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Preface

The aim of this series of problem-solvers is to provide a selection of
worked examples in algebra designed to supplement undergraduate
algebra courses. We have attempted, mainly with the average student
in mind, to produce a varied selection of exercises while incorporating
a few of a more challenging nature. Although complete solutions are
included, 1t is intended that these should be consulted by readers only
after they have attempted the questions. In this way, it is hoped that
the student will gain confidence in his or her approach to the art of
problem-solving which, after all, is what mathematics is all about.

The problems, although arranged in chapters, have not been
‘graded’ within each chapter so that, if readers cannot do problem =
this should not discourage them from attempting problem n+41. A
great many of the ideas involved in these problems have been used in
examination papers of one sort or another. Some test papers (without
solutions) are included at the end of each book ; these contain questions
based on the topics covered.

TSB, EFR
St Andrews



Background reference material

Courses on abstract algebra can be very different in style and content.
Likewise, textbooks recommended for these courses can vary enorm-
ously, not only in notation and exposition but also in their level of
sophistication. Here is a list of some major texts that are widely used
and to which the reader may refer for background material. The
subject matter of these texts covers all six of the present volumes, and
in some cases a great deal more. For the convenience of the reader there
is given overleaf an indication of which parts of which of these texts
are most relevant to the appropriate sections of this volume.

[1] I. T. Adamson, Introduction to Field Theory, Cambridge
University Press, 1982.
[2] F. Ayres, Jr, Modern Algebra, Schaum’s Outline Series,
McGraw-Hill, 1965.
[3] D. Burton, A first course in rings and vdeals, Addison-Wesley,
1970.
[4] P. M. Cohn, Algebra Vol. 1, Wiley, 1982,
[5] D. T. Finkbeiner 11, Introduction to Matrices and Linear
Transformations, Freeman, 1978.
[6] R. Godement, Algebra, Kershaw, 1983.
[7] J. A. Green, Sets and Groups, Routledge and Kegan Paul,
1965.
[8] I. N. Herstein, Topics in Algebra, Wiley, 1977.
[9] K. Hoffman and R. Kunze, Linear Algebra, Prentice Hall,
1971.
[10] S. Lang, Introduction to Linear Algebra, Addison-Wesley, 1970.
[11] S. Lipschutz, Linear Algebra, Schaum’s Qutline Series,
McGraw-Hill, 1974,

vii



[12]

[13]
[14]

[15]

[16]
[17]

1. D. Macdonald, The Theory of Groups, Oxford University
Press, 1968,

S. MacLane and G. Birkhoff, Algebra, Macmillan, 1968.

N. H. McCoy, Introduction to Modern Algebra, Allyn and
Bacon, 1975.

J. J. Rotman, The Theory of Groups: An Introduction, Allyn
and Bacon, 1973.

1. Stewart, Galois Theory, Chapman and Hall, 1975.

I. Stewart and D. Tall, The Foundations of Mathematics,
Oxford University Press, 1977.

References useful for Book 4

1: Direct sums and Jordan forms [4, Sections 11.1-11.4],
[5, Chapter 7], [8, Sections 6.1-6.6], [9, Chapters 6, 7],
[11, Chapter 10].

2: Duality and normal transformations [4, Chapter 8,
Section 11.4], [5, Chapter 9], [8, Sections 4.3, 6.8, 6.10],
[9, Chapters 8, 9], [11, Chapters 11, 12].

In [4] and [6] some ring theory is assumed, and some
elementary results are proved for modules. In [5] the author
uses ‘characteristic value’ where we use ‘eigenvalue’.

viil



1: Direct sums and Jordan forms

In this chapter we take as a central theme the notion of the direct sum
A ® B of subspaces A, B of a vector space V. Recall that V = A® B
if and only if every z € V' can be expressed uniquely in the form a + b
where a € A and b € B; equivalently, if V = A+ B and AnB = {0}. For
every subspace A of V' there is a subspace B of V such that V = A B.
In the case where V is of finite dimension, this is easily seen; fake a basis
{vi,..., v} of A, extend it to a basis {v1,...,v,} of V, then note that
{Vk+1,-.-,Un} spans a subspace B such that V = A @ B.

If f:V — V is a linear transformation then a subspace W of V is
said to be f-tnvartant if f maps W into itself. If W is f-invariant then
there is an ordered basis of V with respect to which the matrix of V is
of the form

M N

0 X

where M is of size dimW x dimW.

If f:V — V issuch that fo f = f then f is called a projection.
For such a linear transformation we have V' = Im f @ Ker f where the
subspace Im f is f-invariant (and the subspace Ker f is trivially so). A
vector space V is the direct sum of subspaces Wi,..., Wy if and only if
there are non-zero projections py,...,pr : ¥V — V such that

k
Y pi=idv  and  piop;=0 for i#j.
i=1

In this case W; = Imp; for each 4, and relative to given ordered bases of
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1.1

Wi, ..., Wi the matrix of f is of the diagonal block form
M,

M,
M;

Of particular importance is the situation where each M; is of the form

A1 0 ..00
0 A1 ..00
00 A .. 00
M; =
00 0 ... A 1
0 0 0 ... 0 A]

in which case the diagonal block matrix is called a Jordan matriz.

The Cayley-Hamilton theorem says that a linear transformation f is
a zero of its characteristic polynomial. The minimum polynomial of f
is the monic polynomial of least degree of which f is a zero. When the
minimum polynomial of f factorises into a product of linear polynomials
then there is a basis of ¥V with respect to which the matrix of f is a
Jordan matrix. This matrix is unique (up to the sequence of the diagonal
blocks), the diagonal entries A above are the eigenvalues of f, and the
number of M; associated with a given A is the geometric multiplicity of
A. The corresponding basis is called a Jordan basts.

We mention here that, for space considerations in the solutions, we
shall often write an eigenvector

|
Z2

Ln
as [z1, Za, ..+ ) Zpl.

Which of the following statements are true? For those that are false,
give a counter-example.

(i) H {a,az,a3} is a basis for IR® and b is a non-zero vector in IR then
{b+ a1, a3,a3} is also a basis for IRS.

2



1; Direct sums and Jordan forms

(ii) If Ais a finite set of linearly independent vectors then the dimension
of the subspace spanned by A is equal to the number of vectors in
A,
(iii) The subspace {(z,z,z) | € R} of R® has dimension 3.
(iv) If Ais alinearly dependent set of vectors in IR™ then there are more
than n vectors in A.
(v) If Ais alinearly dependent subset of IR® then the dimension of the
subspace spanned by A is strictly less than the number of vectors
in A.
(vi) If A is a subset of IR" and the subspace spanned by A is IR" itself
then A contains exactly n vectors.
(vii) If A and B are subspaces of IR" then we can find a basis of IR™
which contains a basis of A and a basis of B.
(viii) An n-dimensional vector space contains only finitely many sub-
spaces,
(ix) If A is an n X n matrix over Q with A% = I then A is non-singular.
(x) If Ais an n X n matrix over € with A% = I then A is non-singular.
(xi) An isomorphism between two vector spaces can always be repre-
sented by a square singular matrix.
(xii) Any two n-dimensional vector spaces are isomorphic.
(xiii) If A is an n X n matrix such that A2 =1 then A= 1.
(xiv) If A) B and C are non-zero matrices such that AC = BC then
A=1B.
(xv) The identity map on IR™ is represented by the identity matrix with
respect to any basis of IR"™.
(xvi) Given any two bases of IR" there is an isomorphism from IR" to
itself that maps one basis onto the other.
(xvii) If A and B represent linear transformations f,g : R® — IR" with
respect to the same basis then there is a non-singular matrix P such
that P~1AP = B,
(xviii) There is a bijection between the set of linear transformations from
IR™ to itself and the set of n X n matrices over IR.
(xix) Themap ¢ : IR? — IR? given by ¢(z,y) = (y, z+y) can be represented

by the matrix
1 2
1 2

with respect to some basis of IR,
(xx) There is a non-singular matrix P such that P~ AP is diagonal for
any non-gingular matrix A.
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1.2

1.3

1.4

1.5

Let 1,ts,3,%4 € L£(IR?,IR?) be given by

t1(a, b,¢) = (a + b, b+c,c+a)
ta(a,b,¢) = (a — b,b— ¢,0);
ts(a,b,¢) = (—b,q,¢);
te(a,d,c) = (a,b,0).

Find Kert; and Im¢t, for i = 1,2, 3, 4. Is it true that IR® = Kert; ®Imt;
for any of ¢t = 1,2,3,47

Is Im ¢, t3-invariant? Is Kert, {3-invariant?

Find t3 o t4 and #4 o 3. Compute the images and kernels of these
composites.

Let V' be a vector space of dimension 3 over a field F and let t € L(V, V)
be represented by the matrix

3 -1 1
-1 5 -1
1 -1 3

with respect to some basis of V. Find dim Kert and dimIm¢ when

(i) F=IR;
(i) F = 2Zy;
(ili) F = Zs.

IsV =Kert®Imt in any of cases (1), (ii) or (iii)?

Let V' be a finite-dimensional vector space and let s, € L(V,V) be such
that sot = idy. Prove that tos = idy. Prove also that a subspace of V'
is t-invariant if and only if it is s-invariant. Are these results true when
V is infinite-dimensional?

Let V,, be the vector space of polynomials of degree less than n over
the field R. If D € £L(Vy,Vy) is the differentiation map, find Im D and
Ker D. Prove that Im D ~ V,,_; and that Ker D ~ IR. Is it true that

Ve =ImD@®KerD?

Do the same results hold if the ground field IR is replaced by the field
Zy?



1.6

1.7

1.8

1: Drirect sums and Jordan forms

Let V be a finite-dimensional vector space and let £ € £(V, V). Establish
the chains

V 2 Imt D Im#¢?
{0} C Kert C Kert?

. 2Imt" D Imt"t! D ...

2 ..
C ... CKert" CKert"t!1 C ....

Show that there is a positive integer p such that Im#’ = Im#?*! and
deduce that

(Vk > 1) Imt? =ImtP** and Kert? = KertP*¥,

Show also that
V =Imt° @ Kert?

and that the subspaces ImtP and Ker¢? are {-invariant.

Let V be a vector space of dimension n over a field F and let f: V -V
be a non-zero linear transformation such that f o f = 0. Show that if
Im f is of dimension r then 2r < n. Suppose now that W is a subspace
of V such that V = Ker f ® W. Show that W is of dimension r and
that if {wy,...,w,} is a basis of W then {f(w,),..., f(w,)} is a linearly
independent subset of Ker f. Deduce that n — 2r elements z,,...,Z,_2r
can be chosen in Ker f such that

{wiyee s we, flwr)yeoo, flwe), 21,00 Epn_gr}

is a bagisof V.
Hence show that a non-zero n X n matrix A over F is such that A2 =0
if and only if A is similar to a matrix of the form

0, O
I, ol.
0 0

Let V be a vector space of dimension 4 over IR. Let a basis of V be
B = {b1,by,bs,bs}. Writing each z €V as z = 3.5, z;b;, let

Vi={ze€V | 2z3=2,andzy =12},
Vo={ze€V | 23=—2;andz, =—z,}.

Show that
(1) Vi and V; are subspaces of V;

5
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1.9

(2) {b1 + by, bg + b3} is a basis of V; and {b; — by, b; — b3} is a basis

of Vo,

B)V=VeV;
(4) with respect to the basis B. and the basis

C = {bl +b4,b2 + ba,bg - ba,b] — b4}

the matrix of idy is

O N = &
|
ORI O

N O oW
= o o =

A 4 X 4 matrix M over R is said to be centro-symmetric if
My = Ms—i6—5

for all ¢,3. If M is centro-symmetric, show that M is similar to a matrix
of the form
g

=N OO

oo R
D OO

5
0
0
Let V be a vector space of dimension n over a field F. Suppose first

that F is not of characteristic 2 (i.e. that 1z + 15 #0p). f f:V o V
is a linear transformation such that f o f = idy prove that

V = Im(idy +£) ® Im(idy —f).

Deduce that an n x n matrix A over F is such that A% = I, if and only
if A is similar to a matrix of the form

I 0
0 —I |
Suppose now that F is of characteristic 2 and that fo f = idy. If
g = idy +f show that

z €Kerg <= z = f(z),

6



1.10

1.11

1.12

1.13

1: Direct sums and Jordan forms

and that g o ¢ = 0. Deduce that an n x n matrix A over F' is such that
A% = I, if and only if A is similar to a matrix of the form

] In—?p ]

fon B
e —y

D -
[

11
b 0 1

[Hint. Observe that Img C Kerg. Let {g(c;),...,9(¢cp)} be a basis of
Im g and extend this to a basis {b1,...,bn—_2p,9(¢1),...,9(cp)} of Kerg.
Show that

{blg ceeybn_2p, 9(61)7 Clyaeey g(cp)a cp}
is a basis of V]

Let V be a finite-dimensional vector space and let t € L(V, V') be such
that ¢ # idy and ¢t # 0. Is it possible to have Imt N Kert # {0}? Is
it possible to have Imt¢ = Kert? Is it possible to have Im¢ C Kert? Is
it possible to have Kert C Imt? Which of these are possible if ¢ is a
projection?

Is it possible to have projections e, f € L(V,V) with Kere = Ker f and
Ime # Im f? Is it possible to have Ime = Im f and Kere # Ker f7? Is it
possible to have projections ¢, f with eo f =0 but foe# 07

Let V be a vector space over a field of characteristic not equal to 2. Let
e1,e2 € L(V,V) be projections. Prove that e; + e is a projection if and
only ife; oex = ez 0e; = 0.

If e; + e5 is a projection, find Im(e; + e2) and Ker(e; + e3) in terms
of the images and kernels of e, ez.

Let V be the subspace of IR® given by
V ={(a,a,0) | a € R}.

Find a subspace U of IR® such that R® =V @ U. Is U unique? Find a
projection ¢ € L£(IR?,IR?) such that Ime = V and Kere = U. Find also
a projection f € £(IR?,IR?) such that Imf = U and Ker f = V.

7
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1.14 IfV isa finite-dimensional vector space over a field F and ¢, f € L(V,V)

1.16

are projections prove that Ime = Im fif and only ifeof = f and foe=e.
Suppose that e;,...,ex € L(V,V) are projections with

Ime; =Imey = +++ = Imeg.
Let A1, Az,..., Ak € F be such that E?=1 A; = 1. Prove that
e=Ae; + Azes + -+ -+ Apeg

is a projection with Ime = Ime;.
Is it necessarily true that if f1,..., fi € L(V,V) are projections and

?:1 A¢ =1 then E?zl Aifi is also a projection?

A net over the interval [0,1] of IR is a finite sequence (@:)o<i<n+1 such
that

0=ay<a1 < -~ <ap<apy1 =1
A step functionon [0, 1] is a mapping f : [0, 1[— IR for which there exists

a net (a;)o<i<n+1 over [0,1] and a finite sequence (b;)o<i<n of elements
of IR such that

(Vz € [as, ai41]) f(z) = b,
Show that the set E of step functions on [0,1] is a vector space over IR
and that a basis of E is the set {ex | k € [0, 1[} of functions e : [0,1[— R
given by

ex(z) = {0 ifo<z<k;

1 fk<z<l.

A piecewise linear function on [0,1[ is a mapping f : [0,1[— IR for
which there exists a net (a¢)o<i<n+1 and sequences (bs)o<i<n, (¢)o<i<n
of elements of IR such that

(Vz € a4, @iy1]) f(z) = biz + ;.

Let F be the set of piecewise linear functions on [0,1[ and let G be
the subset of F' consisting of the piecewise linear functions g that are
continuous with g(0) = 0. Show that F, G are vector spaces over IR and
that F = E®G.
Show that a basis of G is the set {gx | k € [0,1[} of functions given
by
_ 0 ifo<z<k;
9’°(")‘{x—k fk<z<l.
Finally, show that the assignment

&
1) = [ e
describes an isomorphism from ¥ to G.

8



1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1: Direct sums and Jordan forms

Let V be a vector space over a field F and let ¢ € L(V,V). Let A; and
Az be distinct eigenvalues of ¢ with associated eigenvectors v; and vy, Is
it possible for A; + A2 to be an eigenvalue of $? What about A; A2?

Let t € £(€?,€?) be given by
t(a,b) = (a +2b,b — ).

Find the eigenvalues of t and show that there is a basis of €2 consisting
of eigenvectors of t. Find such a basis, and the matrix of ¢ with respect
to this basis.

Suppose that t € L(V,V) has zero as an eigenvalue. Prove that ¢ is not
invertible. Is it true that ¢ is invertible if and only if all the eigenvalues
of ¢ are non-zero? If ¢ is invertible, how are the eigenvalues of ¢ related
to those of t—17

Let V be a vector space of finite dimension over @ and let t € L(V, V)
be such that {™ = 0 for some m > 0. Prove that all the eigenvalues of ¢
are zero. Deduce that if £ # O then ¢ is not diagonalisable.

Consider ¢t € £(IR?,IR?) given by
t(a,b) = (a + 4b, Za — b).

Find the minimum polynomial of £.

Let F be a field and let Fy,41[X] be the vector space of polynomials of
degree less than or equal to n over F. Define t : Fyy1[X] = Fpy1[X]
by t(f(X)) = f(X + 1). Show that ¢ is linear.

Find the matrix of ¢ relative to the basis {1, X,..., X"} of F,,[X].
Find also the eigenvalues of ¢. If g(X) = (X — 1)"*! show that g(¢) = 0.
Hence find the minimum polynomial of {.

If V is a finite-dimensional vector space and t € L(V,V') is such that
t? = idy prove that the sum of the eigenvalues of ¢ is an integer.

For each of the following real matrices, determine

(i) the eigenvalues;
(i) the geometric multiplicity of each eigenvalue;
(iii) whether it is diagonalisable.
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1.24

1.26

1.26

For those matrices A that are diagonalisable, find an invertible matrix
P such that P~1 AP is diagonal.

3 _1 3 —1 1 7 -1 2
(a’) l__l 30 (b) -1 5 -1y, (C) -1 7 2],
1 -1 3 -2 2 10
21 -1 1 01
(@lo 2 1|, (] 0 2 1|
0 0 1 -1 0 3

Consider the sequence described by

where ap41 = ay +2by, and bpy1 = a, + by
Find a matrix A such that
Gn
bn ’

Cn41
=A
|: bn+ 1 ]
By diagonalising A, obtain explicit formulae for a, and b, and hence

show that a
lim =% =+2.

n—o0 bn

Let ¢ be a singular transformation on a real vector space V. Let f(X)
and g(X) be real polynomials whose highest common factor is 1. Let
a = f(t) and b= g(?).

Prove that every eigenvector of ac b that is associated with the eigen-
value 0 is the sum of an eigenvector of a associated with the eigenvalue
0 and an eigenvector of b associated with the eigenvalue 0.

Suppose that s,t € L(V,V) each have n = dimV distinct eigenvalues
and that sot =1£os. Prove that, for every A in the ground field F,
Cr={veV | tlv) = v}

is a subspace of V. Show that C) is s~invariant and that, when A; is an
eigenvalue of ¢, the subspace C), has dimension 1.

Hence show that the matrix of s with respect to the basis of eigenvec-
tors of t is diagonal.

10



1.27

1.28

1.29

1: Direct sums and Jordan forms

Let u be a non-zero vector in an n~dimensional vector space V over a
field F, let t € L(V,V), and let U be the subspace spanned by

{u,t(u),t3(),...,t" 1 (u)}.
Show that there is a greatest integer r such that the set

{u,t(u),t%(u), ..., t" (u)}
is linearly independent and deduce that this set is a basis for U. Show
also that U is t-invariant.

Show that there is 2 non-zero monic polynomial f(X) € F[X] of de-
gree r such that [f(t)](u) =0. I{ ¢y : U — U is the linear transformation
induced by £, show that its minimum polynomial is f(X).

In the case where u = (1,1,0) € IR® and ¢ is given by

t(z’ y,z) = (I +y,z—y, z))
find the minimum polynomial of ¢ .

Let r, s,? be non-zero linear transformations on a finite-dimensional vec-
tor space V such that rotor =0. Let p=ros and g =ro(s+t)
and suppose that the minimum polynomials of p, g are p(X), ¢(X) re-
spectively. Prove that (with composites written as products)

(1) ¢" =p"* g and p" = q"'pfor all n > 1;

(2) p(X) and gq(X) are divisible by X

(3) g satisfies Xp(X) = 0, and p satisfies Xq(X) = 0.

Deduce that one of the following holds :

(i) p(X) = q(X);

(i) p(X) = Xq(X);
(iii) ¢(X) = Xp(X).

A 3 x 3 complex matrix M is said to be magic if every row sum, every
column sum, and both diagonal sums are equal to some ¢ € €.

If M is magic, prove that 4 = 3mgg. Deduce that, given o, 8,9 € C,
there is a unique magic matrix M(a,B,~) such that

megz=a, my=a+f, my=at+n.
Show that {M(a,f,7) | a,8,7 € €} is a subspace of Mat;x3(C) and
that

B = {M(1,0,0), M(0,1,0), M(0,0,1)}
is a basis of this subspace.

If f:€® — € represents M(a, B, ) relative to the canonical basis
{e1,€e2,e3}, show that e; +e3 + e is an eigenvector of f. Determine the
matrix of f relative to the basis {e; + e; + e3,e2,€e3}. Hence find the
eigenvalues of M(a, 8, 7).

11
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1.30

1.31

1.82

Let V be a vector space of dimension n over a field . A linear frans-
formation f:V — V (respectively, an n X n matrix A over F) is said to
be nilpotent of indez p if there is an integer p > 1 such that f7=! £ 0
and fP = 0 (respectively, AP~ # 0 and A” =0).

Show that if f is nilpotent of index p and z € V\{0} is such that

fP71(z) #0 then
{z,f(z),..., /7' (=)}

is a linearly independent subset of V. Hence show that f is nilpotent
of index n if and only if there is an ordered basis of V' with respect to
which the matrix of f is
0 0
I,., of

Deduce that an n X n matrix A over F is nilpotent of index n if and
only if A is similar to this matrix.

Let V be a finite-dimensional vector space over IR and let f:V — V be
a linear transformation such that f o f = —idy. Extend the external
law RxV — V to an external law € xV — V by defining, forallz eV
and all  +:8 € €,

(a +if)z = az — Bf(z).

Show that in this way V becomes a vector space over €. Use the identity

r r r
Z(/\t — ) vy = z/\tvt +Z#tf(vt)
t=1 t=1 t=1

to show that if {v;,...,v.} is a linearly independent subset of the €-
vector space V then {vy,...,v,, f(v1),..., f(vr)} is a linearly indepen-
dent subset of the IR—vector space V. Deduce that the dimension of V'
as a vector gpace over C is finite, n say, and that dimg V = 2n.

Hence show that a 2n X 2n matrix A over IR is such that A2 = — I,
if and only if A is similar to the matrix

0 _In
In 0 )
Let A be a real skew-symmetric matrix with eigenvalue A. Prove that

the real part of A is zero, and that X is also an eigenvalue.

12



1.33

1.34

1: Diwrect sums and Jordan forms

H(A-AN?Z =0and Y = (A — AI)Z show, by evaluating Yy,
that ¥ = 0. Hence prove that A satisfies a polynomial equation without
repeated roots, and deduce that A is similar to a diagonal matrix.

If z is an eigenvector corresponding to the eigenvalue A = 1o and if
u=z+T,v=1i(z — T) show that

Au=av, Av=—ou.

Hence show that A is similar to a diagonal block matrix

0
Ay
A

where each A; is real and of the form

0 2.5
—0 0 '
Let V be a vector space of dimension 3 over IR and let £ € £(V,V) have

eigenvalues —2,1,2. Use the Cayley-Hamilton theorem to express 2"
as a real quadratic polynomial in &.

Let V be a vector space of dimension n over a field F and let f € L(V,V)
be such that all the zeros of the characteristic polynomial of f lie in F'.

Let A; be an eigenvalue of f and let b; be an associated eigenvector.
Let W be such that V = Fb; ®W and let (b])2<i<n be an ordered basis
of W. Show that the matrix of f relative to the basis {b;,b5,...,b}} is

of the form ,
/\l ﬁlz T )Gin
0 M
Observe that in general f,,..., 81, are non-zero, so that W is not f-

invariant. Let 7 be the projection of V onto W and let g = o f. Show
that W is g-invariant and that if ¢’ is the linear transformation induced
on W by g then Mat (¢', (b;)) = M. Show also that all the zeros of the
characteristic polynomial of ¢’ lie in F.

Deduce that f is triangularisable in the sense that there is a basis B
of V relative to which the matrix of f is upper triangular with diagonal
entries the eigenvalues of f.

13
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1.36

1.36

1.37

1.38

1.39

Linear algebra

Suppose that ¢t € L(IR?, R®) is given by
t(a,b,¢) = (2a+ b—¢,—2a — b+ 3¢, ¢).
Find the eigenvalues and the minimum polynomial of ¢, Show that ¢ is

not diagonalisable. Find a basis of IR® with respect to which the matrix
of ¢ is upper triangular.

Let V = Q3[X] be the vector space of polynomials of degree less than
or equal to 2 over the field Q. If ¢t € L(V,V) is given by

t(1) = —-5-8X —5X?
t(X)=1+X+X°
t(X?) =44+ 7X +4X3,

show that ¢ is nilpotent. Find a basis of ¥V with respect to which the
matrix of ¢ is upper triangular.

For each of the following matrices A find a Jordan normal form and an
invertible matrix P such that P~! AP is in Jordan normal form.

39 —64 1 1]
(a) lz5 —41]’ ®1 o 1
1 3 —2 (3 0 1]
(c)lo 7 —4|, (& |0 3 0.
0 9 -5 0 0 3
Find a Jordan normal form J of the matrix
(2 1 1 1 0]
0 2 0 00
A=|0 0 2 1 of.
0 0 0 11
0 -1 -1 -1 0

Find also a Jordan basis and hence an invertible matrix P such that
PlAP=1.

For each of the following matrices A find a Jordan normal form J, a
Jordan basis, and an invertible matrix P such that P~1 AP = J.

22 -2 -12 —;2 1§ (1) 3

(@) |20 o0 -12], (b) )
30 -3 -—16 8 -5 0 -1
—22 13 5 5

14



1.40

1.41

1.42

1.43

1.44

1.45

1: Direct sums and Jordan forms

Find a Jordan normal form and a Jordan basis for the matrix

(5 -1 -3 2 —5]
0 2 00 O
1 0 11 -2/
0 -1 3
1 -1 -1 1 1

Find the minimum polynomial of the matrix

[ 1 0 -1 1 0]
4 1 -3 2 1
A=|-2 -1 o0 1 1.
3 -1 -3 4 1
| -8 -2 -7 5 4]

From only the information given by the minimum polynomial, how many
essentially different Jordan normal forms are possible? How many lin-
early independent eigenvectors are there? Does the number of linearly
independent eigenvectors determine the Jordan normal form J? If not,
does the information given by the minimum polynomial together with
the number of linearly independent eigenvectors determine J?

Find a Jordan normal form of the differentiation map D on the vector
space IR4[X] of polynomials of degree less than or equal to 3 with real
coefficients. Find also a Jordan basis for D on IR4[X].

If a 3 x 3 real matrix has eigenvalues 3,3,3 what are the possible Jordan
normal forms? Which of these are similar?

Which of the following are true? If A, B € Maty,x,(C) then AB and BA
have the same Jordan normal form
(i) if A and B are both invertible;
(ii) if one of A, B is invertible;
(iii) if and only if A and B are invertible;
(iv) if and only if one of A, B is invertible.

Let V be a vector space of dimension n over €. Let ¢t € L(V,V) and let
A be an eigenvalue of t. Let J be a matrix that represents ¢ relative to
some Jordan basis of V. Show that there are

dim Ker(t — Aidy)
15
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blocks in J with diagonal entries A.
More generally, if n; is the number of X4
A and d; = dim Ker(t — Aidy )*, show that

Linear algebra

blocks with diagonal entries

di=ny+2n2+ ---+ (- ng_y +i(ng +nip0 +...).

Deduce that ny = 2d; — di—y — diy1.

-1
-1
-1

-1
-1
-1l

3

1.46 Find a Jordan normal form J of the matrix
0 1 0
-2 3 0
A= -2 1 2
2 -1 0
Find also a Jordan basis and an invertible matrix P such that P~1 AP =
J.
Hence solve the system of differential equations
z! 0 10
zh _|-2 30
z! 2 1 2
z, 2 -1 0

1

Z2

X3 ’
3 x4

1.47 Solve each of the following systems of differential equations :

(821 _
dz; gt ATt
W =5z 4+ 4z, dzo
(Cl) dﬂ B (b) 4 W =z + 2$2 — X3
t 1 dx
d \d—:=$1—22+2$2
( dz ( dz
d—;—5I1+6172+6.'B3—0 d—;=21+322—2$3
dz dz
(¢) < d—:+z1—41:2—2x3=0 (d)ﬁ d—t2=7x2—4x3
dZ3 _ dCL'3 _
k?~-3:z:1+6:t:2-l—4;:1:3—0 k?—9:1:2—533
1.48 Solve the system of differential equations
dyi  ,dya | dys _
dz _3dx +2dz =
dys dys
5= +4-== =
dz + dz 42
dy2 | ., dYs
s Yt LRI, Jud A
dz + dz ys



1: Direct sums and Jordan forms

1.49 Solve the system of differential equations

dﬂ—x +z
d1‘,'2
W=211 + 3z,

given that z,(0) = 0 and z2(0) = 1.
1.60 Show how the differential equation

" — 22" —4z' + 8z =0

can be written as a first-order matrix system X' = AX. By using the
method of the Jordan normal form, solve the equation given the initial
conditions

17



2: Duality and normal transformations

The dual of a vector space V over a field F is the vector space V¢ =
L(V,F) of linear functionals f : V — F. If V is of finite dimension
and B = {vy,...,v,} is a basis of V then the basis that is dualto B is
B¢ = {v¢,...,v2} where each v¢ : V — F is given by

1 if ¢ =3
v (vs) = { 0 Wiy
For every z € V' we have

z = vi(z)v) +v3(z)ve + -+ - + v (2)vp;

and for every f € V¢ we have
f = flor)of + f(va)vg + -+ f(vn)vy -

If (vs)n, (wi)y are ordered bases of V and (v#)y,, (w#)y, the correspond-
ing dual bases then the transition matrix from (v¢), to (w¢), is (P~!)*
where P is the transition matrix from (v;)p to (w;)n. In particular,
consider V = R". Note that if

B = {(alla"-xaln)a(a2ls"'sa2n): vy (anlx-”aann)}

is a basis of IR™ then the transition matrix from B to the canonical basis
(e)n of R™ is M = [myj]lnxn Where my; = aj;. The transition matrix
from B¢ to (ef)y, is given by (M~!)?. We can therefore usefully denote
the dual basis by

B= {[alla-"salnla[ama"'1a2n]1 ey [anl)'“:aun]}



2: Dualsty and normal transformations

where [o,. ..,y ] denotes the ith row of M~!, so that
[aily-' ':ain](zl’--wxn) =0z + -+ OgpZn.

The bidual of an element z is z* : V¢ — F where z*(y%) = y¥(z). It
is common practice to write y%(z) as (z, y?) and say that y® annthilates
z if {z,y?) = 0. For every subspace W of V the set

Wt ={yecV?| (VzeW)(z,y*) =0}
is a subspace of W and
dimW + dimW* =dimV.

The transpose of a linear transformation f : V — W is the linear
mapping ft : W¢ — V¢ described by y% — y? o f. When V is of finite
dimension we can identify V and its bidual (V4)¢, in which case we have
that (f*)* = f. Moreover, if f : V — W is represented relative to fixed
ordered bases by the matrix A then f* : W¢ — V4 is represented relative
to the corresponding dual bases by the transpose A* of A.

If V is a finite-dimensional inner product space then the mapping
Yy : £ — 2% describes a conjugate isomorphism from V to V¢, by which
we mean that

(z+y)?=2z%+y? and (Az)? =Xzl
The adjoint f*:W — V of f:V — W is defined by
=01 flody

and is the unique linear transformation such that

(Vz,yeV)  (f(z)ly) = (=] f*(v))-

We say that f is normal if it commutes with its adjoint. If the matrix
of f relative to a given ordered basis is A then that of f* is A We say

that A is normal if it commutes with A°. A matrix is normal if and only
if it is unitarily similar to a diagonal matrix, i.e. if there is a matrix U
with U~ = T* such that U~ AU is diagonal. A particularly important
type of normal transformation occurs when the vector space in question
is a real inner product space, and topics dealt with in this section reach
as far as the orthogonal reduction of real symmetric matrices and its
application to finding the rank and signature of quadratic forms.

15
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2.1

2.2

2.3

24

2.5

2.6

2.7

Determine which of the following mappings are linear functionals on the
vector space IR3|X] of all real polynomials of degree less than or equal
to2:

(@ f=f5 B f— | fi () f= f(2);

@ fe1'2s () f- | 2.

Let C[0,1] be the vector space of continuous functions f : [0,1] — IR. If
Jo is a fixed element of C|0, 1], prove that ¢ : C[0, 1] — IR given by

o= [ " folt) £(2)

is a linear functional.

Determine the basis of (IR®)% that is dual to the basis

{(1: 07 _1)7 (_1; 110)’ (07 l’ l)}
of IR®.

Let A = {z,,22} be a basis of a vector space ¥V of dimension 2 and let
A% = {41, 3} be the corresponding dual basis of V¢, Find, in terms of
©1, p2 the basis of V¢ that is dual to the basis A’ = {z) + 222, 3z; +422}
of V.

Which of the following bases of (IR%)¢ is dual to the basis {(—1,2), (0, 1)}

of IR??
(a) {[_1: 2]7 [0: 1]}; (b) {[_1:0]: [2: 1]};
(c) {[_1’ 0]7 [_2: 1]}; (d) {[17 0]} [2: _1]}'

(i) Find a basis that is dual to the basis
{(47 57 _27 11)7 (37 47 _2:6)7 (2:37 "'17 4)1 (17 17 _173)}

of IR%.
(ii) Find a basis of IR* whose dual basis is

{I2,-1,1,0],[-1,0,-2,0],[-2,2,1,0],[-8,3,-3,1]}.

Show that if V' is a finite-dimensional vector space over a field F' and if
A, B are subspaces of V such that V = A® B then V¢ = A1 @ BL.
Is it true that if V = A® B then V¢ = 4% @ B%?

20



2‘8

2.9

2.10

211

2: Dualsty and normal transformations

Let IR3[X] be the vector space of polynomials over IR of degree less
than or equal to 2. Let ;,%3,%3 be three distinct real numbers and for
t = 1,2, 3 define mappings f; : IR3[X] — IR by

fi(p(X)) = p(%:).

Show that B¢ = {fi, f2, fa} is a basis for the dual space (IR3[X])¢ and
determine a basis B = {p;(X), p2(X),p3(X)} of R3[X] of which B¢ is
the dual.

Let @ = (1,2) and B = (5,6) be elements of IR? and let ¢ = [3, 4] be an
element of (IR?)%. Determine

(a) &*(#); (b) B (#);
(c) 2a+38) ®);  (d) (2a + 38)*([a, B])-

Prove that if S is a subspace of a finite-dimensional vector space V' then
dim § + dim §* = dim V.,
If t e £(U,V) and t¢ € £(V¢,U?) is the dual of ¢, prove that
Kert® = (Im¢)*.

Deduce that if v € V then one of the following holds :
(i) there exists u € U such that t(u) = v;
(ii) there exists ¢ € V¢ such that t¢(p) = 0 and p(v) = 1.

Translate these results into a theorem on solving systems of linear
equations.
Show that (i) is not satisfied by the system

3z4+ y=2
z+2y=1
—z+3y=1.

Find the linear functional ¢ whose existence is guaranteed by (ii).

If s, : U — V are linear transformations, show that
(sot)? =10 4%,

Prove that the dual of an injective linear transformation is surjective,
and that the dual of a surjective linear transformation is injective,
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2.12

2.13

2.14

2.15

Let t € £(IR?,IR?) be given by the prescription
t(a,b,c) = (2a+ b,a+ b+ ¢, —c).

K X= {(1,0,0), (1: 1 0)1 (lx 1, 1)} and Y? = {[1:01 0]: [11 110]: [11 1, 1]}1
find the matrix of {4 with respect to the bases Y¢ and X¢.

Let {a;, g, a3} and {@;,az,a}} be bases of IR® that differ only in the
third basis element. Suppose that {1, ¥2, %3} and {©}, ©h, ¢} } are the
corresponding dual bases. Prove that ¢} is a scalar multiple of 3.

Let C|0, 1] denote the space of continuous functions on the interval [0, 1].
Given g € C[0,1], define L, : C[0,1] — IR by

L= [ oror

Show that L, is a linear functional.

Let z be a fixed element of [0,1] and define F, : C[0,1] — IR by
F.(f) = f(z). Show that F, is a linear functional. Show also that there
is no g € C[0, 1] such that Fy = L,.

By a canonical tsomorphism ¢ : V — V% we mean an isomorphism ¢
such that, for all z,y € V and all isomorphisms f: V — V, we have

(%) (z,¢(¥)) = (f(=) s [f (D]}

where the notation (z,¢(y)} means [¢(y)]|(z).

In this exercige we indicate a proof of the fact that if V is of dimension
n > 1 over F then there is no canonical isomorphism ¢ : V — V¢ except
when n = 2 and F has two elements.

If ¢ is such an isomorphism show that, for y # 0, the subspace
Ker¢(y) = {¢(y)}* is of dimension n — 1.

Suppose first that n > 3. If there exists ¢ € Ker ¢(t) for some ¢ #£ 0
let {t,z1,...,Zn—2} be a basis of Ker¢(t) and extend this to a basis
{t,z1,...,Zn—2,2} of V. Let f : V — V be the (unique) linear trans-
formation such that

f6) =t, f(z1) = 2, f(2) = 7, and f(z;) = z; fori # 1.

Show that f is an isomorphism that does not satisfy (x). [Hint. Take
z = z;,y = t] H, on the other hand, ¢ ¢ Ker¢(t) for all ¢ # 0 let

22



2.16

2: Duality and normal transformations

{Z1,...,Zn—1} be a basis of Ker¢(t) so that {z1,...,2,_1,t} i a basis
of V. Show that
{z1 + z2,%2,%3,...,Zn—1,t}

is also a basis of V. Show also that zo € Ker¢(z;). Now show that if
f:V =V is the (unique) linear transformation such that

f(Il) = %2, f(I2) = I1 + T2, f(t) =1t, f(zt') = Zy (37& 1:2)

then f is an isomorphism that does not satisfy (x). Conclude from these
observations that we must have n = 2.

Suppose now that ¥ has more than two elements and let A € F be such
that A # 0, 1. If there exists ¢ # 0 such that ¢ € Ker¢(t) observe that {t}
is a basis of Ker¢(t) and extend this to a basis {t,2z} of V. If f:V - V
is the (unique) linear transformation such that f(f) = ¢, f(z) = Az
show that f is an isomorphism that does not satisfy (x). [Hint. Take
z = z,y = t.| i, on the other hand, t ¢ Ker¢(t) for all ¢t # 0 let {2z} be
a basis for Ker¢(t) so that {z,t} is a basisfor V. If f : V — V is the
(unique) linear transformation such that f(2) = Az, f(t) = ¢ show that
f is an isomorphism that does not satisfy (). [Hint. Take z = y = 2|
Conclude from these observations that F must have two elements.

Now examine the vector space F? where F = {0, 1}.

[Hint. (F2)? is the set of linear transformations f : F x F — F. Since
F? has four elements there are 2* = 16 laws of composition on F. Only
four of these are linear transformations from F? to F; and each of these
is determined by its action on the natural basis of F2. Compute (F2)¢
and determine a canonical isomorphism from F? onto (F2)4

Let V be an inner product space of dimension k and let U be a subspace
of V of dimension k — 1 (a hyperplane). Show that there exists a unit
vector n in V such that

U={zeV | (n|z)=0}.
Given v € V, define
v/ = v—2(n|v)n.

Show that v — o' is orthogonal to U and that (v + v') € U, so that ¢/

is the reflection of v in the hyperplane U. Show also that the mapping
t:V — V defined by
t(v) =

is linear and orthogonal. What can you say about its eigenvalues and
eigenvectors?
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2.17

2.18

2.19

2.20

If s : IR® - IR® and ¢ : IR* — IR? are respectively reflections in the
plane 3z — y + z = 0 and in the hyperplane 2z — y + 2z — ¢t = 0, show
that the matrices of s and ¢ are respectively

1_23"‘; 1{ 2 4 2 -1
L —_—
1| o 5 5/—-4 2 1 2

Find the equations of the principal axes of the hyperbola
—z2 + 6zy — y2 =1.
Find also the equations of the principal axes of the ellipsoid
722 + 6y% + 522 + dzy — dyz = 1.

Let V be a finite-dimensional inner product space and let f: V — V
be linear. Show that if A is the matrix of f relative to an orthonormal
basis B of V then the matrix of the adjoint f* of f relative to B is the
transpose of the complex conjugate of A.

For every A € Mat, «,(€) define the trace of A by tr(A) = E?:l Qige
Show that if V' is the vector space of n X n matrices over € then the
mapping

(A, B) — (A|B) = tr(B*A),

where B* denotes the transpose of the complex conjugate of B, is an
inner product on V.,
Consider, for every M € V, the mapping fas : V — V defined by

fn(A) = MA.
Show that, relative to the above inner product,
(fm)* = faas-

Let V be a finite-dimensional inner product space. Show that for every
f € V¢ there is a unique # € V such that

(VzeV)  f(z)=(alB).
24



2: Duality and normal transformations

[Hint. Let {ay,...,an} be an orthonormal basis of V and consider

A= Zf(a.-) o. |

Show as follows that this result does not necessarily hold for inner
product spaces of infinite dimension. Let ¥V be the vector space of poly-
nomials over €. Show that the mapping

1

(r,q) = (plg) = [ p(t) q(t) dt

0

is an inner product on V. Let z be a fixed element of € and let f € V¢
be the ‘evaluation at 2’ map given by

(VvpeV)  f(p) =p(2)

Show that there is no g € V such that (Ype V) f(p) = (plg).
[Hint. Suppose that such a q exists. Let r € V be given by (t) =t — z
and show that, for every pe V,

0= fo () p(8) 700 .

Now let p be given by p(t) = r(t)q(t) and deduce the contradiction
q=0]

For the rest of this question let V continue to be the vector space of
polynomials over € with the above inner product. If p € V is given by
p(t) = Y ait* define p € V by p(t) = Y. axt*, and let f, : V — V be

given by
(VaeV)  fule) =rq

where, as usual, (pg)(¢) = p(t)q(t). Show that (f,)* exists and is f5.
Now let D : V — V be the differentiation map. Show that D does

not admit an adjoint.

[Hint. Suppose that D* exists and show that, for all p,g €V,

{p| D(q) + D*(q)) = p(1)3(1) — p(0)7(0).

Suppose now that g is a fixed element of V such that ¢(0) = 0 and
q(1) = 1. Use the previous part of the question (with 2 = 1) to obtain
the required contradiction.]
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2.21

2.22

2.23

2.24

Let C][0,1] be the inner product space of real continuous functions on
[0,1] with the integral inner product. Let K : C[0,1] — C|0, 1] be the
integral operator defined by

K(f) = fo 2y f(y) dy.

Prove that K is self-adjoint.
For every positive integer n let f,, be given by

2

falz) = 2" - n+2°

Show that f,, is an eigenfunction of K with associated eigenvalue 0. Use
the Gram-Schmidt orthonormalisation process to find two orthogonal
eigenfunctions of K with associated eigenvalue 0.

Prove that K has only one non-zero eigenvalue. Find this eigenvalue
and an associated eigenfunction.

Let ¢ be a skew-adjoint transformation on a unitary space V.. Prove that
id £t is a bijection and that the transformation

s = (id —t)(id +¢)!

is unitary. Show also that s cannot have —1 as an eigenvalue.

If S is a real symmetric matrix and T is a real skew-symmetric matrix
of the same order, show that

det(I— T —1S) #0.
Show also that the matrix
U=(I+T+iS)(I-T- is)™!

is unitary.

Let A be a real symmetric matrix and let § be a real skew-symmetric
matrix of the same order. Suppose that A and S commute and that
det(A — S) # 0. Prove that

(A+8S)(A-8)""
is orthogonal.
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2.26

2.26

2.27

2.28

2.29

2.30

2.31

2‘32

2.33

2: Duality and normal transformations

A complex matrix A is such that ry
of A are either 0 or —1.

Let A and B be orthogonal n X n matrices with det A = —det B. Prove
that A 4+ B is singular.

A = — A, Show that the eigenvalues

Let A be an orthogonal n X n matrix. Prove that

(1) ifdet A =1 and n is odd, or if det A = —1 and n is even, then 1 is
an eigenvalue of A;
(2) if det A = —1 then —1 is an eigenvalue of A.

If A is a skew-symmetric matrix and g(X) is a polynomial such that
g(A) = 0, prove that g(—A) = 0. Deduce that the minimum polynomial
of A contains only terms of even degree.

Deduce that if A is skew-symmetric and f(X), g(X) are polynomials
whose terms are respectively odd and even then f(A), g(A) are respec-
tively skew-symmetric and symmetric.

For every complex n X n matrix A let

N(A) = tr(A 4) = f:[‘A*A],-.-.

t=1
Prove that, for every unitary n x n matrix U,
N(UA)=N(AU)=N(A) and N(A-U)=N(I,-U"'A).

If the matrix A is normal and non-singular prove that so is A™1.

Prove that 4 = p(A) for some polynomial p(X) if and only if 4 is
normal.

Prove that if A is a normal matrix and g(X) is any polynomial then
g(A) is normal.

If A and B are real symmetric matrices prove that A + ¢B is normal if
and only if A, B commute.

Let A be a real skew-symmetric n X n matrix. Show that det(—A) =
(—1)™det A and deduce thst if n is odd then det A = 0. Show also that
every quadratic form z* Az is identically zero.

Prove that the non-zero eigenvalues of A are of the form tu where
g €R. If £ = y+ iz where y,z € IR” is an eigenvector associated with
the eigenvalue iy, show that Ay = —puz and Az = py. Show also that
y*y = 2'z and that y*z = 0. If Ay = 0 show also that u'y = utz =0.
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2.34

2.36

2.36

2.87

Find the eigenvalues of the matrix

0 2 -2
A=}-2 0 -1
2 1 0

and an orthogonal matrix P such that

0 00
P!tAP={0 0 3/|.
0 -3 0

Consider the quadratic form g(z) = z*Az on IR™. Prove that g(z) > 0
for all z € IR™ if and only if the rank of g equals the signature of q.
Prove also that g(z) > 0 for all z € IR" with g(z) = 0 only when z =0
if and only if the rank and signature of ¢ are each n.

With respect to the standard basis for IR?, a quadratic form g is repre-
sented by the matrix

1 -1
A= 11 0
-1 0 -1

Is g positive definite? Is g positive semi-definite? Find a basis of IR®
with respect o which the matrix representing ¢ is in normal form,

Let f be the bilinear form on IR? x IR? given by

f((z1,22), (y1,¥42)) = 211 + Z1¥2 + 222y1 + Zay2.

Find a symmetric bilinear form g and a skew-gymmetric bilinear form A

such that f = g+ A.

Let g be the quadratic form given by g(z) = f(z,z) where z € IR%.
Find the matrix of ¢ with respect to the standard basis. Find also the
rank and signature of . Is ¢ positive definite? Is g positive semi-definite?

Write the quadratic form
4z + 4y% + 42° — 2yz + 222 — 22y

in matrix notation and show that there is an orthogonal transformation
(z,y, #) — (4, v, w) which transforms the quadratic form to

3u® + 307 + 6w?.
Deduce that the original form is positive definite.
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2.38

2.39

2.40

241

2.42

2.43

2.44

2: Dualsty and normal transformations

By completing squares, find the rank and signature of the following
quadratic forms :

(1) 2y — 2% + zy + zz;
(2) 22y — zz — yz;
(3) yz+zz+ zy+zt + yt + 2t

For each of the following quadratic forms write down the symmetric
matrix A for which the form is expressible as z* Az. Diagonalise each of
the forms and in each case find a real non-singular matrix P for which
the matrix P*AP is diagonal with entries in {1,-1,0}.

(1) z2 + 2y% + 92% — 2zy + 422 — 6yz;

(2) 4zy + 2yz;

(3) z% + 4y® + 2% — 41? + 23y — 2zt + 6yz — 8yt — 14zt.

Find the rank and signature of the quadratic form

Qz1, .. 7n) = Y (3 — 2)2.

r<é

Show that the rank and signature of the quadratic form

n

z (Ars + r+ 8)z,z,

r.8=1

are independent of A.

Let A be the matrix associated with the quadratic form Q(zy,...,z,)
and let A be an eigenvalue of A. Show that there exist a;,...,ay, not all
zero such that

Q(al,...,an)=)\(af+ +ai).

If the real square matrix A is such that det A # 0 show that the quadratic
form zt A* Az is positive definite.

Let f : IR® X IR® — IR be a symmetric bilinear form and let @; be the
associated quadratic form. Suppose that @ is positive definite and let
g : IR®xIR™ — IR be a symmetric bilinear form with associated quadratic
form Q,. Prove that there is a basis of IR® with respect to which Q;
and @, are each represented by sums of squares.

For every z € R" let f, € (R®)? be given by f.(y) = f(z,y). Call
f degenerate if there exists z € IR™ with f; = 0. Determine the scalars
A € R such that g — Af is degenerate. Show that such scalars are the
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roots of the equation det(B — AA) = 0 where A, B represent f, g relative
to some basis of IR",

By considering the quadratic forms 2zy+2y2 and z2 — y? + 22z show
that the result in the first paragraph fails if neither f nor g is positive
definite.

2.45 Evaluate

o0 o0 o0
[ / f e~ (27 +v7 +2° ray+zatyz) g0 dy dz .
—00 vV —00 ¥V —0O0
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Solutions to Chapter 1

(i) False. For example, take b = —a;.
(ii) True.
(iii) False. {(1,1,1)} is a basis, so the dimension is 1.
(iv) False. For example, take A = {0} or A = {v,2v}.
(v) True.
(vi) False. For example, take A = IR",
(vii) True.
(viii) False. {(z, Az) | z € IR} is a subspace of R? for every A € R.
(ix) True.
(x) True.
(xi) False. An isomorphism is always represented by a non-singular
matrix.
(xii) False. Consider, for example, IR? and €2. The statement is true,
however, if the vector spaces have the same ground field.

(xiii) False. 2 (1) is a counter-example.

(xiv) False. For example,

ol o o)

(xvi) True. '
(xvii) False. Take, for example, f,g: R" — IR" given by f(z,y) = (0,0)
and g(z,y) = (z,y). Relative to the standard basis of IR" we see
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that f is represented by the zero matrix and g is represented by
the identity matrix; and there is no invertible matrix P such that
P lLP=0.

(xviii) True.

(xix) False. The transformation ¢ is non-singular (an isomorphism), but

1 2 |® singular,

(xx) False. The matrix is not diagonalisable.

1
01
1.2 We have that

(a,b,¢) € Kert; < (a+b,b+c,c+a)=(0,0,0)
< a=b=c=0

and so Kert; = {0}. It follows from the dimension theorem that Im#; =
R®.
As for t3, we have

(a,b,c) €Kerty <= a—b=0,b—c=0
< a=b=c

and so Kerts = {(a,a,a) | a € R}. It is clear from the definition of ¢,
that Imt; = {(e,5,0) | a,b €IR}.

Likewise, it is readily seen that

Kert; = {0}, Imts; = R®,

Kert, = {(0,0,a) | a €IR}, Imt,={(a,b,b) | a,beR}.
If Kert; NImt; = {0} then by the dimension theorem we have

dim(Kert; + Im#;) = dim IR®

and so Kert; +Imt; = IR®. Now for 1 = 1,2, 3,4 we have from the above
that Kert; nIm#; = {0}. Thus we see that IR® = Kert; ® Im#; holds in
all cases.

Imt, is t3-invariant. For, if v €Imi, then v = (a,5,0) and so

t3(U) = fg(a,b, 0) = (—b, a, 0) €Imi,.

However, Kert, is not ¢3-invariant. For (1,1,1) € Kerts but ¢3(1,1,1) =
(—1,1,1) ¢ Kert,.
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1.4

Solutions to Chapter 1

For the last part, we have that (¢ o ¢4)(a,b,c) = (—b,a,b) and that
(ta o t3)(a,b,c) = (—b, a,a). Consequently,

Ker(tz oty) = {(0,0,a) | a € R};
Im(tz ots) = {(—b,a,d) | a,b € R};
Ker(t4 ot3) = {(0,0,a) | a € R};
Im(ts o t3) = {(—b,a,a) | a,b € R}.

Reducing the matrix to row-echelon form we obtain

3 -1 1 [ 1 -1 3 1 -1 3
-1 5 =-1|— | -1 5 —-1|— |0 4 2
1 -1 3 3 -1 1 0 2 -8
[1 -1 3 1 -1 3
— |0 2 —8|— |0 2 —8]1.
0 4 2 0 0 18

Note that we have been careful not to divide by any number that is
divisible by either 2 or 3 (since these will be zero in Z; and Z3 respec-
tively).

(i) When F = IR the rank of the row echelon matrix is 3, in which case
dimIm¢ = 3 and hence dim Kert = 0.
(ii) When F = Z; we have that 2,18, —8 are zero so that the rank is 1,
in which case dimIm¢ = 1 and dim Kert¢ = 2.
(iii) When F = Z3; we have that 18 is zero so that the rank is 2, in
which case dimIm?¢ = 2 and dim Kert = 1.

V = Kert®Im¢ holds in cases (i) and (ii), but not in case (iii); for in
case (iii) we have that (1,1, 1) belongs to both Kert and Imt.

If sot = idy then s is surjective, hence bijective (since V is of finite
dimension). Then ¢ = s~! and so t o s = idy.

Suppose that W is t-invariant, so that ¢{(W) C W. Since ¢ is an
isomorphism we must have dim¢(W) = dim W and so t(W) = W. Hence
W = s[t(W)] = s(W) and W is s—invariant.

The result is false for infinite-dimensional spaces. For example, con-
sider the real vector space IR[X] of polynomials over IR. Let s be the
differentiation map and ¢ the integration map. We have s ot = id but
tos #id.
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1.5

1.6

1.7

KerD={a | a€ F} and Im D = {p(X) | degp(X) < n —2}. Clearly,
Im D is isomorphic to V,,_; and Ker D is isomorphic to F. Now Ker Dn
Im D # {0} since if a € F with a # 0 then the constant polynomial a
belongs to both.

The same results do not hold when the ground field is Z,. For exam-

ple, in this case we see that the polynomial X? belongs to the kernel of
D.

Let s,t € L(V,V). Then if w € Im(s o t) we have w = s[t(u)| for some
u € V which shows that w € Ims. Thus Im(sot) C Ims. The first
chain now follows by taking s = t®.

Similarly, if u € Kert™ then s[t"(u)] = s(0) = 0 gives u € Ker(s o t")
and so Kert™ C Ker(s o t?). The second chain now follows by taking
s=1.

Now we cannot have an infinite number of strict inclusions in the first
chain since X C Y implies that dim X < dimY, and the dimension of V
is finite. Hence the chain is finite. It follows that there exists a positive
integer p such that Im¢? = Im¢P*+* for all positive integers k. Since
dimIm ¢? 4+ dim Kert? = dim V' the corresponding results for the kernel
chain are easily deduced.

To show that V = Im ¢t @Ker ¢* it suffices, by the dimension argument,
to prove that Im¢? N Kert? = {0}. Now if z € Im¢? N Kert? then
tP(z) = 0 and there exists v € V such that z = tP(v). Consequently

0 = tP(z) = t*"(v)

and so v € Kert?? = Kert? whence z = t?(v) = 0.

For the last part, observe that if z € ImtP then z = tP(v) gives
t(z) = t#*!(v) € ImtP*! C Im#* and so Im¢P is t—invariant. Also, if
z € KertP then tP(z) = 0 gives tP*!(z) = 0 so t#[t(z)] = O whence
t(z) € Kert? and so Kert? is t-invariant.

H fo f=0then (Vz €V) f(z) € Ker f and so Im f C Ker f.
We know that

n=dimV =dimIm f + dim Ker f = r+ dim Ker f
and, by the above, dim Ker f > dimIm f = r. Hence 2r < n.
If W is a subspace such that V = Ker f @ W then we have that
dimV = dim Ker f + dim W and so

dimW =dimV — dim Ker f =dimIm f = r.
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If {w;,...,w,.} is a basis of W then for ¢ = 1,...,r we have f(w;) €
Im f C Kerf. Moreover, {f(w;),..., f(w,)} is linearly independent

gince . .
Z Aif(wi) =0= f(z Aiwe) =0
=1 1=1

= Z)\;w.- eKerf

=1

= Y hiw; € Ker f nW = {0}

t=1

= zr: Aswi =0
=1

=->(1:= 1,...,1') Ai=0.

Every linearly independent subset of a vector space can be enlarged to
form a basis so, since dim Ker f = n — r, we can enlarge the independent
subset {f(w),..., f(w,)} of Ker f to form a basis of Ker f. Thus we
may choose n — 2r elements zy,..., Zp—2,. of Ker f such that

{f(wl)" -°7f(wf)7zly v :zn—Zr}
is a basis for Ker f. Since V = W @ Ker f it follows that

{wl’-";wr:f(wl)"-°7f(wr)7$l;“""5n—2f}

is a basis for V.
Using the fact that fo f = 0 and each z; € Ker f it is readily seen
that the matrix of f relative to this basis is of the form

o,
I
0

o o o

Suppose now that A is a non-zero n X n matrix over F. If A2 =0
and if f : V — V is represented by A relative to some fixed ordered
basis then fo f = 0 and, from the above, there is a basis of V' with
respect to which the matrix of f is of the above form. Thus 4 is similar
to this matrix. Conversely, if M denotes the above matrix then clearly
M? = 0. So if A is similar to M there is an invertible matrix P such
that A = P~1MP whence A2 = P-'M?P = P~10P =0,
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1.8

(1) Sums and scalar multiples of elements of V;,V; are clearly elements
of V1, V5 respectively.

(2) f z € V; then z = z,(b; + by) + z2(ba + b3) shows that V) is
generated by {b; + b4, b2 + b3}. Also, if z;(b1 + bs) + Z2(b2 + b3) = 0
then, since {b;,bq,b3,bs} is a basis of V, we have z; = z, = 0. Thus
{b1 + ba, bz + b3} is a basis of V;. Similarly, {b; — by, b2 — b3} is a basis
of Vg.

(3) It is clear from the definitions of V; and V; that we have V; N
V2 = {0}. Consequently, the sum V; + V; is direct. Since V;,V; are of
dimension 2 and V is of dimension 4, it follows that V =V; @ Va.

(4) To find the matrix of idy relative to the bases B = {b;,b2, b3, bs}
and C = {b; + by, bx + b3, bo — b3,b; — by} we observe that

by = 2(b1 + ba) +0(bz + b3) + 0(bs — b3)
bz = 0(by +bs) + 5 (b2 + b3) + (b2 — b3
ba = 0(by + b4) + %(bz +b3) — %(bz — b3
by = 3(b1 + ba) + 0(bz + b3) +0(bz — b3) —

e’ et
+ + +
m-o o v=
e S o N e T e )

[~

S

|

b2l

'y

The matrix in question is therefore

Lo o}
ot L o
A=|g 1
o b
2 0 0 —3
It is readily seen that
Al =24=

-0 O =
o = -0
I
Q== O
—_ O O e

Suppose now that M is centro-symmetric; i.e. of the form

b d
f h
g e|
(o a

a o 8
Qo
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Solutions to Chapter 1

Let f represent M relative to the basis B. Then the matrix of f relative
to the basis C is given by AMA~!, which is readily seen to be of the
form

a g 00
|l 6 00
K_OOGS"

0 0 n ¢

Thus if M is centro-symmetric it is similar to a matrix of the form K.

If F is not of characteristic 2 then 15 + 1p # 0p. Writing 2 =15 + 1p
we have that -;- € F. Given z €V we then observe that

z=32+Lf(z)+ 52— 1f(2)
=32+ f(52) + 52— f(52)
= (idv +£)(5%) + (idv — f)(3%)

s0 V = Im(idy +f) + Im(idy —f). Also, if z € Im(idy +f) nIm(idy — f)
then z = y + f(y) = 2z — f(z) for some ¥,z € V and hence, since
f o f =idy by hypothesis,

fE)=fW+ff@=fy)+y=x
f(z) = f(z) - flf(2)] = f(z) — 2 = —x,

whence £ = 0. Thus V = Im(idv + f) ® Im(idv —f).

If A% = I,,, let f represent A relative to some fixed ordered basis. Then
fof =idv. Let {a1,...,ap} be a basis of Im(idv +f) and {ap+1,...,2n}
be a basis of Im(idy —f). Then {ai,...,a,} is a basis of V. Now since
a; = b+ f(b) for some b € V we have f(a;) = f(b)+ f[f(b)] = f(b) +b =
a1, and similarly for ag,...,ap. Likewise, a4y = ¢ — f(c) for some

c eV so flaps1) = f(c)— fif(c)] = f(c) —c = —ap+1, and similarly for
Gp+4+2s .-+, 0n. Hence the matrix of f relative to the basis {a1,...,an} is

— IP 0
Ap —_— { 0 —In_p]’

and A is then similar to this matrix. Conversely, if A is similar to a
matrix of the form A, then there is an invertible matrix @ such that
Q1AQ = Ap. Then

A =(QA,Q ') =QA2Q ! = QLQ ™ =1,.
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Suppose now that F is of characteristic 2, so that z+2z = 0 and hence
z=—zforevery z € F. Let fo f =idy and let ¢ = idy +f. Then

() 9(2)=0 < z+f(z)=0 <= z=—f(z) = f(=).

Moreover, for every z € V we have g(g(z)] = g|z + f(z)] = z + f(z) +
flz+ f(z)] =z + f(z) + f(z) + f[f(z)] = =+ f(z) + f(z) + z =0 and
hence go g = 0.

Suppose now that A? = I, and let f represent A relative to some
fixed ordered basis. Let ¢ = idy +f and note from the above that
Img C Kerg. Let {g(c1),...,9(cp)} be a basis of Im g and extend this
to a basis

{bl yreey bn—Zp: g(cl)7 e :g(cP)}
of Ker g (which is of dimension n — dimIm g = n — p). Consider now the
set
B = {b], ey bn—Zp; g’(Cl), Clyreey g(Cp), Cp}.
This set has n elements; for ¢; = b; gives the contradiction g(c;) =
g(b;) = 0, and ¢; = g(c;) gives the contradiction g(¢;) = glg(cy)) =0. It
is also linearly independent; for if we had

Do Nibi+ Y paales) + Y vie; =0
then, applying g and using the fact that b;, g(c;) € Ker g, we deduce that
Y- vjg(c;) = 0 whence each v = 0, and then from )~ Aibi+ 3 psg(c;) =
0 we obtain A; = 0 = pu, for all 4,5. Thus B is a basis of V. To compute
the matrix of f relative to the basis B we observe that since b; € Ker g we
have, by (%), that f(b;) = b; for every i. Also, f[g(c:)] = glg(ci)]+g(ei) =
g(cs) so that we have
fla(ed)] = L.g(ei) + 0.ci 5
flci) = 1.g(ei) + luc; .

It follows from these observations that the matrix of f relative to B is

In—?p

11
01

[RPa—y

f—
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1.11

1.12

1.18

Solutions to Chapter 1

Consequently A is similar to this matrix. Conversely, if A is similar to
a matrix of the form V, then there is an invertible matrix @ such that
Q1AQ =V, and so0
A= (QV,Q7)=QViQ ' =QLQ ™ =1L,

If t € £L(R?,IR?) is given by t(a,b) = (b,0) then clearly Im¢ = Kert #
{0}.

If t € £(IR3,IR®) is given by t(a,b,c) = (c,0,0) then Im¢ C Kert.

If t € £(IR?,IR®) is given by ¢(a,b,c) = (b,¢,0) then Kert C Im1.

If t is a projection then Im¢ N Kert = {0} and none of the above are
possible.

Consider the elements of £(IR?,IR?) given by
t1(a,b,c) = (a,a,0);
ta(a,b,¢) = (0,5,0);
t3(a,b,c) = (0,b,c);
ty(a,b,¢) = (0,6 — a,c);
ts(a,b,c) = (a,0,0).
Each of these transformations is a projection. We have
Kerts = Kert; but Imts # Imiy;
Imit; =Imiy but Kert; # Kerty.
Also, t; oty = 0 but ¢ o t; # 0. (Note that ¢z o ¢; is not a projection.)

Clearly, e; + ez is a projection if and only if (denoting composites by
juxtaposition) ejes + ege; = 0. Thus if e;es = 0 and eze; = 0 then
the property holds. Conversely, suppose that e; + e; is a projection,
Then multiplying each side of e; €2+ e2e; = 0 on the left by e; we obtain
ejez+e;eze; = 0, and multiplying each side on the right by e; we obtain
e1eze; + eoe; = 0. It follows that e;e; = eze;. But e eq + ece; = 0 also
gives ejes = —eqe;. Hence we have that each composite is zero.
When e; + e; is a projection, we have that

Ker(e; + e3) = Kere; NKerey,
Im(e; +e2) = Ime; ® Imes.

Take U = {(0,4,b) | a,b € R}. Then IR* =V @ U since it is clear that
V nU = {0} and that

(a,b,¢) = (a,a,0) + (0,b — a,c).
For the last part refer to question 1.11; take e = ¢; and f = i4.
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1.14

1.15

Suppose that Ime = Im f. Then for every v € V we have f(v) €Im f =
Ime so, since e acts as the identity map on its image, e[f(v)] = f(v)
and hence eo f = f. Likewise, f o ¢ = e. Conversely, if ec f = f and
foe=¢let z € Ime. Then e(z) = z gives e(z) = fle(z)] = f(z) €Im f
and so Ime C Im f. The reverse inclusion is obtained similarly.

Since Ime; = --- = Imex we have e; o e; = ¢; for all 4, 7. Now
k 2

e? = (Z)\,’G,’)
=1

= Afﬁ? + - +Aﬁei +A1A26162 +)\2)\16261 + .- +)\k)tk_16k6k..1

k k
= (Z)\,’))\lel + -+ (Z)\;)/\kek
t=1 i=1

:e,

and so e is also a projection. To show that Ime = Ime,; it suffices to
prove that ece; = e, and e; ce=¢. Now

(Arer + -+ Aeek)er = Ajer + -+ Akep = €

gives the first of these, and the second is similar.
For the last part, consider e, f € £(IR?,IR?) given by

e(a, b) = (a,0), f(a,b) = (0,8).
Then e and f are projections but clearly %e+ % f ig not.

Since sums and scalar multiples of step functions are step functions it is
clear that E is a subspace of the real vector space of all mappings from
R to IR. Given ¥ € E, the step function %; whose graph is

> * >
; ;41

i.e. the function that agrees with # on [a;, a;+1[ and is zero elsewhere,
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is given by the prescription

9i(z) = ¥(as)lea; (2) — €a,y, (2)].
It follows that {ex | k € [0, 1[} generates E since then
n+l

d= 9.
t=0

Since the functions ex clearly form an independent set, they therefore
form a basis of E.

It is likewise clear that F is a vector space and that G is a subspace
of F. Consider now an element of F, as depicted in the diagram

/\/

[~

a, a, a,a, 1

From geometric considerations it is clear that every element of F can be
written uniquely as the sum of a function ¢ € E and a function g € G.
[It helps to think of the above strips as pieces of wood that can slide up
and down.| Thus it is clear that F = E® G.

To show that {gx | & € [0,1]} is a basis for G, observe first that the
graph of g;, — g, is of the form

Ay — Qi+

@
a; @iy

4]
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1.16

1.17

Given p € F, consider the function u; whose graph is

d; b /
Hlay)

[ - G .
a, L8]

i.e. the function that agrees with g on [a¢,ai+1[ and is zero elsewhere.
Let the gradient in the interval [a;, ;41 be b, so that di = p(ay) +
bi(ai+1 — a;). Then it can be seen that

B = bi(gai - ga-'+1) + /-‘(a'!')eai - d"e“"+1'

Consequently u = Z?:ol s gives the expression for pasasumof g€ G
and e € E. It now follows that {gx | k¥ € [0, 1]} must be a basis for G.
Finally, observe that

&
I{eg) = f er(t) dt = g
0
go that I carries a basis to a basis and therefore extends to an isomor-
phism from E to G.
Let t;,t; € £(R?,IR?) be given by
ti(a,b,c) = (a, 25,3¢), t2(a,b,c) = (2a,3b,6¢).

Then ¢; has eigenvalues 1,2,3 and {5 has eigenvalues 2,3,6. So both
questions can be answered in the affirmative.

The eigenvalues of ¢ are 1 + iv/2 and 1 — iv/2. Associated eigenvectors
of any matrix representing ¢ are [1,4v/2/2] and [1,—1v/2/2]. Since the
eigenvalues are distinct, the eigenvectors of ¢ form a basis of €?. The
matrix of ¢ with respect to this basis is

1+1v/2 0
0 1—iv/2|
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1.19

1.20

1.21

Solutions to Chapter 1

Since ¢ has 0 as an eigenvalue we have ¢(v) = 0 for some non-zero v € V
and hence ¢ is not injective, so not invertible. Thus if ¢ is invertible
then all its eigenvalues are non-zero. For the converse, suppose that ¢ is
not invertible and hence not injective. Then there is a non-zero vector
v € Kert, and t(v) = 0 shows that 0 is an eigenvalue of ¢.

If now ¢ is invertible and £(v) = Av with A # 0 then v = ¢~![t(v)] =
t=1(Av) = Adt~1(v) gives t~!(v) = A~ 'v and so A~?! is an eigenvalue of
t~! with the same associated eigenvector. (Remark. Note that we have
assumed that V is finite-dimensional (where?)—in fact the result is false
for infinite-dimensional spaces.)

Suppose that A is a non-zero eigenvalue of . Then ¢(v) = Av for some
non-zero v € V and

0=t"(v) =t t(v)] = t™H(Aw) = .- = Ay,

and we have the contradiction A™ = 0. Hence all the eigenvalues of ¢
are zero.

If ¢ is diagonalisable then the matrix A of ¢ is similar to the diagonal
maftrix

Ay

An

where Aj,..., A, are the eigenvalues of {. But we have just seen that
all the eigenvalues are zero. Thus, for some invertible matrix P we have
P~1 AP = 0 which gives A = 0 and hence the contradiction ¢ = 0.

The matrix of ¢ with respect to the canonical basis {(1,0),(0,1)} is

;4

The characteristic equation is (A\—v/3)(A+V/3) = 0 and, since t—v/3id #
0,t+ v3id # 0, the minimum polynomial is (X — v3)(X + v3).

That ¢ is linear follows from

t(£(X) + g(X)) = t{(f + 9)(X))
=(f+9(X+1)
= f(X+1) + g(X + 1) = t(£(X)) + t(9(X)),
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1.22

1.28

HAS(X)) = H(AN)(X)) = Af(X +1) = A(f(X)).
The matrix of ¢ relative to {1, X,..., X"} is

1 11 1 ... 1
01 2 3 ... n
0 01 3 in(n—1)
0 000 ... 1]

The eigenvalues of ¢ are all 1. The characteristic polynomial is
9(X) = (X — )™+

Hence, by the Cayley-Hamilton theorem, g(¢) = 0. The minimum poly-
nomial of ¢ is then m(X) = (X — 1)" for some r with 1 < r < n 41,
A simple check using the above matrix shows that (¢ — idy )" # 0 for
1 < r < n. Consequently we have that m(X) = (X — 1)"*1.

Let A1,..., A, be the eigenvalues of £. Then A%,...,A2 are the eigenval-
ues of t2 = idy and so

M= .=2=1

Consequently, A; = 1 for each 1 and hence the sum of the eigenvalues
of ¢ is an integer.

(a) We have

3-2 -1

— 32 _ —(x_ _
T s, |=X-etE=(-0(-2)

so the eigenvalues are 2 and 4, each of geometric multiplicity 1. For the
eigenvectors associated with the eigenvalue 2, solve

S HY

to obtain the eigenspace {[z,2] | = € IR}. For the eigenvectors associ-
ated with the eigenvalue 4, solve

A
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to obtain the eigenspace {[z,—z| | £ € IR}. Since A has distinct eigen-
values it is diagonalisable. A suitable matrix P is

il

(b) The eigenvalues are 2, 3, 6 and are all of geometric multiplicity 1.
Associated eigenvectors are [1,0,—1],[1,1,1],[1,—2,1]. A is diagonalis-
able; take, for example,

1 1
P= 1 -2
-1 1 1

(c) The eigenvalues of A are 6, 6, and 12. For the eigenvalue 6 we
consider

1 -1 -2||= 0
-1 1 21{yl=j0/[.
-2 2 41} z 0

We obtain —z + y + 22z = 0. We can therefore find two linearly indepen-
dent eigenvectors associated with the eigenvalue 6, for example [1,1,0]
and [2,0,1]. Hence this eigenvalue has geometric multiplicity 2. The
eigenvalue 12 has geometric multiplicity 1 and an associated eigenvector
is [—1,1,2]. Hence A is diagonalisable and a suitable matrix P is

1 2 -1
1 0 1].
01 2

(d) The eigenvalues are 2, 2, 1. For the eigenvalue 2 we consider

01 T 0
00 1]ly|=]o0
0 0 —-1}{iz=z 0
from which we see that the corresponding eigenspace is spanned by
[1,0,0]. Hence the eigenvalue 2 has geometric multiplicity 1. The eigen-

value 1 also has geometric multiplicity 1, the corresponding eigenspace
being spanned by [—2,1,—1]. In this case A is not diagonalisable.
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(e) The eigenvalues are 2, 2, 2. From

-1 0 1|l= 0
0 0 1|jy|=]|0
-1 0 1]|}= 0

we see that the corresponding eigenspace is spanned by [0, 1,0] and has
dimension 1. Thus the geometric multiplicity of the eigenvalue 2 is 1,
and A is not diagonalisable.

1 2

1 1

| il
The characteristic polynomial of A is X? —2X —~1 and its eigenvalues are

A =142 and Ay =1 — /2. Corresponding eigenvectors are [V2,1]
and [—v/2,1]. The matrix

{1

1 1

1.24 The matrix in question is

A=

and we have

is such that P~1 AP = diag {1, A2}.

1 becomes P! [1]= [pllwhere
1 1 P2

_ V241 _v2-1
1 2\/51 P2 2\/5'

In the new coordinate system,

We then have
an = pIAT V2 — pad2TIVE, by = pr AT 4 oAl
from which we see that
an _ PIATTIVZ — AR NV2
by piATT 4 poan-!
_ VZ—(pa/p1) /M) V2
1+ (p2/p1)(A2/A1)"!
5 (1 — (Pn/Pl)()‘Z/)\l)"-l) -
1+ (p2/p1)(Aa/A()> 1
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1.26

1.27

Solutions to Chapter 1

Now since 0 < |[A2/A;1]| < 1 we deduce that

Since f(X) and g(X) are coprime there are polynomials p(X) and ¢(X)
such that f(X)p(X) + g(X)q(X) = 1. Let ¢ = p(t) and d = ¢(t). Then
ac + bd = idy.

Suppose now that v is an eigenvector of ab associated with the eigen-
value 0. (Note that ab has 0 as an eigenvalue since ¢ is singular.) Let
u = a{cv) and w = b(dv). Then since a,b, ¢ commute we have

bu = bacv = cabv =0,
and since a, b, d commute we have
aw = abdv = dabv =0,
Also, u +w = (ac + bd)v = v since ac + bd = idy.
If u,v € Cy, then ¢(u) = Au and ¢(v) = Av and so
t(au + bv) = at(u) + bt(v) = adu + bAv = A(au + bv)

and hence C), is a subspace of V.
Let v € Cy. Then, since s and ¢ commute, we have

t[s(v)] = s[t(v)] = s(Av) = As(v)

from which it follows that Cy is s-invariant.

If A; is an eigenvalue then C), # {0}. If dim Cy; > 1 then since ¢ has
n distinct eigenvalues this would give more than n linearly independent
vectors, which is impossible. Hence Cj, is spanned by a single vector,
v; say. Since C,, is s-invariant we have s(v;) = p,v; for some py; € F.
Hence the matrix of s with respect to the basis {v,...,v,} is diagonal.

There is an integer r < n with {u,(u),...,t""!(u)} linearly independent
and {u,t(u),...,t"(u)} linearly dependent. Then

i"(u) = aou+ art(u) + -+ + ap_1t" (1),
so that, applying ¢,
7+ (u) = agt(u) + art2(u) + - - + ap_1t"(u).
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1.28

Continuing in this way we see that {u,#(u),...,t""'(u)} spans U and
80 is a basis. By the above argument we have ¢[t*(u)] = > a;t!(u),
so U is t—invariant.

Let f(X)=—ap—a; X— - -—a,_1 X""! + X". Then f(X) has degree
r and [f()](») = 0. Since U is t-invariant the restriction tyy of ¢t to U
induces a linear transformation from U to itself. Now [f(¢r)](u) = 0 s0
[f(tv)](v) = 0 for all v € U. Hence f(ty) is the zero transformation on
U. If now g(X) is a polynomial of degree less than r with g(t;) = 0 then
[g(tr)](v) = O implies that {u,%(u),...,t"}(u)} is dependent. Hence
f(X) is the (monic) polynomial of least degree such that f(ty) = 0, so
f(X) is the minimum polynomial of ¢y,

When u = (1,1,0) € R® and t(z,y,2) = (z + y,z — y,2) we have
that U = {(1,1,0),(2,0,0)}. Also, t?(u) = (2,2,0) = 2u and so f(X) =
X% -2

(1) Proceed by induction. The result clearly holds for n = 1. In this ex-

ample it is necessary, in order to apply the second principle of induction,
o include a proof for n =2 :

@ =r(s+t)r(s+1)
= (rs + rt)?
= rsrs + rirs + rsri + rirt
=rsr(s+1)
= pq.
Suppose now that it is true for all r < n where n > 2. Then

"t =q"g=p""'¢" =" 'pg=p"g,
which shows that it holds for n + 1. The second equality is established
in a similar way.

(2) If r is non-singular then r—! exists and consequently from rtr =0
we obtain the contradiction ¢ = 0. Hence r is singular, so both p and
q are singular and hence have 0 as an eigenvalue, Consequently we see
that p(X) and g(X) are divisible by X.

(3) Let ¢(X) = ay X+az X%+ .- -+a,. X", Then a)q+a2q?+ - +a,q" =
0 and so(a1g+ -+ a.q")p = 0, i.e. ayp?+ -+ + a,p"t! = 0 which
shows that p satisfies X¢(X) = 0. Similarly, ¢ satisfies Xp(X) = 0.

By (3), p(X) divides Xq(X), and ¢(X) divides Xp(X), so we have

Xq(X) =p(X)p(X), Xp(X)=aq(X)e(X)
48
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Solutions to Chapter 1

for monic polynomials p;(X),q:1(X). Now X%g(X) = Xpi(X)p(X) =
p1(X)q1(X)q(X) so, since g(X) # 0, we have p;(X)q:(X) = X?. Con-
sequently, either (i) p,(X) = @1(X) = X, or (i) ¢1(X) = X3, or
(iii) p1 (X) = X2,

Clearly, adding together the elements in the middle row, the middle
column, and both diagonals, we obtain

Zm,—_.,-+3m22 = 449,
£,
so that 3¢ + 3myy = 49 and hence ¥ = 3maa.
If mao =a,m;; = a+ B and ma; = a + v then
mo1=3a—my—my=3a—a—f-—a—g=a—-F—1,

megs=3a—my —mpz=3a—a+f+y—a=ac+f+7,

and so on, and we obtain

a+p a— B+~ a—n
M(a,B,7)=|a—-f—-1 a a+p+1|
aty a+f-v a—P

It is readily seen that sums and scalar multiples of magic matrices

are also magic. Hence the magic matrices constitute a subspace of
Mat3x3(d:). AlSO,

M(a, B,7) = aM(1,0,0) + SM(0,1,0) + 7M(0,0,1)
so that B generates this subspace. Since M(a,8,7) = 0 if and only if

a=f=v=0, it follows that B is a basis for this subspace.
That e; + e3 + e3 is an eigenvector of f follows from the fact that

1 3a 1
M(a,8,7)|1|=|3a|=3a]|1].
1 3a 1

To compute the matrix of f relative to the basis {e; + ez + €3, €3, €3}
we observe that, by the above,

fler + ez +e3) = 3afe; + ez + e3);
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1.80

and that
flez) = (@ —P+T)es +aex+(a+ B —7)es
=(a—P+7)(e1+ex+es—ex—e3)+aes+ (a+F—7)es
=(a—F+7)(e1+ex+e3) +(B—7)ez + (28 — 27)es,
fles) =(a—)er + (e +F+v)ez + (@ — Bles
=(a—7)(e1+ex+es—ex—e3) +(B+27)ez + (7 — Pea
= (@ —7)(e1 + ez + e3) + (B + 27)ez + (7 — B)es.

The matrix of f relative to {e; + ez + €3, €2,€e3} is then

3a a—f+7 a—¢
L=|o0 B—v PB+2v|
0 26-2v -F

Since L and M(a,f3,v) represent the same linear mapping they are sim-
ilar and therefore have the same eigenvalues. It is readily seen that

det (L — ALs) = (3a — A)(A% — 3682 + 34?),

so the eigenvalues are 3« and ++/3(8% — 42).

If f is nilpotent of index p then f# = 0 and f?~! #0. Let z €V be
such that fP~!(z) # 0 and consider the set

B, = {z,f(2),..., ff7!(2)}.
Suppose that
(%) Aoz + M f(z) + -+ + Ap_1 P71 (z) = 0.

On applying fP~! to (x) and using the fact that f# = 0, we see that
Ao fP~1(z) = 0 whence we deduce that Ag = 0. Deleting the first term
in (%) and applying fP=2 to the remainder, we obtain similarly A; = 0.
Repeating this argument, we see that each A; = 0 and hence that By is
linearly independent.

It follows from the above that if f is nilpotent of index n = dimV
then

B, = {wa(z)v-"fn—l(z)}
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Solutions to Chapter 1

is a basis of V. The matrix of f relative to B, is readily seen to be

0 0
R

Consequently, if A is an n x n matrix over F that is nilpotent of index
n then A is similar to I,. Conversely, if A is similar to I, then there is
an invertible matrix P such that P~'AP = I,, so that A = PI. P!,
Computing the powers of A we see that

(i) A" =0;
(ii) [A"]p1 = 1,80 A* 1 £0.
Hence A is nilpotent of index n.

To see that V is a €—vector space it suffices to check the axioms con-
cerning the external law. For example,

(a+1B)[(v +16)z] = (« + if)[yz — 6 f(=)]
= a[yz— 6 f(z)] — Bflvz— 6 ()]
= ayz — ab f(z) — Bvf(z) — Péz
= (ay — pb)z — (ab + B) f(=)
= [(a + iB) (v + 16)]=.

Suppose now that {v;,..., 9.} is a linearly independent subset of the
C—vector space V' and that in the IR-vector space V' we have

S ajvi+ 3 Bif(vs) =

Using the given identity, we can rewrite this as the following equation
in the €-—vector space V :

E(a,- —18;)v; =0.

It follows that a; —i8; = 0 for every j, so that a; = 0 = B;. Conse-

quently,
{v1,.. wvnf(vl)v- -,f(Ur)}

is linearly independent in the IR—vector space V. Since V is of finite
dimension over IR it must then be so over €. The given identity shows
that every complex linear combination of {v;,...,v,} can be written as
a real linear combination of

vl)-“;Un;f(vl))---af(vn)‘
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1.82

If dimg V = n it then follows that dimg V' = 2n.
By considering a basis of V' (over IR) of the form

{v1,.. 00, f(v1),..., f(vn)}

we deduce immediately from the fact that fo f = —idy that the matrix
of f relative to this basis is

[ ]
Clearly, it follows from the above that if A is a 2n X 2n matrix over R
such that A2 = —L,, then A is similar to I'. Conversely, if A is similar

to I’ then there is an invertible matrix P such that P~!AP = I and
hence A% = (PI"P_I)2 = PI?p-! = P(——Ig,.,)P"l = —Iz,.

Let z be an eigenvector corresponding to A. Then from Az = Az we
have that zt A* = Azt and hence #A' = A%*. Since A = A and At = — A
we deduce that —5* A = A%. Thus # Az = —\%°z. But we also have
Az = Az = AF'z. It follows that A = —), so the real part of X is
zero. We also deduce from Az = Az that AT = )%, i.e. that AT = AT,

80 A is also an eigenvalue.

Y = (A—-ADZ gives Yt = Z*(A* — A\]) = —Z*(A + AI) and hence
Y =-Z'(A+2) = —T(A — M). Consequently,

Y'Y =-Z'(A-—\D.(A—A)Z =0

since it is given that (A — AI)2Z = 0. Now the elements of Y'Y are of
the form

a+1b
[a—ib z—iy] =a?+ 02+ .- 4% +y?
z+ 1y

and a sum of squares is zero if and only if each summand is zero. Hence
we see that Y = 0.

The minimum polynomial of A cannot have repeated roots. For, if this
were of the form m(X) = (X — a)?p(X) then from (4 — af)?p(4) = 0
we would have, by the above applied to each column of p(A4) in turn,
(A — al)p(A) = 0 and m(X) would not be the minimum polynomial.
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Solutions to Chapter 1

Thus the minimum polynomial has simple roots and so A is similar to
a diagonal matrix.
Suppose now that Az = taz. Then AT = —iaZ and

Au=A(z+ %) = taz —taT = ita(z — F) = av,

Av=Ai(z—-T)=—-az—aT = —a(z +T) = —au.

These equalities can be written in the form

Au| {10 affu
Av| |—a Of[e[
The last part follows by choosing fay,. .., to be the non-zero eigen-

values of A.

Since ¢ satisfies its characteristic equation we have
(t —id)(¢t + 2id)(t — 2id) =0,
which gives ¢3 = 2 + 4¢ — 4id. It is now readily seen that
t* = 2 4 4(¢% — id);
t® =% + 4(1 + 4)(t* —id);
8 =12 4 4(1 + 4+ 4%)(#% — id).
This suggests that in general
22 =12 + 4(1+ 4+ 4% + -+ 4P72)(¢2 —id).

It is easy to see by induction that this is indeed the case. Thus we see
that
2 =2 L 41+ 4+ - + 4% — id)

_4an-1
=t24+4 (Ll_j_r) (t2 —id)

= + 24! —1)(¢? - id).

We have that
f(b1) = Arby;

(i>2) f(b}) =Pibi+ ) myst}.

i>2
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Thus the matrix of f relative to the basis {b;,85,...,5..} is of the form
At Bz e Bl

0 M

If weW,say w=wiby + )5, wib then

g(w) = w[f(w)] = w(widibs + Zwif(b:'))
i>2

= Zw:'f(b:') €W,

i>2

since b; € Kerw and 7 acts as the identity on Imx = W, Thus W is
g-invariant.

It is clear that Mat (¢',(b})) = M. Also, the characteristic equation
of f is given by det (A — XI,) = 0, i.e. by

(A — X) det (M — XI,,) = 0.

So the eigenvalues of ¢’ are precisely those of f with the algebraic mul-
tiplicity of A; reduced by 1. Since all the eigenvalues of f belong to F
by hypothesis, so then do all those of g'.

The last part follows from the above by a simple inductive argument;
if the result holds for (n — 1) x (n— 1) matrices then it holds for M and
hence for A.

The eigenvalues of ¢ are 0, 1, 1. The minimum polynomial is either
X(X —1) or X(X —1)2. But ¢ — ¢t # 0 so the minimum polynomial is
X(X —1)%. We have that

V = Kert ® Ker(t — idy)2.
We must find a basis {w;, wo, w3} with
t(wl) = 0, (t— idv)(ﬂ)g) = 0, (t— idv)(ﬂ)g,) = )\wg.

A suitable basis is {(—1,2,0),(1,—1,0), (1, 1,1)}, with respect to which
the matrix of ¢ is

0 0O
01 1]
0 01
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Solutions to Chapter 1
We have that

(1) = —5 —8X — 5X2,
£2(1) = —5(—5 - 8X —5X?) — 8(1 + X + X?) — 5(4 + 7X + 4X?),

Similarly we have that ¢3(X) = 0 and t3(X?) = 0. Consequently t* =0
and so ¢ is nilpotent.

Take v; = 1 + X + X2. Then we have #(v;) = 0. Now take v; =
5+ 8X + 5X2. Then we have

t(va) = 3(1 + X + X?) € span {v, }.
Finally, take v3 = 1 and observe that
t(1) = —5 — 8X — 5X? € span {v;, va}.

It is now clear that {1+ X+ X?,5+8X +5X?,1} is a basis with respect
to which the matrix of ¢ is upper triangular.

(a) The characteristic polynomial is X2 + 2X + 1 so the eigenvalues are
—1 (twice). The corresponding eigenvector satisfies

M3l

so —1 has geometric multiplicity 1 with [8, 5] as an associated eigenvec-
tor. Hence the Jordan normal form is

-1 1
0 -1
A Jordan basis can be found by solving
(A+ L)y, =0, (A+IQ)U2 = v1.
Take v; = [8,5]. Then a possible solution for v; is [5, 3], giving
8 §
5 3]
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(b) The characteristic polynomial is (X +1)2. The eigenvalues are —1
(twice) with geometric multiplicity 1, and a corresponding eigenvector
is [L,0]. The Jordan normal form is

KR

(A+ Ig)Ul = 0, (A + IQ)UQ = .

A Jordan basis satisfies

Take v; = [1,0] and v = [0,—1]; then
1 0
0 -1/

(Any Jordan basis is of the form {[c,0],[d,—c]} with P =

P =

c d
0 —c]')
(¢) The characteristic polynomial is (X — 1), so the only eigenvalue is

1. It has geometric multiplicity 2 with {[1,0,0],[0,2,3]} as a basis for
the eigenspace. The Jordan normal form is then

OO
-0 O

1
1
0

A Jordan basis satisfies
(A—I3)Ul =0, (A—I3)Uz =Y, (A—I3)v3 =0,

Now (A—I3)? = 0 so choose v, to be any vector not in {[1,0,0],[0,2,3]),
for example v; = [0, 1,0]. Then v; = (A—1I3)v; = [3,6,9]. For v3 choose
any vector in {[1,0,0],[0, 2, 3]) that is independent of [3,6,9], for example
v3 = [1,0,0]. This gives



1.88

Soluttons to Chapter 1

(d) The Jordan normal form is

o O W
QO O -
W o O

A Jordan basis satisfies

(A — 3I3)Ul = 0, (A — 313)02 =V, (A — 3I3)U3 = 0.

Choose v = [0,0,1]. Then v; = [1,0,0] and a suitable choice for vs is
[0,1,0]. Thus
1 00
P=|0 0 1
010

The characteristic polynomial of 4 is (X—1)?(X—2)2. For the eigenvalue
2 we solve

e e - po

0 1 1 1 o]l= 0
0 0 0 0 Ofly 0
0 0 0 1 oflzl=]o0
0 0 0 —1 1]t 0
0 -1 -1 -1 —2|{w]| |oO

to obtain w = ¢t =0,y + 2z = 0. Thus the general eigenvector associated
with the eigenvalue 2 is [z,y,—y,0,0] with 2,y not both zero. The
Jordan block associated with the eigenvalue 2 is

i

For the eigenvalue 1 we solve

1 1 1 1 olfz] o]
0 1 0 0 0}y 0
0o o 1 1 ollz|=]o
0 0 0 o0 1}|¢ 0
0 -1 -1 -1 —1||w 0
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to obtain w = y = z = 0,2 + ¢ = 0. Thus the general eigenvector
associated with the eigenvalue 1 is [0,0, 2, —2, 0] with 2 # 0. The Jordan
block associated with the eigenvalue 1 is

1 10
01 1}
0 0 1

The Jordan normal form of A is therefore

2 0 0O

-0 O O

O = = O

Take [0,0,1,—1,0] as an eigenvector associated with the eigenvalue 1.
Then we solve

- - - e -

1 1 1 1 olf=z 0
0o 1 0 0 ofly 0
0 0 1 1 oflzl=]1
0o 0 0 o0 1||¢ ~1

0 -1 -1 -1 -1]|w] 0

to obtain y = 0,w = —1,2+ ¢ = 1,z = —1, so we take [—-1,0,0,1,—1].
Next we solve

1 1 1 1 olfzl [-=1]
0 1 0 0 oOfly 0
0o 0 1 1 of|lzi=| o0
o 0 0 o0 1||¢ 1
0 -1 -1 -1 -1|{w]| |-1

to obtain y = 0,{ + 2= 0,w = 1,z = —1, so we consider [-1,0,0,0,1].
A Jordan basis is therefore

{[1505010:0]1 [O: 11 _11050]: [010515_11015['"110501 11 _1]![_150!0!0! 1]}

and a suitable matrix is

"
I
O O O O =
|
O O = = O
O -=-_-O0 O
— O O
_O O O e
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1.89 (a) The Jordan form and a suitable (non-unique) matrix P are

2 10 2 -5 5
J=|0 2 of, P=|2 -3 8
00 2 3 8 -7

(b) The Jordan form and a suitable P are

2 000 4 3 2 0
0110 P 5 4 3 0
0 01 1} -2 —2 -1 0oF
0 0 01 11 6 41

1.40 The Jordan normal form is

O O O O W
O O O v O
O O o = O
o W o OO
W= O O QO

A Jordan basis is
{[2’ 110’0’ 1]1 [1105 15010]![0’ 1’0’ 1!0]1 [_150101 150]1 [2101 050! 1]}'

1.41 The minimum polynomial is (X — 2)®. There are two possibilities for
the Jordan normal form, namely

(2 1 0 0 0] (2 1 0 0 0]
2 100 02000
J=|0 0 20 0|, J;=|00 2 1 of.
00020 000 2 1
0000 2 0 0 0 0 2

Each of these has (X — 2)® as minimum polynomial. There are two
linearly independent eigenvectors; e.g., [0,-1,1,1,0] and [0,1,0,0,1].
The number of linearly independent eigenvectors does not determine
the Jordan form. For example, the matrix J; above and the matrix

- -

2 0 0

O O N = O
N - O O O

o O O O

0
1
2
0

O O O W

59



Book 4 Linear algebra

1.42

1.48

1.44

have two linearly independent eigenvectors. Both pieces of information
are required in order to determine the Jordan form. For the given matrix
this is J5.

A basis for R4[X] is {1, X, X%, X3} and D(1) = 0,D(X) = 1,D(X?) =
2X,D(X?) = 3X2. Hence, relative to the above basis, D is represented
by the matrix

o O O

1 0
0 0
0 3|

O O O

0 0 0

The characteristic polynomial of this matrix is X*, the only (quadruple)
eigenvalue is 0, and the eigenspace of 0 is of dimension 1 with basis {1}.
So the Jordan normal form is

[« I =N = R«
OO0 O ==
O O = O
O =0 O

A Jordan basis is {fi, fa, f3, f4} where
Dfy =0, Dfa=fi, Dfs = fay, Dfs = fs.

Choose f; = 1; then fo = X, fa = 1 X?, f; = $ X° 50 a Jordan basis is
{6,6X,3X2, X).

The possible Jordan forms are

3 00| [310| (310|300
0 3 of, (o3 1],]0 3 of, [0 3 1
00 3[[oo 3| oo 3[|oo0 3

The last two are similar.

(i) and (ii) are true : use the fact that AB and BA = A~'(AB)A are
similar.
(iii) and (iv) are false; for example,

E R e b B

clearly have the same Jordan normal form.
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1.45 V decomposes into a direct sum of ¢{-invariant subspaces, say V =

1.46

Vi® - ®V,, and each summand is associated with one and only one
eigenvalue of {. Without loss of generality we can assume that ¢{ has a
single eigenvalue A. Consider an 4+ x 3 Jordan block. Corresponding to
this block there are 1 basis elements of V', say v,. .., v;, with

(t — Aidy )y, =05
(t — /\idv)zvg = (t - Aidv)vl = 0;

(t - ,\idv)iv; = (t - /\idv)'._lv‘-_l = ...=0.

Thus there is one eigenvector associated with each block, and so there
are
dim Ker(¢ — Aidy)

blocks.

Consider Ker(t — Aidv)j . For every 1 x 1 block there corresponds
a single basis element which is an eigenvector in Ker(t — Aidy)?. For
every 2 x 2 block there correspond two basis elements in Ker(f— X idv)?
if § > 2 and 1 basis element if § < 2. In general, to each 2 X 1 block
there correspond 1 basis elements in Ker(t — Aidy )’ if j > ¢ and j basis
elements if § < 1.

It follows that

di=n +2n+ -+ —n;y +7(nj + 001 +--1)
and a simple calculation shows that 2d; — d;_; — diy1 = n,.

The characteristic polynomial of 4 is (X — 2)4, and the minimum poly-
nomial is (X — 2)2. A has a single eigenvalue and is not diagonalisable.
The possible Jordan normal forms are

2100 2100
0 2 0 O 0 2 00
002 0} 0 0 21
0 0 0 2 0 0 0 2

Now dimIm(A4 — 2I4) = 1 so dim Ker(A4 — 2I4) = 3 and so the Jordan
form is

2100
0 2 00
00 2 0f
0 0 0 2
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Now Ker(A — 214) = {[z,y,2,%] | 22 — y + ¢ = 0}, and we must choose
vy such that (A4 — 2I4)%v; = O but v, ¢ Ker(4 — 2I,). So we take
vz = [1,0,0,0|, and then v; = (A — 2Iy)vy; = [-2,—2,-2,2]. We now
wish to choose vz and v, such that {v;,vs, vs} is a basis for Ker(A—21y).
So we take v3 = [0, 1,0, 1] and v4 = [0,0,1,0]. Then we have

-2 1 0 0
-2 010
P‘—2001'
2 010

To solve the system X' = AX we first solve the system Y’ = JY,

namely
¥ =251+ 4
Y2 = 292
Y3 = 293
Yi = 2Ys

The solution to this is clearly

Yg = cq€?t
ys = cae®
Y2 = Czezt

Yy = cate?t + ¢ e,

Since now
—2 1 0 07[cqte? + ¢, e
-2 0 1 0 cqo et
X=PY = -2 0 0 1 cze?t
2 010 cqet
we deduce that
T; = —2cyte?t — 2¢1€% + cpe?
Ty = —2czte2t — 2¢y e?t + c;;em
T3 = —2cqte?’ — 2c,6% 4 ¢qe®

£4 = 2cote® + 2¢,e% + cae®.
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1.47 (a) The system is X' = AX where

5 4
2
The characteristic polynomial is (X — 1)(X — 4). The eigenvalues are
therefore 1 and 4, and associated eigenvectors are E; = [1,—1] and

E4 = [4,—1]. The solution is aE) e’ + bE4e*, i.e.

£, = ae® + 4bett

g0 = —ae’ — be*t.

(b) The system is X' = AX where

4 -1 -1
A=]1 2 —1{.
1 -1 2

The characteristic polynomial is (X — 3)2(X — 2). The eigenvalues
are therefore 3 and 2. An eigenvector associated with 2 is [1,1,1] so
take E3 = [1,1,1]. The eigenvalue 3 has geometric multiplicity 2 and
[1,1,0],[1,0,1] are linearly independent vectors in the eigenspace of 3.
The general solution vector is therefore

a[l,1,1]e* + b[1,1,0]e* + ¢[1,0, 1]
so that
z; = ae?® + (b +c)e®
T, = ae?t + be®
z3 = ae®* + ce®.

(c) The system is X' = AX where

5 —6 -6
A=|-1 4 2.
3 -6 —4

The characteristic polynomial is (X — 1)(X — 2)2. The eigenvalues are
therefore 1 and 2. An eigenvector associated with 1 is E; = [3,—1,3],
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and independent eigenvectors associated with 2 are E; = [2,1,0] and
% = [2,0,1]. The solution space is then spanned by
{[3et’ _et13et]s [Zemi e*, 0], [232t105 eZt]}'
(d) The system is X' = AX where

1 3 -2
A=|0 7 —4
09 -5

Now A has Jordan normal form
1 1 0
J=|0 1 0
0 0 1

and an invertible matrix P such that P~1AP = J is

3 01
P=]|6 10
9 0 0
First we solve Y' = JY to obtain y} = y1 + ¥2,¥5 = %2,y5 = ¥s and
hence
y3 = ce'
y2 = be*

y1 = bte* + aet.
Thus X' = AX has the general solution
X = PY = a[3,6,9]¢' + b([3,6,9]te’ +[0,1,0]¢") +¢[1,0,0]¢".
1.48 The system is AY' =Y where

1 -3 2
A=]|0 =5 4].
0 -9 7
Now A is invertible with
1 3 -2
A'=|0 7 -4
0 9 -5

and the system Y’ = A~!Y is that of question 1.47(d).
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The system is X' = AX where

a=[3 3
The eigenvalues are 2 + v/3 and 2 — /3, with associated eigenvectors
[-1,—-1 — /3] and [-1,—1 + v/3]. The general solution is
a[=1,—1 — V3|2V 4 p[~1, —1 + V3|2V,
Since z;(0) = 0 a.]ild 22(0) = 1 we have a+b = 0and a—+/3a—b+3b =

1, givin = ——— and b = ——=, so the solution is

; BIVIDG a W 23’
2t _
m([1,1+\/§]e\/§t+[—1,—1+\/§]e V3

Let £ = z,,2) = 22,2z} = 2z}, = z3,z)' = 2§, = 225 + 42, — 8z). Then
the system can be written in the form X' = AX where

o O

1
A= 0
4

o0
N = O

The characteristic polynomial is (X — 2)(X? — 4) so the eigenvalues are
2 and —2. The Jordan normal form is

2 1 0
J=|0 2 0].
0 0 -2

A Jordan basis {v;,v2,v3} satisfies
(A — 213)01 =0
(A - 2.[3)02 =U
(A + 2.{3)03 = 0.

Take v; = [1,2,4] and v3 = [1,—2,4]. Then v, = [0,1,4]. Hence an
invertible matrix P such that P~ AP = J is

1 0 1
P=12 1 -2
4 4 4
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Now solve the system Y/ = JY to get

Y1 =291 + ¥2, Y2 = 2¥2,95 = —2y3

so that y; = cy€%%, y3 = cae™2
y1 = c e + cpte?.

Now observe that

* and hence y| = 2y, + cze® which gives

1 0 1]]c e + cote®
X=PY=|2 1 =2 cp et
4 4 4 cae 2t

Hence z = z; = c,e?* + cate?® +cze~2t. Now apply the initial conditions
to obtain

T = (4t — 1) + 72,
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2.2

2.8

Solutions to Chapter 2

(a) f — f' does not define a linear functional since f’ ¢ IR in general.
(b),(c),(d) These are linear functionals.

(e) 9: f fol f? is not a linear mapping; for example, we have
0 = 9[f + (- f)] whereas in general

1
(N +o-n=2 £ #o
0
That ¢ is linear follows from the fact that
1
olaf+69) = [ folt)las) + pate)ds

-« () F0) dt+ / "R et at
= ap(f) + Be(9).

The transition matrix from the given basis to the standard basis is
1 -1 0
P=| 0 1 1.
-1 01

The inverse of this is readily seen to be

L1 _L
1 i3 3

P =|-3 5 —3
1l 1 L

2 2 2
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2.4

2.5

2.6

2.7

Hence the dual basis is

{[%: :135_%]1[_%1 %1_%]1[%5%1%]}

The transition matrix from the basis A’ to the basis A is

1 2

o]

Its inverse is

- 1

pi=|72 1t
z Tz

Consequently, (4') = {—2¢1 + S¢2,01 — S2}-

The transition matrix from the given basis to the standard basis is

Its inverse is

so the dual basis is (b), namely {[—1,0],[2,1]}.

(l) {[21 —11 110]1 [75 _31 11—1]5 [_10551 "'21 1]: [_813:_35 1]};
(11) {(4555 '—25 11)’ (354"—256)1 (2131 _154)1 (010105 1)}

Since V = A & B we have

At + Bt =(AnB) ={0}t =Vv¢
AtnBt=(A+ Byt =v+={0).

Consequently, V¢ = AL @ BL.

The answer to the question is ‘no’ : A¢ is the set of linear functionals
f:A— Fsoif A#V we have that A? is not a subset of V¢, What is
trueis : if V = A® B then V¢ = A' ® B' where A', B' are subspaces
of V¢ with A’ ~ A% and B' ~ B?. To see this, let f € A? and define
f:V = F by f(v) = f(a) where v = a + b. Then ¢ : 4% — V¢

given by (f) = f is an injective linear transformation and ¢p(A?) is a
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subspace of V¢ that is isomorphic to A%. Define similarly px : B4 — V¢
by u(g) = g where g(v) = g(b). Then we have

V= p(4%) @ u(B?).

{f1, f2, f3} is linearly independent. For, if A, fi + A2f2 + A3 fa = 0 then
we have

0= (/1 +A2f2+Asfa)(1) = A1 + Az + As;
0= (A1fr +Aafz + A3 fa)(X) = Arty + Azta + Asts;
0= (A1f1 +Aafa + Aafa)(X3?) = Ait2 4 Aat2 4 Astl.

Since the coefficient matrix is the Vandermonde matrix and since the ¢;
are given to be distinct, the only solution is A; = Ay = A3 = 0. Hence
{f1, f2, f3} is linearly independent and so forms a basis for (IR3|X])%.

If {p1,p2,p3} is a basis of V of which {f,, f2, f3} is the dual then we
must have f;(p;) = &;; i.e.

pi(t:) = i

It is now easily seen that

(X =) (X —13) (X =4)(X —t3)
pl(X) - (tl _tz)(tl —t3)’ pZ(X) - (tz _ tl)(tz _ t3)’
(X =8)(X =)
ps(X) = (ts — t1)(ta — t2)
(=) a(p) = pl@) =[5 4]|,|= 11
(b) B w) = 0lB) =3 4] |=39

(<) (2a +36) () = pl2a + 36) = 3 4](2 . +3[5

(d) 2a+36)" ([a 8]) =[a b](z

69
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2




Book 4 Linear algebra

2.10

2.11

2.12

Let V be of dimension n and S of dimension k. Take a basis {vy,..., v}
of § and extend it to a basis

{vll"‘svklvk+ll"'1vﬂ}

of V. Let {¢©1,...,9n} be the basis of V¢ dual to {v1,...,vn}. Given
© € V4 we have

p=a1p1+ -+ anPn.
Since () = a; we see that ¢(v) = 0 for every v € § if and only if
gy = --=gp =0, Thus

PEST “= 0 =0k 1Pk+1+  + GnPn

and 80 {@x+1,...,@©n} is a basis for §1. Hence dim § + dim §+ = n.
If ¢ € Keri? then ¢¢(¢) = 0 and so [t¢(¢)](x) = 0 for all uw € U. But

[t4())(w) = [$(D)](x) = $lt(x)].

Thus ¢ € (Im¢)L. Conversely, let ¢ € (Im#)L. Then for all u € U we

have
d
[t°(¥)](w) = $[t(w)] =0
and so t4(¢) = 0 whence ¥ € Ker#?. Thus Keri? = (Im¢)-L.

(1) means that v € Im¢ while (ii) means v ¢ (Ker¢?)-. In terms of
linear equations, this says that either (i) the system AX = B has a
solution, or (ii) there is a row vector C with CA=0and CB=1.

It is readily seen that the given system of equations has no solution,
so (i1) holds. The linear functional satisfying (ii) is [1,—2, 1].

If o € W¢ then for all u € U we have

(s o 1)% (@) (1) = p[(s 0 )(u)] = ps[t(u)] = s*(p)[t(v)] = [t*(s*(¥))](x)
from which the result follows. The final statements are immediate from
the fact that Im ¢ = (Ker¢?) (see question 2.10).

To find ¥ we find the dual of {[1,0,0],[1,1,0],[1,1,1]}. The transition
matrix and its inverse are

1 1 1 -1 0
P=|0 11|, P!'=]0 1 -1
0 0 0 0

70



2.18
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Thus ¥ = {(1,-1,0),(0,1,-1),(0,0,1)}.
The matrix of ¢ with respect to the standard basis is

1 0
1 1
0 —1]|

QO =

and the transition matrices relative to X,Y are respectively

1 00
-1 1 of,
0 -1 1

OO =
QO = -

By the change of basis theorem, the matrix of ¢ relative to X,Y is then

1 0 02 1 1 11 2 3 3
1 1 0f|1 1 01 1(=(3 5 6.
1 1 1{j0 0 - 0 01 3 5 b

The required matrix is then the transpose of this one.

The annihilator {a;,as )t is of dimension 1 and contains both 3 and
4. Thus ¢} is a scalar multiple of @3.

It is immediate from properties of integrals that

Ly(Mfr + Az f2) = X La(f1) + A2 Ly(f2)

and so L, is linear.
To show that Fy is a linear functional, we must check that

Fe(Mhfi + A2 f2) = M Fs(f1) + A2 Fi(f2),
i.e. that (A1 fi + A2 f2)(z) = A1 fi(z) + Az fa(z), which is clear.
Suppose that z is fixed and that F; = L, for some g. Then

wrecon) [ () glt) dt = £().

Now, by continuity, the left hand side depends on the values of f at
points other than z whereas the right hand side does not. Thus F # L,
for any g¢.
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2.15 The method of solution is outlined in the question.

216 Let {v;,...,Vx—1} be a bagis of U and extend this to a basis {vy,..., vk}
of V. Apply the Gram-Schmidt process fo obtain an orthonormal basis

{u1,...,ux} of V, where {u,,...,ux—;} is an orthonormal basis of U.
Let n = ug. Thenif z = E:-:ll Aiu; € U we have
k—1

(n|z) = (uk|Aqug + - + Ap—yup—y } = EA:'(“H“:‘) =0

=1

Conversely, if z = Z?:l Aiu; €V and if (n|z) = 0 then

0= (ug|Arus + -+ Apug) il uklui ) = Ak

uMw

Consequently we see that z € U and so
U={zeV | (n|z) =0}

Now v— v' = 2(n|v)n, a scalar multiple of n, and so is orthogonal to
U. Then 2(v+¢') =v — (n|v)n € U since

(nlv = (nlv)n) = (n|v) — {nlv) (n|n)
= (nlv) - {nlv)
0.

We have
tlv+w)=v+w—2(nlv+win
=v+w-—2({nlv})+ (n|w))n
= (v — 2(n|v)n) + (w — 2{n|v)n)
= t(v) + t(w);
t(Av) = Av—2(n|iv)n
= Av—2A(n|vin
= At(v),
and so ¢ is linear.
Note that ¢(u) = u for every u € U and so 1 is an eigenvalue and
Ker(t —id) = U is of dimension k¥ — 1. Thus 1 has geometric multiplicity
k —1. Also, ¢{(n) = —n and so —1 is also an eigenvalue with associated

eigenvector n. Since the sum of the geometric multiplicities is k it follows
that ¢ is diagonalisable.
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In the last part we have that n = 7%(3,—1, 1) so if v = (a,b,¢) then
1

(n,v) = ﬁ(3a—b+c). Thus

8(a,b,¢) = (a,b,¢) — Z(3a —b+¢)(3,-1,1)
= & (—7a + 6b — 6¢c,6a + 9b + 2¢, —6a + 2b + 9¢),

which gives

1 -7 6 —6
mat s = —ﬁ 6 9 2.
—6 2 9

As for t, we have n = 711-3(2, —1,2,—1) and so if v = (a,b, ¢, d) then

t(a,b,¢,d) = (a,b,¢,d) — 2(2a — b+ 2c - d)(2,-1,2,-1)
= :(a+2b — 4c +2d, 2a + 4b + 2c — d,
—4a+2b+c+2d,2a — b+ 2¢ + 44d),

which gives

The hyperbola is represented by the equation

= 2

-1 3

The eigenvalues of A = [ s _1

] are 2 and —4 with associated nor-

malised eigenvectors

13 [

1/V2 1/V2

Thus P AP = diag{2,—4} where
p_[1VE —1/\/51
vz oyvel
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Now change coordinates by defining

X = [551]: Pt
L1

Then we have x = Px; and the original equation becomes

1= xtAx = (PX1 )tA(le)

z]: Ptx.
y

=X§PtAPX1

_ 2 0 z1
= [z‘ h ][0 —4][3,1]
=222 — 4y

Thus the principal axes are given by z; = 0 and y; = 0, i.e. ¥y = —z
and y = z.
The ellipsoid is represented by the equation

7 2 0||=
[:c y z] 2 6 -2|ly|=1
0 -2 51| 2
7 2 0
The eigenvalues of A = |2 6 —2| are 3,6,9 with associated nor-
0 -2 5
malised eigenvectors i
~1/3 2/3 2/3
2/3 |, ~1/3|, 2/3 |.
2/3 2/3 ~1/3

Thus P* AP = diag{3,6,9} where

-1 o2 2
P=z| 2 -1
2 2 -1

I x
X1=|% =.Pt y =Ptx
21 2
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Soluttons to Chapter 2

Then we have x = Px; and the original equation becomes (with a
calculation similar to the above)

322 +6y° +922 = 1.

Since
z1 = 3(—z + 2y + 22),
n =12z - y+22),
= 1(2z + 2y — 2),

the z,-axis is given by y; = z; = 0 and has direction numbers (1,2, 2);
)

the y,—axis is given by z; = z; = 0 and has direction numbers (2, —1, 2);

the z;—axis is given by z; = y; = 0 and has direction numbers (2,2, —1).

Let {v1,...,vn} be an orthonormal basis of V. Then for every z € V
we have z = Y _;_, { z|vg vk so in particular

(1;=11"'1"‘) f(vi)=2(f(vi)|vk)vk
k=1

If A is the matrix of f we thus see that ajx = { f(vs)|ve ). If M is the
matrix of f* then likewise we have that mjx = { f*(v;)|vk }. The result
now follows from the observation that

vk f*(vs))
Fve)|vs)

k-

mgk = (f*(vj)lvx ) =

(wlf*(vs))
(f(v)lvi}

Il
3]

The first part is a routine check of the axioms. Using the fact that
tr(AB) = tr( BA) we have
(/m(A)|B) = tr[B*(MA)] = tr[MAB"|
= tr[B*M A]
= tr[(M* B)* A]
= ( A|fm-(B))

from which it follows that (fas)* = fag.
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2.20 Let B be as stated and let fg € V* be given by fg(a) = {(a|f). Then
since {aj,...,a,} is an orthonormal basis we have

n
folaw) = {ar| Y flas)ai) = flar)-
=1
Since fg and f coincide on this basis, it follows that f = fg.
For the next part suppose that such a ¢ exists. Then we have

1
P = 1) = [ pa
for every p. Writing rp for p we then have

1 ———
[ 0 T@ bt = rizlpta) =0,
In particular, this holds when p = Fq. So

]0 I lg()]? dt = 0

whence we have rg = 0. Since r # 0 we must therefore have ¢ = 0, a
contradiction.
For the next part of the question note that

{(fo(@)r) = {pqlr)

so (fp)* = f5-
Integration by parts gives

(D(p)lg) = p(1)g(1) — p(0)(0) — (p|D(q) ).
If D* exists then we have

(p|D*(q)) = p(1)q(1) — p(0)7(0) — (p| D(q) )
so that

(plD(g) + D*(g)) = p(1)3(1) — p(0)3(0).
Now fix ¢ such that g(0) = 0,¢(1) = 1. Then we have
(r|D(q) + D*(q)) = p(1),

which is impossible (take 2 = 1 in the previous part of the question).
Thus D* does not exist.

76



Soluttons to Chapter 2

2.21 That K is self-adjoint follows from the fact that zy is symmetric in z
and y.
We have

K(fn)=[)1 zy fuly) dy
=/:)lzy(y __er—z) dy
=j; zy"* y—————f zy dy

:Cy"’+2 ¥y= y)
n+ 2 y=0 n+2 2
=0,
so K(f,) = Of, as required.

Apply the Gram-Schmidt process to {f, fa}. Let ¢;(z) = fi(z) =

z— 2 and define ex(2) = f2(2) + efi(2) = (2% - L) + a(z — 2) where

y=0

(P}
(z %13 %)

Since

1
(s-ta-3)= [ (- Par=}

it follows that & = —1 and hence that
ex(z) =2 —z + §.

Thus e;, €5 are orthogonal eigenfunctions associated with the eigenvalue
0.
If K(f)=Af then

1
M(z) =z fo v f(y) dy

If A # 0 then f must then be of the form z ~+ az for some constant a.
Substituting @z for f(z), it clearly follows that A = . An associated
eigenfunction is given by f(z) = z.
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2,22

2.28

Since t is skew-adjoint its eigenvalues are purely imaginary so +1 are
not eigenvalues. Hence id +¢ cannot be singular. Now

§* = (id +£*)7 (id —¢*) = (id =)~ (id +1).

But (id +£)(id —t) = id —¢2 = (id —t)(id +1) so
(id =)~ '(id +t) = (id +¢)(id —¢) .

Hence s* = (id +¢)(id —¢)~! and so

s8* = (id —t)(id +¢) 1 (id +8)(id —¢) ! = id.

To see that s cannot have —1 as an eigenvalue, consider
id 45 = id +(id —t)(id +¢)~*.
We have that
(id +s)(id +t) = (id +¢) + (id —¢t) = 2id,

and so (id+s)~! = Z(id +t) whence id +s does not have 0 as an eigen-
value and hence —1 is not an eigenvalue of s.

St=8and T = T, so
(T+iS) = (T —i8)t = T* —iSt = —(T +15).

Thus T + 1S is skew-adjoint. But the eigenvalues of a skew-adjoint
matrix are purely imaginary, so 1 is not an eigenvalue of T + ¢, so

det(T +1S —1I) #0.
As for the second part, we have

U=(I+T+iS)(I-T—i8)7"
= [I+ (T +38)][I — (T +i8)]".

The fact that U is unitary now follows from the previous question.
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It is given that A* = A4,8* = —§,AS = SA,det(A — S) # 0. Let
B=(A+8S)(A~S)"1. Then we have
B'B=[A+S)(A-8)"1'(A+8)A-8)"!
=[(A=8)"(A+ 94+ 85)(4-9)"
=(A'—8*)" 1A'+ SY)(A+S)(4-8)!
=(A+8)"H(A-S)(A+S)(A-8)!
=(A+S)" A+ S)(A-S)(4-85)1,

the last equality following from the fact that since A, S commute so do
A+ S and A— S. Hence B'B = I and B is orthogonal.

Since
(1) AA+A=0
we have, taking transposes,

A4+ A =0
and hence, taking complex conjugates,
(2) Aa+A =o.

It follows from (1) and (2) that A= A, so that A is self-adjoint. Let
Aly«.«yAp be the distinct non-zero eigenvalues of A. Then Ay,..., A,
are necessarily real.

The relation (1) can now be written in the form

A?=—4

from which it follows that the distinct non-zero eigenvalues of —A,
namely —Ay,...,—Ap, are precisely the distinct non-zero eigenvalues of
A% namely A%,...,A2, It follows that A;,..., A, are all negative. Let
a; = —X; for each ¢, and suppose that

(051 <ag< ---<an.
Then this chain must coincide with the chain

2 2
a1<a2< --'<a:‘;.

Consequently, a; = a? for every ¢ and, since by hypothesis a; # 0, we

obtain A\; = —a; = —1.
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2.26

2.27

2.28

A and B are given to be orthogonal with det A + det B = 0. Now we
have that

(1) det(A + B) = det[(AB' + I)B]

from which we see that det(A+ B) = 0 if and only if —1 is an eigenvalue
of ABt. But AB' is orthogonal since

(AB!)'(AB!) = BA'AB' = I.

Also, det(AB*) = det Adet B~! = —1 since it is given that det A =
— det B. Thus C = AB?® is orthogonal with det C = —1. It follows that
—1 is an eigenvalue of C’ for

CtI+C)=C"+1=(C+1I)}
and so, taking determinants,
det(] + C)[detC — 1] =0
whence det(J + C) = 0. It now follows from (1) that det(A + B) = 0.
(1) Since A*(A—I) = I — A* = —(A* — I) we have that
det Adet(A — I) = (—1)" det(A — 1)

and so
det(A — I)[det A — (—1)*] = 0.

If det A =1 and n is odd then it follows that det(4 — I) = 0 and hence
1 is an eigenvalue of A. If detA = —1 and n is even then likewise
det(A — I) = 0 and again 1 is an eigenvalue of A.

(2) Since A*(I + A) = A* + I = (I + A)* we have that

det Adet(] + A) = det(] + A)

and so if det A = —1 then det(7 + A) = 0 whence —1 is an eigenvalue of
A.

The first part follows from the observation that
9(4) =0 <= g(A') =0 <> g(-4) =0.
Suppose now that g(X) is the minimum polynomial of A, say
I X)=ap+a1 X+ - +a,, X+ X"
Since g(—A) = 0 we have that
go— X+ -+ (-1)X"

is also the minimum polynomial of A. Thusa; = a3z = -+ =0.

Since (A™)* = (—1)™A for a skew-symmetric matrix A we see that A"
is skew-symmetric if n is odd, and is symmetric if n is even. Hence f(A)
is skew-symmetric, and g(A) is symmetric.
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2.29 We have
N(UA) = tr(TA UA)

= ti(A T UA)

= tr(ZtA)
= N(A).
Similarly, using the fact that tr(XY) = tr(Y X),
N(AU) = tr|(AU)t AU]
= tr[AU (AU )}
= tr(AUT' &)
= tr(A4")
= N(A).
Finally, by the above,
N(I, —U"'A) = N[U(I, — U~ 4)
= N(U - A)
=N(A-U).
2.0 Since A'A = AA' we have that A~1(A')~! = (4')~14A~. But

P41,

AVA=TI—=ATA=]— 4
It follows that
AVAT =A@ = () AT = AT 4

and so A~! is normal.

A = aol +ay A+ -+ + a, A™ then clearly AZ =A'A Suppose
conversely that A is normal. Then there is a unitary matrix P and a
diagonal matrix D such that

A=P'DP=P'DP, A =P DpP=P-'DP.
Let Ay,..., A, be the distinct elements of D). Consider the equations
M=ao+ar +a22+ - 4a, A7
de=ao+ aAz+ 8223+ -+ a1 AF7!

Ar=ao+a1A +a2d2 + - a7
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2.51

2.52

2.88

Since Ay,..., A, are distinct the (Vandermonde) coefficient matrix has
non-zero determinant and so the system has a unique solution. We then
have

D=ayl+a,D+a;D*+ - +4a,_, D!

and consequently
A =P 'DP=P Yool +a,D+ - +a,_D"")P
=agl+a;A+ - +ar_1 ATL,

Suppose that A is normal and let B = g(A4). There is a unitary matrix
P and a diagonal matrix D such that

A=P'DP=P-'DP.
Consequently we have
Bt -1
B =g(A)= P g(D)P =P~ g(D)P,

and so
—t

B'B =P'¢(D)PP'g(D)P = P'g(D)g(D)P
and similarly

BEB' = P'¢(D)¢(D)P.

Since g(D) and g(D) are diagonal matrices, it follows that B'B= BT
and so B is normal.

We have that

(A+ Bi)*(A + Bi) = (A* — B*i)(A + Bi)
= (A — Bi)(A + Bi)

A% — (BA- AB)i + B,

and similarly (4 + Bi)(A + Bi)* = A® — (AB — BA)i + B2. 1t follows
that A + Bi is normal if and only if AB = BA.

To get —A multiply each row of A by —1. Then clearly det(—A4) =
(—1)" det A. If n is odd then

det A = det(A*) = det(—A) = (—1)"det A= —det A

and so det A = 0.
82



Solutions to Chapter 2

Since zt Az is a 1 X 1 matrix we have
' Az = (2* Az)t = ' A'z = —2t Az

and so zt Az =0,

Let Az = Az and let stars denote transposes of complex conjugates.
Then we have z*Az = Az*z. Taking the star of each side and using
A* = A = — A, we obtain

Az*z = (z*Az)* = 2* A%z = —z* Az = -2z

Since ¥z # 0 it follows that X = —\. Thus A = ip where p € IR\ {0}.
If z = y + ¢z then from Az = iuz we obtain A(y + iz) = iu(y + 12)
and so, equating real and imaginary parts, Ay = —uz, Az = py. Now

py'y =yt Az = (yP Az)! = 2 A'y = - Ay = ptz

and so y'y = 2f2. Also, uy'z = —y* Ay = 0 (by the first part of the
question). If, therefore, Au = 0 then

puty =u'dz = —(Au)'2=0

and similarly
putz = —u' Ay = (Au)'y = 0.

For the last part, we have

-2 2 =2
det(A—AI)=det| -2 —-X —1|=-A(A%+9),
2 1 =X

so the eigenvalues are 0 and +3s.
A normalised eigenvector corresponding to 0 is
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2.94

Then we have

. [ —4
—3z=Ay=—1| -1
Y V2 i
which gives i
L
=373 ! .
Relative to the basis {u,y,2} the representing matrix is now
0 00
0 0 3.
0 -3 0

The required orthogonal matrix P is then

-1/3 0 4/3v2
P=| 2/3 —1/vZ 1/3V2]|
2/3  1/v2 1/3v2

Let @ be the matrix that represents the change to a new basis with
respect to which ¢ is in normal form. Then z* Az becomes y' By where
z = Qy and B = Q* AQ. Now

qz)=qdW)=vi+  +¥ -V - —Yrm

where p— m is the signature of ¢ and p+ m is the rank of g. Notice that
the rank of ¢ is equal to the rank of the matrix B which is in turn equal
to the rank of the matrix A (since @ is non-singular), and

y= (yl:---:yp:yp+l;---;yp+m1yp+m+la---)yn.)t'

Now if ¢ has the same rank and signature then clearly m = 0. Hence
y*By > 0 for all y € IR™ since it is a sum of squares. Consequently
zt Az > 0 for all z € IR™.

Conversely, if zt Az > 0 for all £ € IR™ then 3 By > 0 for all y € IR™.
Choose y = (0,...,0,%;,0,...,0). Now the coefficient of y? must be 0 or
1, but not —1. Therefore there are no terms of the form —y?, so m =0
and g has the same rank and signature,
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Solutions to Chapter 2

If the rank and signature are both equal to n then m = 0 and p = n.
Hence

¥By=yi + -+ 9
But a sum of squares is zerc if and only if each term is zero, so zt Az > 0
and is equal to 0 only when z = 0.

Conversely, if zt Az > 0 for z € IR™ then y*By > 0 for y € R" so
m = 0, for otherwise we can choose

¥y=1(0,...,0,9p41,0,...,0)

with y,+1 = 1 to obtain y* By < 0. Also, z* Az = 0 only for z = 0 gives
y*By = 0 only for y = 0. If p < n then, since we have m = 0, choose
y = (0,...,0,1) to get y* By = 0 with y # 0. Hence p = n as required.

The quadratic form g can be reduced to normal form either by complet-
ing squares or by row and column operations. We solve the problem by
completing squares. We have

q(z) = 2} + 22,25 + 23 — 22123 — 23

= (701 + 222)2 + 70? — (171 + 563)2

and so the normal form of ¢ is

1 0 O
01 0.
0 0 -1

Since the rank of ¢ is 3 and its signature is 1, ¢ is neither positive definite
nor positive semi-definite.

Coordinates (z,,zz,z3) with respect to the standard basis become
(21 + 22,%1,%) +23) in the new basis. Therefore the new basis elements
can be taken as the columns of the inverse of

e e T )
O O =
-0 O

i.e. {(0,1,0),(1,-1,-1),(0,0,1)}.
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2.56

2.87

Take
9((z1,22), (y1,92)) = L[f((21,22), (91,92)) + F((y1,¥2): (31, 22))]
= 2191 + 3 (2192 + Ta91) + Taye
and

h((z1,22), (y1,92)) = 3[f((z1,22), (31, %2)) — (31, %2), (21, 72)))]
= —%Ilyz + %Izyl-

We have g(z;,z3) = f((z1, 22), (21, 22)) = 3 + 32175 + 72 and so the
matrix of g relative to the standard basis is

3
2
11

Completing squares gives (z1 + 2z3)2 — 2z2. The signature is then 0
and the rank is 2, The form is neither positive definite nor positive
semi-definite.

(I gy

In matrix notation, the quadratic form is

4 -1 1|z
xtAx=[z y z] -1 4 -1||ly]-
1 -1 4 || 2

It is readily seen that the eigenvalues of A are 3 (of algebraic multiplicity
2) and 6. An orthogonal matrix P such that P* AP is diagonal is

1/vV6e 1/vV2  1/V3
P=|2/V6 0 -1/V3]|.
1/vV6 —-1/vV2  1/V3

Changing coordinates by setting

€ e @

T
= pt y
V4

transforms the original quadratic form to
3u? + 3v% 4+ 6w?
which is positve definite.
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2.59

Solutions to Chapter 2

(1) We have

29 — 22 +zy+tez=2(y+3iz)? - is® + 2222

r
=2(y+ 3z)® — §(z — 42)* + 2.

Thus the rank is 3 and the signature is 1.
(2)In2zy—zz—yzput z=X+Y,y=X—-Y,z=Z to obtain

2(X?-YH) - (X+Y)Z-(X-Y)Z
=2X%2-2Y%2-2X2
=2(X-32)®-12°-2v>.

Thus the rank is 3 and the signature is —1.
(3) In y2 + 2+ zy + =t + yt + 2t put

z=X+Y, y=X-Y, 2=2, t=T.
Then we obtain

(X2-Y) 4 (X-V)Z+(X+Y)Z+(X+Y)T+(X~-Y)T+ 2T
=X?-Y?4+2XZ+2XT+ 2T
=(X+Z+T)?-Y?>-2°-T%-2T
=(X+Z+T)°—(T+3;2*-32°-Y2

Thus the rank is 4 and the signature —2.

(1) The matrix in question is

1 -1 2
A=]-1 2 3
2 3 9

Now
22 + 2y% + 922 — 2zy + 4z2 — Gy2

=(z—y+22)°+4°+52°—2yz
=(z—-y+22)° +(y—2)° + 42
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where E=z—y+22z,n=y— 2,¢ = 22. Then

z=z¢
y=n+3¢
z=¢+n—3¢
so if we let
11 -3
P=|0o 1 1
00 3§
then we have
z 3
y|=Pln
z §
and P*AP = diag{1,1,1}.
(2) Here the matrix is
0 2 0
A=|[2 0 1]
010

Now
dzy+ 2yz = (z +y)? — (z — y)? + 2y=
=X?_-Y?+(X-Y)2 [X=z+yY=z—y
=(X+322-Y2-Yz— 12
=(X+ 12— (Y + 12)?
=£2_’72:
where §=m+y+%z,q=z—y+%z and ¢ = 2, say. Then

z=3(€+n—¢)
=1(¢€-n)
z2=¢

so if we let

Il
O W=rol—
|
O W=w—-
= L

88



Solutions to Chapter 2

then we have

z 3
y|=P|n
2 ¢
and P*AP = diag{l,—1,0}.
(3) Here we have
1 1 0 -1
1 4 3 —4
4=l 0 3 1 -7
-1 —4 -7 —4

The quadratic form is
22 + 4y + 2% — 42 + 20y — 22t + 6yz — Byt — 142t
= (z+y—1)? +3y° + 2% — 512 + 6yz — 6yt — 142t
=(z+y—1)%+3(y+2—1)%—22% — 8% — 82t
=(z+y—t)°+3(y+2—1)>%—2(2+2t)?
=& +9°-¢%,

where ¢ = 24+ y—¢,n =V3(y+ 2 —1),¢ = V2(2 + 2t) and 7 = ¢ say.
Then . .
z:£—7§q+7§g—2'r

y= 5N — J5$+3r

z=ﬁg—2'r
i=r
and so
1 —-1/V3 1/V2 -2
0 1/V3 -1/vV/2 3
P=
0 0 1/V2 -2
0 0 0 1
gives
z ¢
y{_pl"
z ¢
i 7

and P'AP = diag{1,1,—1,0}.
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2.40 Here we have

E(x,- — z,)°

r<s

Linear algebra

= (3-7] - zn)z + (52 - xn)z + -+ (xn-.l - xn)z

+(z;) — 3n—1)2 + (22 — zn-1)2 + -+ (zp—2 — Tp—1)

+ (21 ~ 22)?

=(n—1)(zf+ - +23)

—2(z1z2+ -+ DT+ T2T3+ -+ TaTp + -+ Tpo1%n)

= x' Ax

where

Now, by adding 1

2

times the first column to columns 2,...,n and

adding -1+ times the first row to rows 2,...,n, then multiplying rows

2,...,n and columns 2,...,n by 4/ -'-‘-g-—l-, we see that A is congruent to

the matrix

n—1 0
0 n—
0 0
0 0

i 0 0

—1

—1

n—2d
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Continuing in this way, we see that A is congruent to the diagonal matrix
diag{n —1,n—2,n—3,...,2,1,0}.
Consequently the rank is n — 1 and the signature is n — 1.
2.41 We have

n
Z (Ars+r + s)z,z,

=1

= A zn: (re,)(sz.) + Zn: (ree)z, + Zn: zr(8z,)

rs=1 ra=1

(%) +(5) ()

= Mz, + 223 + -+ + nzy,)?
+2(z1+ -+ zp)(z1 + 222+ -+ nzy,).

)

Now let
Y1 =21 +2z22+ - +nzy
2=z +22+ -ty
Ya =23
Yn = Zp.
Then the form is Ay? + 2y, y2 which can be written as
{ My + 4y2)? — Lol if A # 0
ly +9)? -y —w)?  ifa=o0

Hence in either case the rank is 2 and the signature is 0.

2.42 Since A is an eigenvalue of A there exist a,...,a, not all zero such
that Ax = Ax where x = [a; ... ap|’. Then x*Ax = Ax'x and so, if
Q = x' Ax then we have
Q(aly--"an) = )\(ﬂ«fﬂ- "'+a’i)'

2.48 Let Q(z,z) = ztA*Az = (Az)'Az. Since det A # 0 we may apply
the non-singular linear transformation described by y = Az so that
Q(z,z) — Q(y,y) where

Qy,y) =vy=yvi+ -+
Thus @ is positive definite.
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2.44

Let {t1,...,%,} be an orthonormal basis of the real inner product space
IR" under the inner product given by { z|y) = f(z,y). Letz =3 ;_, ziu;
and y = 3>, ¥i%i. Then

n
f(zly Ily = Zzullzy:us :Eziyi
=1 =1 =1
and, for some real symmetric matrix B = [bij]nxn,
n 7
=D biziy; = x'By
i=17=1

where

Tn Yn

Now we know that there is an orthogonal matrix P such that
P'BP = diag{)1,..., n};

i.e. that there is an ordered basis {v,...,vs} that is orthonormal (rel-
ative to the inner product determined by f) and consists of eigenvectors
of B. Let z = 3¢, &v; and y = 3o, niv;. Then, relative to this
orthonormal basis, we have

z y) = Efi’?i;
=1
y) =D Aibini.
=1

Consequently,

Qs(z) = f(z,2) = Zsf,

Qg( —g:c:c EAG:

Observe now that
g — Af degenerate <> (3z)(Vy) (¢— Af)(z,y)=0
<= (32)(Vy) g(z,y) — Af(z,9) =0.
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Since, from the above expressions for f(z,y) and g(z, y) computed rel-
ative to the orthonormal basis {vy,...,v,},

n

g(z,¥) = Af(z,9) = D_(Ae — A)éins

=1

it follows that g — A f is degenerate if and only if A = A; for some 2.
Suppose now that A, B are the matrices of f, g respectively with re-
spect to some ordered basis of IR™. If

Tn Yn

are the coordinate vectors of z, y relative to this basis then we have

g(z,y) = Af(z,y) = x*(B — AA)y.

Thus we see that g — Af is degenerate if and only if A is a root of the
equation det(B — AA4) = 0.

For the last part, observe that the matrices of 22y + 2yz and z% — y% +
2z2 relative to the canonical basis of IR® are respectively

010 1 01
A=1{1 0 1|, B=|0 -1 0f.
010 1 0 0
Since
1 - 1
det(B — XA) =det{ —A -1 =A|=22+1
1 - 0

the equation det(B—AA) = 0 has no solutions. But, as observed above, if
a simultaneous reduction to sums of squares were possible, such solutions
would be the coefficients in one of these sums of squares. Since neither
of the given forms is positive definite, the conclusion follows.

2.45 The exponent is —x* Ax where

A=

W01
W= s RO
i bl o
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The quadratic form x® Ax is positive definite since

24y’ +22 +oytzztyz=(z+3y+12)?
=(z+3y+32)°

which is greater than 0 for all x # 0. So the integral converges to

732 /\/det A, i.e. to V2r3.
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Test paper 1

Time allowed : 3 hours
(Allocate 20 marks for each question)

Let V be a finite-dimensional vector space. Prove that if f € L(V,V)
then
(a) dimV = dimIm f + dim Ker f;
(b) the properties
(1) f is surjective,
(ii) f is injective,
are equivalent;
(c) V =Im f ® Ker f if and only if Im f = Im f?;
(d) Im f = Ker f if and only if the following properties are satisfied
(l) f2 =0,
(i) dimV = n is even,
(iii) dimIm f = Ln.

Suppose that t € £(€®, €°) is represented with respect to the basis
{(1,0,0,0,0),(1,1,0,0,0),(1,1,1,0,0),(1,1,1,1,0),(1,1,1,1,1)}

by the matrix

1 8 6 4 1
0 1 0 0 0
o 1 2 1 o0
0 -1 -1 0 1
0 -5 -4 -3 -2

Find a basis of €° with respect to which the matrix of ¢ is in Jordan
normal form.



Let ©1,...,q € (R®)%. Prove that the solution set C of the linear
inequalities

p1(2) 20, 1(2) 20, ... ,pa(2) >0
satisfies

(a) a,fEC = a+ L €C;
(b) aeCiteRit>0=>ta € C.

Show that if ¢1,...,@n form a basis of (IR®)% then
C={tioy+ - +tpan | t; €ER,t; >0}

where {ai,...,a,} is the basis of R” dual to the basis {¢1,...,¢n}.
Hence write down the solution of the system of inequalities

©1(2) 2 0, pa(z) >0, p3(z) >0, p4(z) 20

where ¢, = [4,5,—2,11],2 = [3,4,-2,6],03 = [2,3,—-1,4] and p4 =
[0,0,0,1].

Let A be a real orthogonal matrix. If (A—AI)?’z2=0and y = (A- )z
show, by considering y*y, that y = 0. Hence prove that an orthogonal
maftrix satisfies an equation without repeated roots.

Prove that a real orthogonal matrix with all its eigenvalues real is
necessarily symmetric.

Prove that if a real quadratic form in n variables is reduced by a real
non-singular linear transformation to a form

n
> o?
g=21

having p positive, ¢ negative, and n — p — ¢ zero coefficients then p and
q do not depend on the choice of transformation.
For the form

12122 + AgZ2%3 + -+ Gpa1Zp—-1Zq
in which each a; # 0, show that p = ¢; and for the form
12122 + A2ZT2%3 + +* + Ap 1 Tp-1Zn T CnZTy T
in which each a; # 0, show that

[0 if n is even;
P ‘1"{1 if n is odd.
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Test paper 2

Time allowed : 3 hours
(Allocate 20 marks for each question)

Let V be a finite-dimensional vector space and let e € L(V,V) be a
projection. Prove that

Kere = Im(idy —e).

If t € L(V,V) show that Ime is t-invariant if and only if ectoe=1tog¢;
and that Kere is t-invariant if and only if eofo e = e o t. Deduce that
Ime and Kere are t-invariant if and only if e and ¢ commute.

If U = [ur,] € Mat,x,(Q) is given by

w. = 1 fs=r+1,
710 otherwise,

and J = [jps] € Maty, ,(C) is given by

. _J1  ifr+s=n+1;
™ 710  otherwise,

show that U* = JUJ. Deduce that if A € Mat, x,(€) then there is an
invertible matrix P such that P~1 AP = At,
Find such a matrix P when A is the matrix

0 4 4
2 2 1.
-3 —6 -5



Let V be a vector space of dimension n over a field F'. Suppose that W
is a subspace of V with dimW = m. Show that
(a) dmW+ = n —m;
(b) W) =w.

If f,g € V¥ are such that there is no A € F\ {0} with f = Ag, show
that Ker f N Kerg is of dimension n — 2.

Let V be a finite-dimensional complex inner product space and let f :
V — V be a normal transformation. Prove that

@) =0=> f(z) = 0

and deduce that the minimum polynomial of f has no repeated roots.
If e: V — V is a projection, show that the following statements are

equivalent :

(a) e is normal;

(b) e is self-adjoint;

(c) e is the orthogonal projection of V onto Ime.

Show finally that a linear transformation A : V — V is normal if and
only if there are complex scalars A;,..., A and self-adjoint projections
€1,...,€x on V such that
(1) f=Xer+ -+ Apew;

(2) idy = €1 + -+ + e
(38) (i#J) eice;=0.

(
(a) Show that the quadratic form z'Asz is positive definite if and
only if there exists a real non-singular matrix P such that A = PP®.

Show also that if EZJ-___I bijziz; > 0 for all non-zero vectors z then

Z?,j:l bi;pizipjz; > O for all z. Hence show that if z* Az and 1t Bz are
both positive definite then so is

n
z aijb"jxizj-
1,7=1
(b) For what values of k is the quadratic form
n
S kY s
r=1 1<
positive definite?
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Time allowed : 3 hours
(Allocate 20 marks for each question)

If U,W are subspaces of a finite-dimensional vector space V prove that
dim¥U + dimW = dim(U + W) + dim(U N W).
Suppose now that V. =U @ W. If § is any subspace of V prove that
2dim§ —dimV < dim[(U N S) @ (W N §)] £ dim 8.

In the case where V = @, U; find similar upper and lower bounds
for

dim é‘a(u,- ns).

t=1

For the matrix

01
A=]-1 1
-1 0

N = O

find a non-singular matrix P such that P~ AP is in Jordan normal
form.
If ) is positive, obtain real values of z;; such that C? = D where

11 Z12 T13 A1 0
C = 0 o2 Ta3 |, D=0 X 1
0 0 Tas 0 0 A

Hence, or otherwise, find a real matrix X such that X? = 4.



Let V be a vector space of dimension n over a field F and let W, X be
subspaces of V. Prove that

W+X)t=winxt and WnX)t=w'+Xxt

Given ¢1,...,gn € V4, prove that the following conditions concerning
f € V¢ are equivalent :

(1) NP, Kerg: C Ker f;
(2) fis a linear combination of gy,..., gn.

Show that the matrix

B [ [ b = b0 =

(ST ST SR S TR

[SEE ST ST ST

|

B
Il
[STL ST ST S

is orthogonal. Find its eigenvalues and show that the matrix A% — I
has characteristic equation

X?(X?-3X +3)=0.
Find a unitary matrix U such that U~! AU is diagonal.
Let @(k,r) be the quadratic form
k(z? +22+ - 4+22)— (2 + 22+ - +2,)%

Show that
(k - I)Q(k: r) = kQ(k ~-Lr- 1) + yg

where y, is a homogeneous linear function of z,,...,z,.
Hence find the rank and signature of

n(z?+z24+ - +22)~ (g1 + 32+ - +3,)%
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Time allowed : 3 hours
(Allocate 20 marks for each question)

Let F be the vector space of infinitely differentiable complex functions
and let P, be the subspace of complex polynomial functions of degree
less than n. For every A € € define P, » = {¢**p | p € P,}. Show that
P, » is a subspace of F' and that

B= {2 | k=0 ~1
= {e k!l =0,...,n—1}

is a basis of P, 5. If D denotes the differentiation map prove that

(1) D*(e~**f) = e **(D - Aid)*f;
(2) P, = Ker(D - Xid)";

(3) P, is D-invariant;

(4) B is a cyclic basis for D — Aid.

i D, denotes the restriction of D to P, find the characteristic
polynomial of D, x. I g # X show, by considering the characteristic
polynomial of Dy, » + (¢ — A)id, that (D, x — pid)"® is invertible.

Given A = Z b use the Cayley—Hamilton theorem and euclidean

d

division to show that every positive power of A can be written in the
form

A" =11 + Bz A.



If the eigenvalues of A are A, A2 show that

AgAT = AR AR — AT .
AL # Ag;
Aﬁ - /\2 - Al I )\2 _ A] A lf 1 # 23
(1— n)APL, + nAP—1 A if Ay = Ag.

Hence solve the system of difference equations
Tnt1 = Tn + 2Yn
Ynt+1 = 2Zp + Yn
where z;, =0 and y; = 1.

Suppose that f € L(C",€") and that every eigenvalue of f is 0. Show
that f is nilpotent and explain how to find dim Ker f from the Jordan
normal form of f.

Let f,g € ﬁ(CG, ﬂ:e) be nilpotent with the same minimum polynomial
and dim Ker f = dim Ker g. Show that f, g have the same Jordan normal
form. By means of an example show that this fails in general for f,g €
L7, c".

Deduce that if 5,¢ € £(€",C") have the same characteristic polyno-
mial

(X - ) (X —aa) - (X =)
and the same minimum polynomial, and if
dim Ker(s — o;id) = dim Ker(t ~ a;id)

for 1 <1< r, then s and ¢ have the same Jordan normal form provided
ki<6for1<:i<r.

Let V be a vector space of dimension n over a field F.

(i) If s € L(V,V) show that sos = 0 if and only if Ims C Kers, in
which case dimIms < in

(ii) Let p € L(V, V) be such that p® = 0 and p"~! # 0. Show
that there is a basis B = {z),...,z,} of V such that p(z;) = z;4, for
j-—-l,...,n—landp(zn) 0. :

Show that if ¢ = 357, A\;p*~! where each A\; € F then ¢ commutes
with p. Conversely, suppose that t € L(V,V) commutes with p and is
represented relative to the basis B by the matrix [ay;]nxn. Prove by
induction that

n—j+1
(j = 1,...,n) t(.'.BJ z Qg1 Ti45—1
f=1

and deduce that ¢ is a linear combination of id, p,...,p"*"!.
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Show that each of the quadratic forms

622 + 522 + T2 — 4v21,z;,
Ty} + 6y3 + 5y3 + 4y1 ¥z + 44293

can be reduced by an orthogonal transformation to the same form
122 + ag22 + ag22.

Obtain an orthogonal transformation which will convert the first of the
above forms into the second.
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