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Preface

The aim of this series of problem-solvers is to provide a selection of worked
examples in algebra designed to supplement undergraduate algebra courses.
We have attempted, mainly with the average student in mind, to produce
a varied selection of exercises while incorporating a few of a more challenging
nature. Although complete solutions are included, it is intended that these
should be consulted by readers only after they have attempted the questions.
In this way, it is hoped that the student will gain confidence in his or her
approach to the art of problem-solving which, after all, is what mathematics
is all about.

The problems, although arranged in chapters, have not been 'graded'
within each chapter so that, if readers cannot do problem n this should not
discourage them from attempting problem n + l. A great many of the ideas
involved in these problems have been used in examination papers of one sort
or another. Some test papers (without solutions) are included at the end of
each book; these contain questions based on the topics covered.

TSB,EFR
St Andrews





Background reference material

Courses on abstract algebra can be very different in style and content.
Likewise, textbooks recommended for these courses vary enormously, not
only in notation and exposition but also in their level of sophistication. Here
is a list of some major texts that are widely used and to which the reader
may refer for background material. The subject matter of these texts covers
all six books in the Algebra through practice series, and in some cases a great
deal more. For the convenience of the reader there is given below an indication
of which parts of which of these texts is more relevant to the appropriate
chapters of this book.

[1] I. T. Adamson, Introduction to Field Theory, Cambridge University Press,
1982.

[2] F. Ayres, Jr, Modern Algebra, Schaum's Outline Series, McGraw-Hill, 1965.
[3] D. Burton, A First Course in Rings and Ideals, Addison-Wesley, 1970.
[4] P. M. Cohn, Algebra, Vol. I, Wiley, 1982.
[5] D. T. Finkbeiner II, Introduction to Matrices and Linear Transformations,

Freeman, 1978.
[6] R. Go&ement, Algebra, Kershaw, 1983.
[7] J. A. Green, Sets and Groups, Routledge and Kegan Paul, 1965.
[8] I. N. Herstein, Topics in Algebra, Wiley, 1977.
[9] K. Hoffman and R. Kunze, Linear Algebra, Prentice Hall, 1971.

[10] S. Lang, Introduction to Linear Algebra, Addison-Wesley, 1970.
[11] S. Lipschutz, Linear Algebra, Schaum's Outline Series, McGraw-Hill, 1974.
[12] I. D. Macdonald, The Theory of Groups, Oxford University Press, 1968.
[13] S. MacLane and G. RiikYioff, Algebra, Macmillan, 1968.
[14] N. H. McCoy, Introduction to Modern Algebra, Allyn and Bacon, 1975.
[15] J. J. Rotman, The Theory of Groups: An Introduction, Allyn and Bacon,

1973.
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[16] I. Stewart, Galois Theory, Chapman and Hall, 1973.
[17] I. Stewart and D. Tall, The Foundations of Mathematics, Oxford University

Press, 1977.

References useful for Book 2
1: Matrices and linear equations [2, Chapter 14], [5, Chapters 1, 4],
[9, Chapter 1], [10, Chapter 3], [11, Chapters 2, 3].
2: Inverses and determinants [2, Chapter 14], [5, Chapter 5], [9, Chapter 1 ]
[10, Chapter 7], [11, Chapters 3, 8].
3: Eigenvalues and diagonalisation [2, Chapter 15], [11, Chapter 9].
4: Vector spaces [2, Chapter 15], [5, Chapter 2], [9, Chapter 2],
[10, Chapter 2], [11, Chapters 4, 5].
5: Linear mappings [5, Chapter 3], [9, Chapter 3], [10, Chapter 4],
[11, Chapters 6, 7].
6: Inner product spaces [5, Chapter 8], [9, Chapter 8], [10, Chapter 6],
[11, Chapter 13].

In [2] the author uses 'row canonical matrix' for Hermite normal form, and
writes linear mappings on the right. In [5] the author uses 'reduced echelon
form' for Hermite normal form. This also occurs in [9], and in [11]. The
term 'null space' is used in [9] for kernel. Also, some of these texts use
'characteristic vectors' and 'characteristic values' for eigenvectors and
eigenvalues.



1: Matrices and linear equations

The basic laws of matrix algebra: associativity of products (when they are
defined), distributivity of multiplication over addition (when meaningful),
and the like should be well known to the reader. We often use notation such
as Matmxn(IR) to denote the set of m xn matrices whose entries belong to
the set IR of real numbers. We often write A GMatmxn(IR) in the form
A = [ciij]mxn> a nd the identity n xn matrix as/„ = [8^] where

o if/*/.

We assume that the reader is familiar with the transpose A* = [fly/Lxm °f
A = [fl//]mxM> with the notions of symmetric (At = A) and skew-symmetric
(At = -A) matrices and the properties (At)t=A, (A + B)x = Al + Bl,

We have included in this introductory section a few questions relating
matrices to two-dimensional coordinate geometry, which is one of the appli-
cations of matrices that is usually covered at this level.

Another basic application is to the solution of systems of linear equations.
We assume that the reader has the necessary background knowledge. This
includes the reduction of an m x n matrix to row-echelon form and then to
Hermite (normal) form. In particular, the reader should know that the rank
of an m x n matrix is the number of non-zero rows in any row-echelon form,
and that a system of equations Ax = b has a solution if and only if the rank
of the coefficient matrix A is the same as that of the augmented matrix .4 \b.
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1.1 Compute the following matrix products:

p 3 0 41
1.2 1 1 OJ

1

0

1

0

0"

1

0

1

"1

2

.1

3

1

0

2

0

1.

"l

0

.1

2

1

1.

3
<2 -

- 1 1

1 - 2 |

-2 0

2

"1

1

_0

1
1

1

1"

1

2

1

2

3

.4.

[ 1 2 3 4]

[ 1 2 3 4]

1.2 Compute the matrix product

[* y

Hence express in matrix notation the equations

(a) x2

a

h

g

h

b

f

g

f
c

V
y
1

x2 y2

(c) = a2;
= 4ax.

ro n r-i -n
1.3 If A = and £ = prove thatLo lJ L o o J

but that

(A+B)3=A3+3A2B +

1.4 Let A be the matrix
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0 a a2 a3

0 0 a a2

0 0 0a
0 0 0 0

Define the matrix B by

Show that this series has only finitely many terms different from zero and
calculate B. Show also that the series

B + - B 2 + - B 3 + ••-
2{ 3!

has only a finite number of non-zero terms and that its sum is A.

1.5 Find all X GMat 2 x 2 ( IR) such that X2 = / 2 .

1.6 Find all .4 G Mat2x2((D) such that A2=-I2. Show that there are no 2 x 2 real

diagonal matrices A with^42 = —/2, but that there are infinitely many 2 x 2

real matrices A with A2 = —I2. Deduce that for every even positive integer n

there are infinitely many nxn real matrices A with A2 = —In. Is this so for

every odd positive integer ni

1.7 Show that every A G Mat 2 x 2 (C) which is such that A 2 = 0 may be written in

the form
, 2r ab a2 1

[-b2 -ab\
for some a, b G (D. Is it true that every A G Mat2x2(IR) such that A2 = 0 is of
this form with a,bG\Rl

[a bl
1.8 Show that a real 2 x 2 matrix may be expressed as a product

Ic d\

\
ly\

[u v] for some x,y9 u, v G IR if, and only if, ad = be.

1.9 Fory4,5GMatwxn(IR) define [AB]=AB-BA.
(a) Prove that the following identities hold:

(i) [[AB]C] + [[BC]A] + [[CA]B] = 0;
(ii) [(A+B)C]=[AC]+[BC\;
(iii) [[[AB)C]D] + {[[BC]D]A] + [[[CD]A]B] + [[[DA]B]C] = 0.
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1.10

1.11

(b) Show by means of an example that in general

[[AJB)C]±[A[BC]].

Consider the complex 2 x 2 matrices

U
(a) Show that AB = -BA for all A, B G X, Y, Z with ̂  ¥= B.
(b) Compute AB —BA for each distinct pair A,B E{X, F,Z} and com-

ment on your answer.
(c) Prove that the 3 x 3 real matrices

X' =

0 0 0

0 0 - 1

0 1 0

r-\
0

0

-1

0

0

0

1

0

0

, Z' =

0

1

0

- 1

0

0

0

0

0

satisfy the same properties asX, Y,Z.

(a) Show that if A and B are 2 x 2 matrices then the sum of the diagonal
elements of AB — BA is zero.

(b) If E is a 2 x 2 matrix and the sum of the diagonal elements of E is
zero show that E2 = X/2 for some scalar X.

(c) Deduce from (a) and (&) that if A, 2?, C are 2 x 2 matrices then

1.12 Let A,B be nx n matrices with A symmetric and B skew-symmetric. Deter-
mine which of the following are symmetric and which are skew-symmetric:

AB + BA; AB-BA\ A2\ B2; ApBqAp.

1.13 Let x and y be n x 1 matrices. Show that the matrix ̂ 4 = xyx —yxx is of size
nx n and is skew-symmetric. Show also that xfy and yxx are of size l x l
and are equal.

\fxxx=yxy= [ l ] a n d * V = y * = [k], prove that^43= (k2-l)A.

1.14 If A is a square matrix such that A2 —A and (A —^4t)2 = 0 prove that
(AAX)2 = AAX.

1.15 Suppose that in the cartesian plane the coordinate axes are rotated in an anti-
clockwise direction through an angle #. Show that the 'new' coordinates
(x\yf) of the point P whose 'old' coordinates are (x,y) are given by
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1.16

1.17

1.18

1.19

where R# is the rotation matrix

[ cos # sin i

—sin # cos •

Prove that, for rotations & and <

The hyperbola x2 — y2 — 1 is rotated anti-clockwise about the origin through
45°; find its new equation.

Two similar sheets of graph paper are pinned together at the origin and the
sheets are rotated. If the point (1,0) of the top sheet lies directly above the
point (^,{3) of the bottom sheet, above what point of the bottom sheet
does the point (2, 3) of the top sheet lie?

For every point (x,y) of the cartesian plane let (x*\y') be its reflection in the
x-axis. Find the matrix M such that

In the cartesian plane let L be a line passing through the origin and making an

angle # with the x-axis. For every point (x,y) of the plane let (xL,yL) be its

reflection in the line L. Prove that

"cos2# sin 2^

sin 2# -cos 2#J
j

In the cartesian plane let L be a line passing through the origin and making an
angle # with the x-axis. For every point (x,y) of the plane let (x*9y*) be the
foot of the perpendicular from (x,y) onto L. Prove that

r cos2# sin # cos tf-jpi

Lsin#cos# sin2# JL^J'
1.20 Find the Hermite normal form of each of the following matrices:

• 1

3

5

2

1

5

3"

2

8

5

' 1

3

[2

2

1

3

3"

2

1

j

"2

3

0

1

1

1

3

3

3
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1.21 Reduce to row-echelon form the augmented matrix of the system of equations

x + 2y + 3t = 1

x + 2y + 3z + 3t = 3

x + z + t = 3

x+ y + z + 2t = 1.

Deduce that the system has no solution.

1.22 For what value of X does the system of equations

JC+ y 4- t = 4

2x - At = l

X + y+Z =$

x-3y-z-\0t = \

have a solution? Find the general solution when X takes this value.

1.23 What conditions must the integers a,b, c satisfy in order that the system of
equations

2w—x +y — 3z =a

w+x —y = b

4w + x — y — 3z = c

has integer solutions?

1.24 If a, b,c,dG\R are all greater than 0 prove that the system of equations

x +y + z + t = a

x—y— z + t = b

—x—y+ z+ t = c

-3x+y-3z-lt = d

has no solutions.

1.25 Show that the equations
2*+ y+ Z = —6/3

yx 4- 3y + 2z = 20

2JC 4- y + (7 + l)z = 4

have a unique solution except when 7 = 0 and when y = 6. If y - 0 prove
that there is only one value of ]3 for which a solution exists and find the
general solution in this case. Discuss the situation when 7 = 6.
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1.26 Show that the equations

x - y - u-5t = a

2x+ y— z — 4M 4- t = (3

x 4" v 4~ z — 4M — 6^ == "Y

have a solution if and only if

Find the general solution when a = 0 = —1,7 = 3,5 = 8



2: Inverses and determinants

An n x n matrix M has an inverse if there is a (necessarily unique) n x n
matrix Af"1 such that MM'1 = /„ = M~lM. {Note. It can in fact be shown that
one of these equations is enough; \iMX — In then XM = In.) Inverses have
the properties that {M~1)~1=M and {AB)'1 =B~1A~\ Elementary row
operations may be used in deciding whether or not Af is invertible. Briefly, to
apply an elementary row operation to Af is equivalent to pre-multiplying Af
by an elementary matrix E (namely, that which is obtained by applying the
row operation in question to /„). Starting with an array Af \In and applying
a sequence of row operations we obtain a sequence

M\In -+ElM\El^E2ElM\E2E1 -* ... -+EM\E
where E — EnEn_x "'E2E1. Choosing El9...,En such that EM is the
Hermite form of Af, we have that EM = /„ if and only if E = Af"1. Thus, if the
Hermite form of Af is /„ then Af is invertible, and its inverse is obtained by
applying to /„ the same sequence of row operations as was applied to Af.
If the- Hermite form of M is not /„ then M is not invertible.

The determinant of an n x n matrix M is denoted by det Af or \M\. The
determinant of a 2 x 2 matrix

A =

is the cross-product \A\ = ana22 — a21ai2. The determinant of an n x n
matrix is defined inductively as

Z eoalyo(l)a2,o(2) ' ••anf
a

where the sum is over all permutations a of {1, . . . ,«}, and eo is 1 if a is an
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even permutation and —1 if a is an odd permutation. This definition (and what
it involves in general) will not be required. What is assumed is that the reader
has (at least on trust!) a knowledge of the Laplace expansion method of
computing detTW, namely that if Mtj is the matrix obtained fromM by deleting
the /th row and the /th column then

det M = £ ( - l / + / aif det Mif.

This is the Laplace expansion of det M via the /th row; it can be shown that it
is independent of the choice of/. A similar result holds for columns. Elemen-
tary row and column operations are used to create zero entries often before
applying a Laplace expansion, in evaluating determinants. Fundamental
properties of determinants are that det M — det Mx, det AB = det A . det B
and, if M is invertible, det M'1 = (det M)"1.

2.1 Find the inverses of the following matrices:

2.3

3

1

1

1

2

1

2

1

1

2

7

3

3

5

2

1

3

>

1

1

1

0

2

2

0

0

3

2.2 Determine the values of the real number x for which the matrix

X

1

1

1

is invertible.

2

2

0

1

0
3

1

1

Lety4GMat6x6(IR)

A =

"o
/
0

0

0

0

a

0

g

0

0

0

3
3

1

3_

be

0

b

0

h

0

0

given

0

0

c

0

k

0

by

0

0

0

d

0

m

0

0

0

0

e

0

Prove that A is invertible if and only if a, c, e,f, h, m are non-zero, and find
A'1 in this case.
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2.4 Given the matrices

A =

b + 8c 2c-2b 4b — 4c

4c — 4a c + 8b 2a-2c

2b-2a 4a-4b a + Sb

"o
2

1

1

0

2

2

1

0

findP 1 and evaluated 1AP. Hence evaluate det A.

2.5 If A G Mat4x4(IR) is given by

1 1 1 1

a x b c

a2 x2 b2 c2

3 x3 b3 c

express det A as a product of factors.

2.6 Solve the equation

det

x a a a

a x a a

a a x a

a a a x

= 0.

2.7 Consider the 4 x 4 real matrix

X

y2

y*2

yzt2

a

y

z2

zt2

9

a

z

t2

9

9

a

t

Show that, whatever the entries marked ? may be, this matrix has determinant
(x-ay)(y-az)(z-at)t

2,8 Let Br = [ft,-] G Matrxr(IR) be defined by

b i f / < / ;

a if i = / + l ;

Prove that det Bn_t = (~l)nb(a - b)n~2.

10
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Hence show that if Ar = [o^-] G Matr x r(IR) is given by

b if/</;

a if / = /;

—b if/>/

then detAn = (a + b) d e t ^ . j - b(a - h)"'1.

Deduce that

det An = \ {{a + bf + (a- b)nl

2.9 Let An = [otjj] G Matn x w(IR) be given by

0 if Ijf

cos ^ if / = / .

If An = detAn, prove that An+2 — 2 cos # An+1

induction that, for 0 < # < n,
sin (n + 1)#

sin

= 0- Hence show by

2.10 LetAn= [a(/]GMatwxw(IR)begivenby

i + bf if /= /<«;

£w if/=/ = ii.

Prove that det >lw = Z?w IIJL71 ^-,

If ^« = [ft/] G Matw x n(IR) is given by

ft/=( *'. !/.#7/

prove that det Bn = det An + arw det Bn_1. Hence deduce that

2.11 A real matrix^ = [flf/]wx« is said to be dominated by its diagonal elements if,
for 1 < r < « ,

Prove that if A is dominated by its diagonal elements then det A

11



Book 2: Matrices and vector spaces

2.12 If A and B are square matrices of the same order prove that

\A Bl
det = det (A + B) det (A -B).

2.13 Let M = where P,Q,R,S are square matrices of the same order with
[R S i [A 01

P non-singular. Find a matrix N of the form such that
L B CJ

\l P~lQ 1
NM=\ ^ , .

L0 S-RP-'Q]
Hence show that if PR=RP then det M = det (PS-RQ), and that if
PQ = QP then det M = det (SP -RQ).

12



3: Eigenvalues and diagonalisation

In this chapter the emphasis is on the notions of eigenvalue and eigenvector
of a square matrix A. These are respectively a scalar X and a non-zero column
matrix x such that Ax = Xx\ In order to compute the X and the x one begins
by considering the system of equations (A —\In)x = 0. These have a non-
zero solution if and only if det (A — X/w) = 0. The left hand side of this
equation is a polynomial of degree n which, when made monic, becomes the
characteristic polynomial XAQO of A. The zeros of the characteristic poly-
nomial are thus the eigenvalues. It can be shown that every n x n matrix A
satisfies its characteristic polynomial (the Cayley-Hamilton theorem). The
minimum polynomial m^ (X) of A is the monic polynomial of least degree
satisfied by A. It has degree less than or equal to that of XAQO

 a nd divides

If the nxn matrix A has n distinct eigenvalues Xi,...,Xw and if
Xi,...,xn are corresponding eigenvectors then the matrix P whose zth
column is xt for each i is such that P~l exists and P~lAP = D where
D = [dtj] — diag {Xi,..., Xw} is the diagonal matrix with dti = X/ for every z.
When A is real and symmetric, P can be chosen to be orthogonal {P~l = i > t ) ;
this is achieved by normalising the eigenvectors. The same procedure may be
applied when A has less than n distinct eigenvalues provided that one can find
n linearly independent eigenvectors.

3.1 Determine the characteristic polynomial and the minimum polynomial of
each of the following matrices {A, B, C, D)

1

2

-2 .5

- 4

- 2

1

0 "

-2

-2

5

"l

0

.0

2

1

0

3

2

1_

1

- 1

0

1

1

1

0

1

- 1 .

;

"0

1

.0

0

0

1

2"

1

1,

13
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3.2 If A, B G Matwxw(IR) are such that /„ — AB is invertible, prove that so also is
In-BA.

Deduce that, for all A, BEMatwxw(IR), AB and BA have the same eigen-
values.

3.3 Let A, B be square matrices over (C and suppose that there exist rectangular
matrices P, Q over <D such that A = PQ and B = QP. If h(X) is any polynomial
with complex coefficients prove that A h(A) = P h(B) Q.

Hence show that, if mA(X), mB(X) are the minimum polynomials of
A, B respectively, then AmB(A) = 0=BmA(B). Deduce that one of the
following holds:

mA(X) = mB(X); mA(X) = XmB(X)- mB(X) = XmA(X).
Express the r x r matrix

"1 1 . . . 1

2 2 . . . 2

r r . . .

as the product of a column matrix and a row matrix. Hence find its minimum
polynomial.

3.4 Given the real nxn matrix A = [a^] let k = max \atj\. Prove that, for all
positive integers r,

For every scalar (8, associate with A the infinite series

We say that ^(^4) converges if each of the series

«*/ + P[A]if + /32 U 2 ] / / + • • • + pr[Ar]y + • •.
converges. Prove that

(a) Sp(A) converges if | /3 |< I Ink;
(b) if Sp(A) converges then In — ftA has an inverse which is the sum

of the series.
Deduce that HA is a real n x n matrix and X is an eigenvalue of A then

IX| <n .max \atj\.

14



3: Eigenvalues and diagonalisation

3.5

3.6

3.7

Show that the matrix
r - 2 - 3

- 1 0

5 5

- 3

- 1

6

has only two distinct eigenvalues. Find corresponding eigenvectors.

Find the eigenvalues, and one eigenvector for each eigenvalue, of each of the
following matrices:

"l 0 f
0 1 0

1 0 1

For each of the matrices

" - 3 - 7
2 i

- 2 - 3

8

10

- 2 5 7"

1 0 - 1

- 1 1 2

" - 4 0

1 3

4 - 2

- 3 "

1

2

find a matrix 7" such that T lA T is diagonal.

3.8 Show that and are eigenvectors of

[ cos # sin # 1

— sin # cos # J

If P =\ compute the product P~lAP.

3.9 Let A = where a,b,c,d>0. Prove that

(a) the eigenvalues of A are real and distinct;
(b) A has at least one positive eigenvalue;
(c) corresponding to the largest eigenvalue of A there are infinitely

many eigenvectors with both components positive.

For each of the following matrices determine an orthogonal matrix P such
that PXAP is diagonal with the diagonal entries in increasing order of

3.10

15
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0

1

0

1

0

1

0

1

0

5

magnitude:

^ 3 - 1 0

- 1 3 0

0 0 1

3.11 Suppose that the real matrix A = has distinct eigenvalues \l9 X2. If

[X X I L 1 0J

prove that P~XAP = D = diag {Xu X2}. Deduce that, for every
positive integer r, Ar = PDrP~1.

Consider the system of recurrence relations defined by

for n = 0, 1, 2, Using the matrices

^ Li oj
express these relations in matrix form and deduce that Un— An 1U1. Hence
show that

(W1-X2MO)-
Xn

2

Aj A2 Ai — X2

3.12 Let Tn be the tridiagonal n x n matrix

1 - 4 0 . . . 0 0

5 1 - 4 . . . 0 0

0 5 1 . . . 0 0
T —

0 0 0 . . . 1 - 4

0 0 0 . . . 5 1

[ An "I

. Show that rn=Arn_l

and deduce that rn =An~2r2. By diagonalising A, find

An~2 and hence show that

16



3: Eigenvalues and diagonalisation

3.13 For every positive integer n, determine the nth power of the matrix

2

1

1

2

2

2

0

1

1_

A =

3.14 Solve the system of equations

xn+i = 2xn + 6yn

= 6xn - 3yn

j = — 1 .given that xx = 0

3.15 Given the matrix

6.5

A =

-2 .5 2.5

-2 .5 6.5 -2 .5

0 0 4
find a matrix B such that B2 = A.
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4: Vector spaces

We consider vector spaces V over only the fields (D, IR, € and Z p . The sub-
space spanned (or generated) by the set {vu .. .,vn} is the set of linear com-
binations of Vi,...,vn and is written span {vx,..., vn} or (vl9...,vn).
A linearly independent spanning set is called a basis. The number of elements
in a basis is independent of the basis and is the dimension dim V of V. If, for
example, the ground field is IR and Fis of dimension n then V can be re-
garded as the set IRW of «-tuples of real numbers. Every linearly independent
subset of V can be extended to a basis. A basis is therefore a maximal inde-
pendent subset; it can also be described as a minimal generating set. If W is
a subspace of V then dim W < dim V with equality if and only ifW= V.

4.1 For / = 1 , . . . , n let a,- = (an, 0/2,. •., ain). Prove that {a\, . . . , an} is a basis
of IRW if and only if A = [0//]nX/iis invertible.

4.2 Determine which of the following are bases for IR3:
(a) {(1,1,1),(1,2,3),(2,-1,1)};
(b) {(1,1, 2), (1,2, 5), (5, 3, 4)}.

4.3 Show that {(1,1,0,0), ( - 1 , - 1 , 1 ,2) , (1 , -1 , 1,3), (0, 1 , -1 , -3)}is a basis
of IR4 and find the coordinates of the vector (a, b, c, d) relative to this basis.

4.4 Extend the linearly independent set { ( 1 , - 1 , 1, —1), (1, 1 , -1 , 1)} to a basis
for IR4.

4.5 Which of the following statements are true? Give a proof for those which are
true and a counter-example for those which are false.

(a) {(xl9x2)€ IR2 |x!<x2}isasubspaceof IR2.
(b) If {«!, a2, 03} is a basis for IR3 and b is a non-zero vector in IR3

then {b -\-aua2,a^}\% also a basis of IR3.

18



4: Vector spaces

(c) If {JCI, . . . , xr} is a linearly dependent set of vectors in IR" then
r<n.

(d) If {JCI, . . . , xr} is a spanning set for IR" then r > n.
(e) The subspace {(x,x, x) \ x G IR} of IR3 has dimension 3.
( / ) The subspace of IR3 spanned by {(1, 2, 1), (2, 2, l)}is {(x + y9

2y,y)\x,yG\R}.
(g) The subspace of IR3 spanned by {(1, 2, 1),(2,2, l)}is {(2x, 2x +

2y,x+y)\x,yG\R}.
(h) If P9 Q are subspaces of a finite-dimensional vector space then

we have thatPCQ implies dimP< dim Q.
(i) If P, Q are subspaces of a finite-dimensional vector space then

we have that dim P < dim Q implies PCQ.
(/) The only ^-dimensional subspace of IR" is IR" itself.

4.6 Determine whether or not the following subsets of IR4 are subspaces:
(a) U={(a,b,c,d)\a + b = c + d};
(b) U={(a,b,c,d)\a + b=l};
(c) U={(aib,c,d)\a2 + b2 = 0}',
(d) U = {(a,b,c,d)\a2 + b2 = 1};
(e) U={(a + 2b9O92a-b9b)\a,be\R};
( / ) U= {(a + 2b9a92a-b9b)\a,be\R}.

4.7 Which of the following criteria are correct for a non-empty subset U of a real
vector space V to be a subspace of VI

(a) (yx9yEU)(\/a9bE\R) ax + byEU;
(b) (Vx,y G U)(\/a G IR) ax +y G U;
(c) (\/x,yeU)(Vae\R) ax + ayGU;
(d) (Vx,y G U)(Wa G IR) ax -ay G (/.

4.8 Let V be a real vector space and suppose that vl9..., vk are linearly indepen-
dent vectors in V. If v = 2/Litf/ty where each#,- G IR, prove that v — Vi,...,
i> — i?fc are linearly independent if and only if 2f=10z- =£ 1.

4.9 Let F be a vector space and let X, Y be subspaces of V. Suppose that
dim F=10 , dim X=S and dim Y=9. What are the possible values of
dim ( X n r ) ?

4.10 Show that there are
2n(n-l)/2(2n _ 1 ) ( 2«-1 _ 1 } . . . (23 _ 1 ) ( 22 _ 1 }

non-singular « x n matrices each of whose entries is 0 or 1.
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Book 2: Matrices and vector spaces

4 . 1 1 4t L e t A u .. . 9 A k G M d t m x n ( \ R ) . L e t X a n d Y b e i n v e r t i b l e m x m a n d n x n
matrices respectively, and let B G Matwxp(IR). Prove that

(a) {Au .. .,Ak} is a linearly independent subset of Matmxw(IR) if
and only if {XAtY,.. .,XAkY} is a linearly independent subset
ofMatmxw(IR);

(b) if {AXB,.. .,AkB} is a linearly independent subset of Matmxp(IR)
then {Ai,.. .,Ak} is a linearly independent subset of Matmxn( IR).

Give an example to show that {At,. ..,Ak} being linearly independent
need not imply that {AXB,.. .,AkB} is linearly independent.

4.12 Find bases of Mat2 x 2 (®) that consist
(a) of matrices A with A? — A\
(b) of invertible matrices;
(c) of matrices with determinant 1.

Show that it is impossible to find a basis of Mat2x2((D) consisting of com-
muting matrices. For which values of n is it possible to find such a basis of
Matwxn(0})?

4.13 Let V be a real vector space and let b1,b2G V be linearly independent. If
a i, a2 G V are given by

# i — & i ^ i "J~ Q^2^2> ^2 = /31Z?i ~h P2b2

where a l5 a2, ft, /32GIR, prove that the subspace generated by {a\, a2}
coincides with that generated by {bu b2} if and only if

det
LPi Pi]

4.14 Let U be the subspace of IR4 spanned by

JT = {(2, 2, 1,3), (7,5,5,5) , (3, 2, 2,1), (2, 1,2,1)}.

Given that x = (6 + X, 1 + X, - 1 + X, 2 + X) belongs to £/, find X. For this
value of X, does x have a unique expression as a linear combination of the
vectors of XI

Find a basis for {/and extend this to a basis for IR4.

4.15 Prove that V = {a + Z?\/2 \a, b G Q} is a vector space over (D.

4.16 Let F be the real vector space of continuous functions/: IR —> IR. Which of
the following subsets are subspaces of VI

(a) W/!={/GF| /G)G(D};
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4: Vector spaces

(b) W2 = {fG

id) w4 = {fev
Find Wf n Wj in the cases where Wt and Wj are subspaces.

4.17 Let Z 3 be the field of integers modulo 3. Consider the Z3-vector space
Z 3 = {(#,&,<?) | tf,Z>,cGZ3}. Which of the following subsets are linearly
independent?

(a) A, = {(1,2,0), (2,1,0)};
(b)A2 = {(1,1,1), (1,0,1), (1,0,0), (0,0,1)};
(c) A3 = {(1,2,0), (1,1,1), (2, 0,1)};
(d) A4 ={(1,0,1), (1,1,0), (0,1,1)}.

4.18 Prove that {(3 - i, 2 + 2i, 4), (2, 2 + 4i, 3), (1 - i, - 2 i , -1)} is a basis of the
(D-vector space (D3. Express each of (1,0,0), (0, 1,0), (0,0, 1) as a linear
combination of these basis vectors.

4.19 Consider the vector space Z3,. How many elements does it have? How many
different bases are there?

If V is a vector space of dimension 3 over !R and if {xi,x2, x3} is a basis of
V9 prove that {x1 + x2,x2 + x3,x3 +xx} and{x1,x1 + x2ix1 + x2 + x3} are
also bases of V. Is this still true if we replace Fby Z3,?

4.20 The set Map (IR, IR) of all mappings from IR to IR is a real vector space under
addition and scalar multiplication. Let n be a positive integer and let En be
the set of all mappings/: IR -> IR given by a prescription of the form

n
f(x) = a0 + £ (ak cos kx + bk sin kx)

k=i

where £,-, bjG IR for every i. Show that En is a subspace of the real vector
space Map (IR, IR). If fGEn is the zero map, prove that all the coefficients
ah bj must be 0.

(Hint: If D denotes the differentiation map, find a prescription for
D 2 / + «2/and use induction.)

Deduce that the 2n + 1 functions

x ^ l , x-^coskx, x-^sinkx (k = l,.,.,n)

form a basis for En.

4.21 Let a, ]3 £ IR with a =£ 0 and let r, s be fixed positive integers. Show that the
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Book 2: Matrices and vector spaces

set of functions of the form

a0 + axx + . . . + ar+

where each at G IR, is a real vector space of dimension r 4- s.
(Hint: Show that the functions

for i = 0 , . . . , r + s — 1 constitute a basis.)
Show also that if gt and fy are given by gt(x) = (x —a)~l and hj(x)

is also a basis.
(Hint: It suffices to show that B is linearly independent.)

4.22 Let V be a finite-dimensional vector space over a field F. Prove that K has
precisely one basis if and only if either (a) V = {0}, or (b) F has only two
elements and dim V - 1.

4.23 F° r each positive integer k let fk : IR -> IR be given by

/*(*) = exp JVC (rfcE IR).

Prove that {/i, . . . , / n } is linearly independent if and only if ru ...,rn are
distinct.
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5: Linear mappings

If V, W are vector spaces (over the same field) of dimensions m, n respectively
and if / : V-> W is a linear transformation (i.e. /GMap (V, W)) then the
matrix associated with/with respect to fixed ordered bases {vi9 ...,vm} of
V and {wl9..., wn} of W is the matrix A whose z'th column consists of the
coordinates of /(ty) relative to the basis (w,-). If / : F-»- W is represented by
the matrix i? relative to ordered bases (y/) and (w/) then 4̂ and B are related
by 2? = Q~lAP where P represents the identity map on V relative to the bases
(u/), (pi) and Q represents the identity map on W relative to the bases (w,),
(w/). When A, B are « x « matrices and (w() = (u/), (w/) = (u/) then 2 =P
gives 5 = P~lAP, in which case 5 is said to be similar to A.

Particular subspaces associated with a linear map / : F-> W are the kernel
Ker/ = {xGK|/(jc) = O} and the image I m / = {/(*) \x G K}. The dimen-
sion theorem states that

dim V= dim Im/4- dim Ker/.

The rank o f / i s defined to be dim Im/. This coincides with the rank of any
matrix that represents / . A linear map / : F-> W is an isomorphism if it is
both injective and surjective; equivalently, I m / = W and Ker /= {0}.

5.1 Determine which of the following mappings/: IR3 -> IR3 are linear:
(a) f(x,y,z) = (z,-y,x),

5.2 (a) If/: IR3 -> IR3 is linear and such that
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Book 2: Matrices and vector spaces

/(1,1,1) = (1,1,1), /(1,2, 3) = ( -1 , -2 , -3) ,

/(1,1,2) = (2, 2,4)

is it possible to find/(a, b, c) for all (a, b, c) G IR3?

(b) If / : IR3 -> IR3 is linear and such that

/ (1 ,1 ,1 ) - (1 ,1 ,1 ) , / (2 , 2, 3) = (3, 3, 5), / ( I , 1,2) = (2, 2, 4)

is it possible to find/(fl, b, c) for all (a, b, c) G IR3?

(c) Does there exist a linear mapping/: IR3 -• IR3 with the property that

/(0,1,1) = (3, 1,-2), / ( l , 0 , 1) = ( 4 , - 1 , 1),

/(1,1,0) = ( - 3 , 2,1), / ( 1 , 1,1) = (3, 4, 2)?

5.3 Let B be a fixed non-zero element of MatWXAJ(IR). Which of the following
mappings T : Matwxw(IR) ->- Matwx/J(IR) are linear?

(a) T(A)=AB-BA\
(b) T(A)=AB + BA\
(c) T(A)=AB2+BA;
(d) T(A) = AB2-BA2;
(e) T(A) = (A+ B)2 - (A 4- 2B)(A - 3B).

5.4 Find the matrices A and B associated with the linear mappings / : IR2 -> IR3

andg : IR3 -* IR2 with respect to the standard bases when/andg are given by

/(*,y) = (x + 2y, 2x -y, -x), g(x,y, z) = (7x -y, 2y-z).
Find the matrices C and D associated with these mappings / and g with
respect to the bases {(0,1), (1,1)} of IR2 and {(0, 0, 1), (0, 1, 1), (1, 1, l)}of
IR3.

5.5 Suppose that the mapping/ : IR3 -> IR3 is linear and such that

/ ( l ,0 ,0) = (2,3,-2), / ( l , l , 0 ) = (4,l,4), /(1,1,1) = (5,-1,7).

Find the matrix of/with respect to the standard basis of IR3.

5.6 Find the matrix that represents the linear mapping/: IR3 -> IR3 given by

f(a, b, c) = (2a + c, b -a + c, 3c)

with respect to the basis {(1,-1 , 0), (1,0, -1) , (1,0, 0)}.

5.7 In IR2 let M and N be distinct lines passing through the origin. Let
PM,N '- IR2 ""* IR2 be the map such that, for every (x,y) G IR2,PM,J\K*> JO *S

the point of intersection of M with the line through (x, y) parallel to N.
Determine PM,N(X> y) in terms of

(a) the gradients m, n of M, N if neither is the >>-axis;
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5: Linear mappings

(b) the gradient m of M if TV is the j>-axis;
(c) the gradient n of TV if M is the j>-axis.

Conclude that in all cases PM,N *S linear. Determine the corresponding matrix
relative to the standard basis of IR2 in each of the above cases. What is the
minimum polynomial ofpMfNl

5.8 If V9 W are vector spaces over a field F prove that a linear transformation
/ : V-+W is injective if and only if, whenever {vi...., vn} is a linearly inde-
pendent subset of V, {f(vi),.. -,/(yn)} is a linearly independent subset of W.

5.9 Givenx,y E IR3 define the wedge product of x,y by

x Ay = (xux2,x3) A 0>i,72,^3)

Define./y : IR3 -> IR3 by/^,(;c) = x Ay. Show that/^ is linear and prove that if
j> =£ 0 then Ker/^, is the subspace of IR3 generated by {y}.

(Hint: Without loss of generality, suppose that yx-=h 0. Consider separately

the

5.10 If/: IR ̂  IR is linear and # : IR2 -• IR2 is given by

Hx>y) = (x>y-f(x))>
prove that t̂  is an isomorphism.

5.11 Let V be a vector space of dimension n over a field F. If / : F-> Fis linear,
prove that the following are equivalent:

(a) Im/=Ker/ ;
(P) f° / = 0 , / ^ 0,« is even and rank/= \n.

5.12 A diagram of finite-dimensional vector spaces and linear transformations of
the form

Vx - ^ V2 -&» V3 -&+ • •. -**» Vn+j

is called an exact sequence if

(0) /i is injective;
(b) fn issurjective;
(c) ( /=1 , . . . ,A2-1) Im/, = Ker//+1.

Prove that, for such an exact sequence,

n+l
/
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Book 2: Matrices and vector spaces

5.13 Let V be a vector space of dimension n over a field F. A linear transformation
/ : V -• F is said to be nilpotent if/p = 0 for some positive integer p. The
smallest such integer p is called the index of nilpotency of/.

Suppose that / is nilpotent of index p. If x G F is such that / P " 1 (X) =£ 0
prove that

is linearly independent. Hence show that / i s nilpotent of index n if and only
if there is an ordered basis (&/)„ of F such that the matrix of /relative to
(aj)n is of the form

0
1

0

0

0

0

1

0

0

0

0

1

. . . 0

. . . 0

. . . 0

. . . 0

0

0

0

0

0 0 0 . . . 1 0
Deduce that an n x n matrix M over F is such that Af1 = 0 and Mn~1 =£ 0 if
and only if M is similar to a matrix of the above form.

5.14 Given # G IR prove that the following matrices over (D are similar:

Tcostf -s in#l re1* 0 1

Lsintf cos#J ' L 0 e-^i'

5.15 Which of the following mappings / : Z.I are linear?

(c)

5.16 Let / :Z? . be such that

Is/linear?

5.17 Let \R[X\ denote the vector space of polynomials over IR. Prove that the
differentiation map D : IR[X]-HR[X] is linear. Prove also that the map
T: \R[X]^\R[X] given by T(p(X)) = Xp(X) is linear. Describe the linear
mapsD + T, D o T and To D. Show that DoT-To D = /where / i s the
identity map. Deduce that (T o D)2 = T2 o D2 + T o D. Find a linear map

26



5: Linear mappings

S : IR[X]^ IRpf] such that D o 5 = /. Show that neither D nor S is an
isomorphism.

5.18 Let F be a field and define / : F 3 -> F 3 by

f(a9 b,c) = (a + b,a + c,b + c).

Find Im / and Ker / when
(a) F = IR;
(b)F=Z2.

What are the dimensions of Im/and Ker / i n each of these cases?

5.19 Consider the linear transformation/: IR3 -> IR3 given by

f(a,b9c) = (b,-a9c).
Find the matrix^ of/with respect to the basis

{(1,0,0), (0,1,0), (0,0,1)}

and the matrix B off with respect to the basis

{(1,1,0), (0,1,1), (1,0,1)}.

Determine a non-singular matrix X such that A = X~lBX.

5.20 Let V be a vector space over IR with basis {wl5 u2}. L e t / : F-> V be the
linear transformation such that

Find the matrix of/with respect to the basis {wi,w2}- Find also the matrix
of/with respect to the basis {wl9 w2} where

w1 = 3u1 — u2, w2 = Ux + u2.

5.21 For n>\ let IRW [X] be the vector space of real polynomials of degree less
than or equal to n — 1. Determine the matrix of the differentiation map D
with respect to the bases

(a) {l,X,X\...,Xn-1h

(c) {l9l+X9\+X2
9...9l+Xn'1}.

5.22 Prove that {1, i} is a basis for the real vector space (D. Show that / : (D -• (D
given by

f(x+yi) = x-yi
is linear and find the matrix of/relative to the basis {1, i}.

Show that/ is not linear when C is regarded as a vector space over C.
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5.23 Let V be a vector space of dimension 3 over a field F and let / : V -> V be
a linear transformation. Suppose that, relative to some basis of V, the matrix
of/is

3 - 1 1"

- 1 5 - 1 .

1 - 1 3_
Determine dim Im/and dim Ker/when

(a) F=IR;

5.24 Give an example of a vector space V and a non-zero non-identity linear
transformation/: V^Vsuch that

Im/nKer/^{0}.
Is it possible to have Im/=Ker/? What about Im/CKer/? What about
Ker/CIm/?

5.25 Let p be a prime and let V be a vector space of dimension 3 over the field
Zp. Suppose that / : V-+ V is a linear transformation such that, relative to
some basis of V, the matrix of /is

"2 2 l"

1 3 1 .

I 2 2

Prove that/is an isomorphism if and only if p ^ 5.
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6: Inner product spaces

Standard notation will be used for inner products, namely (x \y). If x,yG \Rn

the standard inner product is given by (x \ y) = 2f=1 *,•,)>/ where xi9yf are the
ith components of x, y. The length of a vector x is ||x|| = \/(x | x). Vectors
x, y are orthogonal if (x\y)=0. A set {*i, . . . ,*„} is orthonormal if
(Xf \Xj) = 5/y. The Gram-Schmidt orthonormalisation process produces an
orthonormal basis for the subspace spanned by a given linearly independent
set.

For a subspace W of an inner product space V the orthogonal complement
of W is the subspace

Wl={yEV\(\/xeW)<x\y) = O}.
For a given linear map / : V-> V it can be shown that there is a unique linear
map / * : V -> V such that

This is called the adjoint of/. We say that / is self-adjoint if/ = /* , and
normal i f / o / * = / * o / .

6.1 If Vis a real inner product space and x,y G V prove that

Deduce that if x,y G IR3 with {*, j } linearly independent, and if L is the line
through the origin and x, then the line through y perpendicular to L meets L
at the point ((x \ ^>/||x||2)x If # is the angle xOy prove that cos & = (x \ y)j
\\x\\\\y\\.

6.2 If V is a real inner product space and x,y GV prove that
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Interpret this result in IR2. If R/ is a complex inner product space and
x,y G W prove that

||JC + y\\2-i\\\x +y\\2= ||x||2+ ||j>||2-i(||x||2+ \\y\\2) + 2(x\y).

6.3 If V is an inner product space, establish the parallelogram identity

(Vx,y G V) \\x + j>||2 + ||x -y\\2 = 2||x||2 + 2||j>||2.

Interpret this result in IR2.

6.4 If V is a real inner product space and x,y G Vare such that ||x|| = ||.y || show
that {x+y\x—y)=0. Interpret this result in IR2.

6.5 Write down the Cauchy-Schwarz inequality (|<w | y>| < \\u\\ . \\v\\) when the
inner product space in question is

(a) (Ln under the standard inner product;
(b) the vector space of continuous functions / : [0, 1 ] ^ IR under

the inner product defined by

6.6 Let V denote the vector space Matwxn((D). For every A = [a(j] G V define the
conjugate transpose of A to be the matrix^* the (/,/)th element of which is
Off, and define the trace of A by tr(A) = 2f=1 aH.

Show that tr {A + B) = tr (A) + tr (B) and tr (AB) = tr (BA) for all
A, BG V, and that (A | B) = tr (AB*) defines an inner product on V. Interpret
the Cauchy-Schwarz inequality in this complex inner product space.

Show further that if Epq G Kis the matrix whose (/?, q)th element is 1 and
all other elements are 0 then

{Epq I P,q = 1 , . . . , H }

is an orthonormal basis of V.

6.7 Use the Gram-Schmidt orthonormalisation process to find an orthonormal
basis for the subspace of IR4 generated by

{(1 ,1 ,0 ,1 ) , (1 , -2 ,0 ,0 ) , ( l , 0 , -1 ,2 )} .

6.8 Consider the real inner product space of continuous functions/: [0,1] -* IR
under the inner product

=f1
Jo

(f\g>=ff(t)g(t)dt.
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Find an orthonormal basis for the subspace generated by

{t-*l9t-+t}.

6,9 Let V and W be subspaces of a finite-dimensional inner product space. Pro\e
that, if-1 denotes orthogonal complement,

(a) (vnwy-=vl+w1-,
(b) (V+W)L=V*-nWk

6.10 Let IR3[X] be the real vector space of polynomials of degree less than or
equal to 2. Show that the prescription

defines an inner product on IR3 [X]. UK denotes the subspace of constant
polynomials find the orthogonal complement AT1 of K in IR3 [X]. Write down
a basis for Kl and use the Gram-Schmidt orthonormalisation process to
compute an orthonormal basis for K^.

6.11 Let V be the complex inner product space Matwxw(C) (see Exercise 6.6). For
every MG V let fM : V^ V be given by fM(A)=MA. Prove that the adjoint
of fM is given by ffc = fM*.

6.12 Let V be the real inner product space of polynomials over IR with inner
product (p\q) = tip(X)q(X) dX. For every p G V let fp : V -* V be given
by (V<? G V) fp(q) = pq where (pq)(X) = p(X)q(X). Prove that fp is self-
adjoint.

6.13 If V is a finite-dimensional inner product space and / : V -* V is linear prove
that

Im/* = (Ker / ) 1 and Ker/* = ( Im/ ) 1 .

6.14 Let V be a complex inner product space. For a l lx , j G Klet/Xj>;: F-> Fbe
given by

Prove that fx^y is linear and that
(a)\\/x,y9zGV) fx,yofy9Z=\\y\\2fXfZ;
(b) the adjoint of/x>>, i s / j ,^ .

Hence show that if x =£ 0 andj> ^ 0 then
(c) fXty is normal o (3X G (D) x = Xy;
(J) /x>>; is self-adjoint o (3X G IR) x = Xy.

31



Solutions to Chapter 1

1.1 The respective products are

[3
1 7

; 2
3 1

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

>
*3

2

.2

1

5

3.

*4

0

_0

0

4

0

o"
0

4_

[30].

i . 2 T h e p r o d u c t is t h e l x l m a t r i x [t] w h e r e

t = x(ax + hy + g) +y(hx + by + / ) + gx + fy + c
= ax2 + 2/ixy + Z>j2 + 2^c + 2fy + c.

Denoting by 0 the l x l zero matrix, we can write each of the equations in

the form

x

= 0[x y 1]M

where

(a)M = (b)M =

- 0 0
a*

1
0 - 0

0 0 - 1
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Solutions to Chapter 1

(c)M =

0 \ 0 "

\ 0 0

0 0 - a 2

(d)M = 0

0 - 2 a

1 0

- 2 a 0 0

13 We have that AB = 0, A2 = A,B2 = -B and (A + B)2 = / 2 . But

A2+2AB + B2=\ 1.
LO 1J

Since {A + 5) 2 = / 2 we have (A + B)3 = (A + B)2(A + B)= A + B\ and since

A3 + 3A2B + 3AB2 + B3 = A3 + B3 =A +B.

1.4 A simple calculation shows that

A2 =

and A4 = 0, whence An = 0 for every n > 4. It follows that

0

0

0

0

0

0

0

0

a2

0

0

0

2a3

a2

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

a3

0

0

0

0 a

0 0

0 0

0 0

a

0

0

w
a

0

A simple calculation shows that

0

0

0
0

0

0

0
0

a2

0

0
0

a3

a2

0
0

, B3 =

0 0 0 a 3

0 0 0 0

0 0 0 0

0 0 0 0

and B4 = 0, whence Bn = 0 for every n > 4. Then

= A.
1 2

2\

1 3

37

0

0

0

0

a

0

0

0

a2

a

0

0

a3

a2

a

0
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\a b]
1.5 LetX= .Then

Yc dl

Thus X2 = 12 if and only if

c(a + d) = 0,

cZ?+J2= 1.

Suppose that b = 0: then these equations reduce to

c(a + O = 0,

from which we see that

either^ = d = l ,c = 0;

ora = d = —l,c = 0;
or a = 1, d = — 1, c arbitrary;

or a = — 1, d = 1, c arbitrary.

Suppose now that b ¥= 0: then we must have a + d = 0 whence we see that
d = —a and c = (1 —a2)/b.

Thus we see that the possibilities for X are

ri CM r- i on

[a 01
= . Then A — —I2 if and only if

Hence the complex diagonal solutions are
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Solutions to Chapter 1

Lo - J ' Lo iJ' Lo iJ' Lo - i J '
No real diagonal solutions exist since x2 + 1 = 0 has no real solutions.

If (x,y) lies on the curve y2 —x2 = 1 then we have

\ w
\_—y —x] l—y —X

so t h e r e are inf ini te ly m a n y real 2 x 2 so lu t ions .
If n o w A is a real 2 x 2 m a t r i x such t h a t A 2 — —I2 t h e n t h e 2k x 2k m a t r i x

A

is a solution of X2 = —I2k- Thus there are infinitely many 2k x 2fc real

solutions of X2 = —I^k' As there is no real l x l solution, the result does not

hold for all odd integers.

7.7 If X = is such that X2 = 0 then we have

r*2+.yz *>>+>>n_ro 01

Lxz + zt yz + t2J 10 OJ

Consider therefore the equations

yz + t2 = 0.

Suppose that y = 0. Then clearly x = t = 0 and

TO 01
X=\

Vz OJ
which is of the required form. Suppose now that y ^ 0. Then t — —x and
x2 + yz = 0 which gives

-L —JC
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Book 2: Matrices and vector spaces

Writing a = >Jy and b = x/\/y we see that X is again of the required form.
The result fails over IR since, for example,

r o 01 ro o i r o o i

L l 0 J L 1 O J L O OJ

and there is no b G IR such that — b2 = 1.

1.8 The condition is necessary since

[ xi \xu JCUI

\[u v] = \
y\ lyu yvi

lyl lyu yvj
and clearly xu *yv = yu • xv.

[a bl
X = \ i

Vc d\
Conversely, suppose that X = is such that ad = be. If a =£ 0 then

ic d\
define x = a, y = c, w = l , u = b/a and we have the required decomposition.

If now a = 0 then either b — 0 or c = 0. If b = 0 we have
1.0 0

L
and if c = 0 we have

ro z>i rz?i

' " •

7.9 (a) (i) We have

[[AB]C] = (AB-BA)C-C(AB-BA)

= ABC + CBA ~BAC - CAB;

[ [BC]A} = {BC- CB)A -A{BC- CB)

= BCA + y4C5 - C&4 - ^ 1 J 5 C ;

[[C4]5] = (CA -AC)B-B(CA -AC)

= CAB + BAC-ACB -BCA.

The result follows by adding these together.
(ii) [(A +B)C] = (A +B)C-C(A +B)=AC-CA +BC-CB =

[AC]+[BC].
(iii) Expand as in (i).

(b) Take, for example,

ro n ri oi
A=B = \ , C = \

Ll OJ L0 OJ
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Solutions to Chapter 1

We have that [[AB]C] = 0 and

0

1.10 (a) Involves straightforward matrix multiplication.
(b) It is readily seen that

XY-YX = Z, YZ-ZY = X, ZX-XZ=Y.

(c) Involves straightforward multiplication.

1.11 (a) If A = [aij]2X2 and 5 = [6//] 2x2 then it is readily seen that

so the sum of the diagonal elements is 0. (There is no point in calculating the
off-diagonal terms.)

(b) E is necessarily of the form

E =

whence we see that

I iM. 4 /S IM. /\ 1 ( / 1 1 f / 1 A f / 111/1/1

, 2 = (011+ 012021)^2.
011021 "011021 012021 + 011

(c) Let E = AB — BA. Then by (a) the sum of the diagonal elements of
E is zero; and by (b) there is a scalar X such that E2 — X/2. Consequently

(AB -BA)2C=QJ2)C=\C=CQJ2) = C(AB -BA)2.

1.12 AX=A and Bx = -B. Thus

(AB +BA)X= (AB)X + (BA)X =BXAX+ AXBX

= -BA -AB = -(AB + BA)

so that AB + BA is skew-symmetric; similarly AB —BA is symmetric. Next,
(A 2)x = (Ax)2 = A2 so A 2 is symmetric; similarly B2 is symmetric. Finally,

(ApBqAp)x = (Axf(Bx)q(AxY=Ap(-B)qAp

so ApBqAp is symmetric if q is even, and is skew-symmetric if q is odd.

1.13 Ax = (xry — yxx)x =yxx — xyx = —A so >4 is skew-symmetric. If x —
[xiX2--xn]

x and y— \yiy2'--yn]
t then xV = 2?=1 x ^ =.ytjf. If now

JC^ =yxy = [1] and A:V = y * = [k] then
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A2 = (xyx —yxx)(xyx — yxx)

— xyxxyx — yxxxyx — xyxyxx 4- yxxyxx

= kxyx —yyx — xxx 4- kyxx

and hence

A3 = (kxyx —yyx —xxx 4- kyxx)(xyx — yxx)

= kxyxxyx —yyxxyx — xxxxyx + kyxxxyx

— kxyxyxx 4- yyxyxx 4- xx xyxx — kyxxyxx

= k2xyx — kyyx — xyx 4- kyyx — kxxx 4- yxx 4- kxxx — k2yxx

= k2(xyx —yxx) —xyx +yxx

= (k2-l)A.

1.14 Since (AB)X = BXAX we have (Axf = {A2)x =AX. Also,

(A -AX)2 = A2-AAX -AXA + (Ax)2,

so (A -Ax)2 = 0 implies^ -AAX-AXA +.4* = 0. Multiplying on the left b>
AAX we obtain

AAXA-(AAX)2-AAXAXA +AAxAx = 0

which, since AXAX=AX, reduces to (AAX)2 = AAX.

1.15 Referring to Fig. SI .1, we have that

x' = r cos {a — #) = r cos a cos # + r sin a sin & = x cos # + y sin #

y' = r sin (a — #) = r sin a cos # — r cos a sin # =>> cos # — x sin #.

In matrix form, these equations become

cos # sin #1 m

—sin # cos #J L.yJ

Fig.Sl.l

\
\

\
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Solutions to Chapter 1

A rotation through # followed by a rotation through $ is clearly equivalent to
a rotation through & + ^. Consequently we have that

Rotating the hyperbola anti-clockwise through 45° is equivalent to rotat-
ing the axes clockwise through 45°. Thus we have

w e c a n multiply the aboveNOW Since R^f^R - TT/4 = -^TT/4 - TT/4 = ^ 0 = J

equation by ̂ f f /4 to obtain

so we have

1

V2
1

~V2

1

V2
1

V2

\ yj2 >J2 J

whence x2 — y2 = 1 becomes

V2X' + V2>'
i.e. 2x 'y' — 1. Thus the new equation of the hyperbola is xy = \.
(See Fig. SI.2.)

Fig.S1.2
y •
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1.16 Let the top sheet be the (x^-plane and the bottom sheet be the (x\y')~
plane. We have, where # is the anti-clockwise angle of rotation of the top sheet,

1 cos & —sir

xij L°J Ls i n# c o s #
so cos # = ^ and sin # = % (see Fig. SI .3).

Fig.S1.3

d,o)

The point (x ',y') above which the point (2, 3) lies is then given by

13 13

7.77 Clearly x1 = x andj>' = —y, so

]=[:-,][;]•
7.7# To obtain (xL,yL), rotate the axes through #, take the reflection in the new

x-axis, then rotate the axes through —#. The matrix in question is therefore
R_$MR# where M is the matrix of the previous exercise. A simple calcula-
tion shows that this product is

fcos2# s in2# l

[sin2# -cos2t9j

7.79 Rotate the axes through #, project onto the newx-axis, then rotate the axes
through — #. The required matrix is then

[cos & —sin #] T1 0] [" cos # sin # ]

sin # cos # J L 0 0 J L-sin d cos #J
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_ |"cos# 01 T cos# sin #1

Lsintf 0J l - s i n # cos#J

[ cos2 # sin # cos &~\

sin # cos # sin2 # J"
cos i7 sin t> cos

Lsin#cos# sin2#

1.20 The respective Hermite matrices are
1

0

0

0

1

0

i"
7
5

0

>

1

0

0

0

1

0

0

0

1_

>

"l

0

0

0

1

0

o"
3

0

1.21 A row-echelon form of the augmented matrix is

" 1 2 0 3 1

0 1 — 1 1 0

0 0 1 0 - 2

0 0 0 0 1

This can be obtained as follows (using the 'punning notation' p,- to mean
row /):

1

1

1

1

2

2

0

1

"1

0

0

0

1

0

0

0

0

3

1

1

2

1

- 2

0

2

1

0

0

3

3

1

2

0

- 1

1

3

0

- 1

1

0

1

0

3

1

3

1

0

0

1

0

0

0

3 1

1 0

- 2 2

0 - 1

1

0

- 2

- 5

2

0

- 2

- 1

-

P

- P 3

P4 +

0

3

1

1

P4-

2 +

3p

3

0

- 2

- 1

P4

—̂

2

2

1

0

0

0

1

- 1

2

0

"l

0

0

0

2

1

0

0

P2

P3

P4

2

1

0

0

0

- 1

1

0

- P l

- P l

- p l

0

- 1

- 1

3

3

1

0

0

3

1

0

0

1

0

- 2

1

1

0

2

*

p3+2p2

It is clear from this that the coefficient matrix is of rank 3 whereas the
augmented matrix is of rank 4. Consequently, the system has no solution.
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1.22 A row-echelon form of the augmented matrix is

1
0

0

0

1
- 2

0

0

0
0

1

0

1
- 6

- 1

0

4
- 1

1

X - 1

It is clear from this that the coefficient matrix and the augmented matrix
have the same rank (i.e. the system has a solution) only when X = 1. In this
case, since the rank is 3 and the number of unknowns is 4, we can assign
4 — 3 = 1 solution parameter. Taking this to be t, we have z = 1 + f,
—2y = 6t — l,x +y = 4 — t so that the general solution is

z = 1+ t,

1.23 We have, by the obvious row operations,

1.24

1.25

1

2

4

1

- 1

1

- 1

1

- 1

0

- 3

b

a

c

->
1

0

0

1

- 3

- 1

3

3

0

- 3

3

a

c

b

-2b

-4b

from which we see that the system has integer solutions if and only if
a — 2b = c — 4b and a —2b is divisible by 3; i.e. a + 2b = c and 3 divides
a + b.
A row-echelon form of the augmented matrix is

a

\{a-b)

+ 3a)-\(a-b) + \
A solution exists if and only if the rank of the coefficient matrix is the same
as the rank of the augmented matrix. This is so if and only if 0 = \{d 4- 3d) —

\(a-b) + \{c + a), i.e. if and only if 3a + 2b + 2c + d = 0. Sincea,b9c,d>0
this condition is not met, so the system has no solution.
We have

P3-P1

2

y

2

1

3

1 y

l

2

+ 1

-60
20

4

->

2

0

0

6

1

— T

0

4

1
—

7

7

-60
40 + 607

4 + 60
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Solutions to Chapter 1

If now 7 =£ 0 and 7 ^ 6 then we can reduce this matrix to Hermite form with
rank 3, in which case a unique solution exists.

Suppose now that 7 = 0. Then the reduced augmented matrix becomes

2 1 1 - 6 0

0 6 4 40

0 0 0 4 + 60

from which we see that the system has a solution if and only if 0 = 4 + 60,
i.e. if and only if 0 = —§. When this is so, the matrix becomes

2

0

0

1

6

0

1

4

0

4

- f
0

1

0

0

1
2
1

0

i
2

0

2

0

1

0

0

0
1

0

f

0 0
so the general solution is

where z is arbitrary.
Suppose now that 7 = 6 . Then the reduced augmented matrix becomes

2 1 1 - 6 0

0 0 - 2 400

0 0 6 4 + 60

1 1 1 - 6 0

0 0 - 2 400

0 0 0 4+1260

so a solution exists if and only if 0 = — ̂ . In this case the matrix becomes

-a2

0

0

1

0

0

1
1

0

1A
63
40
63

0

2

0

0

1

0

0

0
1

0
63

0
whence the general solution is

where y is arbitrary.

1.26 A row-echelon form of the augmented matrix is

"l - 1 0 - 1 - 5 a

0 3 - 1 - 2 11 0 - 2 a

0 0 5 - 5 - 2 5 3(7 -a) - 2 ( 0 - 2 a )

0 0 0 0 Op
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where p = 5 [3(6 - a) - 5(0 - 2a)] - 1 1 [3(7 - a) - 2(0 - 2a)]. A solution
exists, therefore, if and only if

0 = 156 - 15a - 25/3 4- 50a - 33? 4- 33a + 220 - 44a

= 2 4 a - 3 0 - 3 3 7 + 156

i.e. if and only if 8a - 0 - 1 1 7 + 56 = 0.
When a = 0 = —1,7 = 3 and 6 = 8 the augmented matrix reduces to the

Hermite form

1

0

0

0

0 0

1 0

0 1

0 0

- 2
- 1

- 1

0

and so the general solution

x —

y =
z =

where u,

2w + 3i

u-2t

w + 5r

t

+ 1,
+ 2,

t are arbitrary.

- 3

2

- 5

0

is

0
1

2

0
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consider

"3

1

1

1

2

1

2

1

1

1

0

0

0

1

0

0

0

1

[A\In] =

Reducing this to Hermite normal form, we obtain

3 1 2

1 2 1

1 1 1

1 0 0

0 1 0

0 0 1

"l

0

.1

"l

0

1

- 3

1

1

0

1

0

0

0

1

0

0

1

1

0

0

1

0

0

- 2

1

0

1

1

- 1

0

- 1

1 .
o

- 1

2

2.1 The respective
1

0

. - 1

For example,

A =

> inverses are
1 - 3

1 - 1

- 2 5 .

>

to obtain the

3 1 2

1 2 1

1 1 1

4

1

L — 1 1
inverse of

l

l

- 4

- 3

- 1

9 .

;

1

~~ 2

. 0

0

i
0

0
I

P2~~P3

P3 — P2
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1

0

0

0

1

0

0

0

1

1

0

- 1

1
1

- 2

- 3

- 1

5 P3-P1

2.2 Expanding by the first row, we have

det

2

2

0

1

*2

0

1

3

1

1

3

1

3_

- 2 det

1

1

1

3

1

1

3~

1

3

- 3 det

"l

1

1

2

0

1

3"

1

1

= 4JC + 8 - 6

= 4JC + 2

so the matrix is invertible for all x — \ .

23 Expanding by the first row, then by the first column of the resulting 5 x 5

matrix, then by the first row of the resulting 4 x 4 matrix, and so on, we see

that the determinant of the original matrix is —acefhm. Thus the matrix is

invertible if and only if 0, c, e,f,h,m are all non-zero. In this case we can

compute the inverse, using row operations in the usual way (i.e. proceeding

from AI / 6 to I6 | A'1). The answer is

0

1

a

0

g

ca

0

kg_

eca

1

0

0

0

0

0

0

0

0

1

c

0

k

ec

b

0

1

h

0

0

0

0

0

0

0

0

1

e

bd

fhm

0

d

hm

0

1

m

0

46



Solutions to Chapter 2

2A Simple computations show that

" -2 4 1

P~l = \ 1 - 2 4

. 4 1 - 2

9a 0 0

P'lAP = 0 9b 0
0 0 9c

It follows that det (P~lAP) = 36abc. Since

det {P~lAP) = det P'1 det A det P

= det^i(detP)"1detP

= detA9

we conclude that det^l = 36abc.

2.5 Subtracting the first column from each of the others, then removing factors,
and then repeating this process, we see that

1 0 0 0

det A = a x—a b—a c —a
2 v2_/ y2 h2_n2 />2_/y2

a a2 a2

a3 x3-a3 b3-a3 c3-a3

1

= (x-a)(b-a)(c-a) x + a

1

b+a

1

c + a
2 + ax + a2

= (x - a)(b - a)(c - a)(b - x)(c - x)

= (x— a)(x — b)(x — c)(a — c)(c — a)-

1 1

b+x+ a c+x+a

2.6 We have

X

a

a

a

a

X

a

a

a

a

X

a

a

a

a

X

x a a

a-x x-a 0

a—x 0 x—a

a 0 0

a

0

0

x—a
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x + 3a a a

0 x—a 0

0 0 x—a

a

0

0

x—a0 0 0
= (x + 3a)(x-a)3.

Thus the solutions of the given equation are x = —3a and x = a.

2.7 We have

det

X

y2

yz2

yzt2

a

y

z2

zt2

7

a

z

t2

7

7

a

t

= det

= (x-ay)

x — ay

0

0

0

det

'y —

0

0

a

y

z2

zt2

az

7

a

z

t2

a

z

t2

7

7

a

t

7

a

t

= (x — ay)(y — az)(z — at)t.

2.8 Subtracting the first row of Br from each of the other rows yields

b b b b b

a-b 0 0 . . . 0 0

-2b a -b 0 . . . 0 0

-2b -2b a-b . . . 0 0
det Br = det

-2b -2b -2b . . . a - b 0
Subtracting the last column from each of the other columns, then expanding
by the first row, we clearly obtain

det£r =(-l)r+1b(a-by-1.

Adding the last column of Ar to the first column, we obtain

'a + b b b . . . b b

0 a b . . . b b

0 -b a ... b b

0 -b -b ... b b

a-b -b -b -b a
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Now we expand by the first column to obtain
det Ar = (a + b) det Ar_t + (-l)r+1(a - b) det Br_x

= (a + b) det Ar_x + (-l)r+1(a - b){-\)rb(a - bf'2

= (a + b)detAr_t —b(a — b)r~l.
For the last part, we use induction. Clearly, we have det A x = a = \ [(a + b)1 +
(a — b)1]. Suppose then that the result holds for all r < n. Then

det An = (a + b)\[(a + bf'1 + (a- b)n~x] - b(a - bj1'1

= \[{a + b)n ~(a + b)n~\a + b- 2b)]

2.9 Expanding by the first row of An+2 we have

1 1

0 2 cos &

= 2 cos & An+1 - det

0 0
Expanding by the first column, we obtain clearly

0 1

0

1

2 cos i

0

0

0

2 cos i

so that
An+2 - 2 cos ^ An+1 + An = 0.

For the last part, we use induction. The result holds for n = 1 since At

2 cos & = sin 2#/sin #. For n = 2we have A2 = 4 cos2 # — 1 = sin 3#/sin
Suppose then that the result holds for all n < k with k > 2. Then

sin # Afc = 2 cos # sin /:# — sin (k — 1)#

= 2 cos # sin A;# - sin (A;# — #)

= 2 cos # sin k& — cos # sin k& + cos fc# sin #

= cos î  sin k& + cos A:t̂  sin #

= sin (ifc + l)d,

from which the result follows.

2.10 We have that

b2

bn_l

b2

bn-l

bn

£„_! bn_x
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Subtracting the last column of An from each of the others and then expanding
by the first row, we obtain

n-X
det^4n = bn Y\ ty.

1=1

As for Bn, we have

{ + bi

b2

bn bn . . . an + b

Expanding by the last column we see that

det Bn = det An + an det Bn_x.

For the last part, we use induction. The result clearly holds for n = 1 since
detBx = ai + blt Suppose then that the result holds for all k<n. Then we
have

det Bn = bn n ? ^ 1 at } ^ a, j t i 1 {bt

2.11 Suppose that det A = 0. Then there exist tu...,tn with Zf=1 aHti = 0. Now

let 1^1 = max; UJ.Then

But then

\akk\\tk\= I \aki\\ti\< I \aki\\tk\

from which it follows that we cannot have lajckl^^i^k \aki\* Thus, if A is
dominated by its diagonal elements then we must have det A -=h 0.

212 We have that

A B A B A+B B

B A B-A A-B " 0 A-B

I , 1XA+* °
0 A-B\l 0 I
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/ B II A +B 0
0 A-B\\ 0 /

= \A -B\ \A +B\.

2.13 Clearly,

\A o l f p Q\ \ AP AQ 1

IB C\[R S\~ [BP + CR BQ + CS\
and this is of the given form if and only if

A P~l DIP 4 - /~*I? n H/^i 4 - /^C C J ? P ~ 1 ft
•fx — JT , JDMT î  ^ A — w« x ) ^ / T^ L̂ O — <3 JTVI ^ / .

Since £ = -CRP'1 we have C^ -RP~lQ) = S -RP~lQ, so we can choose
C = / and then £ = -RP~\ Now it is clear that

\N\\M\ =
/ P~lQ

0 S-RP~lQ

I 0
0 S-RP~lQ

= |5-/?P-1G|,

\M\ = \P\ \S-RP~lQ\ = [PS-
If now PR =RP then PRP~l=R and so \M\ = \PS-RQ\. Likewise, we also
have

\M\ = \S-RP'1Q\ \P\= \SP-RP-lQP\

so ifPQ = G^then \M\ = \SP-RQ\.
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3.1 Expanding along the first row, we have
1-X - 4 o

det 2 - 2 - X - 2
..-2.5 1 - 2 - X .
= (1 - A)[(2 + X)2+ 2] + 4 ( - 4 - 2 X - 5 )
= (1 - X)(X2 4- 4X + 6) - 36 - 8X
= X2 + 4X + 6 - X3 - 4X2 - 6X - 36 - 8X
= -X 3 -3X 2 -10X-30 ,

so the characteristic polynomial is

XA(X) = X* + 3X2+ 10X+ 30 = (X+ 3)(Z2 + 10).
Since ^4+3 /^0 and ^42+ 10/^0, this is also the minimum polynomial
mA(X).

The other matrices are treated in a similar way. The answers are

3.2 Let P = In —AB and Q=In—BA. Then we have
QBP-'A = (In -BA)B(In -ABy'A

= (B-BAB)(In -ABylA
= B(In-AB)(In-ABy1A
= BA

whence we see that

and hence that Q'1 exists and is/w + BP~1A.
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Suppose that X is not an eigenvalue of AB. Then X/w —AB is invertible.
If X^O then In — (l/\/X)A.(ll\/\)B is invertible, whence so also is
Ai~~(l/\A)A(1/>A)^> whence so also is X/w—iL4, so that X is not an
eigenvalue of BA. If X = 0 then AB is invertible, whence so is BA and so X is
not an eigenvalue of BA in this case also. We conclude that if X is an eigen-
value of AB then it is an eigenvalue of BA, whence the result follows.

If A =PQ and B — QP then, using a simple inductive argument, we have that,
for all positive integers i,

Ai+1 = (PQ)i+1 = PiQPJQ = PB*Q.

If now h(X) = zo + zxX+ -- + znXn then we have

Ah(A) = z0A+z1A
2+.-- + znAn+1

= z0PQ + ZlPBQ+--znPBnQ

= Ph(B)Q.

It follows immediately that AmB(A)=PmB(B)Q = 0. Similarly we have
that BmA(B) = 0. Consequently we have

mA (X) | XmB(X) and mB(X) | XmA (X)

and so can write XmB(X)—p{X)mA{X) and XmA(X) = q(X)mB(X).
Comparing the degrees of each of these equations, we deduce that deg p +
degq = 2. Thus, either deg/? = 0, in which case p(X) = 1 and XmB(X) =
mA(X)9 or deg# = 0, in which case q(X) = \ and XmA(X) = mB(X), or
deg p = deg q = 1, in which case mA (X) = mB(X).

We can write

A =

1 1

2 2

1

[1 1]=PQ

r r ... r\ \r
where P is the column matrix and Q is the row matrix. Note that then
B = QP is the l x l matrix whose entry is \r(r + 1). Clearly, we have

Clearly, mA(X)^mB(X) and mB(X)¥=XmA(X). Thus we must have
mA (X) = XmB(X) = -\X + X2.

3.4 We prove that |[/41//| <krnr~1 by induction. The result clearly holds for

53



Book 2: Matrices and vector spaces

r=\. Suppose that it holds for r. Then we have

= kr+1nr.

(a) If |jS|<l/rtfcthen

1 + 101 \[A](j\ + W2\ \[A2]if\ + . . . + \er\ \[A%\ + • • •

< 1 + k\p\ + k2n\p\2 + . • • + krnr-l\$\r + • • •

= 1 + A:|j3|(l + kn\$\ + • • • + kr~1nr~1\f}\r~1 + • • •)

which, if |j3| < l/nk, is less than or equal to a geometric series which con-
verges. Thus we see that if |j3| < l/nk then Sp(A) is absolutely convergent,
hence convergent.

(b) If SQ(A) is convergent then lim^00 0^4* = 0 so

Consequently /„ — |3L4 has an inverse which is the sum of the series.
For the last part, let X be an eigenvalue of A. Then X/n —A is not inver-

tible. Suppose, by way of obtaining a contradiction, that |X| > nk. Then
1/|X| < l/nk. Consequently, if we let 0 = 1/X we have, by (a), that SP(A)
converges and so, by (b), In — (3A =In — (l/X)A is invertible. It follows that
)Jn —A is invertible, a contradiction. Hence we must have |X| < nk.

3.5 We have

det

X + 2
1

- 5

3

X

- 5 X

3
1

- 6

= (X + 2)(X2- 6X + 5) - 3(X - 6 + 5) + 3( - 5 + 5X)

= (X + 2)(X - 5)(X - 1 ) - 3(X - 1 ) + 15(X - 1 )

= (X-l)[(X + 2)(X-5)+12]

= (X-l)(X2-3X + 2)

= (X- l ) 2 (X-2)
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and so the characteristic polynomial is (X — l ) 2 ( X - 2 ) . The eigenvalues are
1, 2 and the corresponding general eigenvectors are respectively

X

y
—x -

(X ^ O o r . y and y

The characteristic polynomial of the first matrix is X(X — l)(X — 2) so the
eigenvalues are 0, 1,2. The corresponding general eigenvectors are respectively

a

0

—a
The characteristic polynomial of the second matrix is X(X — l)(X + 1) so

the eigenvalues are 0, 1 , - 1 . The corresponding general eigenvectors are
respectively

—a

-b

-2b

b

2c

—c

c

3.7 The eigenvalues of the first matrix are 1, 2, 3. The corresponding general
eigenvectors are respectively

3z

z

z

(z#0);

Z

2z

z

(s*0);

2z

z

z

A matrix T such that T 1 AT is diagonal is then, for example,

"3 1 2

1 2 1

1 1 1

The eigenvalues of the second matrix are —1,2, 1. General corresponding
eigenvectors are respectively

z
0

—z

(z^O);
z
z

- 2 z

- 3 z
—z

5z

A matrix T such that T *AT is diagonal is then, for example,
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2

-a

det

1 1 - 3

0 1 - 1

- 1 - 2 5

3.8 The first part is straightforward. The inverse of P is

\

and a simple computation gives

0

. 0 e~K

3.9 We have that

i-X b

c d —

and so the eigenvalues of A are

X = \{(a + d) ± yj[(a + df - 4(ad - be)]}

= HO* + d) ± \/[{a - df 4- 4bc]}.

(a) Since b, c > 0 and (a — df > 0 it follows that the eigenvalues are real
and distinct.

(b) a + d>0 and \/[(a — df + 4bc] > 0 and therefore

\{(a + d) + \/[(a - df + 4bc]}> 0.

(c) Since b, c > 0 and (a — df + 4bc >{a— df we have that

t = \{{a - d) - yj[(a - d2 + 4bc]} < 0.

Note that t — a — [x where \x is the largest eigenvalue of A. Now for every

eigenvector that corresponds to /x we have (a — n) x 4- by = 0. Since

t = a — fjt<0 and 6 > 0 there are infinitely many such x, y with x, j ; > 0.

5.i0 The characteristic polynomial of the first matrix is readily seen to be
X(X2 — 2). The eigenvalues are therefore 0, \ /2, ~\/2. Corresponding to the

-z

eigenvalue 0 the general eigenvector is

normalised eigenvector

0 with z ̂  0, so we can take the
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1

0

LV2 J
Similarly, corresponding to the eigenvalues \Jl, —\J2 we can compute the
normalised eigenvectors

1
2

1

2 .

and

l
2

l

2 .

A suitable orthogonal matrix is then

P =

As for the second matrix, the characteristic polynomial is (X — l)(X — 2)-
(X — 4) so the eigenvalues are 1,2,4. Corresponding to the eigenvalue 1

1
2

1

N/2

1
2

1
N/2

0

l

l.
2

1

N/2

1
2

a general eigenvector is

0

with z ^ 0, so we can take the normalised eigen-

vector

Similarly, corresponding to the eigenvalues 2,4 we can compute the normalised
eigenvectors
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" 1 "

V2
1

V2
_ 0

and

1 "

~V2
1

V2
0

A suitable orthogonal matrix is then

1 1 '

° ^ -72
P = 1 1

0 vi Ti
1 0 0

3.11 We have that

[a-X P I
det = X 2 - a X - 0

L 1 —xJ
so Xjf = aXi + P and Xl = aX2 + ]3. Now

i o J L i i

L i I J L O x2J LXj x2J

and consequently we have that AP = PD. Since det P = Xt — X2 =£ 0 we have
that P is invertible and so it follows that P~lAP = D.

It is immediate from this that A =PDP~1. Suppose, by way of induction,
that Ar = PDrp-\ Then

= PDP-lPDrP~1

P£

The given system of recurrence relations can be written in the matrix form

UH+t=AUn.

A simple inductive argument shows that Un=An~lUi for every positive
integer n. We can therefore compute Un using An~1. But from the above we
see that
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i r x i X a i r x r 1 o i r i - x 2 i
Xi-x2Li i JL o xrxJ l-i x j

1 I Aj A2 ^1^-2 A 2Aj I

Xi X2LXi X2 X1X2 X2Xj J

ince I = An\ and V\ = u0 it follows that

Xi X2 X

5.12 Expanding by the first row we have

"5 - 4

n = An_t + 4 det

0 1

0 0

0 0

. . . 0 0

. . . 0 0

. . . 1 - 4

. . . 5 1

It follows that

r
L i 0

W _ 2

Consequently,

The characteristic polynomial of A is (X — 5)(X+ 4) = 0 so the eigenvalues
are —4,5. Corresponding to the eigenvalue —4 the general eigenvector is

where j> =̂= 0; corresponding to the eigenvalue 5 the general eigenvector
L-yJ

where j> ^ 0. Thus if
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"V 51
L-l 1J r - 4 01

have that P~lAP = . Using the fact that

i 5
we

we can compute

An~2=P

= 9

Using the fact that

we deduce from the equation rn = An 2r2 that

An = \ [25.571"1 + ( - 4 ) n - 1 ( - 2 1 + 5)]

3.13 The characteristic polynomial of A is X(X —1)(X —4). The eigenvalues are
0,1,4 and the corresponding eigenvectors are respectively

—a
a

—a

Thus the matrix

P =

is such that

"-1

1

- 1

-2

1

1

-2b
b

b

l"

1

1.

and

P~1AP =

"0

0

.0

0

1

0

0"

0

4.

Now
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0 3 - 3

- 2 0 2

2 3 1

from which we compute

4 + 2.4"

and An=P
0 0

0 1
0 0 4"

n-
— •

3.14 The coefficient matrix A

xn

3.4" - 4 + 4"

- 2 + 2.4" 3.4" 2 + 4"

- 2 + 2.4" 3.4" 2 + 4"

6\2 6 1
ix>l = has eigenvalues —7, 6. Clearly we have

0

Computing An~x using the technique described in the previous question,
we obtain

'. 15 Diagonalising A in the usual way, we have P lAP = D where

1 1 0'

1 - 1 1

.0 0 1

P =

.0 0

Now the matrix

- 1

0

1

and D =

4

0

0

0

9

0

0

0

4

'2

0

0

0

3

0

0"

0

2_

has the property that D2 — D and consequently the matrix B = PDP l has
the property that B2 = A. A simple computation shows that

5 _ J
2 :

0 0 2
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4.1 Givenx = ( JCI , . . . , xn) £ IRn, the equation

x = Xiai 4 X2fl2 + • • • + \nan

is equivalent to the system

*i = 1̂̂ 11 + ^2#2i + • • • + \nanl

x2 = Xidn 4 X2a22 + . . . 4-

4 . . . 4 \nan

i.e. to the system

where A = [tf|/]wx«. This matrix equation has a unique solution if and only if
A* is invertible (i.e. has full rank «), and this is so if and only if A is invertible.

4.2 Use the result of the previous exercise.
(a) {(1,1,1), (1,2,3), (2, - 1 , 1)} is a basis since

,4 =

shows that A has Hermite form/3, so is invertible.
(b) {(1,1, 2), (1, 2, 5), (5, 3,4)} is not a basis since

1

1

2

1

2

- 1

1"

3

1_

1

0

0

1

1

- 3

1 "

2

- 1

->
"1

0

0

1

1

0

r
2

5
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1

1

5

1

2

3

2

5

4

1

0

0

1

1

- 2

2 "

3

6

"l

0

0

1

1

0

2

3

0

Solutions to Chapter 4

A =

shows that the Hermite form of A is not /3 , so A is not invertible.

4.3 The matrix

" 1 1 0 0

- 1 - 1 1 2

1 - 1 1 3

0 1 - 1 - 3

has Hermite form /4 , so is invertible, so the given set constitutes a basis of

A =

IR4. We now have to find a, 0,7,5 such that

a.

P
7

5

a

b

c

Working in the usual way with the augmented matrix, we have

1 - 1 1 0 a

0 0 - 2 1 b-a

0 1 1 - 1 c

.0 2 3 - 3 d

' 1 - 1 1 0 a

0 1 1 - 1 c

0 0 0 -1 b-a + 2d-4c

0 0 1 -1 d-2c

whence we see that a = b + c, p = 3c — d, y = —b +a—d + 2c,b= —b +

a - 2d + 4c.

4.4 The set
{(1,-1,1,-1), (1,1,-1,1), (1,0,0,0), (0,1,0,0), (0,0,1,0),
(0,0,0,1)}

spans IR4. To find a basis, we reject any vectors that are linear combinations
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of their predecessors in this list. Now

(1,0, 0,0) = 0 (1 , -1 ,1 , -1 )+ 6(1,1,-1,1)

gives a = 6 — \ so we can reject (1,0,0,0). Next

(0,1,0,0) = a ( l , - l , l , - l ) + 6(1,1,-1,1)

gives 0 + 6 = 0, a — 6 = 0, — a + b = 1 which are inconsistent; so we retain
(0,1, 0,0). Next

(0,0, 1,0) = *(1 , -1 ,1 , -1) +6(1, l , - l , l ) + c(0,1,0,0)
gives 0 + 6 = 0, — 0 + 6 + c = 0, 0 — 6 = 1, —0 + 6 = 0 which are inconsis-
tend; so we retain (0,0,1,0). Since IR4 has dimension 4, the linearly indepen-
dent set

{(1,-1,1,-1), (1,1,-1,1) , (0,1,0,0), (0,0,1,0)}

is then a basis.

4.5 (a) False. Clearly, (0,1) belongs to {(x,y) G IR2 |x x <x2} but (-l)(0,1)
does not.

(6) False. Take b = —«i or a2~au etc.
(c) False. Consider, for example, {(1, 1), (2, 2), (3, 3), (4,4)} in IR2.
(d) True. Every spanning set contains a basis.
(e) False. The subspace {(x, x, x)\xG IR} has dimension 1 with basis

{(1,1,1)}.
(/) True. We have 0(1, 2,1) + 6(2, 2,1) = (0 + 26,20 + 26,0 + 6) so we

can take 0 + 6 = y, 6 = x.
(g) True. Proceed as in (/) but this time take 0 + 26 = 2x, 0 = 2y.
(h) True. We can extend a basis for P to a basis for Q.
(1) False. For example, take P = {(x, x, x) \ x G IR} and Q = {(x, y,0)\

x9ye IR}. We have dimP= 1, dim Q = 2 b u t P S G-
(/) True. If (7 is an ^-dimensional subspace of IRn with U^ IRn then

there exists x G IR" with x$U. Add JC to a basis of U to obtain a subset of
IR" containing n + 1 linearly independent vectors, a contradiction. Hence
£/=IR".

4.6 (0) Yes. Clearly Ui=0 since 0EU, and £/ is closed under addition and
multiplication by scalars.

(6) No. For example, (1 ,0 ,0,0) G U and (0,1,0,0) G U but their sum
does not belong to U.

(c) Yes. If 02 + 62 = 0 then 0 = 6 = 0 so that
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(d) No. For example, (1,0,0,0) G U and (0 ,1 , 0,0) G U but their sum
does not belong to U.

(e) Yes. It is readily seen that U is non-empty and is closed under addition
and multiplication by scalars.

(/) Yes. Same as (e).

4,7 The standard criteria are

(1)

(2)

All of (a), (b), (c), (d) are correct, for the following reasons:
(a) Clearly, (1) and (2) imply (a). Conversely, assume (a). Take a = b = 0

to get 0 E U. Then (1) follows on taking a — b — \, while (2) follows on
takings = 0.

(b) Clearly, (1) and (2) imply (b). Conversely, assume (b). Take x=y and
a = — 1 to get 0 G {/; then a = 1 gives (1) and y — 0 gives (2).

(c) Clearly, (1) and (2) imply (c). Conversely, assume (c). Take a — 0 to
get 0GU; then a = 1 gives (1) and y = 0 gives (2).

(d) Clearly, (1) and (2) imply (d). Conversely, assume (d). Take a = 0 to
get 0GU. Now for every yEUv/e have —yGU (take x = 09a = l). Con-
sequently ox + ay G £/ and the result follows from (c).

4 £ If Sf=1 0f = 1 then we have

so that v — U i , . . . , v — vk are linearly dependent.

Conversely, suppose that 2f=1 a ^ l . Then from

k / k \ / k/ \ ( \

we see that v belongs to the subspace spanned by {v — vl9 ...,v — v^},

whence so do vu.. .,vk. It follows that the subspace (v — Vi,.. ,,v — vk) has

dimension k and hence that v — vl9..., v — v^ are linearly independent.

4.9 Choose a basis { u i , . . . , v^} of X n F . Extend this to a basis

of X, and extend it also to a basis

{vl9...,vd9vd+i9...,v'9}

of y; Then each of vd+l,..., v9 ^ X (otherwise they are in X n r ) , so
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{i>i, . . . , vd9 vd+l9..., vs, vd+u . . . , v9}

is linearly independent, and therefore contains at most 10 elements. For this,
we must have d> 7.

To see that this lower bound of 7 is attainable, consider V= IR10 and take
for X the subspace of those 10-tuples whose first and third components are
0, and for Ythe subspace of those 10-tuples whose second components are 0.

4.10 We can have any first row other than a zero row, so there are 2" — 1 possible
first rows. We can have any second row except zero and the first row, so there
are 2n — 2 possible second rows. In general, there are 2n — 2l~x possible /th
rows which are independent of the preceding rows. Hence there are

(2n -1 ) (2" - 2)(2n - 22) • •. (2n - 2n~l)

non-singular nxn matrices whose entries are 0 or 1. This product can be
written in the form

which is the required form.

4.11 (a) If A i , . . . , A k are linearly independent then

Xi^4i+ ••• + Xfci4fr = 0 => X i = ••• = Xfc = 0.

Suppose that

\lXAlY+--.\kXAkY=0.

Multiplying by X'1 on the left and by Y~l on the right, we obtain \\AX +
• • • + XkAjc — 0 whence Xt = • • • = Xfc = 0 and so XA XY,..., XAkY are
linearly independent. The converse is similar.

(b) If \1A1+ ->- + \kAk = 0 then X1^i j5+. . - + X ^ j t 5 = 0 whence
\1 = . . . = \k = o. To show that the converse is false, take B = 0.

4.12 (a) The following matrices constitute a basis:

ri oi ri n ro oi ro 01
Lo oY Lo oJ' l i iJ ' Lo iJ-

(b) The following matrices constitute a basis:

n 01 ri ii ri oi n n
Lo iJ' Lo iJ' Li iJ' Li oJ-

(c) The following matrices constitute a basis:

n oi r i n r l oi [ i - i ]
Lo iJ ' lo iJ ' Li iJ ' Li oJ '
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Suppose that {Ai9A2,A3,A4} is a basis with A (A j = AjAf for all /,/. Then
there exist Xx, X2, X3, X4 E Q such that

11J = X1yl1 + \2A2+

and Mi, ju2, ju3, JU4 E (Q s u ch that

[1 01

But we have that (2 X/^XS M^4/) = (2 /i/^/X^ X/̂ 4,-) which contradicts the
fact that

i n r i 01 ri o i r i n

o iJL i H 1 L J-
The same argument shows that it is impossible to find such a basis for any
n > 2. Hence n = 1 is the only possible value.

4.13 It is clear that (aua2)C(bu b2>. Suppose first that det \ i=0. Then
L01 02 J

A = I x * I is invertible and we can rewrite

in the form

whence (bl,b2)C(a1,a2) and we have equality.
Conversely, suppose that {au a2) = {bu b2 >. Then bub2^ <«i, ^2) gives

b\ = Xifli + X2fl2, b2 = iXidi + ^2^2 s o that

Since 61, Z?2 are linearly independent, this yields

rXi X 2 i ra 1 ^ 1 7

Ui M2JU1 fo J

01
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4.14

4.15

4.16

The equation

x(2,2,l,3)+;K7,5,5,

= (6 + X, 1 + X, -1 + X, 2 + X)

is equivalent to

2

1

2

1

X

y
z

t

"6 + X*

1+X

- 1 + X

2 + X

and, by the usual reduction process, we have

5

3

5

10

- 1 + X 1 5 2 2 - 1 + X

- 8 + X 0 1 0 1 -13+ X

- 3 + X ~* 0 0 2 - 2 62-4X

- 5 + 2X 0 0 5 - 5 125 -8X_

1 5 2 2 - 1 + X ]

0 1 0 1 -13+ X

0 0 1 - 1 31-2X

0 0 0 0 60-4X

Thus we see that x € U if and only if X = 15. For this value of X we have the

(non-unique) linear combination

x = {t + 2X2, 2,1, 3) + (2 - 0(7, 5,5, 5) + (1 + 0(3 ,2 ,2 ,1)

+ «2,1,2,1).

By the above reduction, we see that

{(2,2, 1,3), (7, 5, 5,5), (3,2,2,1)}

is a basis for U.

If X ¥= 15 then x £ U and so, taking X = 0, we have that

{(2, 2, 1, 3), (7, 5, 5, 5), (3, 2,2,1), (6 ,1, -1 ,2)}

is a basis for IR4.
It suffices to show that V is a subspace of the (D-vector space Q. That this is
so follows immediately from the fact that V is closed under addition and
multiplication by scalars.

(a) Wi is not a subspace. For, if / is defined by f(x) = \ for every x G IR
then/G W. But \/2f& W since \/2f(\) = l/ \ /2 £ (Q.
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(b) W2 is a subspace. For if a, 0 G IR and/, g G R/2 then

sothata/+/&GR/2.
(c) W3 is a subspace. For if a, 0 G IR and / , # G W3 then

(d) W4 is not a subspace. For if f(x) = x2 for every xG IR then/G M/4
since Df(\) = 1. But 2 / ^ «/4 since 2D/(i) = 2.

4.17 Al9A29A32Lie linearly dependent since

(1,2,0)+ (2,1,0) = (0,0,0),

(1, 0, 1) + 2(1, 0, 0) + 2(0,0,1) = (0,0,0),

(1,2,0)+ (1,1,1)+ 2(2,0,1) = (0,0,0).

A4 is linearly independent since, in Z3,

1 0 1"

det 1 1 0 =1 + 1 = 2 * 0 .

0 1 1

4.18 In order to show that the given set is a basis for (D3 it suffices to show that the
matrix

"* 3 - i 2 1 - i

2 + 2i 2 + 4i - 2 i

. 4 3 - 1

is invertible. Now for a, ft y G C we have

(a, ft 7) = X(3 - i, 2 + 2i, 4) + ju(2, 2 + 4i, 3) + v{\ - i, - 2 i , -1 ) .

Solving the resulting equations for X, JU, v we obtain

1

12 + 121

- 2 + 2i 5 — 3i - 6 - 6i

2 - 6i - 7 + 5i 6 + 6i

—2 — lOi - l + 3i 6 + 6i

This shows that the matrix is invertible. Moreover, putting a = l , j3 = 0,
7 = 0 gives (1,0,0) in terms of the basis; and similarly for the others.

4.19 *ZL\ has eight elements since each is of the form (a,b,c) and there are two
choices for each ofa,b, c.

69



Book 2: Matrices and vector spaces

Every basis of Z | has three elements. Now any of the seven non-zero
elements gives a linearly independent singleton set. There are six elements
that are not multiples of this first choice; then four elements that are not
linear combinations of these first two. It would appear, then, that there are
7 x 6 x 4 possible bases. But the order in which we choose the basis elements
is irrelevant, so we have counted each basis 3! times. Hence the number of
bases is (7 x 6 x 4)/6 = 28.

A ={xl + x2,x2 + x3,x3 + x1} is linearly independent and therefore is
a basis for V. Likewise, B = {x1,x1 + x2,xl + x2 + x3} is linearly indepen-
dent and therefore is a basis.

If V is replaced by Z 2 then the first of these statements is no longer true.
For example,

{(1,0,0), (0,1,0), (0,0,1)}

is a basis for Z 2 but

{(1,1,0), (0,1,1), (1,0,1)}

is not a basis since in this vector space we have

(1 ,1 ,0 )+ (0 ,1 ,1 )+ (1,0,1) = (0,0,0).
The second statement is true, however, since

= (a + b + c)xl + (b + c)x2 + cx3

if and only if a + b + c = 0, b + c = 0, c = 0 which is the case if and only if

a = b=c = 0.

4.20 It is readily verified that En is closed under addition and multiplication by
scalars, whence it is a subspace of the vector space Map(IR, IR).

Suppose now that / i s the zero map in Ex. Then we have
(VJCG IR) flo + tfi cos* + bx sin* = 0.

Taking x = 0 we obtain ao + ax = 0, and taking x = TT/2 we obtain
ao+ bi = 0. Thus we have a1 = b1 = —ao. Taking x = TT/4 we obtain
#o+ (l/y/2)ai + (l/\/2)b1 = 0 whence ao = al = b1 = 0. Suppose now, by
way of induction, that the zero map of En_l (with n > 2) has all its coeffi-
cients zero and let / b e the zero map of En. It is easily verified that D 2 / + « 2 /
is given by the prescription

n-\
(D2f+n2f)(x) = n2a0+ £ (n2-k2)(ak coskx + bk sin kx)

k=l

70



Solutions to Chapter 4

and since / i s the zero map of En we see that D 2 / + n2f is the zero map of
En_x. By the inductive hypothesis we therefore have

a o , a l 9 . . . , a n _ l i b l 9 . . . , Z ? W _ X

all zero and the formula for/reduces to

(Wx E IR) 0 = f(x) = an cos nx 4- &„ sin nx.

Taking x = 0 we obtain #„ = 0; and taking x = ir/ln we obtain bn = 0.
Thus all the coefficients of/are zero and the result follows by induction.

It is clear that the 2n + 1 functions generate En. Moreover, by what we
have just proved, the only linear combination of these 2n + 1 functions
which is zero is the trivial linear combination. Hence these functions con-
stitute a basis for En.

4.21 It is clear that the sum of two functions of the given form is also of that
form; and that any scalar multiple of a function of that form is also of that
form. The given set, E say, of such functions is therefore a subspace of the
real vector space Map(IR \ {a, j3}, IR). That E is of dimension r 4- s is immedi-
ate from the observation that every fGE can be written uniquely in the form
/ = <*ofo + • • • + ar+s-ifr+s-i where, for / = 0 , . . . , r + s -1,

//(*) =

so that /o,...,//•+$-1 is a basis for E.
As for the second part, let B = {gx,...,gr, h x , . . . , hs}. Then B is linearly

independent. In fact, suppose that, for every x E IR \ {a, ]3},

X-OL (x-a)r x-p (x-
Multiplying both sides by (x — af{x — P)s we obtain

Taking the term Xr(x — jS/ over to the right hand side, what remains on the
left is divisible by x — a and, since a =£ 0, we deduce that \r = 0; similarly we
see that ixs = 0. Extracting a resulting factor (x — OL)(X —p) we can repeat this
argument to obtain Xr_x = 0 = fxs-i. Continuing in this way, we obtain every
X,- = 0 and every /xy = 0 whence we see that B is linearly independent. Since B
has r + s elements and since the dimension of E is r + s it follows that B is
a basis for E.
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4.22 If (a) holds then 0 is the only basis for V. If (b) holds then {v} is a basis for
some non-zero vGV. Since every x G V can be written uniquely in the form
x = Xv for some XGF and sinceF = {0,1},it follows that V = {0, v} whence
{v} is the only basis for V.

Conversely, suppose that Fhas precisely one basis and that V¥= {0}. Since,
for x i= 0, {x } is linearly independent it can be extended to form a basis (the
basis of V). It follows that every non-zero element of V belongs to the basis.
As V is of finite dimension, V is therefore finite. Suppose that F={0 ,u l 5

. . . , vn} where {ul 5 . . . , vn) is the basis. Suppose further that n > 2 and con-
sider the element Vi + • • • + vn. Now i>x + • • • + vn ¥= 0 since {u l 5 . . . , vn} is
linearly independent. Thus, for some /, we have Vi + • • • + vn = Vj whence

!>!+••• + Vt_x + Vi+1 + • • • + Vn = 0.

This is impossible since every subset of {vl9..., uw} is linearly independent.
This contradiction shows that we must have n = 1 and hence that F = {0, u j .
It follows that (b) holds.

4.23 The result is trivial if n = 1, since /i is a non-zero element of Map(IR, IR).
By way of induction, suppose that {fl9 . . . , / „_!} is linearly independent
whenever rl,...,rn_x are distinct. Consider {fu . . . , /„} and suppose that
/*!,..., rw are distinct. If \xfi + • • • + Xw/M = 0 then

(V* G IR) Xi eri* + .. • + \n er"x = 0.

Dividing by ernx (which is non-zero) and differentiating, we obtain

XiO-i-rn)e<r*"J* + ••• + K^Q-n-i ~rn)e^-i-r^c = 0

Since the n — \ real numbers r1 — rn,...,rn_1—rn are distinct, the induc-
tion hypothesis shows that Xt = • • • = Xw_x = 0. Consequently \nfn = 0 and
hence Xw = 0 (since er«* ¥= 0). Thus{/1 ? . . .,/„} is linearly independent. By
induction, therefore, we have shown that if rx,...yrn are distinct then
{/i> •••>/«} is linearly independent. As for the converse, it suffices to note
that if ri,...,rn are not distinct, say rt = rj for /=£/, then ft=fj and
{/i,.-.,/«} is dependent since
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5.1 (a), (c), (/) are linear; (b), (d), (e) are not. For example,
(&)/(l,0,0)+/(-l,0,0) = (l,0,0) + (l,0,0) = (2,0,0)

but/[(1,0,0) + (-1,0,0)] = /(0,0,0) = (0,0,0);
(d) /(0,0,0) = (-1,0,0) so /[2(0,0,0)] ¥= 2/(0,0,0);
(e) as in (d).

5.2 (a) We have that

/ (0 ,0 , l )= / ( l , l ,2 ) - / ( l , l , l ) = (2 ,2 ,4)- ( l , l , l )=( l ,

/(0,1,1)=/(I, 2,3)-/(1,1,2) = (-1,-2,-3)-(2,2,4)

= (-3,-4,-7),
and hence

Consequently we have

= (4a - 4b + c, Sa - 5b + c, Sa - \0b + 3c).

(b) It is not possible to find / in this case. The reason for this is that
{(1, 1, 1), (1, 1, 2), (2, 2, 3)} does not span IR3. For example, (1,0, 0) is not
a linear combination of these vectors so / (1 ,0 ,0) cannot be determined using
the given information.

(c) No such linear mapping exists. Indeed, if such a linear mapping /
existed then since

we would have
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,0,l) = 2/(l,l,l)/(O,l,l)+/(1,1,
which is not the case.

5.3 (a)9 (b), (c) are linear, (d) is not linear; for example, we have T(XI) = XB2 —
X2B whereas XT(I) = XB2 - XB. As for (e), we note that T(0) = IB2 so if
Tis linear we must have B2 = 0. Conversely, if B2 = 0 then

T(A)=AB+BA -2BA-3AB = -2AB-BA
which is linear. Hence B2 = 0 is a necessary and sufficient condition for T to
be linear.

5.4 We have

/(1,0) = (1,2,-1) =1(1,0,0)+ 2(0,1,0)-1(0,0,1),
/ (0, l) = (2,-1,0) = 2(1,0,0)-1(0,1,0)+ 0(0,0,1),

and consequently
1 2

A = 2 - 1

B=

- 1 0
Likewise, we have

g(U 0,0) = (2,0) = 2(1,0>+ 0(0,1),
^(0,1,0) = (-1,2) = -1(1,0)+ 2(0,1),
g(09 0,1) = (0, -1) = 0(1,0) - 1(0,1),

and consequently

j~2 - 1 0
[o 2 - 1

To find C we note that
/(0, l) = (2,-1,0) = 1(0,0,1)-3(0,1,1)+ 2(1,1,1),
/(1,1) = (3, 1,-1) = - 2 ( 0 , 0 , 1 ) - 2(0,1,1) + 3(1,1,1),

so that

<

Finally, to find D we note that
£(0,0,1) = (0,-1) = -1(0,1)+ 0(1,1),

1

- 3

. 2

-2

- 2

3
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g(0,1,1) = (-1,1) = 2(0,1) + -1(1,1),
S( l , l , l ) = (1,1) = 0(0,1) +1(1,1),

and so
["-1 2 01

D=\
L o —l l J

5.5 We have

Hence the matrix of/with respect to the standard basis of IR3 is
'2 2 r

3 - 2 - 2

-2 6 3

5.6 We have
/ ( I , -1 ,0) = (2,-2,0) = 2(1,-1,0)+ 0(1,0,-1)+ 0(1,0,0),

and so the matrix is

'2 2 f

0 3 0

, 0 - 4 1.

5.7 To determine PM,N&>y) *n e a c n °f t n e given cases, we apply simple co-
ordinate geometry.

y — nx m{y — nx)\( y — nx m{y — nx)\
m—n m—n I

SeeFig.S5.1.

See Fig. S5.2.

See Fig. S5.3.
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Fig.SS.1

M

Fig.S5.2
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It is clear that in all three cases PM,N *S linear. The corresponding matrices
(relative to the standard basis of IR2) are

— [-" l\ V °1. f° °1
—ni—mn mV \-m OJ Y—n lJm

It is readily seen that the characteristic polynomial of each of these is
X(X— 1) and that this is also the minimum polynomial.

5.8 Suppose that / is injective and that {vl9..., vn} is linearly independent. Then
from

/=i \/=i

we deduce that SJLj X,-U/ = 0 whence each A/ is zero and consequently
{/(^l), • • •>/(*>«)} is linearly independent.

Conversely, suppose that {vi,.. ,,vn} linearly independent implies that
{/(t>i), ...,f(vn)} is linearly independent. For any non-zero x we have that
{x} is linearly independent. Hence so also is {/(*)}> whence f(x) ¥= 0. The
property x¥^0 ^f(x) ^ 0 is equivalent to /being injective.

5.9 That fy is linear is a routine verification of the axioms. Clearly we have

x G Ker fy if and only if

Equally clearly we have yGKerfy and so the subspace generated by{.y}
is contained in the subspace Kerfy. To obtain the reverse inclusion, let
x G Ker fy. Since y ^ O we can suppose without loss of generality that
yi¥=0. If ^2 = ̂ 3 = 0 then from the above equalities we have x2 = x3 = 0
whence x is a scalar multiple ofj>. ^ ^ 2 ^ 0 = ^ 3 then x3 = 0 and x1/y1 =
x2/y2 = X, say, giving x1 = Xy1,x2= Xy2 and againx is a scalar multiple ofy.
The other cases are argued similarly. The outcome is that x belongs to the
subspace generated by{.y}, and the reverse inclusion is established.

5.10 Since / is linear so also is #; in fact

»(x,y) + #(*',/) = (x,y -/(*)) + (x'y -fix1))
= (x 4- x',y +y' -f(x + *')) = #(JC 4- x\y + / ) ;

Clearly, we have &(x,y) = (0,0) if and only if x = 0 and y =f(x), which is.
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the case if and only if x = y = 0. Thus we have Ker & = {(0,0)} whence # is
injective. To see that # is also surjective we observe that

Hence & is an isomorphism.

(a) => (b): If Im/= Ker/then for every x G Vwe have/(x) G Im/= Ker/so
that /[/(*)] = 0 and hence / o / = 0. Moreover, / ^ 0 since the image of the
zero map is {0} and the kernel of the zero map is V. Now n = dim V =
dim Im/+ dim Ker/ so from (a) we also deduce that n = 2 rank/ whence
n is even and rank/= \n.

(b) => (a): Suppose now that (b) holds. From/o / = 0 we have/[/(*)] = 0
for every x GV whence Im/C Ker/. Since f=£09n is even and rank/= ^«.
We deduce from n = dim K= dim Im/+ dim Ker/ that dim Im/ =
dim Ker/= \n whence we conclude that Im/= Ker/

Using the fact that dim Vt = dim Im// + dim Ker// we have

— dim Vi= — dim Im/i — dim Ker/i
dim F2 = dim Im/2 + dim Ker/2

— dim V3 = —dim Im / 3 — dim Ker /3

( - I f dim Vn = ( - I f dim Im/W + ( - I f dim Ker/n

Now it is given that Ker/i = {0}, lmfn=Vn+1 and Im// = Ker//+1 so,
summing the above equalities, we obtain

and hence

If x ± 0 is such that Z^"1^) ^ 0 then X,/(JC), .. . , /p"1(x) are all non-zero;
for/fc(jc) = 0 withA:<p-l implies Z^"1^) =fp'1~k [/*(*)] = 0, a con-
tradiction. To show that the set {x,f(x), ...,fp~1(x)} is linearly indepen-
dent, suppose that

Ao* + Xi/(*) + • • • + Xp-if*-1^) = 0.
Applying fp~l to this we obtain Xof

p~1(x) = 0 whence Xo=0 since
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. Thus we have

Applying fp~2 to this we obtain similarly Xt = 0. Continuing in this way,
we see that every X,- is zero and that consequently the set is linearly
independent.

If / i s nilpotent of index n = dim V then clearly {x,f(x)9. ..9f
n~1(x)} is

a basis of V. The images of these basis vectors under/are given by

f(x) = Ox + l/(x) + 0/2(x) + . . . + 0fn-x(x)

0x + 0f(x)

5.14

fn~\x) = Ox + 0/(x) + o
/"(*)= Ox + 0/(x) + 0/2(x) + ... + Qf -V)

from which we see that the matrix of/relative to this ordered basis is

0 0 0 . . . 0 0"

1 0 0 . . . 0 0

M= 0 1 0 . . . 0 0

0 0 0 . . . 1 0
Conversely, suppose that there is an ordered basis with respect to which the
matrix M of / is of the above form. It is readily verified that Mn = 0 and
Mn~l ¥= 0. Consequently/is nilpotent of index n.

For the last part it suffices to observe that if A is an n x n matrix which is
similar to the above matrix M then there is an invertible matrix P such that
P'lAP = M. Since then A =PMP~X we have (by induction) Ar = PMrP~l

for every positive integer r. In particular, An~l =PMn~1P~1 ^ 0 and
An = PMnP - 1 = POP "^ = 0.

Conversely, if M is nilpotent of index n and if / : V-> V is such that
a matrix of / is M then / has a matrix of the required form which is similar
toM.

Let / : (D2 -> C2 be the linear transformation that is represented, relative to the
canonical basis of (C2, by the matrix

[cos & —sin #1

sin & cos # J
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Then for all (x,y) G C2 we have

f(x>y) = (x c o s # ~y s m $>x sin # + j> cos #).

We wish to find au a2G <C2 such that f(at) = e^c^ and/(a2) = e"i^a2 with
{&i, OL2} a basis of C2. It is readily seen that ax = (i, 1) and a2 = (1, i) satisfy
these properties. The matrix of/relative to the basis {al9 <*2}is then

e1* 0

which is therefore similar to the first matrix.

5.15 For every linear transformation / : F-> V we have /(0) = 0. The mappings
described in (a) and (c) are not linear, therefore, since in each case we have
/ (0 ,0 , 0) =£ (0, 0,0). That described by (b) is linear. In fact Z 2 = {0,1} and
a2 = a for every a G Z 2 , so that/(fl, b, c) = (a, b, c), i.e./is the identity map.

5.16 f can be described by f(a9 b) = (a + b,a) and is linear.

5.17 D is linear since

(Vp, (7 G IR [X])(Va, Z> G IR) D(ap + ^ ) = aDp

r is also linear since

T(ap + bq) = X{ap + Z>?) = aXp + Z>X? = aT(p) +

It is readily seen that

(D o T)(a0 + . . . + flnX") = 0O + 2*iX + . . . + (/! + l ) ^ X n ;

(7 o DXflo + • • • + «WXW) =^i JT + 2a2X2 + . . . + nanX
n.

Since (D o T)(p)=p+XD(p)=p + (ToD)(p) we see that D o r - J o D = /.

It follows that, writing TD forToD etc.,

<TD)2 = TDJD = T(/ + 7D)D = TD + T2D2.

Define 5 by

S(ao+ - • - + anX
n) = a0X + — X2+ . . • + - ^ - Xn+1.

2 n 4-1
Then it is readily seen that S is linear and that D o S = 1. Now D is not an
isomorphism since it fails to be injective (for example D(l) = D(2) = 0); and
S is not an isomorphism since it fails to be surjective (for example, there is no
p with S(p) = 1).
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5.18

5.19

(a) When F = IR we have

(M,c)GKer /^O = 0 + , = a + c = b + c

Thus K e r / = 0 and so dim Ker /= 0. Also,/is surjective since

f(h(a + b -c),\(a-b + c\\(-a + b + c)) = (a,b,c).
Thus I m / = IR3 and dim I m / = 3.

(2?) When F = Z 2 we have

(a, Z>, c) G Ker fo 0 = a + b = a + c = b + c

<>a = b = c.

Thus Ker/={(0,0,0),(l , l , l)} = {(a,a,flr)|flGZ2}, and so in this case
dim Ker/= 1. It follows that dim Im/= 3 - 1 = 2.Now/(l, 0,0) = (1,1, 0)
and /(0, 1, 0) = (1, 0, 1) are linearly independent elements of Im / so they
form a basis, whence

Im/= {(0,0,0), (1,1,0), (0,1,0), (0,1,1)}.

We have f(a, b,c) = (b, -a, c) so

/(1,0,0) = (0,-1,0) = 0(1,0,0)- 1(0,1,0) + 0(0,0,1),
/(0, 1,0) = (1,0,0) =1(1,0,0) + 0(0, 1,0) + 0(0,0,1),
/(0, 0,1) = (0,0,1) = 0(1, 0,0)+ 0(0,1,0)+1(0,0,1),

and consequently

0 1 0

A= - 1 0 0

0 0 1
Similarly, we have

/(1,1,0) = (1,-1,0) = 0(1,1,0)-1(0,1,1)+1(1,0,1),
/(0, 1,1) = (1,0,1) = 0(1, 1,0) + 0(0,1,1) +1(1,0,1),
/(1,0,1) = (0,-1,1) = -1(1,1,0) + 0(0,1,1) +1(1,0,1),

and consequently

" 0 0 - f

B= - 1 0 0

1 1 1
The matrix X represents the identity map relative to a change of reference
from the first basis to the second. Since
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we see that

X =

r 1
2

- \

h

I
2

\

- \

1
2

I

\

5.20 The matrix of / with respect to { u i, u 2} is

r 3 n
the change of basis is ,

The matrix representing

i -ithe inverse of which is I . Hence the

matrix of/relative to {wl9 w2}is

L-i oJU IJ L-3 - jJ '

5.27 The respective5 matrices are

0

0

0

;

0

.0

n

0

—

0

0

1

0

0

:

0

0

1

0

2

0

•

0

0

n

0

0

3
•

0

0

0

0
2

0

. . .

. . .

•

. . . n

0

0

0

n-3

0

0

0

;

- 1

0

. . .

0

0

0

0

0

0

0

0

1 0
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C =

"0

0

0

0

0

1

0

0

0

0

- 2

2

0

0

0

- 3

0

3

0

0

. . . —n +
0

0

. . . n-1

0

5.22 For every zG(L we have z = aA +b . i for somefl, Z>E IR; and if X . I + / u . i = 0
then X = n = 0 . Thus { 1 , i} is a basis for C as a vector space over IR. Since

/(<*(* + iy) + p(a + ib)) = (p* + Pa)- i(oy + fb)

it follows that/ is linear. The matrix of /relative to the basis {l, i} is

Lo - I J
Regarding € as a vector space over (D, we see that it is of dimension 1 with
basis {1}. In this situation / is not linear. For example, take ot = 1 — i and
z = 1 + i; we have

f(az) = 2 but a/(z) = - 2 i .
5.23 Consider the following row reduction, in which we have been careful not to

divide by either 2 or 3 (since these are 0 in Z 2 and Z 3 respectively):
3

- l

_ I

->

->

1

0

0

"1

0

0

- 1

5

- 1

- 1

4

2

- 1

2

0

r
- i

3 .

3 "

2

- 8

3 "

- 8

18

1

- 1

3

"l

0

0

- 1

5

- 1

- 1

2

4

3

- 1

1

3 "

- 8

(a) When F= IR the rank of this final matrix is 3, and so Im / is of
dimension 3 and Ker/is of dimension 0.
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(b) When F = Z 2 we have that 2, 18, —8 are all zero, in which case the
rank of the matrix reduces to 1. So in this case we have Im/is of dimension
1 and Ker / i s of dimension 2.

(c) When F = Z 3 we have that 18 is zero, in which case the rank of the
matrix reduces to 2. So in this case we have Im/is of dimension 2 and Ker/
is of dimension 1.

5.24 If/: IR2 -> IR2 is given by/(a, b) = (b, 0) then we have

Im/=Ker /={(<* ,0 ) | ae iR} .

If g : IR3 -* IR3 is given by g(a, b, c) = (c, 0, 0) then

5.25

If A

{(a, 0,0) \a G IR} = Img C Ker g = {(a, 6,0) | a, b G IR}.

IR3 -• IR3 is given by h(a, b, c) = (b, c, 0) then

{(a, 0, 0) | a e IR} = Ker h C Im A = {(a, 6, 0) k , 6 G IR}.

Consider the following row reduction in which we have been careful not to
divide by any integer n:

2

1

1

2

3

2

f
1

2.

1

2

1

3

2

2

1

1

2_

3

- 4

- 1

3
i

0

2
- 1

1 .

2 "

1

- 5

->
1

0

_0

3

- 1

- 4

2

1

- 1

It is clear from this final matrix that / is an isomorphism if and only if the
matrix is of full rank 3; and this is the case if and only if p ¥^ 5.
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Solutions to Chapter 6

6.1 Since V is a real inner product space we have (x \ y) = {y \ x). Using the fact
that ||x||2 = (x | x) we thus have

<JC <x\y)

The second part of the question consists of finding a scalar X such that
(y — \x\x) = 0. Clearly, X is unique and by the above we see that it is given

We have

IM 11*11 \(x\y)\lltall
COS 1? = =

IMI IMI 11*11 \\y\\

Since cos t? < 0 •» X < 0 it follows that cos & = (x \ y)/\\ x |'| ||.y ||.

6.2 Since Fis a real inner product space we have

In IR2 this is, by the previous question, the cosine law

II* +y\\2= \\x\\2+ \\y\\2+ 2\\x\\ \\y\\ cos 0.

If now V is a complex inner product space then we have

\\y\\2 ~ i(ll*ll2 + Il7ll2) + 2<x | y).
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6.3 We have

II* + y \ \ 2 + II* - y \ \ 2 = ll*ll2 + \\y\\2 + <* I y) + (y I *>

+ ll*ll2 + II - y l l 2 + <* I -y) + <-y I *>

In IR2 this result says that the sum of the squares of the lengths of the
diagonals of a parallelogram is the sum of the squares of the lengths of its
sides.

6.4 If IMI = ILHI then

(x + y | x -y) = (x | x) + (y \ x) 4- (x \ -y) + (y \ -y)

= \\x\\2-\\y\\2 = 0.
In IR2 this result says that the diagonals of a rhombus are mutually perpen-
dicular.

6.5 The respective inequalities are

(a) | 2Z=1 ajk \<@Ui I«fel
2)1/2(2SU \h\2)1/2;

dx | < (Jh I/WI2 fo)l/2(Jo \g(*)\2 ic)1/2-

6.6 We have that

tr (A + B) = f (a,, + bit) = f ait + £ *„ = tr (A) + tr (B).

Also,

tr

which, on interchanging i and; is the same as tr (BA).
That (A | B) = tr (^4i?*) defines an inner product follows from a careful

verification of the axioms:

{A\B + C) = tr[A(B + Q*] = tr (AB* 4-^C*)

= tr (AB*) + tr (,4C*) = (A \ B) + (A | C>;

U + 5 | C>= tr [(^ + B)C*} = tr (^C* 4- BC*)

= tr (>4C*) + tr (BC*) = (A \ C) + (B \ C>;

<\>4 15>= tr (Xy45*) = X tr (AB*) = \(A \ B)\

(A\\B)= tr [A(\B)*] = tr [,4X£*] = XU IB);

(B\A)= tr (BA*) = tr (AB*) = (A \ B);

(A \A) = tr ( ^ * ) = Euaifatf = Z,f/ k,y|
2 > 0

withU |^> =
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The Cauchy-Schwarz inequality in this complex inner product space is
|tr (AB*)\ < Itr (AA*)\l/2 |tr (BB*)\1/2.

It is clear that {Epq} is a basis for V since every A = [ay] G V can be
written uniquely in the form

A = i £ w^.
To see that this is an orthonormal basis, we observe that

{Epq | En) = tr ( t f w ££) = tr {E^E,)

0 otherwise.

6.7 Let *x = (1,1,0, 1 ) ,* 2 = ( 1 , - 2 , 0 , 0 ) , x3= ( 1 ,0 , -1 ,2 ) .
is linearly independent. Now ||x1||2 = 3 so define yl = (1/V3)(1,1,0,1).
Then

*2-<^2l^i>^i = K 4 , - 5 , 0 , 1 )

so definey2 = (l/x/42)(4, - 5 , 0, 1). Then

*3 - <*31 yi>y2 - <*s I yjyi = 4 ( -4 , - 2 , - l , 6)
so define y3= ( l / \ / 5 7 ) ( - 4 , - 2 , - l , 6). By the Gram-Schmidt ortho-
normalisation process, {^1,^2^3} is then an orthonormal basis for the sub-
space generated by {x x, x 2, x 3).

6.8 Let fx : r -^ 1 and/2 : r -> r. Then

' O

so we can take gx = fx as the first vector in the Gram-Schmidt orthonormal-
isation process. Now

</2Ui>= f t&t = \
Jo

and so f2 — </2 I g\)g\ is the mapping h : t -» f — ^. Now

<A|A>= f [A(0]2df= f (t2-t + i)dt = &.
Jo Jo

Thus we can define g2 to be the mapping t -> 2\/3(t — | ) . Thenj^j,^} is an
orthonormal basis.
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6.9 It is clear that XCY=*Y1CXl. It follows that V1C(VnW)1 and
WlC(VnW)L whence V1 + Wl C (Vn W)1. Also, ( F + ^ C F 1 and
(F + W)1 C Wl whence ( R ^ C ^ n W1. Writing V1, W1 for F, Win the
second of these observations, we obtain (V1 4- W1)1 CVllnWll=VnW
whence (VCiWfQ (V1 + H^)11 = Vx + Wx. Comparing this with the first
observation, we see that (Vn W)1 = V1 4- Wl. Again writing V1, W1 for
V9 W and taking the x of each side, we obtain VlnWl = (V+

6.10 That (p \q) = fop(X)q(X)dX defines an inner product on IR3[X] is
routine.

If kG K then

so (7 is orthogonal to every k G K if and only if #0 + 2^71+ 342 = 0.
Since A" is of dimension 1 we have dim Kl = dim IR3 [X] — dim K =

3 — 1=2. A basis for Kl is, for example, {p,#} where p(X) = l —2X,
q(X) = l-3X2. We have (p \p) = f1

0(\ -2X)2&X = \ so let yx(X) =
\ /3 ( l -2X) . Then /? = q -{q \ yx)yi = -h + 3X-3Z 2 is such that
H ÎI2=2o so we can take y2= 2\j5(-\ + 3X-3X2) to complete an
orthonormal basis for A^1.

6.11 Using the fact that tr (XY) = tr (YZ) we have
<fM(A) \B) = (MA\B) = tx (MAB*) = tr (>15*M)

= tr [A(M*B)*] = (A IM*5> = (A \ fM*(B))
It follows from the uniqueness of adjoints that ffo = /M* .

6.12 We have that

</P(<7) I #•> = ipq I r) = I (pq)(X)r(X) dX

n p(X)q(X)r(X)dX= (l

= \ q (X)(prXX) dX=<q\pr) = (q\ fp(f)).

It follows from the uniqueness of adjoints that fj? =fp, so that fp is self-
adjoint.
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6.13 Ify e lm /* , sayy = /*(z), then

(VJC G Kerf) (x \ y) = (x \ /*(z)> = </(*) | z> = <0 | z> = 0

and so y G (Ker f)\ Thus Im / * C (Ker f)x.

If ye Ker/* then

(Vx € F) </(*) I y) = <x | /*<»> = (x \ 0> = 0

and so j> G (Im/)1. Thus Ker/* C (Im/)1 .

From the first inclusion we obtain

dim Im / * < dim (Ker ff- = dim V — dim Ker / = dim Im /

so that

dim Ker/* = dim V— dim Im/* > dim F — dim I m / = dim Ker/

0)
From the second inclusion we obtain

dim Ker/* < dim ( Im/) 1 = dim V- dim I m / = dim Ker/ (2)

It follows from (1) and (2) that dim Ker/* = dim Ker/= dim (Im f)1 and
so, from the second inclusion, we deduce that Ker/* = (Im/)x . Likewise we
can show that Im/* = (Kerf)1.

6.14 That fx> y is linear is routine. As for (a) we have

= \\y\\Ht\z)x

= II^H2/x,,(0-
As for (b) we have

</x,y(z)U>=«z
= <z

= <z

= < Z | < f |

To establish (c) we recall that fx>y is normal if and only if it commutes with
its adjoint. Using (a) and (b) we see that this is the case if and only if, for all
zGV,
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Taking z = x in this we obtain

which gives x — \y where X = (x \ y)/\\y\\2G (D, so that the condition is

necessary. Conversely, if x = \y for some X E C then

\\y\\Hz\x)x =||j>||2<z|Ay>Xy

= \\y\\2(z\y)\\y
= \X\2\\y\\2<z\y)y
= \M\2(z\y)y

so that the condition is also sufficient.
As for (d), it follows from (b) that fXty is self-adjoint if and only if, for all

zGV.

(z \y)x = (z \x)y.

Taking z = y we obtain x = Xy where X = (y \ x>/||j>||2. This gives (x \ y) =
(y | x) whence we see that X € IR. The converse is obvious.
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Test paper 1

Time allowed: 3 hours
(Allocate 20 marks for each question.)

Show that the subset A = {ai9 a2, a3, a4} where

^ = (1 ,^ ,2 ,1) , * 2 = ( 1 , 2 , 2 , 1 ) , a3 = (4 , l ,5 ,4) ,

*4 = (0 ,3 , -1 ,* )

is a basis of IR4 whenever & =£ 0 and # =£ 2.

Suppose that / : IR4 -* IR4 is defined by f(et) = at for i = 1, 2, 3, 4 where
{ei, ^2, ^3, e*} is the standard basis of IR4. If # = 1 find JCGIR4 with

Showthatif* =
hnf={(a,b,c,a)\a,b,cem}9

andthatif* = 2then

I m / = {{a, b, c, d) G IR4 | \6a + 3b = 7c + 8d}.

Let C3 [X] be the vector space of polynomials of degree less than or equal

to 2 over the field <C. Let/G Map((D3 [Z], C3 [X]) be given by

/ ( I ) = - 1 4- 2X2,

/ ( I 4-X-X 2 ) = 2 4- 2X + 4X2.
Find the eigenvalues and the minimum polynomial off.

Let F be a finite-dimensional vector space over the field F and let
/GMap(F,F). Prove that

dim V— dim Im/+ dim Ker/.
Find a vector space V and/GMap(F, V) with the property that not every
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vector of V can be written as the sum of a vector in Im / and a vector in
Ker/

Iff,g E Map(F, V) prove that

I m ( / o g ) C l m / and KergC Kei(fog).

Show that dim Im( / o g) < dim Im g and deduce that

dim Im(fog) < min {dim Img, dim Im/} .

Prove that the product of the eigenvalues of a matrix A is det A, and that if
X is an eigenvalue of an orthogonal matrix then so also is 1/X.

Deduce that if A is an orthogonal 3 x 3 matrix with detA=—l then —1
is an eigenvalue of A.

If B is an orthogonal 3 x 3 matrix with det B = 1 prove that BAl is orth-
ogonal and that det (A 4- B) = 0.

Find three eigenvalues and corresponding eigenvectors for the complex
matrix

1 - \ / 6 - i \ / 2

y/6 0 i \ /3

_ i>/2 i \ /3 2

Hence find a matrix C/such that UXAU\& diagonal.
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Test paper 2

Time allowed: 3 hours
(Allocate 20 marks for each question.)

State a necessary and sufficient condition, in terms of matrix rank, for
a system of equations Ax = b to have a solution.

Show that the equations

x+ y+ z+ t = 4k + 6
x- y+ z- t = -2

ky + 3z- (fc + 1) t = 3
3x - 3 z + (3A;2 + 2)f = 14A:

have a unique solution except when k = 0 and k = 4/3. Show that there is

no solution when k — Aj3 and find the general solution when k = 0.

Let IRn[X] be the vector space of polynomials of degree less than or equal

to n - 1 over the field IR. Define T: IRW[X] -» IRW[X] by

nf(X))=f(X+l).
Prove that T is linear and find the matrix of T relative to the basis

{\,x,x\...,xn-1}
of IRW[X]. Find the eigenvalues of T. Determine the minimum polynomial
ofT.

Prove that Vx = {(a, b, 0) \a, bG IR} and V2 = {(a, a, a) \ a G IR} are subspaces
of IR3. Prove also that every vector in IR3 can be expressed uniquely as a sum
of a vector in Vx and a vector in V2.

Find/G Map(IR3, IR3) such that
/ , Ke r /= Vx and I m / = V2.
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Show that if ge Map(IR3, IR3) is such that g(Vx) C Vx andg(F2) C V2 then

4 Find an orthogonal matrix H such that HXAH is diagonal where A is the
matrix.

r A\ 0 -3\

0 - 1 0

~3~ 0 4~

Hence find a matrix 5 such that B3 = A.

5 Let V be a real inner product space, let {eb e2, ...,en}be an orthonormal set
of vectors in F, and let U be the subspace spanned by {eh e2,..., ew}. Prove
that xEUif and only if x = 2$J=!0c|ek)ek. Establish the inequality

(VxGV)
k~\

Deduce that ioxx G Fthe following are equivalent:

(a) 22=1|<x|e*>|2HI*ll2;
(b) xGU;
(c) (yyeV)(x\y) = XUi<x I ek)(ek\y).
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Test paper 3

Time allowed: 3 hours
(Allocate 20 marks for each question.)

1 If M € Matw x W(IR) prove that, for every positive integer k,

Deduce that if Mk+1 = 0 then In — M is non-singular.
Let

- 1

0

0
A =

2

- 1

- 1

0

2

0

- 1

1

- 1

0

1

- 1 1

Compute I4— A, (I4—A)2, (74 — A)3, (74 — A)*. By applying the first part
the question to A = / 4 —(74—^4), prove that A is non-singular and deter-
mined"1.

Show that {(1,0,0), (1, 1,0), (1, 1, 1)} is a basis of IR3.

A linear mapping/: IR3 -• IR3 is such that

/ ( I , 0,0) = (0,0,1),

/ (1 ,1 ,0) = (0,1,1),

/ ( I , 1,1) = (1,1,1).

Find f(a, b, c) for every (a, b, c) G IR3 and determine the matrix of/with
respect to the basis B = {(1,2, 0), (2, 1, 0), (0, 2, 1)}.

If g : IR3 -> IR3 is given by g(a, b, c) = (2a, b + c, —a) prove that g is
linear and find the matrix o f / o g o /with respect to the basis B.
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3 If r is the rank of the matrix

1

-18

0

0

OL

1

~ 7

- 5

0

18
1

1

0

0

7
5

show that
(a) r>\;
(b) r = 2 if and only if a|3 = —1 and 7 = 5 = 0 ;
(c) r = 3 if and only if either a/3 = —1 or y = 8 provided that, if

a|3 = — 1, y and 8 are not both zero.

Let A be a real square matrix. If X is an eigenvalue of A and x is an eigen-
vector associated with X, prove that

y M y — V̂ V Y* V /4 V ^= "X V* V V >4 >d V ^Z )l)lY^Y

where bars denote complex conjugates. Deduce that, if A satisfies the equation

AlA=-4I+2A + 2A\

then every eigenvalue X of A is such that

XX-2(X + X) + 4 = 0,

and hence show that every eigenvalue of A is equal to 2.

Let V be the real vector space of continuous functions/: [0, 1] -> IR. Show
that the prescription (f\g) = fof(t)g(t)dt defines an inner product of V. For
every / E V let Tf: [0, 1] -> IR be given by 7}O) = x/O). Show that
T: V-+V described by T(f) = Tf is linear and self-adjoint but has no
eigenvalues.
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Time allowed: 3 hours
(Allocate 20 marks for each question.)

1 If F is a field and A, BGMainxn{F) are such that AB—In is invertible,
show that

{BA -In) [B{AB-Iny
lA -In]=In

and deduce that BA —In is also invertible.
If X, Y e Matnxn(F) show that X G F is an eigenvalue of XY if and only

if XY — \In is not invertible. Hence show that XY and YX have the same
eigenvalues.

2 Let Kbe a finite-dimensional vector space over a field F. If A, B are subspaces
of V prove that A + B = {a + b \ a GA, b €:B} is a subspace of V, and that
if Cisasubspaceof Fwith^l C C and £ C C then ,4 -f £ C C .

Let L, M,Nbe subspaces of V. Prove that

i n [M + {LnN)] = {LnM) + {LHN).

Give an example to show that in general {L n M) + {L n N) =£ L n (M 4- TV).

3 If iS is a matrix such that / + S is non-singular prove that

Deduce that P = (I — S)(I + S)"1 is orthogonal when 5 is skew-symmetric.
Given that

0 cos # 0

S= -cos # 0 sin i!

0 —sin # 0
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prove

If the

that

i> =

sin

real matrix

a

0

0

o

1

b

0

0

sin2

cos

#COS 1

a

1

c

0

0

Z?

1

0

0

c

1

—cos # sin # cos #

0 —sin #

sin # cos2 #

o"
0

0

d

has rank r, prove that
(a) r>2;
(b) r = 3 if and only if a = d = 0 and &c = 1;
(c) r = 4 in all other cases.

Let V be a real inner product space and let £/" be a subspace of F. Suppose
that U has a basis { i^ , . . . , vn}. Given x E F let X\ — Sf—ifl/U,- where the
coefficients ax,..., an are given by

[Cci

<uw|y2>

^ l | y n > <U2I W«> • • • <Vn\Vn>_

Show that x=xx + x2 where x2 is orthogonal to every vector in U.
In the above, call xx the orthogonal projection of x onto U and ||x2 II the

distance of x from £/.
Now let V= C[0, 1] be the real inner product space of continuous func-

tions / : [0, l]-> IR with inner product (f\g) = fof(t)g(t)dt. What is the
orthogonal projection of x2 onto the subspace U=(l, x>? What is the
distance of x2 from U1
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