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Preface to the 2nd Edition 

This is the second, revised, and expanded edition of the linear algebra 
problem book Linear Algebra: Challenging Problems for Students. The first 
edition of the book, containing 200 problems, was published in 1996. In 
addition to about 200 new problems in this edition, each chapter starts with 
definitions and facts that lay out the foundations and groundwork for the 
chapter, followed by carefully selected problems. Some of the new problems 
are straightforward; some are pretty hard. The main theorems frequently 
needed for solving these problems are listed on page xv. 

My goal has remained the same as in the first edition: to provide a book 
of interesting and challenging problems on linear algebra and matrix theory 
for upper-division undergraduates and graduate students in mathematics, 
statistics, engineering, and related fields. Through working and practicing 
on the problems in the book, students can learn and master the basic 
concepts, skills, and techniques in linear algebra and matrix theory. 

During the past ten years or so, I served as a collaborating editor for 
American Mathematical Monthly problem section, Wisociate editor for the 
International Linear Algebra Society Bulletin IMAGE Problem Corner, and 
editor for several other mathematical journals, from which some problems in 
the new edition have originated. I have also benefited from the math confer­
ences I regularly attend; they are the International Linear Algebra Society 
(ILAS) Conferences, Workshops on Numerical Ranges and Numerical Radii, 
R. C. Thompson (formerly Southern California) Matrix Meetings, and the 
International Workshops on Matrix Analysis and Applications. For exam­
ple, I learned Problem 4.21 from M.-D. Choi at the !LAS Shanghai Meeting 
in 2007; Problem 4.97 was a recent submission to IMAGE by G. Goodman 
and R. Hom; some problems were collected during tea breaks. 

I am indebted to many colleagues and friends who helped with the re­
vision; in particular, I thank Jane Day for her numerous comments and 
suggestions on this version. I also thank Nova Southeastern University 
(NSU) and the Farquhar College of Arts and Sciences (FCAS) of the uni­
versity for their support through various funds, including the President's 
Faculty Research and Development Grants (Awards), FCAS Minigrants, 
and FCAS Faculty Development FUnds. 

Readers are welcome to communicate with me at zhang@nova.edu. 

ix 
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Preface 

This book is written as a supplement for undergraduate and first-year 
graduate students majoring in mathematics, statistics, or related areas. I 
hope that the book will be helpful for instructors teaching linear algebra 
and matrix theory as well. 

Working problems is a crucial part of learning mathematics. The pur­
pose of this book is to provide a suitable number of problems of appropriate 
difficulty. The readers should find the collection of two hundred problems 
in this book diverse, interesting, and challenging. 

This book is based on my ten years of teaching and doing research 
in linear algebra. Although the problems have not been systematically 
arranged, I have tried to follow the order and level of some commonly used 
linear algebra textbooks. The theorems that are well known and found in 
most books are excluded and are supposed to be used freely. The problems 
vary in difficulty; some of them may even bafBe professional experts. Only 
a few problems need the Jordan canonical forms in their solutions. If you 
have a little elementary linear algebra background, or are taking a linear 
algebra course, you may just choose a problem from the book and try to 
solve it by any method. It is expected that readers will refer to the solutions 
as little as possible. 

I wish to dedicate the book to the memory of my Ph.D. advisor, R. C. 
Thompson, a great mathematician and a founder of the International Lin­
ear Algebra Society (ILAS). I am grateful to C. A. Akemann, R. A. Horn, 
G. P. H. Styan, B.-Y. Wang, and X.-R. Yin for guiding me toward the road 
of a mathematician. I would also like to thank my colleagues J. Bartolomeo, 
M. He, and D. Simon for their encouragement. Finally, I want to thank 
Dr. R. M. Harington, of the Johns Hopkins University Press, for his enthu­
siastic cooperation. 

xi 
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Frequently Used Notation and Terminology 

R 
e 
F 
Rn 
en 
Mn(F) 
Mmxn(F) 
dimV 
I 
A= (ai;) 
r(A) 
trA 
detA 

IAI 
A-1 
At 
A 
A* 
KerA 
ImA 
A~O 

A~B 

diag(A1,A2, ... ,An) 
AoB 
{u, v) 
llxll 

real number field 
complex number field 
scalar field R or e 
vectors of n real components 
vectors of n complex components 
n x n matrices with entries from lF 
m x n matrices with entries from lF 
dimension of vector space V 
identity matrix 
matrix A with entries ai; 
rank of matrix A 
trace of matrix A 
determinant of matrix A 
determinant of matrix A (particularly for block matrices) 
inverse of matrix A 
transpose of matrix A 
conjugate of matrix A 
conjugate transpose of matrix A, i.e., A*= At 
kernel or null space of A, i.e., Ker A = { x I Ax = 0 } 
image or range of A, i.e., Im A = {Ax} 
A is positive semidefinite 
A - B is positive semidefinite 
diagonal matrix with A1 , A2, ... , An on the main diagonal 
Hadamard product of matrices A and B, i.e., A o B = (ai;bi 
inner product of vectors u and v 
norm or length of vector x 

An n x n matrix A is said to be 

upper-triangular if all entries below the main diagonal are zero 
diagonalizable if p-1 AP is diagonal for some invertible matrix P 
similar to B if p-1 AP = B for some invertible matrix P 
unitarily similar to B if u• AU = B for some unitary matrix U 
unitary if AA* =A* A= I 
positive semidefinite if x* Ax ~ 0 for all vectors X E en 
Hermitian if A = A* 
normal if A* A= AA*, and 
a scalar A is an eigenvalue of A if Ax = AX for some nonzero vector x 

xiii 
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Frequently Used Theorems 

• Dimension identity: Let W1 and W2 be subspaces of a finite di­
mensional vector space V. Then 

dim W1 +dim W2 = dim(W1 + W2) + dim(W1 n W2). 

• Theorem on the eigenvalues of AB and BA: Let A and B be 
m x nand n x m complex matrices, respectively. Then AB and BA 
have the same nonzero eigenvalues, counting multiplicity. Thus 

tr(AB) = tr(BA). 

• Schur triangularization theorem: For any square matrix A, 
there exists a unitary matrix U such that u• AU is upper-triangular. 

• Jordan decomposition theorem: Let A be ann x n complex 
matrix. Then there exists an n x n invertible matrix P such that 

A= p-l diag(J11 J2, ... , Jk)P, 

where each J,, i = 1, 2, ... , k, is a Jordan block. 

• Spectral decomposition theorem: Let A be an n x n normal 
matrix with eigenvalues ..\11 A2, ... , An· Then there exists an n x n 
unitary matrix U such that 

A= U* diag(All A2, ... , ..\n)U. 

In particular, if A is positive semidefinite, then all At. 2: 0; if A is 
Hermitian, then all Ai are real; and if A is unitary, then all I..Xt.l = 1. 

• Singular value decomposition theorem: Let A be an m x n 

complex matrix with rank r. Then there exist an m x m unitary 
matrix U and an n x n unitary matrix V such that 

A=UDV, 

where Dis them x n matrix with (i, i)-entries the singular values of 
A, i = 1, 2, ... , r, and other entries 0. If m = n, then D is diagonal. 

• Cauchy-Schwarz inequality: Let V be an inner product space over 
a number field (IR or C). Then for all vectors x and y in V 

I {x, y) 12 ~ {x, x){y, y). 

Equality holds if and only if x and y are linearly dependent. 

XV 
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Chapter 1 

Vector Spaces 

Definitions and Facts 

Vector Space. A vector space involves four things- two (nonempty) sets 
V and 1F and two algebraic operations called vector addition and scalar 
multiplication. The objects in V are called vectors and the elements in 1F 
are scalars. In this book, 1F is either the field R of real numbers or the 
field C of complex numbers, unless otherwise stated. The vector addition, 
denoted by u+v, is an operation between elements u and v of V, while the 
scalar multiplication, written as AV, is a.n operation between elements A of 
F and v of V. We say that V is a vector space over 1F if the following hold: 

1. u + v E V for all u, v E V. 

2. AVE V for all A E F and v E V. 

3. u + v = v + u for all u, v E V. 

4. (u+v)+w=u+(v+w) for allu, v, wE V. 

5. There is a.n element 0 E V such that v + 0 = v for all v E V. 

6. For each v E V there exists an element -v E V such that v+ ( -v) = 0. 

7. A(u + v) =AU+ AV for all A E F and u, v E V. 

8. (A+ J.£)v = AV + J.'V for all A, J.£ E 1F and v E V. 

9. (AJ.t)v = A(pv) for all A, J.£ E F and v E V. 

10. lv = v for all v E V. 

1 
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Some Important Vector Spaces. 

• The xy-plane (also called the Cartesian plane) is a vector space over 
R. Here we view the xy-plane as the set of 8lTOWS (directed line 
segments) in the plane, all with initial point 0, the origin. Define the 
addition by the parallelogram law, which states that for two vectors 
u and v, the sum u +vis the vector defined by the diagonal of the 
parallelogram with u and v as adjacent sides. Define A'V to be the 
vector whose length is IAI times the length of v, pointing in the same 
direction as v if A ~ 0 and otherwise pointing in the opposite direction. 
Note that the extreme case where the terminal point of the arrow 
coincides with 0 gives the zero vector for which the length of the 
arrow is 0 and any direction may be regarded as its direction. This 
vector space can be identified with the space R2 defined below. 

1 y 

).a, l>l 

0 

Figure 1.1: Vector addition and scalar multiplication 

• The thr~dimensional vector space over 1R consisting of all arrows 
starting from the origin in the ordinary three-dimensional space, with 
vector addition and scalar multiplication similarly defined (by the 
parallelogram rule) as above for the xy-plane. This space can be 
identified with the space 1R3 defined below. 

The spaces R2 and R3 will help the reader understand and visualize 
many concepts of vector spaces. 

• F" is a vector space over a field lF, where n is a positive integer and 
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Here addition and scalar multiplication are defined, respectively, by 

( 

X1 ) ( Yl ) ( Xt + Yl ) ( Xt ) ( Azt ) X2 Y2 X2 + Y2 X2 .\x2 
. + . = . , A . = . . . . . . . . . . . . 

Xn Yn Xn + Yn Xn Axn 

In particular, 1Rn and en are vector spaces over R and C, respectively. 

Note: In the context of vector spaces, it usually makes no difference 
whether to write a vector in r as a row or a column. So sometimes we 

may write the vectors in r as rows (xbx2, ... ,xn) for convenience. 
However, when a matrix-vector product Ax is involved, it is clear 
from the context that x has to be a column vector. 

• Mmxn(IF) over IF, where m and n are positive integers and Mmxn(IF) 
is the collection of all m x n matrices over a scalar field 1F. An m x n 
matrix over IF is an array of m rows and n columns: 

A= 

The notation A= (CZt;)mxn or A= (CZt;) is sometimes used for sim­
plicity. If m = n, we often write Mn(1F) for Mmxn(IF). Two matrices 
are equal if they have the same size and same corresponding entries. 

The addition of two m x n matrices is defined by adding the corre­
sponding entries, and the scalar multiplication of a matrix by a scalar 
is obtained by multiplying every entry of the matrix by the scalar. In 
symbols, if A= (ai;), B = (bi;) E Mmxn(IF), and A E F, then 

AA =(A~;). 

Note: H m = 1 or n = 1, Mmxn(1F) can be identified with r or F. 

Matrices can also be multiplied when they have appropriate sizes. 
Let A be a p x n matrix and B be ann x q matrix. The matrix 
product AB of A and B is a p x q matrix whose ( i, j)-entry is given by 
Cli1b1;+ai2~;+···+Clinbn;, i = 1, 2, ... ,p,j = 1, 2, ... ,q. So, to add 
two matrices, the matrices must have the same size, while to multiply 
two matrices, the number of columns of the first matrix must equal 



4 CHAPTER 1 

the number of rows of the second matrix. Note that even though AB 
is well defined, BA may not be; moreover AB ':/: BA in general. 

The zero matrix of size m x n, abbreviated to 0 when the size is 
clear or not important, is them x n matrix all whose entries are 0. 
The identity matrix of size n x n, shortened to In or simply I, is 
the n-square matrix whose main diagonal entries are all 1 and off­
diagonal entries are all 0. A square matrix A is said to be invertible, 
or nonsingular, if there exists a matrix B such that AB = BA =I. 
Such a matrix is called the inverse of A and denoted by A -l. 

Besides the properties on addition and scala.r multiplication, as a 
vector space, Mmxn(lF) satisfies the following: 

(a) OA = AO = 0. 

(b) AI = I A = A. 

(c) (AB)C = A(BC). 

(d) A(B+C) =AB+AC. 

(e) (A+B)C=AC+BC. 

(f) k(AB) = (kA)B = A(kB), where k is a scalar. 

For an m x n matrix A = ( ai;), we can associate an n x m matrix 
to A by converting the rows of A to columns; that is, equivalently, 
the (i,j)-entry of the resulting matrix is a;i· Such a matrix is called 
the transpose of A and denoted by At. If A is a complex matrix, as 
it usually is in this book, we define the conjugate of A by taking the 
conjugate of each entry: A= (~3 ). We write A* for the conjugate 
transpose of A, namely, A*= (A)t. The following properties hold: 

(i) (At)t =A; (A*)* =A. 

(ii) (A+ B)t =At+ Bt; (A+ B)* =A* + B*. 

(iii) (AB)t = Bt At; (AB)* = B* A*. 

(iv) (kA)t =kAt; (kA)* = kA*, where k is a scalar. 

Let A be a matrix. A submatrix of A is a matrix that oonsists of the 
entries of A lying in certain rows and columns of A. For example, let 

(
1 2 3) (2 3) (56) 

A= ~ ~ ~ ' B= 5 6 ' C= 8 9 . 
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B is a submatrix of A lying in rows 1 and 2 and columns 2 and 3 of A, 
and C is a submatrix of A obtained by deleting the first row and the 
first column of A. Sometimes it is useful and convenient to partition 
a matrix into submatrices. For instance, we may write 

(1 2 3) (X B) 
A= ~ ~ : = U V ' 

where 

x=(!)· B=c n. U=(7), V=(8,9). 
Let A = ( 0-i;) be an n x n complex matrix. The matrix A is said 
to be Hermitian if A* = A; symmetric if At = A; skew-Hermitian if 
A* = -A; nonnal if A* A = AA •; upper-triangular if 0-i; = 0 whenever 
i > j; lower-triangular if at; = 0 whenever i < j; diagonal if ai; = 0 
whenever i =f j, written as A = diag{an, a22, ... , ann); unitary if 
A* A= AA* =I; and real orthogonal if A is real and At A= AAt =I. 

• Pn[x) over a field IF, where n is a positive integer and Pn[x) is the 
set of all polynomials of degree less than n with coefficients from IF. 
A constant polynomial p(x) = ao is said to have degree 0 if ao =f 0, 
or degree -oo if ao = 0. The addition and scalar multiplication are 
defined for p, q E Pn[x], and A E 1F by 

(p + q)(x) p(x) + q(x) 

= {an-1 + bn-I)xn-l + · · · + (a1 + bt)x + (ao + bo), 

where 

and 

(Ap)(x) =A (p(x)) = (Aan-l)xn-1 + · · · + (.\a1)x + (.Xao). 

Denote by P[x] the collection of all polynomials of any finite degree 
with coefficients from IF. Then n»[x] is a vector space over 1F with 
respect to the above operations for polynomials. 



6 CHAPTER 1 

• C[a, b] over R, where C[a, b] is the set of all real-valued continuous 
functions on the interval [a, b]. Functions are added and multiplied in 
the usual way, i.e., iff and g are continuous functions on [a, b], then 
(! + g)(x) = f(x) + g(x) and (A/)(x) = A/(x), where A E JR. C(JR) 
denotes the vector space of real-valued continuous functions on JR. 

Linear Dependence. Let Vt, v2, ... , Vn be vectors of a vector space V 
over a field IF and let AI, A2, ... , An be scalars from F. Then the vector 

is called a linear combination of the vectors v11 v2 , .•• , vn, and the scalars 
Al! A2, ... , An are called the coefficients of the linear combination. If all 
the coefficients are zero, then v = 0. There may exist a linear combi­
nation of the vectors v~s v2, ... , Vn that equals zero even though the c~ 
efficients A1 , A2, ... , An are not all zero. In this ca.se, we say that the 
vectors v1, v2, ... , Vn are linearly dependent. In other words, the vectors 
v11 v2, ... , Vn are linearly dependent if and only if there exist scalars All A2, 
... , An, not all zero, such that 

(1.1) 

The vectors Vt, v2, ... , Vn are linearly independent if they are not linearly 
dependent, i.e., Vt, v2, ... , Vn are linearly independent if (1.1) holds only 
when all the coefficients Al, A2, ... , An are zero. The zero vector 0 itself is 
linearly dependent because AO = 0 for any nonzero scalar A. 

Dimension and Bases. The largest number of linearly independent vec­
tors in a vector space V is called the dimension of V, written as dim V. If 
that is a finite number n, we define dim V = n and say V is finite dimen­
sional. If there are arbitrarily large independent sets in V, we say dim V 
is infinite and V is infinite dimensional. For the finite dimensional case, 
if there exist n vectors in V that are linearly independent and any n + 1 
vectors in V are linearly dependent, then dim V = n. In this case, any set 
of n linearly independent vectors is called a basis for the vector space V. 
The vector space of one element, zero, is said to have dimension 0 with 
no basis. Note that the dimension of a vector space also depends on the 
underlying number field, IF, of the vector space. Unless otherwise stated, 
we assume throughout the book that vector spaces are finite dimensional. 

For the scalar field IF, the dimension of the vector space F'l is n, and 
the vectors e1 = (1,0,0, ... ,0),e2 = (O,l,O, ... ,O), ... ,en = (0,0, ... ,0,1) 
(sometimes written as column vectors) are a basis for r, refereed to as the 
standard basis for r. 
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Let {o1,o2, ... , on} be a basis of the vector space V, and let v be any 

vector in V. Since v,ot,02, ... ,on are linearly dependent (n + 1 vectors), 

there are scalars A, At, A2, ... , An, not all zero, such that 

Since o~, 02 1 ••• , On are linearly dependent, we see A ::/: 0. Thus 

where x, = - Ai/ A, i = 1, 2, ... , n. Again due to the linear indepen­
dence of o 1 , o 2 , ••• , On, such an expression of v as a linear combination of 

Ot, a2, ... , an must be unique. We call then-tuple {xt, x2, ... , Xn) the coor­
dinate of v under the (ordered) basis a1, 02, ... , On; sometimes we also say 

that x~, x2, ... , Xn are the coordinates of v under the basis { o 1 , a 2, ... , an}. 

Subspace. Let V be a vector space over a field 1F and W be a nonempty 

subset of V. If W is also a vector space over 1F under the same vector 

addition and scalar multiplication of V, then W is said to be a subspace of 

V. One may check that W is a subspace of V if and only if W is closed 

under the operations of V; that is, (i) if u, v E W then u + v E Wand (ii) 
if v e W and A E F then Av E W. It follows that, to be a subspace, W 
must contain the zero vector 0 of V. {0} and V are trivial subspaces of V. 

A subspace W of V is called a proper subspace if W :f: V. 
Let W 1 and W2 be subspaces of a vector space V. The intersection 

W1 n W2 = { v 1 v e W1 and v e W2 } 

is also a subspace of V and so is the sum 

Wt + w2 = { Wt + W2 I Wt E Wt and W2 E w2 }. 

w. 

Figure 1.2: Sum of subspaces 
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The sum W 1 + W2 is called a direct sum, denoted by W 1 E9 W2, if every 
element V in W1 + W2 can be uniquely written 88 V = Wt + W2, where 
Wt E Wt, fn2 E W2; that is, if v = Vt + V2, where Vt E Wt, V2 E w2, then 
Wt = Vt and fn2 = V2. In particular, if 0 = Wt + W2, then Wt = W2 = 0. 

LetS be a nonempty subset of V. The subspace Span(S) is defined to 
consist of all possible (finite) linear combinations of the elements of S. In 
particular, if Sis a finite set, say, S = {vlt v2 , ••• , vk}, then 

Span(S) = {At Vt + A2V2 + ... + AkVk I At, A2, ... 'Ak E F }. 

For any nonempty S, Span(S) is a subspace of the vector space V. We 
say the subspace Span(S) is spanned by S, or generated by S. 

VI 

Figure 1.3: Subspace spanned by vectors 

Given an m x n matrix A over a scalar field 1F, there are three important 
spaces associated to A. The space spanned by the rows of A is a subspace 
of 1Fn, called row space of A. The space spanned by the columns of A is 
a subspace of F, called the column space of A. The column space of a 
matrix A is also known as the image or range of A, denoted by Im A; this 
origins from A being viewed as the mapping from ~ to F defined by 
x ~--+Ax. Both terms and notations are in practical use. Thus 

ImA ={Ax I X E F" }. 

All solutions to the equation system Ax = 0 form a subspace of F"'. 
This space is called null space or kernel of A and symbolized by Ker A. So 

Ker A = { x E lF I Ax = 0 }. 

Dimension Identity. Let W1, W2 be subspaces of a vector space V. Then 
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Chapter 1 Problems 

1.1 Let C, R, a.nd Q be the fields of complex, real, and rational numbers, 
respectively. Determine whether each of the following is a vector 
space. Find the dimension and a basis for each that is a vector space. 

(a) Cover C. 

(b) Cover R. 

(c) Rover C. 

{d) Rover Q. 

(e) Q over R. 

(f) Q over Z, where Z is the set of all integers. 

(g) S = {a + bv'2 + cv'S I a, b, c E Q} over Q, R, or C. 

1.2 Consider R2 over R. Give an example of a subset of R2 that is 

(a) closed under addition but not under scalar multiplication; 

(b) closed under scalar multiplication but not under addition. 

1.3 Let V = { (x, y) I x, y E C }. Under the standard addition and scalar 
multiplication for ordered pairs of complex numbers, is V a vector 
space over C? Over R? Over Q? If so, find the dimension of V. 

1.4 Why does a vector space V over IF (= C, R, or Q) have either one 
element or infinitely many elements? Given v E V, is it possible to 
have two distinct vectors u, w in V such that u+ v = 0 and w+v = 0? 

1.5 Let V be the collection of all real ordered pairs in which the second 
number is twice the first one; that is, V = { {x, y) I y = 2x, x E R }. 
If the addition and multiplication are defined, respectively, to be 

(x~t y!) + (x2, Y2) = (xl + x2, Yl + Y2), A· (x, y) = (>.x, Ay), 

show that V is a vector space over R with respect to the operations. Is 
V also a vector space with respect to the above addition and the scalar 
multiplication defined instead by A 0 (x, y) = (..XX, 0)? [Note: The 
reason for the use of the symbol 0 instead of · is to avoid confusion 
when the two operations are discussed in the same problem.] 
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1.6 Let HI be the collection of all 2 x 2 complex matrices of the form 

Show that HI is a vector space (under the usual matrix addition and 
scalar multiplication) over R. Is 1HI also a vector space over C? 

1. 7 Let R+ be the set of all positive real numbers. Show that nt+ is a 
vector space over lR under the addition 

x EH y = xy, x, y E ]R+ 

and the scalar multiplication 

a c:J x = X 0
, x E R+, a E R. 

Find the dimension of the vector space. Is R + also a vector space 
over R if the scalar multiplication is instead defined as 

a 181 x = az, x E nt+, a E R? 

1.8 Let {at, a2, ... , On} be a basis of an n-dim.ensional vector space V. 
Show that {AIO!!A2a2, ... ,Anctn} is also a basis ofV for any nonzero 
scalars A1, A2, ... , An· H the coordinate of a vector v under the basis 
{at,a2, ... ,an} is x = (xl!x2,···,xn), what is the coordinate of 
v under {At at, A202, ... , Anan}? What are the coordinates of w = 
a1 +a2+· ··+an under {o1ta2, ... , on} and {Atalt A2a2, ... , Anon}? 

1.9 Let VIt v2, ... , Vk be vectors in a vector space V. State what is meant 
for {vltv2, ... ,vk} to be a basis of V using (i) the words "span" and 
"independent"; {ii) instead the phrase "linear combination." 

1.10 Consider k vectors in an and answer the three questions in cases of 
k < n, k = n, and k > n: {i) Are the vectors linearly independent? 
(ii) Do they span Rn? (iii) Do they form a basis for an? 

1.11 Let {ll!lJ o2, o 3 } be a basis for IR3 and let 04 = -0!1 - 02 - oa. 
Show that every vector v in R3 can be written as v = a1 a 1 + D.202 + 
aaa3 + a4o 4 , where a1, a2, aa, a4 are unique real numbers such that 
a 1 + ~ + a3 + a4 = 0. Generalize this to a vector space of dimension n. 
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1.12 Show that { 1, (x- 1), (x- 1)(x- 2)} is a basis of P3 [x] and that 
W = {p(x) E Pa[x] I p{l) = 0} is a subspace of P3 [x]. Find dim W. 

1.13 Answer true or false: 

(a) {(x,y) x2 + y2 = 0, x, y E 1ll} is a subspace of 1ll2• 

(b) {(x, y) x2 + y2 ~ 1, x, y E 1ll} is a subspace of 1ll2• 

(c) {(x, y) x2 +y2 = 0, x, y E C} is a subspace ofC2• 

{d) {(x, y) x2 - y2 = 0, x, y E 1ll} is a subspace of R2• 

(e) {(x,y) x- y = 0, x, y E 1R} is a subspace of R2• 

(f) {(x, y) x + y = 0, x, y E IR} is a subspace of R2 . 

(g) {(x, y) xy = 0, x, y E 1R} is a subspace of JR2 • 

(h) {(x, y) xy ~ 0, x, y E 1R} is a subspace of R2• 

(i) {(x, y) x > 0, y > 0 } is a subspace of R2 • 

(j) {(x, y) x, y are integers } is a subspace of R2• 

{k) {(x, y) x/y = 1, x, y e 1ll} is a subspace of R2 . 

(1) {(x, y) y = 3x, x, y E 1R } is a subspace of JR2 • 

(m) {(x, y) x- y = 1, x, y E 1R} is a subspace of R2 . 

1.14 Consider Pn[x] and P[x] over JR. Answer true or false: 

(a) { p(x) I p(x) =ax+ b, a, bE IR} is a subspace of P3 (x]. 

{b) {p(x) I p(x) = ax2 , a E R} is a subspace of P3 [x]. 

(c) { p(x) I p(x) = a+ x2 , a e 1ll} is a subspace of 1P3 [x]. 

(d) { p(x) I p(x) E IP[x] has degree 3} is a subspace of P[x]. 

(e) {p(x) I p(O) = 0, p(x) E IP[x]} is a subspace of JP(x]. 

(f) { p(x) I p(O) = 1, p(x) E IP[x]} is a subspace of IP[x]. 

(g) {p(x) l2p(O) = p(l), p(x) E P[x]} is a subspace of IP(x]. 

{h) {p(x) I p(x) ~ 0, p(x) E P(x]} is a subspace of IP[x]. 

(i) { p(x) I p( -x) = p(x), p(x) E P(x]} is a subspace of IP(x]. 

(j) { p(x) I p( -x) = -p(x), p(x) E IP[x]} is a subspace of 1P(x]. 
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1.15 Consider the real vector space R4 • Let 

ett = (1, -3, 0, 2), et2 = ( -2, 1, 1, 1), etg = ( -1, -2, 1, 3). 

Determine whether a~, a2, and eta are linearly dependent. Find the 
dimension and a basis for the subspace Span { et1 , a2 , a3 }. 

1.16 Let V be the subspace of R4 spanned by the 4-tuples 

llt = (1,2,3,4), et2 = (2,3,4,5), Og = (3,4,5,6), ll4 = (4,5,6, 7). 

Find a basis of V and dim V. 

1.17 Let ett, et2, as, and et4 be linearly independent. Answer true or false: 

(a) a1 + a2, et2 +as, ets + et4, 04 + Ot are linearly independent. 

(b) et1- a2, et2- as, et3- 04, et4- Ot are linearly independent. 

(c) et1 + et2, 02 +as, ets + ~' 04- a1 are linearly independent. 

{d) at+ a2, et2 + etg, ets -ll4, et4- ett are linearly independent. 

1.18 Let llt, et2 , et3 be linearly independent. For what value of k are the 
vectors a2- ett, ket3 - et2, ett- oa linearly independent? 

1.19 If a1, 02, oa are linearly dependent and et2, a 3 , et4 are linearly inde­
pendent, show that {i) et1 is a linear combination of 02 and a 3 , and 
(ii) o 4 is not a linear combination of et1 , o 2 , and a3. 

1.20 Show that et1 = {1, 1, 0), 02 = {1,0, 1), and et3 = {0, 1, 1) form a basis 
for JR3 • Find the coordinates of the vectors u = {2,0,0), v = (1,0,0), 
and w = (1, 1, 1) under the basis {at, et2, ets}· 

1.21 Let W = {(::)I a, b, c E lR }·Show that WisasubspaceofM2(R) 
over R and that the following matrices form a basis for W: 

Find the coordinates of the matrix ( -1 -~) under the basis. 
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1.22 Consider :f n [x] and P[x] over R. 

(a) Show that Pn[x] is a vector space over R under the ordinary 
addition and scalar multiplication for polynomials. 

(b) Show that { 1,x,x2, ••• ,xn-1} is a basis for IPn[x], and so is 

{ 1, (x- a), (x- a)2 , ••• , (x- a)n-l }, a E R. 

(c) Find the coordinate of 

f(x) = ao + a1x + · · · + 4n-1Xn-1 E Pn[x] 

with respect to the basis 

{ 1, (x- a), (x- a)2, ••• , (x- a)n-1 }. 

(d) Let a11 a2, ..• , an E R be distinct. Fori = 1, 2, ... , n, let 

li(x) = (x- al) · · · (x- aa-1)(x -lls+1) · · · (x- an). 

Show that { h (x), ... , fn(x)} is also a basis for IFn[x]. 

(e) Show that W = {f(x) E Pn[x] I /(1) = 0} is a subspace of 
IFn[x]. Find its dimension and a basis. 

(f) Is IP[x] a vector space over R? Is it of finite dimension? 

(g) Show that each JPI n [x] is a proper subspace of IF[x]. 

1.23 Let C(R) be the vector space of all real-valued continuous functions 
over 1ll with addition (/ + g)(x) = f(x) + g(x) and scalar multiplica­
tion (r f)(x) = r f(x), r E R. Show that sinx and cosx are linearly 
independent and that the vector space generated by sin x and cos x 

Span{sinx, cosx} = { asinx + bcosx I a, bE R} 

is contained in the solution set to the differential equation 

y" + y = 0. 

Are sin2 x and cos2 x linearly independent? How about 1, sin2 x, and 
cos2 x? Find R n Span{sinx,cosx} and 1R n Span{sin2 x,cos2 x}. 

1.24 Lett E JR. Discuss the linear independence of the vectors over IR: 

a1 = (1, 1, 0), a2 = (1, 3, -1), ag = (5, 3, t). 
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1.25 Let V be a finite dimensional vector space and S be a subspace of V. 
Show that 

(a) dimS~ dim V. 

(b) dimS= dim V if and only if S = V. 

(c) Every basis for S is contained in some basis for V. 

(d) A basis for V need not contain a basis for S. 

1.26 Consider the vector space an over 1R with the usual operations. 

(a) Show that 

1 0 0 
0 1 0 

et = 0 e2 = 0 en= 0 
' 

, ... , 

0 0 1 

and 

1 1 1 
0 1 1 

fl = 0 f2 = 0 fn = 1 
' ' ... ' 

0 0 1 

form two bases. Are they also bases for en over C? over R? 

(b) Find a matrix A such that A(et, e2, ... , en)= (e1, e2, ... , en)· 

(c) Find a matrix B such that (ell f2 1 ••• , fn) = D(elt e2, ... , en)· 

(d) If v e R" has the coordinate ( 1, 2, ... , n) on the basis { et, e2, 

... , en}, what is the coordinate of v under { €11 €2 1 ••• , €n}? 

(e) Why are any n + 1 vectors in an linearly dependent over R? 

(f) Find n + 1 vectors in en that are linearly independent over a. 

1.27 Let { 01102, ... , on} be a basis of a vector space V, n ~ 2. Show that 
{ OlJ o 1 + o 2 , ••• , o 1 + o 2 + · .. +an} is also a basis of V. Is the set 

a basis for V too? How about the converse? 
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Find the matrix from basis a to basis {3; that is, a matrix A such that 

If a vector u E JR3 has coordinate (2,0, -1) under the basis a, what 
is the coordinate of u under {3? 

1.29 If a 1, a 2 , ••• , an are linearly independent in a vector space V and 
01, 02, ... , On, {3 are linearly dependent, show that {3 can be uniquely 
expressed as a linear combination of ab a2, ... , an. 

1.30 Show that the vectors a1(# O),a2, ... ,an of a vector space V are 
linearly dependent if and only if there exists an integer k, 1 < k ~ n, 
such that ak is a linear combination of at, 02, ••• , ak-t· 

1.31 Let V and W be vector spaces over F. Denote by V x W the collection 
of all ordered pairs ( v, w), where v E V and w E W, and define 

and 
k(v, w) = (kv, kw), k E JF. 

(a) Show that V x W is a vector space over F. 

{b) Show that if V and W are finite dimensional, so is V x W. 

(c) Find dim(V x W), given that dim V = m and dim W = n. 

(d) Explain why R x 1R2 can be identified with R3 • 

(e) Find a basis for R2 x M2{lll). 

{f) What is the dimension of M2{lll) x M2(lll)? 
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1.32 Answer true or false: 

(a) If the zero vector 0 is one of the vectors a 1, a2, ... , ar, then 
these vectors are linearly dependent. 

(b) If a1, a2, ... , ar are linearly independent and ar+ 1 is not a lin­
ear combination of a1, a2, ... , ar, then the vectors a1, a2, ... , 
a"' ar+l are also linearly independent. 

(c) If a is a linear combination of f3t , 132, .•. , f3m, and each f3i, 
i = 1, 2, ... , m, is a linear combination of ')'t, 'Y2, •.• , 'Yn 1 then 
a is a linear combination of 'Yt, "Y2, •.• , 'Yn. 

(d) H a 1, 02, ..• , ar are linearly independent, then no Oi is a linear 
combination of the other vectors. How about the converse? 

(e) H at, a2, ... , ar are linearly dependent, then any one of these 
vectors is a linear combination of the other vectors. 

(f) If {3 is not a linear combination of a1, 02, ... , an then /3, 01, 02, 

... , a,. are linearly independent. 

(g) If any r- 1 vectors of a 11 02, •.. , ar are linearly independent, 
then a1, a2, ... , ar are linearly independent. 

(h) If V =Span{ a 11 a2, ... , an} and if every ai is a linear combi­
nation of no more than r vectors in { a 11 a2, ... , an} excluding 
ai, then dim V ~ r. 

1.33 Let U and V be subspaces of Rn spanned by vectors a 11 a 2, ••• , ap 
and {31 , /32, ... , {39 , respectively. Let W be spanned by ai + /3;, i = 1, 
2, ... ,p, j = 1, 2, ... ,q. If dimU = 8 and dim V = t, show that 

dim W ~ min{ n, 8 + t }. 

1.34 Let a 1 , a 2 , ••• , ar be linearly independent. If vector u is a linear 
combination of a 1 , a 2 , ••• , a"' while vector v is not, show that the 
vectors tu + v, a 1 , ••• , ar arc linearly independent for any scalar t. 

1.35 Given a square matrix A, show that V = {X I AX = X A}, the set of 
the matrices commuting with A, is a vector space. Find a.ll matrices 
that commute with A and find the dimension of the space, where 

( 
1 0 0) 

A= 0 1 0 . 
3 1 2 
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1.36 Find a basis and the dimension for each of the following vector spaces: 

(a) Mn(C) over C. 

(b) Mn(C) over IR. 

(c) Mn(lR.) over JR. 

(d) Hn(C), n x n Hermitian matrices, over JR.. 

(e) Hn(lR.), n x n real symmetric matrices, over R. 

(f) Sn(C), n x n skew-Hermitian matrices, over IR. 

(g) Sn(lR.), n x n real skew-Hermitian matrices, over JR.. 

(h) Un(lR.), n x n real upper-triangular matrices, over R. 

(i) Ln(lR.), n x n real lower-triangular matrices, over JR.. 

(j) Dn(lR.), n x n real diagonal matrices, over JR.. 

(k) The space of a.1l real polynomials in A over IR, where 

( 

1 0 
A= 0 w 

0 0 

-1 + v'3 i 
w=--2--

For example, A3 - A2 + 5A + I is one of the polynomials. 

Is Hn(C) a subspace of Mn(C) over C? Is the set of n x n normal 
matrices a subspace of Mn(C) over C? Show that every n x n complex 
matrix is a. sum of a Hermitian matrix and a skew-Hermitian matrix. 

1.37 Find the space of matrices commuting with matrix A, where 

(a) A=ln. 

(b) A=(~~)· 
(c) A= ( ~ n. a 1= b. c 1 0 D· (d) A= 0 0 1 

0 0 0 
0 0 0 

(e) A is an arbitrary n x n matrix. 
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1.38 Let A E Mmxn(C) and S(A) = {X E Mnxp(C) I AX = 0 }. Show 
that S(A) is a subspace of Mnxp(C) and that if m = n, then 

S(A) ~ S(A2
) ~ • • • ~ S(Ak) ~ S(Ak+l) for any positive integer k. 

Show further that this inclusion chain must terminate; that is, 

S(Ar) = S(Ar+l) = S(Ar+2) = · · · for some positive integer r. 

1.39 Denote by 1m X the column space or image of matrix X. Let A be 
m x p, B be m x q. Show that the following statements a.re equivalent: 

(a) ImA ~1mB. 

(b) The columns of A a.re linear combinations of the columns of B. 

(c) A= BC for some q x p matrix C. 

1.40 Denote by Ker X the null space of matrix X. Let A be an m x n 
matrix over a field F. Show each of the following statements. 

(a) Ker A is a subspace ofF" and Ker A= {0} if and only if the 
columns of A are linearly independent. If the columns of A 
are linearly independent, are the rows of A necessarily linearly 
independent? 

(b) H m < n, then Ker A ':f: {0}. 

(c) Kcr A~ Kcr A2 • 

(d) Ker(A* A)= Ker A. 

(e) H A= BC, where B ism x m and 0 ism x n, and if B is 
nonsingula.r, then Ker A= KerC. 

1.41 Let W1 and W2 be nontrivial subspaces of a vector space V; that is, 
neither { 0} nor V. Show that there exists an element a E V such 
that a~ W1 and a~ W2 • Show further that there exists a basis of 
V such that none of the vectors in the basis is contained in either W1 

or W2 • Is this true for more than two nontrivial subspaces? 

1.42 Let { v11 v2 , .•• , vn} be a basis of a vector space V. Suppose W is a 
k-dimensional subspace of V, 1 < k < n. Show that, for any subset 
{ Vi 11 Vi2 , ••• , v~} of {VI, v2, ... , Vn}, m > n-k, there exists a nonzero 
vector wE W, which is a linear combination of Vi1 , Vi2 , ••• , Vim· 
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1.43 Let Wt and W2 be subspaces of a vector space V and define the sum 

w1 + w2 = { w1 + w2 1 w1 e w~, w2 e w2 }. 

(a) Show that Wt n w2 and WI+ w2 are subspaces of v, and 

W1 n W2 ~ W1 u W2 ~ W1 + W2. 

{b) Explain the inclusions in (a) geometrically with two lines pass-
ing through the origin in the xy-plane. 

(c) When is Wt u W2 a subspace of V? 

{d) Show that W1 + W2 is the smallest subspace of V containing 
Wt U W2; that is, if Sis a subspace of V containing W1 U W2, 
then wl + w2 ~ s. 

1.44 Let 

W = { ( ~~ ) E ~I xs = x, +~ Md X4 = x,- x+ 
(a) Prove that W is a subspace of C'. 
(b) Find a basis for W. What is the dimension of W? 

(c) Prove that { k{l, 0, 1, 1)t I k E C} is a subspace of W. 

1.45 Let v be a finite dimensional vector space and let vl and v2 be 
subspaces of V. H dim{V1 + V2) = dim(Yt n V2) + 1, show that V1 + V2 
is either V1 or V2 and V1 n V2 is correspondingly V2 or V1. Equivalently, 
for subspa.ces vl and v2, if neither contains the other, then 

1.46 Give an example of three subspaces of a vector space V such that 

Why does this not contradict the following identity for any three sets 

An(BUC) = (AnB)U(AnC)? 
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1.4 7 Let W1 and W2 be nontrivial subspaces of a vector space V. The sum 
wl + w2 is called a direct sum, denoted as wl E9 w2, if every element 
a E Wt + w2 can be uniquely written as a = Wt + w2, where Wt E Wt 
and W2 E W2 . Show that the following statements are equivalent: 

(a) Wt + W2 is a direct sum. 

{b) If Wt + W2 = 0 and Wt E Wt, W2 E W2, then Wt = W2 = 0. 

{c) Wt n W2 = {0}. 

{d) dim{Wt + W2) =dim W1 +dim W2. 

How can the direct sum be extended to more than two subspaces? 

1.48 Show that if W1 is a subspace of a vector space V, and if there is a 
unique subspace w2 such that v = w1 $ w2' then wl = v. 

1.49 Let W1, W2, and W3 be subspaces of a vector space V. Show that 
the sum Wt + w2 + w3 = {wl +w2 +w31 Wi E W.;, i = 1,2,3} is 
also a subspace of V. Show by example that Wt + W2 + W3 is not 
necessarily a direct sum, i.e., there exist elements Wt, w2, W3, not all 
zero, such that WI +w2 +w2 = 0 and Wi E Wi, i = 1, 2, 3, even though 

and 

W1 = { ( ~b ! ) I a, b E R} 

W•={ U !c)l c,dent}. 
If V1 is the subspace of Mn(IR) consisting of all n x n symmetric 
matrices, what will be a subspace V2 such that Vi Ea V2 = Mn(IR)? 

1.51 A function f E C(IR) is even if/( -x) = f(x) for all x E R, and f is odd 
if/( -x) = - f(x) for all X E lR. Let Wt and w2 be the collections of 
even and odd continuous functions on R, respectively. Show that W1 
and W2 are subspaces of C{R). Show further that C(IR) = W1 E9 W2. 
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Deterininants, Inverses and 
Rank of Matrices, and 
Syste:ms of Linear Equations 

Definitions and Facts 

Determinant. A determinant is a number assigned to a square matrix in a 
certain way. This number contains much information about the matrix. A 
very useful piece is that it tells immediately whether the matrix is invertible. 
For a square matrix A, we will denote its determinant by lA I or det A; both 
notations have been in common practice. Note that the bars are also used 
for the modulus of a complex number. However, one can usually tell from 
the context which use is intended. 

H A is a 1 x 1 matrix; that is, A has one entry, say au, then its deter­

minant is defined to be IAI = au. If A is a 2 x 2 matrix, say A = ( :~~ :~:), 
then IAI is given by IAI = aua22- a12a21· The determinant for a square 
matrix with higher dimension n may be defined inductively as follows. As­
sume the determinant is defined for (n- 1) x (n- 1) matrices and let A1; 

denote the submatrix of an n x n matrix A resulting from the deletion of 
the first row and the j-th column of the matrix A. Then 

The determinant can be defined in different, but equivalent, ways as 
follows: Let A = (a.;) be an n x n matrix, n ~ 2, and let Ai; denote the 
(n -1) x (n- 1) subm.atrix of A by deleting row i and column j from A, 

21 
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1 ~ i, j ~ n. Then the determinant of A can be obtained by so-called 
Laplace exparuion along row i; that is, 

n 

IAI = I)-1)Hiai;IAt;l-
j=l 

It ca.n be proved that the value IAI is independent of choices of row i. 
Likewise, the Laplace expansion along a column may be defined. 

The quantities IAi;l and (-l)i+31Ai;l are called the minor and cofactor 
of the {i,j)-entry ai;, respectively, and the matrix whose {i,j)-entry is the 
cofactor of a;i is called the adjoint of the matrix A and denoted by adj(A). 
Let I be then-square identity matrix. It follows that 

A adj(A) = I Ali. 

Another definition of determinant in terms of permutations is concise 
and sometimes convenient. A permutationp on {1,2, ... ,n} is said to be 
even if p can be restored to natural order by an even number of interchanges. 
Otherwise, pis odd. For instance, consider the permutations on {1, 2, 3, 4}. 
{There are 4! = 24.) The permutation p = (2, 1, 4, 3); that is, p{l) = 2, 
p(2} = 1, p(3) = 4, p(4) = 3, is even since it will become (1,2,3,4) after 
interchanging 2 and 1 a.nd 4 and 3 (two interchanges), while (1, 4, 3, 2) is 
odd, for interchanging 4 and 2 gives (1, 2, 3, 4). 

Let Sn be the set of all permutations of {1, 2, ... , n}. For p e Sn, define 
u(p) = +1 if pis even and u{p) = -1 if pis odd. It can be proved that 

n 

IAI = L u{p) IJ atp(t)· 
pESn t=l 

Properties of Determinants. Let A= (ai;) be an n-squa.re matrix. 

( d1) A is singular if and only if IAI = 0. 

{d2) The rows (columns) of A are linearly dependent if and only if IAI = 0. 

(da) H A is triangular, i.e., ai; = 0, i > j (or i < j), IAI = aua22 · · · tlnn· 

(~) IAI = IAtl, where At is the transpose of A. 

(ds) lkAI = kniAI, where k is a scalar. 

(ds) IABI = IAIIBI for any n-square matrix B. 

(d7) IS-1ASI = IAI for a.ny nonsingular n-square matrix S. 
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Elementary Row (Column) Operations on Matrices. 

I. Interchange rows (columns) i and j. 

n. Multiply row (column) i by a scalar k =F 0. 

m. Add k times row (column) ito row (column) j. 

Suppose A is a square matrix, and B, C, and D are matrices obtained from 
A by the elementary row operations I, n, and In, respectively. Then 

IBI = -IAI, ICI = kiAI, IDI = IAI. 

Let E1, ED, and Em denote the matrices obtained from the identity matrix 
by an application of I, n, and In, respectively, and call them elementary 
matrices. Then B = E1A, C = EDA, D = EmA. If an elementary column 
operation is applied to A, the resulting matrix is A postmultiplied by the 
corresponding elementary matrix. 

Inverse. Let A be an n x n matrix. Matrix B is said to be an inverse of 
A if AB = B A = I. If A has an inverse, then its inverse is unique, and we 

denote it by A-1• Moreover, since IAA-11 = IAIIA-11 = 1, it follows that 

A square matrix A is invertible if and only if IAI =F 0. In addition, if A 
is invertible, then so is its transpose At and (At)-1 = (A- 1)t; if A and B 
are invertible matrices of the same size, then AB is invertible and 

Every invertible matrix is a product of some elementary matrices. This 
is seen by applications of a series of elementary row operations to the matrix 
to get the identity matrix I. When matrix A is invertible, the inverse can 
be found by the adjoint, the formula, however, is costly to calculate: 

A-t = 1:1 adj(A). 

For a 2 x 2 matrix, the following formula is convenient: 

(
a b) 1 ( d -b) H A= c d and ad- be f 0, then A-

1 
=ad_ be -c a · 
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For a general matrix A with IAI =F 0, one may find the inverse of A 
by converting the adjoined matrix (A, I) to a. matrix in the form (I, B) 
through elementary row operations (reduction). Then B is A -l. 

Rank. Let A be an m x n matrix over a field 1F, where 1F = IR or C. The 
image or range of A, Im A = {Ax I x E 1F"}, is the column space of A and 
it is a subspace of F over IF. The rank of the matrix A is defined to be 
the dimension of its image (that is also a vector space over 1F) 

r(A) = dim{Im A). 

Let A be an m x n matrix and P be a.n n x n invertible matrix. Then 
A and AP have the same column space, since, obviously, Im(AP) ~ ImA, 
and if y =Axe ImA, then y =Ax= (AP)(P-1x) e Im(AP). It follows 
that applications of elementary column operations do not change the rank 
of a matrix. This is also true for row operations, because Im A and Im.(QA) 
have the same dimension for any m x m invertible matrix Q. To see this, let 
r(A) = r and take a basis 0:1, a2, ... , O:r for 1m A, then Qa1, Qa2, ... , Qar 
form a basis for Im(QA) and vice versa. Thus dim{ImA) = dim(Im(QAP)) 
for any m x m invertible matrix Q and any n x n invertible matrix P. 

Let A =F 0. Through elementary row and column operations, A can be 

brought to a matrix in the form ( ~ ~) ; that is, there are invertible matrices 

R and S such that A = R ( ~ ~) S. In light of the above argument, we see 

that the rank of A is r. The following statements are true: 

1. The dimension of the column (row) space of A is r; equivalently, the 
largest number of linearly independent columns (rows) of A is r. 

2. There exists at least one r x r submatrix of A with nonzero determi­
nant, and all 8 x 8 submatrices have zero determinant if 8 > r. 

Other Properties of Rank. For matrices A, B, C of appreciate sizes, 

(r1) r(A +B) ~ r(A) + r(B); 

(r2) r(AB) ~min{ r(A), r(B) }; 

(rg) r(AB) + r(BC)- r(B) ~ r(ABC). 

Systems of Linear Equations. Let 1F be a field and A be an m x n 
matrix over F. Then Ax = 0 represents a homogeneous linear equation 
system of (m) linear equations (inn variables), where xis a column vector 
of n unknown components. The system Ax = 0 always has a solution x = 0. 
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If r(A) = n, then x = 0 is the unique solution. If r(A) < n, then Ax= 0 
has infinitely many solutions. The solutions form a. vector space, called the 
solution space, null space, or kernel of A, denoted by Ker A. 

Let {a1, ... ,a5 } be a basis for Ker A and extend it to a basis {at, ... , a 5 , 

{317 ... , f3t} for IF", s + t = n. Obviously, 1m A = Span{ Af3b ... , A.Bt}· If 
A{31 , ••• , A.Bt are linearly dependent, then for some h, ... , lt, not all zero, 
lt(Af31)+· · ·+lt(Af3t) = A(ltf31 +· · ·+ltfit) = 0 and ltf31 +· · ·+ltf3t E Ker A. 
This contradicts that { ett, ... , a 5 , {3t, ... , .Bt} is a basis for JFB. Therefore 
A{31, ••• , A.Bt are linearly independent and form a basis for 1m A. The 
dimension of the null space of A is n- r(A); that is, 

r(A) + dim(Ker A) = n. 

Let b be a. column vector of m components. Then the linear system 
Ax = b may have one solution, infinitely many solutions, or no solution. 
These situations can be determined by the rank of the matrix B = (A, b), 
which is obtained by augmenting b to A: 

(s1) If r(B) = r(A) = n, then Ax= b has a unique solution. 

(s2) If r(B) = r(A) < n, then Ax= b has infinitely many solutions. 

(s3 ) If r(B) I= r(A), then Ax= b has no solution. 

Cramer's Rule. Consider the linear equation system Ax = b, where A is 
a coefficient matrix of size n x n. If A is invertible; that is, IAI I= 0, then 
the system has a unique solution and the solution is given by 

I Ail 
Xi= IAI, i = 1,2, ... ,n, 

where A1 is the matrix obtained from A by replacing the i-th column of A 
with b. Note that Cramer's rule cannot be used when A is singular. 
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Chapter 2 Problems 

2.1 Evaluate the determinants 

1 2 3 1+x 2+x 3+x xl x2 x3 
8 9 4 8+x 9+x 4+x ' 

xB x9 x4 
7 6 5 7+x 6+x 5+x x1 x6 x5 

2.2 Evaluate the determinant 

1 1 0 0 0 
-1 1 1 0 0 

0 -1 1 1 0 
0 0 -1 1 1 
0 0 0 -1 1 

2.3 Explain without computation why the determinant equals zero: 

a1 ll2 a a a4 as 
b:t ~ ba b4 bs 
Ct C2 0 0 0 
dt ~ 0 0 0 
e1 e2 0 0 0 

2.4 Evaluate the determinants 

0 0 a1 bl a1 0 0 bl 
0 0 a2 ~ 0 tl2 ~ 0 

a3 b3 0 0 
, 

0 b3 a3 0 
a4 b4 0 0 b4 0 0 a4 

2.5 Evaluate the 6 x 6 determinant 

0 0 0 0 0 a1 
0 0 0 0 a2 b 
0 0 0 4a c d 
0 0 44 e I g 
0 45 h i j k 

46 l m n 0 p 
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2.6 Let f(x) = {p1 - x)(P2- x) · · · (pn- x) and let 

P1 a a a a a 
b P2 a a a a 
b b P3 a a a 

~n= b b b P4 a a 

b b b b Pn-1 a 
b b b b b Pn 

(a.) Show that if a ::/: b, then 

~n = bf(a~ = :f(b). 

(b) Show that if a = b, then 

n 

~n = a L ft(a) + Pnfn(a), 
i=l 

where j,(a) means f(a) with factor {pi- a) missing. 

(c) Use (b) to evaluate 

a b b b 
b a b b 
b b a ... a 

b b b ... a 
nxn 

2.7 Show that (the Vandermonde determinant) 

1 1 1 1 
a1 a2 a a lln 
a~ a~ a2 a2 = II (a;- a,). 3 n 

tSi<jSn 
n-1 

al 
n-1 

a2 
n-1 

a a a:-1 

In particular, if Vis then x n matrix with (i,j)-entry j 1- 1 , then 

27 
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2.8 Show that if a ::/: b, then 

a+b ab 0 0 0 
1 a+b ab 0 0 
0 1 a+b 0 0 an+l _ bn+l 

= a-b 
0 0 0 a+b ab 
0 0 0 1 a+b nxn 

What if a= b? 

2.9 Find the characteristic polynomial I-XI- AI for the 10 x 10 matrix 

A= ( .:. 

1010 

1 
0 

0 
0 

0 
1 

0 
0 

0 
0 

0 
0 

2.10 Let ao, a1, ... , an-1 E JR. Write a= (-a~, -a2, ... , -an-1) and let 

A= ( 0 In-1 ) . 
-a0 a 

Show that 

2.11 Let each at1(t) be a differentiable function oft. Show that 

au (t) a1;(t) aln(t) 
d a21 (t) a2;(t) a2n(t) 
dt 

an1 (t) an3(t) ann(t) 

au (t) 4a1;(t) aln(t) 
n 

a21(t) a2n(t) =E cua2;(t) 

J=l 
anl(t) £an;(t) ann(t) 

and evaluate -9£ II+ tAl when t = 0. 
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2.12 If A is ann x n matrix all of whose entries are either 1 or -1, prove 
that I AI is divisible by 2n-l. 

2.13 Let A= (a, r2, r3, r4) and B = (b, r2, r3, r4) be 4x4 matrices, where 
a, b, r2, r3, r4 are column vectors in 1R4. If detA = 4 and detB = 1, 
find det(A +B). What is det C, where C = (r4, r3, r2, a+ b)? 

2.14 Let A be an n x n real matrix. 

(a) Show that if At= -A and n is odd, then IAI = 0. 

(b) Show that if A2 +I= 0, then n must be even. 

(c) Does (b) remain true for complex matrices? 

2.15 Let A E Mn(C). H AAt =I and IAI < 0, find lA +II. 

2.16 If A, B, C, Daren x n matrices such that ABCD =I. Show that 

ABCD = DABC = CDAB = BCDA =I. 

2.17 If A is such a matrix that A 3 = 2I, show that B is invertible, where 

B = A2 
- 2A + 2I. 

2.18 Consider B(A, I) = (BA, B). On one hand, if B is the inverse of A, 
then (BA, B) becomes (I, A -l ). On the other hand, B is a product 
of elementary matrices since it is invertible. This indicates that the 
inverse of A can be obtained by applying elementary row operations 
to the augmented matrix (A, I) to get (I, A-t). Find the inverses of 

( 
1 0 0) 

A= 0 1 0 
a b 1 

and B = ( ~ ~ ! ~ ) . 
a b c d 
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2.19 Find the inverses of the matrices 

1 1 1 1 

u 1 

D 
0 1 1 1 

1 and 
0 0 0 1 1 

0 0 0 1 

2.20 Find the inverse of the matrix 

1 1 1 1 
1 2 2 2 
1 2 3 3 

1 2 3 n 

2.21 Find the determinant and inverse of the n x n matrix 

0 1 1 1 
1 0 1 1 
1 1 0 1 

1 1 1 0 

2.22 Let a1, a2, ... , an be nonzero numbers. Find the inverse of the matrix 

0 a1 0 0 
0 0 a2 0 

0 0 0 tln-1 
an 0 0 0 

2.23 Let A, B, C, X, Y, Z E Mn(C), and A- 1 and c-1 exist. Find 

(~ ~r u X ; rl and I 
0 
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2.24 Find the inverse of the 3 x 3 Vandermonde matrix 

v = ( :1 :2 :3) 
a~ ~ a~ 

when a1, a2, and a3 are distinct from each other. 

2.25 Let A and B be, respectively, m x p and m x q matrices such that 
A* B = 0, where p + q = m. If M = (A, B) is invertible, show that 

_ 1 ( (A* A)-1 A* ) 
M = (B*B)- 1B* . 

2.26 Assuming that all matrix inverses involved below exist, show that 

In particular 

and 

2.27 Assuming that all matrix inverses involved below exist, show that 

(A+ iB)-1 = B-1 A(A + AB-1 A)-1 - i(B + AB-1 A)- 1. 

2.28 Let A, B, C, DE Mn(C). If AB and CD are Hermitian, show that 

AD - B*C" = I ~ DA- BC = I. 

2.29 Let m and n be positive integers and denote K = ( 10 -t). Let SK 

be the collection of all ( m + n )-square complex matrices X such that 

X*KX=K. 

(a) If A E SK, show that A- 1 exists and A- 1 , At, A, A" E SK. 

(b) If A, BE SK, show that ABE SK. How about kA or A+ B? 

(c) Discuss a. similar problem with K = ( -~m 10 ). 
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2.30 Let A and C be m x m and n x n matrices, respectively, and let B, 
D, and E be matrices of appropriate sizes. 

(a) Show that 

(b) Evaluate 

(c) Find a formula for 

2.31 LetS be the backward identity matrix; that is, 

0 0 0 1 
0 0 1 0 

S= 
0 1 0 0 
1 0 0 0 nxn 

Show that s-t = st = S. Find lSI and SAS for A= (tli;) E Mn(C). 

2.32 Let A, B, C, D be m x p, m x q, n x p, n x q matrices, respectively, 
where m + n = p + q. Show that 

I ~ ~I= (-l)(mn+pq) I ~ ~I· 
In particular, when A, B, C, D are square matrices of the same size, 

and for a square matrix A, a column vector x, and a row vector y, 

Is it true in general that 
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2.33 Let A, B, C, DE Mn(C). If matrix { g ~) has rank n, show that 

I
IAI IBII 
ICI IDI =O. 

Moreover, if A is invertible, then D = CA-l B. 

2.34 Let A, B, C, DE Mn(C) and let M = (g ~).Show that 

(a) IMI = IADt - Bet I if eDt = Dct. 

{b) IMI = IADt +Bet I if CDt + Dct = 0 and if D-1 exists. 

(c) (b) is invalid if D is singular by example. 

(d) IMI2 = IADt + BCtl2 for the example constructed in (c). 

2.35 Let A, B, C, D E Mn(C). 

(a) Show that if A-t exists, then 

(b) Show that if AC = C A, then 

I ~ ~I= IAD-CBI. 

(c) Can Band Con the right-hand side in (b) be switched? 

33 

(d) Does (b) remain true if the condition AC = CA is dropped? 

2.36 Consider the matrices in M2(1R). 

(a) Is it true that lA + Bl = IAI + IBI in general? 

(b) H A::/: 0, Bt, B2, Ba, B-t E M2(R), and if 

lA + Bil = IAI + IBil, i = 1, 2, 3, 4, 

show that B 11 B2, B3 , B-t are linearly dependent over R. 
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2.37 Let M = ( ~ ~) be an invertible matrix with M-1 = ( ~ ~), where 

A and D are square matrices (possibly of different sizes), Band C 
are matrices of appropriate sizes, and X has the same size as A. 

(a) Show that IAI = IVIIMI. 
(b) H A is invertible, show that X= (D- CA- 1B)-1 • 

(c) Consider a. unitary matrix W partitioned as W = (: ~1 ) , 

where u is a number and U1 is a square matrix. Show that 
u and det U1 have the same modulus; that is, lui = I det U1l· 

(d) What conclusion can be drawn for real orthogonal matrices? 

2.38 Introduce the following correspondences between complex numbers 
and real matrices and between complex number pairs and complex 
matrices: 

z = z+ iy ~ Z = ( ~1/ ! ) E M2(Bl), 

q = (u,v) "'Q = ( ~v ~ ) E Mo(C). 

(a.) Show that z ,..... zt. 
(b) Show that ZW = WZ, where w ~ W. 

(c) Show that z ~ Z and w ~ W imply zw ~ ZW. 

(d) Find zn for z = r(cosO + isinO), r, 8 E R. 

(e) What is the matrix corresponding to z = i? 

(f) Show that z-1 = z2!712 (; ~11 ). 

(g) Show that Z = P (z+iy 0 . ) P* where P = ....L (~ 1.). 0 :1:-171 1 y'2 I -1 

(h) Show that IQI ~ 0. Find Q-1 when lul2 + lvl2 = 1. 

(i) Replace each entry z of Q with the corresponding 2 x 2 real 

matrix Z to get R = ( -~t ~) E M4(1R). Show that IRI ~ 0. 

(j) Show that R in (i) is similar to a matrix of the form ( -~ ~). 

(k) Show that R in (i) is singular if and only if Q is singular, and 
if and only if u = v = 0. 
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2.39 Let A and B be n x n real matrices. Show that 

l-AB ! ~~O. 
State the a.na.log for complex matrices. 

2.40 Let A and B be n x n complex matrices. Show that 

I~ !I=IA+BIIA-BJ. 

Let C = A+ B and D = A -B. H C and D are invertible, show that 

( 
A n ) -l _ ! ( c-1 + n-1 c-1 

- n-1 
) 

B A - 2 c-1 - n-1 c-1 + n-1 • 

2.41 Let x and y be column vectors of n complex components. Show that 

(a) II- xy*l = 1- y*x. 

(b) I :. ~ I = I ! ~ I· 
(c) H 5 = 1- y•x =F 0, then (I- xy•)- 1 =I+ 5- 1xy•. 

(d) ( I x ) -
1 
= ( I+ 5-

1
xy* -5-

1
x ) . 

y* 1 -5-1y* 5-1 

2.42 Show that a matrix A is of rank 1 if and only if A can be written as 
A= xyt for some column vectors x a.nd y. 

2.43 Let A E Mn(C) a.nd Ut, U2, ••• 'Un E en be linearly independent. 
Show that r(A) = n, namely A is nonsingular, if a.nd only if Aub Au2, 
... , Aun are linearly independent. 

2.44 Let A =F 0 be an m x n complex matrix with rank r, show tha.t there 
exist invertible m x m matrix P and n x n matrix Q such that 

Moreover, P and Q can be chosen to be real if A is real. 
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2.45 For matrices of appropriate sizes, answer true or false: 

(a) H A2 = B2 , then A= BorA= -B. 

(b) H r(A) = r(B), then r(A2) = r(B2). 

(c) r(A + kB) ~ r(A) + kr(B), where k is a positive scalar. 

(d) r(A- B) ~ r(A) - r(B). 

(e) H r(AB) = 0, then r(BA) = 0. 

(f) If r(AB) = 0, then r(A) = 0 or r(B) = 0. 

2.46 Consider the 2 x 2 Hermitian matrix A = ( ~i ~) • Let 

(a) Show that the rows of A are linearly dependent over C. 

(b) Show that the rows of A are linearly independent over JR. 

(c) Since the rows of A are linearly independent over the real num-
ber field lR, does it follow that the matrix A is invertible? 

(d) Show that U* AU is a diagonal matrix, where U = ~ (~ 1i}. 
(e) What is the rank of A? 

(f) Show that Wa ~ We. 

(g) Show that We is a subspace of C2 over lR and also over C. 

(h) Show that Wa is a subspace of C2 over lR but not over C. 

(i) Find dim Wa over 1ll and dim We over 1ll and over C. 

2.4 7 Let A be an n-square Hermitian matrix. Write A = B + iC, where B 
and C are n-square real matrices. 

(a) Show that Bt =Band ct =-C. 

(b) Show that xt Ax = xt Bx and xtcx = 0 for all x e llln. 

(c) Show that if Ax= 0, x e !Rn, then Bx = 0 and Cx = 0. 

(d) Take A = ( ~i ~). Find a complex column vector x E C2 such 

that x* Ax = 0 but x* Bx =F 0. 

(e) Take A= ( 1 _:, 
1!i). Find a real column vector x E R2 such 

that Bx = 0 but Ax =F 0. What are the ranks of A and B? 
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2.48 For an m x n real matrix A, let Will = {Ax I x E lR.n} and We = 
{Ax I x e en}. Then obviously Will and We are not the same. Show 
that the dimension of Wa as a subspace of lR.m over 1ll is the same as 
the dimension of We as a subspace of em over C. 

2.49 If the rank of the following 3 x 4 matrix A is 2, find the value of t: 

( 

1 2 -1 1 ) 
A= 2 0 t 0 . 

0 -4 5 2 

2.50 For what value of t is the rank of the following matrix A equal to 3? 

( 

t 1 1 1 ) 
A= 1 t 1 1 

1 1 t 1 . 
1 1 1 t 

2.51 Let A, Be Mn(C). Show that if AB = 0, then 

r(A) + r(B) ~ n. 

2.52 If B is a submatrix of a matrix A obtained by deleting s rows and t 
columns from A, show that 

r(A) ~ s+t+r(B). 

2.53 Let A, BE Mn(C). Show that 

r(AB) ~min{ r(A), r(B)} 

and 
r(A +B) ~ r(A) + r(B) ~ r(AB) + n. 

2.54 Let A be m x n, B be n x p, and C be p x q matrices. Show that 

r(ABC) ~ r(AB) + r(BC)- r(B). 

2.55 Let A, BE Mn(C). HAD = BA, show that 

r(A +B) ~ r(A) + r(B)- r(AB). 
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r(AI) + r(A2) + · · · + r(A~c) ~ (k- l)n. 

2.57 Let X, Y, and Z be matrices of the same number of rows. Show that 

r(X, Y) ~ r(X, Z) + r(Z, Y) - r(Z). 

2.58 Show that for any m x n complex matrix A, 

r(A* A) = r(AA*) = r(A) = r(A*) = r(At) = r(A). 

Is r(At A) or r(AA) equal to r(A) in general? 

2.59 Which of the following is M* for the partitioned matrix M = ( ~ ~)? 

2.60 Let adj(A) denote the adjoint of A E Mn(C); that is, adj(A) is the 
n x n matrix whose (i,j)-entry is the cofactor (-l)i+;IAiil of 4ji, 

where Aii is the submatrix obtained from A by deleting the j-th row 
and the i-th column. Show that 

(a) r(A) = n if and only if r(adj(A)) = n. 

(b) r(A) = n- 1 if and only if r(adj(A)) = 1. 

(c) r(A) < n- 1 if and only if r{adj(A)) = 0. 

{d) I adj{A)I = IAin-1
. 

(e) adj(adj(A)) = IAin-2 A. 

(f) adj(AB) = adj(B) adj(A). 

(g) adj(XAX-1) = X(adj(A))X-1 for any invertible X E Mn(C). 
k ... 

{h) l~j · · · ad](A)I = IAI when A is 2 x 2. 

(i) H A is Hermitian, so is adj(A). 

k 

Find a formula for ~j · ~ · ad](A) when IAI = 1. What are the eigen­
k 
~ 

values of adj(A)? What are the eigenvalues of adj · · · adj(A)? 
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2.61 Show that A is nonsingular if A=(~;) E Mn(C) satisfies 
n 

lasil > E I~; I, i = 1, 2, ... , n. 
3=1, i#i 

2.62 Let A, B ben x n matrices satisfying A2 =A, B 2 =B. Show that 

r(A- B)= r(A- AB) + r(B- AB). 

2.63 Let A E Mn(C). Show that A2 =A if and only ifr(A)+r(A-1) = n. 

2.64 Let A be an m x n matrix and B be an n x p matrix. Show that 

r ( ~ t ) = n + r(AB). 

2.65 Let A be an m x n matrix, m ;:::: n. Show that 

r(Im- AA*) - r(In- A* A) = m- n. 

2.66 Denote the columns of matrix A by o 1, a2, 03, respectively, where 

A=( 1
i>. 1!;\ ~ )· 
1 1 1 +>. 

Find the value(s) of>. such that {3 = (0, ;\, ;\2)t 

(a) belongs to the column space of A; 
(b) does not belong to the column space of A. 

2.67 The notation A • is used for the adjoint of matrix A in many other 
books. Under what conditions on the matrix A is A • in the sense of 
this book; that is, A* = (A)t, the conjugate transpose, the same as 
adj(A), the adjoint matrix of A? 

2.68 Determine the values of;\ so that the following linear equation system 
of three unknowns has only the zero solution: 

AX1 + x2 + xa = 0 
x1 + >.x2 + xa = 0 

XI + X2 + X3 = 0. 
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2.69 Determine the value of A so that the following linear equation system 
of three unknowns has nonzero solutions: 

x1 + 2x2 - 2xa = 0 
2xt - x2 + AXa = 0 

3xl + x2 - xa = 0. 

2. 70 Find the general solutions of the linear system of five unknowns: 

x1 +x2 +xs = 0 
X1 +x2- X3 = 0 
X3 + X4 + X5 = 0. 

2. 71 Find the dimension and a basis for the solution sp~e of the system 

Xl - X2 + 5xa - X4 = 0 
x1 + x2 - 2xa + 3x4 = 0 
3xt - X2 + 8xa + X4 = 0 

Xt + 3x2- 9xa + 7x4 = 0. 

2. 72 Find all solutions x1 , x2 , xa, X4, x5 of the linear equation system 

where y is a parameter. 

X5 +x2 = yx1 
x1 +xa = yx2 
x2 +x4 = yx3 
X3 +xs = yx4 
x4 +x1 = yx5, 

2. 73 Discuss the solutions of the equation system in unknowns Xt, x2, xa: 

ax1 + bx2 + 2xa = 1 
ax1 + (2b - 1 )x2 + 3xa = 1 

ax1 + bx2 + (b + 3)xa = 2b - 1. 

2. 7 4 Let A be a real matrix. H the linear equation system Ax = 0 has a 
nonzero complex solution, show that it has a nonzero real solution. 
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2. 75 Find a basis for the solution space of the system of n + 1 linear 
equations of 2n unknowns: 

X1 + X2 + · · · + Xn = 0 
X2 + X3 + · · • + Xn+l = 0 

Xn+l +Xn+2+···+X2n = 0. 

2.76 Let A E Mn(IF) and write A= (abet2, ... ,an), where each Cti E JFR. 

(a) Show that 

(b) Let P be an n x n invertible matrix. Write 

P A = (Peth Pa2, ... , Pan) = (/31, !32, ... , f3n)· 

Show that Cti1 , Cti3 , ••• , Ctir are linearly independent if and only 
if f3iu/3i3 , ••• ,/3ir are linearly independent (over IF). 

(c) Find the dimension and a basis of the space spanned by 

2. 77 Let W1 and W2 be the vector spaces over R spanned, respectively, by 

and 

Find the dimensions and bases for W1 n W2 and Wt + W2. 
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2. 78 Let Clii be integers, 1 ~ i, j ~ n. H for any set of integers ~, ~, ... , bn, 

the system of linear equations 

n 

L ClijXj = bj, i = 1, 2, ... , n, 
;=1 

has integer solutions x1 , x2, ... , Xn, show that the determinant of the 
coefficient matrix A = ( O,j) is either 1 or -1. 

2. 79 Let W1 and W2 be the solution spaces of the linear equation systems 

X1 + X2 + · · · + Xn = 0 

and 

respectively, where Xi E lF, i = 1, 2, ... , n. Show that JFR = wl ffi w2. 

2.80 Let A E Mn(C). Show that there exists ann x n nonzero matrix B 
such that AB = 0 if and only if I AI = 0. 

2.81 Let A be a p x n matrix and B be a q x n matrix over a field r. H 
r(A) +r(B) < n, show that there must exist a nonzero column vector 
x of n components such that both Ax = 0 and Bx = 0. 

2.82 Let A and B be n-square matrices over a field lF and Ker A and KerB 
be the null spaces of A and B with dimensions land m, respectively. 
Show that the null space of AB has dimension at least max{l,m}. 
When does it happen that every x E JFR is either in Ker A or KerB? 

2.83 Let A be a square matrix. If r(A) = r(A2 ), show that the equation 
systems Ax= 0 and A2x = 0 have the same solution space. 

2.84 Let A and B be m x n matrices. Show that Ax = 0 and Bx = 0 have 
the same solution space if and only if there exists an invertible matrix 
C such that A = CB. Use this fact to show that if r(A2) = r(A), 
then there exists an invertible matrix D such that A 2 = D A. 
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2.85 Suppose b =fi 0 and Ax = b has solutions '1/1, 1J2, •.• , 1Jn· Show that a 
linear combination AtfJl + A2'72 + • · · + An1Jn is a solution to Ax= b if 
and only if At+ A2 +···+An= 1. Show also that lt1Jl + l21J2 + • · · + 

ln1Jn = 0 implies h + l2 + · · · + ln = 0. 

2.86 Let A E Mmxn(C). Show that for any bE em, the linear equation 
system A• Ax= A•b is consistent, meaning that it has solutions. 

2.87 Let A E Mn{C) and b be a column vector of n complex complements. 

Denote A= (~g). If r(A) = r(A), which of the following is true? 

(a) Ax= b has infinitely many solutions. 

(b) Ax = b has a unique solution. 

(c) Ax = 0 has only solution x = 0. 

(d) Ax= 0 has nonzero solutions. 

2.88 Let 

Show that 

and 

=F 0. 

aux1 + a12X2 + · · · + atnXn = b1 

a21X1 + a22X2 + · · · + a2nXn = ~ 

antXt + an2X2 + · · • + ClnnXn = bn 

CtXl + C2X2 + · · · + CnXn = d 

auXt + a21X2 + · · · + antxn = Ct 

a12X1 + a22X2 + • • • + l!n2Xn = C2 

a1nX1 + a2nX2 + ''' + ClnnXn = Cn 

btXl + ~X2 + · • · + bnXn = d 

will either both have a unique solution or both have no solution. 
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2.89 If A is a square matrix such that the linear equation system Ax = 0 
has nonzero solutions, is it possible that Atx = b has a unique solution 
for some column vector b? 

2.90 Let A and B be matrices such that r(AB) = r(A). Show that 

X1AB = X2AB ~ X1A = X2A. 

2.91 Consider the straight lines in the xy-plane. Show that the three lines 

lt : ax + by + c = 0 
l2 : bx + cy + a = 0 
l3 : ex + ay + b = 0 

intersect at a point if and only if a + b + c = 0. 



Chapter 3 

Matrix Sin1ilarity, 
Eigenvalues, Eigenvectors, 
and Linear Transformations 

Definitions and Facts 

Similarity. Let A and B be n x n matrices over a field 1F. If there exists 
an n x n invertible matrix P over 1F such that p-l AP = B, we say that 
A and B are similar over F. H A a.nd B are complex matrices a.nd if P is 
unitary, i.e., P* P = PP* =I, we say that A and Bare unitarily similar. 

Similar matrices have the same determinant, for if B = p-t AP, then 

We say a matrix is diagonalizable if it is similar to a diagonal matrix a.nd 
unitarily diagonalizable if it is unitarily similar to a diagonalizable matrix. 

Trace. Let A = ( ai3 ) be a.n n x n matrix. The trace of A is defined as the 
sum of the entries on the main diagonal of A; that is, 

tr A = an + a22 + · · · + linn· 

Eigenvalues and Eigenvectors of a Matrix. Let A be a.n n x n matrix 
over a field 1F. A scala.r ). E 1F is said to be a.n eigenvalue of A if 

Ax=>.x 

for some nonzero column vector x E 1F". Such a vector x is referred to as 

an eigenvector corTesponding (or belonging) to the eigenvalue>.. 

45 
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Let A be an n x n complex matrix. The fundamental theorem of algebra 
ensures that A has n complex eigenvalues, including the repeated ones. To 
see this, observe that Ax= ..\xis equivalent to (>J- A)x = 0, which has a 
nonzero solution x if and only if >..I - A is singular. This is equivalent to >.. 
being a scalar such that I>..I- AI = 0. Thus, to find the eigenvalues of A, 
one needs to find the roots of the characteristic polynomial of A 

PA(>..) = IAI- AI. 

Since the coefficients of PA ( x) are complex numbers, there exist complex 
numbers >..1, A2, ..• , An (not necessa.rily distinct) such that 

so these scalars are the eigenvalues of A. 
Expanding the determinant, we see that the constant term of PA(>..) is 

( -l)niAI (this is also seen by putting >.. = 0), and the coefficient of A is 
- tr A. Multiplying out the right-hand side and comparing coefficients, 

and 
tr A = a11 + a22 + · · · +ann = >..1 + >..2 + · · · + An. 

The eigenvectors x corresponding to the eigenvalue A are the solutions 
to the linear equation system (>..I - A )x = 0; that is, the null space of 
>J - A. We call this space the eigenspace of A corresponding to >... 

Similar matrices have the same characteristic polynomial, thus the same 
eigenvalues and trace but not necessarily the same corresponding eigenvec­
tors. The eigenvalues of an upper- (or lower-) triangular matrix are the 
elements of the matrix on the main diagonal. 

Triangularization and Jordan Canonical Form. 

• Let A be an n x n complex matrix. Then there exists an n x n invertible 
complex matrix P such that p-l AP is upper-triangular with the 
eigenvalues of A on the main diagonal. Simply put: Every square 
matrix is similar to an upper-triangular matrix over the complex field. 
Let >..1, ... , An be the eigenvalues of A. We may write 
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• Let A be an n x n complex matrix. Then there exists an n x n unitary 
matrix U such that U* AU is upper-triangular with the eigenvalues of 
A on the main diagonal. Simply put: Every square matrix is unitarily 
similar to an upper-triangular matrix over the complex field. 

• Jordan (canonical} form of a matrix. Let A be an n x n complex 
matrix. There exists ann x n invertible complex matrix P such that 

( 

Jl 0 0 
0 J2 0 

p-1AP= : : . . . 
0 0 0 

where each Jt, t = 1, 2, ... , s, called a Jordan block, takes the form 

in a.n appropriate size; A is an eigenvalue of A. In short: Every square 
matrix is similar to a matrix in Jordan form over the complex field. 

The Jordan form of a. matrix carries a great deal of algebraic infor­
mation about the matrix, and it is useful for solving problems both in 
theory and computation. For instance, if(~~) is a Jordan block of a 
matrix, then this matrix cannot be diagonalizable; that is, it cannot 
be similar to a diagonal matrix. The determination of the Jordan 
form of a matrix needs the theory of A-matrices or generalized eigen­
vectors. One may find those in many advanced linear algebra books. 

Singular Values. Let A be a matrix but not necessarily square. Let 
A be an eigenvalue of A • A and x be a corresponding eigenvector. Then 
(A* A)x =AX implies x*(A* A)x = (Ax)*(Ax) = ..\x*x ~ 0. Hence, A~ 0. 

The square roots of the eigenvalues of A • A are called singular valt1.es of 
A. The number of positive singular values of A equals the rank of A. 

Let A be an m x n matrix with rank r, r ~ 1, and let u 17 u2, ... ,ur be 
the positive singular values of A. Then there exist an m x m unitary (or 
orthogonal over lR) matrix P and an n x n unitary matrix Q such that 

A=PDQ, 
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where Dis an m x n matrix with (i, i)-entry ui, i = 1, 2, ... , r, and all other 
entries 0. This is the well-known singular value decomposition theorem. 

Linear Transformation. Let V and W be vector spaces over a field F. 
A mapping A from V to W is said to be a linear transformation if 

A(u + v) = A(u) + A(v), u, vE V 

and 
A(ku) = kA(u), k E IF, u E V. 

It follows at once that A(O) = 0. We could have written A(O,) =Ow, 
where 0, and Ow stand for the zero vectors of V and W, respectively. 
However, from the context one can easily tell which is which. For simplicity, 
we use 0 for both. Sometimes we write A( u) as Au for convenience. 

The zero transformation from V to W is defined by 0( v) = 0, v E V. 
The linear transformations from V to V are also called linear operators. 

The Vector Space of Linear Transformations. Let L(V, W) denote 
the set of all linear transformations from a vector space V to a vector space 
W. We define addition and scalar multiplication on L(V, W) as follows: 

(A+ B)(u) = A(u) + B(u), (kA)(u) = k(A(u)). 

Then L(V, W) is a vector space with respect to the addition and scalar 
multiplication. The zero vector in L(V, W) is the zero transformation, and 
for every A E L(V, W), -A is the linear transformation 

(-A)(u) = -(A(u)). 

When V = W, I( u) = u, u E V, defines the identity transformation 
on V, and 'T(u) = ku, u E V, defines a scalar transformation for a fixed 
scalar k. The product of linear transformations (operators) A, B on V can 
be defined by the composite mapping 

(AB)(u) = A(B(u)), uEV. 

The product AB is once again a linear transformation on V. 

Kernel and Image. Let A be a linear transformation from a vector space 
V to a vector sp~c W. The kernel or null space of A is defined to be 

Ker A = { u E V I A( u) = 0} 
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and image or mnge of A is the set 

ImA = {A(u) I u E V}. 

The kernel is a subspace of V and the image is a subspace of W. If 
V is finite dimensional, then both Ker A and Im A have to be of finite 
dimension. If {u1 , 1£2, .•• , u,} is a basis for Ker A and is extended to a 
basis for V, {ubu2, ... ,u,,u,+b···,Un}, then {A(u,+l), ... ,A(Un)} is a 
basis for Im(A). We arrive at the dimension theorem: 

dim V = dim(Ker A)+ dim(ImA). 

Given an m x n matrix A over a field JF, we may define a linear trans­
formation from IFn to F by 

A(x) =Ax, xer. 

The kernel and image of this A are the null space and column space of A, 
respectively. As is known from Chapter 1, dim(ImA) = r(A). 

Matrix Representation of a Linear Transformation. Let V be avec­
tor space of dimension m with an ordered basis a = { 01, a2, ... , om} and W 
be a. vector space of dimension n with an ordered basis {J = {fJ1, f32, ... , f3n}. 
If u E V and u = x1a1 + · · · + Xmam for (unique) scalars Xi, letting 
x = (x17 .•• , Xm)t, we will denote this representation of u as ax. Similarly, 
if w E W and w = Y1fJ1 + · · · + YnfJn, we will abbreviate as w = {Jy. 

Let A be a linear transformation from V to W. Then A is determined 
by its action on the ordered basis a relative to {3. To be precise, let 

A( a,) = alif3t + a2i!Jl + · · · + andJn, i = 1, 2, ... , m. 

For the sake of convenience, we use the following notation: 

and 

A(a) = (A(at),A(a2), ... ,A(am)) = ({3t,f32, ... ,f3n)A = {3A, 

where 

If 
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where x = (x1, x2, ... , Xm)t is the coordinate of u relative to basis a, then 

A(u) = A(ax) = (A(a))x = (,BA)x = ,B(Ax). 

This says Ax is the coordinate vector of A(u) E W relative to the basis 13. 
Thus the linear transformation .A is determined by the matrix A. Such a 
matrix A associated to A is called the matrix representation of the linear 
transformation A relative to the (ordered) bases a of V and 13 of W. 

H V =Wand a= ,8, then A(a) = aA; we simply say that A is the 
matrix of A under, or relative to, the basis a. H V = F and W = r, 
with the standard bases a= {et, ... ,em} and 13 = {f~, ... , En}, we have 

A(u) =Ax. 

Matrices of a Linear Operator Are Similar o Consider V, a vector 
space of dimension n. Let a and /3 be two bases for V. Then there exists 
an n-square invertible matrix P such that /3 = aP. Let A 1 be the matrix 
of A under the basis a; that is, .A(a) = aA1• Let A2 be the matrix under 
13. We claim that A1 and A2 are similar. This is because 

It follows that A2 = p-t A1P. Therefore, the matrices of a linear operator 
under different bases are similar. 

Eigenvalues of a Linear Operator o Let .A be a linear transformation on 
a vector space V over F. A scalar A E F is an eigenvalue of A if .A(u) =AU 
for some nonzero vector u. Such a vector u is called an eigenvector of A 
corresponding to the eigenvalue A. 

Let A be the matrix of A under a basis a of V and x be the coordinate 
of the vector u under a; that is, u = ax. Then 

a(.U) = A(ax) =Au= .A(u) =A( ax) = (.A(a))x = (aA)x = a(Ax). 

Thus A(u) = AU is equivalent to Ax = ..\x. So the eigenvalues of the 
linear transformation A are just the eigenvalues of its matrix A under a. 
Note that similar matrices have the same eigenvalues. The eigenvalues of 
A through its matrices are independent of the choices of the bases. 

Invariant Subspaceso Let A be a linear operator on a vector space V. 
If W is a subspace of V such that A( w) E W for all w E W; that is, 
A(W) ~ W, then we say that W is invariant under A. Both Ker A and 
Im A are invariant subspaces under any linear operator A. 
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Chapter 3 Problems 

3.1 Let A and B be n-square matrices. Answer true or false: 

(a) If A2 = 0, then A= 0. 

(b) If A 2 = 0 and A is an eigenvalue of A, then A = 0. 

(c) If A2 = 0, then the rank of A is at most 2. 

(d) If A 2 = A, then A = 0 or I. 

(e) If A* A= 0, then A= 0. 

(f) If AB = 0, then A= 0 orB= 0. 

(g) If IABI = 0, then IAI = 0 or IBI = 0. 

{h) AB = BA. 

(i) IABI = IBAI, where A ism x n and B is n x m. 

(j) lA + Bl = IAI + IBI. 
(k) (A+ /)2 = A2 + 2A +I. 

(1) lkAI = kiAI for any scalar k. 

3.2 Let A and B be n x n matrices. Show that 

if and only if A and B commute; that is, AB = BA. 

3.3 Let A and B ben x n matrices. Show that 

AB=A±B =* AB=BA. 
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3.4 Find the values of a and b such that the following matrices are similar: 

( 
-2 0 0 ) ( -1 0 0 ) 

A= 2 a 2 , B= 0 2 0 . 
3 1 1 0 0 b 

3.5 What are the matrices that are similar to themselves only? 
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3.6 A matrix X is said to be equivalent to matrix A if PXQ =A for some 
invertible matrices P and Q; congroent to A if pt X P = A for some 
invertible P; and similar to A if p-lxp =A for some invertible P. 

Let A be the diagonal matrix diag( 1, 2, -1). Determine if the matrices 

B = ( ~1 -;1 
~), C = ( ~2 ~ ~), D = ( ~ ~ ~) 

0 0 3 0 01 002 

are 

(a) equivalent to A; 

(b) congruent to A; or 

(c) similar to A. 

3. 7 Which of the following matrices are similar to A = diag(l, 4, 6)? 

B=(~! :),c=(~ ~ ~),n=(!! ~), 
006 896 076 

E=u! n.F=o: n.G=o ~ D· 
3.8 Let a, b, c E R. Find the condition on a, b, and c such that the matrix 

( 

2 0 0 ) 
a 2 0 
b c -1 

is similar to a diagonal matrix. 

3. 9 For any scalars a, b, and c, show that 

A=(~~ :),B=(~: ~),c=(: ~ ~) 
abc bca cab 

are similar. Moreover, if BC = CB, then A has two zero eigenvalues. 

3.10 Let Ei; be then-square matrix with the (i,j)-entry 1 and 0 elsewhere, 
i, j = 1,2, ... ,n. For A E Mn(C), find AEi;, Ei;A, and E,;AEst· 
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3.11 Compute A2 and A6 , where 

( -1 
1 1 

-~) A= 1 -1 -1 
1 -1 -1 1 . 

-1 1 1 -1 

3.12 Find A100 , where 

A=(! ! ) . 
3.13 For positive integer k ~ 2, compute 

e 1 )k e 1 r C 1 0 r c 1 or 2 3 ' 0 A ' O 0 1 ' 0 0 1 
0 0 0 1 0 0 

3.14 Let A= G D· Show that Ale is similar to A for every positive integer 
k. This is true more generally for any matrix with all eigenvalues 1. 

3.15 Let u = (1, 2, 3) and v = (1, !, l>· Let A= utv. Find A'\ n ~ 1. 

3.16 Let A be an n x n complex matrix. Show that 

(a.) (Schur Decomposition) There is a. unitary matrix U such that 

~AU=(: ~2 • •• ~) 
is an upper-triangular matrix, where Ai 's are the eigenvalues 
of A, and * represents unspecified entries. 

(b) H A and BE Mn(C) are similar, then for any polynomial f(x) 
in x, f(A) and f(B) are similar. 

(c) If A is an eigenvalue of A, then /(A) is an eigenvalue of f(A). 
In particular, A 1c is an eigenvalue of A 1c. 

(d) If AP = QA for diagonal P and Q, then Af(P) = f(Q)A. 
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3.17 Show that an n-square matrix is similar to a diagonal matrix if and 
only if the matrix has n linearly independent eigenvectors. Does the 
matrix have to haven distinct eigenvalues? 

3.18 Let A be a square matrix such that IAI = 0. Show that there exists 
a positive number 8 such that lA + E:JI 'I 0, for any € E (0, 8). 

3.19 Show that for any 2 x 2 matrix A and 3 x 3 matrix B, 

A2 
- (tr A)A + IAIJ = 0 

and 
I..\J- Bl = ..\3 

- ..\
2 tr B + ..\ tr(a.dj(B)) - IBI. 

3.20 Let A, Be Mn(C) and let 

Pa(..\) = I..\J- Bl 

be the characteristic polynomial of B. Show that the matrix p B (A) 
is invertible if and only if A and B have no common eigenvalues. 

3.21 Let BE Mn(C), u and v be 1 x nand n x 1 vectors, respectively. Let 

A= ( -!B :!;) . 
(a) Show that IAI = 0. 

(b) If IBI = o, then ..\2 divid~ l..\1- AI. 
(c) Discuss the converse of (b). 

3.22 Let A and B be real matrices such that A + iB is nonsingular. Show 
that there exists a. real number t such that A + tB is nonsingular. 

3.23 Let A and B be n-square matrices. Show that the characteristic 
polynomial of the following matrix M is an even function; that is, 

if I..\J - Ml = 0, then I - ..\1- Ml = 0, 

where 

M=(~~)· 
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3.24 Let A and B be n-square matrices. Answer true or false: 

(a) If Ak = 0 for all positive integers k ~ 2, then A= 0. 

(b) If A k = 0 for some positive integer k, then tr A = 0. 

(c) If Ak = 0 for some positive integer k, then IAI = 0. 

(d) If Ak = 0 for some positive integer k, then r(A) = 0. 

(e) If tr A= 0, then IAI = 0. 

(f) If the rank of A is r, then A has r nonzero eigenvalues. 

(g) If A has r nonzero eigenvalues, then r(A) ~ r. 
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(h) If A and Bare similar, then they have the same eigenvalues. 

(i) If A and Bare similar, then they have the same singular values. 

(j) If A and B have the same eigenvalues, then they are similar. 

(k) If A and B have the same characteristic polynomial, then they 
have the same eigenvalues; and vice versa. 

(1) If A and B have the same characteristic polynomial, then they 
are similar. 

(m) If all eigenvalues of A are zero, then A= 0. 

(n) If all singular values of A are zero, then A= 0. 

(o) If tr Ak = tr Bk for all positive integers k, then A= B. 

(p) If the eigenvalues of A are At, A2, ... , An, then A is similar to 
the diagonal matrix diag(Ab A2, ... , An)· 

(q) diag(l, 2, ... , n) is similar to dia.g(n, ... , 2, 1). 

( r) If A has a repeated eigenvalue, then A is not diagonalizable. 

(s) If a+ bi is an eigenvalue of a real square matrix A, then a- bi 
is also an eigenvalue of the matrix A. 

( t) If A is a real square matrix, then all eigenvalues of A are real. 

3.25 Let A E Mn(C). Prove 888ertions (a) and (b): 

(a) If the eigenvalues of A are distinct from each other, then A 
is diagonalizable; that is, there is an invertible matrix P such 
that p-l AP is a diagonal matrix. 

(b) If matrix A commutes with a matrix with all distinct eigenval­
ues, then A is diagona.lizable. 
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3.26 Let A be ann x n nonsingular matrix having distinct eigenvalu~. If 
B is a matrix satisfying AB = BA-1 , show that B 2 is diagonalizable. 

3.27 Show that if all the eigenvalues of A E Mn(C) are real and if 

for some constant c, then for every positive integer k, 

trAk = c, 

and c must be an integer. The same conclusion can be drawn if 
Am= Am+1 for some positive integer m. 

3.28 Let A e Mn(C). Show that 

An = 0 if tr A k = 0, k = 1, 2, ... , n. 

3.29 Let A, BE Mn(C). If AB = 0, show that for any positive integer k, 

tr(A + B)k = tr Ale+ tr Bk. 

3.30 Let A = ( ~ ! ) . Show that for any positive integer k ~ 2 

tr Ak = tr Ak-1 + tr Ak-2 • 

3.31 Find the eigenvalues and corresponding eigenvectors of the matrix 

( 
1 2 2) 

A= 2 1 2 . 
2 2 1 

And then find an invertible matrix P such that p-l AP is diagonal. 

3.32 Show that the following matrix is not similar to a diagonal matrix: 
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3.33 If matrix 

A=(~~~) 
1 0 0 

has three linearly independent eigenvectors, show that x + y = 0. 

3.34 If matrices 

( 
0 0 0) 

and B = 0 1 0 
0 0 2 

are similar, what are the values of a and b? Find a real orthogonal 
matrix T, namely, 'rtT = T'rt =I, such that T-1 AT= B. 

3.35 Let A be an eigenvalue of an n-square matrix A = (a;;). Show that 
there exists a positive integer k such that 

n 

lA- a~c~cl ~ L la~c; I· 
3=1,j'#k 

3.36 If the eigenvalues of A= (a;;) E Mn(C) are At, A2, ... , An, show that 

n n 

L:1Ail2 ~ L 1~;12 
i=l i, j=1 

and equality holds if and only if A is unitarily diagonalizable. 

3.37 Let A be an n-square real matrix with eigenvalu~ ,\lt ,\2 , ••• , An 
(which are not necessarily real). Denote ,\k = x~c + iy~c. Show that 

(a) Yt + Y2 + · · · + Yn = 0. 

(b) ZtYl + X2'Y2 + · · · + XnYn = 0. 

(c) tr A2 = (x~ + x~ + · · · + x~)- (1ft+ 7A + · · · + Y!). 

3.38 Let ,\1 and ,\2 be two different eigenvalues of a matrix A and let u1 

and u2 be eigenvectors of A corresponding to At and ,\2 , respectively. 
Show that u1 + u2 is not an eigenvector of A. 
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3.39 Find a 3 x 3 real matrix A such that 

where 

3.40 If A E M2 (R) satisfies A2 +I= 0, show that A is similar to (~ -;/ ). 

3.41 Let A = ( ~ :) be a 2 x 2 real matrix. If ( ~0 ) is an eigenvector of A 
for some eigenvalue, find the value of x0 in terms of a, b, c, and d. 

3.42 Let A= ( ~ :) E M2(C) and IAI = 1. 

(a) Find A-1• 

(b) Write A as a. product of matrices of the forms 

(~ n and (! D· 
(c) If la+dl > 2, then A is similar to ( ~ l~l ), where..\:/= 0, 1, -1. 

(d) If Ia + dl < 2, then A is similar to ( ~ l~l ), where A~ lll U illl. 

(e) If Ia + dl = 2 and A has real eigenvalues, what are the possible 
real matrices to which A is similar? 

(f) If Ia + dl # 2, then A is similar to ( T ~) for some x E C. 

(g) Does (f) remain true if Ia + dl = 2? 

3.43 Show that matrices A and B are similar but not unitarily similar: 

A=(~~), 
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3.44 Show that if two real square matrices are similar over C, then they 
must be similar over R. What if "real" is changed to ''rational"? Find 
a rational matrix M such that 

M-1 ( 1 2 ) M = ( 2 1 ) . 
2 -1 1 -2 

3.45 Find the eigenvalues and corresponding eigenvectors of the matrix 

1 3 1 . ( 
2 1 0) 
0 1 2 

Show that the eigenvectors of distinct eigenvalues are orthogonal. 

3.46 Find a singular value decomposition (SVD) for the 3 x 2 matrix 

A=O D· 
3.47 Show that T-1 AT is always diagonal for any numbers x andy, where 

A=(=:~), T=(J 1 -J). 
0 y X ! -~ 1 

2 2 2 

3.48 For any n x n complex matrix A, show that A and At are similar. 
Are A and A • necessarily similar? Can A be similar to A + I? 

3.49 If A is a singular square matrix, what are the eigenvalues of adj(A)? 

3.50 Let A be an n x n complex matrix. Show that ,\ ~ 0 is an eigenvalue 
of AA if and only if Ax = ,.;>.X for some nonzero X E en. 

3.51 Let A, B be m x n, n x m matrices, respectively, m ~ n. Show that 

IAlm- ABI = ,\m-nl,\ln- BAl. 

Conclude that AB and BA have the same nonzero eigenvalues, count­
ing multiplicities. Do they have the same singular values? 
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3.52 Let a1, a2, ... , an E R be such that a1 + a2 + · · · +an = 0 and denote 

( 

a¥+ 1 a1a2 + 1 .. . a1an + 1 ) 

A = ~~~~ ~ ~ 1 : : : a2~ ~ 1 

ana1 + 1 ana2 + 1 . . . a~ + 1 

Show that A= BBt for some matrix B. Find the eigenvalues of A. 

3.53 Let u, v E lin be nonzero column vectors orthogonal to each other; 
that is, vtu = 0. Find all eigenvalues of A = uvt and corresponding 
eigenvectors. Find also A 2 • Is A similar to a diagonal matrix? 

3.54 Let A and B be square matrices of the same size. Show that matrices 
M and Pare similar to matrices Nand Q, respectively, where 

M=(~ !)• 
P=(: -:). 

N=(A+
0

B 0 ) 
A-B ' 

Q = ( A+
0

iB 0 ) 
A-iB . 

3.55 Let A, B e Mn(C). 

(a) Show that tr(AB) = tr(BA). 

(b) Show that tr(AB)k = tr(BA)k. 

(c) Is it true that tr(AB)k = tr(Ak Bk)? 

(d) Why is A singular if AB-BA= A? 

(e) Show that tr(ABC) = tr(BCA) for every C E Mn(C). 
(f) Is it true that tr(ABC) = tr(ACB)? 

(g) Show that tr[(AB- BA)(AB + BA)] = 0. 

(h) Show that AB and BA are similar if A orB is nonsingular. 

(i) Are AB and BA similar in general? 

3.56 Let Jn denote then-square matrix all of whose entries are 1. Find 
the eigenvalues and corresponding eigenvectors of Jn· Let 

K=(1 ~)· 
Find the eigenvalues and corresponding eigenvectors of K. 
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3.57 Let A be then x n matrix all of whose main diagonal entries are 0 
and elsewhere 1, i.e., O..i = 0, 1 ~ i ~nand a,3 = 1, i-::/: j. Find A-1 • 

3.58 Let A E Mn(C) be a matrix with real eigenvalues, and lets be the 
number of nonzero eigenvalues of A. Show that 

(a) (trA)2 ~ strA2• When does equality hold? 

(b) (tr A)2 ~ r(A) tr A2 when A is Hermitian. Moreover, equality 
holds if and only if A 2 = cA for some scalar c. 

(c) If (tr A)2 > (n -1) tr A2, then A is nonsingular. 

3.59 Let A E Mn(C). Show that if A3 =A, then r(A) = tr A2 • 

3.60 Let m and j be positive integers with m ~ j. Let Sm,; (X, Y) denote 
the sum of all matrix products of the form A 1 ···Am, where each~ 
is either X or Y, and is Y in exactly j cases. Show that 

5 
tr(S5,3(X, Y)) = 2 tr(XS4,3(X, Y)). 

3.61 If A and Bare 3 x 2 and 2 x 3 matrices, respectively, such that 

( 8 2 -2) 
AB = 2 5 4 , 

-2 4 5 

show that 

BA= (: n. 
3.62 Let A be a 3 x 3 real symmetric matrix. It is known that 1, 2, 

and 3 are the eigenvalues of A and that a 1 = ( -1, -1, 1)t and 
a 2 = (1, -2, -l)t are eigenvectors of A belonging to the eigenval­
ues 1 and 2, respectively. Find an eigenvector of A corresponding to 

the eigenvalue 3 and then find the matrix A. 

3.63 Construct a 3 x 3 real symmetric matrix A such that the eigenvalues 
of A are 1, 1, and -1, and a = (1, 1, 1)t and {3 = (2, 2, 1)t are 
eigenvectors corresponding to the eigenvalue 1. 
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3.64 For A, B E Mn(C), AB- BA is called the commutator of A and B, 
and it is denoted by [A, B]. Show that 

(a) [A,B) = [-A,-B) = -(B,A). 

(b) [A,B+C] = [A,B) + [A,C]. 

(c) [A, B]• = [B•, A*). 

(d) [PXP-1, Y] = 0 if and only if [X,P-1YP) = 0. 

(e) tr[A, B)= 0. 

(f) 1 - [A, B) is not nilpotent. 

(g) [A, B) is never similar to the identity matrix. 

(h) If the diagonal entries of A are all equal to zero, then there 
exist matrices X and Y such that A = [X, Y]. 

(i) If (A, B) = 0, then (AP, B9) = 0 for all positive integers p, q. 

(j) If [A, B) = A, then A is singular. 

(k) If A and B are both Hemtitian or skew-Hermitian, then [A, B] 
is skew-Hermitian. 

(1) If one of A and B is Hermitian and the other one is skew­
Hermitian, then [A, B] is Hermitian. 

(m) If A is a skew-Hermitian matrix, then A = (B, C] for some 
Hermitian matrices B and C. 

(n) If A and Bare Hermitian, then the real part of every eigenvalue 
of [A, B) is zero. 

(o) If [A, [A, A•]] = 0, then A is normal. 

(p) [A, [B, C]) + [B, [C, A)]+ [C, [A, B)] = 0. 

(q) If [A, B) commutes with A and B, then [A, B) has no eigenval­
ues other than 0, and further [A, B]k = 0 for some k. 

When does it happen that [A, B] = [B, A]? 

3.65 Show that A E Mn(C) is diagonalizable, meaning p-l AP is diagonal 
for some invertible P, if and only if for every eigenvalue,\ of A, 

r(A- M) = r[(A- ,\1)2]. 

Equivalently, A is diagonalizable if and only if (,\1-A)x = 0 whenever 
(,\1- A)2x = 0, where xis a column vector of n components. 
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3.66 Let A E M,..(C). Show that the following are equivalent: 

(a) A 2 = B A for some nonsingular matrix B. 

(b) r(A2 ) = r(A). 

(c) Im An Ker A = { 0}. 

63 

(d) There exist nonsingular matrices P and D of orders n x n and 
r(A} x r(A), respectively, such that 

A=P( ~ ~ )p-1
, 

3.67 Let A E M,..(C). Of the matrices A, At, A*, adj(A), A~A·, (A* A)!, 
which always has the same eigenvalues or singular values as A? 

3.68 Let A be a square complex matrix and denote 

Show that 

P = max{ 1~11 ~is an eigenvalue of A}, 

w = max{ lx* Axil x*x = 1 }, 

u = max{ (x* A* Ax)112 I x*x = 1 }. 

p ~ w ~ (T. 

3.69 Let A, B, and C be n x n complex matrices. Show that 

AB = AC if and only if A* AB =A* AC. 

3. 70 Let A and B be n x n complex matrices of the same rank. Show that 

A2 B = A if and only if B2 A = B. 

3. 71 Let A = I- ( x• x) -l ( xx*), where x is a nonzero n-column vector. Find 

(a) r(A). (b) ImA. (c) Ker A. 

3. 72 If A E M,..(Q), show that there exists a polynomial f(x) of integer 
coefficients such that f(A) = 0. Find such a polynomial f(x) of the 
lowest degree for which f (A) = 0, where A = diag( ~, ~, ~). 
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3. 73 Let A and B be m-square and n-square matrices, respectively. If 
A and B have no common eigenvalue over e, show that the matrix 
equation AX = X B will have only the zero solution X = 0. 

3.74 Prove 

(a) If,\=/= 0 is an eigenvalue of A, !IAI is an eigenvalue of adj(A). 
(b) If vis an eigenvector of A, vis also an eigenvector of adj(A). 

3.75 Let A and B ben x n matrices such that AB = BA. Show that 

(a) If A has n distinct eigenvalues, then A, B, and AB are all 
diagonalizable. 

(b) If A and B are diagonalizable, then there exists an invertible 
matrix T such that T- 1 AT and T-1 BT are both diagonal. 

3. 76 Which of the following A are linear transformations on en? 

(a) A(u) = v, where v =!= 0 is a fixed vector in en. 

(b) A(u) = 0. 

(c) A(u) = u. 
(d) A(u) = ku, where k is a fixed complex number. 

(c) A(u) = llull u, where llull is the length of vector u. 

(f) A(u) = u + v, where v =!= o is a fixed vector in en. 

(g) A(u) = (ut, 2u2, ... , nun), where u = (ut, u2, ... , un)· 

3. 77 Let A be a linear transformation on a vector space. Show that 

KerA ~ Im(I- A) 

and 
ImA ~ Ker(I- A). 

3.78 Let A, B, C, D ben x n complex matrices. Define Ton Mn(e) by 

T(X) = AXB+CX +XD, X E Mn(e). 

Show that T is a linear transformation on Mn(C) and that when 
C = D = 0, T has an inverse if and only if A and B are invertible. 
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3.79 Let A E M,(C) and A:/; 0. Define a transformation on M,(C) by 

T(X) =AX- XA, X E M,(C). 

Show that 

(a) Tis linear. 

(b) Zero is an eigenvalue of T. 

(c) If Ak = 0, then T'lk = 0. 

(d) T(XY) = XT(Y) + T(X)Y. 

(e) If A is diagonalizable, so is a matrix representation of T. 

(f) If A and B commute, so do T and £, where £ is defined as 

£(X)= BX- XB, X E M,(C). 

Find all A such that T = 0, a.nd discuss the converse of (f). 

65 

3.80 Let A be a linear transformation from a vector space V to a vector 
space W and dim V = n. If 

is a basis for V such that { £t1 , ••• , £t8 } is a basis for Ker A, show that 

(a) {A(os+t), ... , A(£t,)} is a basis for ImA. 

(b) dim(Ker A)+ dim(Im.A) = n. 

(c) V = Ker A E9 Span{£ts+b ... , a,}. 

Is Ker A+lmA necessarily a direct sum when V = W? If {th, ... ,{j,} 
is 8 basis for V, does it necessarily follow that some Pt's fall in Ker A? 

3.81 Let A be a linear transformation on 8 finite dimensional vector space 
V and let V1 and V2 be subspa.ces of V. Answer true or false: 

(a) A(Vt n V2) = A(Vl) n A(V2). 

(b) A(V1 U V2) = A(V1) U A(V2). 

(c) A(Vi + V2) = A(Vi) + A(V2). 

(d) A(Vi e V2) = A(Vi) eA(V2). 
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3.82 Let A be a linear transformation on a finite dimensional vector space 
V. Show that the following are equivalent: 

(a) A has an inverse. 

(b) V and Im A have the same dimension. 

(c) A maps a basis to a basis. 

(d) The matrix representation of A under some basis is invertible. 

(e) A is one-to-one; that is, Ker A= {0}. 

(f) A is onto; that is, ImA = V. 

What if V is infinite dimensional? What if A is a linear transforma­
tion from V to another vector space W? 

3.83 Let A be a linear transformation on a vector space V, dim V = n. 

(a) Hfor some vector v, the vectors v, A(v), A2 (v), ... , An-1 (v) are 
linearly independent, show that every eigenvalue of A has only 
one corresponding eigenvector up to a scalar multiplication. 

(b) H A has n distinct eigenvalues, show that there is a vector u 
such that u, A(u), A2 (u), ... , An- 1(u) are linearly independent. 

3.84 Let A be a linear transformation on a. vector space V, dim V = n. If 

An-1(x) :/; 0, but An(x) = 0, for some x E V, 

show that 
x,A(x), ... ,An-1(x) 

are linearly independent, and thus form a basis of V. What are the 
eigenvalues of A? Find the matrix representation of A under the basis. 

3.85 Let A and 8 be linear transformations on a finite dimensional vector 
space. Show that if AB =I, then BA =I. Is this true for infinite 
dimensional vector spaces? 

3.86 If Ut, tl.2, ... , u1c are eigenvectors belonging to distinct eigenvalues 
~It .X2, ... , ~k of a linear transformation, show that u1, u2, ... , u1c are 
linearly independent. Simply put, different eigenvectors belonging to 
distinct eigenvalues are linearly independent. 
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3.87 Let V and W be finite dimensional vector spaces, and let A be a 
linear transformation from V to W. Answer true or false: 

(a) Ker A= {0}. 

(b) H A(v) = 0 only when v = 0, then dim V =dim W. 

(c) If ImA = {0}, then A= 0. 

(d) H V =Wand ImA ~ KerA, then A= 0. 

(e) If V =Wand ImA ~ KerA, then .A2 = 0. 

(f) H dim V = dim W, then A is invertible. 

(g) If dim V = dim Im .A, then Ker .A = { 0}. 

(h) Ker.A2 2 KerA. 

(i) dimKer .A~ dimlm.A. 

(j) dimKer.A ~dim V. 

(k) A is one-to-one if and only if Ker .A= {0}. 

(I) A is one-to-one if and only if dim V ~dim W. 

(m) A is onto if and only if Im.A = W. 

(n) A is onto if and only if dim V 2::: dim W. 

3.88 Let V and W be finite dimensional vector spaces, and let A be a 
linear transformation from V to W. Prove or disprove: 

(a) If the vectors a 11 02, ... , an in V are linearly independent, then 
Aa1, .Aa2, ... , Aan are linearly independent. 

(b) H the vectors .Aa1, .Aa2, ... , Aan in W are linearly indepen­
dent, then o 1, a2, ... , an are linearly independent. 

3.89 Let {ab 02, a3} be a. basis for a. three-dimensional vector space V. 
Let A be a linear transformation on V such that 

.A(a1) = a1, A(a2) = a1 + 02, .A(o3) = a1 + a2 + 03. 

(a) Show that A is invertible. 

(b) Find .A-1 • 

(c) Find 2A- .A-1. 
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3.90 Let A be the linear transformation defined on IR3 by 

A(x, y, z) = {0, x, y). 

Find the characteristic polynomials of A, A2 , A3 • 

3.91 If A is a linear transformation on R3 such that 

A ( D = ( !J ' A ( ~1 ) = ( ~2 ) ' 

and 

A(!:)= ( JJ. 
find Im A, a matrix representation of A, and a formula for A( x). 

3.92 Let {€1 , €2 , €3 , €4 } be a basis for a vector space V of dimension 4, and 
let A be a linear transformation on V having matrix representation 
under the basis 

(a) Find KerA. 

(b) Find Im A. 

- ( -! ~ ~ ! ) A- 1 2 5 5 . 

2 -2 1 -2 

(c) Take a basis for Ker A, extend it to a baBis of V, and then find 
the matrix representation of A under this basis. 

3.93 Let A and B be linear transformations on 1R2 • It is known that the 
matrix representation of A under the basis {a1 = {1, 2), a 2 = (2, 1)} 
is (; ~), and the matrix representation of B under the basis {/31 = 
(1, 1), /32 = {1, 2)} is (~ !). Let u = (3, 3) E 1R2 . Find 

(a.) The matrix of A+ 8 under fJ1, /32· 
{b) The matrix of AB under 01, a2. 

(c) The coordinate of A( u) under a1, o 2. 

(d) The coordinate of 8( u) under f3~t /32. 
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3.94 Let W be a subspace of a finite dimell8ional vector space V. H A is 
a linear transformation from W to V, show that A can be extended 
to a linear transformation on V? 

3. 95 Let W be a.n invariant subspace of a linear transformation A on a 
finite dimensional vector space V; that is, A( w) E W for all w E W. 

(a) H A is invertible, show that W is also invariant under A -l. 

(b) H V = W E9 W', is W' necessarily invariant under A? 

3.96 Let A be a linear transformation on IR2 with the matrix A = (~ ~) 
under the basis a 1 = (1, 0), a 2 = {0, 1). Let W1 be the subspace oflR2 

spanned by a 1 • Show that W1 is invariant under A and that there does 
not exist a subspace W2 invariant under A such that IR2 = W1 E9 W2 . 

3.97 Consider the vector space of all 2 x 2 real matrices. Let Ei; be the 
2 x 2 matrix with (i,j)-entry 1 and other entries 0, i, j = 1, 2. Let 

A= ( 1 -1 ) 
-1 1 

and define 
A(u) =Au, u E M2(R). 

(a) Show that A is a linear transformation on M2 (IR). 

{b) Find the matrix of A under the basis Ei;, i, j = 1, 2. 

(c) Find Im A, its dimension, and a basis. 

(d) Find Ker A, its dimension, and a basis. 

3.98 A linear transformation£ on a vector space Vis said to be a projector 
if £ 2 = £. Let A and B be projectors on the same vector space V. 
Show that A and 8 commute with (A- 8)2 ; show also that 

(A- 8)2 + (I- A- 8)2 = I. 

3.99 Let { E~t e2 , E3 , e4 } be a basis for a vector space V of dimension 4. 
Define a linear transformation on V such that 

A(e1) = A(e2) = A(ea) = Et, A(e4) = e2. 

Find Ker A, Im A, Ker A+ 1m A, and Ker An 1m A. 
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3.100 Define transformations A and 8 on 1R2 = { (x, y) I x, y E 1R} by 

A(x, y) = (y, x) 

and 
B(x, y) = (x- y, x- y). 

(a) Show that A and B are linear transformations. 

(b) Find the nontrivial invariant subspaces of A. 

(c) Find KerB and 1mB. 

(d) Show that dim(Ker B) + dim(Im B) = 2, but KerB + Im 8 is 
not a direct sum. Is the sum Ker 8 + Im B* a direct sum? 

3.101 Define mappings A and 8 on the vector space IRn by 

and 

(a) Show that A and B are linear transformations. 

(b) Find .AB, BA, An I and sn. 
(c) Find matrix representations of A and B. 

(d) Find dimensions of Ker A and Ker 8. 

3.102 Let A be a linear transformation on ann-dimensional vector space 
V. If {£t1, ... ,£tm} is a basis for ImA and if {fj1 , •.. ,fjm} is such a 
set of vectors of V that 

show that 
V = Span{.Bl, ... , ,8m} EB Ker .A. 

3.103 Let A be a linear transformation on a finite dimensional vector space 
V. Show that dim(Im.A2 ) = dim(Im.A) if and only if 

V = Im.Ae Ker.A. 

Specifically, if A2 = A, then V = Im .A EB Ker A; is the converse true? 
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3.104 If .A is an idempotent linear transformation on ann-dimensional vector 
space V; that is, .A2 =A, show that 

(a) I- A is idempotent. 

(b) (I- A)(I- tA) =I- A for any scalar t. 

(c) (2.A -I)2 =I. 

(d) A+ I is invertible and find (.A+ I)-1• 

(e) Ker A = { x - .Ax I x E V } = lm(I - .A). 

(f) V =1m .A EB Ker A. 

(g) .Ax= x for every x E Im.A. 

(h) If V = M $ L, then there exists a unique linear transformation 
8 such that 8 2 = 8, 1mB= M, KerB= L. 

(i) Each eigenvalue of A is either 1 or 0. 

(j) The matrix representation of .A under some basis is 

A = diag(1, ... , 1, 0, ... , 0). 

(k) r(A) + r(A -I) = n. 

(1) r(A) = tr A= dim(Im.A). 

(m) lA +II = 2r(A). 

3.105 Let A and 8 be linear transformations on ann-dimensional vector 
space V over the complex field C satisfying AB = B.A. Show that 

(a) H .X is an eigenvalue of A, then the eigenspace 

V.x = {x E VI .Ax= Ax} 

is invariant under B. 

(b) Im.A and Ker.A are invariant under 8. 

(c) A and 8 have at least one common eigenvector (not necessarily 
belonging to the same eigenvalue). 

(d) The matrix representations of A and 8 are both upper-triangular 
under some basis. 

If C is replaced with JR, which of the above remain true? 
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3.106 Let V be the differential operator on Pn[x] over R defined as: if 

p(x) = 0.0 + a1x + a2~ + · · · + an-1Xn-l E 1Pn(x), 

then 

(a) Show that Vis a linear transformation on Pn[x]. 

(b) Find the eigenvalues of 'D and I + 'D. 

(c) Find the matrix representations of V under the bases 
{ 1 2 n-1 } d { :z:2 :z:n-1 } , x, x , ... , x an l,x, 2' ... , (n-l)! · 

(d) Is a matrix representation of V diagonalizable? 

3.107 Let C00 (1R) be the vector space of real-valued functions on 1R having 
derivative of all orders. 

(a) Consider the differential operator 

'Dt (y) = y" + ay' +by, y E C00 (1R), 

where a and b are real constants. Show that y = e>-z lies in 
Ker V1 if and only if ..\ is a root of the quadratic equation 

t;2 + at + b = 0. 

{b) Consider the second differential operator 

Show that y = ce>-:r: is an eigenvector of V2 for any constant 
c E 1R and that every positive number is an eigenvalue of V2 • 

3.108 Consider IPn[x] over IR. Define 

A(p(x)) = xp'(x)- p(x), p(x) E IPn[x). 

(a) Show that A is a linear transformation on Pn[x]. 

(b) Find Ker A and 1m A. 

(c) Show that Pn(x] = Ker A E9 ImA. 
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3.109 Let V be ann-dimensional vector space over C and A be a linear 
transformation with matrix representation under a basis { u1 , 11.2, ••• , Un.} 

A 0 0 0 0 
1 A 0 0 0 
0 1 A 0 0 

A= 

0 0 0 A 0 
0 0 0 1 A 

that is, 

Show that 

(a) Vis the only invariant subspace of A containing u1• 

(b) Any invariant subspace of .A contains Un· 

(c) Each subspace 

lt'i = Span{ttn-i+l, ... , Un}, i = 1, 2, ... ,n 

is invariant under .A, and x E Vi if and only if 

(d) V1, V2, ... , Vn are the only invariant subspaces. 

(e) Span { ttn} is the only eigenspace of .A. 

(f) V cannot be written as a direct sum of two nontrivial invariant 
subspaces of .A. 

Find an invertible matrix S such that S As-1 = At. 

3.110 Let A E M,(C). Define a linear transformation£ on Mn(C) by 

£(X)= AX, X E M,(C). 

Show that £ and A have the same set of eigenvalues. How are the 
characteristic polynomials of£ and A related? 
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3.111 For the vector space IP[x] over R, define 

.Af(x) = /'(x), f(x) E P[x) 

and 
BJ(x) = xf(x), J(x) E P[x]. 

Show that 

(a) .A and 8 are linear transformations. 

(b) ImA = P[x] and Ker A~ {0}. 

(c) Ker 8 = { 0} and 8 does not have an inverse. 

{d) .AB-BA=I. 

(e) AkB- BAk = k.Ak-l for every positive integer k. 

3.112 Let V be a finite dimensional vector space and .A be a linear trans­
formation on V. Show that there exists a positive integer k so that 

V = Im .Ak EB Ker Ak. 



Chapter 4 

Special Matrices 

Definitions and Facts 

Hermitian Matrix. An n-square complex matrix A = ( D.i3 ) is said to be 
a Hermitian matrix if A• =A; that is, D.i; = a3i for all i and j. In case of 
real matrices, we say that A is real symmetric if At = A. A square matrix 
A is skew-Hermitian if A"'= -A, equivalently ai; = -a;i· It is immediate 
that the entries on the main diagonal of a Hermitian matrix are nec~ily 
real. A matrix A is skew-Hermitian if and only if iA is Hermitian. 

The eigenvalues of a Hermitian matrix are all real. Let A be an eigen­
value of a Hermitian matrix A and Ax = AX for some nonzero vector x. 
Taking conjugate transpose yields x• A* = Xx•. It follows that 

Ax•x = x"'(Ax) = x"' Ax= x"' A"'x = Ax*x. 

Since A is Hermitian, x• Ax is real; because x"'x > 0, A must be real. 

Positive Semidefinite Matrices. An n-square complex matrix A is 
called a positive semidefinite matrix if x• Ax ~ 0 for all X E en. And 
A is said to be positive definite if x• Ax > 0 for all nonzero X E en. 

A positive semidefinite matrix is necessarily Hermitian, all main diago­
nal entries are nonnegative, and so are the eigenvalues. The Hermity may 
be seen as follows. Since x• Ax is real, (x"' Ax)"' = x"' A"'x. It follows that 
x"'(A*- A)x = 0 for all x E en. Therefore all eigenvalues of A"'- A are 
zero. Notice that A • - A is skew-Hermitian, thus diagonalizable. It is im­
mediate that A"' - A = 0 and A"' = A. Another (direct) way to see this is 
to choose various vectors for x. Let x be the n-column vector with the p-th 
component 1, the q-th component c E C, and 0 elsewhere. Then 

x• Ax= app + aqqlcl 2 + apqc + aqpc. 
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Since x* Ax 2: 0, setting c = 0 reveals a, 2: 0. Now that apqc+awc E R 
for any c E C, putting c = 1, we see that apq and aqp have the opposite 
imaginary parts. Talking c = i, we see that they have the same real part. 
Thus a,9 = a 9P, namely, A is Hermitian. To see that the eigenvalues are 
nonnegative, let A be an eigenvalue of A and Ax = Ax for some nonzero 
vector x. Then x• Ax = Ax*x 2: 0. Therefore, A 2: 0. 

We write A 2: 0 (A > 0) to mean that A is a positive semidefinite 
(positive definite) matrix. For two Hermitian matrices A and B of the 
same size, we write A 2: B orB~ A if A- B 2:0. 

Three important facts that we will use frequently: 

(p1) If A 2: 0, then X* AX 2: 0 for all matrices X of appropriate sizes; 

(P2) If A 2: 0, then A has a unique positive semidefinite square root; 

(p3 ) If A > 0 and the block matrix ( ;. ~) ~ 0, then C-B* A - 1 B ~ 0. 

Note that it is possible that for some real square matrix A, xt Ax ~ 0 
for all real vectors x, but A is not positive semidefinite in the above sense. 

Take A = ( ~1 ~). It is easy to verify that xt Ax = 0 for all x E R2• 

Normal Matrices. An n-square complex matrix A is called a normal 
matrix if A • A = AA •; that is, A and A • commute. Hermitian, skew­
Hermitian, and positive semidefinite matrices are normal matrices. 

Spectral Decomposition. Let A be an n-square complex matrix with 
(not necessarily different) complex eigenvalues A1 , ••• , An· Then A is 

1. Normal if and only if A = U* diag(Alt ... , A,.)U for some unitary 
matrix U, where A1 , •.• , An are complex numbers. 

2. Hermitian if and only if A= U* diag(AIJ ... , An)U for some unitary 
matrix U, where AI, ... , An are real numbers. 

3. Positive semidefinite if and only if A= U* diag(A1 , ••• , An)U for some 
unitary matrix U, where Al, ... , An are nonnegative real numbers. 

4. Positive definite if and only if A = U* diag(Al, ... , An)U for some 
unitary matrix U, where A1 , ... , An are positive real numbers. 

There are many more sorts of special matrices. For instance, the Hadamard 
matrix, Toeplitz matrix, stochastic matrix, nonnegative matrix, and M­
matrix, etc. These matrices are useful in various fields. The Hermitian 
matrix, positive semidefinite matrix, and normal matrix are basic ones. 
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Chapter 4 Problems 

4.1 Show that the following statements are equivalent: 

(a) A e Mn(C) is Hermitian; that is, A"' =A. 

(b) There is a unitary matrix U such that u• AU is real diagonal. 

(c) x"' Ax is real for every x E en. 
(d) A2 =A"' A. 

(e) A2 = AA•. 

(f) tr A2 = tr(A* A). 

(g) tr A2 = tr(AA*). 

Referring to (d), does A have to be Hermitian if A"'(A2 ) = A"'(A"' A)? 

4.2 Let A and B ben x n Hermitian matrices. Answer true or false: 

(a) A + B is Hermitian. 

(b) cA is Hermitian for every scalar c. 

(c) AB is Hermitian. 

(d) ABA is Hermitian. 

(e) If AB = 0, then A = 0 or B = 0. 

(f) If AB = 0, then BA = 0. 

(g) If A2 = 0, then A = 0. 

(h) If A2 =I, then A= ±I. 

(i) If A3 =I, then A= I. 

(j) -A, At, A, A -l (if A is invertible) are all Hermitian. 

(k) The main diagonal entries of A are all real. 

(1) The eigenvalues of A a.re all real. 

(m) The eigenvalues of ABare all real. 

(n) The determinant IAI is real. 

( o) The trace tr( AB) is real. 

(p) The eigenvalues of BAB are all real. 
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4.3 Let A= (aij) E Mn(C) have eigenvalues At, A2, ... , An· Show that 

n n 

LA~ = L ~iaii· 
i-1 i,j-1 

In particular, if A is Hermitian, then 

n n 

E~ = E lai;l2
· 

i=l t,j=l 

4.4 Let A be an n x n Hermitian matrix. Let A min (A) and Amax (A) be 
the smallest and largest eigenvalues of A, respectively. Denote 

Show that 

llxll = ~ for X E en. 

Amm(A) = min x* Ax, 
11:~:11=1 

Amax(A) = max x• Ax, 
llzll=l 

and for every unit vector x E C" 

Amin(A) ~ x* Ax~ Amax(A). 

Show that for Hermitian matrices A and B of the same size, 

4.5 Let A E Mn(C). Show that 

(a) x* Ax= 0 for every x E Ii" if and only if At= -A. 

(b) x• Ay = 0 for all x andy in Ii" if and only if A= 0. 

(c) x• Ax= 0 for every x E C" if and only if A= 0. 

(d) x* Ax is a fixed constant for all unit vectors X E en if and only 
if A is a scalar matrix. 

Does it follow that A = B if A and B are n x n real matrices satisfying 

x* Ax = x• Bx, for all x E R"? 
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4.6 Let A be ann x n Hermitian matrix with eigenvalues AI, ..\2, ... , An. 
Show that 

4. 7 Let A be an n x n Hermitian matrix. If the determinant of A is 
negative; that is, lA I < 0, show that x* Ax < 0 for some x E C"; 
equivalently, if A is a positive semidefinite matrix, show that IAI ~ 0. 

4.8 Let A and B be n x n Hermitian matrices. Show that A+ B is always 
Hermitian and that AB is Hermitian if and only if AB = BA. 

4.9 Let A and B be Hermitian matrices of the same size. If AB is Her­
mitian, show that every eigenvalue A of AB can be written as ..\ = ab, 
where a is an eigenvalue of A and b is an eigenvalue of B. 

4.10 Let Y be a square matrix. A matrix X is said to be a k-th root of Y if 
Xk = Y. Let A, B, C, and D be, respectively, the following matrices 

Show that 

(a) A has a real symmetric cubic root. 

(b) B does not have a complex cubic root. 

(c) B bas a square root. 

(d) C does not have a square root. 

(e) D has a square root. 

(f) Every real symmetric matrix has a real symmetric k-th root. 

(g) If X 2 = Y, then l..\1- XI is a divisor of l..\21- Yl. 

Find a 2 x 2 matrix X -:1:12 such that X 3 = /2• 

4.11 If A is an ~square invertible Hermitian matrix, show that A and A-1 

are *-congruent; that is, P* AP = A -l for some invertible matrix P. 
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4.12 Show that for any nonzero real number x, the matrix 

satisfies the equation A2 - 4A- 5/2 = 0. As a result, the equation 
has an infinite number of distinct 2 x 2 matrices as roots. 

4.13 Let A be a 3 x 3 Hermitian matrix with eigenvalues A1 < A2 < A3 • If 
a and b are the eigenvalues of some 2 x 2 principal submatrix of A, 
where a< b, show that .\1 ~a~ A2 ~ b ~ Aa. 

4.14 Let A be a Hermitian matrix partitioned as A = (]f. ~) . Show that 

Amin(A) ~ Amin(H) ~ Arnax(H) ~ Amax(A). 

In particular, for each main diagonal entry "si of A 

4.15 Let A and B be n-square Hermitian matrices. Show that 

(a) Neither tr(A2 ) ~ (tr A)2 nor tr(A2 ) ~ (tr A)2 holds in general. 

(b) tr(AB)k is real for every positive integer k. 

(c) tr(AB)2 ~ tr(A2 B2). Equality holds if and only if AB = BA. 

(d) (tr(AB))2 ~ (tr A2)(tr B2). Equality holds if and only if one is 
a. multiple of the other, i.e., A= kB orB= kA for a scalar k. 

As the trace of AB is real, are the eigenvalues of AB all real? 

4.16 Let A be an n x n Hermitian matrix with rank r. Show that all 
nonzero r x r principal minors of A have the same sign. 

4.17 Let A be an n x n real symmetric matrix. Denote the sum of all 
entries of A by S( A). Show that 

S(A)/n ~ S(A2 )/S(A). 
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4.18 Let A be ann x n Hermitian matrix. Show that the following stat&­
ments are equivalent: 

(a) A is positive semidefinite; that is, x* Ax ~ 0 for all X E en. 
(b) All eigenvalues of A are nonnegative. 

(c) U* AU= diag(.\1 , A2 , ••. , An) for some unitary matrix U, where 
.\i 's are all nonnegative. 

(d) A= B* B for some matrix B. 

(e) A= T*T for some r x n matrix T with rank r = r(T) = r(A). 

{f) All principal minors of A are nonnegative. 

(g) tr(AX) ~ 0 for all X positive semidefinite. 

(h) X* AX~ 0 for all n x m matrix X. 

4.19 Let A and B ben x n positive semidefinite matrices. Show that 

A2 +AB+BA+B2 

is always positive semidefinite. Construct an example showing that 

A2 + AB + BA, thus AB + BA, 

is not necessarily positive semidefinite in general. Prove that if A and 
AB + BA are positive definite, then B is positive definite. 

4.20 Let A and B be any two m x n matrices. Show that 

4.21 Let A and B be positive semidefinite matrices of the same size. If the 
largest eigenvalues of A and B are less than or equal to 1, show that 

4.22 Find the values of A and p, so that the matrices are positive definite: 

( 

1 .\ -1 ) 
.\ 4 2 ' 
-1 2 4 
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4.23 Let A = (lli;) be an n x n Hermitian matrix such that the main 
diagonal entries of A are all equal to 1, i.e., all aii = 1. If A satisfies 

show that 

(a) A~ 0. 

n 

L laiil ~ 2, i = 1,2, ... ,n, 
j=l 

(b) 0 ~ .\ ~ 2, where A is any eigenvalue of A. 

(c) O~detA~l. 

4.24 Give an example of a non-Hermitian matrix all of whose principal 
minors and eigenvalues are nonnegative, the matrix, however, is not 
positive semidefinite. 

4.25 Is it possible for some non-Hermitian matrix A E Mn(C) to satisfy 
xt Ax ~ 0 for all x E 1Rn? x* Ax ~ 0 for all X E en? 

4.26 Let A = (a;;) be an n x n positive semidefinite matrix. Show that 

(a) llii ~ 0, i = 1,2, ... ,n, and if "ai = 0, then the i-th row and 
i-th column of A consist entirely of 0. 

(b) Q.jia;, ~ lai; 12 for each pair of i and j. In particular, the largest 
entry of A in absolute value is on the main diagonal. 

(c) .\maxi - A ~ 0, where .\max is the largest eigenvalue of A. 

(d) IAI = 0 if some principalsubmatrix of A is singular. 

(e) There exists an n x n invertible matrix P such that 

A= P" erbA) n P. 

Is it possible to choose a unitary matrix P? 

(f) The transpose At and the conjugate A are positive semidefinite. 

4.27 Let A be an m x n matrix and x be an n-column vector. Show that 

(A*A)x=O ~ Ax=O 

and 
tr(A"' A) = 0 # A* A= 0 # A= 0. 
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4.28 Let A be n x n positive definite. Show that for every n-column vector x 

x* A-1x = max(x*y + y*x- y• Ay). 
ll 

4.29 Let A and B ben x n positive semidefinite matrices. Show that 

Im(AB) n Ker(AB) = {0}. 

In particular, setting B = I, 

Im A n Ker A = {0}. 

4.30 Let A~ 0; that is, A is positive semidefinite. 

(a) Show that there is a unique matrix B ~ 0 such that B2 =A. 
The matrix B is called the square root of A, denoted by A~ . 

(b) Discuss the analog for normal matrices. 

(c) Find A~ when A is 

1 ( 5 
2 -3 

-3) 5 . 

4.31 Let A E Mn(C) and C be a matrix commuting with A, i.e., AC =CA. 
Show that C commutes with A2 and with A~ when A~ 0; that is, 

A2C = CA2 and A~C = CA~ if A~ 0. 

4.32 Let A E Mn(C). Show that 

(a) If A is Hermitian, then A 2 ~ 0. 

(b) H A is skew-Hermitian, then -A2 ~ 0. 

(c) If A is upper- (or lower-) triangular, then the eigenvalues and 
the main diagonal entries of A coincide. 

Discuss the converse of each of (a), (b), and (c). 

4.33 For X E Mn(C), define /(X) = X* X. Show that f is a convex func­
tion on Mn(C); that is, for any t E [0, 1), with t = 1- t, 

f(tA + tB) ~ tj(A) + tj(B), A, BE Mn(C). 
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4.34 Let A and B be n x n positive semidefinite matrices. H the eigenvalues 
of A and B are all contained in the interval [a, b], where 0 < a < b, 
show that for any t E [0, 1), with l = 1 - t, 

0 ~ tA2 + tB2
- (tA + tB)2 

and 

4.35 Let A, B E Mn(C). Show that 

(a) If A > 0 and B is Hermitian, then there exists an invertible 
matrix P such that p• AP = I and p• BP is diagonal. 

(b) H A ~ 0 and B ~ 0, then there exists an invertible matrix P 
such that both P* AP and P* B P are diagonal matrices. Can 
the condition B ~ 0 be weakened so that B is Hermitian? 

(c) H A > 0 and B ~ 0, then 

IA+BI ~ IAI. 

Equality holds if and only if B = 0. 

(d) If A ~ 0 and B ~ 0, then 

lA + Bl ~ IAI + IBI. 

Equality holds if and only if lA + Bl = 0 or A = 0 or B = 0. 

(e) H A ~ 0 and B ~ 0, then 

IA+BI! ~ IAI! +IBI!. 

(f) For t E [0, 1], t = 1 - t, 

lA It IBit ~ ItA+ tBI. 

In particular, for every positive integer k ~ n, 

(g) And also 
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4.36 Let A and B be positive definite matrices so that A - B is positive 
semidefinite. Show that IAI ~ IBI and that if IA-ABI = 0 then A~ 1. 

4.37 Let A, BE Mn(C) and A~ B ~ 0. Show that 

(a) C* AC ~ C* BC for every C E Mnxm(C). 

(b) A+ C ~ B + D, where C ~ D. 

(c) tr A ~ tr B. 

(d) Amax(A) ~ Amax(B). 

(e) IAI ~ IBI. 

(f) r(A) ~ r(B). 

(g) n-1 ~ A-1 (when the inverses exist). 

(h) A~ ~ B ~ . Does it follow that A2 ~ B2? 

4.38 Let A be positive definite and B be Hermitian, both n x n. Show that 

(a) The eigenvalues of AB and A-1 Bare necessarily real. 

(b) A+ B ~ 0 if and only if ..X(A-1 B) ~ -1, where A(A-1 B) 
denotes any eigenvalue of A-1 B. 

(c) r(AB), the rank of AB, equals the number of nonzero eigen­
values of AB. Is this true if A~ 0 and B is Hermitian? 

4.39 Let A and B be n x n Hermitian matrices. 

(a) Give an example that the eigenvalues of ABare not real. 

(b) H A or B is positive semidefinite, show that all the eigenvalues 
of AB are necessarily real. 

(c) H A or B is positive definite, show that AB is diagonalizable. 

(d) Give an example showing that the positive definiteness in (c) is 
necessary; that is, if one of A and B is positive semidefinite and 
the other is Hermitian, then AB need not be diagonalizable. 

4.40 Let Amax(X) and O'max(X) denote, respectively, the largest eigenvalue 
and singular value of a square matrix X. For A E Mn(C), show that 

(
A+ A•) (A+ A•)2 Amax -

2
- ~ O'max(A) and tr -

2
- ~ tr(A• A). 
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4.41 Let A, BE Mn(C) be positive semidefinite. Show that 

(a) A~ BA~ ~ 0. 

4.42 

(b) The eigenvalues of AB and BA are all nonnegative. 

(c) AB is not necessarily positive semidefinite. 

(d) AB is positive semidefinite if and only if AB = BA. 

(e) tr(AB2 A) = tr(BA2 B). 

(f) tr(AB2 A)! = tr(BA2 B)!. 

(g) tr(AB) ~ tr A tr B ~ ~ [(tr A)2 + (tr B)2]. 

(h) tr(AB) ~ Amax(A) tr B. 

(i) tr(AB) ~ i(tr A+ tr B)2
• 

(j) tr(AB) ~ ~(tr A2 + tr B2). 

Does it follow that tr A l = tr B l if tr A = tr B? 

Let A, B, C, and D be n x n positive semidefinite matrices. 

(a) Show that AB + BA is Hermitian. 

(b) Is it true that AB + BA ~ 0? 

(c) Is it true that A2 + B 2 ~ 2AB? 

(d) Is it true that tr A2 + tr B 2 ~ tr(2AB)? 

(e) Is it true that A2 + B 2 ~ AB + BA? 

(f) Show that tr(AB) ~ tr(CD) if A~ C and B ~D. 

(g) Show that Amax(AB) ~ Ama.x(A)Ama.x(B). 

(h) Show that fortE [0, 1] and l = 1- t, 

Amax(tA + tB) ~ tAma.x(A) + tAmax(B). 

In particular, 

Amax(A +B)~ Amax(A) + Amax(B). 

(i) Discuss the analog of (g) for the case of three matrices. 
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4.43 Construct examples. 

(a) Non-Hermitian matrices A and B have only positive eigenval­
ues, while AB has only negative eigenvalues. 

(b) Is it possible that A + B has only negative eigenvalues for 
matrices A and B having positive eigenvalues? 

(c) Matrices A, B, and C are positive definite (thus their eigenval­
ues are all positive), while ABC has only negative eigenvalues. 

(d) Can the matrices in (c) be 3 x 3 or any odd number size? 

4.44 Let A, B be n x n matrices. If A is positive semidefinite, show that 

A2B = BA2 if and only if AB = BA. 

What if A is just Hermitian? 

4.45 Let A, B, and C be n x n positive semidefinite matrices. If C com­
mutes with AB and A - B, show that C commutes with A and B. 

4.46 Let A be a positive definite matrix. If B is a square matrix such that 
A- B• AB is positive definite, show that IAI < 1 for every eigenvalue 
A of B. Is it true that q < 1 for every singular value q of B? 

4.4 7 Let A, B, and C be complex matrices of appropriate sizes. Show that 

4.48 Let A, B, C, and D be square matrices of the same size. Show that 

(:. ~) ~0 '* A+B+B.+C~O. 

4.49 Let A, B, C, and D be n-square matrices. Prove or disprove that 
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4.50 Let A and B be n-square Hermitian matrices. Show that 

( : ! ) 2: 0 # A± B 2: 0. 

4.51 Let A and B be real square matrices of the same size. Show that 

A+ iB 2: 0 # A- iB 2: 0 # ( ~ -: ) 2: 0. 

4.52 Let A be ann-square positive definite matrix with eigenvalues A~t A2, 
... , An. Find the eigenvalues of the partitioned matrix 

M = ( 1 }-t) · 

4.53 Let A be an n-square complex matrix and let M = ( J. ~) . 
(a) Show that detM = (-l)nldetAI2 • 

(b) Find the eigenvalues of M. 

(c) If A :f: 0, why isM never positive semidefinite? 

(d) Find the eigenvalues of the matrix N = ( ~ ~· ) . 

4.54 Recall that the singular values of a matrix X are defined to be the 
square roots of the eigenvalues of X* X. Let umax(X) denote the 
largest singular value of the matrix X. For A, B E Mn(C), show that 

O'max(AB) ~ O'max(A)umax(B), 

O'max(A +B) ~ O'max(A) + O'max(B), 

O'max(A2
- B 2

) ~ O'max(A + B)umax(A- B). 

4.55 Find the singular values of the n x n real symmetric matrix 

( 

1 1 1 ) = 1 -1 0 . 
A . . . . . . . . . 

1 0 -1 

What are the eigenvalues of the matrix A? 
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4.56 Let A= (C!.i;) E Mn(C) be a positive semidefinite matrix. 

(a) Show that (the Hadamard determinantal inequality) 

Equality holds if and only if A is diagonal or some aii = 0. 

(b) Write A = ( J. g) ~ 0, where B and D are square. Show that 

IAI~IBIIDI. 

Equality holds if and only if C = 0 or IBI = 0 or IDI = 0. 

(c) With A partitioned as above in (b), where B, C, and D a.re 
square matrices of the same size, show that 

or 
IC*CI ~ IBIIDI. 

Equality holds if and only if B (or D) is singular or 

D = C*B-1C. 

What if B, C, and D are of different sizes? 

(d) Show that for any m x n complex matrix E = (e,3 ) 

n m 

IE*EI ~ ITEiei3 l2 -
i=li=l 

(e) Let F be a complex matrix. If G is a submatrix consisting of 
some columns ofF, and His the submatrix consisting of the 
remaining columns of F, show that 

IF*FI ~ IG*GIIH*HI. 

(f) Show that for any square matrices X andY of the same size, 

4.57 Let A E Mn(C). Show that a necessary condition for A2 ~ 0 is that 
all the eigenvalues of A are real. Is the converse true? 
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4.58 Let H be an n x n positive semidefinite matrix and write H = A+ iB, 
where A and B are n x n real matrices. Show that 

(a) A is positive semidefinite and Bt =-B. 

(b) a88 Q.u ~ a~ + b~ for each pair of s, t. 

(c) IHI ~ IAI. When does equality hold? 

(d) If A is singular, then H is singular. 

Is the converse of (d) true? If the positive semidefiniteness of H is 
dropped, i.e., H is just Hermitian, which of the above remain true? 

4.59 Let A E Mn(C). Show that 

(a) A* A and AA* are unitarily similar. 

(b) A = H P for some H ~ 0 and P unitary. 

(c) If A is an m x n matrix, then A= AA*Q for some matrix Q. 

4.60 For any complex matrix A, the matrix (A • A) ~ is called modulus of 
the matrix A, denoted by m(A). Let A be ann x n matrix, show that 

(a) det(m(A)) =I detAI. 

(b) A= m(A) if A~ 0. 

(c) If A = U DV is the singular value decomposition of A, 

m(A) = V* DV and m(A*) = U DU*. 

(d) m(A) and m(A*) are similar. 

(e) m(A) = m(A*) if and only if A is normal. 

(f) ( m(A) A• ) . 't' 'd fin'te A m(A•) IS pos1 1ve semi e 1 . 

(g) m( A) may not commute with A. 

(h) m(A)H = Hm(A) if AH = H A and H is Hermitian. 

Find m(A) and m(A*) for 
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4.61 Let A and B be both m x n complex matrices. Show that 

( 
A*A A*B) 
B*A B*B ~ O and ( 

IA*AI IA*BI ) 
IB* AI IB* Bl ~ o. 

Determine whether the following are true: 

( 
A*A B*A) 
A*B B*B ~ O and ( 

IA*AI IB*AI ) 
IA*BI IB*BI ~ o. 

4.62 Let A be ann x n complex matrix with rank r. Show that 

A+A* =AA* 
2 

if and only if A = U ( ~ ~) U* for some unitary matrix U. 

4.63 Let A E Mmxn(C) and BE Mpxn(C). H r(B) = p, show that 

AA* ~ AB*(BB*)-1BA*. 

4.64 Let A and B ben x n positive definite matrices. Show that 

(a) If I.XA- Bl = 0, then A> 0. 

(b) I.\A- Bl = 0 has only solution .X= 1 if and only if A= B. 

91 

4.65 Let A and B be m x n matrices. Denote the Hadamard (or Schur or 
entrywise) product of A and B by A o B; that is, A o B = (ai;bi3). 

Let A and B be n x n positive semidefinite matrices. 

(a) Find A o I. 

(b) Find A o J, where J is the n x n matrix of all entries 1. 

(c) Show that A o B ~ 0. 

(d) Show that Amax(A o B) $ Amax(A)Amax(B). 

(e) Is it true that AoB must be singular when A orB is singular? 

(f) Show that tr(A o B) :5 l tr(A o A+ BoB). 



92 CHAPTER 4 

4.66 Let A, B E Mmxn(C). Let At and B; denote, respectively, the i-th 
and the j-th column vectors of A and B, i, j = 1, 2, ... , n. Show that 

and 

(AA*) 0 (BB*) =(A 0 B)(A* 0 B*) +I)~ 0 B;)(A; 0 Bj) 
¥i 

(A o B)( A* o B*) ~ (AA*) o (BB*). 

In particular, 

4.67 Let A and B be n x n correlation matrices, i.e., A and B are positive 
semidefinite and all entries on their main diagonals are 1. Prove 

4.68 Let A E Mn(C). 

(a) If A ~ 0, show that I:. ~I ~ 0 for every column vector X E en. 

The inequality is strict if A is nonsingular and x =F 0. 

(b) If A > 0, find the inverse of (:. ~) . 

4.69 Let A be a. positive definite matrix. Partition A, A- 1 conformably as 

A= ( g. g ) , A-t= ( ~ :; ) . 

(a) Show that U and W can be expressed, respectively, as 

U = (B- CD-10*)-1 = B-1 + B-1CWC*B-1, 

w = (D- c· B-1c)-1 = D-1 + D- 1c·ucn-1 • 

(b) Show that 

4. 70 Let I be the n x n identity matrix. Find the eigenvalues of the matrix 
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4. 71 Let A > 0. Show that 

(a) A + A -l ~ 2I. 

(b) AoA-1 ~I. 

4.72 Let A = ( aii) be an n x n matrix of nonnegative entries. If each row 
sum of A is equal to 1, namely, Ej=1 ~i = 1 for ea£h i, show that 

(a) For every eigenvalue ;\of A, 1;\l ~ 1. 

(b) 1 is an eigenvalue of A. 

(c) If A -l exists, then each row sum of A - 1 also equals 1. 

4. 73 Let A be a real orthogonal matrix; that is, A is real and At A = 
AAt = I. Let ;\ = a+ ib be an eigenvalue of A and u = x + iy be an 
eigenvector of;\, where a, b, x, yare real. If b =I 0, show that 

xty = 0 and xtx = yty. 

4.74 Let u be ann X n unitary matrix, i.e., u·u = uu· =I. Show that 

(a) U* = u-1• 

(b) ut and u are unitary. 

(c) UV is unitary for every n x n unitary matrix V. 

(d) The eigenvalues of U are all equal to 1 in absolute value. 

(e) If ;\ is an eigenvalue of U, then :l is an eigenvalue of U*. 

(f) lx*Uxl $ 1 for every unit vector x E en. 
(g) IIUxll = 1 for every unit vector X E en. 
(h) Each row and column sum of U o U = (lu1;12) equals 1. 

(i) If x and y are eigenvectors of U belonging to distinct eigenval­
ues, then x*y = 0. 

(j) The columns (rows) of U form an orthonormal basis for en. 

(k) For any k rows of U, 1 $; k $; n, there exist k columns such 
that the submatrix formed by the entries on the intersections 
of these rows and columns is nonsingular. 

(l) I tr(U A) I $ tr A for every n x n matrix A ~ 0. 

Which of the above statements imply that U is unitary? 
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4. 75 For any complex matrix A, show that the following matrix is unitary 

( 
A (I- AA*)112 

) 

(I- A* A) 112 -A* . 

4. 76 Show that a square complex matrix U is unitary if and only if the 
column (row) vectors of U are all of length 1 and I det Ul = 1. 

4. 77 If the eigenvalues of A E Mn(C) are all equal to 1 in absolute value 
and if IIAxll ~ 1 for all unit vectors X E en, show that A is unitary. 

4. 78 Show that the n x n Vandermonde matrix U with the (i,j)-entry 
*w('i-1)CJ-1), where wn = 1 and w-:/: 1, is symmetric and unitary: 

1 1 1 1 
1 w w2 wn-1 

1 1 w2 w4 w2n-2 
U=-

-Iii 
1 wn-1 w2n-2 w<n-1)2 

4.79 Let A E Mn(C) and let U E Mn(C) be a unitary matrix. Show that 

muinumax(U o A) 5 Jr. ( t Ia;; 12) & • 
'· 3=1 

4.80 H A is an n x n real symmetric matrix, show that 

I - iA and I + iA 

are nonsingula.r and that 

(I- iA)(I + iA)- 1 

is unitary. 

4.81 Let A be a nonsingula.r square complex matrix. Show that A is normal 
if and only if A-1 A* is unitary. 

4.82 Find all 2 x 2 real orthogonal matrices. 



SPECIAL MATRICES 95 

4.83 Let A=(~;) E Ma(R) and au :f: 0. If the transpose At of A equals 
to the adjoint adj (A) of A, show that A is an orthogonal matrix. 

4.84 Find an orthogonal matrix T such that rt AT is diagonal, where 

( 
4 2 2) 

A= 2 4 2 . 
2 2 4 

4.85 Show that there do not exist real orthogonal matrices A and B satisfy­
ing A2 - B2 = AB. What if "orthogonal" is replaced by "invertible"? 

4.86 If A and B are n x n real orthogonal matrices satisfying 

IAI+IBI =0, 

show that 
IA+BI =0. 

Can this be generalized to unitary matrices? 

4.87 Let A and B ben x n real matrices. If A> 0 and B = -Bt; that is, 
A is positive definite and B is real skew-symmetric, show that 

IA+BI > 0. 

4.88 Let A E Mn(C). Show that if A is unitary, then so is the matrix 

_!_ (A -A) 
y'2 A A . 

4.89 Let A E Mn(C). Show that A can be written as A= B + C, where B 
is Hermitian and C is skew-Hermitian, and that A can also be written 
as A= F + iG, where both F and G are (unique) Hermitian. 

4.90 Let A be a nonidentity square complex matrix. 

(a) Can A be positive definite and unitary? 

(b) Can A be Hermitian and unitary? 

(c) Can A be upper-triangular (but not diagonal) and unitary? 
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4.91 Let A = (~;) E Mn(C) and have eigenvalues At, A2, •.. , An· Show 
that the following statements are equivalent: 

(a) A is nonna4 that is, A• A= AA•. 

(b) I - A is normal. 

(c) A is unitarily diagonalizable; that is, there exists a unitary 
matrix U such that U* AU= diag(,\~, A2, ... , An). 

(d) There is a set of the unit eigenvectors of A that form an or-
thonormal basis for en. 

(e) Every eigenvector of A is an eigenvector of A •. 

(f) A*= AU for some unitary U. 

(g) A • = VA for some unitary V. 

{h) tr(A• A)= E~ ;=1 lai;l2 = 1:~1 1~12 • 
(i) The singular values of A are IAtl, IA2I, ... , IAnl· 
(j) tr(A* A)2 = tr[(A*)2 A2]. 

(k) IIAxll = IIA*xll for every X E en. 
(1) A+ A* and A- A• commute. 

(m) A* A- AA* is positive semidefinite. 

( n) A commutes with A • A. 

(o) A commutes with AA*- A* A. 

4.92 Show that if A is a normal matrix, then A can be expressed as 

(a) A= B + iC, where Band Care Hermitian and commute. 

(b) A= HP =PH, where H ~ 0 and Pis unitary. 

Discuss the converses of (a) and (b). 

4.93 H A= (~g) is normal, what can be said about B, C, and D? 

4.94 Let A, BE Mn(R). Show that if M =A+ iBis normal, Hermitian, 
orthogonal, or positive semidefinite, then so is the partitioned matrix 
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4.95 Let A E Mn(C) be a normal matrix. Show that 

(a) Ker A*= Ker A. 

(b) ImA* = ImA. 

(c) en= ImA E9 Ker A. 
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4.96 If A is a normal matrix and commutes with matrix B, show that the 
transpose conjugate A* of A also commutes with B. 

4.97 Let A be a normal matrix. Show that AA = 0 <=> AAt =At A= 0. 

4.98 Let A and B ben x n normal matrices. Show that 

(a) If AB = BA, then there exists a unitary matrix U such that 
U* AU and U* BU are both diagonal. 

(b) If AB = BA, then AB is normal. What if AB -=f BA? 

(c) If AB• = B* A, then both AB and BA are normal. 

(d) A+ iBis normal if and only if AB* +A* B is Hermitian. 

(e) If AB is normal, then B A is normal. 

Find two nonnormal matrices whose product is normal. 

4.99 If A is a 3 x 3 matrix such that A2 =I and A -=f ±I, show that the 
rank of one of A + I and A - I is 1 and the rank of the other is 2. 

4.100 If A is a real matrix such that A3 +A= 0, show that tr A= 0. 

4.101 Let A be ann x n matrix. HAle= I for some positive integer k, show 
that tr(A-1) = tr(A). If such a k is less than n, show that A has 
repeated eigenvalues; that is, A cannot have n distinct eigenvalues. 

4.102 Let A be ann x n real or complex matrix. If Ak =I for some positive 
integer k, show that T- 1 AT is diagonal for some complex matrix T. 
For B = ( ~ 01

), show that B 4 = 12 and there does not exist a real 
invertible matrix P such that p-1 BP is diagonal. 
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4.103 A square matrix A is nilpotent if Ak = 0 for some positive integer k; 
idempotent or a projection if A2 =A; involutary if A2 = l. Show that 

(a) A is nilpotent if and only if all eigenvalues of A arc zero. 

(b) A is idempotent if and only if A is similar to a diagonal matrix 
of the form diag(l, ... , 1, 0, ... , 0). 

(c) A is involutary if and only if A is similar to a diagonal matrix 
of the form diag(l, ... , 1, -1, ... , -1). 

4.104 Let A and B be nilpotent matrices of the same size. If AB = BA, 
show that A + B and AB are also nilpotent. 

4.105 H A is a nilpotent matrix, show that 

(a) I- A is invertible. Find (I- A)- 1. 

(b) I+ A is also invertible. 

(c) tr A= 0. 

(d) A is not diagonalizable when A=/: 0. 

4.106 Let A and B be idempotent matrices of the same size. Show that 
A + B is idempotent if and only if AB = BA = 0. 

4.107 Let A and B be Hermitian. Show that if AB is idempotent, so isBA. 

4.108 Let A be ann-square matrix of rank r, r ~ 1. Show that A2 =A if 
and only if there exist matrices B, r x n, and C, n x r, both of rank r, 
such that A= BC and CB = Ir. Show further that if A2 =A then 

4.109 Let A be ann-square matrix of rank r. If A satisfies A2 =A but is 
neither 0 nor I, show that for every positive integer k, 1 < k ~ n - r, 
there exists a matrix B such that AB = BA = 0, and 
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4.110 Let A E Mn(C) be a nonzero idempotent matrix; that is, A2 =A. 

(a) Find lA +II and lA- II. 
(b) Show that r(A) = tr A. 

(c) Show that dim(ImA) = tr A. 

4.111 Let A, BE Mn(C). Show that 
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(a) If AB + BA = 0 and if B is not nilpotent, then the matrix 
equation AX + X A = B has no solution. 

(b) H A > 0, then AX +X A = B has a unique solution X. More­
over, if B is positive semidefinite, then so is X. 

4.112 Let A, B, C E Mn{C). Show that the matrix equation AX +XB = C 
has a unique solution if and only if ( ~ _08 ) and ( ~ _0

8 ) are similar. 

4.113 A square complex matrix X is said to be idempotent Hermitian or 
called an orthogonal projection if X* = X and X 2 = X. Let A and 
B be n x n idempotent Hermitian matrices. Show that 

if and only if AB=B. 

4.114 Let A be ann x n idempotent Hermitian matrix. Show that 

xEimA if and only if x =Ax. 

Let B be also an n x n idempotent Hermitian matrix. Show that 

ImA=ImB if and only if A=B. 

4.115 If A E Mn(C) is an involution, i.e., A2 = I, show that the following 
assertions are equivalent: 

(a) A is Hermitian. 

(b) A is normal. 

(c) A is unitary. 

(d) All singular values of A are equal to 1. 
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4.116 Let A be ann x n involutary matrix, i.e., A2 =I. Show that 

(a) X= ~(I +A) andY= ~(I -A) arc idempotent, and XY = 0. 

(b) r(A +I)+ r(A- I)= n. 

(c) A has only eigenvalues ± 1. 

{d) V = Vt E9 V-t, where Vt and V-1 are the eigenspaces of the 
eigenvalues 1 and -1, respectively. 

(e) Im{A- I) ~ Ker(A +I). 

Which of the above assertions imply A2 = I? 

4.117 Let A and B be n x n nonsingular matrices satisfying ABA = B and 
BAB =A. Show that M = A2 = B2 is involuta.ry; that is, M 2 =I. 

4.118 Let A and B ben-square involuta.ry matrices. Show that 

Im(AB- BA) = Im(A- B) n Im(A +B). 

4.119 Let A, B E Mn(C) be such that A = ~(B +I). Show that A is 

idempotent, i.e., A2 = A, if and only if B is an involution, i.e. B2 = I. 

4.120 Let A be a square matrix and A be any nonzero scalar. Show that 

( 
A A• ) ( A .x-1A ) ( A .x-tA ) 
A• A ' .X(I-A) 1-A ' -.XA -A 

are normal, idempotent, and nilpotent matrices, respectively. 

4.121 A permutation matrix is a matrix that has exactly one 1 in each row 
and each column, and all entries elsewhere are 0. 

(a) How many n x n permutation matrices are there? 

(b) Show that the product of two permutation matrices of the same 
size is also a permutation matrix. How about the sum? 

(c) Show that any permutation matrix is invertible and its inverse 
is equal to its transpose. 

(d) For what permutation matrices P, P 2 =I? 
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4.122 Let P be the n x n permutation matrix 

0 1 0 0 
0 0 1 0 
0 0 0 0 

=(~ ln.-1 )· P= 
0 

0 0 0 1 
1 0 0 0 

(a) Show that for any positive integer k ~ n, 

pk = ( J. \-k) 
and 

pn-1 = pt, pn =In. 

(b) Show that P, P2 , ••• , pn are linearly independent. 

(c) Show that pi + p3 is a normal matrix, 1 ~ i, j ~ n. 

(d) When is P' + PJ a symmetric matrix? 

(e) Show that Pis diagonalizable over C but not over IR if n ~ 3. 

(f) Show that for every pi, where 1 < i <nand {i,n) = 1, there 
exists a permutation matrix T such that T-1 PT = P. 

4.123 Let A be an invertible matrix with nonnegative integer entries. Show 
that if the sum of all entries of An is bounded for all n, then A is a 
permutation matrix. Equivalently, if the union over all n of the set 
of entries of An is finite, then A is a permutation matrix. 

4.124 Let A be ann x n matrix so that every row and every column have 
one and only one nonzero entry that is either 1 or -1 and all other 
entries are 0. Show that Ah =I for some positive integer k. 

4.125 Let A be an (n- 1) x n matrix of integers such that the row sums 
are all equal to zero. Show that IAAtl = nk2 for some integer k. 

4.126 Let A be an n x n matrix all of whose entries are either 1 or -1 
and whose rows are mutually orthogonal. Suppose A has an s x t 
submatrix whose entries are all 1. Show that st ~ n. 
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4.127 Let 

A= 0 ~2 D and B = 0 ~ D . 
Show that 

4.128 Show that the matrix equation X 4 + Y 4 = Z 4 has nontrivial solutions: 

( 
Q X )

4 

( 0 y )
4 

( 0 z )
4 

10 + 10 = 10' 

where X = 2pq, y = p2 - q2 1 and Z = r + q2 
1 p and q are integers. 
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Inner Product Spaces 

Definitions and Facts 

Inner Product Space. Let V be a vector space over the field 1F, where 1F 
is IR (or C). An inner product on V is a mapping that assigns every ordered 
pair of vectors u and v in V a unique scalar in 1F, denoted by ( u, v). And 
the vector space Vis called an inner product space (or Euclidean space) if 
the following are satisfied for all vectors u, v, w E V and scalar ~ E 1F: 

Positivity: {u, u) ~ 0. Equality holds if and only if u = 0; 

Homogeneity: (~u, v) = ~(u, v); 

Linearity: (u, v + w) = (u, v) + (u, w); 

Hermitian Symmetry: (u, v) = (v, u). 

It is immediate that for all vectors u, v, and wE V and scalars~ and JJ, E 1F, 

(u, Av) = X(u, v) 

and 
(~u + JJV, w) = ~(u, w) + JJ(V, w). 

When F = IR, the inner product is also known as dot product, for which 

{u, v) = (v, u). 

Let W be a subspace of the vector space V. If V is an inner product 
space, with the inner product being restricted to the vectors in W, then W 
is also an inner product space. 
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Examples. 

• R"' is an inner product space with the standard inner product 

(u, v) = vtu = UtVt + U2V2 + · · · + UnVn· 

• en is an inner product space with the standard inner product 

(u, v) = v*u = UtVt + U2V2 + · · · + UnVn· 

• Let l2 be the vector space (over C) of all infinite complex sequences 
u = (ut, u2, ... ) with the property that E:l IUil2 < 00. Then l2 is 
an inner product space under the inner product 

00 

(u, v) = L Ui1h. 
i=l 

• The vector space C[a, b] of all continuous real-valued functions on the 
closed interval [a, b] is an inner product space with the inner product 

(!,g)= l f(t)g(t)dt. 

• Mmxn(C) is an inner product space with the inner product 

(A, B) = tr{B* A). 

Length or Norm of a Vector. Let u be a vector in an inner product 
space V. The nonnegative number ..j(u,u) is called the length or norm of 
the vector u and is denoted by llull· The zero vector has length 0. A unit 
vector is a vector of norm 1. The norm has the following properties: 

(It) llull ~ 0 for all u E V. Equality holds if and only if u = 0. 

(I2) IIAull = IAIIIull for all u E V and A E IF. 

(Ia) Triangle inequality: llu +vii ~ llull + llvll for all u, v E V. Equality 
holds if and only if v = 0 or u = 0 or u = AV for some scalar A > 0. 

The distance between two vectors u and v is d( u, v) = II u - vII· One 
may show that for any two vectors u and v in an inner product space, 

lllull - llvlll ~ llu - vii 
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and 

The Cauchy-Schwarz Inequality. Let u and v be any two vectors in an 
inner product space V. Then 

l(u, v}l2 ~ (u, u} {v, v}, 

equivalently 

l(u, v}l $ llullllvll. 

Equality holds if and only if u and v are linearly dependent. 

Orthogonal Vectors. Let u and v be vectors in an inner product space 
V. H the inner product (u, v} = 0, then we say that u and v arc orthog­
onal and write u l_ v. Nonzero orthogonal vectors are necessarily linearly 
independent. Suppose, say, AU + JJV = 0. Then A = 0, thus 1-£ = 0, since 

(Au+ JJV, u} = A(u, u} + JJ{v, u} = A{u, u} = 0. 

A subset S of V is called a.n orthogonal set if u l_ v for all u, v E S. S 
is further said to be an orthonormal set if S is an orthogonal set and all 
vectors in S are unit vectors. Two subsets S and T of V are said to be 
orthogonal if u l_ v for all u E Sand all vET. 

We denote by uj_ and Sj_ the collections of all vectors in V that are 
orthogonal to the vector u and subset S, respectively; that is, 

u.l = { v E VI (u, v) = 0} 

and 
s.L = { v E v I (u, v} = 0 for all u E s }. 

These sets are called orthogonal complements of u and S, respectively. 
One may check that orthogonal complements are always subspaces of V. 
Obviously, SnS.L = {0}, {O}.l = V, and y.L = {0}. Moreover, S ~ (S.l).l 
and if Sis a subspace of finite dimensional space, then (S.l ).l = S. 

Orthogonal Basis; Orthonormal Basis. Let { a 1 , a2, ... , an} be a basis 
for an inner product space V. If a1, a2, ... , an are pairwise orthogonal; that 
is, (a,, aj} = 0, whenever i :f: j, then we say that the basis is an orthogonal 
basis. If, in addition, every vector in the basis has length 1, we call such a 
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s 

Figure 5.1: Orthogonality 

basis an orthonormal basis. Thus o 1 , o 2 , ••. , On form an orthonormal basis 

for an n-dimensional inner product space if and only if 

{
0 if i ~ j, 

(~, 03 } = 1 if ·- · 
~- J. 

The standard basis el, e2, .•. 'en are orthonormal basis for IR.n and en 
under the usual inner product. The column (row) vectors of any n x n 

unitary matrix is also an orthonormal basis for en. 
If { u1, u2, ... , u~c} is an orthogonal set, then (u,, u3} = 0 for all i ~ j. 

By putting u = u1 + u2 + · · · + u~c and computing llull, we see that 

In particular, for two orthogonal vectors u and v, 

Let {oil 02, ••• , On} be a.n orthonormal basis for an inner product space 

V. Then every vector u can be uniquely expressed as 

n 

u = E<u, oi}o,. 
i=l 

The coordinates of u under the basis are {u, o1}, (u, o2}, ••• , {u, on}· And 

n 

llull2 = L l(u, oi}l2 • 

i=l 
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Chapter 5 Problems ----------------

5.1 Let V be an inner product space over C. Show that for any nonzero 
vector u E V, ~u is a unit vector and that for any v, wE V, 

(v, (v, w)w) = l(v, w}l2 = {v, w} (w, v). 

Is it true that 

((v,w}v, w) = l(v, w)l2? 

5.2 Let V be an inner product space over C. Show that for all vectors 
u, v, wE V and scalars A, p, E C the following identitie.c~ hold: 

(Au+ p,v, w} = A(u, w) + p,(v, w} 

and 

(w, ,\u + JJV} = X(w, u) + p(w, v). 

5.3 Let V be an inner product space and u, v, w E V. Is it true that 

(a) l(u, v)l ~ llull + llvll; 

(b) l(u,v)l ~ ~(llull 2 + llvll2); 

(c) l(u, v)l ~ l{u, w)l + l{w, v)l; 

(d) llu+vll ~ llu+wll + llw+vll; or 

(e) llu +vii ~ llu + wll + llw- vii? 

5.4 Let X= (xt,X2, ... ,Xn) E en and llxlloo =max{ lxtl, lx21, · · ·, lxnl }. 
For X, y E en, define (x, Y)oo = llxllooiiYIIoo· Check whether each of 
the following is satisfied: 

(a) (x, x} 00 ~ 0. Equality holds if and only if x = 0; 

(b) (,\x, Y}oo = ,\(x, Y}oo; 

(c) (x, y + z}oo = (x, Y}oo + (x, z}ooi 

(d) (x, Y}oo = (y, x}oo· 



108 CHAPTER 5 

5.5 For each pair of vectors x andy in C3 , assign a. scalar (x, y) as follows: 

( 

1 0 1 ) 
(X, y) = y• 0 2 0 X. 

1 0 2 

Show that C3 is an inner product space with re.c~pect to ( · , ·). What 
if the entry 2 in the (2, 2)-position is replaced by -2? That is, is C3 

still an inner product space? Moreover, if x andy on the right-hand 
side are switched in the definition, is C3 still an inner product space? 

5.6 Let 

Show that V is a subspace of R4 . Find a basis for V and for V j_. 

5.7 Let a:1 = (1, 0, 0, o)t and a:2 = (0, ~, ~, ~)t. Find vectors a 3 and 

0!4 in IR.4 so that O:lJ 0:2, aa, a4 form an orthonormal basis for IR.4 • 

5.8 Define an inner product on 1P4 [x] over JR. as follows: 

(/,g)= [ /(x)g(x)dx. 

5.9 

Let W be the subspace of JP4 [x] consisting of polynomial 0 and all 
polynomials with degree 0; that is, W = JR. Find a basis for W .l. 

Let u1, u2, ... , Un E em ben column vectors of m components. Deter-
mine whether each of the following matrices is positive semidefinite: 

( U!Ut uiu2 U!Un ) ( U!Ul u2ut u:u,) 
U2U1 u2'U2 U2Un Ut'U2 u;'U2 UnU2 , 

' 
u;u1 u:u2 u:un uittn u2ttn u;Un 

( UtU! Utu2 UtU: 

)· ( UtU! 1£2Ui UnU!) U2U1 1£2u2 u2u: Ut1£2 U2u2 Un1£2 

-unui -unu2 Unu: Utu! 1£2'U: ttnU: 
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5.10 Let V be an inner product space and let u~, u2 , ••• , Un be any n 
vectors in V. Show that the matrix, called Gmm matrix, 

( 

{Ut,UI} (u2,'UJ) 

G= (u~:~2) (u2,u2) 

(ut,Un) (u2,Un) 

(Un, Ut} ) 
(Un, u2) 

(un, Un} 

is positive semidefinite. How about the following matrix H? 

( 

(ub u1} (ub u2} 

H = (u~: ~~} (u2, u2} 

(Un, u1} (Un, u2} 

(u1, Un} ) 
(U2, Un} 

(Un,Un) 

5.11 Let u, v E en have norms less than 1, i.e., !lull < 1, llvll < 1. Show that 

5.12 Show that a square matrix is positive semidefinite if and only if it is 
a Gram matrix. To be precise, A E Mn(C) is positive semidefinite if 
and only if there exist n vectors U1t f.L2, ••• , 'Un E Cn such that 

A= (Ooi;), where ai; = (u;, t£i}. 

5.13 Show that ( ·, ·) is an inner product for en if and only if there exists 
ann-square positive semidefinite matrix A such that for all x, y E en 

(x, y} = y* Ax. 

5.14 Let V be a vector space over C. A mapping ( · , · } : V x V 1-+ C is called 
an indefinite inner product if for all vectors u, v, w E V and scalars 
,\, p, E C, (i). (,\u, v) = ,\(u, v); (ii). (u, v+w) = {u, v) + (u, w); a.nd 
(iii). (u, v) = {v, u). (I.e, the positivity condition in the definition of 
a regular inner product is removed.) Show that for any vectors u, v 

l 
Re(u, v) = 4 ( (u + v, u + v) - (u- v, u - v}). 
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5.15 Let X= (x1, X2, •.• , Xn) E en and llxlloo =max{ lx11, lx21, · · ·, lxnl }. 
If llx + Ylloo = llxlloo + IIYIIoo, must x andy be linearly dependent? 

5.16 Let A be a linear transformation on an inner product space V. Show 
that for any unit vector x E V 

(A(x), x} (x, A(x)) ~ (A(x), A(x)). 

In particular, for A E Mn(e) and x E en with llxll = 1, 

lx* Axl2 = (x* A*x) (x* Ax) ~ (x* A*) (Ax) = IIAxll2 

or 
lx*Axl ~ IIAxll, 

with equality if and only if x is a unit eigenvector of A. 

5.17 Let A be an n x n positive semidefinite matrix. Show that 

Equality holds if and only if x E Ker A, or equivalently 

(I- A)(I + A)-1x = x. 

5.18 Let V be an inner product space over R. 

(a) If V1, 112, v3 , V4 E V are pairwise product negative; that is, 

(v,, v;) < 0, i, j = 1, 2, 3, 4, i :/: j, 

show that v1, t12, va are linearly independent. 

(b) Is it possible for four vectors in the xy-plane to have pairwise 
negative products? How about three vectors? 

(c) Are v11 v2 , v3 , v4 in (a) necessarily linearly (in)dependent? 

(d) Suppose that u, v, and ware three unit vectors in the xy-pla.ne. 
What are the maximum and minimum values that 

(u, v) + (v, w} + (w, u) 

can attain? and when? 
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5.19 For JI»3 (x] over IR, define the inner product as 

(/,g)= {,t(x)g(x)dx. 

(a) Is f(x) = 1 a unit vector in lPa(x)? 

(b) Find an orthonormal basis for the subspace Span{x, x2 }. 
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(c) Complete the basis in (b) to a.n orthonormal basis for IP3[x] 
with respect to the inner product. 

(d) Show that (J, g) = 0 for f E Vb g E V2, i.e., V1 ..1. V2, where 

Vt = Span{l, x} and V2 =Span { x2 - ~' x3
- ~x }· 

(e) Show that Pa[x] = V1 E9 V2, where Vi, V2 are defined as above. 

(f) Is [·, ·] defined by 

[/, g] = J.' f(x)g(x)dx 

also an inner product for 1P3 [x)? 

(g) Find a pair of vectors v and win 1P3 (x] such that 

(v, w) = 0 but [v, w] :/: 0. 

(h) Is the basis found in (c) an orthonormal basis for P3[x] with 
respect to [·, ·)? 

5.20 Let { V1, V2, ••• , vn} be an orthonormal basis for an inner product 
space V over C. Show that for any x e V, 

and 

n 

x = L (x, vi)vi 
i=l 

k 

(x, x} ~ L l(x, vi)l2
, 1 ~ k ~ n. 

i=l 

Why are pairwise orthogonal nonzero vectors linearly independent? 
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5.21 For Mn(C), the vector space of all n x n complex matrices over C, 
define the inner product as 

(A, B) = tr(B* A), A, B E Mn(C). 

Show that 

(a) Mn(C) is an inner product space. 

(b) tr(A* A)= 0 if and only if A= 0. 

(c) I tr(AB)I2 :S tr(A* A) tr(B* B). 

(d) tr(ABB* A*) :S tr(A* A) tr(B* B) or IIABII :S IIAIIIIBII. 

(e) IIA* A- AA*II :S v'211AII2
• 

(f) H tr(AX) = 0 for every X E Mn(C), then A= 0. 

(g) W = {X E Mn(C) I tr X = 0} is a subspace of Mn(C) and 
W .l consists of scalar matrices; that is, if tr( AX) = 0 for all 
X E Mn(C) with tr X = 0, then A = AI for some scalar A. 
Find the dimensions of W and W .L. 

(h) H (A, X)~ 0 for all X~ 0 in Mn(C), then A~ 0. 

Is Mn (C) an inner product space if the inner product is instead defined 
as (A, B) = tr(A* B), tr(AB*), or tr(BA)? 

5.22 Consider JR2 with the standard inner product. Are vectors u = (1, 0) 
and v = (1, -1) unit vectors? Are they mutually orthogonal? Find 

(a) u.L, v.L. 

(b) u.L nv.L. 

(c) {u,v}.l. 

(d) (Span{ u, v} ).1. 

(e) Span{u.L, v.L }. 

5.23 Find all 2 x 2 complex matrices that are orthogonal, in the sense of 
{A, B) = tr(B* A) = 0, where A, BE M2 (C), to the matrices 
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5.24 For A E Mn(C), denote the field of values or numerical mnge of A by 

F(A) = { x* Ax I X E en' llxll = 1 }. 

(a.) Show that F(A + cl) = F(A) + c for every c e C. 

(b) Show that F(cA) = cF(A) for every c E C. 

(c) Why are the diagonal entries of A contained in F(A)? 

(d) Show that the eigenvalues of A are contained in F(A). 

(e) Are the singular values of A contained in F(A)? 

(f) Describe F(A) when A is Hermitian. 

(g) Describe F(A) when A is positive semidefinite. 

(h) Determine F(A) when A is 

and 

( ~ ~ ~ )· 
0 0 1 +i 

5.25 Let V be an inner product space. 

(a) For any x, y e V, show that 

(b) Show that llx + Yll = llxll + IIYII if and only if 

llsx + tyll = sllxll + tllyll, for all s, t ~ 0. 

(c) H llxll = IIYII, show that x+y and x-y are orthogonal. Explain 
this with a geometric graph. 

(d) If x and y a.re orthogonal, show that 

(e) Is the converse of (d) true over C? Over IR? 
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5.26 Let W be a subspace of an inner product space V and let WJ.. be the 
orthogonal complement of W in V; that is, 

WJ.. = { x E V I (x, y} = 0 for all y E W }. 

Let u E V. Show that v E W is a projection of u onto W; that is, 

u = v + v', for some v' E W J.., 

if and only if 

llu- vii~ llu- wll, for every wE W. 

5.27 Let W be any subspace of an inner product space V. Show that 

V=WE9WJ.. 

Consequently, 
dim V =dim W +dimWJ... 

5.28 H W is a subspace of an inner product space V, answer true or false: 

(a) There is a unique subspace W' such that W' + W = V. 

(b) There is a unique subspace W' such that W' E9 W = V. 

(c) There is a unique subspace W' such that W' E9 W = V 
and (w,w'} = 0 for all wE Wand w' E W'. 

5.29 H S is a subset of an inner product space V, answer true or false: 

(a) S n SJ.. = {0}. 

(b) S ~ (SJ..)J... 

(c) (SJ.. )J.. = S. 

(d) (SJ. )J. = Span(S). 

(e) [(SJ.)J.]J.. = SJ... 

(f) sj_ is always a subspace of v. 
(g) SJ. EB Span( S) = V. 

(h) dim 51. + dim(SJ. )J. = dim V. 
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5.30 Let W1 and W2 be subspaces of an inner product space V. Show that 

(a) (Wt + W2).1 = wt n Wl. 

(b) (Wt n W2)l. = W[" + Wl. 

5.31 Let S = {u11 'U2, .•• , ttp} be an orthogonal set of nonzero vectors in 
an n-dimensional inner product space V; that is, ( ui, u;) = 0 if i ~ j. 
Let v1 , v2 , ••• , Vq be vectors in V that are all orthogonal to S, namely, 
(Vi, u;) = 0 for all i and j. If p + q > n, show that the vectors 
Vt, v2, ••• , Vq are linearly independent. 

5.32 Let A, B, and C ben-square complex matrices such that 

( A B*) B C ~O. 

Show that 

I(Bx, Y)l2 ~(Ax, x) (Cy, y), for all x, y E en. 

In particular, for any A~ 0, 

I (Ax, y) 12 ~ (Ax, x) {Ay, y), for all x, y E en, 

and for any A> 0, 

l(x, y)l2 ~(Ax, x) (A- 1y, y), for all x, y E C". 

5.33 Let A be the linear transformation on an inner product space V: 

(A(u), v) = -(u, A(v)), u, v E V. 

If A is a real eigenvalue of A, show that A = 0. 

5.34 Find the null space S for the following equation system, then find s.L: 

x1 - 2x2 + 3x3 - 4x4 = 0 
x1 + Sx2 + 3x3 + 3x4 = 0. 

5.35 Let V1 and V2 be two subspaces of an inner product space V of finite 
dimension. If dim vl < dim v2, show that there exists a nonzero 
vector in v2 that is orthogonal to all vectors in vl. 
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5.36 Let A be a self-adjoint linear operator (transformation) on an inner 
product space V of finite dimension over C; that is, 

(A(u), v) = (u, A(v)), for all u, v E V. 

Show that there exists an orthonormal basis for V in which every 
basis vector is an eigenvector of A. In other words, there exists a set 
of eigenvectors of A that form an orthonormal basis for V. 

5.37 Let A be a self-adjoint linear transformation on an inner product 
space V of finite dimension over C, and let W be a k-dimensional 
subspace of V. If (A(x), x} > 0 for all nonzero vectors x in W, show 
that A has at least k positive eigenvalues (counting multiplicity). 

5.38 H A and 13 are linear transformations from an inner product space V 
to an inner product space W such that 

(A(v), w) = (B(v), w), for all v E V and wE W, 

show that A = B. 

5.39 Let A be a linear operator on an inner product space V and A* be 
the adjoint of A, i.e., A* is a linear transformation on V such that 

(A(x), y) = (x, A*(y)), for all x, y E V. 

Show that 

(a) Such an A* is unique. 

(b) (A*)* =A. 
(c) Ker A* = (ImA).l. 

(d) ImA* = (KerA).L. 

(e) V = Ker A* E9 Im A = Im A* EB Ker A. 
(f) H the matrix of A under an orthonormal basis is A, then matrix 

of A • under the same basis is A*. 

5.40 Let A be a linear transformation on a vector space V. Let ( ·, ·) be 
an inner product on V. H one defines 

[x, y] = (A(x), A(y)), 

What A will make h ·] an inner product for V? 
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5.41 If A is a mapping on an inner product space V satisfying 

(A(x), A(y)) = (x, y), for all x, y E V, 

show that A must be a linear transformation. Such an A is called an 
orthogonal transformation. 

5.42 Let A be a linear operator on an inner product space V of dimension 
n. Show that the following statements are equivalent: 

(a) A is orthogonal; that is, (A(u), A(v)) = (u, v). 

(b) IIA(u)ll = llull for all vectors u. 

(c) If {all a2, ... , O:n} is an orthonormal basis for V, then so is 
{A(at), A(a2), ... ,A(an)}. 

(d) The matrix representation A of A under a basis is an orthog­
onal matrix; that is, At A = AA t = I. 

Can the condition (c) be replaced by (c'): If {.81,~, ... ,.Bn} is an 
orthogonal basis for V, then so is { A(.Bt), A(,82), ... , A(.Bn)}. 

5.43 Let A be a linear transformation on an inner product space V of 
dimension n and let { a 1 , 0:2, •.• , an} be an orthogonal basis of V. If 

is A necessarily an orthogonal transformation? 

5.44 Let V be an inner product space. As is known, a linear mapping A on 
V is an orthogonal (linear) transformation if and only if II A( u) II = llull 
for allu E V. Show that the word "linear" in the statement as a pr~ 
condition is necessary; that is, show by an example that a mapping C 
on V satisfying II.C(u)ll = llull for all u E Vis not necessarily a linear 
transformation. Likewise, recall the distance of two vectors u, v E V 

d(u, v) = llu- vii. 

If 'D is a mapping on V that preserves the distance of any two vectors 

d(V(u), V(v)) = llu- vii, 

show by example that 1J is not necessarily a linear transformation. 
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5.45 H {at, et2, ... , an} and {,Bt, /32, ... , .Bn} are two sets of vectors of an 
inner product space V of dimension n. Does there always exist a 
linear transformation that maps each Cti to ,Bi? Show that if 

(ai, a;) = (,Bi, ,B;), i, j = 1, 2, ... , n, 

then there exists an orthogonal (linear) transformation A such that 

5.46 H A and 8 are linear operators on an inner product space such that 

(A(u), A(u)) = (B(u), B(u)}, u E V, 

show that there exists an orthogonal operator C such that 

A=CB. 

5.4 T Let V be an inner product vector space over 1F. A linear functional 
on V is a linear transformation from V to IF and the dual space of V, 
denoted by V*, is the vector s~e of all linear functionals on V. 

(a) For v E V, define a mapping Cv from V to 1F by 

.Cv(u) = (u, v), for all u E V. 

Show that .Cv is a linear functional for every v. 

(b) Let .C be the mapping from V to V* defined by 

.C( v) = .C," for all v E V. 

Show that .C is linear. 

(c) Show that .C is one-to-one and onto. 

(d) Find a basis for the vector space V*. 

5.48 Let T be an orthogonal transformation on an inner product space V. 
Show that V = Wt E9 W2, where 

wl = {X E v I T(x) = X} and w2 = {X- T(x) I X E v }. 
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5.49 Let u be a unit vector in an n-dimensional inner product space V 
over JR.. Define 

A(x) = x- 2(x, u)u, x E V. 

Show that 

(a) A is an orthogonal transformation. 

(b) H A is a matrix representation of A, then IAI = -1. 

(c) The matrix representation of A under any orthonormal baais 
is of the form I - vvt, where v is some column vector. 

(d) H x = ku + y and (u, y) = 0, then A(x) = -ku + y. 

(e) H B is an orthogonal transformation with 1 as an eigenvalue, 
and if the eigenspace of 1 is of dimension n - 1, then 

B(x) = x- 2(x, w)w, x E V 

for some unit vector w E V. 

5.50 Let V be an inner product space and W a nontrivial subspace of V. 

(a) Find a linear transformation 1' on V, called orthogonal projec­
tion from V onto W, such that 

'P(w) = w, w E W and 'P(w') = 0, w' E W..L. 

(b) Show that 
p2 = 'P. 

(c) Show that such a 'P is uniquely determined by W. 

(d) Find a nonidentity linear transformation 'P' such that 

'P(w) = 'P'(w), wE W, but 'P :/: 'P'. 

(e) Show that for every v E V, ('P(v), v) ~ 0. 

(f) Show that for every v E V, IIP(v)ll ~ llvll. 
(g) Show that 'I - 'P is the orthogonal projection onto W .1. 

(h) Show that for every v E V 
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5.51 Let 'P~, 'P2, ... , 'Pm be idempotent linear transformations on an n­
dimensional vector space V; that is, 

'Pl = 'P;,, i = 1, 2, ... , m. 

(a) Show that if 
'P1 + 'P2 + · · · + 'Pm = 'I, 

then 

and 
'P;,'P; = 0, i, j = 1, 2, ... , m, i :f= j. 

(b) Define an inner product for V such that each 'Pi is an orthog­
onal projection. 

(c) Show that if 

'Pi 'P; = 0, i, j = 1, 2, ... , m, i '# j, 

then 



Hints and Answers for Chapter 1 

1.1 (a) Yes. Dimension is 1. {1} is a basis. 

(b) Yes. Dimension is 2. {1, i} is a basis. 

(c) No, since i E C and 1 E R, but i ·1 = i ~ R. 

(d) Yes. Dimension is infinite, since 1, 1r, 1r2 , • . • are linearly inde-
pendent over Q. 

(e) No, since v'2 E Rand 1 E Q, but v'2 · 1 = v'2 ¢ Q. 

(f) No, since Z is not a field. 

(g) Yes only over Q, the dimension is 3, and { 1, V2, J5} is a basis. 

1.2 (a) All vectors with initial point 0 a.nd terminal points in the first 
quadrant. 

(b) All vectors with initial point 0 a.nd terminal points in the first 
or third quadrants. 

1.3 Yes over C, .R, and Q. The dimensions are 2, 4, oo, respectively. 

1.4 Suppose that the vector space V has a. nonzero element a. Then 
{ ra I r E F} is an infinite set, where IF = C, R, or Q. 

Ifu+v = 0 and w+v = 0, then u = u+ (w+v) = (u+v) +w = w. 

1.5 For the first part, the addition a.nd scalar multiplication for V are 
defined the same way as for R2• It is sufficient to notice that V is a 
line passing through 0. If the scalar multiplication for V is defined 
to be A0 (x, y) = (Ax, 0), then Vis no longer a vector space since it is 
not closed under the scalar multiplication: 0 '# 2( Ax) unless AX = 0. 

1.6 It is easy to check that lHI is closed under the usual matrix addition. 
As to scalar multiplication, if A is a real number, then 

( 
a b ) ( Aa Ab ) ,\ -b a = -Ab ..\a E lHl. 

If,\ is a nonreal complex number, then ,\a'# Aa. So lHl is not a vector 
space over C since it not closed under the scalar multiplication. 

121 
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1. 7 Check all the conditions for a vector space. For instance, the condition 
( AJ-1. )v = A(pv) in the definition of vector space is satisfied, since 

(ab) Gx = x00 = (xb)a = aG (bGx), a, bE R, x E JR+. 

The dimension of the vector space is 1, since for any x E R+, 

x = {logx) 1::1 10. 

Thus {10} is a basis. Any two numbers in JR+ are linearly dependent. 

R+ is not a vector space over R with respect to~ and 83, since the 
condition A( u + v) = Au + Av in the definition is not satisfied: 

2 = 2 ~ {1 EB 1) :/: (2 ~ 1) £:13 (2 ~ 1) = 4. 

1.8 It suffices to show that AtOt, A2o2, ... , AnOn are linearly independent. 
Let lt , l2, ... , ln be scalars. If 

then each liAi = 0, thus li = 0, i = 1, 2, ... , n, since all Ai :/: 0. 

For v = x1a1 + · · · + Xn<ln = (xt/At)(Ala:t) + · · · + (xn/An)('Anan) 1 

it follows that the coordinate of v under the basis {A1ot, ... , Anan} 
is (xd At, ... , Xn/ An)· The coordinate of w = 01 + · · · +On under 
{at, ... , an} is (1, ... , 1), under {Alob ... , AnOn} is (1/At, ... , 1/An)· 

1.9 (i) The vectors v1, v2 , ••• , v~e form a basis of V if and only if they span 
V and they are linearly independent. 

(ii) The vectors V~t v2 , ••• , v~e form a basis of V if and only if every 
vector of V is a linear combination of these vectors and any vector in 
this set is not a linear combination of the remaining vectors. 

1.10 (i) Yes for k > n; inconclusive for k :::; n. 

(ii) No fork< n; inconclusive fork~ n. 

(iii) No in general. 

1.11 Let v = XtOt + x2o2 + xsaa. Set a.s = -!(xl + x2 + xa) and ai = 
Xi+ a4, i = 1,2,3. Then v = atOt + a2a2 + asaa + a4o4. Suppose 
v = b1a1 + ~a2 + baoa + b4a4 with b1 + b2 + bs + b4 = 0. Since 
{ot,o2,aa} is a basis, we have b1-b4 = X~t ~-b4 = x2, ba-b4 = xa, 
implying -4b4 = x1 + x2 + xa and b4 = a4. Hence, bi = ai, i = 1, 2, 3. 
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For the case of n, if { 01, •.• , Ctn} is a basis for Rn and On+l = 
-(a1 +···+on), then every vector in lin can be uniquely written as 
a linear combination of the vectors o 11 ... , Ctn+l with the sum of the 
coefficients equal to zero. 

1.12 It is sufficient to show that 1, (x - 1), (x - 1)(x - 2) are linearly 
independent. Let ..\11 +..\2(x-l) + ..\3(x-l)(x- 2) = 0. Then setting 
x = 1, x = 2, and x = 3, respectively, yields ..\1 = ..\2 =.\a= 0. 

1.13 

1.14 

To see that W is a subspace of IP3 [x], let p, q E W. It follows that 
(p + q)(l) = p{1) + q{l) = 0. Thus p + q E W. For any scalar ..\, 
(..\p)(l) = ..\p(l) = 0. So ,\pEW. Thus W is a subspace of IP3 [x). 

dim W = 2, since (x -1) and (x -l)(x- 2) form a basis of W. 

(a) True. 

(b) False. 

(c) False. 

(d) False. 

(e) True. 

(f) True. 

(g) False. 

(h) False. 

(i) False. 

(j) False. 

(k} False. 

(1) True. 

(m) False. 

(a) True. 

(b) True. 

(c) False. 

(d) False. 

(e) True. 

(f) False. 

(g) True. 

(h) False. 
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(i) lrue. 

(j) lrue. 
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1.15 Since aa = a 1 + a2, the vectors a1, a2, a3 are linearly dependent. 
However, a1 and a2 are not proportional, so they are linearly inde­
pendent and thus form a basis for Span{a1, a2, as}. The dimension 
of the span is 2. 

1.16 Since a4- a3 = a3- a2 = a2- Ctt, we have a3 = 2a2- a1 and 
a4 = 3a2 - 2a1. Obviously, a 1 and a2 are linearly independently, 
and thus they form a basis for V and dim V = 2. 

1.1 T (c) is true; others are false. 

1.18 k ~ 1. 

1.19 (i) Since all a 2, and as are linearly dependent, there are scalars x1, 
x2, xa, not all zero, such that XtCtt + x2a2 + x2aa = 0. Xt cannot be 
zero, otherwise a 2 and aa would be linearly dependent, which would 
contradict the linear independency of a2, a3, and a4. It follows that 
a 1 = (-~ )a2 + (-~ )a3, so a1 is a linear combination of a2 and as. 

(ii) Suppose Ct4 is a linear combination of et1, a2, and a3. Let a4 = 
YtOt + Y2et2 + 1J3Cts. Substitute the a1 as a linear combination of a2 
and aa in (i), we see that a4 is a linear combination of a2 and eta. 
This is a contradiction to the linear independency of a 2, a 3 , and a4. 

1.20 Let x1a1 + x2a2 + xaa3 = 0. Then Xt + x2 = 0, x1 + X3 = 0, and 
x2 + X3 = 0. Thus x1 = x2 = xa = 0. The coordinates of u, v, and w 
under the basis are {1, 1, -1), ~(1, 1, -1), and ~(1, 1, 1), respectively. 

1.21 It is routine to check that W is closed under addition and scalar mul­
tiplication and that the given three matrices are linearly independent. 

The coordinate is (1, -2, 3). 

1.22 (a) It's easy to verify that the conditions for a vector space are met. 

(b) To show that {1, x, ... , xn-l} is a basis, let Ao, Alt ... , An-I be 
scalars such that Ao + AtX + · · · + An-lxn-l = 0. Setting x = 0 
yields "o = 0. In a similar way by factoring x each time, we see 
that At=···= An-1 = 0. Thus {1,x, ... ,xn-l} is a linearly 
independent set, thus, it is a basis. The one for x - a is similar. 
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(c) (!( ) /'(j) [<n-l) ~a)) h J(i) ' th · th d ' t' a, 1. , .•• , (n-1! , were IS e ~- enva 1ve. 

{d) It is sufficient to show that fi(x), i = 1, ... ,n, are linearly inde­
pendent. Let ktft(x) + · · · + knfn(x) = 0. Putting x = ai gives 
k; = 0, i = 1, ... , n. 

(e) H j, g E W, then /(1) = 0 and g(l) = 0. Thus (f+g)(1) = /(1)+ 
g(1) = 0; that is, f + g E W. For .\ E R, (.\/)(1) = .\f(1) = 0, 
so .\f E W. It follows that W is a subspace. 

{f) Yes, JPI[x] is a vector space. No, it is of infinite dimension. 

(g) Obviously, IP'n[x] is a proper subset of IP'[x]. Then use (a). 

1.23 Let asinx + bcosx = 0. Taking x = 0 gives b = 0; putting x = ~ 
yields a = 0. So sin x and cos x are linearly independent. In the same 
way, we see that sin2 x and cos2 x are linearly independent. 

For y = asinx + bcosx, it is easy to check that y" = -y. 

1, sin2 x, and cos2 x are linearly dependent since sin2 x + cos2 x = 1. 

Span{sinx,cosx} nlR = {0} and Span{sin2 x,cos2 x} nlR =JR. 

1.24 The vectors are linearly independent if and only if t =F 1. 

1.25 Linearly independent vectors of S are aJso linearly independent vec­
tors of V. This gives (a). H dimS= dim V, then a basis of Sis aJso a 
basis ofV, so S = V and (b) holds. To see (c), if a= {a~,a2 , ... , ak} 
is a basis of S, and if every v E V is a linear combination of the vec­
tors in a, then a is a basis for V by definition. Otherwise, there exists 
a vector {3 E V such that a 1, a2, ... , ak, {3 a.re linearly independent. 
Inductively, a can be extended to a basis of V. For (d), one may take 
V to be the xy-plane and S to be the line y = x. 

1.26 (a) {e1,e2, ... , en} and {et, e2, ... , en} are linearly independent sets. 
Over C, yes. Over lR, no, since the dimension of en over lR is 2n. 

(b) A= 

1 -1 0 0 0 
0 1 -1 0 0 
0 0 1 0 0 

0 0 0 
0 0 0 

1 -1 
0 1 

(c) B = (eb €2, ... , en)· 

(d) (-1, ... ,-1,n). 



126 HlNTS AND ANSWERS FOR CHAPTER 1 

(e) Since the dimension of lRn over lR is n. 

(f) et, e2, ... , en and (i, 0, ... 'o)t, where i = yCI. 

1.27 Let l1a1 + l2(a1 + a2) + · · · + ln(Clt + a2 +···+an)= 0. Then 

(lt + l2 + · · · + ln)Clt + (l2 + · · · + ln)a2 + · · · + lnan = 0. 

Since a1, a2, ... , an are linearly independent, the coefficient of an is 
ln., thus ln = 0. The coefficient of Cln-1 is ln-1 + ln, so ln-1 = 0. 
Inductively, h = l2 = · · · = ln-3 = 0. 

Let Xt(O:t + a:2) + x2(a2 + a:a) + · · · + :cn(G:n. + a1) = 0. Then 

(xt + Xn)at + (xt + x2)a2 + · · · + (Xn-1 + Xn)G:n. = 0 

and 
X1 + Xn = 0, Xt + X2 = 0, · .. , Xn-1 + Xn = 0. 

The system of these equations has a nonzero solution if and only if 

1 0 0 0 1 
1 1 0 0 0 
0 1 1 0 0 

= 1 + (-1)n+l = 0. 

0 0 0 1 0 
0 0 0 1 

H n is even, the vectors are linearly dependent. H n is odd, they are 
linearly independent and thus form a basis. The converse is aJso true. 

1.28 Let x1a1 +x2a2+xaaa = 0. By solving the system of linear equations, 
we can get :c1 = x2 = xa = 0. So a is a basis for JR.3 • Similarly {3 is 
also a basis. [Note: The easiest way to see that a or {3 is a basis is to 
show that the determinant det(a1, a2, aa) =F 0. See Chapter 2.] 

H A is a matrix such that {3 = aA, then A= a-1{3. This gives 

( 

2 3 4 ) 
A= 0 -1 0 . 

-1 0 -1 

If the coordinate ofu under a: is (2,0, -1) (the first column of A), then 

u = (at,a2,aa)(2,0, -1)t = ,BA-1 (2,0, -1)t = {3(1,0,o)t. 

That is, the coordinate of u under the basis {3 is (1, 0, 0). 
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1.29 Let a1 a1 + · · · + anon - b{j = 0, where a1, a2, ... , an, b are not all 
zero. We claim b :/: 0. Otherwise, a1 = ll2 = · · · = CJn = 0, since 
a 1 , a2, ... , an are linearly independent. It follows that 

a1 an 
{3 = ba1 + · · · + ban. 

To see the uniqueness, let {3 = c1a1 + · · · + Cn<ln· Then 

(~1 - Ct) a1 +···+(a;- Cn) an= 0 

and, since a1, ... , an are linearly independent, we have 

a, ai b - <; = 0 or Ci = b, i = 1, ... , n. 

1.30 If ab a2, ... , an are linearly dependent, let a1a1 + · · · + an an = 0, 
where not all a's are zero. Let k be the largest index such that ak :/: 0 
and ai = 0 when i > k. Then ak will do. The other way is obvious. 

1.31 (a) It is obvious that V x W is closed under the addition and scalar 
multiplication. If Ov and Ow are zero vectors of V and W, respec­
tively, then (Ov, Ow) is the zero vector of V x W. It is routine to 
check that other conditions for a vector space are also satisfied. 

1.32 

(b) If {at, a2, ... , am} is a basis for V and {,Bt, .82, ... , f3n} is a 
basis for W, one may show that ( Cli, ,B;), i = 1, 2, ... , m, j = 
1, 2, ... , n, form a basis for V x W. 

(c) mn. 

(d) Identify (x,(y,z)) E JR. x IR.2 with (x,y,z) E JR3 . 

(e) Let e1 = (1, 0), e2 = (0, 1). Then e1 , e2 are a basis for lR2• Let 
E1; be the 2 x 2 matrix with ( i, j)-entry 1 and all other entries 
0, i, j = 1,2. Then En, E12, E21, ~2 are a basis for M2(IR.). 
The eight vectors (e.,, Ei;), s = 1, 2, i,j = 1, 2, form a baais for 
lR2 X M2(R). 

(f) 16. 

(a) True. 

(b) True. 

(c) True. 

(d) True. The converse is also true. 

(e) False. 



128 

(f) False. 

(g) False. 
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(h) False. Taker= 1, (1, 0), ( -1, 0), (0, 1), and (0, -1) in IR2• 

1.33 If 8 + t ~ n, we have nothing to prove. Without loss of generality, 
let Ot, ... , Os be a basis for U and f3t, ... , f3t be a basis for V. Then 
every vector oi + {33, thus every vector in W, is a linear combination 
of 01, ... , 0 8 ,{31, ... , f3t. It follows that dim W $; 8 + t. 

1.34 Suppose ao(tu + v) + alol + ... + arOr = 0 for scalars ao, ab ... 'ar. 
We first claim ao = 0. Otherwise, dividing both ides by ao, since u 
is a linear combination of a1, ... , ar, we see that v is a linear com­
bination of 01, ••. , Or, a contradiction. Now that a0 = 0, the linear 

independence of Ot, ••• , Or implies a1 = a2 = · · · = ar = 0. 

1.35 If X, Y E V, then AX= XA and AY = YA. Thus A(X + Y) = 
AX+AY = XA+YA = (X+Y)A; that is, X+Y E V. For any scalar 
k, A(kX) = k(AX) = k(XA) = (kX)A, so kX E V. Therefore, Vis 
closed under the matrix addition and scalar multiplication. Namely, 
V is a vector space. For the given A, dim V = 5 and the matrices 
that commute with A take the form 

( 
a b 0) 
c d 0 . 

-3a - c- e -3b - d + e e 

1.36 Let E8 t denote the nxn matrix with the (8, t)-entry 1 and 0 elsewhere. 

(a) Est, 1 $; 8, t $; n, form a basis. Dimension is n2 . 

(b) E8 t, iEsh 1 $; 8, t $; n, form a basis. Dimension is 2n2
• 

(c) Est' 1 $; s, t $; n, form a basis. Dimension is n2 . 

(d) Est+ Ets, s $; t, i( Eat-Ete), 8 < t, form a basis. Dimension is n 2• 

(e) Est+ Ets, 8 $; t, form a basis. Dimension is n(~+t). 

(f) Est- Ets, s < t, i(Est + Et8 ), s $; t, form a basis. Dimension is n2
• 

(g) Est - Eu, s < t, form a basis. Dimension is n(~-l). 

(h) Ese, 1 $; 8 $; t $; n, form a basis. Dimension is n(~+l). 

(i) E8t' 1 $; t $; 8 $; n, form a basis. Dimension is n(~+l). 

(j) E8 tt 1 $; 8 = t $; n, form a basis. Dimension is n. 
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(k) {I, A, A2} is a basis. Dimension is 3. 

Hn(C) and the set of normal matrices are not vector spaces over C, 
since the former is not closed under the (complex) scalar multiplica­
tion, while the latter is not closed under the matrix addition. To see 

_ · _ AtA• A-A• 
that Mn(C)- Hn(C) + Sn(C), wnte A- 2 + - 2-. 

1.37 (a) All n x n matrices. 

( a ab)· (b) All matrices of the form 
0 

(c) All matrices of the furm ( ~ ~ ) . 

(d) All matrices oft~ fonn U ~ ~ 1) . 
(e) All n x n scalar matrices cl n. 

1.38 First, we show that S(A) is closed under the addition and scalar mul­
tiplication. Let X, Y E S(A) and c be a scalar. Then A(X + Y) = 
AX + AY = 0 and A(cX) = c(AX) = 0. So S(A) is a subspace 
of Mnxp(C). When m = n and if X E S(Ak), i.e., Ak X = 0, then 
Ak±l X = A(Ak X) = 0. Thus, X E S(Ak+l ). Hence, S(Ak) ~ 
S(Ak+l ). Since each S(Ak) is a subspace of Mnxp(C) and the dimen­
sion of Mnxp(C) is finite, there must exist a positive integer r such 
that dimS(Ar) = dimS(Ar±l). Hence, S(Ar) = S(Ar+l). We have 

S(A) c S(A2 ) c · · · c S(Ar) = S(Ar±l) = ... 

1.39 (a)=>(b): Since ImA ~1mB, every column vector of A is contained 
in 1mB, which is spanned by the columns of B. Thus every column 
of A is a linear combination of the columns of B; that is, (b). 

(b)=>(c): For a matrix X, denote the i-th column of X by Xi. Write 

A= (At, A2, ... , Ap), B = (Bt, B2, ... , Bq)· 

If (b) holds, then ~ = cliBl + · · · + eq1Bq for some scalars C8 t, where 
s = l, ... ,q, t = l, ... ,p. Taking C =(est) reveals A= BC. 

(c)=>(a): That A = BC yields A" = BCi = (B1 , ... , Bq)Ci for each 
i = 1, 2, ... ,p; that is, each column Ai of A is a linear combination of 
the columns of B. Thus any linear combination of A, is also a linear 
combination of the column vectors of B. Hence Im.A ~ Im.B. 
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1.40 (a) Easily check that Ker A is a subspace. Write A = (a1, a2, ... , an), 
where all a1 are column vectors in IFn. Then Ker A = {0} if 
and only if Ax = 0 has the unique solution x = 0; that is, 
x1a1 +x2~+· · ·+Xnlln = 0 if and only if Xt = X2 = · · · = Xn = 0. 
If the columns are linearly independent, then m ~ n. In case 
m > n, then the rows of A are linearly dependent. In case 
m = n, then the rows of A are linearly independent. 

(b) If m < n, then r(A)::; m < n. So dimKer A= n- r(A) > 0. 

(c) If Ax= 0, then A2x = 0. 

{d) If Ax = 0, then A* Ax = 0. So Ker A ~ Ker(A* A). Since 
r(A* A) = r(A), we have dim Ker A= dimKer(A* A). It follows 
that Ker A= Ker(A* A). 

(e) If A= BC and Ax= 0, then BCx = 0. H B is invertible, then 
Cx = B-1BCx = 0 and KerA = KerC. 

1.41 We may assume Wt ::/: W2. Take at E Wt, at fl. W2 and 02 fl. 
w~, 02 E w2. Then a = Ot + 02 fl. Wt u w2. To show that v has 
a basis that contains no vectors in Wt and W2, let W3 = Span{a}. 
We claim that there exists a vector {3 that is not contained in any of 
Wt, w2, Wa. To see this, pick Wa (/ Wa and consider f31 =a+ Wa, 
{32 =a+ 2wa, and f3a =a+ 3w3. If they all fell in Wt U W2, then 
at least two would be in Wt or W2, say, f3t and {33 in W2. It is 
immediate that 3f3t- fJa = 2a E W2 and a E W2, a contraction. Let 
{3 fj W1 U W2 U W3. Then a and {3 are linearly independent. Now 
put W4 =Span{ a, [3}. H W4 = V, then we are done with the proof. 
Otherwise, pick W4 rt w4 and consider {3 + iw4, i = 1, ... ' 5. In a 
similar wa.y, there exists a vector ; E V that is not contained in any 
of the W's, and a, {3, and ; are linearly independent. Inductively, 
there exists a basis of V such that no vector in the basis belongs to 
the subspa.ces wl and w2. 
In general, if Wt, ... , W m are nontrivial subspaces of a vector space 
V, there is a baais of V in which no vector falls in any of the subspaces. 

1.42 Let W1 and W2 be subspaces of a finite dimensional vector space. If 
dim Wt +dim W2 > dim(Wt + W2), then, by the dimension identity, 
W1nW2 ::/: {O}.Notetha.tdimW+dim(Span{v111 ... ,v'"'}) = k+m > 
n. There must be a nonzero vector in W and in the span of v,J 's. 

1.43 (a) By definitions. The inclusions are nearly trivial. 
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(b) Take Wt and w2 to be the x-axis and the line y =X, respectively. 
Then Wt n W2 = {0}, while W1 + W2 is the entire xy-plane. 

(c) In general, Wt u w2 is not 8 subspace; take the X- andy-axes. 
W1 UW2 is a subspace if and only if one of W1 and W2 is contained 
in the other: Wt ~ w2 or w2 ~ Wt' i.e., Wt u w2 = WI + w2. 

(d) If s is a subsp~e containing wl and w2' then every vector in 
the form Wt + w2, Wt E Wt, W2 E w2, is contained ins. Thus 
wl + w2 is contained in s. 

1.44 (a) Let u = (xb x2, xa, x4)t, v = (y~, y2, 113, Y4)t E W. Then, for any 
scalar A, Au+ v = (..\x1 + Yb ..\x2 + y2, Axa + ya, AX4 + Y4)t, and 
..\xa + Y3 = ..\(x1 + x2) + (Yl + Y2) = (Axt + Yl) + (A:c2 + Y2) and 
Ax4 + Y4 = A(xl - x2) + (Yt -1J2) = A(xt + Yt)- (Ax2 + Y2)· It 
follows that ..\u + v E W and thus W is a subspace of C4 • 

(b) (1, 0, 1, 1)t and (0, 1, 1, -l)t form a basis of W. dim W = 2. 

(c) It is sufficient to notice that (1,0, 1, l)t E W; 

1.45 Since Vtnlt2 ~ Vt ~ V1 +V2, dim(V1nV2) ~ dim(Vt) ~ dim(Vt +V2). 
Thus the assumption dim(V1 n V2) + 1 = dim(Vi + V2) implies that 
either dim(Vt) =dim( Vi nV2) or dim( Vi) = dim(Vt + V2). The former 
says Vt = Vi n V2. Thus Vi ~ V2 and V2 = Vi + V2. The latter ensures 
V1 = Vt + V2. AB a result, V2 ~ V1 and V2 = V1 n V2. 

1.46 For a counterexample, take W1, W2, and Wa to be the x-, y-axes, and 
the line y = x, respectively. It does not contradict the set identity; 
the sum is usually "bigger" than the union. The former is a subspace, 
while the latter is not. 

1.47 (a){:}(b): If (a) holds, (b) is immediate. Assume (b). Let wE W1 +W2 
be written as w = Wt + w2 = Vt + v2, where wlt Vt E W1 and w2, 
v2 E w2. Then (wl - Vt) + (w2 - v2) = 0. By (b), Wl - Vt = 0, 
so w1 = Vt. Likewise w2 = v2. This says the decomposition of w is 
unique. (b){:}(c): If (b) holds and wE W1 n W2, then w + ( -w) = 0. 
By (b), w = 0. H (c) holds and w1 + W2 = 0, then w1 = -w2 E 
Wt n w2. By (c), Wt = w2 = 0. (c)<*(d): By the dimension identity. 

For multiple subspaces Wt, W2, ... , W~c, k ~ 3, let W = Wt + W2 + 
· · · + W~c. We say that W is a direct sum of Wt, W2, ... , W~c if for 
each w E W, w can be expressed in exactly one way as a sum of 
vectors in Wt, W2, ... , W~c. The following statements are equivalent: 

(i) W is a direct sum of W11 W2 , ••• , W~c. 
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(ii) If 0 = Wt + w2 + · · · + w~e, Wi E Wi, then all Wi = 0. 

(iii) dim W = dim Wt +dim W2 + · · · +dim W~e. 

(iv) win E;#i Wj = {0}. 

1.48 If Wt # V, then dim(Wt) <dim V. Let {at, ... ,am,am+l' ... ,an} 
be a basis of V, where a 17 ••• , am E W1• (This is possible since one 
may choose a basis for Wt then extend it to a basis of V.) Set W2 = 

Span{ <lm+t, ... , an} and W3 = Span{at +am+b am+2, ... , an}· One 
may show that V = Wt E9 W2 and V = Wt E9 W3 with W2 ::/: W3. 

1.49 It is sufficient to notice that when Wi, ViE wi, i = 1, 2, 3, 

again belongs to Wt + W2 + W3. 

For a counterexample, take the x-, y-axes, a.nd the line y = x. 

1.50 One may check that Wt n W2 = {0} and 

(
X y)=( ~ T) (~ 

_Jl::!! ttl! + ~ u v 2 2 2 
1l.±!!) -~2" . 

~={A E Mn(lR) I At= -A}, the set of skew-symmetric matrices. 

1.51 Let f and g be even functions. Then for any r E IR, 

(f + rg)( -x) = f( -x) + rg( -x) = f(x) + rg(x) = (f + rg)(x); 

that is, f +rg E Wt. So W1 is a subspace. Similarly, W2 is a subspace 
too. Now for any f E C(lR), we can write f = fe + /0 , where 

1 
fe = 2 (f(x) + f( -x)}, 

1 
fo = 2 (f(x)- f( -x)). 

Hence, C(IR) = Wt + W2. Obviously, W1 n W2 = {0}. Thus C(IR} = 
W1 E9 W2. There are many functions that are neither even nor odd. 



Hints and Answers for Chapter 2 

2.1 -48, -12(x + 4), -x10(1- x2)(1 - x6). 

2.2 6. 

2.3 The zero block submatrix is too "big"; every expanded term is zero. 

2.6 (a.) Use induction on n. Subtracting the second column from the first 
and expanding the resulting determinant along the first column, 

By induction 
~ _ bF(a) - aF(b) 

- 1 - b-a ' 

where F(x) = (P2- x) · · · (pn- x). Upon simplification, 

an = bf(a) - af(b), if a::/= b. 
b-a 

(b) If a= b, then 

an (pl- a)~-1 + afi(a) 

= (p1- a)[~- a)an-2 + aF2(a)) + aft(a) 

(p1 - a)(P2- a)an-2 + af2(a) + aft(a) 

= 

= (p1- a)··· (pn-2- a)a2 + afn-2(a) + · · · + aft(a). 

Note that 

a2 = PnPn-1 - a2 = Pn(pn-1 -a)+ (pn- a)a. 

The desired result follows immediately. 

(c) (a+ (n- l)b](a- b)n-1. 

2. 7 Use induction on n. For the special case, take ~ = i. 
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2.8 Use induction on n. If a= b, the determinant is equal to (n + 1)an. 

2.9 A10 -1010• 

2.10 Expand IM- AI along the first column. 

2.11 Expand the first determinant, and then differentiate each term; tr A. 

2.12 Consider the first column of A. Multiply by -1 the rows with first en­
try -1, and then subtract the first row from other rows. The resulting 
matrix has entries only 0 and ±2 except the first row. 

2.13 det(A +B) = 40; det G = 5. 

2.14 (a) IAI = IAtl =I -AI = ( -l)niAI = -IAI if n is odd. So IAI = 0. 

(b) IAI2 = IA2 1 =I- II= ( -1)n. H n is odd, then IAI2 = -1. This 
is impossible when A is a real matrix. 

(c) No. 

2.15 0, since lA +II = lA + AAtl = lAili +At I = lAllA+ II. 

2.16 Note that XY = I implies Y X = I when X and Y are square. 

2.17 B = A2 -2A+2I = A2 -2A+A3 = A(A2+A-2I) = A(A+2I)(A-I). 

2.18 

2.19 

However, I = A3 - I = (A - I)(A2 + A + I). So lA - II =/= 0. 
A3 + 8I = 10I, also (A+ 2I)(A2 - 4A + 4I) = lOI. So lA + 2II :#: 0. 
It follows that IBI = lAllA+ 2IIIA - II :1: 0 and B is invertible. 

( 

-b/a -c/d -d/a 1/a ) 
1 0 0 0 
0 1 0 0 . 
0 0 1 0 

1 -1 0 0 0 
0 1 -1 0 0 

0 -1 

~1)' 1 
0 

0 0 0 1 -1 
0 0 0 0 1 
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2.20 

2 -1 0 0 
-1 2 -1 
0 -1 2 

0 0 

0 
0 

-1 2 
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2.21 Determinant is (-1)'~- 1 {n-1). The inverse is a matrix with diagonal 
entries a= (2- n)/(n- 1) and off-diagonal entries b = 1/{n -1) . 

0 0 0 ...L 
On 

..!.. 0 0 0 
at 

2.22 0 ..!.. 0 0 
~ 

0 0 _1_ 0 
Gn-1 

( A~' -A-'Bc-• ) u -X XZ-Y) 
2.23 c-1 , I -Z . 

0 I 

2.24 Use v-1 = IVI-1 adj{V) or apply elementary raw operations to the 
augmented matrix (V,I) to get (I, v-1). 

1 ( a3ll2(a3- a2) -(a~- a~) a3- a2 ) 
v-1 = lVI -a3a1(a3- a1) a~2- af

2 
-(a3- at) . 

a2a1(a2- at) -(~- a1) a2- a1 

2.25 Check directly that M-1 M =I. (It would be harder to do MM-1.) 

2.26 Carefully verify that 

(A- B)[A-1 + A-1(B-1 - A-1)-1A-1] =I. 

For the particular identity, substitute A by I and B by -A. 

2.27 Multiply the right-hand side by A+ iB. Then expand. 

2.28 Since AD and CD are Hermitian, it is easy to verify that 

( 
A B* ) ( D - B ) ( I 0 ) 
C D* -C* A* = 0 I . 

It follows that 

( 
D - B ) ( A B* ) ( I 0 ) 

-C* A* C D* = 0 I ' 
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and that, by observing the upper-left comer, DA- BC =I. 

2.29 (a) lfA*KA=K, thenAisnonsingularandK= (A-1)*KA-1. So 
A -l E S K. By taking conjugate for both sides of A* K A = K, 
we see (A)*KA = K. So A E SK. From (A-1)*KA-1 = K, 
taking inverses of both sides gives AK-1A* = K-1. Note that 
K-1 = K. Thus A* E SK. Consequently, At= (A)* E SK. 

(b) Since (AB)*K(AB) = B*A*KAB = B*KB = K, ABE SK. 
But kA and A + B are not in S K in general. 

(c) (a) and (b) hold. In fact they hold for any K satisfying K 2 =±I. 

2.30 (a) By the Laplace expansion theorem. 

(b) 1, ( -l)mn, 1. 

(c) Notice that 

( 0 A ) ( 0 I, ) = ( A 0 ) 
C E Im 0 E C . 

By taking the determinant, 

2.31 Direct computation yields S 2 = I. So s-1 = S. It is obvious that 

st = S. lSI= (-1)n
2

t3
n. The (i,j)-entry of SAS is an-i+l,n-3+1· 

2.32 Notice that 

( 
0 In ) ( A B ) ( 0 Ip ) = ( D C ) 

Im 0 C D Iq 0 B A . 

Taking the determinants of both sides gives the identity. When A, B, 
C, Dare all square, say, m x m, mn + pq =2m2 is an even number. 
So ( -1)(mn+pq) = 1. For the case of column and row vectors, m = p 

and n = q = 1. Thus mn + pq = 2m is also even. The identity holds. 
When B and C are switched, the two determinants may not equal. 

2.33 It suffices to show IAIIDI - IBIICI = 0. If A is invertible, then 

(-c~-1 D(~ ~)=(~ n-~A-'n)· 
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Since A is of rank n when A -l exists, 

By taking determinant, IAIIDI - IBIICI = 0. 

If IAI = 0, it must be shown that IBI = 0 or ICI = 0. Suppose 
otherwise B (or C similarly) is invertible, then 

Since B is of rank n, 

C- DB-1A = 0, or C = DB-1A 

and 

2.34 (a) Note that 

( C
A B ) ( nt 0 ) ( ADt - Bet B ) 

D -Ct I = CDt - Dct D . 

Using C Dt = DCt and taking determinants, we have 

I ~ ~ IID'I = lAD'- BC'IIDI. 

If D is nonsingular, then the conclusion follows immediately by 
dividing both sides by IDI. Now suppose IDI = 0. H ct = c, 

C(D + el)t = (D + el)ct, 

where e > 0. Using D+el forD in the above argument, we have 

for all e for which D + el is nonsingular. Notice that both sides 
of the above identity are continuous functions of E and there are 
a finite number of E for which D + el is singular. Letting E ~ 0 
yields the desired identity. 
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If C is not symmetric, let P and Q be the invertible such that 

PCQ=( ~ n. 
where r is the rank of C. Consider 

( ~ ~) ( ~ ~) ( ~ (Q~-1 ) 

( 
AQ B(Qt)-1 ) 

= PCQ PD(Qt)- 1 • 

Note that PCQ is symmetric. Apply the earlier result. 

(b) Take determinants of both sides of the matrix identity: 

(~ ~)(g: n=(~~:!~~ ~)-
(c) Take A, B, C, D to be, respectively, 

(~ n.u n. (~ ~). (~ n-
(d) 12 =(-1)2• 

2.35 (a) If A-1 exists, then 

(-~-1 ~)(~ ~)=(~ D-gA-1B)· 
By taking determinant, 

I ~ ~ I= IAIID-CA-'BI. 

(b) Suppose AC = CA. If A -l exists, 

IAIID- cA-1 Bl =lAD- AcA-1 Bl = lAD- CBI. 

If A is not invertible, we take a positive number p. such that 
lA +ell '# 0 for every c, 0 < c < 1-'· 
Since A + cl and C commute, 

I A bel ~ I= I(A+el)D- CBI. 

Note that both sides are continuous functions of c. Letting c --+ 0 
results in the desired result for the case where A is singular. 
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(c) No. Take A,B,C, and D to be, respectively, 

( 
1 -1 ) ( 1 1 ) ( 1 -1 ) ( 1 0 ) 
0 0 '11, 0 0 '00. 

Then AC = CA, lAD- CBI = 0, but lAD- BCI = -1. 

(d) No. Take A, B, C, and D to be, respectively, 

( 
1 -1 ) ( 1 0 ) ( 1 1 ) ( 1 0 ) 
0 0 ' -1 1 , 1 1 ' 0 1 . 

Note that D commutes with other three matrices. 

2.36 (a) No. 
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(b) It must be shown that there exist real numbers k1, k2 , k3 , k4 , not 
all zero, such that k1B1 + k2B2 + k3B3 + k4B4 = 0. Let 

A = ( a db ) , Bi = ( Wi :Ci ) , i = 1, 2, 3, 4. 
C Yi Zi 

Then lA + Bsl = IAI + IBilleads to 

dwi- C:Ci- byi + azi = 0, i = 1,2,3,4. 

Consider the linear equation of four unknowns w, x, y, z: 

dw - c:c - by + az = 0. 

Since A :/: 0, say, d :/: 0, there are three free variables, and the 
solution space of the equation is of dimension 3. Thus any four 
vectors are linearly dependent; in particular, B 1, B2, B3, B4 are 
linearly dependent. 

2.37 For (a), M M-1 = I implies AY + BV = 0 and CY + DV =I. Thus 

( ~ ~ ) ( ~ ~ ) = ( ~ ~~ ) = ( ~ I -=_A~ ) . 

Taking determinant of both sides, we have (a): 

IMIIVI = I A -AY I 
C I-CY 

= I~ ~II~ -n 
I~ ~ I=IAI. 
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To show (b), apply row-block operations to ( M, I) to get (I, M-1). 

The upper-left comer of this M-1 is (D- CA-1 B)-1 . 

For (c), note that u-1 = U*. And for (d), if M is real orthogonal, 
then IAI = lVI or IAI = -lVI. 

2.38 It is routine to verify (a), (b), and (c). 

(d) zn = rn ( ~ nB ain "'8 ) since zn = rn{cos n8 + i sin n8) -smn9 coan9 ' • 

(e) (!~~)· 
(f) Check zz- 1 =I. 

(g) Direct verification. 

(h) IQI = lul2 + lvl2 ~ 0. Q-1 = (: :") when IQI = 1. 

{i) Write u = u1 + iu2 and v = v1 + iv2 to get R. Note that U and 
- yt commute. By computation, 

(j) Exchange the last two rows and columns of R. 

(k) From (i), IRI = o ~ IQI = o ~ u = v = o. 
2.39 Notice that 

Thus 

l-AB ! 1=1 A~~B A~iB I=IA+iBIIA+iBI<::O. 
H A and B are complex matrices, then it is expected that 

1-~ ~ 1:::: o. 

[Note: Th prove this, a more advanced result that AA is similar to 
R2 for some real matrix R is needed.] 

2.40 Add the second column (matrices) to the first column, and then sub­
tract the first row (matrices) from the second row: 

I A B I = I A+ B B I = I A+ B B I = lA BIIA- Bl B A B+A A 0 A-B + . 
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To find the inverse matrix, let C = A + B, D = A - B, and consider 

Multiply this out: 

AX+BU=I, AY+BV=O, BX+AU=O, BY+AV=I. 

Adding the first equation to the third reveals (A+ B)(X + U) =I. 
So X + U = c-1• Subtracting the first equation from the third gives 
(A- B)(X- U) =I. Thus X-U= D-1• It follows that 

1 1 
X= 2(C+D), U= 2(C-D). 

In a similar way, one can show that Y = U and V = X. Thus 

( 
A B ) -

1 = ~ ( c-1 + n-1 c-1
- D-1 

) 
B A 2 c- 1 - D- 1 c-1 + D-1 . 

2.41 (a) follows by observing 

and 

x I= 1- y*x 1- y*x 

~ I = II - xy"l· 

For (b), it is sufficient to notice that 

u ~H:. nun=(! y;). 
For (c) and (d), one may verify directly through multiplications. 

2.42 If r{A) = 1, then any two rows of A are linearly dependent. Some row 
of A is not zero, say, the first row. Then all other rows are multiples 
of the first row. The conclusion follows immediately. 

2.43 If r(A) = n, then A is invertible. Let x1 (Au1) + x2(Au2) + · · · 
+xn(A-un) = 0. Premultiplying both sides by A-1 shows x1u1 + 
x2u2 + · · · +xnun = 0. Thus Xt = x2 = · · · = Xn = 0 since 
Ut' ua, ... 'Un are linearly independent. So Aut' Au2, ... 'Attn are lin­
early independent. For the other direction, if Au11 Aua, ... , Aun are 
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linearly dependent, let Yl(Aut) +Y2(A1L2) + · · · +Yn(Attn) = 0, where 
not all y are zero. Then A(y1u1 + Y2'U2 + · · · + YnUn) = 0. Since 
u1, 'U2, •.. , Un are linearly independent, Yl u1 + Y2U2 + · · · + Yn tLn '¢ 0. 
Thus the system Ax = 0 has a nonzero solution, and A is singular. 

2.44 Use row and column operations on A. Each elementary operation 
results in a.n elementary (real if A is real) matrix that is invertible. 

2.45 (a) False. 

(b) False. 

(c) True for k ~ 1. False otherwise. 

(d) False. 

(e) False. 

(f) False. 

2.46 (a) (1, i) = i( -i, 1). 

(b) Let x(1, i)+y( -i, 1) = 0, where x andy are real. Then x-yi = 0. 
Thus x = y = 0, and (1, i) and ( -i, 1) are linearly independent. 

(c) No. In fact, A is not invertible. 

(d) u• AU = diag(2, 0). 

(e) r(A) = 1. 

(f) Since x E 1R2 ~ C2, AxE We for all x E R2• 

(g) We is 1m A. It is a subspace of C2 over C, thus also over R. 

(h) a(Ax) + b(Ay) = A( ax+ by). When a, b, x, y are real, ax+ by 
is real. Thus WR is a subspace of C2 over IR. When a, b are 
complex, ax + by may not be real. So WR is not closed over C. 

(i) dim WR = 2 over R: 

A(x,y)t = (x + iy, -ix + y)t = x(1, -i)t + y(i, 1)t. 

Similarly, dim We= 2 over R, because A(x,y)t = (a-d)(l, -i)t+ 
(b+c)(i, 1)t, where x = a+bi, y = c+di, a, b, c, dare real, and 
dim We = 1 over C, for A(x, y)' = c(l, -i)', c = x + iy. 

2.47 (a) A• = n•- iC• = nt- ict = B +iC. So nt =Band ct =-C. 

(b) xt Ax = xt Bx + ixtcx. Since A is Hermitian, xt Ax is always real 
for x E 1Rn, as is xt Bx. Therefore, xt Ax = xt Bx and ixtcx = 0. 
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(c) Ax = Bx+iCx. H Ax = 0 and x is real, then 0 = Ax = Bx+iCx. 
Thus Bx = Cx = 0. 

(d) Take x = (1, i)t. Then Ax= 0, sox* Ax= 0; x* Bx = x*x > 0. 

(e) Take x = (1, -1)'. r(A) = 2, r(B) = 1. 

2.48 This can be seen by taking A= (~g) (see Problem 2.44). 

2.49 3. 

2.50 -3. 

2.51 Since AB = 0, the column vectors of Bare contained in 

Ker A = { x I Ax = 0}. 

Since 
r(A) + dim.Ker A= n, 

where n is the number of unknowns, it follows that 

r(A) + r(B) ~ r(A) +dim Ker A= n. 

2.52 Let A8 be the submatrix of A by deleting 8 rows from A. Then 

r(A) - 8 ~ r(A8 ). 

Similarly, 
r(A8 ) - t ~ r(B). 

Thus 
r(A) ~ s+t+r(B). 

2.53 Each column of AB is a linear combination of the columns of A. So 
r(AB) ~ r(A). Considering rows gives r(AB) ~ r(B). Thus 

r(AB) ~ min{r(A), r(B)}. 

The columns of A + B are linear combinations of those of A, B. So 

r(A +B) ~ r(A) + r(B). 

We now show a general rank inequality: r(A) + r(B) ~ r(AB) +n, 
where A is p x nand B is n x q. Notice that 

( 
1, 0 ) ( I, B ) ( 1, - B ) = ( 1, 0 ) 
-A 1p A 0 0 1p 0 -AD . 
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Thus 

r ( ~ ! ) = r ( ~ -~B ) = n + r(AB). 

The desired rank inequality follows immediately by noting that 

r(A) + r(B) ~ r ( ~ ! ) . 
2.54 We use the rank identity r(XY) ;::: r(X) + r(Y)- n, where X is p x n 

andY is n x q, to show the rank identity for three matrices. 

Let r(B) = r. Then there exist invertible matrices P and Q such that 

B=P( ~ nQ=MN, whereP=(M,S), Q= ( ~ ). 

where M is n x rand N is r x q. By Problem 2.53, we have 

r(ABC) = r(AMNC);::: r(AM) + r(NC)- r 

2::: r(AMN) +r(MNC)- r 

r(AB) + r(BC) - r(B). 

2.55 Let W1, W2, Wa, and W4 be the column spaces of A, B, A+ B, and 
AB, respectively. Since W3 ~ W1 + W2, we have 

or 
r(A +B) ~ r(A) + r(B)- dim(W1 n W2). 

We claim that r(AB) = dim W4 ~ dim(W1 n W2). To do so, we 

show W4 ~ W1 n W2. Write B = (b1,~, ... ,bn)· Then AB = 
(Abt,A~, ... ,Abn)· Since each Abi E W~t we see W4 ~ W1 • Given 

that AB = BA, we have similarly W4 ~ W2. Thus W4 ~ Wt n W2. 

2.56 By the Problem 2.53, we have 

0 = r(A1A2 · · · A~c) 

2::: r(A1) + r(A2 .. · A~c) - n 

2::: r(A1) + r(A2) + r(A3 · · · A~c) - 2n 

> 
2::: r(A1) + r(A2) + · · · + r(Ak)- (k- l)n 
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2.57 Consider the column spaces of (X, Z), (Z, Y), and Z. Denote them 
by Wt, W2, and Wa, respectively. By dimension identity, 

dim(Wt + W2) = dim Wt +dim W2 - dim(Wt n W2) 

= r(X, Z) + r(Z, Y)- dim(Wt n W2). 

Note that the column space of (X, Y) is contained in W1 + W2 and 
that Wa ~ Wt n W2. So r(X, Y) S dim(Wt + W2) and r(Z) S 
dim(Wt n W2). The desired inequality follows. 

2.58 It is sufficient to notice that (A* A)x = 0 and Ax= 0 have the same 
solution space since Ax = 0 # x* A* Ax = 0. 

r(At A) is not equal to r(A) in general. Take A = (! ~1 ). Then 

r(At A) = 0, but r(A) = 1. Similarly, r(AA) :1 r(A). 

2.59 M2. 

2.60 There are two important facts regarding adj{A): 

A adj(A) = adj(A)A = IAII 

and when A is invertible, 

adj(A) = IAIA-1• 

(a) adj(A) is invertible if and only if IAI :F 0. 

(b) Aadj(A) = 0 implies that the column vectors of adj(A) are the 
solutions of Ax = 0. H r(A) = n -1, then dim Ker A = 1 and the 
column vectors of adj(A) are mutually linearly dependent. Thus 
r(adj(A)) = 1. The other direction is a part of (c). 

(c) Consider (n -1) x (n- 1) minors of A. 

(d) It follows from the two facts given above. 

(e) By the first fact mentioned above 

adj(A) · adj(adj(A)) = I adj(A)I! = IAin-l ]. 

Replace the left-most adj(A) by IAIA-1 when A is invertible. H 
A is singular, then both sides vanish. 

(f) First consider the case where A and B are nonsingular. For the 
singular case, use A+ el and B + el to substitute A and B, 
respectively, then apply an argument of continuity. 
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(g) By (f). 

(h) Use definition. 

(i) ~j = Aji when A is Hermitian. 

k 

~j ·: ·adJ(A) =A when k is even, A- 1 when k is odd. 

If A is invertible and has eigenvalues .Xb A2, ... , An, then the eigen­
values of adj(A) are 

1 1 
Al IAI, A21AI, ... ' 

1 
An IAI. 

If A is singular, the eigenvalues of adj(A) are 

n 

0,0, ... ,0, and 2:1~ .. 1. 
i=l 

2.61 It suffices to show that h = 0 has only the trivial solution 0. Suppose 
that Ax= 0 has a nonzero solution x = (kt, k2 , ••• , len). Let 

Then lksl :F 0. However, the s-th equation of Ax= 0 is 

Thus 

and 

n 

auks = - 2: as;k; 
j=l, j:fis 

a contradiction to the given condition. 
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2.62 Use Problem 2.54 in the first inequality below: 

r(A- AB) + r(B- AB) r(A2
- AB) + r(B2

- AB) 

= r(A(A- B))+ r((B- A)B) 

r(A(A- B))+ r((A- B)B) 

~ r(A(A- B)B) + r(A- B) 

= r(A2B- AB2
) + r(A- B) 

r(AB - AB) + r(A - B) 

= r(A- B) 

~ r( A - AB) + r( AB - B) 

= r(A- AB) + r(B- BA). 
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2.63 I = A + (I - A) => n = r(A + (I - A)) ~ r(A) + r(I - A) and 
A2 =A~ A( A-I)= 0 ~ Im(A-I) ~ Ker A=> r(A-I) ~ n-r(A). 

2.64 It is sufficient to notice that 

( 
Im -A ) ( 0 A ) ( I, 0 ) _ ( -AB 0 ) 
0 In B In -B In - 0 In . 

2.65 Notice that 

So 

Similarly, 

Thus 
r(Im- AA•)- r(In- A* A)= m- n. 

2.66 (a) .X :F -3. (b) .X= -3. 

2.67 There are three possibilities for A* = adj(A): 

(1) A= 0. 

(2) A is a unitary matrix and IAI = 1. 
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(3) A is a 2 x 2 matrix of the form { ~li ! ) . 
2.68 A::/: 1. 

2.69 A= 1. 

2.70 a= (-1,1,0,0,0) and {3= (-1,0,-1,0,1) form a basis for the solu­
tion space. Thus the general solution is x = Aa + p,{3, A, p, e F. 

2.71 The dimension is 2. 111 = (-~, ~,1,0) and 1J2 = (-1,-2,0,1) form a 
basis for the solution space. The general solution is 1J = X1'TJ1 + x2172, 
where Xt and X2 are scalars. 

2. 72 Adding all equations gives (x1 + x2 + xa + x4 + xs)(y - 2) = 0. 

If y = 2, Xt = x2 = xa = x, = xs = c, where cis any number. 

If y ::/: 2, by eliminating x5 , x4 , and x3 one by one from the given 
equations, one has (y2 + y -1)(x2- x1) = 0 and 

(y2 + y -1)[x2- (y -1)xt] = 0. 

Thus if y ::/: 2 and y2 + y - 1 ::/: 0, then Xt = x2 = Xg = X4 = X5 = 0. 

If y ::/: 2 and 'II + y - 1 = 0, the solution is 

Xl = S 

X2 = t 
xa = yt- s 
x4 = (y2 - 1 )t - ys 
X5 = ys- t, 

where s, tare arbitrary, y is a solution to y2 + y- 1 = 0. 

An alternative approach is to apply elementary row operations to the 
coefficient matrix 

( 

~y !y ~ ~ ~ l 
0 1 -y 1 0 . 
0 0 1 -y 1 
1 0 0 1 -y 

2. 73 Apply elementary row operations to the coefficient matrix to get 

1 
b-1 

0 

1 1 ) 1 0 . 
b+ 1 2(b -1) 
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There are six cases: 

b = 1: infinite solution. 

b = 5, a = 0: infinite solution. 

b = 5, a '# 0: unique solution. 

b = -1: no solution. 

b I= ±1, 5, a I= 0: unique solution. 

b I= 1, 5, a = 0: no solution. 
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2.74 Write the complex solution as x = Xt + ix2. Then Ax1 = 0 and 
Ax2 = 0. Either Xt or x2 is nonzero since xis nonzero. 

2. 75 Use elementary row operations to the coefficient matrix. 

The dimension of the solution space is n- 1 and the following vectors 
in lR.2n form a basis for the solution space: 

ft = (-1,1,0, ... ,0,-1,1,0, ... ,0) 
€2 = (-1,0,1, ... ,0,-1,0,1, ... ,0) 

En-t = (-1,0, ... ,1,-1,0, ... ,0,1). 

2. 76 (a) It is sufficient to notice that r(A) is equal to the largest number 
of column vectors, which are linearly independent. 

(b) Since r( X) = r( P X) for any matrix X when P is invertible, it 
follows that r[(~u Cti21 ••• , O:ir)] = r[(.Bi11 .8i2 , • • ·, .Bir)]. 

(c) Apply elementary row operations to bt, 'Y2, ;a, 'Y4) to get 

(~.~ .. ~.~·>- ( ~ ~ 1 D · 
Thus the dimension is 3. { ; 1 , ; 2 , ;a} is a basis. In fact, any three 
of 'Yt, ;2, ;a, 'Y4 form a basis. 

2.77 For Wt n W2, consider the equation system 

XtO:t + x2a2 + xao:a = Ytf3t + Y2f12· 

The dimensions of W11 W2, W1 n W2 and Wt + W2 are 3, 2, 1, 4, 
respectively. {.Bt} is a basis for Wt n W2 and {o:1ta2,o:3,!32} is a 
basis for W1 + W2, which is spanned by a 11 a2, 0:3 and .811 /32. 
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2. 78 Write the equation system as Ax = b. Take b = ei, where ei is 
the column vector with i-th component 1 and everywhere else 0, 
i = 1, 2, ... , n. Then there are column vectors Ci with integer com­
ponents such that ACi = e1 for each i. Thus AC = I, where 
C = (C1,C2, ... ,Cn)· Taking determinants, IACI = IAIICI = 1, 
so IAI = ±1. 

2.79 dim wl = n -l,dim w2 = 1, and wl n w2 = {0}. 

2.80 If IAI = 0, then Ax = 0 has a nonzero solution x0 • Let B = (x0 , 0) E 
Mn(C). Then AB = 0. If AB = 0 for some nonzero matrix B, then 
Ab = 0 for any column vector b of B. Thus Ax = 0 has a nonzero 
solution and A is singular; that is, IAI = 0. 

2.81 It suffices to show Ker AnKer B '# {0}. By the dimension identity, 

dim(Ker An KerB) 

dim Ker A + dim KerB - dim(Ker A + KerB) 

= n- r(A) + n- r(B)- dim(Ker A+ KerB) 

(n- r(A) - r(B)) + (n- dim(Ker A+ KerB) 

> n - dim(Ker A + KerB) ~ 0. 

2.82 r(A) = n- l, r(B) = n - m. So r(AB) ~ min{n- l, n- m}. 
Thus dimKer(AB) = n- r(AB) ~ max{n- (n -l), n- (n- m)} = 
max{l, m}. If a.ll x E (i'R fall in either Ker A or KerB; that is, r = 
Ker AU KerB, then Ker A = r or KerB = pn, so A = 0 or B = 0. 

2.83 First notice that Ker A~ Ker(A2). If r(A) = r(A2), then dim Ker A= 
dim Ker(A2 ). This implies Ker A= Ker(A2). 

2.84 It is sufficient to show that there is an invertible matrix C such that 
A = C B when Ax = 0 and Bx = 0 have the same solution space. 

First notice that A and B must have the same rank, denoted by r. 
Let P1 and P2 be the permutation matrices such that 

where A1 and B 1 are, respectively, r x n submatrices of A and B with 
rank r, and Q 1 and Q2 are some matrices of size ( m - r) x n. The 
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systems Ax = 0 and Bx = 0 have the same solution space if and only 
if A1x = 0 and B1x = 0 have the same solution space. Since 

r ( ~~ ) = r( Bt), 

there is an r x r invertible matrix C1 such that A1 = C1B1. Thus 

where 

is of full rank. Take C = P1"1C2P2. Then A= CB. 

If r(A2 ) = r(A), then A2x = 0 and Ax = 0 have the same solution 
space. From the above result, A2 = DA for some invertible D. 

2.85 Suppose that At'Th + · · · + An71n is a solution. Then 

A(..\1771) + · · · + A(AnT/n) =b. 

Since A( Ai7'1i) = Aib, i = 1, ... , n, we have ( A1 + · · · + An)b = b. Thus, 
At+···+ An= 1 forb I= 0. Conversely, if At+···+ An= 1, then 

A(Al'Th + · · · + An7Jn) = A1A111 + · · · + AnA17n = (..\1 + · · · + An)b =b. 

2.86 r(A* A) ~ r(A* A, A*b) = r((A*(A, b)) ~ r(A*). However, r(A* A) = 
r(A*). So r(A* A) = r(A* A, A*b). Thus the coefficient matrix A* A 
and the augmented matrix (A* A,A*b) have the same rank. It follows 
that A* Ax= A*b is consistent. 

2.87 IAI = o. So (d) is right. 

2.88 Let A = (aij ), c = (c~, C2, ... , Cn), b = {bt, ~' ... , bn)t. Then the 
augmented matrices of the equation systems a.re, respectively, 

( 
A b ) ( At ct ) 

M= c d ' Mt = bt d . 
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Since A is nonsingular, r( A) = n, we see r( M) = n or n + 1. The first 
equation system has a solution if and only if r(M) = n. The second 
system has a solution if and only if r(Mt) = n. However, r(M) = 
r(Mt). The two systems will both have solution or no solution. In 
case they both have solution, the solution to the first system is x = 
A-1b and the solution to the second system is 11 = (At)- 1ct. 

2.89 No. Let A be an n x n matrix. Since Ax = 0 has nonzero solutions, 
r(A) < n. Note that r(A) = r(At). Let B = (At, b). If r(B) ¥: r(A), 
then Atx = b has no solution. H r(B) = r(At) = r(A) < n, then 
there are infinitely many solutions. In either case, Atx = b cannot 
have a unique solution. 

2.90 If B is nonsingular, then it is obvious. Let the rank of B be r and 

first consider the case B = ( ~ ~). Since r(AB) = r(A), the first 
r columns of A spans the column space of A. So we may write A 
as A = (Ar, ArC). X1AB = X2AB implies X tAr = X2Ar. Thus 
X1A = (X tAr, X1ArC) = (X2Ar, X2ArC) = X2A. For a general B, 

let B = P (~g) Q, P, Q invertible, and apply the above argument. 

2.91 Assume that the three lines are different from each other. Let the 
lines intersect at (xo, y0 ). Adding the three equations, we have 

( xo + Yo + 1) (a + b + c) = 0. 

We show that x0 + y0 + 1 ¥: 0, concluding that a + b + c = 0. 

Consider lines lt and l2 and view them as equations in a and b: x0a + 
Yob = -c, a+ xob = -cyo. If xo +Yo + 1 = 0, then the determinant of 
the coefficient matrix is x~ + x0 + 1, which is never zero for any real 
x0 • Solve for a and b in terms of c, we will see that a = b = c and all 
three lines are the same, contradicting one intersection point. 

Now suppose a + b + c = 0. Considering the augmented matrix 

(: ~ =~). 
c a -b 

By row operations (adding first two rows to the last row), we see the 
system has a unique solution that gives the intersection point. 



Hints and Answers for Chapter 3 

3.1 (a) False. Take A={~~). 
(b) True. If Ax = Ax, then 0 = A2x = A(Ax) = A(..\x) = .X(Ax) = 

.X2x. Since x :F 0, .X = 0. 

(c) False. Take A= diag(B, B, B), where B = (g ~). 
(d) False. Take A= diag(O, 1). 

(e) True. 

(f) False. 

(g) True. 

(h) False. 

(i) False in general if m :F n. True if m = n. 

(j) False. 

(k) True. 

(1) False. 

3.2 It is easy to see that if AB = BA then equality holds. Suppose 
(A+B) 2 = A2+2AB+B2• Since (A+B) 2 = A2+AB+BA+B2 for all 
square matrices A and B of the same size, we have AB + BA = 2AB. 
It follows that AB = BA. 

3.3 If AB =A- B, one may check that (A+ I)(I- B)= I. So I- B 
is the inverse of A+ I. Thus (A+ I)( I- B)= (I- B)(A + 1). This 
implies AB = BA. H AB = A+B, one can show (A-I)(B-I) =I. 

3.4 a = 0, b = -2. 

3.5 Scalar matrices ki. Consider p-l AP =A or PA = AP for a.ll P. 

3.6 (a) B, C, D. (b) B, C, Dover C. C, Dover lit. (c) D. 

3.7 B, C, E, G. 

3.8 a = 0, b, c are arbitrary. 

3.9 Use same elementary row and column operations on A to get B, C. 

When BC = C B, by computation, a 2 + lJ2 + t? -ab-be- ca = 0, and 
by multiplying both sides by a+ b + c, we have a3 + b3 + c3- 3abc = 0. 
It is easy to compute that IM- AI = .X3 - (a+ b + c).X2• 

153 
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3.10 AEi; is then x n matrix whose j-th column is the i-th column of 
A, and 0 elsewhere. Eij A is the n x n matrix whose i-th row is the 
j-th row of A, and 0 elsewhere. Ei;AE11t is then x n matrix with the 
(i, t)-entry a3~, and 0 elsewhere. 

3.11 A2 = -4A. A6 = -210 A. 

3.12 A= Pdiag(5, -1)P-1, where 

p = ( -i ~ ) . So A'oo = p ( 
5~

00 

~) p-
1

• 

3.13 Notice that 

It follows that 

( 
22 1 ) k 1 ( 2 + 22

11: 22
k - 1 ) 

3 = 3 2211:+ 1 - 2 22k+ 1 + 1 . 

(~ ~)k=(~ k>..k-1 ). >.,k 

If k = 2, then 

u 1 or c 0 

D· 0 1 = 0 0 
0 0 0 0 

and 0 otherwise. 

0 1 or c 1 

D· 0 1 = 0 0 when k =3m+ 1, 
0 0 1 0 

0 1 or c 0 

D· 0 1 = 1 0 when k = 3m+2, 
0 0 0 1 

and 13 otherwise. 
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3.14 It is eagy to see that 

Ak = ( ~ ~) and PAkp-l =A, 

where P = ( ~ ~). In fact, a more general result can be obtained that 
if A is an n x n matrix with all eigenvalues equal to 1, then Ale is 
similar to A. To see this, it suffices to show the case in which A 
itself is a Jordan block. Suppose that the Jordan blocks of Ale are 
J1, J2, ... , Js, s 2: 2, and p-t Ak P = diag(Jt, J2, ... , Js)· It is easy 
to see that r(J- Ak) = n- 1. However, 

r(J - p-t Ale P) ~ n - 2, 

a contradiction. Thus s = 1 and Ale is similar to A. 

3.15 A"'= 3n-l ( ~ i i ) . 
3 ~ 1 

3.16 (a) Use induction on n. H n = 1, there is nothing to show. Suppose 
it is true for (n -1) x (n -1) matrices. Let At be an eigenvalue 
of A and Au1 = At Ut, where Ut is a nonzero unit vector. Choose 
u2, ... , Un such that Ut = (ut, u2, ... , Un) is a unitary matrix. 

Then Ui AUt = ( ~1 
:

1
), where At is an (n-1) x (n -1) matrix. 

The conclusion follows from the induction on A1• 

(b) If A= p-t BP, then /(A) = f(P- 1 BP} = p-l f(B)P. 

(c) Let U* AU be as in (a). Then Ak is an eigenvalue of 

(U* AU)k = U* AkU, 

so X" is an eigenvalue of Ale. Similarly, f(U* AU) = U* f(A)U 
and /(A) is an eigenvalue of /(A). 

(d) Let P = diag(p~,P2, ... ,pn) and Q = diag(q1, Q2, ... , Qn)· Then 
AP = QA implies aiiPi = ~iQi· Thus (pi - Qi)~i = 0, which 
means either ~i = 0 or Pi = Qi· Thus Aj(P) = j(Q)A. 

3.17 Consider then-square matrix A as a linear transformation on lF. If 
A has n linearly independent eigenvectors, say, Ut, u2, ... , Un, corre­
sponding to eigenvalues At, A2, ... , An, not necessarily different. Then 
these eigenvectors form a basis for F" and (Aut, Au2, ... , AUn) = 
(A tUb A21£2 1 ... , AnUn); that is, AP = diag(At 1 A2 1 ... , An.)P, where 
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P = (ul,u2, ... ,-un). Sop-tAP= diag(A1tA2, ... ,An.)· Conversely, 
if A is diagonalizable, i.e., p-l AP = diag(A1, A2, ... , An.)· Then 
AP = diag(At,A2, ... ,An}P. It follows that the columns of P are 
the eigenvectors of A. The eigenvalues do not have to be the same. 

3.18 There are finite number of A such that IAI +AI= 0. Thus there exist 
a 6 > 0 such that IAI +AI= 0 has no solution in (0, 8). 

3.19 By direct computations. 

3.20 Let the eigenvalues of A be At, ... , An. Then the eigenvalues of 
Ps(A) are Ps(At), ... ,ps(An.)· Thus Ps(A) is invertible if and only if 
ps(Ai) '# 0, i = 1, 2, ... , n, i.e., A and B have no common eigenvalues. 

3.21 (a) A is singular because (! ~) A= ( ~ -:v) has a zero row. 

(b) It suffices to show that A has two linearly independent eigenvec­
tors for eigenvalue 0. This is seen by verifying that 

where x is a nonzero solution to Bx = 0. 

(c) Take P- ( 1 0 ) Then PAP-1 - (B(I+vu) -Bv) and - ul · - 0 0 

(a) 

(b) 

(c) 

(d) 

(e) 

IAI- AI= AlAI- B(I + vu)l. 

If A2 divides IAI- AI, then B or I+ vu is singular. Note that 
II+ vul = 1 + uv. Thus A2 divides jAI- AI if and only if B is 
singular or uv = -1. 

False. 

True. 

True. 

False. 

False. 
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(f) False. 

(g) True. 

(h) True. 

(i) False. 

U) False. 

(k) True. 

(I) False. 

(m) False. 

(n) True. 

(o) False. 

(p) False. True when Ai 's are distinct. 

(q) True. 

(r) False. 

(s) True. 

(t) False. 

3.25 (a) Let Ut, u2, ... , Un be the eigenvectors of A belonging to the eigen­
values A1 , A2, ... , An, respectively,~ f: A; if if: j. We first show 
by induction that u1, u2, ... , Un are linearly independent. Let 

a1u1 + a2u2 + · · · + Cln'Un = 0 

and apply A to the above equation to get 

a1A1Ut + ~A2u2 + · · · + G.nAnUn = 0. 

However, 

Subtracting, 

a1 (At - An)Ut + · · · + G.n-1 (An-t - An)Un-1 = 0. 

By induction, u1 , u2, ... , Un- 1 are linearly independent and 

at = ~ = ... = an-1 = 0 

since Ai f: AJ for i f: j, consequently, an = 0. 
Now set P = (u~,u2 , .•. ,u,.). Then Pis an invertible and 

AP = Pdiag(A17A2, ... ,An)· 

It follows that p-I AP is a diagonal matrix. 
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(b) It is sufficient to show that if A commutes with a diagonal matrix 
whose diagonal entries are distinct, then A must be diagonal. 
This can be done by a direct computation. 

3.26 AB = BA-1 implies ABk = Bk A for any positive even k. [Note: 
ABk = BkA-1 if k is odd.] In particular, AB2 = B2 A. Since the 
eigenvalues of A are distinct, B2 is diagonalizable. 

3.27 Let Ai's be the eigenvalues of A. Then 

n. 

0 = tr(A2
)- 2tr(A3

) + tr(A4
) = L..\~(1- Ai)2

• 

i=l 

It follows that Ai = 0 or 1, i = 1, ... , n. Since 

n 

tr(A2
) = L ..\~ = c, 

i=l 

we see that cis an integer, and c of the Ai's equall, others 0. 

HAm= Am+l for some m, then Am= Ak for all k ~ m. It follows 
that the eigenvalues of A are all O's and 1 's. 

3.28 It suffices to show that all the eigenvalues of A equal zero. 

Let ..\ 1 , ..\2 , ••. , An be the eigenvalues of A. Then 

trAk=O, k=1,2, ... ,n, 

is equivalent to 

.At+ .A~+···+ A! = 0, k = 1, 2, ... , n. 

If all the ..\i 's are the same, they must be zero. Otherwise, suppose 
that Ai1 , ••• , Ai,.. are the distinct nonzero eigenvalues of A. The above 
equations can be written as 

l1..x:=1 +l2.Af:1 + ·· · +lm.At = 0, k = 1,2, ... ,n. 

Consider the linear equation system 

A~1 Xt + A~:~Z2 + · · · + ..\~"' Xm = 0, k = 1, 2, ... , m. 

An application of the Vandermonde determinant yields that the equa­
tion system has only the trivial solution 0. Thus all the eigenvalues 
of A are zero. 
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3.29 In the expansion of (A+ B)k, there are four kinds of terms: Ak, Bk, 
:sm Ak-m, and other terms each has a factor AB = 0. Note that 

3.30 

3.31 

3.32 

3.33 

3.34 

3.35 

By induction on k. 

-1,-1,5; U1 = (-l,l,O)t, U2 = (-1,0,1}t, U3 = (1,1,l)t. 
P = (ub u2, u3). 

3 is a repeated eigenvalue and its eigenspace has dimension 1. Thus 
A does not have three linearly independent eigenvalues. 

The eigenvalues of A are 1, 1, -1. To have three linearly independent 
eigenvectors, the rank of 1 - A must be 1, which implies x + y = 0. 

a= b = 0. T = ( -~ ~ t ) · 
y'2 0 y'2 

Let Ax = Ax, where x = (x1, x2, ... , Xn)t -:/= 0. Then for each i, 
L,#i O..ixi = (.X- ~i)Xi· Let lxkkl = max{lxd, lx2l, ... , lxnl} > 0. 
Then (.X- a~c~c)xk = L,i~k a~cixi. It follows that 

I.X- a~c~~:l ~ L lakj(Xj/Xkk)l ~ L lakil· 
i~k i~k 

3.36 Let U be a unitary matrix such that T = u• AU is an upper-triangular 
matrix. Then consider the trace of A • A. 

3.37 (a) tr A= E:=l Xk + i E:=l Yk is real. So E:=l Yk = 0. 

(b) Compute 

n n n n 
trA2 =LA~= LX~- L~ + 2iLXkYk· 

k=l k=l k=l k=l 

Since A is real, tr A2 is real, so E:=l XkYk = 0. 

(c) See (b). 

3.38 If u1 + '1.£2 were an eigenvector of A, let A(u1 + u2) = p.(u1 + '1.£2). 

However, A(u1 + u2) = .Xtu1 + .Xu2. Subtracting these equations, we 
have 0 = (p.-.X1)u1 +(p.-.X2)u2. This says that u 1 and u2 are linearly 
dependent. This is impossible. 
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3.39 From A(ubu2,u3) = (ttt,2u2 ,3u3), we have A= (ut,2'U2,3ua)P- 1, 

where P = (ut, u2, ua). Computing the inverse and multiplying gives 

3.40 Consider the matrix A over C. It has two distinct eigenvalues ±i, a.s 
does the matrix ( ~ 01

). So they are similar over C. Since they are 
both real matrices, they must be similar over the real too. 

3.41 H c = 0 and a#: d, then xo = -b/(a- d). If c = 0 and a= d, then A 
is a scalar matrix a/2. H c #: 0, then 

xo = [{a- d)± yf(a- d)2 - 4bc ]/(2c). 

3.42 (a) A-1 = ( !c :b). 
(b) If c #; 0, then 

If c = 0, then a#: 0. Consider 

(c) Let A1 and A2 be the eigenvalues of A. Then 

AtA2 = IAI = 1 and A2 = A1 1
• 

Thus A is similar to the diagonal matrix 

d~l ) 
1 . 

(d) If Ia + dl < 2, then IAt + A2l = IAt + A11
1 < 2 , so At is neither 

real nor purely imaginary. 
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(e) H Ia + dl = 2, the possible real eigenvalues of A are 1 and -1. 
The possible real matrices that A is similar to are 

( 
1 1 ) -1 ( -1 I, -1, T O 1 T , T O 

where T is a 2 x 2 invertible real matrix. 

1 ) r-1 
-1 , 

(f) H Ia + dl =I= 2, then A has two distinct eigenvalues ..\ 1, ..\2. Thus 
A is similar to diag(..\~, ..\2). It is easy to check that the matrix 

( 

..\1!..\a ..\12..\a ) 

..\1-..\a ~ 
2 2 

has the eigenvalues At, ..\2; therefore, it is also similar to diag(..\1, ..\2). 

(g) No. Take A = { ~ D . 
3.43 The eigenvalues of A and Bare 1 and 0. Thus both A and Bare 

diagonalizable and they are similar. A direct computation shows that 
they are not unitarily similar. 

3.44 Let p-1AP =B. Then AP = PB. Write 

Then Tis real and invertible for some t > 0, and AT= TB. Hence 
A and B are similar over JR. 

If A and Bare two matrices with rational entries and s-1 AS = B 
for some complex matrix S, then AS = S B. Consider the matrix 
equation AX = X B. It has either a nonzero solution in Q or no 
nonzero solution inC (as a field is closed under +, -, x, + ). 
M =(:D. 

3.45 The eigenvalues of A are 1, 2, 4, and corresponding eigenvectors are 
(1, -1, 1), (1,0, -1), and (1, 2, 1), respectively. They are orthogonal. 

3.46 A=(V ~ ~ )(~ ~)(~ n-o _ _l_ 0 0 
./2 ./2 
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3.4 7 By direct computation: AT = T A. 

3.48 It may be assumed that A is a Jordan block. Then 

SA= Ats or SAS-1 =At, 

where S is the matrix with (i, n- i + 1)-entry 1, and 0 elsewhere, 
i = 1, 2, ... , n. It can also be proved by observing that AI - A and 
AI- At have the same minors. A* is not similar to A in general 
because they may have different eigenvalues. A is never similar to 
A + I because the eigenvalues of A + 1 are those of A's plus 1. 

3.49 H r(A) < n - 1, then adj(A) = 0. H r(A) = n- 1, then the rank 
of adj(A) is 1, the only possible nonzero eigenvalue is tr(adj(A)) = 
Au+ A22 +···+Ann, where A,, is the minor of t!it, i = 1, 2, ... ,n. 

3.50 H Ax = .f>.x, then Ax= VAx; So (AA)x = A(Ax) = A( .f>.x) = Ax; 
that is, A is an eigenvalue of AA, thus an eigenvalue of AA since 
A ~ 0. Conversely, assume AAx = Ax with x =F 0. H A = 0, let 
y = Ax. Then Ay = AAx = Ax = 0, as desired. Let A =F 0. If 
Ax = -v'>.x, take y = ix. If Ax =F -.f>.x, take y = Ax + v'>.x. 

3.51 A number of different proofs are given below. 

( 1) Make use of block matrix techniques: Notice that 

( 
L
0
m -A ) ( Alm A ) = ( >Jm- AB 0 ) 

>Jn B In AB >Jn 

and that 

( ~B >.~J e~m ~) = e~m >.In~BA). 
Take determinants to get 

AniAlm- ABI = AmiAln- BAl. 

Thus I>Jm - ABI = 0 if and only if lAin - BAI = 0 when A =F 
0. It is immediate that AB and BA have the same nonzero 
eigenvalues, including multiplicities. 

(2) Use elementary operations: Consider the matrix 
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Adding the second row premultiplied by A to the first row: 

( 
AB 0) 
B 0 . 

Do the similar operation for columns to get 

Write in symbols 

( Im A ) ( 0 0 ) = ( AB 0 ) 
0 In B 0 B 0 

and 

( 
0 0 ) ( Im A ) ( 0 0 ) 
B 0 0 In = B BA . 

It is immediate that 

It is readily seen that AB and BA have the same nonzero eigen­
values, counting multiplicities. 

(3) Use the argument of continuity: Consider the case where m = n. 

If A is nonsingular, then BA = A-1(AB)A. Thus AB and BA 
are similar, and they have the same eigenvalues. 

If A is singular, let 6 be such a positive number that f.l + A is 
nonsingular for every f., 0 < f < 6. Then 

are similar and have the same characteristic polynomials. Thus 

I~In- (f.ln + A)BI = I.Un - B(Eln + A)l, 0 < f < 6. 

As both sides are continuous functions of f., letting f. --+ 0 yields 

l~ln- ABI = I~In- BAl. 

It follows that AB and BA have the same eigenvalues. 
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For the case where m # n, assume m < n and let 

be n x n matrices. Then 

A,B, = ( ~ ~ ) and B,A, = BA. 

It follows that A1B1 and B1A17 consequently AB and BA, have 
the same nonzero eigenvalues with the same multiplicity. 

(4) Treat matrices as operators: We need to show if Alm- AB is 
singular, then so is Ain-BA, and vice versa. Assume that A = 1. 
If Im- AB is invertible, let X = (Im- AB)-1• One may verify 

(In- BA)(In + BXA) =In. 

Thus In - BA is invertible. 

This approach gives no information on multiplicity. Note that 

lim + ABI = lin + BAI = I i ::.. I· 
3.52 Let a= (a11 a2, ••• , an)t and e = (1, 1, ... , l)t. Denote B =(a, e) and 

C=Bt. ThenA=BC. 
n 

!AI- AI= !AI- BC! =An-21M- CBI = An-2 (A- L:a~)(A- n). 
i=l 

The eigenvalues of A a.re 0, ... , 0, n, E a~, all nonnegative. 

3.53 A2 = 0 and 0 is the only (repeated) eigenvalue of A. Thus A cannot 
be similar to a diagonal matrix. The eigenvectors corresponding to 0 
are the solutions to vtx = 0. The dimension of the space is n - 1. 

3.54 It is sufficient to notice that 

and 

( B
A -AB ) = T_ 1 ( A +

0 
iB 0 ) 

A-iD T, 
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where 

S = ....!:._ ( I I ) T = ....!:._ ( I _ii
1 

) . 
~ I -1 ' ~ -il 

3.55 (a) It follows from Problem 3.51. 

{b) By (a), 

tr(AB)k = tr(AB)(AB) · · · (AB) 

tr A(BA) · · · (BA)B 

tr(BA)(BA) · · · (BA) 
= tr(BA)k. 

(c) No, in general. Take 

(d) If A had an inverse, then AB-BA= A would imply 

ABA-1 - B =I. 

Thus B is similar to B +I. This is impossible. 

(e) Write ABC= A(BC), then use (a). 

(f) No, in general. Take 

A=(~ D· B=(~ n. C=u n· 
(g) By (a) and (b). 

(h) If A orB is nonsingular, say, A, then AB = A(BA)A-1• 

(i) No. 

165 

3.56 J.,.. has n eigenvalues 0, ... , 0, and n. The eigenvectors are the solu­
tions to the system X1 + X2 + · · · + x.,.. = 0. K has 2n eigenvalues; 
they are 0, ... , 0, -n and n. For the eigenvalue .\ = 0, the eigen­
vectors are the solutions to the systems Xt + x2 + · · · + x.,.. = 0 and 
Xn+l + Xn+2 + · · · + X2n = 0. The following 2n- 2 vectors form a 
basis for the solution space: 

ai = (l,O, ... ,O,-l,O, ... ,O), i = 1,2, ... ,n-1, 
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where -1 is in the ( i + 1 )-position, and 

an+i = (0, ... ,0,1,0, ... ,0,-1,0, ... ,0), i = 1,2, ... ,n-1, 

where 1 is in the ( n + 1 )-position and -1 is in the ( n + i + 1 )-position. 

For A= -n, an eigenvector is (1, ... , 1, -1, ... , -1). 

For A= n, an eigenvector is (1, ... , 1). 

3.57 A= J- I, where J is the matrix all of whose entries are equal to 1. 
(J- I)(n:l J- I)= I. Thus A-1 = (J- I)-1 = n:l J- I. 

3.58 (a) Let A1, •.• , A8 be the nonzero eigenvalues of A. Then 

8 

tr A= LAi· 
i=l 

Let • ,. 1 
A= -trA, 

s 
s = L(Ai- ).)2 ~ 0. 

By computation, 

i=l 

i=l 

i=l i=l 
8 

= L~ -s.X2 
i=l 

= tr A2 - !(tr A)2 • 
8 

i=l 

The desired inequality follows. Equality holds if and only if the 
nonzero eigenvalues are all the same. 

(b) Note that when A is Hermitian, the rank of A is equal to the 
number of nonzero eigenvalues of A. 

If A 2 = cA for some c, then A'f = cAi. It is readily seen that the 
nonzero eigenvalues are all equal to c. 

(c) Let A17 A2, ... , Ak be the nonzero eigenvalues of A. Then A~, A~, 
... , A~ are nonzero eigenvalues of A2 • By the Cauchy-Schwarz 
inequality, 

(tr A)2 = (Al + A2 + · · · + Ak)2 ~ k(A~ +···+A~)= ktr A2
• 
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If {tr A)2 > (n -1) tr A2, then k must equal n. Thus IAI =F 0. 

3.59 Consider the Jordan blocks of A. The possible eigenvalues of A are 
0, 1, and -1. 

3.60 We call a "product" a "word". We use the fact that tr( AB) = tr( BA) 
for any square matrices A and B of the same size. First view 8 5,3 
as a collection of the words of length 5 with 3 Y's and divide (10 of) 
them into two groups: 

XY2XY, Y 2XYX, YXYXY, XYXY2, YXY2X 

and 
X2Y3, XY3X, ysx2, y2x2Y, YX2Y2. 

The words in each group all have the same trace. So 

1 5 tr(8s,3) = tr(XY2 XY + X 2Y3) = tr X{Y2 XY + XY3), 

where Y 2XY, XY3 E 8 4,3. There are two more elements in 8 4,3: 
Y XY2 and Y3 X, which have the same trace as Y XY2 , XY3, re­
spectively. (In fact, all the 4 words in 8 4,3 have the same trace.) The 
conclusion follows at once. One may generalize this to the words of 
length m with j copies Y and m - j copies of X. 

3.61 It is easy to see that the rank of AB is 2 and that 

(AB)2 = 9(AB). 

Thus 
r(BA) ~ r[A(BA)B) = r(AB) 2 = 2 

and BA is invertible. However, 

(BA)3 = B(AB)2 A= B(9AB)A = 9(BA)2. 

Since BA is invertible, it follows that BA = 912. 

3.62 (1,0, -1) is an eigenvector of the eigenvalue 3. 

A = ~ ( ~~ ~~ ~ ) . 
5 2 13 

3.63 A= u ~ D. 
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3.64 (a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 
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Direct verification by definition. 

[A,B + C] = A(B +C)- (B +C)A = AB+ AC- BA 
-CA = (AB-BA)+ (AC- CA) = [A, B) + [A, C]. 
[A, B)* = (AB-BA)* = B* A* -A* B* = [B*, A*). 

Note that p- 1 (PXP- 1 , Y]P = [x,P-1YP). 

tr(AB- BA) = trAB- tr BA = 0. 

tr( I - [A, B)) = n. H X is nilpotent, then tr X = 0. 

tr[A, B] = 0 # tr I = n. 

Take X =diag(1,2, ... ,n) andY= (YiJ), where 

Then A= [X, Y). Note that X is Hermitian. 

{i) [A, B) = 0 ~ AB = BA. So A2 B = A(AB) = A(BA) = 
(AB)A = (AB)A = BA2 • Inductively for any positive integer p, 
APB = BAP. For the same reason, A"Bq = BqAP. 

(j) If A is nonsingular, then AB-BA= A implies ABA-1 -B =I. 
Taking trace gives 0 = n. Contradiction. 

(k) If A and B are Hermitian, then [A, B)* = (AB-BA)* = B* A* 
-A*B* = BA- AB =-(AB-BA)= -[A,B). So [A, B) is 
skew-Hermitian. The other case is similarly proved. 

(1) Similar to (k). 

(m) See (h). If A is skew-Hermitian, X, Y there are Hermitian. 

(n) Let C =AB-BA. Then C* = (AB)* - (BA)* = -C. SoC is 
skew-Hermitian. Thus iC is Hermitian; all eigenvalues of C are 
pure imaginary. 

(o) It is easy to get from [A, [A, A*]]= 0 that 

A2A* +A*A2 = 2AA*A. 

Multiplying both sides by A* from left and taking trace, 

which implies the normality of A (see Chapter 4, Problem 4.91). 

(p) By a direct verification. 
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( q) Let e = [A, B). Show that em = 0 for some positive integer 
m. For this, prove by induction that ABm - Bm A= mBm- 1e. 
Let p(..X) be the characteristic polynomial of B. Then p(B) = 0. 
Using the above fact, show that ]I(B)e = 0, ]I'(B)c'2 = 0, ... , 
p<n>(B)en = 0. Sincep<n>(B) = n!l, we have en= 0. Therefore 
the eigenvalues of C are necessarily zero. 

[A, B) = [B, A] if and only if matrices A and B commute. 

3.65 Use the Jordan blocks of A. Or prove as follows. For the fixed..\, let 
Vi and V2 be the solution spaces of (M -A)x = 0 and (M -A)2x = 0, 
respectively. We need to show that there exists an invertible matrix 
P such that p-l AP is diagonal if and only if V1 = V2 for every ..\ E C. 

Suppose that A is diagonalizable. We show that Vt = V2. Let 
T-1 AT= diag(..\1, ..\2, ... , ..\n), where A1, ..\2, ... , An be the eigenval­
ues of A. Then T-1 (..XI- A)T = diag(..\- ..\11 ,\- .\2, .•• , ,\- ..Xn) and 
T-1 (..XI- A)2T = diag((..\- ..\1)2, (..\- ..\2)2, ..• , (..\- ..Xn)2) . ..\- ;\ = 0 
if and only if ..\-..\i)2 = 0. So r(..\I -A)= r(..\1 -A)2• Since Vi~ V2, 

we have vl = V2. 
Now suppose V1 = \12. If A is not diagonalizable, we will draw a 
contradiction. Let J be a Jordan block of A corresponding to an 
eigenvalue Ao. H the size of J is more than 1, then r(..\oi- J) = 

r(..\oi- J)2 + 1. Using Jordan form of A, we see that r(..\ol - A) > 
r(..\ol- A)2. It follows that dim V1 <dim V2. A contradiction. 

3.66 (a)=>(b): Obvious. 

(b)=>(c): First note that the linear systems Ax= 0 and A 2x = 0 have 
the same solution space when r(A) = r(A2). Let x E Im AnKer A. 
Then Ax = 0, x = Ay for some y, and 0 = Ax = A(Ay) = A2y; 
therefore, 0 = Ay and x = 0. 

(c)=>( d): Choose bases for ImA and Ker A, they form a basis for en. 
Regard A as a linear transformation on en, the matrix representation 

of A on this basis is of the form (~g), where D is invertible. 

(d)=>(a): Notice that 

A• = p ( ~ ~ ) p-1 p ( ~ ~ ) p-1 = BA, 

where B = P ( ~ g) p-t is nonsingular. 
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3.67 Only At always has the same eigenvalues as A, while At, A, A*, and 
(A • A) i all have the same singular values as A. 

3.68 Let Au = ..\u, u ':f: 0. We may assume that u is a unit vector. Then 
u• Au = Au*u = ,\. So p ~ w. By the Cauchy-Schwarz inequality, one 
can show that w ~ u. 

3.69 We show that if A* AB = A* AC then AB = AC. Notice that 
A* A(B - C) = 0 implies (B* - C*)A* A(B - C) = 0. It follows 
that [A(B-C)]*[A(B-C)] = 0. Thus A(B-C) = 0 and AB = AC. 

3. 70 Since A2 B = A, r(A) = r(A2 B) ~ min{r(A2), r(B)} $ r(A). So 
r(A) = r(A2) = r(B). Thus, the null spaces of A, A2 , and Ball have 
the same dimension. If Bx = 0, then Ax= (A2 B)x = 0. Hence, the 
null spaces of A 2 and B are subspaces of the null space A, and they 
all have to be the same. For any u E C'\ (A2 B)( Au) = A(Au). So 
A2BAu = A2u; that is, A2(BAu- u) = 0, or BAu- u e KerA2 • 

Therefore B(BAu- u) = 0, i.e., B2 Au= Bu for all u, or B2 A= B. 

3.71 (a) n-1. (b) ImA={yecn ly*x=O}. (c) KerA=Span{x}. 

3. 72 The dimension of Mn(Q) over Q is n 2 • Thus 

I, A, A2 , ••• , An
2 

are linearly dependent over Q. Let 

ao I+ alA+ a2 A2 + ... + lln2 An2 = 0, 
bo b1 ~ bn2 

where a's and b's are integers and b's are different from 0. Take 

f(x) = bobl ... bn2 (ao + alx + a2x2 + ... + an2 xn2). 
bo b1 ~ bn2 

For A= diag(~, j, i), 

f(x) = 12(x- ~) (x- ~) (x- ~) = (12x- 6(12x- 8)(12x- 9). 

3.73 AX = XB ~ A2X = A(AX) = A(XB) = (AX)B = XB2
• In 

general, A" X= x" B for any positive integer k. Let P(A) = IAI- AI 
be the characteristic polynomial of A. Then p(A) = 0. It follows 
that Xp(B) = 0. Write p(A) = (A - a1)(..\- l12) ···(A -an), where 
a1,a2, ... ,an are eigenvalues of A. Since A and B have no common 
eigenvalues, we see that p(B) is invertible. Thus X= 0. 
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3. 74 (a) Let Av = AV, v =F 0. Multiplying both sides by adj(A): 

adj(A)Av = Aadj(A)v or IAiv = Aadj(A)v 

and adj(A)v = !IAiv. 
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(b) Let Av = AV, where v =F 0. If A =F 0, then from the solution of 
(a), vis an eigenvector of adj(A). 

Suppose A= 0. If r(A) ~ n- 2, then adj(A) = 0 and adj(A)v = 
0. If r(A) = n- 1, then the solution space to Ax = 0 baa di­
mension 1 and { v} is a basis of the solution space. However, 
A(adj(A)v) = 0; that is, adj(A)v is a solution to Ax = 0. Thus 
adj(A)v = p,v for some p,. 

3. 75 (a) Since the eigenvalues of A are all distinct, the eigenvectors of 
A corresponding to the distinct eigenvalues are linearly inde­
pendent and they form a baBis for en. Thus A is diagonaliz­
able. Let T- 1 AT = diag(A1, A2, ... , An), where At, A2, ... , An 
are the eigenvalues of A. Let C = T-1 BT. Since AB = BA, 
diag(A~t A2, ... , An)C = C diag{A~t A2, ... , An)· It follows that 
AiCi3 = C,j Aj for all i, j. Since Ai =F Aj when i f. j, we have 
Cij = 0 when i =F j. Thus C is diagonal; that is, T-1 BT is 
diagonal. Now T- 1(AB)T = T-1 ATT-1 BT is also diagonal. 

(b) Suppose A and B are diagonalizable. Let T be an invertible 
matrix such that T-1 AT = diag(p,1I, J.t2I, ... , P,ki), where 1-'t 
are distinct eigenvalues of A, k ~ n, and I's are identity mar 
trices of appropriate sizes. Since p, 's are different, AB = B A 
implies that T- 1 BT = dia.g(B17 B2, ... , Bk), where each Bi is 
a matrix of the same size aB 11-ii. Since B is diagonalizable, 
all Bt. are necessarily diagonalizable. Let R; 1 Bt.Rt. be diagonal. 
Set R = diag(R1,R2, ... , Rk)· Then R is invertible and both 
R-1T-1 ATR and R-1T-1 BTR are diagonal. 

3. 76 (b), (d), (g). 

3. 77 It is sufficient to notice that x = (I- A)x + .Ax. 

3. 78 It is routine to show that T(Y + kZ) = T(Y) + kT(Z); that is, T 
is a linear transformation. When C = D = 0, T( X) = AX B. If 
both A and B are invertible, then T A = AT =I, where A is defined 
by A( X) = A - 1 X B -t, which is also a linear transformation. Now 
suppose T is invertible. Let T A = AT = I. For the identity matrix 
I, I= T A(I) = A(A(I))B. So A and B must be nonsingular. 
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3. 79 (a) By a direct verification. 

{b) T(A) = 0. 

(c) Compute T2(X), T3(X), T 4 (X), ... , it is readily seen that each 
term of T2k(X) contains a factor Am, m ~ k. Thus T2k = 0. 

(d) By a direct verification. 

(e) Let 
p-t AP = diag(.\1, ... , >.n) 

and let fl be the i-th column of P. Then 

Let Bt.j be the matrix having Pi as its j-th column and 0 as 
other columns. Then {Bi;} form a basis for Mn(C) and T has 
the matrix representation on the basis 

( 

.\1/- At 0 t .. . 

0 .\2/- A .. . 
T= . . . . . . . . 

0 0 

It is readily seen that if A is diagonalizable, so is T. 

(f) If T and£ commute, then T£{X) = £T(X) is equivalent to 

ABX +XBA = BAX +XAB 

or 
(AB- BA)X = X(AB- BA). 

When A and B commute, AB - BA = 0. 

T = 0 if and only if A is a scalar matrix. 

If T commutes with £, then AB - BA commutes with any matrix in 
Mn(C). Thus AB-BA is a scalar matrix. For tr(AB- BA) = 0, we 
have AB = BA. 

3.80 (a) Let 

Then 
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or 
as+tas+l + · · · + anan. E KerA. 

Let 
as+lO's+l + · · · + an.On = a1a1 + · · · + asas. 

Then a1 =···=an,= 0 since {a~, ... ,a8 ,a8 +b···,Un} is a 
haBis. It follows that Aas+l, ... , Aan. are linearly independent. 

(b) By (a). 

(c) {at, ... ,as,O's+lt···,an} is a basis. 

The sum is not a direct sum in general. Consider A on JR2 defined by 
A(x,y)t = (x- y,x- y)t. It's possible that no /3;, falls in KerA. 

3.81 (a) False. It is always true that A(Vi n V2) ~ A(Vi) n A(V2). But 
equality does not hold in general. Take V1 to be the line y = x, 
V2 to be the x-axis, and A to be the projection onto x-a.xis. 

(b) True. 

(c) True. For every wE Vi+ V2, let w = Vt + v2. Then A(w) = 
A(vt)+A(v2) E A(Vt)+A(V2). So A(Vi +V2) ~ A(Vt)+A(V2). 
However, if z E A(Vt) +A(V2), then z = A(zt) +A(z2) = A(z1 + 
z2) E A(V1 + V2). So equality holds. 

(d) False. Take V1 to be the line y = X, V2 to be the line y = -X, 

and A be the projection onto the x-axis. 

3.82 The proofs for the equivalence of (a)-(f) are routine. The result does 
not hold in general when V is of infinite dimension or A is a linear 
transformation from V toW. For instance, define 8 on IP[x] by 

8f(x) = xf(x). 

Then Ker 8 = { 0}, but 8 is not invertible. 

3.83 (a) Consider A as a linear transformation on C"'. The vectors v, A(v), 
A 2 ( v), ... , A n-l ( v) form a basis for en. The matrix presentar 
tion of the linear transformation under this basis has a submar 
trix In-1 on the upper-right corner. Thus for any eigenvalue >., 
r(>.I -A)= n-1. So dimKer(>.J -A)= 1, and the eigenvectors 
belonging to >. are multiple of each other. 

(b) Let u1 , u2 , ••• , Un be eigenvectors, respectively, corresponding to 
the distinct eigenvalues Alt .\2, ... , An of A. Let u = u1 + u2 + 
· · ·+un· Then A(u) = AtUt +.\2U2+· ··+>-nun., A2(u) = >.~u1 + 
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'\2 + '\2 An-1( ) '\n-1 + '\n-1 + + '\n-1 I'\2U2 •• ·+1'\n'Un, •.• ' U = 1'\1 Ut 1'\2 'U2 • • • 1'\n Un· 

The coefficient matrix of u,A(u), ... ,An-1(u) under the basis 
u1, 'U2, ••• , Un is a Vandermonde matrix. This matrix is nonsin­
gular for distinct At, ..\2, ... , ..\n. Sou, A(u), A2(u), ... , An-1 (u) 
are linearly independent. 

3.84 Let 
a1x + tl2A(x) + · · · + anAn- 1(x) = 0. 

Applying Ak, k = n - 1, n - 2, ... , 1, to both sides of the equation, 

The eigenvalues of A are all zero. The matrix of A under the basis is 
the matrix with all (i, i + 1)-entries 1 and 0 elsewhere. 

3.85 Use matrix representations. For matrices A and B, if AB = I, then 
BA =I. It is not true for infinite dimensional spaces. 

Consider IP[x] with A and 8 defined as 

Af(x) =at+ il2X + ... + anxn- 1 

and 
BJ(x) = xf(x), 

where f(x) = ao + a1x + · · · + anxn. 

3.86 Let ktU.t + k21t2 + · · · + knun = 0. Applying the linear transform&­
tionA to it yields ktAtUl + k2..\2u2 + · · · + knAn'Un = 0. Multiply­
ing k1 u1 + k2u2 + · · · + kn'Un = 0 by An, then subtracting, we see 
kt (..\1 - An)ul + k2(..\2- An)u2 + · · · + kn-1(..\n-1 - An)Un-1 = 0. By 
induction, Ut, 'U2, ••• , Un-1 are linearly independent. So all ki must 
be 0, i = 1, 2, ... , n - 1. It follows that kn has to be 0 too. 

3.87 (a) False. 

(b) False. 

(c) True. 

(d) False. 

(e) True. 

(f) False. 

(g) True. 
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(h) True. 

(i) False. 

(j) True. 

(k) True. 

(I) False. One direction is right. 

(m) True. 

(n) False. One direction is right. 

3.88 (a) False. Consider A= 0. 

(b) True. If the vectors a 1 , a 2 , •.• , an are linearly dependent, then 
there exist k11 k2 , .•• , kn, not all zero, such that 

which leads to 

a contradiction. 

3.89 (a) A(<>t,<>2,<>a) = (a,,lt2,<>a)A, where A= ( ~ ~ ~ ) . Since 

A is invertible, A is invertible. 

(b) A-1 = ( ~ ~1 ~1 ) . 
0 0 1 

So A-1(at) =a~, A-1(a2) = a2- ah A-1(aa) = aa- a2. 

(c) The matrix of 2A- A-1 under the basis {a1,a2,a3} is 

2A - A - 1 = ( ~ ~ ~ ) . 
0 0 1 

3.90 They arc all p(,\) = ,\a. 

3.91 For convenience, denote 
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To find ImA, apply row operations to (Aut,Au2,Au3): 

( ~ ~ ~)--+(~~~)· 
-1 -2 -1 0 0 0 

Thus {Au1, Au2 } is a basis for ImA and 

To find an equation for A, let 

Then 

( ~ ! 1 -:,2 ) ( :: ) = ( ~~ ) . 
1 1 -1 Ya xa 

Denote by B the 3 x 3 matrix on the left-hand side. Then By= x, 
where y = (yt,Y2,y3)t, andy= B-1x, where 

Thus 

n-1 = ( ~7 !1 -:,
5 

) . 
-1 0 1 

A(x) = Y1Au1 + Y2AU2 + YaAua 

= (Au11AU2,Au3)Y 

(Au~, Au2, Aua)B-1x 

( 
~~ 1 ~ 1 !~2 ) ( :~ ) . 

9 1 -10 X3 

3.92 (a) Consider Ax= 0 to get a basis for Ker A: 

al = (- 2, -~, 1, o)t, a2 = ( -1, -2, 0, 1)t. 

Let 
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and 

Then 
Ker A = Span {.81, .82}. 

(b) To find Im A, apply row operations to (AE17 Ae2, A.f3,.Af4) to get 

ImA = Span{Af17Af2}. 

(c) {,81, .82, £1 , e2} serves as a basis for V. The matrix representation 
of A under this basis is 

(i ~ ~ ~)· 
2 -2 0 0 

3.93 (a) The matrix of A+ B under ,817 .82 is ( ~ ~ ). 

(b) The matrix of AB under a1, 02 is ( 1~ 1~). 
(c) The coordinate of A(u) under 01, a:2 is (3, 5). 

(d) The coordinate of B(u) under ,81, .82 is (9, 6). 

3.94 Take a basis for W, then extend it to a basis for V. 

3.95 (a) Apply A-1 to both sides of A(W) ~ W to get 

W ~ A-1(W). 

However, 
dimA- 1(W) $dim W. 

Therefore, 

(b) No, in general. 

3.96 With matrix A, we see that A(a1) = 2at and A(a2) = 01 + 2a2. Let 
ka1 E W1. Then A(kal) = kA(at) = 2ka:t E W1. So Wt is invariant 
under A. H W2 is an invariant subspace such that 1R2 = W1 EB W2, 
then the dimension of w2 is 1. Let 0:2 = PQl + W2, where W2 E w2, 
and let A(w2) = qw2. From A(o2) = a:1 + 2a2, we have a1 + 2o2 = 
2pa1 + qw2. Subtracting 2a2 = 2pa1 + 2w2, we have a1 = (q- 2)w2, 
which is in both W1 and W2. But W1 n W2 = {0}. A contradiction. 
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3.97 

3.98 

HINTS AND ANSWERS FOR CHAPTER 3 

(a) It is routine to show that A is a linear transformation on M2 (R). 

(b) The matrix of A under the basis is ( ~l ! 
0 -1 

(c) dim(ImA) = 2. (~1 ~) and (~ ~1 ) form a basis. 

(d) dim(Ker A)= 2. (~ ~) and (~ ~) form a basis. 

~1 ~1) 
1 0 . 
0 1 

With A2 =A and 8 2 = 8, one may show that A(A-8)2 =A-ABA. 
Similarly, (A - 8)2 A = A - ABA. So A commutes with (A - B)2 • 

For the second part of the problem, it is sufficient to notice that 

(Z- A- 8)2 = [Z- (A+B)]2 = Z- 2A- 28+ (A+ 8)2
• 

3.99 dim 1m A = 2 and E~, E2 for a basis. dim Ker A = 2 and (1 = Et - E2 

and (2 = E1 - E3 form a basis. dim(ImA + Ker A) = 3 and E1 , E2 , Ea 

form a basis. dim(ImA n Ker A)= 1 and (a= E1 - E2 is a basis. 

3.100 (a) It is routine. 

(b) The line y = x. 

(c) KerB and 1mB are both the line y = x. 

(d) Ker 8 and 1mB have nonzero elements in common. 

3.101 (a) By definition. 

(b) AB(Xt,X2, ... ,Xn) = (0,Xn1 Xt,X2 1 ••• 1 Xn-2)· 

8A(xt,X2, ... ,xn) = (xn-t,O,xt,X2 1 • •• ,Xn-1)· 

An = 0 and sn = Z. 

(c) Under the standard basis (column vectors) e1, e2, ... , en, A = 
(e2,eg, ... ,en-1,0) and B = (e2,eg, ... ,en-t,et). 

(d) The dimensions of Ker .A and KerB are 1 and 0, respectively. 

3.102 Let { "Yt, .•. , "Yr} be a basis for Ker .A. To show that V is the direct 
sum of the subspace spanned by {31 , ••• , 13m and Ker .A, we show that 
{{3t, ..• , f3m, "Yl, ..• , "Yr} is a basis for V. 

Let v E V. Then .A(v) E Im.A. Writing 



HINTS AND ANSWERS FOR CHAPTER 3 179 

and replacing ai by A(.Bi), we have 

and 

Thus 

Let 
v- atf31- ... - am.Bm = bt"Yl + ... + br"Yr· 

Then 
v = atf3t + ... + am.Bm + bt"Yl + ... + br"Yr· 

Therefore 
V = Span{,Bt, ... ,.Bm} + KerA. 

Now show that ,Bt, ... ,/3m,"Yb ... ,"'fr are linearly independent. Let 

Ct/31 + '•' + Cm.Bm + dt"Yl + • • • + dr"'fr = 0. 

Applying A to both sides of the above identity gives 

CtA(,Bl) + ... + emA(.Bm) + dtA("Yt) + ... + d,.A("Yr) = 0, 

that is, 
CtOt + · · · + CmO!m = 0. 

Thus c1 = · · · = Cm = 0 due to the independence of o 1 , ... , am. So 

dt"Yl + · · · + dr"Yr = 0, 

and d1 = · · · = dr = 0 for the similar reason. The conclusion follows. 

3.103 If V = Im.A Ea KerA, we show that ImA2 = ImA. Obviously, 
ImA2 ~ ImA. Let u E lmA. Then u = Av for some v E V. Write 
v = WI + w2, where w1 E 1m A and w2 E Ker A. Let WI = Azt. Then 
u = Av = A(wt) + A(w2 ) = A(w1 ) = A2(z1) e ImA2• Therefore, 
ImA2 = ImA and r(A2 ) = dim(ImA2 ) = dim(ImA) = r(A). 

3.104 (a), (b), (c), (g) are easy to check. (k), (I), (m) follow from (j). 

{d) (A+Z)-1 = -iA+Z. 
(e) Note that if x E Ker A, then x = x- .Ax. 
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(f) First note that V = Im A + Ker A, since 

v = Av + ( v - Av). 

Now let 
z E Im AnKer A and z = Ay. 

Set Ay = x- Ax for some x E V by (e). Then 

x=Ay+Ax. 

Applying A to both sides results in 

Ax= A 2y+A2x = Ay+Ax. 

Thus z = Ay = 0 and ImAnKerA = {0}. 

(h) Let 8 be the linear transformation on V such that 

Bx = x, x E M and By = 0, y E L. 

Such a B is uniquely determined by M and L. 

(i) If Ax = Ax, x :1: 0, then 

A2x = Ux = >..2x. 

(>..2 - >..)x = 0. 

Thus >.. = 0 or >.. = 1. 

(j) By (f), take a basis for ImA and a basis for Ker A to form a basis 
for V. Then the matrix representation of A under the basis is of 
the desired form. 

3.105 (a) If Ax= >..x, then A(Bx) = B(Ax) = >..(Bx), thus Bx E V". 

(b) If x E Ker A, then Ax= 0. Note that A(Bx) = B(Ax) = 0, thus 
Bx E Ker A, and Ker A is invariant under B. Similarly, Im A is 
also invariant under B. 

(c) Let 8.\ be the restriction of Bon V.\; that is, B.\(v) = B(v), v E 

V". B" has an eigenvalue inC and an eigenvector in V". 
(d) By induction on dimension. Take v to be a common eigenvector 

of A and B. Let W be a subspace such that V = Span{v} ~ W. 
Let A1 and B1 be the restrictions of A and B on W, respectively. 
Then A1 and Bt commute. Now apply induction hypothesis. 

When Cis replaced by R, (a) and (b) remain true. 
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3.106 (a.) By definition. 

{b) 0. 

(c) The matrices of V under the bases are, respectively, 

where the e's are the vectors in the standard basis of !Rn. 

{d) No, since all eigenvalues are 'Dare 0. 

3.107 (a) Note that 
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(b) ce~:z: is an eigenvector of V2 belonging to the eigenvalue A2 • For 
any positive number A, it is easy to see that 

Hence A is an eigenvalue of V2. 

3.108 (a) Let p, q E Pn[x]. Then 

A((p + kq)(x)) A((p(x) + lcq(x)) 

= x(p(x) + kq(x)'- (p(x) + kq(x)) 

= xp'(x) + xkq'(x)- p(x)- kq(x) 

= A(p(x)) + kA(q(x)). 

So A is a linear transformation on Pn[x]. 

(b) KerA = {kx IkE lR}. 
ImA = { ao + ~x2 + ... + Cln-lXn-l I ao, a2, ... 'an-l E IR }. 

(c) By (b). 

3.109 (a) Let W be an invariant subspace of V under A. Then W is 
invariant under (A -ll)i fori= 1, 2, ... , n. Observe that 

u2 (A- AZ)ut 
u3 (A - ll)u2 

or 
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Since W is invariant under 

(A - \"T)i-1, . 1 2 
/\.L ~ = ' ' ... ' n, 

if u1 E W, then u2, ... , Un E W and W = V. 

(b) Let x E W, x-:/= 0, and let 

X= <li~ + •'' + tlnUn, 

where i ~ 1 and Bi f. 0. If i = n, it is trivial. Suppose i < n. 
Since W is invariant under A, consequently under (A - XI)n-i, 

and 

(A- XI)"-'x E W, (A- AI)un = 0, 

(A- XI)"-'x = (A- .tl')"-'(ai'Ut + · · · + anttn) 

= a-&(A- XI)"-1
u1 + 0 

= BiUn E W. 

It turns out that Un E W. 

(c) Observe that fork= n- i + 1, ... , n- 1, 

(A - XI)uk = uk+l E Vi 

and 
Aun = AUn E l/i. 

Thus each Vi is invariant under A- XI. Write 

A = (A - Xl) + .tl'. 
It follows that Vi is invariant under A. 
To show that 

(A- XI)'x = 0 <=> x E Vi, 

let x be a linear combination of Ut, u2, ... , Un 

H (A- .U)ix = 0, applying (A- XI)' to both sides results in 

0 = X1 ~+1 + ·' ' + Xn-iUn· 

Thus Xt = X2 = · · · = Xn-i = 0, and x E l/i. 
The other direction is immediate by observing that 

(A - XI)'uk = 0, k ~ n - i + 1. 
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(d) Let W be an invariant subspace of A with dimension m. Then 
there must exist an x E W such that 

x = <Zi'Ui + · · · + anttn, ai ¥: 0, i :5 n- m + 1. 

Applying 

(A-..\Z)n-k, k=i,i+l, ... ,i+m-1, 

to both sides consecutively, we have 

Thus W = V m since they have the same dimension. 

(e) Note that an eigenspace is invariant. 

(f) If V =WED U and Wand U are nontrivial, then 'Un E Wand 
Un E U. This is impossible. 

For the matrix S such that SAS- 1 = At, take S to be the matrix 
with all (i, n- i + 1)-entries 1, i = 1, 2, ... , n, and 0 elsewhere. 

3.110 If Ao is an eigenvalue of£, 

..C(Xo) = ..\0Xo, for some Xo ¥:0, 

then 
AXo = At1Xo. 

If xo is a nonzero column vector of X0 , then Axo = .Aoxo and ,\0 is 
an eigenvalue of A. Conversely, if x0 is an eigenvector of A belonging 
to ..\o, let Xo be the matrix with all column vectors x0 . Then 

..C(Xo) = AXo = ..\oXo, 

and .Ao is an eigenvalue of £. 

The characteristic polynomial of ..C is the n-th power of the charac­
teristic polynomial of A. To see this, consider the basis of Mn(C) 

{En,~b ... ,Ent,E12,E22, ... ,En2 1 ••• , Etn 1 ~n 1 ••• ,Enn}, 

where Ei; is the n x n matrix with the ( i, j)-entry 1 and 0 elsewhere. 
It is easy to compute that 
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Thus the matrix representation of £ under the basis is 

The desired result follows immediately. 

3.111 (a) and (b) can be directly verified. 

(c) B is one-to-one, but not onto. 

(d) For every J(x), (.AB- BA)(J) =f. 
(e) By induction on k. 

3.112 Obviously, KerA ~ KerA2 ~ ••• ~ KerAA: ~ KerAA:+l ~ .... 
This inclusion chain stops because the dimensions are finite numbers. 
Thus Ker Am = Ker Am+k for some m and for all positive integers 
k. We claim that V = Ker Am Ea ImAm. All we need to show is 
KerAm nimAm = {0}. Let u E KerAm nimAm. Then Am(u) = 0 
and u = Am(v) for some v. So Am(u) = A 2m(v) = 0, which implies 
v E KerA2m = KerAm. Thus Am(v) = 0; that is, u = Am(v) = 0. 



Hints and Answers for Chapter 4 

4.1 It is sufficient to show that (c)=>(a) and (g)=>(a). 

4.2 

(c)=>(a): It is easy to see that ass E JR, s = 1, 2, ... 'n, by taking X 

to be the column vector with the 8-th component 1, and 0 elsewhere. 

Now take x to be the column vector with the s-th component 1, the 
t-th component c, and 0 elsewhere, where s ::/: t and cis an arbitrary 
complex number. Then 

Putting c = 1 and i gives a.,t = Clts, or A* =A. 

(g)=>(a): Let A= U*TU, where U is a unitary matrix and T = (tst) 
is an upper-triangular matrix. Let the eigenvalues of A; that is, the 
diagonal entries ofT, be At, A2, ... , An· Then 

which is 
n n 

L:t~., = L ltssl2 + L ltstl2
• 

8=1 8=1 8<t 

It is immediate that tst = 0 for every pair of 8 and t, 8 < t, and tss is 
real for each s. Therefore, Tis real diagonal and A is Hermitian. 

No. A= (~ ~) is not Hermitian, but A*(A2 ) = A*(A* A). 

(a) True. 

(b) False in general. True when c is real. 

(c) False. 

(d) True. 

(e) False. Take A = ( ~ D , B = ( .. \ ~ 1 ) • 

(f) True. (BA)* = A*B* = AB = 0. 

(g) 'True. Consider the diagonal case. 

{h) False. Take A=(~~). 
(i) True. The eigenvalues of A are alii. 
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(j) Thue. 

(k) True. 

(1) Thue. 
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(m) False. Take A=(~~), B = (~ ~~). 
(n) Thue. 

( o) True. Consider the case where A is real diagonal. 

(p) Thue, for BAB is Hermitian. 

4.3 If A is an eigenvalue of A, then A 2 is an eigenvalue of A 2 • Thus the 
eigenvalues of A 2 are A~, A~, ... , A~. So tr A2 = A~+ A~+···+ A!. 
However, tr A 2 is the sum of the entries on the main diagonal of A 2 . 

The desired identity follows. When A is Hermitian, D.i; = a;i. 

4.4 By the spectral decomposition, let A= U* diag(Ab ... , An)U, where 
u is a unitary matrix. Then for X E en with llxll = 1, 

x• Ax = x*U* diag(At, ... , An)Ux 

= y* diag(At, ... , An)Y 

= AtiY1I 2 + · · · + AniYnl
2

, 

where y = (yt, ... , Yn)t = Ux is also a unit vector. Thus 

min{ At, ... , An}~ x• Ax~ max{ At, ... , An}· 

If xo is a.n eigenvector belonging to Amin and llxoll = 1, then 

It follows that 

Similarly, 

Amin = min x* Ax. 
ll:z:ll=l 

Amax = m.a.x x* Ax. 
llzll=l 

To see the inequalities for A+ B, 

max x*(A + B)x 
ll:z:ll=l 
max (x* Ax+ x• Bx) 
ll:z:ll=l 

~ max (x* Ax)+ max (x* Bx) 
llzll=l llzll=l 
Amax(A) + Amax(B). 
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The other inequality is similarly obtained by noting that 

max (x* Ax+ x• Bx) ~ max (x* Ax)+ min (x* Bx). 
ll:z:ll=l ll:z:ll=l ll:z:ll=l 

187 

4.5 (a) If xt Ax = 0 for every x e Ill'\ then the diagonal entries of A 
are all zero by taking x to be the column vector with the s-th 
component 1, 0 elsewhere, s = 1, 2, ... , n. 
Now take x to be the column vector with the s-th and the t-th 
components 1 and 0 elsewhere. Then 

xtAx = 0 => a8 t = -ats, s ::/: t, 

that is, At= -A. Conversely, if At= -A, then 

xt Ax= (xt Ax)t = xt Atx = -(xt Ax) 

and xtAx = 0 for every x E Ill". 

(b) To show a8 t = 0, take x andy to be the vectors whose s-th and 
t-th components are 1, respectively, and 0 elsewhere. 

(c) It is easy to see that the diagonal entries of A are all equal to 
zero. Take x to be the column vector with the s-th component 
1 and the t-th component c, then 

x• Ax = 0 => atsC + a8 tC = 0, for every c E C, 

thus ats = ast = 0. 

(d) Let x* Ax = c be a constant. Then 

x*(A- cl)x = 0. 

It follows from (c) that A= cl. 

A is not necessarily equal to B even though x* Ax = x* Bx for all 

x E Ill". Take A = ( ~1 ~) and B = 0. 

4.6 Use the decomposition A= U* diag(At, A2, ... , An)U. 

4. 7 Since A is Hermitian, all eigenvalues of A are real. If IAI < 0, then at 
least one eigenvalue is negative. Denote it by A. Then Ax = AX for 
some nonzero x, where A < 0. Thus x• Ax = .XX*x < 0. 

4.8 (A +B)* = A* + B* = A+ B. So A+ B is Hermitian. If AB = 
BA, then (AB)* = B* A* = BA = AB; this says AB is Hermitian. 
Conversely, if AB is Hermitian, then AB = ( AB)* = B* A • = B A. 
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4. 9 Since A and B are Hermitian matrices, AB is Hermitian if and only 
if AB = B A. Thus A and B are diagonalizable through the same 
unitary matrix; that is, U* AU and U* BU are diagonal for some uni­
tary matrix U. Therefore the eigenvalues of AB are those in the form 
A= ab, where a is a.n eigenvalue of A and b is an eigenvalue of B. 

4.10 (a) There exists an orthogonal matrix P such that 

A = p-t diag(6, 0, O)P. 

Take 

X= p-t diag(6~, 0, O)P = pt diag(6~, 0, O)P. 

(b) Suppose X 3 = B. Then the eigenvalues of X are a.ll 0, this 
implies that X 3 = 0. 

(c) B= u ~ ~ r 
(d) As (b). 

(c) Yes. D= (! 0 1 0 )
2 

0 0 1 
1 0 0 
0 0 0 

(f) Let A= p-l diag(AIJ ... ,An)P, where Ai's are real numbers and 
P is an orthogonal matrix. Then a k-th root of A is 

1 1 

X= p-l diag(Af, ... , A~ )P. 

(g) If X 2 = Y, then A2J- X 2 = A21-Y, which yields 

(>J- X)(>J +X)= A2l- Y. 

Take determinants for both sides. 

It is easy to check by computation that (-~ -~ )3 
= f2. 

4.11 Consider the case where A is real diagonal. 

4.12 By direct computations. 
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4.13 Let U be a unitary matrix such that A= u• diag(~1, ~2, ~3)U. Then 

tl- A= u• diag(t- ~~, t- ,\2, t- ~3)U 

and for t ::f ).i, i = 1, 2, 3, 

adj(tl- A)= It!- Al(ti- A)- 1
• 

Suppose, without loss of generality, that A1 is the 2 x 2 submatrix of A 
in the upper-left comer with eigenvalues a and b. Upon computation, 
the (3, 3)-entry of (tl- A)- 1 is 

lutal 2 lu2al2 luaal2 

--+--+-­t - At t - ~2 t - Aa 

and the (3, 3)-entry of adj(tl- A) is It!- A1 l. So if t ::/: Ai, i = 1, 2, 3, 

ltl- At I lut3l2 1'1£231 2 lua3l 2 

ltl - AI = t - ~1 + t - ,\2 + t - ~3 • 

If a and b are roots of It!- A 1 l, it follows from the above identity 
that a E [~1, ,\2] and b E (,\2, Aa]. 

4.14 Suppose that His an m X m principal submatrix of A. Let Xm E en 
be a vector whose last n - m components are 0. Then 

max x*Ax 
lla:ll=l, a:EC" 

~ max x~Axm 
llzmll=l 

max x•Hx 
lla:ll=l, a:ecm 

Ama.x(H). 

A similar argument yields the other inequality. 

4.15 (a) Take A= diag(l, -1); and 12 

(b) Assume that A = u• DU, where D is real diagonal and U is 
unitary. Then AB = u• DUB is similar to DU BU• whose trace 
is real. In general, 

tr(AB)k = tr(AB · · · AB) = tr[(AB · · · ABA)BJ 

is real since both AB · · · ABA and B are Hermitian. 
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(c) Assume, without loss of generality, that A is a real diagonal 
matrix with diagonal entries a1, a2, ... , an. Then 

i,j i,j 

= E<ai- a;)2 lbi;l2 ~ 0. 
i<j 

Equality holds if and only if (ai- a;)lbi;l = 0 or all i < j, which 
is true if and only if ~bi; = a;bi; for all i, j; that is, AB = BA. 

(d) Assume that A is a real diagonal matrix with diagonal entries 
a1, £12, ... , an. It must be shown that 

This is readily seen from the fact that 

Both equalities hold if and only if the vectors ( a1 , .•. , an) and 
(bn, ... ,bnn) are linearly dependent and all bij = 0 when i :/: j. 

The eigenvalues of ABare not real in general (but tr(AB) is). Take 

A= ( ~ ~ ) , B = ( ~ ~l ) . 

4.16 By the spectral decomposition, write A= U DU*, where U is unitary 
and D = diag(~l, ... ,AnO, ... ,O), ~i :/:0, i = l, ... ,r. Let A= 
diag( ~1 , .•. , Ar) and denote the n x r matrix of the first r columns of 
U by Ur. Then 

A= unu• = UrAu;. 

Let [ A)a be an r x r principal submatrix of A lying in the intersections 
of the rows and columns a11 •.• , o,.. Denote by Vr the submatrix of Ur 
that consists of the rows of a1, ... , ltr of Ur. Then [A)a = VrAVr* and 
det[A)a = detAI det Vrl 2 = A1 · · · Arl det Vrl2 . H (A)a is nonsingular, 
then det(A]a has the same sign as A1 · · · Ar· It follows that all nonzero 
r x r principal minors of A have the same sign. 
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4.17 Denote the sum of the entries of row i of A E Mn(lR) by ri. Then 

S( A) = r1 + r2 + · · · + rn. 

Since aik = aki and by interchanging the summands, 

n n n 

S(A2
) = L L L aikak; 

i=l j=l k=l 
n n n 

L (L:L:a~ciat3) 
k=l i=l j=l 

= t (taki) (tak;) 
k=l i=l j=l 

n 

= Er~ 
k=l 

1 n 2 
> ;i ( L r~c) (the Cauchy-Schwarz inequality) 

k=l 

.!.rs(A)]2
• 

n 

4.18 We only show that (a)=*(e), (f)=*(b), (g)=*(a), and (h)<=>(a). 

(a)=*( e): Let A = U* diag(D, O)U be the spectral decomposition of 
A, where Dis r X r, positive diagonal, nonsingular. Let ul be the first 
r rows of U. Then A= Ui D 112 • D 1I2 U1 = T*T, where T = D 112Ut. 

To see (f)=*(b), let A = u• diag(.A1, ... , .An)U, where Ai's are (real) 
eigenvalues of A and U is unitary, and let 

/(.A) = I.AI- AI =An- O!An-1 + 02An-2 - ... + ( -l)nan. 

It can be shown that at is the sum of all i x i minors of A, i = 
1, 2, ... , n. Thus if all the minors of A are nonnegative, then /(.A) has 
no negative zeros. 

For (g)=*(a): Take X= xx•, where x is any column vector. 

For (h)<::>( a): H x• Ax ~ 0 for all vector x, then y*(X* AX)y = 
(Xy)* A(Xy) ~ 0 for all y; this says X* AX ~ 0. Conversely, if 
for some (fixed) positive integer m, x• AX ~ 0 for all n x m matrices 
X, then for any no-column vector, we take X to be the n x m matrix 
with first column x and everything else 0. It follows that x* Ax ~ 0. 
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4.19 (A+ B)2 = A2 + AB + BA + B2 2:: 0. But A2 + AB + BA and 
AB + BA are not necessarily positive semidefinite. Take 

Then 

A=(l 1)>o 1 1 - ' B=U !)~o. 

2 (8 7) (6 5) A + AB + BA = 
7 6 

l 0, AB + BA = 
5 4 l 0. 

If A and AB + BA are positive definite, we show that B is positive 
definite. Let C = AB + BA. Multiply C by A-~ from both sides: 

0 < A-~cA-~ = A~BA-~ + A-~BA~ = D + D*, 

where D = A~BA-L It is sufficient to show that Dis nonsingular. 
Suppose Dx = 0 for some nonzero column vector x. Then x• D* = 0 
and x*(D+D*)x = x* Dx+x* D*x = 0. This contradicts D+D* > 0. 

4.20 Note that (A± B) • (A± B) 2:: 0. Expanding this yields the inequality. 

4.21 Note that 0 ~A~ I==> 0 ~ A2 ~A. It follows that, by expanding, 

1 
0 ~(A+ B- 1/2)2 ~ AB + BA + :t· 

4.22 -2 < ~ < 1, -v'2 - 1 < J.L < v'2 - 1. 

4.23 (a) is immediate from (b). So it is sufficient to show (b). Let Ax = 
~x, where x = (x1, x2, ... , Xn)t :F 0. Since A is Hermitian, ~ is 
real. Choose an i so that lxil = maxi lx;l· Then Xi -:/; 0. From 
Ej=1 ai;x; = ~xi, we have (~- 1)xi = Ej=l,j'#i ~;x;. By taking 
absolute values, we get I~ -lllxil ~ lxil· It follows that lA -11 ~ 1; 
that is, 0 ~ ~ ~ 2. So A is positive semidefinite. (c) follows from an 
application of the Hadamard inequality to IAI, which is the product 
of all eigenvalues of A. (See Problem 4.56.) 

4.24 (~D. 

4.25 Yes, when X E 1Rn. For instance, A = ( ~1 ~). No, when X E en. In 
this case, A must be Hermitian. 

4.26 (a) Consider each diagonal entry as a minor, or take x to be the 
column vector whose i-th component is 1, and 0 elsewhere. Then 
~i = x• Ax. The second part follows from (b). 
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(b) Consider the 2 x 2 minors. 

(c) Write A= U* diag(~b ... , ~n)U. 

(d) Assume that B is the principal submatrix of A in the upper­
left corner. If IBI = 0, then Bv = 0 for some v =I 0. Set 
X= (vt,o, ... ,o)t E en. Then X =I 0, Ax= 0. So A is singular. 

(e) A is unitarily diagonalizable. Let A = U* DU, where D = 
diag(~b ~2, ••• , An). Split each ~ =I 0 as J;.l,k. P cannot 
be unitary in general unless the eigenvalues of A are 1 or 0. 

(f) x• Ax ;:::: 0 => (x* Ax)t ;:::: 0. So xt Atx ;:::: 0 or y• Aty ;:::: 0 for all 
y = x. Thus At ;:::: 0. Likewise A;:::: 0. 

4.27 (Ax)*(Ax) = (x* A*)(Ax) = 0 if and only if Ax= 0. If A;:::: 0, then 
tr A = 0 if and only if A = 0. 

4.28 Since the identity holds for every x if and only if it holds for U x with 
y replaced by U y, we may assume that A is a diagonal matrix. 

Let A= diag(~l, ~2, ••• , An). Then for any X E en, 

n 

x* Ax= LA~clx~cl2 • 
11:=1 

Notice that 

It follows, by taking sum and maximizing both sides, that 

n 

max(x*y + y*x- y• Ay) = L ~; 1 lx~cl 2 = x* A-1x, 
y k=l 

and the maximum is attained at y = (Ylt Y2, ... , Yn), where Yk 
~; 1 x~c, k = 1, 2, ... ,n. 

4.29 It is sufficient to show that Im(AB) n Ker(AB) = {0}. Let y be in 
the intersection and write y = (AB)x for some x. Since y Ker(AB), 
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(AB)y = (AB) 2x = 0. We claim (AB)x = 0 as follows: 

(AB)2x = 0 ::::} (ABAB)x = 0 
::::} (x* B)(ABAB)x = 0 
::::} (x* BAB112 )(B112 ABx) = 0 

=> (B112 AB)x = 0 

=> B112 (B112 AB)x = (BAB}x = 0 

=> (x* BA112 )(A112 Bx) = 0 

=> (A112B)x = 0 

=> (AB)x =0. 

4.30 (a) Let A= U* diag(A1 , ••. , An}U, where U is unitary. Take 

1 1 

B = U* diag(A/, ... , A~)U. 

To show the uniqueness, suppose C ~ 0 and 0 2 = B2 = A. Let 

1 1 

C = V diag(Af, ... , A,l)V* and T = UV. 

Then 
Tdiag(A~, ... , An) = diag(Al, ... , An)T. 

A direct computation giveJJ B = C. 

(b) Any normal matrix has a square root. It is neither unique nor 
positive semidefinite in general. 

(c) The square roots are, respectively, 

4.31 A2C = A(AC) = A(CA) = (AC)A = (CA)A = CA2• For the square 
root, let A = U* DU, where U is unitary, D = diag(d~, d2, ... , dn), 
where each d.~ 0. Let W = UCU*. Then AC = CA gives DW = 
WD. So d,wi3 = wi;d3 • This implies ,;d.w;,; = w;,;v'dj; that is, 
D~W = WD~. This immediately yields A~C = CA~. 

4.32 (a) If A= A*, then A2 =A* A~ 0. 

{b) If A* = -A, then -A2 = ( -A)A =A* A ~ 0. 
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(c) Obvious. 

None of the converses is true. For (a) and (b), take 

( 
0 1 0 ) ( 1 2 -1 ) 
0 0 0 or i 0 -1 1 . 
0 0 -1 0 0 1 

The square of the latter matrix is -I3. For (c), take 

( 

1 0 -1 ) 
2 -1 1 , 
0 0 1 

whose diagonal entries are the same as the eigenvalues. 

4.33 It must be shown that 

(tA + iB)*(tA + iB) ~ tA* A+ iB* B 

or 
t2A* A +tt(B•A +A* B) +i2B*B ~ tA•A +tB*B, 

which is 

0 ~ tl(A*A + B•B- B•A- A* B)= ti(A*- B*)(A- B). 

This is always true. 

4.34 tA2 + (1- t)B2 - (tA + {1- t)B) 2 = t(1- t)(A- B)2 ~ 0. This yields 
the first inequality. Note that (a- b)I ~ A- B ~ (b- a)I gives 
(A- B)2 ~ (b- a)2 I a.nd t(1- t) ~ l· The second inequality follows. 

4.35 (a) LetT be an invertible matrix such that A= T*T. Since 

we have a unitary matrix U such that (T-1) * BT- 1 = U DU*, 
where D is a diagonal matrix with nonnegative entries. Put 
P = r-1u. Then P* AP =I, P* BP =D. 

(b) Use induction on n. LetS be an invertible matrix such that 

s• AS = ( ~ ~ ) , where r = r(A) < n. 
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Write 

S*BS= ( :! ;J. 
If b11 = 0, then a = 0. The conclusion follows by induction on 
B1 and A1 , which is obtained by deleting the first row and first 
column of S* AS. If b11 ::/: 0, let 

Then 

and 

T = ( 1 -b1/a ) . 
0 ln-1 

T*S*BST= ( bn O _ ) > 0. 
0 B1 - a*b11

1a -

Notice that B 1 - a*b]}a ;::: 0. By induction, there exists an 
invertible (n - 1) x (n - 1) matrix P1 such that Pi A1P1 and 
Pi(BI- a*b}/a)Pl are both diagonal. Now set 

The desired conclusion follows immediately. 

The B;::: 0 cannot be changed by a Hermitian B. Take 

A=(~ n andB=U ~)· 
(c) It is immediate from (a). 

(d) By (b). 

(e) It follows from (b) and the Holder inequality (which can be 
proved by induction): for nonnegative numbers a's and b's, 

(ai ···an)~+ (b1 · · · bn)~ ~ [(a1 + b1) ···(an+ bn)]~. 

(f) Use {b) and the fact that atbt ~ ta + tb for a, b ~ 0 and t e [0, 1]. 

For the particular case, take t = ~· Note that 2k ~ 2n. 

(g) Since ..fiiiJ ~ ~(a+ b) when a, b ~ 0 and by (d). 
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4.36 A = (A - B) + B. By Problem 4.35, IAI ~ IBI. Since B is positive 
definite, there exists a nonsingular matrix P such that P* BP = I. 
Let C = P*(A-B)P. Then C ~ 0. Since A-..\B = (A-B)-(..\-1)B, 
we have IP*IIA- ..\BIIPI = IC- (..\-l)II. Thus..\ -1 ~ 0 and..\~ 1. 

4.37 (a) x*(C* AC- C* BC)x = (Cx)*(A- B)(Cx) ~ 0. 

(b) (A-B)+(C-D)~O. 

(c) A- B ~ 0 ~ tr(A- B) ~ 0 ~ tr A~ tr B. 

(d) A- B ~ 0 ~ x*(A- B)x ~ 0, or x*Ax ~ x*Bx. Thus 

Amax(A) = max x* Ax~ max x* Bx = ..\max(B). 
11~11=1 11~11=1 

(e) Note that IAI = I(A- B)+ Bl ~ IBI. An alternative proof: 
If IBI = 0, there is nothing to show. Assume that IBI =f 0. Then 

A ~ B ~ n- ~ AB- ~ ~ I 

and 
IB-~AB-~1 ~ 1 ~ IAI ~ IBI. 

(f) Use Problem 4.35. 

(g) This can be proved in different ways. A directly proof: If B = I, 

A~I =? 

namely, I ~ A -l. In general, 

A~ B =? B-~AB-~ ~I. 

Thus I~ B~A-1B~ and B-1 ~ A-1• 

(h) First note that A~ - B~ is Hermitian. It must be shown that 
the eigenvalues of A~ - Bl are nonnegative. Let 

Then 
B~x = A~x- ..\x. 

Notice that (the Cauchy-Schwarz inequality) 

lx*yl ~ (x*x) ~ (y*y) ~, x, y E en. 
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Since A;::: B, we have (x* Ax)~ ;::: (x* Bx)~ and 

x*Ax = (x* Ax)~ (x* Ax)~ 
;::: (x* Ax)~ (x* Bx) ~ 
;::: l(x* A~ )(B~ x)l 
= lx* A! (A~x- ..\x)l 

= lx* Ax- ..\x* A~xl. 

Thus either..\= 0 or ..\x* A~x = 2x* Ax;::: 0, so..\;::: 0. 

It is not true that A2 ~ B 2 in general. Take 

( ) 
1 1 Al ( ) Al . 4.38 a AB = A2A2B a.nd 2 AB B 2 have the same eigenvalues, 

while the latter one is Hermitian, thus all eigenvalues are real. 

(b) A+ B;::: 0 # I+ A-~BA-~ ;::: 0 # all the eigenvalues of 
1 1 

A-:~BA-3 are greater than or equal to -1. Now it is sufficient 
to notice that A-~BA-! and A-1B have the same eigenvalues. 

(c) r(AB) = r(B) = r(A112 BA112 ). The latter equals the number of 
nonzero eigenvalues of A112 BA112 , as it is Hermitian. Note that 
A112BA112 and AB have the same number of nonzero eigenval­
ues. If A;::: 0, then it is not true. Take A= (~g) and B = (~ ~). 
Then r(AB) = 1, while AB has no nonzero eigenvalues. 

4.39 (a) A= ( ~ ~2 ) , B = ( ~ _!1 ) • The eigenvalues of ABare~ (3±VTi). 

(b) Let A ~ 0. The AB has the same eigenvalues as the Hermitian 
matrix A~BAL The eigenvalues of the latter are all real. 

(c) Let A > 0. Then AB is similar to A-l(AB)Al = A!BA~, 
which is Hermitian, and of course diagonalizable. 

(d) A = n D, B = (~ ~~). The eigenvalues of ABare 0,0. AB 
cannot be diagonalizable, since AB f 0. 

4.40 Let c = x* Ax, where llxll = 1. By the Cauchy-Schwarz inequality 

(
A+A•) c+c 1 1 

x* 2 X= -2-::; lei= lccl2 ::; ex· A* Ax)2, 
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Thus 

(
A+A*) maxx* -- x 

z•z=l 2 

~ max (x* A* Ax)~ 
:t*:t=l 

1 

~ ( max x* A* Ax) 
2 

:t*:t=l 

O'max(A). 

For the trace inequality, noting that A - A* is skew-Hermitian, we 
have tr(A- A*)2 ~ 0, which implies, by expanding and taking trace, 

tr A2 + tr(A*)2 ~ 2tr A* A, 

equivalently, 

A+A* 2 
tr (-

2
-) ~ tr(A* A). 

4.41 (a) (A~)*= AL 
(b) AB =A~ (A! B) has the same eigenvalues as A~ BA! ;::: 0. 

(c) AB is not positive semidefinite in general. Take 

(d) If A and B commute, then AB is Hermitian, since 

(AB)* = B* A* = BA = AB. 

As AB and A~BA~ have the same eigenvalues, AB;::: 0 by (a). 
Conversely, if AB ;::: 0, then AB is Hermitian and it follows that 

AB = (AB)* = B* A* = BA. 

(e) Use tr(XY) = tr(Y X). 

(f) Let A1(X), A2(X), ... , An(X) denote the eigenvalues of X. Since 
AB2 A = (AB)(BA) and BA2 B = (BA)(AB) have the same 
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eigenvalues, 
n 
E~[(AB2A)~] 
i=l 

i=l 

i=l 

tr(BA2B)~. 

(g) It may be assumed that A = diag(~1 , ... , ~n)· Suppose that 

b11, ... , bnn are the main diagonal entries of B. Then 

tr(AB) = ~1b11 + · • · + Anbnn 

~ (~1 + .. · + ~n}(bu + .. · + bnn) 

= trAtrB. 

(h) Assume that A= diag(~~, ... , ..\n). Then 

tr(AB) = ~1bu + · · · + ~nbnn 

(i) 

~ ~max(A)(bu + · · · + bnn) 

= ~max(A)tr B. 

tr(AB) ~1bu + · · · + ~nbnn 
1 
4 [(2..\lbn + · · · + 2Anbnn) 

+(2Albu + · · · + 2~nbnn)] 

~ ~ [( ~l + b~ 1 + • · · + ~~ + b~n) 
+(2~1bu + · · · + 2..\nbnn)] 
1 2 

~ 4(~1 + .. · + ~n + bu + · · · + bnn) 

1 = 4(tr A+ tr B)2
• 

(j) Note that A2 + B2 - AB - BA = (A - B)2 2:: 0. Take trace. 

No. Take A= ( g ~ ), B = (~ ~). 
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4.42 (a) (AB + BA)* = B*A* + A*B* = BA+AB = AB + BA. 

(b) No, in general. Take A=(~?), B = n D. 
(c) No. 

(d) YeB. 

(e) Yes. A2 - AB-BA+ B 2 = (A- B)2 
;::: 0. 

(f) Note that tr(XY) ~ 0 when X, Y ~ 0. It follows that 

tr(CD)- tr(AB) = tr(CD- CB) + tr(CB- AB) 

= tr[C(D- B))+ tr[(C- A)B] ;::: 0. 

(g) Since ..\(XY) = ..\(Y X), 

Amax(B)/- B ~ 0 ~ A~ [Amax(B)J- B]A~ ~ 0 

~ ..\max(B)A;::: A~BA~ 
~ ..\max(A)Amax(B) ~ 

1 ! 
..\max(A:a BA:a) = ..\max(AB). 

(h) Use the result that Amax(A) = ma.xllzll=l x• Ax. 
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(i) For three positive semidefinite matrices, there is no similar result. 
In fact, the eigenvalues of ABC can be imaginary numbers. For 
instance, the eigenvalues of ABC are 0 and 8 + i, where 

( 11) (21) (2 i) A = 1 1 ' B = 1 1 ' C = -i 1 . 

4.43 (a) Take A= (~ ~) and B = (~ J.:s). 
(b) No, because tr(A + B) = tr A + tr B > 0. 

(c) Take A = ( ~ ~) , B = (! 1 ].
1

) , C = ( ~ 3°0 ) . Then A, B, and C 
are positive definite, the eigenvalues of ABC are -5, -12. 

(d) No. Note that IABCI > 0. 

4.44 Since A is positive semidefinite, let A = U* DU, where U is unitary 
and D = diag(..\~, ..\2, ... , ..\n), Ai ~ 0. Then A2 B = BA2 if and only 
if U*D2UB = BU*D2U if and only if D2(UBU*) = (UBU*)D2• 

Let C = UBU*. Then D 2C = CD2• We show that DC= CD. 
D2C = CD2 =* ..\~c;; = c;;..\~ for all i and j. H c;; =/= 0, then 
Ai = ..\;. Thus c;;..\i = c;;..\; for all i,j and DC= CD. It follows that 
D(UBU*) = (UBU*)D or AB = BA. 

The conclusion is not true in general for Hermitian matrix A. Take 
A= diag(1, -1). Then every 2 x 2 matrix commutes with A2 • 



202 HINTS AND ANSWERS FOR CHAPTER 4 

4.45 We show that C commutes with A + B first. For this, we show that 
C commutes with (A+ B)2 and then C commutes with A+ B, as one 
may prove if X commutes with a positive semidefinite matrix Y, then 
X commutes with the square root of Y. Since C is Hermitian and 
commutes with AB, (AB)C = C(AB) implies C*(ABt = (AB)*C*; 
that is, C(BA) = (BA)C. In other words, C commutes with BA. 
Now compute C(A + B)2 and (A+ B)2C. Since C commutes with 
A- B, we have C(A- B)2 = (A- B)2C. Along with CAB= ABC 
and CBA =BAG, we get C(A+B)2 = (A+B) 2C. Thus C(A+B) = 
(A+ B)O. It follows that C commutes with 2A = (A+ B)+ (A- B). 

4.46 Let Bx = .XX, x =F 0. Pre-postmultiplying A > B* AB by x• and x, 
we have x• Ax > IAI2x* Ax. Thus IAI < 1. 

This does not hold for singular values. Take A= (~~)and B = (~ ~). 
Then A - B* AB = I2 > 0. But the largest singular value of B is 2. 

4.47 As A is a principal submatrix of the block matrix, A-t exists. Thus 

( 
I 0 ) ( A B ) ( I -A-

1
B ) 

- B* A-t I B* C 0 I 

= (: C-~A-1B) >O. 

4.48 By a simple computation 

(I, I) ( :. ~ ) ( ~ ) = A + B* + B + C <: 0. 

4.49 Take 

Then 

(
A B*) 
B 0 'i. O. 

4.50 It is sufficient to note that 
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4.51 A+ iB ~ 0 if and only if x*(A + iB)x ~ 0 for all complex column 
vectors x. Taking conjugate gives y*(A - iB)y ~ 0, y = x. So 
A + iB ~ 0 if and only if A - iB ~ 0. Since A + iB ~ 0, A = At and 

Bt = -B. So the partitioned matrix M = ( ~ -:) is real symmetric. 

Conversely, if M is real symmetric, then A + iB is Hermitian. We 
show that all the eigenvalues of M are nonnegative if A + iB ~ 0 
(then so A- iB ~ 0). This is seen through similarity by observing 

M = s-1 ( A +iB 0. ) S, S = __!__ ( ~ ii ) . 
0 A - ~B J2 -tl -I 

4.52 Ai + l,, i = 1, 2, ... , n, plus n zeros. 

4.53 (a) By computation, 

1~1-MI=I ~ -~·1=1~21-AA*I· 
Putting A= 0 in the above identity gives 

(-1)2niMI = {-l)niAA*I 

or 
IMI = (-l)nldetAI2

• 

(b) The eigenvalues of M are 

u1(A), ... ,un(A), -un(A), ... , -ut(A), 

where ui(A)'s are the singular values of A. 

(c) H A::/: 0, then M has negative eigenvalues. 

(d) The eigenvalues of N are 1 ± ui(A), i = 1, 2, ... , n. 

4.54 First inequality: u~a.x(AB) = Amax(B* A* AB) = Amax(BB* A* A) ~ 
Amax(BB*)Amax(A* A) = u!ax(A)u!ax(B). 

· • - ( 0 A) - ( 0 B) To show the mequality for sum, let A = A• 0 and B = 8 • 0 • 

Then A and iJ are Hermitian matrices. The largest eigenvalue of 
A+ iJ is O'max{A +B), the largest eigenvalue of A is O'max(A), and 
that of iJ is O'max(B). Since Am&X(A +B) ~ Amax(A) + Amax(B), the 
desired inequality follows. 

For the last inequality, it is sufficient to notice that 

1 1 
A2

- B2 = 2(A + B)(A- B)+ 2(A- B)(A +B). 
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4.55 By computing A* A directly, we see that the singular values of A 
are Vfi, Vfi, 1, ... , 1. Since A is real symmetric, the singular values 
are the absolute values of the eigenvalues of A. Notice that tr A = 

-(n-2). Since A is congruent to(~ -In-~-ete), where e = (1, ... , 1) 
is a row vector of n -1 components, A has n- 1 negative eigenvalues. 
The eigenvalues of A are Vii, -Vfi, -1, ... , -1. 

4.56 The fact that lA + Bl ~ IAI for A> 0 and B ~ 0 will play the basic 
role in the proofs. Note that equality holds if and only if B = 0. 

(a) By induction on n. Let A= ( ';:: :
1
). Then A1 ~ 0. If IA1I = 0, 

then IAI = 0. H a11 = 0, then a:= 0. There is nothing to show 
in both cases. Assume that a 11 =f 0. Upon computation, 

= I au 0 
IAI 0 Al- a}lla:•a 

= auiA1 - a}la:*al 

~ auiA1I, 

since 0 ~ A1 - a}1
1a:*a ~ A1• The desired inequality follows by 

induction on At. Equality case is readily seen. 

(b) If Band Dare both singular, there is nothing to prove. Without 
loss of generality, assume that B is nonsingular. Then 

IAI = %. ~I 

= I ! D-C~B-'C I 
IBIID- c• n-1cl 

~ IBIIDI. 

If equality holds and if D > 0, then 

C*B-10 = 0, or C = 0. 

(c) If B-1 exists, then 

c•n-tc ~ D =* IC*IIB-1IICI ~ IDI =* IC*CI ~ IBIIDI. 

If B is singular, using B + el, E > 0 to substitute B, we have 
IC*CI ~ IB + eiiiDI. Letting E --+ 0, the inequality follows. For 
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the equality case, let D-C* B- 1C = E ~ 0. If E #= 0, then 

IDI = IE+ c• B-1cl > IC* B-1CI. 
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When B, C, and D are of different sizes, it is not true. Take 

B = ( ~ n , C = (1, O)', D = 1. 

(d) Use (a) onE* E. 

(e) Use (b) on F* F. 

(f) Apply (c) to 

( Y
I xi• ) • ( YI x• ) = ( I+ y•y x· + y• ) 

I X+Y l+XX* . 

4.57 If A2 ~ 0, then the eigenvalues of A2 are nonnegative. However, the 
eigenvalues of A2 are the squares of the eigenvalues of A: If 'A2 ~ 0, 
then 'A is real. The converse is not true in general. 

4.58 (a) H = H* =At- iBt implies A= At and B = -Bt. Thus A is 
real symmetric and B is skew-symmetric. To show that A~ 0, 
we show that the eigenvalues of A are all nonnegative. 

Let U be an orthogonal matrix such that ut AU is the real diag­
onal matrix with the eigenvalues of A on the diagonal. Since 

the diagonal entries of ut BU are all zero, and so are the diagonal 
entries of irP BU. However, 

utHu = utAu +iUtBu ~ o, 

thus the diagonal entries of H, which are the eigenvalues of A, 
are all nonnegative. 

(b) Consider the 2 x 2 minor of H formed by the entries on the s-th 
and t-th columns and rows. 

(c) Following the proof of (a) and using the Hadamard inequality 

IHI = llf HUI = llf AU + iUt BUI ~ llf AUI = I AI. 

Equality holds if and only if B = 0 or A has a zero eigenvalue. 
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(d) It is immediate from (c). 

The converse of (d) is not true. Consider 

H = ( ~ ~ ) + i ( ~l ~ ) . 

If His just Hermitian, then Bt =-B. Other parts are inconclusive. 

4.59 (a) Let A = U DV be a singular value decomposition of A. Then 
A* A= V*DU*UDV = V*D2V, while AA* = UDVV*DU* = 
UD2U* = UV(V*D2V)V*U* = W(A*A)W*, where W = UV 
is a unitary matrix. So A • A and AA • are unitarily similar. 

(b) A= UDV = (UDU*}(UV) = HP, where H = UDU*, P = UV. 

(c) Let A= UDV, where U ism x m, Dis m x n with (i,i}-entries 
si(A), the singular values of A, i = 1,2, ... ,min{m,n}, V is 
n x n. Then AA* = UDDtu• and A= UDV = AA*Q, where 
Q = U RV, R is them x n matrix with (i, i)-entries 1/si(A) when 
si(A) > 0, and 0 otherwise. 

4.60 (a) [detm(A)]2 =det(A*A) = JdetAI2 • 

(b) Since A• =A. 

(c) A* A= V* D2V, so m(A) = V* DV. Similarly m(A*) = U DU*. 
(d) It is immediate from (c). 

(e) The square root is unique. 

(f) Upon computation 

( m~A) m?~•) ) = ( ~· t ) ( ~ ~ ) ( ~ :J. ) ~ 0. 

(g) Take A=(~~). 
(h) Since H is Hermitian, we show that H commutes with A* A. 

A* AH = A* HA = (HA)* A = (AH}* A = HA* A. It follows 
that H commutes with the square root of A* A; that is, m(A). 

By direct computation, m(A) and m(A*) arc, respectively, 

m(A) = ( ~ n , m(A*) = ( ~ n ; 
m(A) = m(A*) = /2; 

m(A) = ~ u ~ ) , m(A*) = ( ~ n · 
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4.61 Note that (A, B)*(A, B)~ 0. For the second part, use Problem 4.56. 

A direct proof goes as follows. If r(A) < n, then 

lA* AI= IA*BI = IB*AI = 0. 

Otherwise, observing that Amax(A(A* A)-1 A*) = 1, we have 

Im ~ A(A*A)-1A*, 

which implies 
B*B ~ B*A(A*A)- 1A*B. 

Taking the determinants, 

IB*BI > IB*A(A*A)- 1A*BI 

IB* AII(A* A)-1 IIA* Bl 

= IB* AliA* AI- 1 IA* Bl. 

(
A• A B•A) · (IA.AIIB.AI) (IA.AIIA.BI)t 
A•B B•B 'l 0 m general. But IA•BIIB•BI = IB•AIIB•BI ~ 0· 

4.62 If A= U(Ir~O)U* for some unitary matrix U, then it is easy to check 
that A~A· = AA*. Now suppose A~A· = AA* and let A= u· DU, 
where U is unitary and Dis an upper-triangular matrix with main 
diagonal entries A 1, A2 , ••• , .\n. Then A=)A • = AA • is the same as 
D~D· = DD*. The (1,1)-entry of D~o· is ~~'!~a. Computing the 
(1,1)-entry of DD*, we see that At must be a nonnegative number 
and the first row of D contains only 0 other than the (1,1)-entry At. 
Then A1 = A¥ gives At = 0 or 1. Inductively, we see that D is a 
diagonal matrix with entries on the main diagonal are either 0 or 1. 

4.63 It suffices to note that BB* is invertible for r(BB*) = r(B) and that 

(
A) ( AA* AB* ) B (A*, B*) = BA* BB* ~ O. 

4.64 If 1.\A- Bl = 0, then 0 = IA-lii.\A- BIIA-ll = l.\1- A-iBA-~1-
Since B > 0, A-~ BA- i > 0, thus the eigenvalue of A-~ BA- ~ are all 
positive. Hence A> 0. Hall the roots of IAA- Bl = 0 are 1, then all 
the roots of I .\I-A-~ B A- ~ I are 1. Thus A- ~ B A- ~ = I. Therefore, 
A= B. Conversely, if A= B, then 1.\A-BI = IAA-AI = (.\-1)"1AI. 
Since IAI #= 0, .\ = 1. 
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4.65 (a) diag(au, • • • 1 ann)• 
{b) A. 

(c) One way to prove this is to write A= u· PU = Ei Ai'Ui'Ui and 
B = V*QV = E; JJ;vjv;, where Ai and JJ; are nonnegative num­
bers, and Ui and v; are rows of the unitary matrices P and Q, 
respectively. Then directly compute x*(A 0 B)x, where X E en. 
Another way to prove it is to use tensor product. Since A, B ~ 0, 
suppose that A= C*C = ((c,, c3 )) and B = D• D = ((di, d3 )), 

where<;,~ be the i-th columns of C and D, respectively. Let 

Ci ® d; = ( clid1;, ... , clidni, . .. , Cnidl;, ... , Cnidn; )t. 

It is easy to check that 

A o B = ((Ci, c;)(~, d;)) = ((Ci ® ~, c; ® d;)) = K* K, 

where K is the matrix with i-th column Ci ® ~. 

{d) Note that Amax(A)J- A~ 0. Thus 

[-Xmax(A)/- A] o B ~ 0 or Amax(A)(/ o B)~ A o B. 

The conclusion then follows since maxi{~i}:::;; Amax(B). 

(c) No. Take A = n D , B = ( ~ ~) . 
(f) Note that aiibii :::;; 4Ca~, + b~i). 

4.66 Compute the corresponding entries on both sides. 

4.67 Let M = (A1/2 A~
2

), N = ( 8 f12 
8~

2

). Then M, N ~ 0 and 

MoN = ( 
Aol A112 oB112

) 

A 1/2 o Bt/2 B o I 

( 
I Al/2 o Bl/2) 

Al/2 o Bl/2 I ~ 0. 

4.68 (a) If A> 0, then IAI > 0 and A- 1 > 0. For x #= 0, 

I :. ~ I= I ~ -x• ~-lx I= -IAI(x•A-'x) < 0. 

If A is singular, then use A + f.l, f. > 0, for A above. Then 

I A;-. £1 ~ I= -lA + dl(x• A-1x) < 0. 

Letting e --+ 0 yields that the determinant is 0 or negative. 
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(b) Denote 5 = x* A-1x. The inverse is 

4.69 (a) Notice that 

Thus 

( g. ~ ) -1 

= ( ~ -B;1C ) x 

( 8;1 (D- c•~-1C)-1 )( -C=B-1 n. 
It follows by a direct computation that 

and 

Similarly, with D in the role of B, 

and 

(b) By (a) 

( 
B- u-1 c ) = ( cv- 1c• c ) = 

c• D c· D 

4. 70 2 and 0, n copies of each. 
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4. 71 (a) Note that 

A2 
- 2A + I = (A - 1)2 = (A -I)* (A -I) ~ 0. 

Thus A 2 + I ~ 2A. Pre- and postmultiplying by A -l , one has 

A+A-1 ~ 21. 

It can also be proved by writing A as A= U* diag(..X11 .\2, ... , An)U. 
(b) Partition A and A -l as 

A= ( ;. :, ) , A-
1 = ( ;. :, ) . 

Then by Problem 4.69 

which yields 

AoA-•;::: ( ~ A, oOAl' ) . 

The desired result follows by an induction on At. 

4. 72 (a) Let x = ( x 11 ••• , xn)t be an eigenvector of A belonging to eigen-
value A, and let 

lx,l = max{lxtl, · · ·, lxnl}. 

Consider the i-th component of both sides of Ax= .Xx. 

(b) Ae = e, where e = (1, ... , 1)t. 

(c) Ae = e results in A-1e = e if A-1 exists. 

4. 73 Since A is a real orthogonal matrix; that is, At A= I, we see l.\1 = 1. 
So a2 +b2 =I. A(x+yi) = (a+bi)(x+yi) implies Ax= ax-by and 
Ay = ay + bx. Thus, xt At = axt - byt and yt At = ayt + bxt. Since 
At A= I, we have xtx = (axt-byt)(ax-by) = a2xtx+~yty-2abxty. 
Because a2 + ~ = 1, we obtain fi2xtx = b2yty- 2abxty, which implies 
2axty = -bxtx + byty, as b ;:j= 0. With this in mind, compute xty: 

xty = (axt- byt)(ay+ bx) 

= a2xty + abxtx- abyty- b2ytx 

= a2xty + abxtx - abyty - b2xty 

= (a2 - b2 )xty- a( -bxtx + byty) 

= (a2 - b2 )xty- 2a2xty 

-xty. 
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4. 74 (a), (b), and (c) arc easy. 

(d) Let Ux = ~x, x =F 0. Then l.\1 = 1 because 

l.\l2x*x = (.\x)*(.\x) = (Ux)*(Ux) = x*U*Ux = x*x. 

(e) Ux =Ax implies that U*x = };x. 

(f) Let U = V* diag{~11 ••• , ~n)V, where Vis a unitary matrix and 
the ~'s are the eigenvalues of U, each of which equals 1 in absolute 
value. Let y = V x = (Yb ... , Yn)t. Then y is a unit vector and 

lx*Uxl l.\dY1I2 + · · · + ~niYnl 2 1 
< l.\diYtl2 + "· + l.\niiYnl2 

= 1Ytl2 + .. · + 1Ynl2 = 1. 

(g) IIUxll = vx*U*Ux = ...jX"*X = 1. 

(h) Each column or row vector of U is a unit vector. 

(i) Let Ux = ~~x, Uy = ~2y, At =f; .\2. Then 

which, with Al =F ~2 and l~1l = l.\2l = 1, implies x*y = 0. 

(j) The column vectors form a basis since U is nonsingular. They 
form an orthonormal basis since ujui = 1 if i = j a.nd 0 otherwise. 

{k) Note that the k rows are linearly independent. Thus the rank of 
the submatrix of these rows is k. So there is a k x k submatrix 
whose determinant is nonzero. 

(I) It may be 8S8umed that A is diagonal. Note that each luiil ~ 1. 

(a), (b), (c), (g), and (j) imply that U is unitary. 

4. 75 By definition and direct verification. 

4. 76 Let U1, U2, ••• , Un be the columns of U. Consider the matrix U* U 
whose (i,j)-entry is u;u; and use the Hadamard inequality. 

4. 77 Use induction on n. Suppose that A is upper-triangular. It can 
be seen by taking x = (0, ... , 0, 1)t that everything except the last 
component in the last column of A is 0. 
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4. 78 Verify that U*U =I. Note that for any positive integer k, 

1 +wk +w2k + ... +w<n-l)Tc = O. 

4. 79 It is easy to compute that 

n 

tr[(UoA)*(UoA)] = L I1Li;l2 la,;l2
. 

i,j=l 

Thus 
n 1 

Umax(U o A)~ ( L lui;l2lai;l2) :j. 

i, j=l 

Now take U to be the unitary matrix in Problem 4.78. 

4.80 Note that ±i cannot be the eigenvalues of A. 

4.81 If A a.n.d A* commute, then their inverses commute. Thus 

4.82 

4.83 

4.84 

So A-lA • is unitary. Conversely, if A-lA • is unitary, (A-lA • )* 
= (A-1 A*)-1• Thus A(A*)-1 = (A*)-1 A, which yields AA* =A* A. 

( 
cos 0 sin 0 ) ( cos 0 sin 6 ) 8 1R. 

-sin 8 cos 8 ' sin 8 - cos 8 ' E · 

Since At equals the adjoint adj (A) of A, we have AA t = A adj (A) = 
lAlla. It follows that IAI2 = IAI3• So IAI = 0 or IAI = 1. However, 
au #= 0 8Jld IAI = an Cu + a12C12 + a1sCts = a~1 + a~2 + af3 > 0, 
where C,; are cofa.ctors of aij· So IAI = 1 and A is orthogonal. 

First, find the eigenvalues of A and the corresponding eigenvectors, 
then find an orthonormal basis for lll4 from the eigenvectors. 

4.85 Suppose for real orthogonal matrices A a.n.d B, A2 = AB + B 2• Then 
A2 = (A+ B)B and A(A- B) = B 2 • So A+ B = A2B-1 and 
A- B = A-1B2 are orthogonal, since A-1 and B 2 are orthogonal. 
This reveals 
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and 
I= (A- B)t(A- B)= '2I- AtB- BtA. 

Adding them gives 2I = 4I. A contradiction. If A and B are assumed 
to be invertible, then it is possible. Take A = I and B = >J, where 
A is a root of A2 +A - 1 = 0, say, A = -ltv'S, for instance. 

4.86 First note that 
IA+BI = IAt +Btl. 

Multiply both sides by IAI and IBI, respectively, to get 

and 

Thus 
(IAI- IBI)IA + Bl = 0 

and 
IAI = IBI if lA + Bl ~ o, 

which implies IAI = 0, aB IAI + IBI = 0. Thus A is singular. This 
contradicts the orthogonality of A. 

It is false for unitary matrices. Take A= I 2 and B = il2 • 

4.87 Since A > 0, there exists a real invertible matrix P such that pt AP = 
I. Since (PtBP)t = -PtBP, ptBP is real skew-symmetric and 
thus its eigenvalues are 0 or nonreal complex numbers; the nonreal 
eigenvalues appear in conjugate pairs. Let T be a real invertible 
matrix such that T- 1(Pt BP)T = dia.g(A1, A2 , •.• , An), where the Ai 
are either 0 or nonreal complex numbers in conjugate pairs. It follows 
that T-lpt(A + B)PT = diag(1 + A1J 1 + A2, ... , 1 +An)· By taking 
determinants, we see that lA + Bl > 0. 

4.88 By definition and direct verification. 

4.89 A= B+C = F+iG, where B = F = A-t;A• is Hermitian, C = A-;A• 
is skew-Hermitian, and G = -iA-;A· is Hermitian. 

4.90 (a) No. 

(b) Yes. 

(c) No. 
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4.91 It is easy to see that (a.)<=>(b). We first show that (a), (c), (d), and 
(e) are all equivalent. To see (a) implies (c), use induction. If n = 1, 
there is nothing to prove. Suppose it is true for n- 1. For the case 
of n, let u 1 be a. unit eigenvector belonging to the eigenvalue ~1 of A. 
Let U1 be a unitary matrix with Ut as its first column. Then Ui AU1 
is of the form 

( ~· :J. 
The normality of A yields a= 0. (c) follows by induction. 

It is obvious that (c) implies (a). 

(c)~( d): Note that U* AU= D, where D = diag(~11 ••• , An), if and 
only if AU= UD, or AUi = ~iUi, where Ui is the i-th column of U. 

(c)~(e): If Av = .\v, v f:. 0, assume that v is a. unit vector. Let 
U = ( v, U1) be a unitary matrix. Then, since A is normal, 

u• AU = ( ~ !. ) . 
It is easy to see by taking conjugate transpose that v is an eigen­
vector of A • corresponding to X. To see the other direction, let 
A be an upper-triangular matrix with nonzero (1,1)-entry. Take 
e1 = (1, 0, ... , O)t. Then e1 is an eigenvector of A. If e1 is an eigen­
vector of A*, then the first column of A* must consist of zeros except 
the first component. Use induction hypothesis on n. 

(f)<=>(c): If A* =AU, then 

A* A= A*(A*)* = (AU)(AUt = AA* 

and A is normal; hence (c) holds. To see the converse, let 

A= S*dia.g(.\1! ... ,.\n)S, 

where S is unitary. Take 

U = S* diag(l11 ... , ln)S, 

where li = ~ if~ f:. 0, and li = 1 otherwise, i = 1, ... , n. 

Similarly (g) is equivalent to (c). 

(c)=>(h) is obvious. To see the converse, assume that A is an upper­
triangular matrix and consider the trace of A* A. 
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(i)=?(c): Let A be upper-triangular. Consider the diagonal of A• A. 

(j)=>(a.): Note that for matrices X andY of the same size 

tr(XY) = tr(Y X). 

On one hand, by computation, 

tr(A* A- AA*)*(A* A- AA*) = tr(A* A- AA*)2 = 

tr(A* A)2 - tr[(A*)2 A2) - tr[A2 (A*)2
) + tr(AA*)2 = 0. 

On the other hand, 

tr(X* X)= 0 <=>X= 0, 

thus A* A - AA* = 0; that is, A is normal. 

(k)=>(a): This is because II.Axll = IIA*xll impliE'il 

x• A* Ax= x* AA*x; 

that is 
x*(A* A- AA*)x = 0 

for all X E en. Thus A* A- AA* = 0 and A is normal. 

(l)=>(a.): By a. direct verification. 

(m)=>(a): Note that tr(A* A- AA*) = 0. 

(n)=>(j): If AA* A= A* A2, then by multiplying A* from the left 

A*AA*A = (A*)2A2
• 

Thus (j) is immediate by taking tr~e. 

(o)=>(a): We show that (o)=>(j). Since A commutE'il with AA* -A* A, 

A2A* +A.A2 = 2AA*A. 

Multiply both sidE'ii by A* from the left 

A* A2 A* + (A*)2 A2 = 2A• AA* A. 

(j) follows by taking trace for both sides. 

4.92 (a) Take B = A) A. and C = -i A-./·. Then BC = CB. 
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(b) Let A = U diag(.X~e)U* and each Ak = I.X~elei9". Take H = 
Ddiag(I.X~ci)U* and P = U diag(ei9)U*. Then A= HP =PH. 

The converses of (a) and (b) are also true. 

4.93 Band Dare normal, C = 0. 

4.94 Denote the correspondence by M 'V N. It is easy to show that if 
Mt f'J Nt and M2 ,...., N2 then M1M2 f'J N1N2 and M* f'J W. When 
M ~ 0, write M = C*C. 

4.96 (a) We show that Ker A*~ Ker A. The other way is similar. Let 

x E Ker A* or A *x = 0, 

then AA * x = 0 and A* Ax = 0 since A is normal. Thus x* A* Ax = 
(Ax)*(Ax) = 0 and Ax= 0; that is, x E Ker A. 

(b) Let 
x E ImA* and x = A*y. 

Since A is normal, by Problem 4.91, assume A*= AU for some 
unitary matrix U, then 

x = A*y = AUy E Im A. 

Thus 1m A • ~ 1m A. The other way around is similar. 

(c) Since n = dim(ImA) + dim(Ker A) and ImA• = ImA, we show 

Im.A* n Ker A= {0}. 

Let x = A*y and Ax = 0. Then 

0 = y• Ax= y• AA*y = (A*y)*(A*y) => x = A*y = 0. 

4.96 First consider the case where A is a diagonal matrix. Let A = 
diag(At, ... , .\n). Then AB = BA yields Aibi; = .,\;bi;i that is, 
(.,\i - .,\;)bi; = 0. Thus .,\ibi; = A;b1;, which implies A* B = BA*. 
For the general case, let A = U* diag(.,\1 , ... , An)U for some unitary 
matrix U, then use the above argument with UBU* for B. 

4.97 Necessity =>: AA = 0 => A* AA = 0 => AA* A = 0 => AAt A = 0. So 
(At A)*(At A) =A* A.At A= 0 and At A= 0. 

Similarly, AA = 0 => AA = 0 => AAA* = 0 => AA• A= 0 => AAtA = 
0. So (AAt)(AAt)• = AA'AA* = 0 and AA' = 0. 

Sufficiency<=: (AA)*(AA) =At A* AA =At AA* A= 0. So AA = 0. 
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4.98 (a) Let At be an eigenvalue of A and let 

V>. 1 = { x I Ax = At X, x i= 0} 

be the eigenspace of At. Since A and B commute, for x E V>.17 

A(Bx) = B(Ax) = B(Alx) = A1(Bx), 

V>.1 is an invariant subspace of en under B, regarded as a linear 
transfonnation on en. As a linear transformation on V>.1 over 
e, B has an eigenvalue p,1 E e and a unit eigenvector Ut E V>.1 • 

Let U1 be 8 unitary matrix whose first column is Ut 1 then 

Ui AU, = ( ~ :, ) and Ui BU, = ( ~ :, ) . 

The normality of A and B implies that a= (3 = 0. Now apply 
induction hypotheses to A1 and B1. 

(b) It is immediate from (a). If the condition AB = BA is dropped, 
the conclusion does not necessarily follow. Take 

A=(~ n. B=(~ D· 
(c) If AB* = B* A, then BA* =A* B. It follows that 

(AB)(AB)* = A(BB*)A* 

(AB*)(BA*) ( B is normal) 

= (B* A)(A*B) 

B*(AA*)B 

= (B* A*)(AB) (A is normal) 

= (AB)*(AB). 

Hence AB is normal. Similarly, BA is normal. 

(d) By a direct computation. 

(e) Recall (Problem 4.91) that a matrix X is normal if and only if 

n 

tr(X* X) = L IAi(X)I2
• 

i=t 

We show that 
n 

tr(A*B*BA) = L IA;(BA)I2
• 

i=l 
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tr(A*B*BA) = tr(B*BAA•) (use trXY =trY X) 

tr(BB* A* A) (A, B are normal) 

= tr(B* A* AB) (use tr XY =trY X) 
n 

= 2: IAi(AB)I2 (AB is normal) 
i=l 

n 

E IA,(BA)I2
• 

i=l 

( ~ ~) and ( ~ g) are not normal, but their product is normal. 

4.99 A is diagona.lizable with eigenvalues 1, 1, and -1 or 1, -1, and -1. 

4.100 H A is an eigenvalue of A, then A3 +A= 0, which has only zeros 0, 
i, and - i. The complex roots of real-coefficient polynomial appear in 
conjugate pairs, so do the eigenvalues of a real matrix. Thus tr A = 0. 

4.101 The eigenvalues A of A are k-th primitive roots of 1, so l = X. Since 
xlc = 1 has at most k roots inC, some Ai's must be the same when 
k<n. 

4.102 Usc Jordan form of A. Let J be a Jordan block of A. Then Jk =I. 
J has to be 1 x 1. Thus A is diagonalizable. ForB, the character­
istic polynomial is A2 + 1, which has no real solution. So B is not 
diagonalizable over JR. (But B is diagona.lizable over C.) 

4.103 Usc Jordan form and consider the case J 2 = J for Jordan block J. 

4.104 Let Am = 0 and B"' = 0. Then AB = BA implies (AB)k = Ak Blc = 
0, where k ~ max{m,n}. For A+ B, expanding (A+ B)m+n, since 
AB = BA, we see that every term in the expansion contains AP Bq, 
where p + q = m + n. So either p ~ m or q ~ n. Thus AP Bq = 0 and 
(A + B)m+n = 0. 

4.105 (a) Let Am= 0. Then I= l-Am= (I-A)(l+A+A2 +···+Am-1 ). 

Thus I -A is invertible and (I -A)-1 =I +A+A2 +·. ·+Am-1• 

(b) Replace A by -A in (a). 

(c) Because all eigenvalues of A are 0. 

(d) If A is diagonalizable, then A = 0 as all eigenvalues of A are 0. 
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4.106 Since A2 =A and B 2 = B, we have 

(A+ B)2 = A2 + AB + BA+ B 2 =A+ AB + BA+ B. 

If (A+ B)2 = A+ B, then AB + BA = 0; that is, AB = - BA. Also, 

AB = A2 B = A(AB) =A( -BA) = -(AB)A = BA2 = BA. 

It follows that BA = -BA and BA = 0. So AB = 0. 

If AB = BA = 0, then obviously (A+ B)2 =A+ B. 

4.107 When A and B are Hermitian, (AB)* = B* A* = BA. Thus 

(BA) 2 = [(AB)*]2 = [(AB)2]* = (AB)* = B• A* = BA. 

4.108 If A2 =A, then there exists an invertible matrix T such that 

A=r-1 (;~)T=r-1 
(;) (IroO)T=BC, 

where B = T-1 ( ~), C = (/r, O)T; both have rank rand CB = Ir. 

The converse is easy to check. H A2 =A, let T- 1AT = diag(lr,O) 
for some T. So T- 1(A + I)T = diag(2Ir,In-r) and T- 1(2I- A)T = 
diag(Ir, 2In-r)· Thus I2In- AI= 2n-r and lA + Inl = 2r. 

4.109 Let T be an invertible matrix such that T-1 AT = diag(/r, On-r), 
where 1 $ r $ n- 1. Take B = T diag(O, J)T-1, where J is the k x k 
Jordan block with main diagonal entries 0. Then one may verify that 
AB = BA = 0 and (A+ B)k+l =(A+ B)k =I (A+ B)k-1 • 

4.110 Let r be the rank of A. Since A2 =A, the eigenvalues of A are either 
1 or 0. Using the Jordan form of A, by A2 =A, we see that every 
Jordan block of A must be 1 x 1. Thus A is diagonalizablc. It follows 
that (a) lA +II = 2r and lA- II = 0; (b) r(A) equals the number 
of nonzero eigenvalues of A, which are l's, and also equals tr(A); (c) 
dim(ImA) = r(A) = tr(A). 

4.111 (a) Note that for every positive integer k, 

AB = -BA ~ AB2k-t = -B2A:-1 A. 

Thus if B =AX+ XA, then 

B 2k =(AX+ XA)B2k-1 = A(XB2A:- 1)- (XB2k- 1)A, 

which implies that tr B 2k = 0 for all positive integers k; conse­
quently, B2 is nilpotent, and so is B, a contradiction. 
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(b) Without loss of generality, one may aBsume that A is the di­
agonal matrix diag(At, ... , An), all Ai > 0. The existence and 
uniqueness of the equation can be checked directly by taking 
Xi; = >., ~>. bi;. To show that X ~ 0 when B ~ 0, we first 
note that X is Hermitian by taking the conjugate transpose for 
both sides and because the solution is unique. To show that 
the eigenvalues of X are all nonnegative, let A be an eigenvalue 
of X and let u be a corresponding vector. Then 0 ~ u* Bu = 
u• X Au+ u• A.Xu = 2A(u• Au). Thus A~ 0, as u• Au> 0. 

4.112 AX + X B = C has a unique solution if and only if ( ~ _08 ) and 

( ~ _0
8 ) are similar via ( ~ ~~). 

4.113 Note that the idempotent Hermitian matrices are the positive semidef­
inite matrices with eigenvalues l's and O's, and that if A1 is a principal 
submatrix of a positive semidefinite matrix A, then 

Since B ~ A <=> AB = B is equivalent to 

U* BU ~ U* AU ~ (U* AU) (U* BU) = U* BU, 

where U is unitary, we may only consider the case in which B = 

(~g) , where r = r(B) is the rank of B. Partition A conformably as 

To show B ~A=> AB = B, note that A-B ~ 0 implies Mt-Ir ~ 0 
and that the eigenvalues of M1 are all equal to 1. It follows that 

Mt = Ir. Thus M2 = 0 and A = ( 10 ~3 ), where M3 ~ 0. It is 
immediate that AB = B. 

For the other way around, AB = B results in M2 = 0, M1 = Ir. 

4.114 If x E ImA, let x = Ay. Then Ax = A2y = Ay = x. Conversely, if 
x =Ax, then obviously x E ImA. 

To show that Im.A =1mB implies A= B, we compute, for any v, 
(A-B) 2v = A2v+B2v-ABv-BAv = Av+Bv-A(Bv)-B(Av) = 0, 
since A(Bv) = Bv and B(Av) = Av. A- B is Hermitian, so A= B. 
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4.115 It is sufficient to show that (d)=>(a). This is immediate since A2 =I 
and A* A= I imply A*= A. 

4.116 (a) By a direct verification. 

(b) Write A2
- I= 0 as (A+ I)(A- I)= 0. Then 

r(A + I) + r(A - I) ~ n. 

However, 

n = r(A) = r[(A +I)+ (A- I)] ~ r(A +I)+ r(A- I). 

(c) If Ax= Ax, for some x =F 0, then 

x = Ix = A2x = A(Ax) = AAx = A2x => A2 = 1. 

(d) For any v E V, 

1 1 
v = 2(v+ Av) + 2(v -Av) E V1 + V-1· 

Thus V =Vi+ V-1· Note that Vi n V-1 = {0}. 

(e) Since (A+ I)(A- I) = 0. 

(a), (d), and (e) each imply that A2 =I. 

4.117 ABA= Band BAB = A imply AB = BA-1 and AB = B-1 A. So 
BA-1 = B-1 A and A2 = B2 • A= BAB = (ABA)(AB) = B-1 A3 B. 
Thus BA = A3B. But BA = A-1B. We have A-1B = A3B, and 
A-1 = A3; that is, A4 =I. Similarly, B4 =I. 

4.118 Since (A- B)(A +B) = (A+ B)(B- A) = AB-BA, we see that 
Im(AB- BA) is contained in both Im(A- B) and Im(A +B); that 
is, lm(AB- BA) ~ Im(A- B) n 1m( A+ B). For the converse, let 
u e Im(A - B) n Im(A + B) and write u = (A + B)x = (A - B)y. 
Then (A- B)u = (AB - BA)x and (A+ B)u = (BA - AB)y. By 
adding, 2Au = (AB- BA)(x- y). It follows that 

1 1 
u = A2u = "2A(AB- BA)(x- y) = 2(AB- BA)A(y- x), 

which is contained in Im( AB - B A). 

4.119 If A2 =A, then ~(B2 + 28 +I)= ~(B +I), which implies B 2 =I. 
If B2 =I, then A2 = ~(B2 +2B+I) = 1(2/ +2B) = ~(B+I) =A. 
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4.120 Direct verification by definition. 

4.121 (a) n!. 

(b) By a direct verification. No. 

(c) If Pis a permutation matrix, then ppt =I. 

(d) Symmetric permutation matrices. 

4.122 (a) By direct computations. Note that for any matrix A, AP is the 
matrix obtained from A by moving the last column of A to the 
first column. 

(b) Consider 
k1P+ k2P2 + · ·· + knPn = 0. 

Since the k's are in different positions of the matrix on the leftr 
hand side, it follows that all the k's must be equal to zero. 

(c) It is routine to check by definition. Note pt = p-1 • 

(d) i + j is divisible by n. 

(e) Note that the characteristic polynomial of Pis ..\n- 1. 

(f) Take T = (ti;) to be the permutation matrix with tTc,k' = 1, 
k = 1, 2, ... , n, and 0 otherwise, where k' is the positive integer 
such that 

0 < k' = ( k - 1 )i + 1 - mn ~ n 

for some nonnegative integer m. For instance, if n = 5 and i = 3, 

tu = t24 = t32 = t45 = ts3 = 1 

and 0 otherwise. It is easy to check that T-1 p3T = P. 

4.123 Let A be k x k. Since A is invertible, there is at least one summand 
in the expansion of the determinant det A that is nonzero. For A is 
a matrix of integer entries, we may write A as A = P + B, where 
P is a permutation matrix and B is a nonnegative matrix. Notice 
that pk = I. Thus in the expansion of An = (P + B)n, there are 
infinitely many summands PBP; that are identical to B. If B had 
a nonzero (thus positive) entry, then the sum of the entries of An 
would be unbounded as n --+ oo. Therefore, B = 0 and A = P is 
a permutation matrix. For the case of union of entries, because the 
powers of A collectively have only finitely many entries, we must have 
Am= An for some m and n. SoAP= I for some p. Then expand 
I= AP = (P + B)P = pP + pP-1 B + · · · . The sum of the entries on 
the left-hand side is k, a.nd then so is on the right. Thus B = 0. 
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4.124 Since every row and every column of A have one and only one nonzero 
entry, which is either 1 or -1, and all other entries are 0, it is easy 
to see that the powers of A: A2, A3, ••• , have the same property; 
that is, for all positive integer m, every row and every column of Am 
have one and only one nonzero entry, which is either 1 or -1, and all 
other entries are 0. Since there are a finite number of matrices that 
have the property, we have AP = Aq for some positive integers p and 
q, p < q. Since A is nonsingular, we have A q-p = I. 

4.125 A is an ( n - 1) x n matrix. Denote by B the submatrix of A by 
deleting the last column of A. Since the row sums of A are all zero, 
we may write A= (B, BR), where R = ( -1, -1, · · · , -l)t. Then 

IAAtl = I(B,BR)(B,BR)tl = IBBt + BRRtBtl 

IB(I + RRt)Btl = IBI2 II + RRtl = niBI2
• 

4.126 Denote the rows of A by r11 r2, ... , Tn· LetS and T be the row and 
column indices of the s x t submatrix whose entries are all 1. Set 
v = LieS Ti· Since the rows are mutually orthogonal, we have 

llvll 2 = L r~ri = L r:ri = sn. 
iES,;ET iES 

However, the j-th coordinate of vis LieS ai;, 

It follows that SJt $ sn and this shows that st $ n. 

4.127 By direct computation, we have 



Hints and Answers for Chapter 5 

5.1 11 11!11 ull = 11!11 11ull = 1. Sou is a unit vector. For v, wE V, 

-- 2 
(v, (v,w)w) = (v,w)(v,w) = l(v,w)l . 

((v,w)v, w) = (v,w? =F l(v,w)l2 in general over C. 

5.2 The first identity is easy. For the second one, use (u, AV) = X(u, v). 

5.3 (a) False. Take u = (2, 2). 

(b) True. By the Cauchy-Schwarz inequality. 

(c) False. Take u = v = (1, 1), w = (1, -1). 

(d) False. Take u = v, w = -u. 

(e) True. By the triangle inequality. 

5.4 (a) and (d) hold. (b) and (c) do not hold. 

5.5 For x = (x1tx2,x3)t, (x, x) = 21x2l2 + lx1l2 + :tix3 + X1X3 + 2lxJI2. 
Since lx1l2 +x1x3 +x1x3 + lx3l2 ~ 0, we see that (x,x) ~ 0. Equality 
holds if and only if x = 0. Other conditions are easy to verify. If the 
(2, 2)-entry is replaced with -2, then the positivity does not hold, 
since ((0,1,0),(0,1,0)) = -2. So it's no longer an inner product. If 
x andy are switched on the right, then it's not an inner product. 

5.6 It is routine to show by definition that V is a subspace of R4 . To 
find a basis for V, note that X3 and x4 are free variables. Setting 
xs = 1, X4 = 0 and xs = 0, X4 = 1, respectively, we have a basis 
for V: (1,1,l,O)t and (1,-l,O,l)t. To find a basis for V.L, let y = 
(y1, y2, y3, Y4)t E V.l.. Then y is orthogonal to the basis vectors ofV. 
So Y1 +y2+YJ = 0 and Yl-Y2+Y4 = 0. This reveals 2yl = -y3-Y4 and 
2y2 = Y4 -y3. It is easy to see that ( -1, 0, 1, l)t and ( -1, 1, 0, 2)t form 
a basis for yl and yl = {a(-1,0, 1,1)t +b(-1,1,0,2)t I a,b E R}. 

5.7 aa = (0, ~, -~,o)t, a4 = (0, -~, -~, ~)t. 

5.8 ft(x) = 1- ~, !2(x) = ~- ~
2

, fa(x) = :z;3
2

- :z:: form a basis for w.L. 

5.9 The first three are positive semidefinite. The last one is not. Take 
u1 = (0.1,0.1,0.1)t,u2 = (0.3,0.7,0.3)t,u3 = (0.4,0.5,0.7)t. 

224 
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5.10 We need to show that x*Gx ~ 0, where x = (x~,x2, ... ,xn)t. Let 
y = Xt Ut + x2u2 + · · · + Xn Un and denote 9ii = (u;, Ui). Then 

n n 

0 ~ (y, y) = ~ XiXj(Ui,u;) = ~ XiXj9ji = x*Gx. 
i,j=l i,j=l 

G is singular if and only if Gz = 0 for some nonzero z. If Gz = 0 
for some nonzero z, take x = z, we see that y = 0 and the vectors 
are linearly dependent. The converse is proved similarly. Note that 
G ~ 0 if and only if (;t ~ 0. So H = (;t ~ 0. 

5.11 Since llull < 1, llvll < 1, by the Cauchy-Schwarz inequality, we have 
l(x, y)l < 1, where x, yare any choices of u and v. Recall the power 
series expansion l~r = 1 + r + r2 + r3 + · · · when lrl < 1. 

The positivity follows immediately because the sum of positive semidef­
inite matrices is again positive (with a bit more work on convergence) 

and because ( b ~) ~ 0 => ( b; ~) ~ 0 for any positive integer k. 

5.12 If there exist n vectors 'UI, U2, ... , Un E en such that A= (aij ), where 
D.ij = (u;, u,), then for any vector x, where X= (Xt, X2, ... , Xn)t E en, 

x• Ax = 2:; '"•"';"<; = 2:; '"•"'i (u,, u,) = ( L x;u1 , L x;u,) ~ 0 . 
•• , •• , 3 • 

So A ~ 0. Conversely, if A ~ 0, we can write A = B* B for some n­
square matrix B. (See Chapter 4.) Then~;= bib;= (b;,bi), where 
bi is the i-th column of B. So A is a Gram matrix. 

5.13 If A ~ 0, then it is easy to check that (x, y) = y• Ax is an inner 
product. Conversely, let e1 , e2 , ••• , en be an orthonormal basis of en 
and let A= ((e;, ei)). Then A~ 0 and (x, y) = y0Axo, where xo and 
Yo are the coordinates of x and y relative to the basis, respectively. 

5.14 Compute {u + v, u + v) - (u- v, u- v) directly. 

5.15 No. Take x = (1, 0) andy= (1, 1). 
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5.16 By the Cauchy-Schwarz inequality, if xis a unit vector, 

(x, y){y, x) ~ (y, y). 

Replace y by Ax, 

(Ax,x)(x,Ax) ~ (Ax,Ax). 

When A E Mn(C) and X E en with x*x = 1, (Ax,x) = x* Ax, so 

x• Axx• A*x ~ x• A* Ax. 

The equality holds if and only if Ax and x are linearly dependent. 
Since llxll = 1, so Ax= Ax for some A, i.e., xis an eigenvector. 

5.17 For the inequality, it is sufficient to notice that for all x 

x*(I + A)-1(I- A)(I- A)(I + A)-1x ~ x*x 

if and only if 

(I+ A)-1(I- A)(I- A)(I + A)-1 ~I, 

which is true if and only if 

(I- A)2 ~ (I+ A)2
• 

This is obviously true. 

For the equality case, we first show that x E Ker A if and only if 
(I- A)(I + A)-1x = x. H x E Ker A, then Ax= 0. Thus (I- A)x = x 
and (I+ A)x = x. Since I+ A is nonsingula.r, x =(I+ A)-1x. Thus 
(I -A)( I +A)-1x = (I -A)x = x. Conversely, if (I -A)(I +A)-1x = x, 
then since I - A and (I + A) -l commute (because I - A and I + A 
commute), we have (I+ A)-1(I- A)x = x or (I- A)x = (I+ A)x, 
which implies Ax = 0; that is, x E Ker A. 

We now show that the norm equality holds if and only if (I +A)-1(I­
A)x = x. H (I +A)-1(I -A)x = x, the norm equality holds obviously. 
Conversely, if the norm equality holds, then x is an eigenvector of 
M =(I -A)(I +A)-1• Let Mx =AX. Since A is positive semidefinite, 
the eigenvalues of M should all have the form (1-~)/(1+~), where~ is 
an eigenvalue of A. So ..\ =f 1. Since I- A and (I+ A) -l commute, we 
have (I +A)-1(I -A)x = ..\x. It follows that (1-..\)Ax = (..\-1)x and 
thus Ax= -x. This says -1 is an eigenvalue of A. A contradiction 
to A being positive semidefinite. 
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5.18 (a) Suppose that v~, v2, and V3 are linearly dependent. It may be 
assumed that v1, v2, and va are unit vectors and that 

Then 

and 

By subtracting 

A2((v~,v2}2 - 1) > 0 => A2 < 0 => AI < 0. 

Now compute 

(b) No, since the dimension of the xy-plane is 2. However, it is pos­
sible for three vectors in the xy-plane to have pairwise negative 
products: v1 = (1,0), v2 = (-1/2,-13/2), v3 = (-1/2,--13/2). 

(c) v~, v2, v3, v4 can linearly dependent or independent. 

(d) 3, -~. The maximum is attained when u = v = w, and the 
minimum is attained when the angles between any two of them 
are equal to 2;. 

5.19 (a) No. 

(b) jix, Jix2
• 

(c) jix, [ix2, 2~- 2~x2. 
(d) It suffices to show that the basis vectors are orthogonal. For 

instance, by integration (x,x3 - ~x) = J~ 1 (x4 - ~x2)dx = 0. 

(e) It is sufficient to show that 1, x, x2 
- ~' x3 - ~x are linearly 

independent. Then it follows that V1 n V2 = {0}. 

(f) Yes. 

(g) Take v = 1 and w = x. 

(h) No. 
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5.20 Let 
X= AlVl + A2V2 + · · · + AnVn· 

Taking inner product of both sides with Vt, results in 

Ai = {x,vt,), i = 1,2, ... ,n. 

By a direct computation, 

5.21 (a) By definition. 

(b) Note that tr(A• A) = (A, A). 

(c) Use the Cauchy-Schwarz inequality. 

(d) Note that tr(ABB* A*)= tr(A* ABB*). Use the fact that 

tr(XY) ~ tr X trY, X 2:0, Y 2: 0, 

which can be shown by first assuming that X is diagonal. 

(e) Since IIAII2 = (A, A) = tr(A* A) and A* A- AA* is Hermitian, 

IIA* A- AA*II2 = tr(A* A- AA*)2 

= 2tr(A* AA* A)- 2tr(A* AAA*) 

2IIA* All 2 
- 2IIA2 II 2 

~ 2IIA* All2 

~ 2IIAII4
• 

(f) Take X= A*, then use (b). Or take X = Ei;, where Et.i is the 
matrix with 1 in the position ( i, j) and 0 elsewhere. 

(g) It is easy to show that W is a subspace. Note that the dimension 

of Mn(C) is n2
• Since tr A = an + €!22 +···+ann = 0, we 

have dim W = n2 - 1. Thus dim W .l = 1. The identity matrix 
I is a basis for W .l and W .l only consists of scalar matrices. 
Alternatively, one may assume that A is upper-triangular, then 
show that A is a scalar matrix. 

(h) Take X= xx• where xis a column vector. 

No. Yes. No. 

5.22 u = (1,0) is a unit vector, while v = (1, -1) is not. They are not 
mutually orthogonal, since (u, v) = 1. 
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(a) ul. is they-axis, v.l is the line y = x. 

{b) ul. n vl. = {0}. 

(c) {u,v}.l={O}. 

(d) (Span{u, v}).l = {0}. 

(e) Span{u.l, v.l} = IR2 • 

5.23 ( ~b ~b), a,b E C. 

5.24 (a) x•(A + cl)x = x• Ax+ c. 

{b) x*(cA)x = c(x* Ax). 
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(c) Let ~ be the column vector with the i-th component 1 and 0 
elsewhere. Then e; Aei = O..i E F(A). 

{d) Let Av = AV, where vis a unit vector. Then 

v• Av = v*(Av) =A E F(A). 

(e) No, in general. 

(f) A closed interval on the x-axis. 

(g) A closed interval on the nonnegative part of the x-axis. 

(h) The fields of values are, respectively, [0, 1]; the closed disc with 
center 0 and radius ~; the closed elliptical disc with foci at 0 
and 1, minor axis 1 and major axis v'2; the closed line segment 
joining (1, 0) and (1, 1); and the triangle (including interior) 
with the vertices (0, 0), (1, 0), and (1, 1). 

5.25 (a) By a. direct computation. 

{b) Suppose llx + Yll = llxll + IIYII· On one hand, for s, t ~ 0, 

llsx + tyll ~ sllxll + tiiYII· 

On the other hand, BBSuming t ~ s (s >tis dealt similarly), 

llsx + tyll llt(x + y)- (t- s)xll 
;:::: I tllx + Yll - (t- s)llxlll 
= sllxll + tiiYII· 

Thus llsx + tyll = sllxll + tllyll. The other direction is obvious. 
This result can also be shown by examining the proof of the 
triangle inequality for inner product spaces. 
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(c) If x and y are orthogonal, a simple computation gives 

(d) By a direct computation. This is the Pythagorean Theorem. 

(e) The converse of (d) is true over R; false over C: x = 1, y = i. 

5.26 Necessity: Let v E W and u = v + v', where v' E W l.. Then u - v E 

Wl.. Thus for every w E W, v-w E W, (u-v, v-w) = 0. Therefore, 

llu- wll 2 = ll(u- v) + (v- w)ll2 = llv- vll 2 + llv- wll 2 

and 
llu-vll ~ llu-wll· 

Sufficiency: Assume that v1 is the projection of u onto W and v1 :f: v. 
Let u = Vt + V2, where Vt E w, V2 E wl.. Then (u- Vt) .i (vl- v), 

a contradiction. 

llu- vll2 = ll(u- Vt) + (vt - v)ll2 

llu- Vtll2 + llvt- vll2 

> llu- Vtll2, 

5.27 First, we claim w n wl. = {0}. H X is contained in w and wl.' 
then (x,x) = 0, so X = 0. Thus w + w..L is a direct sum. So 
dim W +dim Wl. ~dim V. Now we show that the direct sum is indeed 
equal to V. H W = {0} or V, we have nothing to show. Suppose 
dim W = s, 0 < s < n =dim V. Let at,a2, ... , a 8 be an orthogonal 
baBis for W. W .1 cannot be { 0 }; otherwise W = V. Let 0 :f: {31 E 

W l.. Then at, a2, ... , as, f3t are pairwise orthogonal and linearly 
independent. Let Wt = Span { a1, 02, ... , a 8 , f3t}. If Wt = V, then 
we are done. Otherwise, choose 0 :f: !32 E W [-. Inductively, we have a 
set of nonzero vectors {31, 132, ... , l3t such that they all lie in W l. and 
are mutually orthogonal, s+t = n. So V = WEBSpan{/31,/32, ... ,f3t}. 
We show that W l. = Span{.Bt, !32, ... , f3t}. Since f3t, !32, ... , f3t E W ..L, 

we have Span{.8t, {32, ..• , f3t} ~ Wl.. However, dim Wl. ~ n- s = t, 
Span {{31 , 132, ... , f3t} = W l. and the desired conclusion follows. 

5.28 (a) False. 

(b) False. 

(c) True. 
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5.29 (a) True. 

(b) 'Ii'ue. 

(c) False, unless S is a subspace. 

(d) True. 

(e) True. 

(f) True. 

(g) True. 

(h) True. 

5.30 We show (a). (b) is similar. Since Wt ~ W1+W2, (W1+W2).1 ~ W[-. 
Likewise, (Wt + W2).1 ~ Wf. So (Wt + W2).1 ~ Wf n Wf. Now 
suppose u E Wf- n Wf. Then (u,Wt) = 0 for all w1 E W1 and 
(u, W2) = 0 for all W2 E WI· Thus (u, w) = 0 for all w E WI + w2. 

5.31 Since p + dimSl. =dim V = n, dim.Sl. = n- p < q. The vectors Vi 

are all contained in s.l, they must be linearly dependent. 

5.32 Notice that 

( 
x• 0 ) ( A B* ) ( x 0 ) = ( x* Ax x* B*y ) > O. 
0 y* B C 0 y y• Bx y*Cy -

Take the determinant. For the particular cases, observe that 

5.33 Let x be an eigenvector of A corresponding to >.. Then (Ax,x) = 
-(x,.Ax) implies that (.\x,x) = -(x,.\x). Thus >.(x,x) = ->.(x,x). 
It follows that >.+X= 0 and>.= 0 if>. is real. 

5.34 S = Span{ut, U2}, where u1 = ( -3, 0, 1, 0), U2 = (2, -1, 0, 1) and 
S.l =Span{ Vt, v2}, where VI = (1, 0, 3, 1), v2 = (0, 1, 0, 1). 

5.35 Let dim V = n, dim Vi = s, dim V2 = t. Then dim Vi.l = n - s ;:::: 1. 
Let Va = V2 n Vi_.1. Then by the dimension identity, we have 

dim V3 =dim V2+dim V1.1-dim(V2+V1.1);:::: t+(n-s)-n = t-s > 0. 

This implies that Va = V2 n Vi.i ~ {0}. Thus for some u E V2, u ~ 0, 
(x,u) = 0 for all x E VI. 
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5.36 Let ..X be an eigenvalue of A and V~ be the eigenspace of;\. Write 
V = V~ E9 Vl. We show that Vl is invariant under A. Let x E Vl, 
then (x, y) = 0 for ally E V~. Thus (A(x),y) = (x,A(y)) = (x, AY) = 
X(x, y) = 0; that is, A(x) E V/. Now use induction on the dimension 
of the vector space. 

5.37 Let At, A2, ... , An be the eigenvalues of A, and let VI, v2, ... , Vn be 
the corresponding eigenvectors that form an orthonormal basis for V. 
Suppose further that the first m eigenvalues arc positive and the rest 
are not. If m < k, then there exists a. nonzero vector w such that 

Write 

W = Cm+IVm+l + · ·. + CnVn· 

Since { vb ~, ••• , Vn} is an orthonormal set, 

n n n 
(Aw, w) = ( L CiAivi, L CiVi) = L ICil2 Ai ~ 0. 

i=m+l i=m+l i=m+l 

This is a contradiction. Therefore, m ~ k. 

5.38 It is sufficient to show that 

A= 0 <=> (Av,w) = 0, for all v E V and wE W. 

If Av 1: 0 for some v, let w = Av. Then (Av, w) 1: 0, a contradiction. 

5.39 (a) If (x, By) = (Ax, y) = (x, A*y) for all x andy, B =A*. 
(b) Note that 

(Ax, y) = (x, A*y) = (A•y, x) = (y, (A•)•x) = ((A*)*x, y). 

(c) If x E Ker A*, then A*x = 0. For any y E V, 

(x,Ay) = (A*x,y) = 0. 

Hence KerA* ~ (ImA).l. The other way is similarly shown. 
(d) Similar to (c). 

(e) By (c) and (d). 

(f) This is because (.Aa1, ai) = (a&, A*a3) = (A•o3, ai)· 
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5.40 It is an inner product if and only if A is invertible. 

5.41 Compute (.A(x + y),.A(x + y)). 
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5.42 (b) is equivalent to (A(u), A(u)) = {u, u). So (a) implies (b). For 
(b)=>(c), compute (A(a,+a;),A(a,+a;)) to get {A(a,),A(a;)) = 1 
if i = j, 0 otherwise. To show that (c)=>( d), let A be the matrix rep­
resentation of A under the basis a 1, .•. , an. Let a, be the i-th column 
of A. Then (a1,a;) = (.A(a,),.A(a;)) = 1 if i = j, 0 otherwise. Thus 
A is orthogonal. For (d)=>(a), write u and vas linear combinations 
of a 1, a2, ... , an, say, x andy, respectively. Then (u, v) = xty and 
{A(u), .A(v)) = (Ax)t(Ay) = xt At Ay = xty. Condition (c) cannot be 
replaced by (c'): Take A(e1) = 2e1 and .A(e2) = 2e2 for JR2 . 

5.43 .A is not necessarily orthogonal in general. Take 1R2 with e1 = (1, 0), 
e2 = (0,1) and define .Ae1 = e1 and Ae2 = e1; that is, A(e1,e2) = 
(e1, e2)A, where A= (~ ~). Then A is a linear transformation sat­
isfying (Aei, .Aei) = (ell e1) = 1, i = 1, 2. But A is not orthogonal, 
since (e11e2) = 0, but (Ae1,Ae2} = (e1,e1) = 1 i= 0. 

5.44 Take V = R2 and define .C(x, y) = ( y'(x2 + y2)J2, .J(x2 + y2)J2) 
and V(x, y) = (x + 1, y + 1). Then .C preserves length, V preserves 
distance, but neither .C nor Vis linear. 

5.45 No, in general. Yes, if a1, ... , an are linearly independent. For the 
orthogonal case, the sufficiency is obvious by Problem 5.42. For the 
necessity, let, without loss of generality, { a 1, ••. , at} be a basis for 
Span{at, ... ,an}· Then it can be shown that {.B1, ... ,.Bt} is a basis 
for Span{,Bl! ... , .Bn}· Now let { U1J ... , Un-t} and { Vt, ... , Vn-t} be 
orthonormal bases, respectively, for 

(Span{ a~, ... ,at})J. and (Span{,Bt, ... ,.Bt})J.. 

Then 

are two bases for V. Now suppose x E V. If 

t n-t 

X= LXiO!i + LYiUi, 
i=l i=l 

let 
t n-t 

Ax= L xi/3& + L y,v,. 
i=l i=l 
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Then A is an orthogonal linear transformation. 

5.46 Show first that (A(x),A(y)) = (B(x),B(y)) for all x andy by consid­
ering (.A(x+y), .A(x+y)). Take a basis lrt, ... , lrn for V. For the sets 
{.A( at), ... , .A( an)} and {B(at), ... , B(an)}, by Problem 5.45, there 
exists an orthogonal transformation C such that C(B(a,)) =.A( a.). It 
follows that A = CB. 

5.47 (a) By definition 

.Cv(ax +by) (ax+ by, v) 

= a(x, v) + b(y, v) 

a.C,.,(x) + b.C,.,(y). 

(b) Notice that £(ax+ by)= .Caz+bu and that 

.Ca:z:+by(u) = (u, ax+ by) 

Thus .C is linear. 

a(u, x) + b{u, y) 

= a.Ca:(u) + b.C71 (u) 

(a.C:z; + b£71 )(u). 

(c) If £(v1) = £('V2), then .Cv1 = .C,.,2 and 

{u, Vt) = {u, v2), for every u E V. 

Thus Vt = v2 and .C is one-to-one. 
To show that .C is onto, suppose that {et, e2, ... , en} is an or­
thonormal basis for V. If f E y•, let 

v = j(et)e1 + · · · + f(en)en. 

Then .Cv =f. 
(d) For orthonormal basis { et, e2, ... , en} of V, define fi E v• by 

( ) { 
1 if i = j, 

j, ei = 0 if i =f: j. 

Then {ft, /2, ... , fn} is a basis for V*. 

5.48 First show W1 n W2 = {0}. H a E W1 n W2. Then a = T(a) and 
a = {3 - T(f3) for some {3 E V. Compute {a, a) = {a, (3 - T({3)) = 
{a,/3)- {a, T(f3)) = {a,(3)- {T(a), T(f3)) = (a,/3)- (a,/3) = 0. So 
a= o. Since X= T(x) + (x- T(x)) for all X E V, v = Wt E9 w2. 
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5.49 (a) Extend u to an orthonormal basis {u,u2, ... ,Un}. Then 

.A{u) = -u, .A(u.;) = ~' i = 2, ... , n. 

(b) The matrix of A under the above basis is A= ( (/ 1"~ 1 ). Thus 

IAI = -1. A matrix representation of A under a different basis 
is similar to A. They have the same determinant. 

(c) Suppose the coordinate vectors of x and .A( x) on the orthonormal 
basis are Yo and zo, respectively. Let the coordinate vector of u 
on the basis be v. Then 

Thus the matrix of A is of the form I - 2vvt. 

(d) Apply A to X= ku + y. 

(e) Denote by V1 the eigenspace of 1 and suppose that 

{ Ut, U2, · ·., Un.-1} 

is a basis for Vi . Let a =F 0 be an eigenvalue of B having unit 
eigenvector Un E V1.L. Then u1, u2, ... , Un. form a basis for V. 
Considering the matrix representation of B on this basis, one has 
a= -1. Thus 

B~ = ui, i = 1, 2, ... , n- 1, Bttn = -u,.. 

Take w = Un, then B(x) = x- 2{x, w)w. 

5.50 (a) For v E V, write v = w + w.L, where w E Wand w.L E W.L. 
Define 'P(v) = w. 

(b) 'P2(v) = 'P(w) = w = 'P(v). 

(c) The decomposition v = w + w.L is uniquely determined by W. 

(d) Since W is a nontrivial subspace, there exists a subspace W' such 
that (see Problem 1.48) 

V=WeW' and W'#W.L. 

Similarly, define 'P' as 'P. 

(e) {'P(v), v) = (w, w + wl) = (w, w} 2::: 0. 

(f) II'P(v)ll = llwll ~ llw + wlll = llvll. 
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(g) (I - 'P) ( w.l) = w.l - 'Pw.l = w.l. 

(h) ('P(v), (I- 'P)(v)) = 0. 

5.51 (a) For v E V, 

v = Iv = 'Ptv + · · · + 'Pmv· 

Thus 

To see it is a direct sum, we show that 

dim V = dim(Im 'Pt) + · · · + dim(Im 'Pm)· 

Take a basis for V and suppose that the matrix representation 
for 'Pi is Pi, i = 1, ... ,m. By Problem 3.104, 

dim(Im 'Pi) = tr ~ = r(~), i = 1, ... , m. 

It follows that 

dimV = n 

trln 

= trP1 +···+trPm 

dim(Im 'Pt) + · · · + dim(Im 'Pm)· 

To see 'Pi'P; = 0 for distinct i and j, let v E V. Then 

n n 

'P;v = (LP,)'P;v = L('P,'P;)v. 
i=l i=l 

Note that 

'P;v E 1m 'P;, 'Pi'P;v E Im 'P.; 

and that V is a direct sum of 1m 'P; 's. It follows that 

(b) Choose a basis for each 1m 'Pi, i = 1, ... , m, and put all these 
vectors together to form an orthonormal basis for V by defining 
the inner product of any two distinct vectors in the basis to be 
0, and the inner product of any vector with itself to be 1. 
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(c) Obviously 

ImP1 + 000 +lmPm +n~1 Ker'P1 ~ Vo 

Let 
T =I- 'Pt - .. 0 - 'Pmo 

Then for x e V, 

Tx = x- PtX- · · ·- 'PmXo 

Thus for each i, 

So 

However, 

hence 

Pi(Tx) = 'Pi(x- 'PtX- o o o - 'Pmx) 

'Pix - Plx = Oo 

x = 'P1x + o o o + 'Pmx + Tx, 

V = Im 'Pt + · o o +1m Pm + n~1 Ker'Pio 

To show it is a direct sum, let 

Xt + 0 0 0 + Xm + y = 0, 

where 

237 

Notice that 'PiXi = Xi and that 'Pi'Pi = 0. Applying 'Pi to both 
sides of the above identity yields Xi = 0, i = 1, 2, o o o , m, y = Oo 
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Notation 

R 
R+ 
e 
Q 
F 
Rn 
en 
Pn[x) 
P[x] 
lei 
c 
Rec 
C[a,b] 
C(IR) 
Coo(Ii) 
P=>Q 
P<=>Q 
v,w 
W1,W2 
SpanS 
el, ... ,en 
Mmxn(IF) 
Mn(F) 
Hn(IF) 
Sn(F) 
!M_ I 

dt' 

'II' 
In, I 
dimV 
W1+W2 
W1 a1 w2 
A,B, .. . 
A,B, .. . 
Eii 
IAI 

real numbers 
positive numbers 
complex numbers 
rational numbers 
a field 
column vectors with n real components 
column vectors with n complex components 
real polynomials with degree less than n 
real polynomials with any degree 
absolute value of complex number c 
conjugate of complex number c 
real part of complex number c 
real-valued continuous functions on [a, b] 
real-valued continuous functions 
real-valued functions of derivatives of all orders 
If P then Q 
P if and only if Q 
vector spaces 
subspaces 
the vector space generated by the vectors in S 
standard basis for IRn or en 
m x n matrices with entries in IF 
n x n matrices with entries in 1F 
n x n Hennitian matrices with entries in lF 
n x n Skew-Hermitian matrices with entries in lF 
derivative of f with respect to t 
second derivative of y 
n x n identity matrix 
dimension of vector space V 
sum of Wt and W2 
direct sum of Wt and W2 
matrices 
linear transformations 
square matrix with the (i,j)-entry 1 and 0 elsewhere 
determinant of matrix A 
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detA 
r(A) 
trA 
At 

A 
A* 
A-t 
adj(A) 
diag(>.t, ... , >.n) 
KerA 
ImA 
F(A) 
I>.I- AI 
>-max(A) 
Umax(A) 
llxll 
A~O 

A~B 
A>O 
A~ 
m(A) 
(A,B] 
AoB 
A* 
wj_ 
v• 
p 

l~gl 

determinant of matrix A 
rank of matrix A 
trace of matrix A 
transpose of matrix A 
conjugate of matrix A 
conjugate transpose of matrix A 
inverse of matrix A 
adjoint matrix of matrix A 

NOTATION 

diagonal matrix with>.~, ... , An on the main diagonal 
kernel or null space of A, i.e., Ker A= {xI Ax= 0} 
image or range of A, i.e., 1m A = {Ax} 
field of values of A, i.e., {x* Ax lllxll = 1} 
characteristic polynomial of A 
largest eigenvalue of matrix A 
largest singular value of matrix A 
norm or length of vector x, i.e.,~ or ...j{x,x} 
A is a positive semidefinite matrix 
A-B~O 
A is a positive definite matrix 
square root of positive semidefinite matrix A 
the modulus of A, i.e., m(A) = (A* A)~ 
commutator AB - BA 
entrywise product of A and B, i.e., A o B = (~;b,;) 
adjoint of linear transformation A 
subspace of the vectors orthogonal to W 
dual space 
orthogonal projection 

determinant of the block matrix ( ~ g) 
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Index 

addition 
of continuous functions, 6 
of polynomiab. 5 
of vectors. 1 

adjoint, 22, 38. :39, 116 

basis. 6 

Cartesian plane. 2 
xy-plane, 2 

Cauchy-Schwarz i1wquality, xv. 10.5 
characteristie polynomial. 46 
coefficient, 6 
cofactor, 22. :{~ 

<·olumn spa<·e, 8, 18. 24 
<'ommutator. 62 
congruent matrices, 52 
conjugate, 4 
<!onvex function. 83 
coordinate, 7 
Cramer's rule. 25 

decomposition 
Jordan. xv 

Schur, xv 
singular value, X\' 

spectral. xv 
triangular, xv 

determinant. 21 
diagonalization. 4!l 
differential operator. 72 
dimension. 6 

dimen~ion identity. xv, 8 
dirE'<.'t sum, 20 
direct sum of \'ector spaces, 8 
distance, 104 
dot product. 103 
dual space. 118 

eigenspace. 46 
eigenvalue. 45. 50 
eige11vector. 45, 50 
elementary matrices. 23 
elementary operations, 23 
equivalent matrices .. 52 
Euclidean spa<'e. 103 
even function. 20 
even permutation. 22 

field of values. 113 

Gram matrix, 109 

Hadamard product, 91 
homogt'rwous linear systt'm. 24 

idempotent,. 120 
identity tnmsforme~tion, 48 
image. 8, 24, 48 
indefinite inner product. 109 
inner product, 10:3 
inner produet spact'. 10:~ 

intersection of suhspaces, 7 
invariant subspace, 50, 69 
inverse. 4, 23 



involution, 100 

Jordan blo<"k. 47 
Jordan canoni<·al form, 46 

Jordan decomposition, xv 

Jordan form, 46. 47 

kernel, 8: 25, 48 

Laplace expansion. 22 
length. 104 
linear combination. 6 
linear dependence, 6 
line<-tr functionc:tl. II H 
linear indept>ndenct>. 6 
linear operator, 4~ 
linear transformation, 4~ 

matrix, 3 
addition. 3 
adjoint. 22 

backward identity. 32 
column space. 8 
congruent. 79 

conjugate, 4 
correlation. 92 
rl i c:tgonc:tl, !1 

diagonc:tlizahle. 4!l 

Plenwntc:try opt>ration~. 2:~ 
equal, :l 

Gram, 109 
Hermitian, !>. 7!l-77 

irlempott>nt. :39. 98, 99 
idt-ntity, 4 
image, 8 
inverse. 4. 23 
invertible. 1. 23 
involutary, 98 
kernel of. 8 
lower-triangular. 5 
nilpotent. 98 

non~iugular, 4 

normal. 5. 76. 96 
null space of, 8 
orthogonal. 5. 9:3 
partition. 5 
permutation, 100 
positive definite. 7'f> 

INDEX 

positive ~emidefinite, 7-:). 76 
product. 3 
projection. 98 
range, 8 
real orthogonal. 5 
real symmetric. 75 
root. 79 

row spa<~e. 8 
scalar multiplication. 3 
similar. 45 
skew-Hermitian. 5. 75 
symmetric. 5 

transpose, 4 
triangular. !5 

unita1y. 0, 9:3 
VandermoruJe, 31 
zero. 4 

matrix repre~entation, 30 
minor. 22, 80 
modulus, 90 

norm. 104 
null space, 8. 18. :25 
numerical range. 11 :~ 

odd function. :W 
odd pt>rmutation, 22 
operator 

self-adjoint, 116 
orthogonal basis. lOS, 117 
orthogonal complement, 114 
orthogonc:tl operator, 117 
orthogonal projection. 99, 119 



I!':DEX 

orthogonal set. 105 
orthogonal vectors. 105 
orthonormal basis, 106. 117 
orthonormal set, 105 

permutation 
even, 22 
odd, 22 

product of transformations. 48 
projection. 114 
proper subspace, 7 
Pythagorean Theorem. 2:30 

range, 8. 18. 24 
rank. 24 
row spac<'. 8 

scalar. 1 
S('alar multiplieation. 1 

for <·ontinuous functions, 6 
for polynomials, .5 

scalar transformation. 48 
Schur decomposition, .53 

Schur product. 91 
similar matrices, :>2 
similarity, 1.5 
singular vahw, 47, 88 
singular value d<'composition. xv, 48 
solution spe:wc. 25 
span, 8 
spectral decomposition. xv. 76 

Hermitian, 76 
normal, 76 
positive semidefinite, 76 

square root of a matrix. 83 
standard basis. G 
submatrix. 4 
subspace, 7 
:sum of v~tor space.-;, 7 

trac<'. 45 

transformation 
adjoint. 116 
orthogonal, 117 
self-adjoint, 116 

transpose. 4 
triangularization, 46 

Schur theorem, xv 

unit vector, 104 
unitary diagonalization, 45 
unitary similarity. 4.5 

Vandermonde, 174 
Vandermonde matrix. 31 
vector, 1 

vedor addition, 1 
vector space, 1 
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