
fl)y=ao+ ¥ (ag coskx + by sin kx)
k=1

where a;, b; € IR for every i. Show that E, is a subspace of the real vector
space Map (IR, IR). If f€ E,, is the zero map, prove that all the coefficients
a;, by must be 0.

(Hint: If D denotes the differentiation map, find a prescription for
D*f+ n*f and use induction.)

Deduce that the 2n + 1 functions

x—=>1, x->coskx, x-—sinkx (k=1,...,n)

form a basis for £,,.

Let @, € IR with a# f and let 7, s be fixed positive integers. Show that the
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set of functions of the form

Gotayx+ oot @ x5!

o —af(x —py
where each g; € IR, is a real vector space of dimension 7 + s.
(Hint: Show that the functions

%

(x — o (x — By’
fori=0,...,r+s—1 constitute a basis.)

Show also that if g; and 4; are given by g;(x) = (x — a)~* and hj(x) =
(x —B)~/ then

B={g/li=1,....,r}U{h;|j=1,...5}

is also a basis.

(Hint: Tt suffices to show that B is linearly independent.)

x> flx)=

x> i) =

Let V be a finite-dimensional vector space over a field F. Prove that V has
precisely one basis if and only if either (@) ¥ = {0}, or (b) F has only two
elements and dimV =1.
For each positive integer & let f; : IR = IR be given by

i) =exprix (r; €IR).
Prove that {fy,..., [} is linearly independent if and only if r,...,r, are
distinct,.

22



51

5: Linear mappings

If V, W are vector spaces (over the same field) of dimensions m, n respectively
and if f: V'~ W is a linear transformation (i.e. f€ Map (V, W)) then the
matrix associated with f with respect to fixed ordered bases {vy, ..., Uy} of
V and {wy,...,w,} of W is the matrix A whose ith column consists of the
coordinates of f(vy) relative to the basis (w;). If f: ¥V > W is represented by
the matrix B relative to ordered bases (v;) and (w;) then A and B are related
by B = Q7'AP where P represents the identity map on V relative to the bases
(vy), (vy) and Q represents the identity map on W relative to the bases (w;),
(w;). When A, B are n x n matrices and (w;) = (v;), W;) = (v;) then Q=P
gives B = P"'AP, in which case B is said to be similar to 4.

Particular subspaces associated with a linear map f: V' = W are the kernel
Kerf={x €V |f(x) =0} and the image Imf={f(x) |x €V}. The dimen-
sion theorem states that

dim V = dim Im f + dim Ker f.
The rank of f is defined to be dim Im f. This coincides with the rank of any
matrix that represents f. A linear map f: V' —> W is an isomorphism if it is
both injective and surjective; equivalently, Im f = W and Ker f = {0}.

Determine which of the following mappings f : IR* - IR? are linear:
@ f,y,2)=(,~y,x);
®) fCx,y,2) =(x],0,—y);
© fx,y,2)=(,z2,0);
(d) f(x,y,z)= (x _l,xa.y);
€ flx,y,z)=(2x,y —2,3y);
() f&x,y,2)=(2%,y,3p).

5.2 (@) Iff: 1IR3~ IR3 is linear and such that

23



Book 2:

53

54

55

56

5.7
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a1, n=01,1,1, £(1,2,3)=(-1,—-2,-3),
f(1,1,2)=(,2,4)

is it possible to find f(a, b, c) for all (a, b, ¢) € IR3?

(b) Iff: IR® >IR3 is linear and such that
fa,1,)=(,1,1), f(2,2,3)=@3,3,5), f(1,1,2)=(2,2,4)

is it possible to find f(a, b, c) for all (a, b, ¢) € IR??

(¢) Does there exist a linear mapping f : IR® - IR® with the property that
f(0,1,1)=(3,1,—-2), f(1,0,1)=(4,—-1,1),
f1,1,00=(-3,2,1), f(1,1,1)=(3,4,2)n

Let B be a fixed non-zero element of Mat,,,(IR). Which of the following
mappings T : Mat,,, ,(IR) - Mat,,, ,(IR) are linear?

(@) T(A)=AB—BA;

(b) T(4)=AB+ BA;

(¢) T(A)=AB?+ BA;

(d) T(4) = AB*> — BA?;

(e) T(A)=(A+B)*— (A4 +2B)(4—3B).

Find the matrices A and B associated with the linear mappings f : IR?> - IR?
and g : IR® - IR? with respect to the standard bases when f and g are given by
fE,y)=C+2y,2x—y,—x), g, y,2)=(>x—y,2y—2).
Find the matrices C and D associated with these mappings f and g with
respect to the bases {(0, 1), (1, 1)} of IR? and {(0, 0, 1), (0, 1, 1), (1, 1, 1)}of
IR3.
Suppose that the mapping f : IR® - IR is linear and such that
£(1,0,00=(2,3,—-2), f(1,1,00=(4,1,4), f(1,1,1)=(G5,—-1,7).
Find the matrix of f with respect to the standard basis of IR3.

Find the matrix that represents the linear mapping f : IR - IR? given by
f@,b,c)=QRa+c,b—a+c,3c)
with respect to the basis {(1,—1,0), (1,0,—1),(1, 0, 0)}.

In IR? let M and N be distinct lines passing through the origin. Let
P, : IR? > IR? be the map such that, for every (x, y) € IR?, ppy v (%, ») is
the point of intersection of M with the line through (x, y) parallel to N.
Determine pys, 5 (x, ¥) in terms of

(a) the gradients m, n of M, N if neither is the y-axis;

24



58

59

5.10

5.11

512

5: Linear mappings

(b) the gradient m of M if N is the y-axis;

(c) the gradient n of N if M is the y-axis.
Conclude that in all cases pyy, i is linear. Determine the corresponding matrix
relative to the standard basis of IR? in each of the above cases. What is the
minimum polynomial of pps x?

If V, W are vector spaces over a field F prove that a linear transformation
f: V> W is injective if and only if, whenever {v;. ..., v,} is a linearly inde-
pendent subset of ¥, {f(vy), ..., f(v,)}is a linearly independent subset of W.

Given x, y € IR® define the wedge product of x, y by
XNy =(%1,%2,%3) N (Y1, ¥2,¥3)
= (X2 3 —X3)2, X3 Y1~ X1V3, X1 V2 — X2 Y1)
Define f,, : IR > IR3 by fy(x) =x A y. Show that f, is linear and prove that if
» # 0 then Ker f,, is the subspace of IR3 generated by {y}.
(Hint: Without loss of generality, suppose that y, # 0. Consider separately
the cases ¥, =0 =3,¥,F0=y3,¥, = 0Fy3,y;, #0¥#y;.)

Iff : IR = IR is linear and & : IR? - IR? is given by

3, y) = (x,y —fix)),
prove that ¢ is an isomorphism.

Let ¥ be a vector space of dimension n over a field F. If f : V- V is linear,
prove that the following are equivalent:

@ Imf=Kerf,

(®) fof=0,f+#0,niseven and rank f = in.
A diagram of finite-dimensional vector spaces and linear transformations of
the form

Ly, Ly, Lo Iny
is called an exact sequence if

(a) fiisinjective;

(b) f» is surjective;

) G=1,...,n—1) Imf;=Kerf,.
Prove that, for such an exact sequence,

n+t
Y (1) dim ¥;=0.
=1
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Let V be a vector space of dimension n over a field F, A linear transformation
f: V > V is said to be nilpotent if fP = 0 for some positive integer p. The
smallest such integer p is called the index of nilpotency of f.

Suppose that f is nilpotent of index p. If x € ¥ is such that P~} (x) #0
prove that

{x, (), f2(x), ..., {x)}

is linearly independent. Hence show that fis nilpotent of index n if and only
if there is an ordered basis (a;), of ¥V such that the matrix of f relative to
(@;)y, is of the form

0 00 0 0
1 00 00
010 00
0 0 1 0o o

000 ... 1 0f

Deduce that an n x n matrix M over F is such that M* =0 and M* 10 if
and only if M is similar to a matrix of the above form.

Given ¢ € IR prove that the following matrices over € are similar:
[cos ¢ —sin 19] [ei" 0 ]
sind cos9ld’ Lo 10N
Which of the following mappings f : Z3~ Z3 are linear?
(a) f(a’ b’ C) = (b7 —a, 1):
() f@a,b,c)=(a% b%,c?),
() fle,b,e)=@+1,b+1,c+1).
Let f : Z%— Z2be such that
f0,00=(0,0), f(1,0)=(1,1, f0,1)=(1,0), f(1,1)=(0,1).

Is f linear?

Let IR[X] denote the vector space of polynomials over IR. Prove that the
differentiation map D : IR[X] = IR[X] is linear. Prove also that the map
T:IR[X]~ IR[X] given by T(p(X)) = Xp(X) is linear. Describe the linear
maps D+ T,D O T and T O D. Show that D O T — T O D =1 where I is the
identity map. Deduce that (T © D)*= 7?0 D?+ T 0 D. Find a linear map
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S:IR[X]~ IR[X] such that Do S=1 Show that neither D nor § is an
isomorphism.
Let F be a field and define f: F?—> F3 by

fl@,b,o)=(@+b,a+c,b+o).

Find Im f and Ker f when
(@) F=IR;
(b) F= Zz.

What are the dimensions of Im f and Ker f in each of these cases?

Consider the linear transformation f : IR® - IR? given by
f@a,b,c)=(b,—a,c).

Find the matrix A of f with respect to the basis
{(1,0,0),(0,1,0),(0,0, 1)}

and the matrix B of f with respect to the basis
{,1,0),(0,1,1,(1,0, D}

Determine a non-singular matrix X such that 4 = X! BX.

Let ¥ be a vector space over IR with basis {u;, u,}. Let f: V> V be the
linear transformation such that

fy)=uy—uy, fluy)=u,.
Find the matrix of f with respect to the basis {u,,u,}. Find also the matrix
of f with respect to the basis {w,, w,} where

wi=3uy—u,;, wy=u,+tu,.
For n>1 let IR, [X] be the vector space of real polynomials of degree less
than or equal to n —1. Determine the matrix of the differentiation map D
with respect to the bases

@ {,x,x%...,x" 1}

b)) X"Lx"2, . X, 1}

© {1L,1+Xx,1+X% .., 1+Xx"1},
Prove that {1,i} is a basis for the real vector space €. Show that f: C—~>C
given by

fx +yi)=x—yi
is linear and find the matrix of f relative to the basis {1, i}.

Show that f is not linear when C is regarded as a vector space over C.
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Let ¥V be a vector space of dimension 3 over a field F and let f: V>V be
a linear transformation. Suppose that, relative to some basis of ¥, the matrix
of fis

3 -1 1
-1 5 -1
1 -1 3
Determine dim Im f and dim Ker f when
(@) F=IR;
b) F=12Zy;
(¢c) F=12Z,.

Give an example of a vector space ¥ and a non-zero non-identity linear
transformation f : ¥ - V such that

Im f N Ker £+ {0}.
Is it possible to have Im f= Ker f? What about Im f C Ker f? What about
Ker f CIm f?

Let p be a prime and let V be a vector space of dimension 3 over the field
Z,. Suppose that f: V=V is a linear transformation such that, relative to
some basis of ¥, the matrix of fis

2 21
1 3 1}.
1 2 2

Prove that f is an isomorphism if and only if p # 5.
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6: Inner product spaces

Standard notation will be used for inner products, namely (x| y). If x, yEIR"
the standard inner product is given by {x | ) = Z7_,x;y; where x;, y; are the
ith components of x, y. The length of a vector x is [Ix]l =+/(x | x). Vectors
x, y are orthogonal if {x|y>=0. A set {x,,...,x,} is orthonormal if
(x; | x;>=8;;. The Gram-Schmidt orthonormalisation process produces an
orthonormal basis for the subspace spanned by a given linearly independent
set.
For a subspace W of an inner product space ¥ the orthogonal complement

of W is the subspace

Wi={yev|(vxeEW){x|y)=0}
For a given linear map f: ¥V = V it can be shown that there is a unique linear
map f* : V- ¥V such that

(fE) 1 y)y=L(x | f*(yP.
This is called the adjoint of f. We say that f is self-adjoint if f=f*, and
normal if f O f* = f* 0 f.

If V is a real inner product space and x, y € V prove that
x|y
y— x I x> =0.
< lIxi1?

Deduce that if x, y € IR® with {x, y} linearly independent, and if L is the line
through the origin and x, then the line through y perpendicular to L meets L
at the point ((x | ¥)/llx]|?)x. If & is the angle xOy prove that cos 9 ={x | )/
(EFINBAIN

If V is a real inner product space and x, y € V prove that
lx + 1% =llxI* + | p0* + 2Ax | p).
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Interpret this result in IR%. If W is a complex inner product space and
x,¥y € W prove that

llx + pII% = illx + pIi% = flxll? + Iy — illxll® + 1p17) + 2Ax | p).

If V is an inner product space, establish the parallelogram identity
(vx,y €EV) lix +plI>+ llx —ylI* = 2llxII> + 2yI1%.
Interpret this result in IR?.

If V is a real inner product space and x, y € V are such that {|x]|| = || y|| show
that (x + y | x — y) = 0. Interpret this result in IRZ.

Write down the Cauchy-Schwarz inequality (I{u | v} <]lull . ||vll]) when the
inner product space in question is
{a) C” under the standard inner product;
(b) the vector space of continuous functions f: [0, 1]~ IR under
the inner product defined by

1
(fle= fo 020 dt.

Let V denote the vector space Mat,, ,(C). For every A = [a;] € V define the
conjugate transpose of 4 to be the matrix A* the (i, j/)th element of which is
d@j;; and define the trace of 4 by tr(4) = X1, a;;.

Show that tr(4 +B)=tr(4d)+tr(B) and tr(4B)=tr(BA) for all
A, BEV, and that {4 | B)=tr (AB*) defines an inner product on V. Interpret
the Cauchy-Schwarz inequality in this complex inner product space.

Show further that if Epg € V' is the matrix whose (p, g)th element is 1 and
all other elements are 0 then

{Epqlpg=1,...,n}
is an orthonormal basis of V.

Use the Gram-Schmidt orthonormalisation process to find an orthonormal
basis for the subspace of IR® generated by

{(1,1,0,1),(1,—2,0,0),(1,0,—1,2)}.

Consider the real inner product space of continuous functions f : [0,1] -~ IR
under the inner product

1
(flg) = f £ 20 dr.
0
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Find an orthonormal basis for the subspace generated by
{t>1,t->1}.

Let V and W be subspaces of a finite-dimensional inner product space. Prove
that, if L denotes orthogonal complement,

@ (Vnwyl=v+wt,

@) V+wWl=vVinpmt,

Let IR3[X] be the real vector space of polynomials of degree less than or
equal to 2. Show that the prescription

1
<plq>=fo rX)qX)dx

defines an inner product on IR;[X]. If K denotes the subspace of constant
polynomials find the orthogonal complement K* of K in IR5 [X]. Write down
a basis for K* and use the Gram-Schmidt orthonormalisation process to
compute an orthonormal basis for K*.

Let V be the complex inner product space Mat,,, ,(C) (see Exercise 6.6). For
every MEV let fjr : V>V be given by f(4) = MA. Prove that the adjoint
of fur is given by fi = fars.

Let V be the real inner product space of polynomials over IR with inner
product {p | ¢}>= fgp(X)q(X) dX. For every pE V let f, : ¥ > V be given

by (Vg €V) fo(q) =pq where (pg)X)=p(X)q(X). Prove that f, is szlf-
adjoint.

If V is a finite-dimensional inner product space and f: V' — V is linear prove
that

Imf*=(Kerf)! and Kerf*=(Imf)".

Let V be a complex inner product space, Forallx,y €Vlietf, ,: V> Vbe
given by
Lo y(@) =Lz 1y
Prove that £, ,, is linear and that
(@ (vx,y,z€V) fx,y o fy,z = "y”zfx,z;
(b) the adjoint of £y, is f), x.
Hence show that if x #+ 0 and y # 0 then
() fx,yisnomale (AAEC) x=Ny;
(d) fx,y is self-adjoint & (AN EIR) x =y
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Solutions to Chapter 1

1.1  The respective products are

X 3 7 4 0 O
1 7
; 2 51 0 4 0],
13 1
2 3 0 0 4
(1 2 3 4
2 4 6 8
;. [30].
36 9 12
4 8 12 16

1.2 The product is the 1 x 1 matrix {¢] where
t=x(ax +hy +g)+y(hx+by+H+egx+fr+ec
=ax?®+ 2hxy + by*+2gx + 2fy +c.
Denoting by 0 the 1 x 1 zero matrix, we can write each of the equations in
the form
x
[x ¥y 1IM{y| =0
1

where l o 0
1 3 4 o?
@M=3 13 eM=| 1
4 3 2 8
L0 0 —1

32



Solutions to Chapter 1

04 o0 0 0 —2
OM=|{ 0 0|, @@M=| 0 1 O
0 0 —a? —2a 0 O

1.3 Wehavethat AB=0,4>=A4,B>=—Band (4 +B)*=1,. But
1 2
A+ 24B+ B = :
01

Since (4 + B)*> =1, we have (4 + B)* = (4 + B)*(4 + B) = A + B; and since
AB=0,4>=A, B®>= B we have
A3+34?B+34B*+B*=A3+B*=A4 +B.

1.4 A simple calculation shows that

0 0 4* 248 0 0 0 &
0 0 0 4° 0 0 0 O
42= , A=
00 0 o 0 0 0 O
0 0 0 o 0 00 O
and A*= 0, whence A" = 0 for every n > 4. It follows that
0 a ia*® id
0 0 a i2°
B=A—14%+14%= :
0 0 0 a
0 0 O 0
A simple calculation shows that
0 0 o & 0 0 0 &°
0 0 0 &2 0 0 0 O
B?= , B'=
00 0 O 0 0 0 O
0 0 0 O 0 0 0 O
and B* = 0, whence B" = 0 for every n = 4. Then

2

&

1 1
B+—B'+—B3=
TIET

o O O O

o O 8
°§§~§w
Il
B

o O O 8
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a b
15 LetX= [ ] Then
c d

2_[112+bc b(a+d)]
cla+d) cb+a?l
Thus X2 =1, if and only if

a’+bc=1,
bl@a+d)=0,
c@a+d)=0,
ch+d*=1.
Suppose that b = 0: then these equations reduce to

a?=1,

ca+d)=0,

d*=1,

from which we see that
eithera=d=1,c=0,

ora=d=—1,c=0;

ora=1,d=-1,c arbitrary;

ora=—1,d =1, c arbitrary.
Suppose now that b # 0: then we must have @ + d = 0 whence we see that
d=—aandc = (1 —a?))b.

Thus we see that the possibilities for X are

1 o] [—1 0]
0 1) 0o -1t

LSBT eem

4 b] @€ IR, b€ IR\{0}).

[(1—a?)/b —a

[a O
16 LetA= 0 b].ThenA2=-—12ifandonlyif

a®+1=p%+1=0.
Hence the complex diagonal solutions are

34



1.7

Solutions to Chapter 1

] P S P O P

No real diagonal solutions exist since x? + 1 = 0 has no real solutions.
If (x, ) lies on the curve y?> —x2 =1 then we have

5 2E 2)-

so there are infinitely many real 2 x 2 solutions.
If now A is a real 2 x 2 matrix such that A? = —I, then the 2k x 2k matrix

A
A

A

is a solution of X?= —I,;. Thus there are infinitely many 2k x 2k real
solutions of X2 = —I,;. As there is no real 1 x 1 solution, the result does not
hold for all odd integers.

X
x|
z

[x2 +yz xy +yt] [0 O]
xz+zt yz+ ¢ 0 o)
Consider therefore the equations

y] is such that X? = 0 then we have
t

x2+yz=0,
yx+16)=0,
zZx +1)=0,
yz+12=0.

Suppose that y = 0. Then clearly x = ¢ = 0 and

2 ol

X=

z 0

which is of the required form. Suppose now that y # 0. Then ¢ = —x and
x2+4 yz = 0 which gives

X= [_:2/}, —yx]
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Writing @ = v/y and b = x/\/y we see that X is again of the required form.
The result fails over IR since, for example,

[ ol o)=L ol
1 oll1 ©O 0 0
and there is no b € IR such that —5%2 = 1.

1.8 The condition is necessary since

BEEE W

and clearly xu-yv = yu- xv.

a b
Conversely, suppose that X =[ d] is such that ad = be. If @ # 0 then

¢
define x =a,y =c,u =1, v=>/a and we have the required decomposition.
If now @ = 0 then either b =0 or ¢ = 0. If » = 0 we have

o oJ=[]e @

and if ¢ = 0 we have

o ol-o)e n

19 (a) (i) Wehave
[[AB]C] = (AB —BA)C — C(AB — BA)
=ABC + CBA —BAC — CAB;
[[BCl4] = (BC - CB)A — A(BC —CB)
=BCA + ACB — CBA — ABC;
[I[CA]B] = (CA — AC)B —B(CA —AC)
=CAB+ BAC—ACB —BCA.

The result follows by adding these together.
(i) [A+B)X]=A+B)—C(A+B)=AC—CA+BC—CB=
[AC] + [BC].
(iii) Expand as in (i).
(b) Take, for example,

01 10
A=B=[ ], C= .
1 0 0 0
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L11

Li2

113

Solutions to Chapter 1
We have that [[AB]C] = 0 and
uescap=|2 ]
“lo —2f

(@) Involves straightforward matrix multiplication.
(b) It is readily seen that

XY—-YX=2, YZ-2Y=X, ZX—XZ-=Y.
(c¢) Involves straightforward multiplication.
(@) If A= [a;j]2x2 and B = [b;;], 2 then it is readily seen that

ay2by—and ?
AB_BA=[12 21 21V12
? aybiy—aby
so the sum of the diagonal elements is 0. (There is no point in calculating the
off-diagonal terms.)
(b) E is necessarily of the form

fay, a5 ]

(421 —411

E=

whence we see that

2 —
aytapdy  aydi;—apdin

E?= =(a%1+a12a21)12.

| 41121 — 41182 a5+ af
(¢) Let E=AB— BA. Then by (a) the sum of the diagonal elements of
E is zero; and by (b) there is a scalar A such that £ = \I,. Consequently
(AB —BAYC = (\[,)C = \C = CQl,) = C(AB — BA)*.

At =4 and B* = —B. Thus
(AB + BA) = (4AB)' + (BA): =B'A* + A'B!
=—BA —AB=—(AB + BA)
so that AB + BA is skew-symmetric; similarly 4B — BA is symmetric. Next,
AY = (A% = A% 50 A?is symmetric; similarly B? is symmetric. Finally,
(APBUP)! = (AP (BY(A"Y = AP(—B)AP
$0 AP BIAP is symmetric if g is even, and is skew-symmetric if ¢ is odd.

A=yt —pxtY=px'—xyt=—4 so A is skew-symmetric. If x=

[e1xs---x,1t and y = [y y5---yul' then xty = TL, x;¥; = y'x. If now
xtx =y'y = [1] and x'y = y'x = [k] then
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A= (xyt — yxtyxyt — yxt)
= xytxyt — yxtxpt — xytyxt + yxtyxt
= kxy' — yyt — xxt + kyxt
and hence

A% = (kxy' — py' —xxt + kyxt)oopt — yxt)
= kxytxyt —yytxyt — xxtxyt + kyxtxyt
— kxytyxt + yytyxt + xxtyxt — kpxtyxt
= kxxyt — kyyt —xpt + kyyt — kxext + pxt + kxxt — kPpxt
=k2(xyt —yxt) —xyt + pxt
=(k*—1A.
1,14  Since (4B)" = B'A* we have (4')> = (4%)! = 4". Also,
(A—AYHY =A2—A4' — A4 + (4Y)?,
50 (4 —AY? =0 implies 4 —AA' — A% + A' = 0. Multiplying on the left by
AA* we obtain
AAYM —(AAY)? — A4 + 444 =0
which, since A*4* = A*, reduces to (44%)*>=AA4".
1,15 Referring to Fig. S1.1, we have that
x'=rcos(@a—9¥) =rcosacosd+rsinasin ¥ =xcosd+y sin 9
y'=rsin(@—9) =rsinacos ¥ —rcosasin & =y cos 9 —x sin I,
In matrix form, these equations become

[x']_[ cos 9 sinﬂ][x]
y' —sind® cos ol Lyl

Fig.S1.1
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A rotation through ¢ followed by a rotation through g is clearly equivalent to
a rotation through 9 + ¢. Consequently we have that
RﬂRtp = R0+«p =R¢R0-
Rotating the hyperbola anti-clockwise through 45° is equivalent to rotat-

ing the axes clockwise through 45°, Thus we have
!

)5

Now since RpaR_ga=Rpya—na=Ro=1; we can multiply the above
equation by Ry/q to obtain

1 1
x x' V22’
-
y y 1 1Ly
V2 V2
so we have
1 1
X =
\/2 \/2y
1 I+l !
=X —
YETRT TN

whence x> — y2 = | becomes

( L + ! ’)2 "+ ')2 1
—x'+—y (— —x'+ — =

V2§ V2 V2 \/

i.e. 2x'y’ = 1. Thus the new equation of the hyperbola isxy = .

(See Fig.S1.2)
Fig.S1.2

:
+
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Let the top sheet be the (x,y)-plane and the bottom sheet be the (x',y')-
plane. We have, where & is the anti-clockwise angle of rotation of the top sheet,

35 1 cos¥ —sind||1 cos &
=R_, = -
%% 0 sind cosd | |0 sin ¢
50 cos & = 75 and sin 9 = } (see Fig. S1.3).
Fig.S1.3

Y4
\ y'
\ ///
\ -
\ -~
\| .~
7N a0 x
-
- \
\
\I
pe

The point (x’, »") above which the point (2, 3) lies is then given by

yiog 110
ie.(x",»N)=(=2,3).
Clearly x'=x and y' = —y, s0

-0 2

To obtain (x,yr), rotate the axes through ¢, take the reflection in the new
x-axis, then rotate the axes through —&. The matrix in question is therefore
R_gMRy where M is the matrix of the previous exercise. A simple calcula-
tion shows that this product is

[cos 20  sin 29 ]

sin20 —cos 28]

Rotate the axes through &, project onto the new x-axis, then rotate the axes
through —¢&, The required matrix is then

[cos:? —sinn?] [1 O][cosé sinﬁ]
sind cosd 110 OdL—sind® cosd
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Solutions to Chapter 1

cos® O0][cosd sind
B [sin D4 0] [—sin 4 cos z‘}]
cos’d  sin ¥ cos ¥

- [sin ® cos & sin? 9 ]
The respective Hermite matrices are

(1 0 100 10
01 ; 01 0f; 0 1
10 0 0 0 01 00

(21 Y o

A row-echelon form of the augmented matrix is
[t 2 0 3 1

01 —-11 O

00 1 o0 —2f

0 0 0 0 1

This can be obtained as follows (using the ‘punning notation’ p; to mean

row i):
1 2 0 3 1 1 2 0 3 1
1 2 3 30 0 0 3 0 -1
->
1 01 1 3 o 421 =2 2
1 1 1 2 1 0O -1 1 -1 O
1 2 0 3 1 1
0 -1 1 0 —pa—>p, |0
- -
0 —2 -2 2 0
-0 0 3 0 —1 Pa2> Py 0
(12 0 3 1 1 2
01 -11 O 0 1
> -
0 0 1 0 —2| —p; 00
[0 0 0 0 —5{ pat3p; |0 O

P2 Py
P3P
Pa—

O O = N

0

P

O = W

0

3 1

1 0
0 2 p3t+2p,
0 —1

1

0
—2|"

I _‘51P4

It is clear from this that the coefficient matrix is of rank 3 whereas the
augmented matrix is of rank 4. Consequently, the system has no solution.
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1.22 A row-echelon form of the augmented matrix is
1 1 0 1 4
0 20 —-6 -1
0 0 1 —1 1
0 0 0 0 A-—1

It is clear from this that the coefficient matrix and the augmented matrix
have the same rank (i.e. the system has a solution) only when X\ = 1. In this
case, since the rank is 3 and the number of unknowns is 4, we can assign
4 —3 =1 solution parameter. Taking this to be ¢, we have z=1+1¢,
—2y =6t —1,x +y =4 —t so that the general solution is

z=1+¢,
y=-3t+1,
x=2t+7.

1.23  We have, by the obvious row operations,
1 1 -1 0 b 1 1 -1 0 b
2 -1 1 -3 a|->|0 -3 3 —3 a—2b
4 1 -1 -3 ¢ 0 -3 3 -3 c—4b
from which we see that the system has integer solutions if and only if
a~—2b=c—4b and a —2b is divisible by 3; i.e. a+ 2b =c¢ and 3 divides
a+b.
1.24 A row-echelon form of the augmented matrix is
1 1 1 1 a
01 1 0 3@—b
0 01 1 i@+o)
0 0 0 0 3@d+30)—3@—b)+i(c+a)
A solution exists if and only if the rank of the coefficient matrix is the same
as the rank of the augmented matrix. This is so if and only if 0 = (d + 34) —
1(@—b)+3i(c +a),ie.if and only if 3a + 2b +2¢ +d =0. Sincea,b,c,d >0
this condition is not met, so the system has no solution.

1.25 We have
21 1 —6p 2 1 1 —68
Yy 3 2 28>0 6—v 4—v 48+6fy| 2p2— 7P
2 1 y+1 4 0 o0 v 4+68 | ps—p,
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Solutions to Chapter 1

If now 7y # 0 and v # 6 then we can reduce this matrix to Hermite form with
rank 3, in which case a unique solution exists,
Suppose now that v = 0. Then the reduced augmented matrix becomes

2 1 1 —68
0 6 4 48
0 0 0 4+68

from which we see that the system has a solution if and only if 0 = 4 + 68,
i.e. if and only if 8 = —2%. When this is so, the matrix becomes

211 4 1 34 2 1 0Lt 2
0 6 4 —§j»/01 3% —§|~->j0 1 3% —3%
000 O 000 O 000 O

so the general solution is
e
y=—%-1z,
where z is arbitrary.
Suppose now that y = 6. Then the reduced augmented matrix becomes
[2 1 1 —ep 21 1 —6
0 0 —2 408 |>]0 O =2 408
|0 0 6 4+6p 0 0 0 4+1268
so a solution exists if and only if = —&. In this case the matrix becomes
[2 11 2] [2 1 0 -2
0 01 ¥|»l00 1 %
(0 000 0 00 O
whence the general solution is

=8,
x=—3—3,

where y is arbitrary.
A row-echelon form of the augmented matrix is

1 -1 0 -1 -5 «a
3 -1 —2 11 f—2a«a
0 S5 -5 =25 3(yv—a)—2(8— 2w
O 0 o0 0 p

o © O
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where p=5[3(6 —a)—5(8—20)] —11[3(y —a) —2(8 — 2a)]. A solution
exists, therefore, if and only if
0=158 — 15a— 258 + 50a — 33y + 33a + 228 — 44a
= 24a— 38— 33y + 1568
ie. if and only if 8¢ —f— 11y + 56 = 0.
When a=f=—1, =3 and § = 8 the augmented matrix reduces to the

Hermite form

1 00 -2 -3 0
010 -1 2 1
001 -1 =5 2
000 0 O O
and so the general solution is
X =2u + 3t,
y=u—2+1,
z=u+5t+2,

where u, ¢ are arbitrary.



Solutions to Chapter 2

2.1  The respective inverses are

1 1 =3 4 1 -3 1 0
0 1 =15 |t 1 —=1f5 =% |
-1 -2 5 —11 —4 9 o -
For example, to obtain the inverse of
31 2
A=|1 2 1f,
1 11
consider
31 2 1 00
“Hinl={1 2 1 01 0Of
1 11 0 0 1
Reducing this to Hermite normal form, we obtain
31 2 1 00
1 21 01 0
1 1 1 0 0 1
[1 -3 0 1 =2 0] pi—2p,
-0 1 0 0 1 =11 py—p;
1 1 1] 0 0 1
[1 0 0 1 =37 py+3p,
>0 1 0 0o 1 -1
L1 0 1 0 —1 2 P3— P,
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1 00 1 1 -3
-10 1 0 o 1 -1
0 0 1 -1 =2 5 P3— P
=[I,147].
Expanding by the first row, we have
x 2 0 3
det 1 2 3 3
1 01 1
1 11 3
2 3 3 1 3 3 1 2 3
=xdet|0 1 1|—2det|1 1 1j{—3det|jl 0 1
1 1 3 1 1 3 1 1 1
=4x+8—6
=4x + 2

so the matrix is invertible for all x # —13.

Expanding by the first row, then by the first column of the resulting 5 x 5
matrix, then by the first row of the resulting 4 x 4 matrix, and so on, we see
that the determinant of the original matrix is —acefhm. Thus the matrix is
invertible if and only if a, ¢, e, f, h, m are all non-zero, In this case we can
compute the inverse, using row operations in the usual way (i.e. proceeding
from A|I¢to I¢| A”'). The answer is

-

1 b bd |
0o - 0 —-—— 0 —
f h fhm
1
- 0 0 0 0 O
a
1 d
0 0 0 - 0 ——
h hm
g 1 )
-2 0 - 0 0 0
ca (4
1
0 0 O 0 0 -—
m
k k 1
2 0 -= 0 - o
| eca ec e ]
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2.4 Simple computations show that

-2 4 1

Pi=4|1 -2 4|
4 1 =2
9 0 0

PlaP={0 9 o0
0 0 9

It follows that det (P~'AP) = 3®abc. Since
det (P7'AP) = det P det A det P
=det A (det P)"! det P
=detd,
we conclude that det 4 = 3%abe.

2.5 Subtracting the first column from each of the others, then removing factors,
and then repeating this process, we see that
1 0 0 0

a Xx—a b—a c—a

det A= 2 x’—a? bi—a? ot—g?
a@ x*—a® bP—a® -4°
1 1 1
= (x —a)b—a)c —a) x+a b+a ct+a
x2+ax+a® b +ab+a® c*tac+a®
1
== a)b —a)e —a)b —x)e —x) b+x+a c+x+a
= (x —a)(x — b)x —c)a —c)(c —a).
2.6 Wehave

X a a a x a a a

a x a a|l la=—x x—a 0 0

¢ a x a| |a—x 0 x—a 0

a a a x a=x 0 0 x—a
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x+ 3a a a
_ 0 x—a 0 0

1 o 0 x—a
0 0 0 x—a

=(x+ 3a)(x —a)*.
Thus the solutions of tlre given equation are x = —3a and x = a.

2.7 We have

x a 7 ? x—ay a ? 1?7
2 9 0 - ?

det Y yoa = det yoa
yz z? z a 0 z2 z a
yzt? zt? 2 ¢t 0 zt? 12 ¢t
y—a a ?
=(x—ay)det| O z a
0 2 1t

=@ —ay)y —az)(z —at)t.
2.8  Subtracting the first row of B, from each of the other rows yields

b b b ... b b
a—b O 0 0o o
—2b a—b O 0 O
det B, = det .
—2b 2b a-—b 0 ©0

| —-2b —2b —2b ... a—b O]
Subtracting the last column from each of the other columns, then expanding
by the first row, we clearly obtain

det B, = (—1Y*b@@— b)Y 1.
Adding the last column of 4, to the first column, we obtain

[a+b b b ... b b
0 a b b b
0 —b a b b
det A, = det .
0 —b —b b b
la—b —b —b ... —b a]
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Now we expand by the first column to obtain
detA,=(@+b)detA,_ + (=1 (@—b)detB,_,
=@+ b)detA,_,+(—1)*(@a—b)(—1)b(a—b) 2
=(@+b)detd,_,—b@—b)y L
For the last part, we use induction. Clearly,we havedet 4, =a=1[(a + b)' +
(a — b)']. Suppose then that the result holds for all » < n. Then
detA,=(@+b)i[@+b)" 1+ @—b)""|—bla—b)*!
=i[@+b)"—(@+b)"'(@+b—2b)]
=3l@+b)"+@—b)"].
Expanding by the first row of A,,+, we have

1 1 0

0 2cos?d 1 .
Apip=2cos ¥ Apyq—det]| 0 1 2cosd ... 0

0 0 0 ... 2cos¥

Expanding by the first column, we obtain clearly
Apia=2cos Ay — 4y

so that
An+2 - 2 COS ‘l’ An+1 + An = 0.

For the last part, we use induction. The result holds for n =1 since A; =
2 cos ¥ = sin 29/sin 9. For n =2 we have A, =4 cos? ¥ —1 = sin 39/sin 9.
Suppose then that the result holds for all # < k with k > 2, Then
sin & Ag = 2 cos & sin k¢ —sin (k — 1)9
=2 cos & sin k¢ — sin (kO — 9)
=2 cos ¥ sin k¥ — cos 9 sin kI + cos k9 sin &

= cos & sin k¥ + cos kY sin &
= sin (k +1)9,
from which the result follows.
We have that
[(a,+b, b, ... b, by, |
b, a,+b, ... b, b,
Ap=
bn_y bn_1 ... @1t by_y by
L by, bp by, bp _

49



Book 2:

2.11

Matrices and vector spaces

Subtracting the last column of A,, from each of the others and then expanding
by the first row, we obtain

n—1
det A, = b, [ .

i=1
As for B, we have
- -
al+b1 b1 e bl
Bn: b2 a2+b2 e b2
by bn ... ay+b,

Expanding by the last column we see that

det B, =det A, +a,detB,_;.
For the last part, we use induction. The result clearly holds for n =1 since
det B, =a, + b,. Suppose then that the result holds for all x <n. Then we
have

detB = b Hn 1 4 + an(nl—l at i—l (bi j#iai))

=iz a; + Zizy (0; 1z, a5).

Suppose that det 4 = 0. Then there exist ¢4, ..., #, with Z%, a,#; = 0. Now
let |¢; | = max; |¢;]. Then

Uexle=— Z At .
i*k
But then

i ekl = Y lagal 161 < Y laggl 12l
i*k i#+k

from which it follows that we cannot have |agy| > Z;2x lag;l. Thus, if A is
dominated by its diagonal elements then we must have det 4 # 0.

2.12  We have that

A B
B A

A B A+B B
“|B—4 A—B| | 0 A-B

{lo 2%
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I B ||A+B 0
“lo 4-B|| o 1
=|4—B| |4 +B|.

Clearly,

I e s
B CJ|R S| |BP+cR BQ+CS]
and this is of the given form if and only if
A=P', BP+CR=0, BQ+CS=S—RP'Q.

Since B=—CRP™! we have C(S —RP'Q)=S —RP™'Q, so we can choose
C =1 and then B=—RP™!. Now it is clear that

|1 P70 | 0
NIM _l 0 S—RP'IQ‘ “lo s—rPQ
ie. P7'| M| =|S—RP7'Q, s0

[M| = |P||S~RP™'Q| = |PS—PRP™'(Q|.
If now PR = RP then PRP™' =R and so |M| = |PS— RQ|. Likewise, we also
have

I =|S—RP'(Q,

IM| = |S—RP™' QI |P|= |SP—RP™'QP|
so if PQ = QP then |M| = |SP —RQ).
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3.1 Expanding along the first row, we have
[ 1-\  —4 0
det | 2 —2-\ =2
|25 1 —2-2
=1 —=D[2+1)?+2]+4(—4—-21-5)
=(1—=NA%?+ 4N+ 6)—36—8\
=N+ A+ 6—2—4\2— 610 —36—8\
=—A*—3A%2— 101 - 30,
so the characteristic polynomial is
x4(X)=X3+3X%2+ 10X + 30 = (X + 3)(X*+10).
Since A +3/#0 and A*+ 10 # 0, this is also the minimum polynomial
my (X).

The other matrices are treated in a similar way. The answers are
xs(X) = (X —1)> = mp(X);
Xe@X) =X —X*—X + 3 =mc(X);
xoX)=X>*—X’+X—-2=mpX).
3.2 letP=1I,—ABand Q =1, — BA, Then we have
QBP~'A = (I, —BA)B(I,— AB)'4
=(B—BAB)1,—AB)'A
=B({,—AB)I,—AB)'A
=BA
whence we see that
Qd,+BP'Ay=Q+BA =1,
and hence that Q7! exists and is I, + BP~'A4.
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Suppose that A is not an eigenvalue of 4B, Then M, —AB is invertible.
If A#0 then I,—(ANA.(1ANB is invertible, whence so also is
I,— (1A/N)B.(1A/A)A, whence so also is M,, —BA, so that X is not an
eigenvalue of BA. If A = 0 then AB is invertible, whence so is B4 and so A is
not an eigenvalue of BA in this case also. We conclude that if A is an eigen-
value of AB then it is an eigenvalue of B4, whence the result follows.

If A = PQ and B = QP then, using a simple inductive argument, we have that,
for all positive integers i,

4™ = (PQY*! = P(QPYQ = PB'Q.
If nowh(X)=zy+2z, X+ ---+2,X" then we have
Ah(A)=zoAd + 2z, A%+ ... + 2z, 4"
=20PQ+z,PBQ + ---2z,PB"Q
=Pzoly+zyB+"---+2,B")Q
= Ph(B)Q.
It follows immediately that Amg(4)=Pmpg(B)Q = 0. Similarly we have
that Bm,(B) = 0. Consequently we have
ma(X) | Xmg(X) and mp(X) | Xm(X)

and so can write Xmp(X)=pX)my(X) and Xmy,(X)=qX)mpX).
Comparing the degrees of each of these equations, we deduce that deg p +
deg g = 2. Thus, either degp =0, in which case p(X) =1 and Xmg(X) =
my(X), or degg =0, in which case g(X) =1 and Xmy(X)=mpg(X), or
deg p = deg ¢ = 1, in which case m, (X) = mp(X).

We can write

11 ... |1
2 2 ... 20 |2

a=|" =10l oL 11=Po
r r ... r r

where P is the column matrix and @ is the row matrix. Note that then

B = QP is the 1 x 1 matrix whose entry is 17(r + 1). Clearly, we have
mg(X)=—3ir@¢+1)+X.

Clearly, my(X)#mpg(X) and mp(X)# Xmy4(X). Thus we must have

my(X) =Xmp(X)=—1X + X*.

3.4 We prove that [[4"];|<k'n" —1 by induction. The result clearly holds for
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r = 1. Suppose that it holds for 7. Then we have
ATyl = 120 a3 [47] 4
< 2¥=1 lai |[Ar]tj|
<ZTh k.knm!
- kr+lnr—l E¥=1 1
=gy
(@) If |8l < 1/nk then
1+ 1811 [ALl + 18Tyl + -+ 1871 1[40 + - -
<1+KIB + K212+ -+ K Hp+ -
=1+KkIBl(1 +knlfl+ -+ & " gr 1+ .. )
which, if ] < 1/nk, is less than or equal to a geometric series which con-
verges. Thus we see that if || < 1/nk then Sg(4) is absolutely convergent,
hence convergent.
(b) If Sg(A) is convergent then lim,, o 4 = 0 s0
(In_BA)(In +84 + ﬁ2A2+ )
= 1Mooy — BANT, + BA + - - - + A7)
= limy (I, — f14™1)
=],.
Consequently I,, — 4 has an inverse which is the sum of the series.
For the last part, let A be an eigenvalue of 4. Then AJ,, — A is not inver-
tible. Suppose, by way of obtaining a contradiction, that |[\|>nk. Then
1/IA] <1/nk. Consequently, if we let §= 1/\ we have, by (a), that Sp(4)

converges and so, by (b), I, —fA =1, — (1/X)A is invertible. It follows that
M, — A is invertible, a contradiction. Hence we must have |\| < nk.

3.5 Wehave
A+2 3 3
det 1 A 1
-5 =5 A—6

=A+2DA?—6A+5)—-3A—6+5)+3(—5+50
=A+DA=5A—-D-=3QA—-D+15A—1)
=A—D[A+2)A—5)+12]
=A—DQA*=3x+2)

=A—1QA-2)
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and so the characteristic polynomial is (X —1)*(X — 2). The eigenvalues are
1, 2 and the corresponding general eigenvectors are respectively

x 3y
y (x#0ory+#0) and y (y#0).
—X =y =5y

The characteristic polynomial of the first matrix is X(X —1)(X — 2) so the
eigenvalues are 0, 1, 2. The corresponding general eigenvectors are respectively

a 0 c
0 (a + 0), bl @d#0); 0| (c#0).
—a 0 c

The characteristic polynomial of the second matrix is X(X —1)(X + 1) so
the eigenvalues are 0, 1, —1. The corresponding general eigenvectors are

respectively
a —b 2c
—a| (a#0); —2b} (b #0); —c| (c#0).
a b c

The eigenvalues of the first matrix are 1, 2, 3. The corresponding general
eigenvectors are respectively

32 z 2z
z (z#0); 2| (#0); z (z #0).
z z z

A matrix T such that T7'AT is diagonal is then, for example,

3 1 2
12 1)
11 1

The eigenvalues of the second matrix are —1, 2, 1. General corresponding
eigenvectors are respectively

-

z z —3z
0| (+#0); z (z#0); —z | (@E#0).
—z —2z 5z

L

A matrix T such that T7'AT is diagonal is then, for example,
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1 1 =3
0 1 -1
-1 -2 5
The first part is straightforward. The inverse of P is
4
-4 ]
and a simple computation gives
e 0
Frap= [0 e_w].
We have that

a—A\ b
det =A?—(@+d)x+ad—bc
c d—A\

and so the eigenvalues of 4 are
A=%{@+d) £ /(@ +d)*—4(ad — bc)]}
=@+ d)t/[(@a—d)*+ 4bc]}.
(@) Since b,c¢ >0 and (¢ —d)*>0 it follows that the eigenvalues are real

and distinct.
(®) a+d>0and \/[(a—d)*+ 4bc] > 0 and therefore

H@+d)+/[(@—d)*+ 4bel}>0.
(c) Since b,c >0 and (@ —d)?+ 4bc > (a — d)* we have that
t=4H@—d)—V@—d*+abcl}<0.
Note that ¢ =a — u where u is the largest eigenvalue of 4. Now for every

x
eigenvector [ ] that corresponds to u we have (@ —u) x + by = 0. Since
y

t =a— <0 and b > 0 there are infinitely many such x, y withx,y > 0.

The characteristic polynomial of the first matrix is readily seen to be

X(X?*—2). The eigenvalues are therefore 0,+/2, —/2. Corresponding to the
-z

eigenvalue O the general eigenvector is| O | with z # 0, so we can take the

z
normalised eigenvector
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.- -

i
V2
0
1
| V2 ]
Similarly, corresponding to the eigenvalues v/2, —/2 we can compute the

normalised eigenvectors

1 1
2 2
1 1
— and ——
V2 V2
1 1
2 2

A suitable orthogonal matrix is then

iy 1

2 N2
p=|-1L o 1|

V2 V2

1 1 1

2 N/

As for the second matrix, the characteristic polynomial is (X — 1)(X — 2)-

(X —4) so the eigenvalues are 1,2,4. Corresponding to the eigenvalue 1
0

a general eigenvector is | O | with z # 0, so we can take the normalised eigen-

Z

0
vector [0].
1

Similarly, corresponding to the eigenvalues 2,4 we can compute the normalised
eigenvectors
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-

1] 1
V2 R
1 and 1
V2 V2
L 0 e L O i
A suitable orthogonal matrix is then
- ) 1]
V2 2
P= 1 1
0 —_— —_—
V2 2
1 0 0 |
We have that
det [aj‘ b ]=7\2—a>\—ﬁ

so A?=oA, + g and A2= a), + B. Now
AP = [a ﬁ:l [)\1 )\2] - I:a)\l + ﬁ a)\2+ ﬁ]’
1 oll1 1 A s

SR NN
1 1JL0 A, A,
and consequently we have that AP = PD. Since det P = A; — A, # 0 we have
that P is invertible and so it follows that P"'4P =D,
It is immediate from this that A = PDP™!, Suppose, by way of induction,
that A" = PD'P"!, Then
AT = 44" = APD'P?

=PDP~iPD'P !
- PDr+1P -1
The given system of recurrence relations can be written in the matrix form
Up+1 =AU,.

A simple inductive argument shows that U, =A"~1U, for every positive

integer n. We can therefore compute U, using 47 ~L. But from the above we
see that

A"~l=ppr-1p -1
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_ l )\1 )\2][)\?—1 0 ] [ 1 _)\2]
M—hll 1 0 ANUl-1 A
1 LB AN =N

v 7\2[7\;'-1 —agt ANt —xz‘x';—l]'

Uy, u,
Since [ ] =4" [ ] and v, = u, it follows that
Up U

A — 2 NDug

“n=')\1_)\2(7\’11_7\';)“1"')\l_)\z7
A Py
=>\l_)\2(ul_7\2uo)"‘)\1 _)\20\1“0_“1)-
3.12  Expanding by the first row we have
[5 —4 0 0]
0 1 0 0
Ap=A,_{+4det :
0 o 1 —4
[0 0 5 1]

=4,_; +204,_,.
It follows that

[ A, ] [A,,_l+20A,,_2]
rn= =

An—l An—l
S
1 01lA,_,
= Ar,_,.
Consequently,
th=Arp_1=A%p_p,=--.=A""2r,.

The characteristic polynomial of 4 is (X — 5} X + 4) = 0 so the eigenvalues
are —4, 5. Corresponding to the eigenvalue —4 the general eigenvector is

4
[ y] where y #* 0; corresponding to the eigenvalue 5 the general eigenvector
4

Sy
is where y # 0. Thus if
y
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=[]

—4 0
we have that P7I4AP = [ 0 5]. Using the fact that

1 =5
Pl )
*l1 4

we can compute

F(— a2
A”—2=P[( 4 0 ]P"

0 5n—2_
5ttt s(=ayt+ 45!
Pl — (a2 5(—ayr 24 45m)

Using the fact that

[)-[7]
"2 = =
A,y 1
we deduce from the equation r,, = 4" ~2r, that

B, =3[25.5"71 + (=471 (=21 + 5)]

=4 [s" — 4.

The characteristic polynomial of 4 is X(X —1)(X — 4). The eigenvalues are
0, 1, 4 and the corresponding eigenvectors are respectively

—a —2b c
a | (@#0), b (b +0) and c| (#0).
—a b c

Thus the matrix

-1 =2 1
P=|1 1 1
-1 1 1
is such that
0 0 0
P4P=(0 1 O
0 0 4

Now
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0 3 -3 0 0 O
Pl=1[-2 0 2 and A"=P{0 1 O (P,
2 3 1 0 0 4"

from which we compute
4+24" 34" —a+4"
A"=g| —2+24" 34" 2+4"
—2+24" 34" 2+4"

2
3.14 The coefficient matrix 4 = [6 ] has eigenvalues —7, 6. Clearly we have

-Xn =An—l[xl]=An—l 0.'
Yn| I -1

Computing A"~ using the technique described in the previous question,
we obtain

Xn| =[ H6(=7)""" - 6"] ]
iE

Vn] |—HBET 4460
3.15 Diagonalising 4 in the usual way, we have P 4P = D where
[1 1 0
P=|1 -1 1],
0 0 1
S G 400
Pi=|4 -1 0| and D=|0 9 0
0O 0 0 0 4
Now the matrix
(2 0 0
D=[0 3 0
[0 0 2

has the property that D>=D and consequently the matrix B =PDP™! has

the property that B2= A. A simple computation shows that

[ s _1 1
2

B=|—1
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Givenx = (xy, ..., X,) € IR®, the equation
x=Ma,+ X a,+ .-+ N\a,

is equivalent to the system
xX1=Man+Aant -+ Nyapy

X,= 7\1a12+ )\2022"‘ oot )\,,a,,z

Xp=Nayp+ Ndzpn+ -+ Apayy
i.e. to the system
Ay X1

>\n xn
where A = [a;7],1xn. This matrix equation has a unique solution if and only if
At is invertible (i.e. has full rank n), and this is so if and only if A4 is invertible.
Use the result of the previous exercise.
@ {1,1,1),(1,2,3),(2,—1, 1)} is a basis since
1 1 1 1 1 1 1 1
A=[1 2 3|»|0 1 2(-l0 1
2 —1 1 0 —3 -1 00
shows that 4 has Hermite form 73, so is invertible.
®) {(1,1,2),(1,2,5),(5, 3, 4)} is not a basis since

1
2
5
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1 1 2 1 1 2 1 1 2
A=|1 2 5|-|0 1 3|-(0 1 3
5 3 4 0 —2 -6 0 0O
shows that the Hermite form of 4 is not I3, so A is not invertible.

The matrix
1 1 0 O
-1 -1 1 2
A=
1 -1 1 3

has Hermite form I,, so is invertible, so the given set constitutes a basis of
IR*. We now have to find a, §, v, 8 such that

a a
at|?=|?
Y c
8 d
Working in the usual way with the augmented matrix, we have
(1 -1 1 0 a
0 0 —2 1 b—a
>
0 1 1 -1 c
|0 2 3 -3 d
[1 -1 1 0 a
0 1 1 -1 ¢
0 0 0 —1 b—a+t2d—4c
[0 0 1 -1 d—2

whence we see that x=b+c¢,=3c—d,y=—b+a—d+2,6=—b+
a—2d+4c.
The set
{a,-1,1,-1n,(1,1,—-1,1),(1,0,0,0),(0, 1,0,0),(0,0, 1,0),
0,0,0,1)}
spans IR%. To find a basis, we reject any vectors that are linear combinations
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of their predecessors in this list. Now
(1,0, 0,~O) =a(l,—1,1,-D)+5(1,1,—-1,1)
givesa = b= } so we can reject (1, 0, 0, 0). Next
©0,1,0,0)=a(1,-1,1,—-1D)+b(1,1,—1,1)
givesa+b=0,a—b=0, —a+b=1 which are inconsistent; so we retain
(0, 1,0, 0). Next
0,0,1,0)=a(1,—1,1,—-1)+b(1,1,—1,1)+¢(0,1,0,0)
givesa+b=0,—a+b+c=0,a—b=1, —a+ b=0 which are inconsis-
tend; so we retain (0, 0, 1, 0). Since IR* has dimension 4, the linearly indepen-
dent set
{a,—1,1,-1),(1,1,-1,1),(0, 1,0,0),(0,0, 1,0)}
is then a basis.

(@) False. Clearly, (0, 1) belongs to {(x, ) € IR? | x;<x,} but (—1)(0, 1)
does not.

(b) False. Take b = —a, ora, —ay, etc.

(c) False. Consider, for example, {(1, 1), (2, 2), (3, 3), (4, 4)}in IR%.

(d) True. Every spanning set contains a basis.

(e) False. The subspace {(x, x, x) | x € IR} has dimension 1 with basis
{a,1, D}

(f) True. We have a(1,2,1)+ 5(2,2,1)=(a + 2b,2a + 2b,a + b) so we
cantakea+ b=y, b =x.

(&) True. Proceed as in (f) but this time take a + 2b = 2x,a = 2y,

(h) True. We can extend a basis for P to a basis for Q.

(i) False. For example, take P = {(x, x, x) Ix € IR} and Q = {(x, , 0) |
x,y € IR}. We have dimP=1,dim Q=2 but PZ Q.

(j) True. If U is an n-dimensional subspace of IR" with U# IR" then
there exists x € IR" with x & U. Add x to a basis of U to obtain a subset of
IR" containing »n + 1 linearly independent vectors, a contradiction. Hence
U=IR".

(@) Yes. Clearly U+# @ since 0 €U, and U is closed under addition and
multiplication by scalars.

(b) No. For example, (1,0,0,0)€ U and (0, 1,0,0) €U but their sum
does not belong to U.

(¢) Yes.Ifa*+b?>=0thena=b =0 so that

U={(0,0,c,d)|c,dEIR}.
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(d) No. For example, (1,0,0,0)€U and (0, 1,0,0) €U but their sum
does not belong to U.

(e) Yes. It is readily seen that U is non-empty and is closed under addition
and multiplication by scalars.

(f) Yes. Same as (e).

The standard criteria are
(1) x,yeU=>x+yeU,
Q) x€U,AEIR=AxEU.
All of (@), (b), (¢), (@) are correct, for the following reasons:

(a) Clearly, (1) and (2) imply (@). Conversely, assume (@). Takea=b =0
to get 0€U. Then (1) follows on taking a = b = 1, while (2) follows on
taking y = 0.

(b) Clearly, (1) and (2) imply (b). Conversely, assume (b). Take x = y and
a=—1to get 0 €U;thena =1 gives (1) and y = 0 gives (2).

(¢) Clearly, (1) and (2) imply (c). Conversely, assume (c). Take @ = 0 to
get 0 € U;thena =1 gives (1) and y = 0 gives (2).

(d) Clearly, (1) and (2) imply (d). Conversely, assume (d). Take @ = 0 to
get 0 € U. Now for every y €U we have —y €U (take x = 0, a = 1). Con-
sequently ax + gy € U and the result follows from (c).

If &, a; =1 then we have
ayw—v)+.--+taq—v)=v—v=0

so that v —v;, ..., v — vy are linearly dependent.
Conversely, suppose that ZX, a; # 1. Then from

k k k
Zai(v—vi)=(z a,~)v-—-v=(z ai—l)v
i=1 =1 =1

we see that v belongs to the subspace spanned by {v—uv,,...,v— v},

whence so do vy, ...,vg. It follows that the subspace (u—uvy,...,u—uvg) has
dimension £ and hence that v — v, ..., v — vy are linearly independent.

Choose a basis {v,, ..., vz} of X N'Y, Extend this to a basis
{Ul, ooy Uds Ugags oo o vs}
of X, and extend it also to a basis

{vl: «ees Uy U:j-'.], ey U,9}
of Y. Then each of vy, ..., vo @ X (otherwise they are in X N Y), so
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{V1y .00y Vg, Ugirts « v vy Vg, Ugaq, - ooy Vo }
is linearly independent, and therefore contains at most 10 elements. For this,
we must haved > 7,

To see that this lower bound of 7 is attainable, consider ¥V = IR and take
for X the subspace of those 10-tuples whose first and third components are
0, and for Y the subspace of those 10-tuples whose second components are 0.

We can have any first row other than a zero row, so there are 2" — 1 possible
first rows. We can have any second row except zero and the first row, so there
are 2" — 2 possible second rows. In general, there are 2" — 2/~ possible ith
rows which are independent of the preceding rows. Hence there are

@ -DR"—-2)2"-2%---2"—2""N
non-singular n x n matrices whose entries are 0 or 1. This product can be
written in the form

21+2+---+(n—1)(2n — 1)(2"—1 - 1) e (22 — 1)
which is the required form.

(@) IfA,,..., Ay are linearly independent then
)\1A1+ ...+AkAk=0 = >\l= "'=)\k=0'
Suppose that

NXAY + . N XALY =0,
Muitiplying by X! on the left and by ¥ ! on the right, we obtain X\, 4, +
cer+ XA =0 whence \y=-.-=2;=0 and so XA,Y,...,XA;Y are
linearly independent. The converse is similar.
(®) If \qA +---+NAx=0 then \;4,;B+...+N\edxB =0 whence
Ay =+« = A = 0, To show that the converse is false, take B = 0.

(a) The following matrices constitute a basis:
1 0 [1 1 00 [0 0]
0 0‘]’ Lo o]’ [1 1]’ Lo 1)
(b) The following matrices constitute a basis:
[ 1 0] 11 10 1 1
Lo 1} lo 1]’ [1 1]’ L1 0]‘
(¢) The following matrices constitute a basis:

1 o] 1 1] [1 0] 1 —1]
o 11" lo 1 L1 1} L1 o)
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Suppose that {4,4,,43,4,} is a basis with 4;4; = 4;A; for all i,j. Then
there exist Ay, A3, A3, Ag € @ such that

[(l) i] =NA,+ N A+ N3A53+ N A,
and pq, Mo, M3, Mg € Q such that

[i (1)] = Ay + ua A, uzAst+ paAa.
But we have that (2 ;A2 w:4;) = (2 A X2 N;4;) which contradicts the
fact that

P 1 i v P

The same argument shows that it is impossible to find such a basis for any
n 2 2, Hence n = 1 is the only possible value.

o oy
It is clear that {a,,a, ) C {b;, b, ). Suppose first that det [ ' 2] # 0. Then

o o B2
A= [ ]is invertible and we can rewrite
B B
a b
[o]-415)
a b,
in the form

)= [2]
b2 as
whence {b;, b, ) C {a,,a,) and we have equality.

Conversely, suppose that (@, a,) =(by, by). Then b,, b, E4ay, a, ) gives
b1 = )\lal + )\202, b2= Mi1dy + Mad, SO that

S o Tl |
b, My Holia My MllBy B2 bz.
Since b4, b, are linearly independent, this yields

‘A N1 fo w

[ 1 z][ 1 2]=12

My uadlBy B
o

whence det [ ] #0.

B B,
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4.14 The equation
x(2,2,1,3)+»(7,5,5,5)+2(3,2,2,1) +£(2,1,2,1)
=6+N1+N-1+0,2+2)
is equivalent to

2 7 3 2ix 6+
25 2 1f|y| |1+
15 2 2||z| |-1+2a
35 1 1f{z 24+
and, by the usual reduction process, we have
15 22 —1+4x] [1 5 2 2 -1+
0 3 1 2 —8+A 010 =13+ A
0 5 2 3 =3+ - 0 0 2 =2 62—-4A
0 10 5 5 =5+2x] {0 0 5 —5 125—8x
[1 5 2 2 —1+2A
010 —13+A
-> .
0 01 —1 31—2A
0 0 0 0 60—ar

Thus we see that x € U if and only if A = 15. For this value of A we have the
(non-unique) linear combination

x=(+2)2,2,1,3)+(2—-0(7,5,5,5+ (1 +1)3,2,2,1)
+2(2,1,2,1).
By the above reduction, we see that
{2,2,1,3),(7,5,5,5),(3,2,2,1)}
is a basis for U.
If A # 15 then x € U and so, taking A = 0, we have that

{(23 2, 1: 3)) (7’ 5’ 53 5)’ (3’ 29 2’ 1)7 (6’ 1: —1’ 2)}
is a basis for IR%,

4,15 It suffices to show that V is a subspace of the @Q-vector space Q. That this is
so follows immediately from the fact that ¥ is closed under addition and
multiplication by scalars.

4.16 (@) W, is not a subspace. For, if f is defined by f(x) =4 for every x € IR
then f€ W. But+/2f € Wsince /2f(3) = 1/v/2 ¢ Q.
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(b) W, is a subspace. Forif ¢, € IR and f,g € W, then
(of + B8)(3) = af 3) + Be(3) = af (1) + e (1) = (af + fg)(1)
so that af + fg E W,.
(c) Wsis asubspace. Forif a, € IR and f, g € W, then
(ef + )3 =af(G) +Be(3)=a.0+8.0=0
so that af + fg € W;.
(d) W, is not a subspace. For if f(x) =x? for every x € IR then fE€ W,
since Df(3) = 1. But 2f & W, since 2Df(3) = 2.
WaNWs={fEV|f(})=0,f(1)=0}
Ay, A,, Ajare linearly dependent since
(1,2,0)+(2,1,0)= (0,0, 0),
(1,0,1)+2(1,0,0) + 2(0,0, 1) = (0,0, 0),
(1,2,0)+ (1,1, 1)+ 2(2,0, 1) = (0, 0, 0).
Ay, is linearly independent since, in Z3,

1 01
det]1 1 O|=1+1=2+#0.
011

In order to show that the given set is a basis for € it suffices to show that the
matrix

3—i 2 1—i

2+2i 2+4i -2

4 3 -1
is invertible. Now for a, 8, ¥ € € we have
(0,8, V)=MN3—1,2+2i,4)+ pu(2,2 + 4i,3) + v(1 —i,—2i,—1).

Solving the resulting equations for A, u, » we obtain

A . —2+2 5-3i —6—6illa
=— 2—6i —7+5i 6+6i )

# 12+ 12i B

) —-2—10i —1+4+3i 6+6i || 7

This shows that the matrix is invertible. Moreover, putting a=1, =0,
v = 0 gives (1, 0, 0) in terms of the basis; and similarly for the others.

Z3 has eight elements since each is of the form (g, b, c) and there are two
choices for each of 2, b, c.
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Every basis of Z3 has three elements. Now any of the seven non-zero
elements gives a linearly independent singleton set. There are six elements
that are not multiples of this first choice; then four elements that are not
linear combinations of these first two. It would appear, then, that there are
7 x 6 x 4 possible bases. But the order in which we choose the basis elements
is irrelevant, so we have counted each basis 3! times. Hence the number of
bases is (7 x 6 x 4)/6 = 28,

A={x,+x,,x,+x3,x3+x,} is linearly independent and therefore is
a basis for V. Likewise, B ={x,,x;+x,,x,; + x,+ x3} is linearly indepen-
dent and therefore is a basis.

If V is replaced by Z3 then the first of these statements is no longer true.
For example,

{(1,0,0),(0,1,0),(0,0, 1)}
is a basis for Z3 but

{(1,1,0),(0,1,1),(1,0, 1)}
is not a basis since in this vector space we have

(1,1,0)+ (0,1, 1)+ (1,0,1)=(0,0,0).
The second statement is true, however, since

O=ae;+ b0 +x) el +x,+x3)
=@tb+o)yx,+(b+c)x,+ox,

if and only if a+ b +¢ =0, b + ¢ =0, ¢ =0 which is the case if and only if
a=b=c=0.

It is readily verified that E, is closed under addition and multiplication by
scalars, whence it is a subspace of the vector space Map(IR, IR).
Suppose now that f is the zero map in £,. Then we have
(Vx€IIR) aotaycosx+bysinx=0.
Taking x =0 we obtain ¢y+a;=0, and taking x =n/2 we obtain
ao+b,;=0. Thus we have a;=b;=—a,. Taking x =u/4 we obtain
ao+ (1/5/2)a, + (1//2)by =0 whence ao=a,=>b,=0. Suppose now, by
way of induction, that the zero map of E,,_; (with n > 2) has all its coeffi-
cients zero and let f be the zero map of E,,. It is easily verified that D*f + n%f
is given by the prescription
n-1

D*f+n*f)x)=n’ao+ Y (n2—k?)(ay cos kx + by sin kx)
k=1
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and since f is the zero map of E, we see that D2f + n’f is the zero map of
E, _,. By the inductive hypothesis we therefore have

oy @y, eees@y_1,b1,...,bn_1
all zero and the formula for f reduces to

(Vx€IR) 0=f(x)=a,cosnx + b, sin nx.
Taking x =0 we obtain g, =0; and taking x = w/2n we obtain b,=0.
Thus all the coefficients of f are zero and the result follows by induction.

It is clear that the 2n + 1 functions generate E,,. Moreover, by what we

have just proved, the only linear combination of these 2n +1 functions

which is zero is the trivial linear combination. Hence these functions con-
stitute a basis for £,,.

It is clear that the sum of two functions of the given form is also of that
form; and that any scalar multiple of a function of that form is also of that
form. The given set, E say, of such functions is therefore a subspace of the
real vector space Map(IR \ {a, 8}, IR). That E is of dimension r + s is immedi-
ate from the observation that every f € E can be written uniquely in the form
f=aofot - +ap 5 1freg_q where,fori=0,...,r+s—1,

i
(x —a) (x —py
so that fo,...,fres—1 isa basis for E.

As for the second part, let B={g,,...,&,"h1,...,h}. Then B is linearly
independent. In fact, suppose that, for every x € IR\ {a, 8},

fx) =

M +oit Ar I S o R

xX—a x—a) x—8 x—p8°
Multiplying both sides by (x — ) (x — B)° we obtain

ME— ) T =B M — ) T — B+ -+ N — BT+

10— oY 6 — B pp(x — oY (x =B T2 -+ g —a) =0
Taking the term A,.(x — B)* over to the right hand side, what remains on the
left is divisible by x — a and, since a # 8, we deduce that A, = 0; similarly we
see that pg = 0. Extracting a resulting factor (x — a)}(x — ) we can repeat this
argument to obtain A,_; = 0 = u,_;. Continuing in this way, we obtain every
A; = 0 and every y; = 0 whence we see that B is linearly independent. Since B
has  + s elements and since the dimension of E is r + s it follows that B is
a basis for F,
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If () holds then § is the only basis for V. If (b) holds then {v} is a basis for
some non-zero v € V. Since every x € V can be written uniquely in the form
x = for some A €F and since F = {0, 1}, it follows that ¥V = {0, v} whence
{v} is the only basis for V.

Conversely, suppose that V has precisely one basis and that ¥V # {0}. Since,
for x # 0, {x }is linearly independent it can be extended to form a basis (the
basis of V). It follows that every non-zero element of ¥ belongs to the basis.
As V is of finite dimension, V is therefore finite. Suppose that V' =1{0,v,,
..., Uy} where {vy, ..., v,} is the basis. Suppose further that » > 2 and con-
sider the element vy + - .- +v,. Now v; + ...+ v, # 0 since {v,,...,0,} is
linearly independent. Thus, for some #, we have v; + - - - + v, = v; whence

nteeetvy_tuytee-+u,=0.
This is impossible since every subset of {v,, ..., v,} is linearly independent.

This contradiction shows that we must have n =1 and hence that ¥ = {0, v,}.
It follows that (») holds.

The result is trivial if n =1, since f; is a non-zero element of Map(IR, IR).
By way of induction, suppose that {fi,...,f,_1} is linearly independent
whenever ry, ...,#,_; are distinct. Consider {f7,...,f,} and suppose that
ry,...,rparedistinct. £ A, f; + -+« + N,/ = 0 then

(VxE€IR) Me*+...4+7,em*=0.
Dividing by e'n* (which is non-zero) and differentiating, we obtain

M@E —rp) e T4 N ((Fpy —1n) ePn—1TTX =0,
Since the n—1 real numbers 7, —ry, ...,r,_y —r, are distinct, the induc-
tion hypothesis shows that A; = -.. =\, _; = 0. Consequently A,f,, =0 and
hence A, =0 (since e* # 0). Thus{fy, ..., f,} is linearly independent. By
induction, therefore, we have shown that if ry,...,r, are distinct then
{fi,...,[n} is linearly independent. As for the converse, it suffices to note
that if ry,...,7, are not distinct, say r;=7; for i#j, then f;=f; and
{f1,...,f,} is dependent since

ofy+---+1fi+ .+ (1f; +---+0f,=0.
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(@), (¢), (f) are linear; (b), (d), (e) are not. For example,

) f(1,0,0)+ f(—1,0,0)=(1,0,0)+(1,0,0)= (2,0,0)
but f[(1,0,0) + (-1, 0, 0)] = f(0,0,0) = (0,0, 0);

@) £(0,0,0)=(—1,0,0)s0 f[2(0, 0, 0)] # 2f(0, 0, 0);

(e) asin(d).

(2) We have that
f0,0,D)=/(1,1,2)—f(1,1,D=2,2,9—(1,1,1)=(1,1,3),
0,1,1)=7(1,2,3)—f(1,1,2)=(—1,—2,—-3)—(2,2,4)

=(—3,—4,—-7),

and hence
f(0,1,0)=f(0,1,1)—f(0,0, 1) = (—4,—5,—10),
f1,0,00=1(1,1,1)—f(0,1,1)=(4,5, 8).

Consequently we have
fla, b,c)=af(1,0,0)+ bf(0,1,0)+cf(0,0,1)

=(4a—4b+c,5a—5b+c¢,8¢—10b + 3¢).

(b) It is not possible to find f in this case. The reason for this is that
{1, 1, D, (1, 1,2),(2,2, 3)} does not span IR>. For example, (1, 0, 0) is not
a linear combination of these vectors so f(1, 0, 0) cannot be determined using
the given information.

(¢) No such linear mapping exists. Indeed, if such a linear mapping f
existed then since

fl0,1,HD+(1,1,00+(1,0,D]=1(2,2,2)
we would have
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0,1, D)+ 11,1, D)+f1,0,1)=2f(1,1,1)
which is not the case.
(), (b), (c) are linear. (d) is not linear; for example, we have T(\I) = AB* —

NB whereas AT(I) = AB* — \B. As for (e), we note that T(0) = 7B? so if
T is linear we must have B?> = 0. Conversely, if B = 0 then

T(A)=AB+ B4 —2BA —34B=—24B—BA
which is linear. Hence B2= 0 is a necessary and sufficient condition for T to
be linear.
We have
711,00=(1,2,-1)=1(1,0,0)+ 2(0,1,0)— 1(0,0, 1),
f0,1)=2,—1,0)=2(1,0,0)~1(0,1,0) + 0(0,0, 1),
and consequently

1 2
A= 2 -1
-1 0

Likewise, we have
£(1,0,0)=(2,0)=2(1,0)+ 0(0, 1),
£00,1,0)=(-1,2)=-—1(1,0) + 2(0, 1),
£(0,0,1)=(0,—1)=0(1,0)—1(0, 1),
and consequently
[2 -1 0}
B= .
0o 2 -1
To find C we note that
f0,H=(2,-1,0)=1(0,0,1)—3(0,1, 1)+ 2(1,1,1),
f,1n=G,1,-1)=-20,0,1)—20,1,1)+3(1,1,1),
so that
1 -2
C=|—-3 —2f.
2 3
Finally, to find D we note that
£(0,0,1)=(0,—1)=-1(0,1) + 0(1, 1),
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g0,1,1)=(-1,1)=20,1)+—1(1, 1),
g1, 1, )=(1,D)=00,1)+1(1,1),
and so

We have
f0,1,00=f(1,1,00—f(1,0,0)=(4,1,4)—(2,3,—2)=(2,—2,6)
70,0, H=71,1,D)—f(1,1,00=(5,-1,7Y—4,1,49=(1,-2,3)
Hence the matrix of f with respect to the standard basis of IR? is
2 2 1
3 -2 -=2].
-2 6 3
We have
f1,—1,0)=(2,-2,0)=2(1,-1,0)+0(1,0,—1) + 0(1, 0, 0),
f(,0,-1)=(01,—2,—-3)=2(1,-1,0)+3(1,0,—1)—4(1,0,0),
f(1,0,0)=2,-1,0)=1(1,-1,0)0+0(1,0,—-1)+ 1(1,0,0),
and so the matrix is

2 2 1
0 3 0
0 —4 1

To determine pps y(x,y) in each of the given cases, we apply simple co-
ordinate geometry.

@ pu,nC,y)= (;:n—_nx , mo —~ nx))'

n m-—n
See Fig. S5.1.

(®) Py, NCx,y) = (x, mx).
See Fig. §5.2.

(C) pM,N(x,y) = (an _nx)’
See Fig. S5.3.
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It is clear that in all three cases pas,y is linear. The corresponding matrices
(relative to the standard basis of IR?) are

1 [—n 1] [1 0] [0 O]
m—nl—-mn ml’ m 0o —n 1Y

It is readily seen that the characteristic polynomial of each of these is
X (X —1) and that this is also the minimum polynomial.

Suppose that f is injective and that {v,, ..., v,} is linearly independent. Then
from

0= ;21 Nf(vy) =f(§l Nvi)

we deduce that X}, \u; =0 whence each A; is zero and consequently
{f(v1), ..., f(vp)} is linearly independent.

Conversely, suppose that {vy,...,v,} linearly independent implies that
{f(v1), ...,f(vy)} is linearly independent. For any non-zero x we have that
{x} is linearly independent. Hence so also is {f(x)}, whence f(x)# 0. The
property x # 0 = f(x) # 0 is equivalent to f being injective.

That £, is linear is a routine verification of the axioms. Clearly we have
x €Ker f), if and only if
Xa¥3 T X3V =XV 1 T X1 YV3= X1V, — X2y =0.

Equally clearly we have y €Kerf), and so the subspace generated by {»}
is contained in the subspace Kerf,. To obtain the reverse inclusion, let
x €EKerfy. Since y #0 we can suppose without loss of generality that
y1#0. If y,=y;=0 then from the above equalities we have x,=x3;=0
whence x is a scalar multiple of y. If y,#0=y;then x;=0 and x,/y, =
X,/y,=, say, giving x, = Ay,, X, = Ay, and again x is a scalar multiple of y.
The other cases are argued similarly. The outcome is that x belongs to the
subspace generated by {»}, and the reverse inclusion is established.

Since f is linear so also is 9; in fact
3G, ») + 9", ¥y = @,y —fxN + &,y — f(x"))
=x+x,y+y —fex+xN=0x+x"y+");
O, W) = (W, Ay — f(Ax))
=X,y —f(x)) = Ad(x,»).
Clearly, we have d(x,y) = (0, 0) if and only if x = 0 and y = f(x), which is,

77



Book 2:

5.11

5.12

5.13

Matrices and vector spaces

the case if and only if x =y = 0. Thus we have Ker ¢ = {(0, 0)} whence ¢ is
injective. To see that ¢ is also surjective we observe that

Ix,y +f(x)) =X,y +f(x) —f(x)) = (x, ).
Hence ¢ is an isomorphism.
(@) = (b): If Im f = Ker f then for every x € V we have f(x) €Im f = Ker f so
that f[f(x)] =0 and hence f O f = 0. Moreover, f+ 0 since the image of the
zero map is {0} and the kernel of the zero map is V. Now n=dim V' =
dim Im f+ dim Ker f so from (a) we also deduce that n = 2 rank f whence
n is even and rank /= in.

(b) = (a): Suppose now that (b) holds. From f O f= 0 we havef[f(x)] =0
for every x € V whence Im f C Ker f. Since f# 0, n is even and rank f = in.
We deduce from n=dim ¥V =dimIm/f+ dimKerf that dimImf=
dim Ker f = 1n whence we conclude that Im f = Ker f.

Using the fact that dim V; = dim Im f; + dim Ker f; we have
— dim V; = — dim Im f; — dim Ker f;
dim V, = dim Im f, + dim Ker f,
~— dim V3 =—dim Im f3— dim Ker f;

(—1)"? dim V,, = (—1)" dim Im f,, + (—1)" dim Ker f,,
Now it is given that Kerf;={0}, Imf,=V,; and Imf;=Ker f;4; so,
summing the above equalities, we obtain

n
Y (-1 dim ¥; = (—1)" dim V4,
=1
and hence

n+1 .

Y (=1) dim ¥; = 0.

=1
If x # 0 is such that fP~!(x) # 0 then x, f(x), ..., P ~!(x) are all non-zero;
for f¥(x)=0 with k <p — 1 implies fP~1(x) = fP~1=*[f*(x)] =0, a con-
tradiction. To show that the set {x, f(x),...,fP~1(x)} is linearly indepen-
dent, suppose that

AoX + X fX)+ -+ A,y fP i) = 0.
Applying fP~! to this we obtain AofP 1(x)=0 whence A\o=0 since

78



5.14

Solutions to Chapter 5

fP~1(x) # 0. Thus we have
ASfG) + oo+ 2 P x) = 0.
Applying fP~2 to this we obtain similarly A\, = 0. Continuing in this way,
we see that every \; is zero and that consequently the set is linearly
independent.
If £ is nilpotent of index n = dim ¥ then clearly {x, f(x), ..., " (x)} is
a basis of V. The images of these basis vectors under f are given by

f) = 0 + 1£G) + OF2(x) + -+ + 0" (x)
fx)y=0+0f(x)+1/2(x) + -+ 0" ' (x)

A7) = 0x + 0f(x) + OF*(x) + -+ - + 1" 1 (x)
(@)= 0x + 0f(x) + Of*(x) + - -- + 0" "1 (x)
from which we see that the matrix of f relative to this ordered basis is
[0 0 0 ... 0 0]
100 ... 00
M=|0 1 0 ... 0 O].

(0 0 0 ... 1 O]
Conversely, suppose that there is an ordered basis with respect to which the
matrix M of f is of the above form. It is readily verified that M” =0 and
M™~1 30, Consequently f is nilpotent of index 7.

For the last part it suffices to observe that if 4 is an n X n matrix which is
similar to the above matrix M then there is an invertible matrix P such that
P'AP=M. Since then A =PMP™' we have (by induction) 4"=PM'P™!
for every positive integer r. In particular, A"~'=PM"~ 1P ~'#0 and
A"=PM"P~1=pPoP1=0.

Conversely, if M is nilpotent of index n and if f: V>V is such that
a matrix of f is M then f has a matrix of the required form which is similar
toM.

Let f: €2~ C?be the linear transformation that is represented, relative to the
canonical basis of €2, by the matrix
[cos 4 —sin 0]

sind cosd
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Then for all (x, y) € C2 we have

fx,)=(x cos % —y sin §,x sin & +y cos ).
We wish to find «,, &, € €2 such that f(a;) = ei®a, and flay) = e~ 1%q, with
{ay, @} a basis of €2, It is readily seen that a; = (i, 1) and &, = (1, i) satisfy
these properties. The matrix of frelative to the basis {a;, a,}is then

e o
[ 0 e“"]

which is therefore similar to the first matrix.

For every linear transformation f: ¥ =V we have f(0) = 0. The mappings
described in (@) and (c) are not linear, therefore, since in each case we have
£(0,0,0)# (0, 0,0). That described by () is linear. In fact Z, ={0, 1} and
a® = gq for every a € Z,, o that f(a, b, ¢) = (a, b, c), i.e. f is the identity map.

f can be described by f(a, b) = (a + b, a) and is linear.

D is linear since

(Vp,q €IR[X])(Va,bE€IR) D(ap + bg) =aDp + bDq.
T is also linear since

T(ap + bq) = X(ap + bq) = aXp + bXq = aT (p) + bT(q).
It is readily seen that

D+TYao+---+a, XM=

a1+ @+ 2a )X+ -+ (ap_y +na ) X" 1+ a,_ X"+ a, X",

(Do TYap+---+a, X =ay+2a X+ .-+ @1+ 1Da,X";

(ToD)ag+ -+ -+ a, X" =a,X +2a,X*+ ... + na, X".
Since(DO T)(p)=p+XD(p)=p+(ToD)(p)weseethat Do T—ToD=1,
It follows that, writing TD for T © D etc.,

(TDy*=TDTD=T({ + TD)D =TD + T?D?.
Define S by

a ay
S@o+ -+ @, X" =a, X +—X*+ ...+ — X"+,
2 n+1

Then it is readily seen that S is linear and that D O § = /. Now D is not an
isomorphism since it fails to be injective (for example D(1) = D(2) = 0); and
S is not an isomorphism since it fails to be surjective (for example, there is no
p with S(p) = 1).
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(@) When F = IR we have
@b,c)eEKerf®0=a+b=a+c=b+c
®a=b=c=0.
Thus Ker f= 0 and so dim Ker f = 0. Also, f is surjective since
fGa+b—c)i@—>b+c)i(—a+b+c)=(,b,c).
Thus Im f= IR® and dim Im f = 3.
(b) When F = Z, we have
@b,c)eKerfeO0=a+b=a+c=b+c
“®ag=b=c¢
Thus Ker f={(0,0,0), (1,1, 1)}={(@,a,a) |a €Z,}, and so in this case
dim Ker f=1. It follows that dim Im f =3 —1 = 2. Now f(1,0,0) = (1, 1, 0)
and f(0, 1, 0) =(1, 0, 1) are linearly independent elements of Im f so they
form a basis, whence

Imf={(0,0,0),(1,1,0),(0,1,0),(0, 1, D}.

We have f(a, b, ¢) = (b, —a,c) so
f(l, 0’ 0)=(0a_1’0)=0(1’0a0)_ 1(05 1’0)+0(0,0’ 1)’
f(,1,0)=(1,0,0)=1(1,0,0)+ 0(0, 1,0) + 0(0, 0, 1),
f(,0,1)=(0,0,1)=0(1,0,0)+0(0,1,0)+ 1(0,0, 1),

and consequently

0 10
A=[—-1 0 0
0 01

Similarly, we have
f1,1,00=(1,-1,0)=0(1,1,0)—1(0,1,1) + 1(1,0, 1),
f0,1,1)=(1,0,1)=0(1,1,00+ 00,1, 1)+ 1(1,0, 1),
f(1,0,1)=(0,—1,1)=-—1(1,1,0)+0(0,1, 1)+ 1(1,0, 1),
and consequently

0 0 -1
B=|—-1 0 0
1 1 1

The matrix X represents the identity map relative to a change of reference
from the first basis to the second. Since
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(1,0,0)=1(1,1,00—%4(0, 1, D+ 1(1,0,1),
0,1,00=4(1,1,00+ 10, 1,1)—4(1,0, 1),
0,0,H)=—4(1,1,00+ 31,1, )+ 1(1,0,1),
we see that
3

x=|-

=
W=
o=

1 1
2 2

=

1 1
The matrix of f with respect to{u,, u,}is [ ) 0]. The matrix representing

L
3

b

1
4] . Hence the
3

3 1
the change of basis is [ ) 1] , the inverse of which is[

matrix of f relative to {w,, w,}is

[ | I
3 31t ofb—r 1l L3 Y

The respective matrices are

(0 1 00 ... 0
0020 ... 0
0003 .. 0

.A= s
0 0 n—1
0 0 00 0 |
[ 0 0 0 0 0]
n—1 0 0 0 0
0 n—-2 0 0 0
B= )
0 0 n-3 0 0
[ o 0 0 1 0]
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01 —2 =3 ... —n+]]
00 2 0 0
c|0 0 0 3 0
00 0 0 ... n—1
00 0 0 ... o0 |

5.22 PForevery zECwehavez=qg.1+b.iforsomea,bEIR;and if X.1+u.i=0
then A = 4 = 0. Thus {1, i} is a basis for € as a vector space over IR. Since
fle(x + iy) + B(a + ib)) = (ax + Ba) — i(ey + fb)
=of(x +iy) + pfla +ib)
it follows that f is linear. The matrix of f relative to the basis {1, i} is

1 0
[0 —1]'
Regarding € as a vector space over €, we see that it is of dimension 1 with
basis {1}. In this situation f is not linear. For example, take a =1 —i and

z =1+ 1i; we have
flaz)=2 but af(z)=-2i

5.23 Consider the following row reduction, in which we have been careful not to
divide by either 2 or 3 (since these are 0 in Z, and Z; respectively):

3 -1 1 1 -1 3

-1 5 —=1|=>|-1 5 -1

1 -1 3 3 -1 1

-1 3] [1 -1 3

- 4 21(->|l0 2 -8

0 2 -8 |0 4 2
(1 -1 3]
>0 2 -8
0 0 18]

(2) When F = IR the rank of this final matrix is 3, and so Im fis of
dimension 3 and Ker fis of dimension 0.
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(b) When F = Z, we have that 2, 18, —8 are all zero, in which case the
rank of the matrix reduces to 1. So in this case we have Im f is of dimension
1 and Ker f is of dimension 2.

(c) When F = Z3 we have that 18 is zero, in which case the rank of the
matrix reduces to 2. So in this case we have Im f is of dimension 2 and Ker f
is of dimension 1.

5.24 Iff:IR? > IR? is given by f(a, b) = (b, 0) then we have
Imf=Kerf={(ag,0)]|a<€ IR}
If g : IR® > IR3 is given by g(a, b, ¢) = (c, 0, 0) then
{(@,0,0)la€ IR} =Img CKerg= {(a,b,0) |a, b EIR}.
If h : IR® >IR3 is given by h(a, b, ¢) = (b, ¢, 0) then
{(@,0,0){a€IR}=KerhCImh={(a,b,0)la,b €IR}.

5.25 Consider the following row reduction in which we have been careful not to
divide by any integer n:

2 21 1 3 1
1 3 1{~>{2 2 1
1 2 2 1 2 2
[1 3 27 [1 3 2
>0 —4 —1{->|0 -1 1
0 =1 1] [0 —4 -1
1 3 2]
>0 -1
0 0 -5

It is clear from this final matrix that f is an isomorphism if and only if the
matrix is of full rank 3; and this is the case if and only if p # 5.
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6.1 Since V is areal inner product space we have (x | ¥} = (y | x). Using the fact
~ that |Ix|I> = (x | x) we thus have
x)=(y|x)— x[x=0

¢ T n TR
The second part of the question consists of finding a scalar- A such that
{y —Ax | x)=0. Clearly, X is unique and by the above we see that it is given
by A =<x | »)lixI>.
We have

x| y

cos g < Il INXI_ kx| )
Il iyl el

Since cos ¢ < 0 # A <0 it follows that cos 3 = {x | ¥)/|| x| [I¥il.

6.2 Since V is a real inner product space we have
Ix+pl2=(x+yix+p)=L{x|x)+(yIx)+ x| M+{y |y
= x>+l pI? + 2Ax | p>.
In IR? this is, by the previous question, the cosine law
llx + pI1%= llxl1? + lyh> + 20ix1l 1yll cos S
If now ¥V is a complex inner product space then we have
1% + yII> —illix + ylI>= x>+ Iyl* + (x| )+ [ x)
— i [IlixN2 + plI% + Cix | )+ <y | ix)]
= [IxN® + Iyl — ilixN® + Iy
+x |+ 10—ix [ )+ iy [
= 1]+ I —idllxl® + Iy + 2€x | p)-
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6.4

6.5

6.6
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We have
1 + yl2+ e = pl12= x>+ Iy + x| )+ <y |2
+lxP+ =2+ x| =)+ =y | x)
= 2lix[12 + 2|y~

In IR? this result says that the sum of the squares of the lengths of the
diagonals of a parallelogram is the sum of the squares of the lengths of its
sides.

If Ix{l = |yl then
x+pylx—=Ax|X)+Y I +{x | =) +y |—»
= |lxllZ—lylI2= 0.
In IR? this result says that the diagonals of a thombus are mutually perpen-
dicular.

The respective inequalities are
@) | Zheq b | < (ZR=q o2 (Th=1 18l
(®) | fof(x)g(x) dx | < (g 1FEI? dx)'"2(f5 lgCe)|? dx)' /2.
We have that
n n n
tr (A +B) = Z (aii + bii) = Z (77} + Z b,‘[ =tr (A) + tr (B).

i=1 i=1 =1

Also,
n n n
tr(AB)= Y [4Bl;=Y Y a;bj
=1 i=1j=1
which, on interchanging i and j is the same as tr (B4).
That (4 | B) = tr (AB¥*) defines an inner product follows from a careful
verification of the axioms:
(A|B+Cy=1tr [AB + C)*] = tr (AB* + AC¥*)
=tr (AB*) +tr (AC*)=(4 |BY+ 4| C);
{4 +B|C)=1tr [(4 + BYC*} = tr (AC* + BC*)
=tr (AC*)+ tr BC*) =4 | )+ B|C)
(M |BY=1tr \AB*) = A tr (4B*) = N4 | B);
(A4 | \B)= tr [AQ\B)*]=tr [AAB*] =4 | B);
(B A)=1tr (BA¥) = tr (AB*)=(A | B);
(A1 A)Y=tr (AA*) = Z; jaydy; = Z; j lag* >0
with{4 [A)=0e4 =0.
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Solutions to Chapter 6

The Cauchy-Schwarz inequality in this complex inner product space is
tr (4B*)| < |tr (44%)|"/? Itr (BB*)|*2.

It is clear that {qu} is a basis for V since every 4 = [a;;] €V can be
written uniquely in the form

n n
A4=73 Y. @pqEpq.
p=1q=1
To see that this is an orthonormal basis, we observe that
(Epg | Eyg) = tr (EpgE¥) = tr (EpgEg)
{1 ifr=p,s=gq;
0 otherwise.

Let xl = (1, 1,0, 1), x2= (1,_2, O, O), X3= (1, 0, _1, 2). Then{xl,xz,X3}
is linearly independent. Now |lxfI*>=3 so define y,=(1//3)X1,1,0,1).
Then

X=Xzl y )1 =5(4,—5,0,1)
so define y, = (1/+/42)(4,—5,0, 1). Then

X3—Ax3| Yy, — x5 y)y1=4(—4,—2,-1,6)
so define y3=(1//57)(—4,—2,—1,6). By the Gram-Schmidt ortho-
normalisation process, {¥1,¥,,Y3} is then an orthonormal basis for the sub-
space generated by {x;,x, x3}.

Letfi:t—>1andf,:t~t. Then

1 1
(f1|f1)=j [fl(t)]zdt=f dr=1
0 0

so we can take g, = f, as the first vector in the Gram-Schmidt orthonormal-
isation process. Now

1
<f2|g1>=f tdr=13

0
and so f, — (f2 | g, is the mapping & : t >t —}. Now

= [ ora= [ -+ o=t

0 0

Thus we can define g, to be the mapping ¢ > 24/3(¢ —1). Then{g,,g,}is an
orthonormal basis.
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It is clear that XCY=Y'C X' It follows that V*C(VNW)' and
W-C (VN W)L whence V*+W-C(VNW) Also, (V+ W) C WV and
(V + W) C W' whence (V + W)' C V* N W*. Writing ¥, W for V,Win the
second of these observations, we obtain (X + W)L C Vi Nnw =vnw
whence (V N W)Y C (V* + W) = P+ + Wh. Comparing this with the first
observation, we see that (VN W)t = V* + WL, Again writing V2, W for
V, W and taking the * of each side, we obtain ¥+ N W- = (¥ + W),

That (p|g)=f{p(X)q(X)dX defines an inner product on IR;[X] is
routine.
If kK €K then

1
{k |¢I)=kf @ot+ g1 X +q,X*)dX = k(go+ 341+ 3q2)
)

$0 g is orthogonal to every k €K if and only if o+ 1q, + 14,=0.

Since K is of dimension 1 we have dim K* = dim IR; [X]—dim K =
3—1=2. A basis for Kt is, for example, {p,q} where p(X)=1-—2X,
q(X)=1—3X% We have (p|p)=[4(1—2X)*dX =1 so let y,(X)=
V3(1—2X). Then h=q—{q|yyi=—3+3X—3X> is such that
Iall2=4 so we can take y,=2+/5(—% +3X —3X?%) to complete an
orthonormal basis for K*.

Using the fact that tr (XY) = tr (YX) we have
{fu(A) | B)=(MA | BY = tr (MAB¥*) = tr (AB*M)
=tr [A(M*B)*] =(A | M*B)= (A4 | fyr+(B)
It follows from the yniqueness of adjoints that f3§ = fys«.

We have that

@ 1P =g 1N = f ' o) XrX) dx
0
- f () (X)r(X) &X
0

= flq(X)(pr)(X) dX ={(q |pr={q |fp(r))
(1]

It follows from the uniqueness of adjoints that fF =f,, so that f, is self-
adjoint.
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Solutions to Chapter 6

Ify €EIm f*, say y = f*(z), then
(Vx€Kerf) (x|»={x|f*e={((x)|22={01]2)=0
and so y € (Ker f)*. Thus Im f* C (Ker f)*.
If y €Ker f* then
(VxEV) (fE)IN=Ax | *ON=(x|0)=0
and 5o y € (Im f)*. Thus Ker f* C (Im f)*.
From the first inclusion we obtain
dim Im f* < dim (Ker f)* = dim ¥ — dim Ker f = dim Im
so that
dim Ker f* = dim ¥V — dim Im f/* > dim ¥ — dim Im f = dim Ker f.
1)
From the second inclusion we obtain
dim Ker f* < dim (Im f)* = dim ¥ — dim Im f = dim Ker f. )
It follows from (1) and (2) that dim Ker f* = dim Ker f = dim (Im f)! and
so, from the second inclusion, we deduce that Ker f* = (Im f)*. Likewise we
can show that Im f* = (Ker f)*.

That f ,, is linear is routine. As for (¢) we have
(Fr,y © 13,2 )X®) =Ly, y (2 | 2))
=ty |y
={tlzXy |y»x
= [Iyl*¢e | 2)x
= 1Y f, 2 (0)-
As for (b) we have
{fe,y@) D=Lz | y)x | D)
={z|yXx |8
=z | y(x [tH
=Lz [{t {0
=(z | f3,x(O.
To establish (c) we recall that f , is normal if and only if it commutes with

its adjoint. Using () and (b) we see that this is the case if and only if, for all
z€V,

<z 1) = lIxl1*¢z | p)y.
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Taking z = x in this we obtain

P02 1xl2x = {lxl2¢x | p)y
which gives x =\y where A={x | »)/llylI>E€ C, so that the condition is
necessary. Conversely, if x = Ay for some A € € then

I3z Lex = lIyl2(z | My
= Y1z | YA
= \2iylI*z | y)y
={xl1*¢z | )y
so that the condition is also sufficient,

As for (d), it follows from (b) that £, , is self-adjoint if and only if, for all
zeV.

(z|»x={z|x)p.
Taking z =y we obtain x = Ay where A = (y | x)/||»|I>. This gives (x| y)=
{» | x) whence we see that A € IR. The converse is obvious.
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Test paper 1

Time allowed: 3 hours
(Allocate 20 marks for each question.)

Show that the subset 4 = {a,, a,, a3, a4} where
a=01,9,2,1), a=(1,2,2,1), a;=(4,1,5,4),
a,=(0,3,—1,9)

is a basis of IR* whenever ¢ # 0 and & # 2.

Suppose that f: IR* = IR? is defined by f(e;) =a; fori=1, 2, 3, 4 where
{e1, €, €3, €4} is the standard basis of IR*. If 9 =1 find x € IR* with
f(x)=(-5,5,—5,—4).

Show that if 9 = O then

Imf={(@,b,c,a)la,b,cEIR},
and that if 9 = 2 then

Imf={(a,b,c,d) € IR*|16a + 3b = Tc + 8d}.
Let €5 [X] be the vector space of polynomials of degree less than or equal
to 2 over the field C. Let f € Map(C; [X], C; [X]) be given by

) =—1+2x%,
fA+X)=2+2X+3X?

fA+X—X*)=2+2X+4Xx2

Find the eigenvalues and the minimum polynomial of f.

Let V be a finite-dimensional vector space over the field F and let
fFE€Map(V, V). Prove that

dim ¥V = dim Im f + dim Ker f.
Find a vector space V and f€ Map(V, V') with the property that not every
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vector of V can be written as the sum of a vector in Im f and a vector in
Ker f.
If f,g € Map(V, V) prove that
Im(fog)CImf and KergCKer(f0g).
Show that dim Im(f © g) < dim Im g and deduce that
dim Im(f © g) < min {dim Im g, dim Im f}.

Prove that the product of the eigenvalues of a matrix A4 is det 4, and that if
A is an eigenvalue of an orthogonal matrix then so also is 1/A.
Deduce that if 4 is an orthogonal 3 x 3 matrix with det 4 =—1 then —1

is an eigenvalue of 4.
If B is an orthogonal 3 x 3 matrix with det B =1 prove that B4"® is orth-

ogonal and that det(4 + B) = 0.

Find three eigenvalues and corresponding eigenvectors for the complex
matrix

1 =6 —iV2
V6 0 i3
iv2 i3 2

Hence find a matrix U such that U'4U is diagonal.
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Test paper 2

Time allowed: 3 hours
(Allocate 20 marks for each question.)

State a necessary and sufficient condition, in terms of matrix rank, for
a system of equations Ax = b to have a solution.
Show that the equations

x+ y+ z+ t=4k+6

X— y+ z— t=-2
ky+3z— (k+1) t=3

3x —3z+(3k%+ 2t =14k

have a unique solution except when k¥ = 0 and k = 4/3. Show that there is
no solution when k = 4/3 and find the general solution when k = 0.

Let IR, [X] be the vector space of polynomials of degree less than or equal
to n —1 over the field IR. Define T : IR,[X]~ IR, [X] by

T(f(X)=fX+1).
Prove that T is linear and find the matrix of T relative to the basis
{1, x,x2,...,x" 1}

of IR,[X]. Find the eigenvalues of T. Determine the minimum polynomial
of T

Prove that V; = {(a, b, 0) | a, b€ IR} and V; ={(a, a, @) | a € IR} are subspaces
of IR3. Prove also that every vector in IR® can be expressed uniquely as a sum
of a vector in V] and a vector in V5.

Find f € Map(IR3, IR?) such that

fof=f, Kerf=V, and Imf=1,.
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Show that if g € Map(IR?, IR?) is such that g(¥;) C ¥; and g(¥;) C ¥, then
gof=fog

Find an orthogonal matrix H such that H'4H is diagonal where A is the
matrix.

4 o0 -3%
0 -1 0
—34 0 4

Hence find a matrix B such that B® = A.

Let ¥ be a real inner product space, let {e;, e, . .., e,} be an orthonormal set
of vectors in ¥, and let U be the subspace spanned by {e,, e,, ..., e,}. Prove
that x € U if and only if x = 2% —;{x|e;)e; . Establish the inequality

n
(VxE€V) T Kxle* <lx|.
k=1
Deduce that for x € V the following are equivalent:
@ ZR=ilxle® =lxI%;

) xeU,
(© (WweV)(x|y)=Zk=1(x|e) e |y).
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Time allowed: 3 hours

(Allocate 20 marks for each question.)

If M € Mat,,, ,(IR) prove that, for every positive integer &,
L—Mt = —M)(T,+M+M*+ ...+ M)

Deduce that if M**1 = 0 then J, — M is non-singular.

Let
2 2 -1 -1
-1 0 0 O
A=
-1 -1 0
0o 1 -1

Compute I, — A, (I — A)?, (I, —A)*, (I, — A)*. By applying the first part
the question to 4 = I, — (I —A), prove that A is non-singular and deter-
mine A7,
Show that {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis of IR3.
A linear mapping f : IR® - IR is such that
f(1,0,0)=(0,0,1),
f(1,1,00=(0,1,1),
fa,1,H=(1,1,1).
Find f(a, b, c) for every (a, b, ¢) € IR® and determine the matrix of f with
respect to the basis B=1{(1, 2, 0), (2, 1, 0), (0, 2, 1)}.
If g:IR®~> IR is given by g(a, b, ¢) =(2a, b + ¢, —a) prove that g is
linear and find the matrix of f © g O f with respect to the basis B.
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If r is the rank of the matrix

1 a 0 0
-5 1 g 0O
0 —y 1 ¢«
60 -6 1 &
show that
(@ r>1;

(b) r=2ifandonlyifep=—land y =6 =0,
(c) r=3 if and only if either af =—1 or y=2§ provided that, if
af =—1,v and 6 are not both zero.

Let A be a real square matrix. If A is an eigenvalue of 4 and x is an eigen-
vector associated with A, prove that

#Ax =nxt, A% =M%, x4Ux =N

where bars denote complex conjugates. Deduce that, if 4 satisfies the equation
A4 =—4I + 24 + 248,

then every eigenvalue A of A is such that
M—2A+A)+4=0,

and hence show that every eigenvalue of 4 is equal to 2.

Let ¥ be the real vector space of continuous functions f: [0, 1] - IR. Show
that the prescription (f|g) = fg f(£)g(¢)dt defines an inner product of ¥V, For
every fEV let T;: [0, 1] IR be given by Ty(x)=xf(x). Show that
T:V~>V described by T(f)=Tr is linear and self-adjoint but has no
eigenvalues.

97



Test paper 4

Time allowed: 3 hours
(4llocate 20 marks for each question.)
If Fis a field and A, B € Mat,,,,,(F) are such that AB — I, is invertible,
show that
(BA 1) [B(AB—1,)'A—I,]=1,
and deduce that B4 — I,, is also invertible.
If X, Y € Mat,,, ,(F) show that A€ F is an eigenvalue of XY if and only

if XY — A, is not invertible. Hence show that XY and YX have the same
eigenvalues.

Let ¥ be a finite-dimensional vector space over a field F. If A, B are subspaces
of V prove that A+ B={a+ b|a EA, b €B}is a subspace of V, and that
if Cis a subspace of PV with4A CCand BC Cthen4 +BCC

Let L, M, N be subspaces of V. Prove that

LOM+(LNN)]=LNM+(LNN).
Give an example to show that in general (L "M) + (L NN)*L N (M + N).

If S is a matrix such that 7 + S is non-singular prove that
A=SYT+S) =T+ 5T —-S9).
Deduce that P = (I — S)(I + S)~! is orthogonal when S is skew-symmetric.
Given that

0 cos & 0
=|—cosd 0 sin 91 ,
0 —sin ¢ 0
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prove that
sin? ¢  —cosd® sindcosd
P= cos ¢ 0 —sin 9
sin®cosd sind cos? ¢

If the real matrix
a 1 a
0 b 1
0 0 ¢
0 0 O

has rank r, prove that
(a) r>2;
(b) r=3ifandonlyifa=d=0and bc =1;
(¢) r =4 in all other cases.

QU = & O
- 5 O O
QU © ©O O

Let ¥V be a real inner product space and let U be a subspace of V. Suppose
that U has a basis {v;,...,0,}. Given x €V let x; = Z_;a;v; where the
coefficients ay, .. .,a, are given by

ilu) {vluy) .. Lolepd || 4y x| u)
oy vylvy) ... (vulu) || @y {x|vy)
Wil Wyluy) -0 ulv || a, x| vy

Show that x = x; + x, where x, is orthogonal to every vector in U.

In the above, call x; the orthogonal projection of x onto U and ||x, || the
distance of x from U.

Now let ¥ = C|[0, 1] be the real inner product space of continuous func-
tions f: [0, 1] IR with inner product {f|g)= fo f()g(t)dt. What is the
orthogonal projection of x? onto the subspace U=<(1, x)? What is the
distance of x? from U?
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