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For Jerome and Emily

The beauty of a snow crystal depends on its mathematical regularity and
symmetry; but somehow the association of many variants of a single
type, all related but no two the same, vastly increases our pleasure and
admiration.

D’ARCY THOMPSON
(On Growth and Form, Cambridge, 1917.)

En général je crois que les seules structures mathématiques intéressantes,
dotées d’une certaine légitimité, sont celles ayant une réalisation na-
turelle dans le continu.... Du reste, cela se voit trés bien dans des
théories purement algébriques comme la théorie des groupes abstraits
ou on a des groupes plus ou moins étranges apparaissant comme des
groupes d’automorphismes de figures continues.

RENE THOM
(Paraboles et Catastrophes, Flammarion, 1983.)
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Preface

Numbers measure size, groups measure symmeitry. The first statement comes
as no surprise; after all, that is what numbers “are for”’. The second will be
exploited here in an attempt to introduce the vocabulary and some of the
highlights of elementary group theory.

A word about content and style seems appropriate. In this volume, the
emphasis is on examples throughout, with a weighting towards the symmetry
groups of solids and patterns. Almost all the topics have been chosen so as to
show groups in their most natural role, acting on (or permuting) the members
of a set, whether it be the diagonals of a cube, the edges of a tree, or even some
collection of subgroups of the given group. The material is divided into
twenty-eight short chapters, each of which introduces a new result or idea.
A glance at the Contents will show that most of the mainstays of a “first
course” are here. The theorems of Lagrange, Cauchy, and Sylow all have a
chapter to themselves, as do the classification of finitely generated abelian
groups, the enumeration of the finite rotation groups and the plane crystallo-
graphic groups, and the Nielsen—Schreier theorem.

' have tried to be informal wherever possible, listing only significant results
as theorems and avoiding endless lists of definitions. My aim has been to write
a book which can be read with or without the support of a course of lectures.
It is not designed for use as a dictionary or handbook, though new concepts
are shown in bold type and are easily found in the index. Every chapter ends
with a collection of exercises designed to consolidate, and in some cases fill
out, the main text. It is essential to work through as many of these as possible
before moving from one chapter to the next. Mathematics is not for spectators;
to gain in understanding, confidence, and enthusiasm one has to participate.

As prerequisites 1 assume a first course in linear algebra (including matrix
multiplication and the representation of linear maps between Euclidean
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viii Preface

spaces by matrices, though not the abstract theory of vector spaces) plus
familiarity with the basic properties of the real and complex numbers. It
would seem a pity to teach group theory without matrix groups available as
a rich source of examples, especially since matrices are so heavily used in
applications.

Elementary material of this type is all common stock, nevertheless it is not
static, and improvements are made from time to time. Three such should be
mentioned here: H. Wielandt’s approach to the Sylow theorems (Chapter 20),
James H. McKay’s proof of Cauchy’s theorem (Chapter 13), and the introduc-
tion of groups acting on trees by J.-P. Serre (Chapter 28). Another influence
is of a more personal nature. As a student I had the good fortune to study
with A.M. Macbeath, whose lectures first introduced me to group theory. The
debt of gratitude from pupil to teacher is best paid in kind. If this little book
can pass on something of the same appreciation of the beauty of mathematics
as was shown to me, then I shall be more than satisfied.

Durham, England M.AA.
September 1987
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CHAPTER 1

Symmetries of the
Tetrahedron

How much symmetry has a tetrahedron? Consider a regular tetrahedron T
and, for simplicity, think only of rotational symmetry. Figure 1.1 shows two
axes. One, labelled L, passes through a vertex of the tetrahedron and through
the centroid of the opposite face; the other, labelled M, is determined by the
midpoints of a pair of opposite edges. There are four axes like L and two
rotations about each of these, through 27/3 and 4xn/3, which send the tetra-
hedron to itself. The sense of the rotations is as shown: looking along the axis
from the vertex in question the opposite face is rotated anticlockwise. Of
course, rotating through 2n/3 (or 4zn/3) in the opposite sense has the same
effect on T as our rotation through 4n/3 (respectively 2n/3). As for axis M, all
we can do is rotate through n, and there are three axes of this kind. So far we
have (4 x 2) + 3 = 11 symmetries. Throwing in the identity symmetry, which
leaves T fixed and is equivalent to a full rotation through 2 about any of our
axes, gives a total of twelve rotations.

We seem to have answered our original question. There are precisely twelve
rotations, counting the identity, which move the tetrahedron onto itself. But
this is not the end of the story. A flat hexagonal plate with equal sides also has
twelve rotational symmetries (Fig. 1.2), as does a right regular pyramid on a
twelve sided base (Fig. 1.3). For the plate we have five rotations (through =/3,
2n/3, m, 4n/3, and 5n/3) about the axis perpendicular to it which passes
through its centre of gravity. In addition there are three axes of symmetry
determined by pairs of opposite corners, three determined by the midpoints of
pairs of opposite sides, and we can rotate the plate through n about each of
these. Not forgetting the identity, our total is again twelve. The pyramid has
only one axis of rotational symmetry. It joins the apex of the pyramid to the
centroid of its base, and there are twelve distinct rotations (through kn/6,
I < k < 12, in some chosen sense) about this axis. Despite the fact that we
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2 1. Symmetries of the Tetrahedron

Figure 1.1

Figure 1.2
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|. Symmetries of the Tetrahedron 3

Figure 1.3

have counted twelve rotations in each case, the tetrahedron, the plate, and the
pyramid quite clearly do not exhibit the same symmetry.

The most striking difference is that the pyramid possesses just one axis of
symmetry. A rotation of /6 about this axis has to be repeated (in other words,
combined with itself) twelve times before the pyramid returns to its original
position. Indeed, by suitable repetition of this basic rotation we can produce
all the other eleven symmetries. However, no single rotation of the plate or the
tetrahedron when repeated will give us all the other rotations.

If we look more carefully we can spot other differences, all of which have to
do, in one way or another, with the way in which our symmetries combine. For
example, the symmetries of the pyramid all commute with each other. That is
to say, if we take any two and perform one rotation after the other, the effect
on the pyramid is the same no matter which one we choose to do first. (These
rotations all have the same axis, so if, for the sake of argument, we rotate
through =n/3 then through 5n/6, we obtain rotation through 77/6, which is also
the result of 57/6 first followed by n/3.) This is not the case for the tetrahedron
or the plate. We recommend an experiment with the tetrahedron. Labelling
the vertices of T as in Figure 1.4 enables us to see clearly the effect of a
particular symmetry. Think of the rotations r (2n/3 about axis L in the sense
indicated) and s (n about axis M). Performing first r then s takes vertex 2 back
to its initial position and gives a rotation about axis V. But first s then » moves
2 to the place originally occupied by 4, and so cannot be the same rotation. Do
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4 1. Symmetries of the Tetrahedron

4 4
r
—_—
3 1 1 2
2 3
Figure 1.4

not fall into the trap of carrying the axis of s along with you as you do r first.
Both r and s should be thought of as rigid motions of space, each of which has
an axis that is fixed in space, and each of which rotates T onto itself.

Here 1s a third observation. There is only one rotation of the pyramid
which, when combined once with itself, gives the identity; namely, the unique
rotation through n. The plate has seven such symmetries and the tetrahedron
three. These three rotations through = of the tetrahedron commute with one
another, but only one of the seven belonging to the plate commutes with all the
other six. Which one? Experiment until you find out.

To obtain a decent measure of symmetry, simply counting symmetries is not
enough; we must also take into consideration how they combine with each
other. It s the so-called symmetry group which captures this information and
which we now attempt to describe.

The set of rotational symmetries of T has a certain amount of ‘‘algebraic
structure”’. Given two rotations u and v we can combine them, by first doing v,
then doing u, to produce a new rotation which also takes 7 to itself, and which
we write uv. (Our choice of uv rather than vu is influenced by the convention
for the composition of two functions, where fg usually means first apply g,
then apply f.) The identity rotation, which we denote by e, behaves in a rather
special way. Applying first e then another rotation wu, or first u then e, always
gives the same result as just applying u. In other words we = u and eu = u for
every symmetry u of 7. Each rotation u has a so-called inverse u~!, which is
also a symmetry of T and which satisfies ¥ 'u = ¢ and uu~! = e. To obtain

L ate abo he same axis and through the same 3
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1. Symmetries of the Tetrahedron 5

in the opposite sense. (For example, the inverse of the rotation r is rr, because
applying r three times gives the identity.) Finally, if we take three of our
rotations u,v, and w, it does not matter whether we first do w then the
composite rotation uv, or whether we apply vw first and then w. In symbols this
reduces to (uv)w = u(vw) for any three (not necessarily distinct) symmetries
of T.

The twelve symmetries of the tetrahedron together with this algebraic
structure make up its rotational symmetry group.

EXERCISES

1.1. Glue two copies of a regular tetrahedron together so that they have a
triangular face in common, and work out all the rotational symmetries
of this new solid.

1.2. Find all the rotational symmetries of a cube.

1.3. Adopt the notation of Figure 1.4. Show that the axis of the composite
rotation srs passes through vertex 4, and that the axis of rsrr is deter-
mined by the midpoints of edges 12 and 34.

1.4. Having completed the previous exercise, express each of the twelve
rotational symmetries of the tetrahedron in terms of r and s.

1.5. Again with the notation of Figure 1.4, check that r™! = rr, 57! =5,

(rs)"! = srr, and (sr)"! = rrs.

1.6. Show that a regular tetrahedron has a total of twenty-four symmetries
if reflections and products of reflections are allowed. Identify a sym-
metry which is not a rotation and not a reflection. Check that this
symmetry is a product of three reflections.

1.7. Let g denote reflection of a regular tetrahedron in the plane determined
by its centroid and one of its edges. Show that the rotational symmetries,
together with those of the form ugq, where u is a rotation, give all twenty-
four symmetries of the tetrahedron.

1.8. Find all plane symmetries (rotations and reflections) of a regular pen-
tagon and of a regular hexagon.

1.9. Show that the hexagonal plate of Figure 1.2 has twenty-four symmetries
in all. Identify those symmetries which commute with all the others.

1.10. Make models of the octahedron, dodecahedron, and icosahedron (see
Fig. 8.1). Try to spot as many symmetries of each of these solids as you

can.
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CHAPTER 2

Axioms

Without further ado we define the notion of a group, using the symmetries of
the tetrahedron as guide. The first ingredient is a set. The second is a rule
which allows us to combine any ordered pair x, y of elements from the set and
obtain a unique “product’ xy which also lies in the set. This rule is usually
referred to as a “‘multiplication” on the given set.

A group is a set G together with a multiplication on G which satisfies three
axioms:

(a) The multiplication is associative, that is to say (xy)z = x(yz) for any three
(not necessarily distinct) elements from G.

(b) There is an element e in G, called an identity element, such that xe = x = ex
for every x in G.

(c) Each element x of G has a (so-called) inverse x ~* which belongs to the set G

and satisfies x 'x = e = xx 1.

How does a formal definition couched in terms of axioms help? So far not at
all; indeed, if the only group turned out to be the rotational symmetry group
of the tetrahedron, we would be wasting our time. But this is not the case;
groups crop up in many different situations.

All of us take the additive group structure of the set of real numbers for
granted. Here the rule for combining an ordered pair of numbers x, y is simply
to add them to give x + y. We accept that (x + y) + z = x + (¥ + z) for any
three real numbers, there is an identity element, namely, zero, and — x is
clearly an inverse for the real number x. This example shows why we previ-
ously placed the words product and multiplication in quotation marks. The
rule which enables us to combine our elements is invariably referred to as a
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2. Axioms 7

multiplication, but may have nothing to do with multiplication of numbers in
the usual sense.

A chemist may be interested in the amount of symmetry possessed by a
particular molecule. Methane (CH,), for example, can be thought of as
having a carbon nucleus at the centroid of a regular tetrahedron, with four
protons (hydrogen nuclei) arranged at the vertices. The benzene molecule
(C¢Hg), on the other hand, is modelled by a hexagonal structure with a carbon
and a hydrogen nucleus at each vertex. (Hexagonal symmetry is common in
nature, perhaps nowhere more pleasing than in the structure of a snow crystal;
see Fig. 2.1.) From our experience with the tetrahedron and the hexagon we
know that it matters in which order we combine two symmetries. Hence, the
continual reference to ordered pairs of elements. It matters whether we take
two elements of a group in the order x, y or in the opposite order y, x. In the
first case our rule gives the answer xy, in the second yx, and these two need not

be equal.
A physicist learning relativity meets the Lorentz group, whose elements
are matrices of the form
cosh u sinh u
, (*)
sinh u cosh u

and which are combined via matrix multiplication. Remember that cosh «,
sinh u are the hyperbolic functions, so called because the equations x = cosh
u, y = sinh u determine the hyperbola x2 — y? = 1. They satisfy

cosh(u + v) = cosh u cosh v + sinh u sinh v,
sinh(u# + v) = sinh u cosh v + cosh u sinh v

consequently,

[cosh u sinh u] [cosh v sinh v:l B [cosh(u + ) sinh(u + v):l

sinh u coshu || sinhv coshv | | sinh(u + v) cosh(u + v)

and this product does give a matrix of the same form. The identity matrix fulfils
the requirements of an identity, and lies in the given set of matrices because it

is equal to
cosh 0 sinh 0
sinh 0 cosh 0
As an inverse for (*) we can use

[cosh(— u) sinh(— u):l

sinh(— u) cosh( — u)

which has the required form. Since matrix multiplication is associative, we

have a group.
A mathematician thinking about Euclidean geometry finds he is studying
NOCA NErAOrNe T- a O - vhich are = NCNANYEe N Ne _eiemen N

| [_ Creado por la version de demostracion de Universal Document Converter. La version completa no afiade esta marca.

WWW.PRINT-DRIVER.ES



Figure 2.1

2. Axioms




2. Axioms 9

particular group, the group of similarities of the plane. A similarity enlarges or
shrinks figures while keeping them the same shape. More precisely, it sends
straight-line segments to straight-line segments, multiplying their lengths by a
factor which is the same for every segment. Triangles are sent to similar
triangles, angles being preserved in magnitude, though not necessarily in
sense. The composition of two similarities is another, and the group axioms
are easily checked (see Exercise 2.4).

It is precisely when we recognise the same amount of structure in a wide
variety of interesting examples that the abstract approach comes into its own.
Starting from the axioms for a group, we shall build up a body of results which
may be used whenever these axioms are satisfied, a much more satisfactory
state of affairs than having to verify a specific property time and time again for
different groups.

Here are two properties common to all groups. The identity element of a
group is unique. Suppose two elements e and e’ are both identities. Then
ee’ = ¢' because e is an identity, and e¢’ = e because ¢’ is an identity. Hence ¢
is equal to e'. The inverse of each element of a group is unique. Assume y and z
are both inverses for the element x. Then

y=ey (where e is the identity in the group)
= (zx)y (since z is an inverse for x)
= z(xy) (because the multiplication is associative)
= ze (since y is also an inverse for x)
=z (as e is the identity).

Hence y is equal to z, and the inverse of x is indeed unique. Notice that both
arguments use only those facts about a group which are supplied by the
axioms. For this reason we can be confident that the conclusions hold for

every group.

In the next few sections we shall begin to develop theoretical results along-
side concrete examples of groups. Remember, the examples are important,
without them the theory is at best a poor form of intellectual entertainment.

EXERCISES

2.1. Compare the symmetry of a snow crystal with that of the hexagonal
plate in Figure 1.2.

2.2. Show that the set of positive real numbers forms a group under multi-
plication.

2.3. Which of the following collections of 2 x 2 matrices with real entries
form groups under matrix multiplication?

(i) Those of the form for which ac # b*.

WWW.PRINT-DRIVER.ES
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10 2. Axioms

(i) Those with entries [a b:' such that a* # bc.
c a

b :
(111) Those of the form [g :| where ac is not zero.
c

(iv) Those which have non-zero determinant and whose entries are
integers.

2.4. Let fbe a similarity of the plane. Show that fis a bijection and that the
inverse function /! is also a similarity. Verify that the collection of all
similarities of the plane forms a group under composition of functions.

2.5. A function from the plane to itself which preserves the distance between
any two points is called an isometry. Prove that an isometry must be a
bijection and check that the collection of all isometries of the plane
forms a group under composition of functions.

2.6. Show that the collection of all rotations of the plane about a fixed point
P forms a group under composition of functions. Is the same true of the
set of all reflections in lines which pass through P? What happens if we
take all the rotations and all the reflections?

2.7. Let x and y be elements of a group G. Prove that G contains elements w,
z which satisfy wx = y and xz = y, and show that these elements are

unique.

2.8. If x and y are elements of a group, prove that (xy)™' = y " 'x7'.
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CHAPTER 3

Numbers

Perhaps the quickest way to get used to the group axioms is to look at some
groups of numbers. The list below serves to give examples and to establish
some notation.

Addition of numbers (real or complex) makes each of the following sets into
a group:

Z, the set of integers;

Q, the set of rational numbers;
R, the set of real numbers;

C, the set of complex numbers.

In each case zero is the identity element, and — x is the inverse of the number
X.

Multiplication of numbers (real or complex) makes each of the following
sets into a group:

Q — {0}, the non-zero rationals;

R — {0}, the non-zero reals;

QP°*, the positive rationals;

RP°s the positive reals;

{ +1, -1 };

C — {0}, the non-zero complex numbers;
C, the complex numbers of modulus |;
(£, £i}.

In each case the number 1 is the identity element, and 1/x is the inverse of the

number x.
It is worth examining this list in some detail, as much for what is missing as
for what it contains. Adding two integers always produces an integer. This is
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12 3. Numbers

the first thing we need to notice when checking that the integers form a group
under addition. But if we took, say, the set of all odd integers, and again used
addition as the rule for combining elements, the result could not be a group
because the sum of two odd integers is even and so does not belong to the given
set.

Turning to multiplication of numbers as group multiplication, we must
remove zero from the set of real numbers if we wish to have a group. There is
clearly no number x such that x.0 = 1; in other words, zero does not have a
multiplicative inverse. It is easy to check that the non-zero real, rational, and
complex numbers all form groups under multiplication. What about the non-
zero integers? Multiplication does not make them into a group. The only
number x which satisfies 2. x = 1 is 1, which is not an integer. Therefore, 2
has no multiplicative inverse in the set of integers.

We use C to denote the unit circle in the complex plane, that is to say, the
set of those complex numbers which have modulus one. If z,w € C, then
lzw| = |z|lw| = 1, showing that zw € C. The number 1 lies in C and acts as
identity for complex multiplication. Finally, if z € C, then |1/z| = 1/|z| = 1, s0
1/z € C and each element of C has a multiplicative inverse which also belongs
to C. Therefore, complex multiplication makes C into a group. We have made
no mention of the associative law, but if we accept that it holds for multiplica-
tion of any three complex numbers, then it certainly holds for any three
numbers taken from C.

Strictly speaking, we should use notation such as (R, +) to denote the
additive group of reals, making it absolutely clear that the underlying set is the
set of real numbers, and the group ‘“‘multiplication” is addition of numbers. In
practice, this is cumbersome to work with, so we agree to use the same symbol
R for the set of real numbers, and for the group of real numbers under
addition. It will usually be clear from the context which one we mean. The
other symbols introduced in our list will also be used to stand for the corre-
sponding groups.

The set of integers is a subset of the set of real numbers, and both form
groups under addition. We shall say that Z is a ““‘subgroup” of R. This idea will
be taken up again in Chapter 5.

A group is commutative, or abelian, if xy = yx for any two of its elements.
All of the examples in our list are abelian because x + y =y + xand x.y =
y.x for any two numbers x, y, real or complex.

Let n be a positive integer. The set 0, 1, 2, ..., n — 1 can be made into a
group using addition modulo n. That is to say, if x and y are members of this
set, define

{x +y if0<x+y<n
X+,y=
X+y—n fx+y=

and use this as “multiplication”. For example, 5 +,3 =8 — 6 = 2.
(Countmg modulo a particular number is a familiar idea; thmk of addmg
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3. Numbers 13

again an integer between 0 and n — 1. Both(x +, ) +, zand x +,(y +, z) are

equal to
X+y+z fOS<x+y+z<n

xX+y+z—n fn<x+y+z<2n
x+y+z—2n ifx+y+2z22n

so associativity follows. Zero is the identity element, and # — x is the inverse
of x for x # 0. The group is abelian because x +, y = y +, x. Therefore we
have a finite abelian group with n elements which will be denoted by Z,,.
Two integers are congruent modulo n if they differ by a multiple of n. Of
course each integer x is congruent modulo »n to exactly one of the integers 0,
1,2,...,n— 1, namely, to the remainder obtained on dividing x by n. We shall
refer to this remainder as *‘x read mod n”’, or simply x(mod n). Then x +, y is

just x + y read mod n.
The integers 0, 1, 2, ..., n — 1 may also be multiplied modulo »n via

x ., ¥y = xy(mod n).

For example 5 .4 3 = 3 because dividing fifteen by six leaves remainder three.
Can we obtain a group using this multiplication? As usual we must remove the
number zero. But this may not be enough. Takento be ten. Then2 .,, 5 =0,
so multiplication modulo ten of two numbers from 1, 2, ..., 9 does not always
produce another number between 1 and 9. Therefore, we do not have a group.
In fact, multiplication modulo n makes the integers 1, 2, ..., n — | into a
group precisely when n is a prime number (Exercise 3.10). A simple experiment
shows that deleting the integers 0, 2, 4, 5, 6, 8 leaves a collection which do have
the structure of a group when muitiplied modulo ten. Does this suggest a
general result? (The answer can be found in Chapter 11.)

EXERCISES

3.1. Show that each of the following collections of numbers forms a group
under addition.

(1) The even integers.

(ii) All real numbers of the forma + b \/5 where a,b e Z.
(iii) All real numbers of the form a + b /2 where a,b € Q.
(iv) All complex numbers of the form a + bi where a,b € Z.

3.2. Write Q(ﬁ) for the set described in Exercise 3.1 (iii). Given a
non-zero element a + bﬁ of @(\/5), express 1/(a + bﬁ) in the
form ¢ + d\/z, where c¢,de Q. Prove that multiplication makes
@(\/ﬁ) — {0} into a group.

3.3. Letn be a positive integer and let G consist of all those complex numbers
z which satisfy z" = 1. Show that G forms a group under multiplication

of complex numbers.
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14 3. Numbers

3.4. Vary n in the previous exercise and check that the union of all these
groups

{zeC|" =1}

1

18

is also a group under multiplication of complex numbers.
3.5. Let n be a positive integer. Prove that
(X P enZ = X (¥ 2)
for all x,y,z € Z.
3.6. Verify that each of the sets

{1,3,7,9,11,13,17,19}
{1,3,7,9}
{1,9,13,17)

forms a group under multiplication modulo 20.

3.7. Which of the following sets form groups under multiplication modulo
14?

{1,3,5}, {1,3,5,7)
{1,713},  {1,9,11,13}.

3.8. Show that if a subset of {1,2,...,21} contains an even number, or
contains the number 11, then it cannot form a group under multiplica-
tion modulo 22.

3.9. Let p be a prime number and let x be an integer which satisfies

1 £ x < p— 1. Show that none of x, 2x, ..., (p — 1)x is a multiple
of p. Deduce the existence of an integer z such that 1 <z < p —1and
xz(modp) = 1.

3.10. Use the results of Exercises 3.5 and 3.9 to verify that multiplication
modulo n makes {1,2,...,n — 1} into a group if n is prime. What goes
wrong when »n is not a prime number?
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CHAPTER 4

Dihedral Groups

Think back to the flat hexagonal plate mentioned earlier. Its twelve rotational
symmetries combine in the natural way to form a group. For each positive
integer »n greater than or equal to three we can manufacture a plate which has
n equal sides. In this way we produce a family of symmetry groups which are
not commutative, the so-called dihedral groups.

When n is three we have a triangular plate. It has six rotational symmetries
and, if r and s are the rotations shown in Figure 4.1, they are

e, r, r, s, rs, ris. ()

Here r? is shorthand for rr and means carry out r twice. Clearly r3 is the
identity, since repeating r three times gives a full rotation through 2n, and
higher powers of r will not give anything new. Of course, s2 is also the identity.
Remember our convention that rs means the symmetry obtained by first
applying s to the triangle, then applying r. If we do this, as in Figure 4.2, we see
that rs is rotation through 7 about the axis of symmetry labelled M. Similarly
r*s is rotation through m about axis N.

The six elements (*) form a group denoted by Dj;. So if we take two of them
and combine them in either order, we should in each case obtain a member of
the group. We see rs listed, but where is sr? A glance at Figure 4.2 again shows
it is equal to r2s. Similarly s = rs: this may be checked geometrically, or
algebraically as follows:

srt = s(rr) = (sr)r = (r2s)r = r¥(sr)
= r2(r2s) = r*s = r3(rs) = e(rs)
= rs.

Notice the repeated use of the associative law. We have made quite a meal of
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16 4. Dihedral Groups

Figure 4.1

this calculation, with a little practice one would not include all the steps! Our
aim is to illustrate that knowing r® = e, s> = ¢, and sr = r*s allows us to
manipulate any product and produce one of the six elements of the list (x).
Here are two more examples:

r(r’s) = r’s =es = s
(r2s)(rs) = ri(s(rs)) = ri((sr)s) = r}((r2s)s)
=r¥(r’s) =r*s? =re=r.

The first step in the previous calculation could have been (r2s)(rs) =
((r*s)r)s. Hopefully the answer would be the same. In fact, a product such as
r*srs is independent of the way in which we choose to bracket its terms. More
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4. Dihedral Groups 17

generally, if x,, x,, ..., x, are elements of a group, any two ways of combining
these elements in this order give the same answer. In other words the product
X,X;...x,makes sense without any brackets. A proof by induction is outlined
in Exercise 4.10. The inductive step uses the associative law.

Calculations can now be carried out with less fuss, for example

-1 1 -1

xyy Ixt=xex 1 =xx"1=e,
and similarly y "'x"!xy = e. Therefore, if x and y are elements of a group, then
(xv)"! = y~lx7! In the same way, if x, x,, ..., x, are elements of a group,
then
- -1 _ -1 -1 -1
(X3 X5...%,) " =X, ...X5 X]

Write x™ for the product of m copies of the element x, and x™ for the
product of n copies of x~!. Then x™x" = x™*" and (x™)" = x™ for any two
integers m and n, provided we interpret x° as the identity.

The following table, called a multiplication table, shows all 36 possible
products xy of ordered pairs of elements x, y taken from D,

2 2

e r r 5 rs ris
e e r r? s rs ris
r r rz e rs ris s
2 2 2,
r r e r ris s rs
s s r’s rs e @
) i 2 2
rs rs s rs r e r
ris ris rs s r? r

The product xy lies at the intersection of row x with column y. For example
the entry circled is s(rs). Notice each element of the group appears exactly once
in every row and every column of the table. This is true of the multiplication
table of any group (see Exercise 4.4). In particular, the identity occurs exactly
once in each row, corresponding to the fact that each element of a group has
a unique inverse.

The dihedral group D, is the rotational symmetry group of a flat plate with
nequal sides. Its elements can be described in the same manner as that used for
Dy. Let r be a rotation of the plate through 2n/n about the axis of symmetry
perpendicular to the plate, and s rotation through n about an axis of symmetry
which lies in the plane of the plate. Then the elements of D, are

2 n—1

2 -1
LS, rS, res, L, T,

e, r,re, ..., rt

Clearly r" = ¢, s = e, and we can check geometrically that sr = r"~!s. Since

r"7' = r~! we usually write this last relation as s = r~'s. As before, all other
products can be worked out using these. For example,
sr?2 =srr=r"lsr=r"2s = r" .

Each element of the group has the form r® or r®s where 0 < a < n — | and we
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18 4. Dihedral Groups

find that
b k

rir® =r
re(rbs) = r"s} where k = a +, b,
(ras)r® = rls
(r°s)(rbs) = !
We say that r and s together ‘‘generate” the group D,, an idea that will be
developed in Chapter 5.

The order of a finite group is the number of elements in the group. A group
that contains infinitely many elements is said to have infinite order. We usually
write |G| for the order of the group G. If x is an element of a group, and if
x" = e for some positive integer n, then we say x has finite order, and the
smallest positive integer m such that x™ = e is called the order of x. Otherwise
x has infinite order.

} where / = a +, (n — b).

EXAMPLES.

(i) The order of Dj is six. There are two elements of order three (r, r*) and
three elements of order two (s, rs, r?s).

(i) The order of Zg4 is also six. The elements 1 and S both have order six, 2 and
4 have order three, and 3 has order two.

(iii) R has infinite order, and every element (except 0) has infinite order
because repeatedly adding a real number to itself never gives zero, unless
of course the number was zero to start with.

(iv) C s the unit circle in the complex plane made into a group by multipli-
cation of complex numbers. It is an infinite group and has elements of
both finite and infinite order. A typical element ¢® has finite order
precisely when 0 is a rational multiple of 2z, that is to say when 8 = 2mn/n
for some integers m and n.

EXERCISES

4.1. Work out the multiplication table of the dihedral group D,. How many
elements of order 2 are there in D,?

4.2. Find the order of each element of Z,, Z4,and Z,,.

4.3. Check that the integers 1, 2, 4, 7, 8, 11, 13, 14 form a group under
multiplication modulo 15. Work out its multiplication table and find the
order of each element.

4.4. Let g be an element of a group G. Keep g fixed and let x vary through G.
Prove that the products gx are all distinct and fill out G. Do the same for

the products xg.

4.5. An element x of a group satisfies x? = e precisely when x = x7!. Use
this observation to show that a group of even order must contain an odd
number of elements of order 2.
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4. Dihedral Groups 19

4.6. If x, y are elements of a group G, and if all three of x, y, xy have order
2, prove that xy = yx.

4.7. Let G be the collection of all rational numbers x which satisfy 0 < x < 1.
Show that the operation

xX+y ifo<x+y<l
X+y= .
x+y—1 fx+y=>1

makes G into an infinite abelian group all of whose elements have finite
order.

4.8. Let x and g be elements of a group G. Show that x and gxg ' have the
same order. Now prove that xy and yx have the same order for any two
elements x, y of G.

4.9. Check that the 2 x 2 matrices

l:a Z] for which a, b, ¢c,de Z and ad — bc = 1
c

form a group under matrix multiplication. Let

4= 0 ~1 ’ B 0 1
1 0 -1 —1
and find the orders of 4, B, AB, BA.

4.10. General associative law. Let G be a group and assume inductively that
products x, x,...Xx, of elements of G always make sense without any
brackets provided 1 < £ <n — 1. We must verify that an arbitrary
product x, x, ... x, of length n is well defined regardless of the way in
which we bracket its terms. Suppose we combine these elements in two
different ways, and that the final multiplications in the two procedures
are

(xlx2'°°xr)(xr+l°°°xn)’ (l)

(xle"'xs)(xs+1°"xn)’ (2)

where 1 < r < s < n — 1. These terms inside brackets make sense by our
inductive hypothesis. Write (1) as

(xle e xr)[(xr+1 -t xs)(xs+1 .- xn)]

express (2) in a similar fashion, and use the ordinary associative law for
three elements to finish the argument.
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CHAPTER 5

Subgroups and Generators

Inside D the six elements
e, ri rt, s, r’s, rts

form a group with respect to composition of symmetries. This is easy to check.
The product of any two of these gives another, the identity is present, and
since

e l=e, ()t =r, (M) ' =rt s =5 (%) =rls, (rfs) 7 = s

all the inverses are also present. If we look at Figure 5.1 we see that these
elements form the rotational symmetry group of a triangle inscribed inside the
hexagon. So they make up a “copy” of Dj sitting inside D, a so called
subgroup of D¢ in the following sense.

A subgroup of a group G is a subset of G which itself forms a group under the
multiplication of G.

(When we use the symbol G to denote a group we must remember that G
carries with it a “multiplication’ and is not just a set of elements.)

Suppose we have a subset H of G, and want to know whether or notitis a
subgroup. Then we must ask three questions. Given two elements x, y of H we
can form their product xy in G. Does this product always belong to H? Does
the identity element of G belong to H? Each element of H certainly has an
inverse in G; does this inverse always belong to H? If the answer to all three
questions is yes, then H forms a group with respect to the multiplication of G,
and is therefore a subgroup of G. Notice: It is not necessary to check the
associative law. For if (xy)z and x( yz) are equal for any three elements of G,
they are certainly equal for any three elements chosen from a subset of G.
When H is a subgroup of G we write H < G.
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5. Subgroups and Generators 21

Figure 5.1

EXAMPLES.

i) Z<Q,Q0<R,and R < C.

(ii) The even integers, which we denote by 2Z, form a subgroup of the
additive group of integers. For any positive integer n, the set nZ of all
integer multiples of #n is a subgroup of Z.

(iii) Q@ — {0} <R — {0} and R — {0} <C — {0}.

(iv) {+1, -1} <Cand C<C — {0}.

(v) The elements e, r, r%, 3, r*, r® form a subgroup of D,. These are the
rotations which leave the plate the same way up.

(vi) The collection e, r, s, rs does not form a subgroup of D,. The element r
lies in the set, but the product rr = r? is missing.

(vii) The integers 0, 2, 4 form a subgroup of Z,.

Example (v) generalises as follows: Given a group G and an element x of G,
the set of all powers of x (i.e., the set of all elements of G of the form x" for
some integer n) is a subgroup of G. (The product x™x" of two powers of x is
x™*" which is again a power of x, the identity element of G is x°, and the
inverse of x" is x ~", which is also a power of x.) This subgroup is called the
subgroup generated by x and written {x). If x has infinite order, then {(x)
consists of ...x72, x7!, e, x, x2, x3, ... . If x has finite order, say m, the
elements of {x) are e, x, x2, ..., x™ 1. So the order of x is precisely the order
of the subgroup generated by x. If there is an element x in G which generates
all of G (in other words, for which (x> = G), we say that G is a cyclic group.

EXAMPL!;S (1) The number 1| generates Z as does —1, so Z is an infinite cychc
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22 S. Subgroups and Generators

(11) The number 1 generates Z,, so Z, is a cyclic group of order ».

(iii) In Z4 we have

0> = {0},

1> =55 =7,

(2> =<4)>={0,2,4},
(3> =1{0,3}.

For example, the elements of (4) are 4,4 +,4=2,and4 +,4 +,4=0.

(tv) In D5 we have

(e) = {e},
(ry =<r*) = {e, r, r*},
<S> = {e’ S}a

{rsy = {e, rs},
{risy = {e, r’s}.

The dihedral group D, is not cyclic, but each of its elements can be written
in terms of the two elements r and s, and we say that » and s together generate
D,. Let X be a non-empty subset of a group G. An expression of the form

X7XZ2 X (*)

where x,,..., x, belong to X (they need not be distinct) and m,,...,m, are
integers is called a word in the elements of X. The collection of all these words
is a subgroup of G. (Given two of them, writing one after the other shows that a
product of two words in the elements of X is again a word in the elements of
X. The identity element of G can be thought of as the word x° for any element
x of X, and the inverse of the word

xTxTz.ooxge s x ML x, My ™

which is also a word in the elements of X)) This subgroup is called the subgroup
generated by X. If it fills out all of G we say that X is a set of generators for G,
or that the elements of X together generate G. Suppose X is a set of generators
for G, and let Y be another subset of G. Then if Y contains X it is also a set of
generators for G. More generally, if every element of X can be written as a
word in the elements of Y, then Y is a set of generators for G.

ExaMPLES. (i) The elements r and s together generate D,. This choice of two
generators is not unique. For example rs and s together also generate D,
because r = (rs)s and therefore any word in r and s can be converted into a

word in rs and s.
(ii) The group structure on C is addition of complex numbers; consequently,

NOTd L A ) - N1Cd
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5. Subgroups and Generators 23

Figure 5.2

integer coefficients. The subgroup generated by {1,:} is the group of Gaus-
sian integers whose elements are the complex numbers a + ib for which

abelZ.

(iii) Consider the real line with the set of integers marked on as in Figure 5.2.
Let G be the set of functions from the line to itself which preserve distance and
which send the integers among themselves. Then G is a group under composi-
tion of functions. It is not hard to check (Exercise 5.9) that each element of G
is either a translation to the left or right through an integral distance, a
reflection in an integer point, or a reflection in a point which lies midway
between two integers. Let ¢ be translation to the right through one unit, so
t(x) = x + 1, and let s be reflection in the origin, so s(x) = —x. Then the
elements of G are
LT et 2

t72s, 17 s, s, s, s, L (%%)

where e is the identity function. For example 1 "*(x) = x — 2, showing that ™2
is translation to the left through two units, and ts(x) = t(—x) = —x + 1,
showing that ts is reflection in the point 3. The translation 7 and the reflection
s together generate G. Equally well the two reflections ¢s and s together

generate G. Note that
stix)=s(x+1)= —x—1
and
tlsG) =t (=x)= —x — 1,

which means st = t~!s. Knowing s? = e and st = ¢ s allows us to multiply

any two elements from the list (**) and manipulate the product to have the

same form. This reminds us very much of D,. Indeed, the only difference is

that the rotation r of order n has been replaced by the translation ¢ of infinite

order. For this reason we call G the infinite dihedral group and denoteitby D, .
We end this section with one or two useful facts about subgroups.

(5 1) Theorem. A non-empty subset H of agroup G is a subgroup of G if and only
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24 5. Subgroups and Generators

Proof. If H is a subgroup, and if x,y € H, then we know y~! must be in H, and
so the product xy~! belongs to H. Conversely, suppose H is non-empty and
that xy~! € H whenever x,ye H. If xe H, then e = xx ' e H, and x™! =
ex”! € H. Finally, if y is also an element of H, then y~! € H as above, and so

xy = x(y ™) ! € H. Therefore, H is a subgroup of G. O
(5.2) Theorem. The intersection of two subgroups of a group is itself a subgroup.

Proof. Let H and K be subgroups of the group G. The identity lies in both H
and K, so Hn K is non-empty. If x and y are elements of the intersection
H n K, they are both elements of H and both elements of K. Since H, K are
subgroups the product xy ™! lies in H and K. Therefore xy ' € Hn K and we
can apply (5.1). O

(5.3) Theorem. (a) Every subgroup of Z is cyclic.
(b) Even better, every subgroup of a cyclic group is cyclic.

Proof of (a). Let H be a subgroup of Z. If H = {0} then H is cyclic. If H # {0},
then H contains a non-zero integer x, and since H is a subgroup it must also
contain —x. So H contains a positive integer. Let d be the smallest posi-
tive integer in H. We claim that 4 generates H. If n e H, divide n by d to
give n = gd + m where g and m are integers and 0 < m <d. In other words
m = n(mod d). We know that ne H and de H. As H is a subgroup gd e H,
hence —qd € H, and therefore

m=n-qd=n+ (—qd)

belongs to H. This contradicts our choice of d unless m is zero. Consequently
n = qd, showing each element of H to be an integer multiple of d as required.

O

Proof of (b). Let G be a cyclic group and K a subgroup of G which is not the
trivial subgroup {e}. If x is a generator for G, then every element of G, and
hence every element of K, is a power of x. Let H = {n € Z|x" € K}. One easily
checks that H is a subgroup of Z. By (a) H is cyclic and, if d generates H, then
x? generates K. This completes the proof. O

EXERCISES
5.1. Find all the subgroups of each of the groups Z,, Z,, Z,,, D,, and D;.

5.2. If m and n are positive integers, and if m is a factor of n, show that Z,
contains a subgroup of order m. Does Z, contain more than one

subgroup of order m?

5.3. With the notation of Section 4, check that rs and r?s together generate
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5. Subgroups and Generators 25

5.4. Find the subgroup of D, generated by r? and r?s, distinguishing care-
fully between the cases n odd and n even.

5.5. Suppose H is a finite non-empty subset of a group G. Prove that H1s a
subgroup of G if and only if xy belongs to H whenever x and y belong
to H.

5.6. Draw a diagonal in a regular hexagon. List those plane symmetries of
the hexagon which leave the diagonal fixed, and those which send the
diagonal to itself. Show that both collections of symmetries are sub-
groups of the group of all plane symmetries of the hexagon.

5.7. Let G be an abelian group and let H consist of those elements of G which
have finite order. Prove that H is a subgroup of G.

5.8. Which elements of the infinite dihedral group have finite order? Do
these elements form a subgroup of D_?

5.9. Let f be a function from the real line to itself which preserves the dis-
tance between every pair of points and which sends the integers among
themselves.

(a) Assuming f has no fixed points, show that f'is a translation through
an integral distance.

(b) If fleaves exactly one point fixed, show that this point is either an
integer or lies midway between two integers, and that f'is reflection
in this fixed point.

(c) Finally, check that f must be the identity if it leaves more than one
point fixed.

5.10. Make a list of those elements of Z,, which generate Z,,. Answer the
same question for Z, and for Z,. Do your answers suggest a general
result?

5.11. Show that Q is not cyclic. Even better, prove that Q cannot be generated
by a finite number of elements.

5.12. If a, b € Z are not both zero and if H = {Aa + ub|A, u € Z}, show that H
is a subgroup of Z. Let d be the smallest positive integer in AH. Check that
d is the highest common factor of a and b. (Consequently, the highest
common factor of two integers a, & can always be written as a linear
combination Aa + ub with integer coefficients.)
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CHAPTER 6

Permutations

We continue to increase our stock of examples by introducing groups of
permutations. Rearranging or permuting the members of a set is a familiar
idea, for example interchanging ! and 3 while leaving 2 fixed gives a permuta-
tion of the first three integers. By a permutation of an arbitrary set X we shall
mean a bijection from X to itself. The collection of a// permutations of X forms
a group Sy under composition of functions. There is very little to check. If
a: X = X and f: X — X are permutations, the composite function «f: X - X
defined by af(x) = a(f(x))is also a permutation. Composition of functions is
associative, and the special permutation ¢ which leaves every point of X fixed
clearly acts as an identity. Finally, each permutation « is a bijection and
therefore has an inverse «~!: X — X, which is also a permutation and which
satisfies « "'a = ¢ = aa~!. If X is an infinite set, Sy is an infinite group. When
X consists of the first # positive integers, then Sy is written S, and called the
symmetric group of degree n. The order of S, is n!.

For the time being, we shall concentrate on the symmetric groups. Here are
the six elements of S;.

[1237 (1237 [1237 [1237 [1237 [123
=232 1320 231 "] 312 |

To find the image of an integer under a particular permutation just look
vertically underneath it. Thus
123
|:3|2:|

sends 1 to 3,2to 1, and 3 to 2. Remembering that a f means first apply B, then
apply a, we calculate
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6. Permutations 27

(12371237 [123]
12131132 [231])

=

whereas

1237]] 123 [1237]
=151 (*)

132 213]  [312]

Therefore, S5 is not abelian. We can immediately say that §, is not abelian
when n = 3. Why?

When extended to higher values of #, this notation is too cumbersome to
work with. For example, the element a of S¢ defined by a(1) = 5, a(2) = 4,
a(3) = 3, a(4) = 6, a(5) = 1, a(6) = 2 becomes

123456
* "'[543612]‘
The same information can be captured by a = (15)(246). Inside each pair of
brackets an integer is sent to the integer following it, the final integer being
sent to the first. Therefore 1 issentto Sand S5to1,2issentto4,4t06,and 6
to 2. There is no need to mention integers which are left fixed by the permuta-
tion. Here there is no mention of 3. We can describe any permutation in this
way, the prescription being as follows: Open a pair of brackets, then write
down the smallest integer which is moved by the given permutation. Now, list
the image of this integer under the permutation, followed by its image and so
on, eventually closing the brackets at the stage where we would come full circle

to our starting point. Open a new pair of brackets, list the smallest integer
which has so far not been mentioned and which is moved by the permutation,

ctc.
EXAMPLES
o [ 123456789 _ anso 099,
(i1) [;?Z:jgzg] = (182)(365)(47).

(iii) The elements of S; are
e, (12), (13), (23), (123), and (132).
(iv) The calculation (*) becomes
(12)(23) = (123),  whereas  (23)(12) = (132).

With this new notation a permutation (4,4, ...q,) inside a single pair of
brackets is called a cyclic permutation. It sends a, to a;, a, 104a,,...,a,_, toa,
and g, to a,, leaving all other integers fixed. The number £ is its length and a
cyclic permutation of length k is called a k-cycle. A 2-cycle is usually referred
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28 6. Permutations

to as a transposition. The above argument shows that every element of S, may
be written as a product of disjoint cyclic permutations, disjoint in the sense that
no integer is moved by more than one of them.

Look again at Example (i) where we obtain (2856) and (394). The first of
these affects only the integers 2, 5, 6, 8, and the second moves only 3, 4 and 9.
Because these permutations are disjoint, they commute with one another, that
is to say (2856)(394) = (394)(2856). There is of course a general result here,
if 2 and B are elements of S, and if no integer is moved by both a and f then
a8 = pa. The decomposition of an element of S, as a product of disjoint cyclic
permutations is unique up to the order in which we write down these cyclic
permutations.

(6.1) Theorem. The transpositions in S, together generate S,.

Proof. Each element of S, can be written as a product of cyclic permutations,
and any cyclic permutation can be written as a product of transpositions, since

(aay...4) =(q14)...(aq1a3)(a,a3).

Therefore, each element of S, can be written as a product of transpositions.
Note that these transpositions need not be disjoint, and that this decomposi-

tion is not unique. O
EXAMPLE

123456 = (15)(246) = (15)(26)(24

saz612 | = 19246 = (19/26)24)
Since (246) = (624) we have, equally well,

123436 = (15)(624) = (15)(64)(62

sa3612 | = (19(624) = (15)(64)(62)

= (15)(46) (26).

(6.2) Theorem. (a) The transpositions (12), (13), ..., (1n) together generate S,.
(b) The transpositions (12), (23), ..., (n — 1n) together generate S,.

Proof. (a) Note that (ab) = (1a)(1b)(1a) and use (6.1).
(b) Note that (1k) = (k — 1k)...(34)(23)(12)(23)(34)...(k — 1k) and use
part (a). |

(6.3) Theorem. The transposition (12) and the n-cycle (12 ... n) together
generate S,.

Proof. By (6.2) (b) we need only write each transposition of the form (kk + 1)
as a word in (12) and (12...n). This can be achieved as follows
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6. Permutations 79

and more generally
(kk + 1) =(12...m*1(12)(12...m)" 7*
for2<k<n. m

A given element of S, can be written as a product of transpositions in many
different ways. However, the number of transpositions which occur is either
always even or always odd. To check this we introduce the polynomial

P=P(x,x5,...,X,)
= (X1 — X)) (X1 — X3) ... (X — X)) (X2 — X3) ... (Xp— 1 — X)),

in other words, the product of all factors (x; — x;) where 1 < i<n, 1 <j<n

andi < j. If a € §,, we define a P to be the product of all factors (x,; — X))
where again 1 <i<n, | <j<n, andi <. The effect of a is to permute the
terms of P, while at the same time changing the sign of some of them.
Therefore, a P is either + P or — P, and this determines the so called sign of
o to be + 1 in the first instance and — 1 in the second. To clear the air, here i1s
an example.

EXAMPLE. n = 3 and a = (132). Then
P=(x; — x3)(x; — x3)(x, — X3),

and
aP = (x3 — x)(x3 — x;)(x; — x) = +P.

So the sign of (132) is + 1.

In general, if a, f € S, the sign of af is the product of the signs of « and S,
and the sign of the transposition (12) is clearly — 1. Since (1a) = (2a)(12)(2a)
for a > 2, the sign of (la) is also — 1, and since (ab) = (1a)(16)(1a), the sign
of any transposition is — I. Consequently, if an element of S, can be written
as the product of an even number of transpositions, then its sign must be + 1,
whereas the product of an odd number of transpositions always has sign — 1.

An ¢element of S, which can be expressed as the product of an even number
of transpositions is called an even permutation: the others are odd permuta-
tions. Since

(@1a;...a4) =(a,a,)...(a,a3)(a,a;),
a cyclic permutation is even precisely when its length is odd.

(6.4) Theorem. The even permutations in S, form a subgroup of order n!/2
called the alternating group A, of degree n.

Proof If « and ﬂ are even permutations, write each of them as the product of
of transposition 1xtaposition of these products shows tha
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30 6. Permutations

af is even. Writing the product for « in the reverse order shows that a ™! is

even. The identity is of course even because ¢ = (12)(12). Therefore, the even
permutations form a subgroup of S,. If « is even then (12)a« is odd. This pairs
off the elements of S, and shows that precisely half its elements are even. (Why
can every odd permutation be expressed as an even permutation followed by

(12)7) O
(6.5) Theorem. For n > 3 the 3-cycles generate A,.

Proof. Each 3-cycle is certainly an even permutation. Given an element of A4,,
use (6.2a) to write it as the product of an even number of transpositions of the
form (1a). Collect these transpositions into adjacent pairs, and combine each
pair using (1a)(16) = (1ba). Our element is now expressed as a product of

3-cycles. O

The twelve elements of A, are

&, (12)(34), (13)(24), (14)(23)
(123), (124), (134), (234),
(132), (142), (143), (243).

The remaining elements of S,, the odd permutations, are
(12), (13), (14), (23), (24), (34),
(1234), (1243), (1324),
(1432), (1342), (1423).

If we wish to write (13)(24) as a product of 3-cycles, the procedure in (6.5)
gives

(13)(24) = (13)(12)(14)(12)
= (123)(124).

EXERCISES
6.1. Write out a multiplication table for S,.

6.2. Express each of the following elements of Sg as a product of disjoint
cyclic permutations, and as a product of transpositions.

12345678
2) 1 76418235

(c) (624)(253)(876)(45)
Which, if any, of these permutations belong to Ag?

] (b) (4568)(1245)
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6. Permutations 31

6.3. Show that the elements of Sy which send the numbers 2, 5, 7 among
themselves form a subgroup of S,. What is the order of this subgroup?

6.4. Find a subgroup of S, which contains six elements. How many sub-
groups of order six are there in S,?

6.5. Compute aP(x, x,, X3, X5) when a = (143) and when a = (23)(412).

6.6. If H is a subgroup of §,, and if H is not contained in A4,, prove that
precisely one-half of the elements of / are even permutations.

6.7. Show thatif nis at least 4 every element of S, can be written as a product
of two permutations, each of which has order 2. (Experiment first with

cyclic permutations.)
6.8. If «, f are elements of S,, check that xfa~! 7! alwaysliesin A4,, and that

afo ! belongs to 4, whenever 8 is an even permutation. Work out these
elements when n = 4, « = (2143), and § = (423).

6.9. When nis odd show that (123) and (12... n) together generate A,. If nis
even show that (123) and (23...n) together generate A, .

6.10. If 2, B € S, and if «f = fa, prove that § permutes those integers which
are left fixed by a. Show that  must be a power of « when a is an n-cycle.

6.11. Find the order of each permutation listed in Exercise 6.2.

6.12. Prove that the order of an element « of S, is the least common multiple
of the lengths of the cycles which are obtained when « is written as a
product of disjoint cyclic permutations.
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CHAPTER 7

Isomorphisms

A chessboard (Fig. 7.1) has four plane symmetries, the identity e, rotation r
through = about its centre, and the reflections g, , ¢, in its two diagonals. They
form a group under composition whose multiplication table is given below. It
is easy to check that multiplication modulo eight makes the numbers 1, 3, §,
7 into a group. Again we provide the corresponding table.

e r q, q; 1 3 5 7
e e r q, g2 1 1 3 5 7
r r e q, q, 3 3 1 7 5
q, q, q; e r 5 5 7 1 3
q2 q: 9 r e 7 7 5 3 1

There is an apparent similarity between these tables if we ignore their origins.
In each case the group has four elements, and these elements appear to
combine in the same manner. Only the way in which the elements are labelled
distinguishes one table from the other.

Label the first group G, the second G’, and the correspondence

e—>1, r>3, q, -5 g,-7

by x —» x’. When we say that the elements combine in the same manner, we
mean that if x - x’ and y — y’, then xy — x’y’. This correspondence is called
an isomorphism between G and G'. It is a bijection and it carries the multi-
plication of G to that of G’. To all intents and purposes then, G and G’ are “the
same”’. Technically they are isomorphic in the following sense.

Two groups G and G’ are isomorphic if there is a bijection ¢ from G to G’
which satisfies (xy) = @(x)@(y) for all x,y € G. The function ¢ is called an
isomorphism between G and G'.
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7. Isomorphisms 33

Figure 7.1

Asking for a bijection ¢ from G to G’ ensures that the underlying sets of G and
G' have the same size. If, in addition, ¢(x)) = ¢ (x)¢(y) for any two elements
x,y of G, it does not matter whether we first combine two elements in G and
then send their product into G’ using ¢, or first send the elements separately
into G’ via ¢ and then combine their images in G’. Therefore, G’ is really just
G in disguise. Notice that the inverse function ¢ ': G’ — G is equally well an
isomorphism, so our definition is symmetrical in G and G'. To indicate that
two groups G and G’ are isomorphic, we shall write G =~ G'.

ExaMPLES. (i) Define ¢: R — RP* by ¢(x) = ¢*. Then ¢ is a bijection and
p(x +y) =€ =e*e’ = p(x)p(y)

for all x,y € R. Therefore R and RP* are isomorphic groups. Remember that
the group operation in R is addition, whereas that in R is multiplication.

(1)) We already know a good deal about the tetrahedron. It has twelve rota-
tional symmetries which form a non-abelian group G. We can learn more
as follows. Number the vertices 1, 2, 3, 4 as in Figure 7.2. Each rotational
symmetry induces a permutation of the vertices, and therefore a permutation
of the first four integers. For example, the rotation r illustrated induces the
cyclic permutation (234), and s induces (14)(23). Working systematically
through all the other possibilities produces the twelve elements of A,. If two
rotations u,v induce permutations a, 8, respectively then wv clearly induces af.
Therefore, the correspondence

rotational symmetry — induced permutation
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34 7. Isomorphisms

Figure 7.2

(iii) Any infinite cyclic group is isomorphic to Z. If G is an infinite cyclic
group, and if x generates G, define ¢: G - Z by @(x™)=m. Then ¢ is a
bijection and

P(x"x") = @(x"") =m + n = @(x™) + @(x").
This shows that ¢ is an isomorphism.

(iv) Any finite cyclic group of order nisisomorphic to Z,. If G is a cyclic group
of order n, and if x generates G, define ¢: G — Z, by ¢(x™) = m(mod n). Then
@ 1s an isomorphism.

(v) The numbers 1, —1,#, —i form a group under complex multiplication. It
is cyclic and i/, —i are both generators. The procedure in (iv) gives two
isomorphisms

1 -0, i—»1, —-1-2 —i->3, and

1-0, —i—=1, —1-2 i—3

between this group and Z,.

(vi) D5 and S, are isomorphic. Do this in the spirit of the calculation for the
tetrahedron by labelling the vertices of an equilateral triangle 1, 2, 3.

(vii) There is no isomorphism between Q and Q°. For suppose ¢: Q — QP
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7. Isomorphisms 35

and @(x/2) has to be \/—2- Since ﬁ is irrational, we have a contradiction.

An isomorphism @: G — G’ is a bijection, therefore G and G’ must have the
same order. It sends the identity of G to that of G'. For suppose x’ € G’ and
@(x) = x', then

x'¢p(e) = p(x)p(e) = p(xe) = p(x) = x’

and similarly ¢(e)x’ = x’, showing that ¢(e) is the identity element of G’.
Alternatively we can observe that

p(e)p(e) = p(ee) = p(e)

and then multiply both sides of this equation by the inverse of ¢(e) in G'. The
latter argument is preferable to the first one; it does not use the fact that ¢ is
a bijection, only that ¢ sends the multiplication of G to the multiplication of
G'.

The isomorphism ¢ sends inverses to inverses in the sense that

p(x)™' = p(x™) for all x € G.
Again this is easy to check. We have
e(xNe(x) = p(x71x) = ple) = ¢,

and similarly ¢ (x)@(x ') = e. Therefore ¢(x ') is indeed the inverse of ¢(x)
in G'. If G is abelian then so is G'. Forif x',y’ € G' and if o(x) = x’, p(y) =y’
then

x'y' = p(x)e(y) = o(xy)

= @(yx) because G is abelian
=p(P)o(x) =y'x".

If : G — G’ is an isomorphism and if H is a subgroup of G, then ¢ (H) is a
subgroup of G'. We check this using (5.1). Suppose x’,y’ are elements of ¢ (H),
then we can find x,y € H such that ¢(x) = x’ and ¢(y) = y’. Now H is a
subgroup of G, so xy~! belongs to H, and since

e(xy™) = p(x)p(y ) =X ' =x'(y)!

we see that x’(y’) ' belongs to ¢(H) as required. Consider the special case
where H is cyclic, generated by the element g of G. If x’ € p(H), we have
x" = @(g™) = ¢(g)™ for some integer m. Therefore, ¢(H ) is generated by the
element ¢(g). As H and ¢ (H ) have the same number of elements, the order of
¢(g) must be the same as the order of g. Therefore, an isomorphism preserves
the order of each element. We comment, finally, thatif : G - G’ and y: G’ —
G” are both isomorphisms, then the composition Y¢: G - G” is also an
1ISomornhism
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In Chapter 1 we introduced three solids; a regular tetrahedron, a flat
hexagonal plate with equal sides, and a right regular prism on a twelve-sided
base. The geomerrical observation that these solids exhibit different amounts
of symmetry translates to the algebraic statement that no two of them have
isomorphic symmetry groups. We have just shown the rotational symmetry
group of the tetrahedron to be isomorphic to 4,. That of the plate is by
definition Dy, and that of the pyramid is cyclic (generated by a rotation
through 7/6 about the single axis of symmetry) and must therefore be iso-
morphic to Z,,. Of these three groups Z, , is the only one which is abelian, so
it cannot be isomorphic to either of the other two. And Dy, unlike 4,, contains
an element of order six, so D, cannot be isomorphic to 4,.

EXERCISES

7.1. Check that the numbers 1, 2, 4, 5, 7, 8 form a group under multiplication
modulo 9 and show that this group is isomorphic to Z.

7.2. Verify that the integers 1, 3, 7, 9, 11, 13, 17, 19 form a group under
multiplication modulo 20. Explain why this group is not isomorphic to
Zg.

7.3. Show that the subgroup {¢,(12)(34),(13)(24),(14)(23)} of A, is iso-
morphic to the group of plane symmetries of a chessboard.

7.4. Produce a specific isomorphism between S; and D;. How many dif-
ferent isomorphisms are there from S, to D,?

1

7.5. Let G be a group. Show that the correspondence x < x~" is an iso-

morphism from G to G if and only if G is abelian.
7.6. Prove that QP is not isomorphic to Z.

71.7. If G is a group, and if g is an element of G, show that the function
¢: G — G defined by ¢(x) = gxg~! is an isomorphism. Work out this
isomorphism when G is 4, and g is the permutation (123).

7.8. Call H a proper subgroup of the group G if H is neither {e} nor all of G.
Find a group which is isomorphic to one of its proper subgroups.

7.9. Suppose G is a cyclic group. If x generates G, and if ¢: G - G is an
isomorphism, prove that ¢ is completely determined by ¢(x) and that
@(x) also generates G. Use these facts to find all isomorphisms from Z
to Z, and all isomorphisms from Z,, to Z,,.

7.10. Show that R is not isomorphic to @ and that R — {0} is not isomorphic
to Q@ — {0}. Is R isomorphic to R — {0}?

7.11. Prove that the subgroup of S, generated by (1234) and (56) is iso-
morphic to the group described in Exercise 7.2.

| [_ Creado por la version de demostracion de Universal Document Converter. La version completa no afiade esta marca.

WWW.PRINT-DRIVER.ES



CHAPTER 8

Plato’s Solids and Cayley’s
Theorem

There are five convex regular solids, the terrahedron (four triangular faces),
cube (six square faces), octahedron (eight triangular faces), dodecahedron
(twelve pentagonal faces), and icosahedron (twenty triangular faces). They are
illustrated in Figure 8.1. We have already shown that the group of rotational
symmetries of the tetrahedron is isomorphic to the alternating group 4,. In
this chapter we shall produce analogous results for the other four solids.

A cube has twenty-four rotational symmetries. They may be counted in the
same way as for the tetrahedron, by finding all axes of symmetry together with
the number of distinct rotations about each axis. The different types of axis are
represented by L, M, and N in Figure 8.2. There are three axes such as L which
together provide a total of nine rotations, six axes of type M with just one
rotation each, and four principal diagonals like N about each of which the
cube can be rotated through 27/3 and 47/3. This accounts for all twenty-three
non-identity symmetries.

By numbering the vertices of the cube, we could produce an isomorphism
from the cube group to a subgroup of Sg. A much better observation is that
each rotational symmetry permutes the four principal diagonals of the cube.
We shall use this fact to show that our group is isomorphic to S,. Label the
corners of the cube as shown, and let N, denote the diagonal which joins
corner k to corner k', 1 < k < 4. Each rotational symmetry permutes N,, N,,
N;, N, among themselves and consequently gives us a permutation of the
numbers 1, 2, 3, 4. For example, referring to Figure 8.2, r sends N, to N,, N,
to N3, Ny to N, and N, to N,, giving the 4-cycle (1234), and s induces (143).
Under 1, diagonals N, and N, are interchanged, while N, and N, ‘are sent to
themselves (though they are not left fixed, each has its ends swapped round),
so ¢ gives the transposition (12). Write G for the symmetry group and ¢: G —
S, for the function constructed above. Since the product of two rotations
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38 8. Plato’s Solids and Cayley’s Theorem

Tetrahedron

Octahedron

4D
T
&

N

lcosahedron

Figure 8.1

clearly induces the appropriate product permutation, it only remains to check
that ¢ is a bijection.

This can of course be done by elimination; in other words, by working out
the effect of every single rotation of the cube on the four diagonals, rather a
tedious process. Instead, we remember that a surjection between two finite sets
which have the same number of elements must be a bijection, and show that
@ Is surjective. But this is easy. Both (1234) and (12) lie in ¢(G), and ¢(G) is
a subgroup of S, because ¢ sends the multiplication of G to that of S,.
Therefore, every word which can be formed from (1234) and (12) must belong
to @(G). Since (1234) and (12) together generate all of S,, we have ¢(G) = S,,
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Figure 8.2

By joining up the centres of each pair of adjacent faces of a cube we can
produce a regular octahedron inscribed in the cube (Fig. 8.3). The same
procedure carried out on an octahedron gives a cube inscribed in the octa-
hedron, and we say that the cube and the octahedron are dual solids. They
clearly have the same amount of symmetry. Any symmetry of the cube is a
symmetry of the inscribed dual octahedron, and vice versa. Without further
ado we can say that the rotational symmetry groups of the cube and the
octahedron are isomorphic.

There are two more regular solids, the dodecahedron and the icosahedron.
They are dual to one another, and the reader should check this; so for the
purposes of rotational symmetry we need only examine one of them, say the

%
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40 8. Plato’s Solids and Cayley’s Theorem

Figure 8.4

dodecahedron. Figure 8.4 shows a cube inside a dodecahedron. Each vertex of
the cube is a vertex of the dodecahedron, and each edge is a diagonal of one of
the pentagonal faces. If we look at a particular pentagon, exactly one of its five
diagonals is an edge of the cube. There is nothing special about this diagonal
and of course there are four more inscribed cubes corresponding to the other
four diagonals of the pentagon. These five cubes are permuted by every
rotational symmetry of the dodecahedron. Using them, just as we used the
principal diagonals when looking at symmetries of a cube, it is not hard to
check that the rotational symmetry group of a regular dodecahedron is
isomorphic to A;. We suggest the following steps and leave the details to the

reader.

(1) Count the rotational symmetries of the dodecahedron and show there are

sixty of them.

(i) Observe that the order of A5 is 60.

(i) Number the inscribed cubes mentioned above 1 to 5 so that each rotation
of the dodecahedron produces an element of S;.

(iv) By considering rotations about axes which join opposite pairs of vertices,
show that every 3-cycle in S is produced in this way.

(v) Remember that the 3-cycles in S5 together generate the subgroup As.

We summarise our results as follows. The rotational symmetry group of the
tetrahedron is isomorphic to A,. The cube and octahedron both have rota-
tional symmetry groups which are isomorphic to S,. The dodecahedron and
icosahedron both have rotational symmetry groups which are isomorphic to As.
We emphasise that all these groups contain only rotations. The full symmetry
group of the tetrahedron is worked out in the exercises below; those of the
other regular solids will be dealt with in Chapter 10.

So far we have represented the symmetry groups of the regular solids as
groups of permutations. We now show that every group is isomorphic to a
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(8.1) Cayley’s Theorem. Let G be a group, then G is isomorphic to a subgroup
of Sg.

Proof. Each element g in G gives a permutation L,: G — G defined by L,(x) =
gx. (L, is injective because if L,(x) = L,(y) then gx = gy, giving ¢"'gx =
g 'gy and x = y. Itis also surjective since if ze G then L,(g7'2) = gg7'z =
z.) We call L, left translation by g. Notice that if G = R then L, really is
physical translation through a distance g. Let G’ denote the subset {L,|g € G}
of S;. Multiplication in S is composition of functions and

Lg(Lh(x)) = Lg(hx) = ghx = Lgh(x)

for all x € G. Therefore, the product of two elements of G’ lies in G'. The
identity element ¢ of S; belongs to G’ because it equals L, and the inverse of
L, in S; is L, which also lies in G’. This shows that G’ is a subgroup of Sg.
The correspondence between G and G’ defined by g — L, is certainly surjective,
and it sends the multiplication of G to that of G’ because gh - L,, = L,L,. It
is injective since if L, = L,, then g = L (e) = L,(e) = h. Therefore, we have
constructed an isomorphism between G and the subgroup G’ of S;. L1

(8.2) Theorem. If G is a finite group of order n, then G is isomorphic to a

subgroup of S,.
Proof. If the elements of G are numbered 1, 2, ..., nin some way, then each
permutation of G induces a permutation of 1, 2, ..., n. This gives an iso-

morphism from S; to S, and the subgroup G’ of S; is therefore isomorphic to
a subgroup G"” of §,. As G is isomorphic to G', and as the composition of two
isomorphisms is an isomorphism, G is isomorphic to G”. L1

As an example we work out G” when G is the group of plane symmetries of
a chessboard introduced at the beginning of the previous chapter. From the
multiplication table we have

Lr(e) = r’ Lr(r) = rz = e’
L(q,) =rq, = q;, L.(q;)=rq, =gq,.

Therefore, L, interchanges e and r, and interchanges ¢, and ¢,. Calculating
L, , L, inthe same way, then labelling the elementse, r, g,, g, with 1,2, 3, 4
respectively shows that G is isomorphic to the subgroup {s, (12) (34), (13)(24),
(14)(23)} of S,.

EXERCISES

8.1. Label the edges of a regular tetrahedron 1 to 6, so that each rotational
symmetry of the tetrahedron produces an element of Sg. Work out the
twelve elements of S which occur in this way and check that they form
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42 8. Plato’s Solids and Cayley’s Theorem

8.2. Join up the centres of each pair of adjacent faces of a regular tetrahedron
and observe that the result is a second regular tetrahedron inscribed
“upside down’” in the first.

8.3. Number the faces of a cube | to 6. Find the elements of Sg which
correspond to the rotations r, s, and ¢ of Figure 8.2.

8.4. Refer to the cube with a stripe marked on each face shown in Figure
18.1. Which rotational symmetries of the cube send stripes to stripes? To
which subgroup of S, do these rotations correspond?

8.5. Draw five dodecahedra, with a different inscribed cube in each one. Use
your pictures to examine how these cubes are permuted by the following
rotations.

(a) A rotation of the dodecahedron through 27/5 about an axis which

joins the centres of a pair of opposite faces.
(b) A rotation through = about an axis determined by the midpoints of

a pair of opposite edges.
(c) Arotation through 27/3 about an axis which joins a pair of opposite

vertices.

8.6. Carry out the procedure of Cayley’s theorem to obtain a subgroup of S
which is isomorphic to D;.

8.7. Show that Cayley’s theorem, when applied to R, produces the sub-
group of S, which contains all translations of the real line.

8.8. Convert each element « of S, into an element a,, of S, , , as follows. The
new permutation x, behaves just like o on the integers 1,2, ..., n. If ais
an even permutation then «, fixes n + 1 and n + 2, whereas if « is odd
a, interchanges n 4+ | and n + 2. Verify that a, is always an even
permutation and that the correspondence a — o, defines an isomor-
phism from S, to a subgroup of 4,,,. Work out this subgroup when
n=3.

8.9. If Gisa finite group of order n, prove that G is isomorphic to a subgroup
of the alternating group A, ,.

8.10. If a is an element of §,, write a2, for the permutation in S,, defined by
) — a(k), I<k<n
4y (k) = alk —n)+n, n+1<k<2n

Show that a4is always an even permutation and that the correspon-
dence « — a, is an isomorphism from S, to a subgroup of 4,,. Work out

this subgroup when n = 3.

8.11. Let G denote the ful/l symmetry group of a regular tetrahedron 7, and
adopt the notation of Figure 7.2. Find a symmetry g of T which induces
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8. Plato’s Solids and Cayley’s Theorem 43

the transposition (12) of the vertices, and show that gr induces the 4-
cycle (1234). Check that gr is neither a rotation nor a reflection, but is
the product of three reflections. Count the symmetries of 7 and prove
that G is isomorphic to S, .

8.12. Working with the full symmetry group of the cube, show that each
permutation of the principal diagonals can be realized by precisely two
symmetries.
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CHAPTER 9

Matrix Groups

The set of all invertible » x #n matrices with real numbers as entries forms a
group under matrix multiplication. We recall that if 4 = (a;), B = (b;;) are
two such matrices, the ijth entry of the product AB is the sum

a,-lb,j + a,-zsz + - 4+ ai,,b,,j.

Matrix multiplication is associative, the n x nidentity matrix 7, plays the role
of identity element, and the above product 4B is invertible with inverse
B7t47t

Each matrix 4 in this group determines an invertible linear transformation
Jfu: R" = R"defined by f,(x) = xA' for all vectors x = (x,, ..., x,)in R", where
t stands for transpose. Since

Jas(X) = x(AB)' = xB'A" = f,(f(x))

we see that the product matrix AB determines the composite linear transforma-
tion f, fg. Conversely, if /: R" — R" is an invertible linear transformation, and
if A4 is the matrix which represents it with respect to the standard basis in both
copies of R", then A is invertible and f = f,. For these reasons the group is
called the General Linear Group, GL,. If we wish to emphasise that the
matrices all have real entries, then we write GL,(R). Changing R to C gives the
corresponding group GL,(C) of n x n invertible complex matrices.

Matrix multiplication is not commutative for n > 2, so we have a family of
infinite non-abelian groups GL,,GL, ... . Whenn = 1 each matrix has a single
entry which is a non-zero real number (non-zero because the matrix is in-
vertible), and multiplication of matrices reduces to ordinary multiplication
of numbers. Hence GL, is isomorphicto R — {0}. If 4 € GL,, the (n + 1) x
(n + 1) matrix
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9. Matrix Groups 45

SN

belongs to GL,,,. To construct A we first add an extra column of zeros to A
to produce an n x (n + 1) matrix, then add to this an extra row, all of whose
entries are zero except the final one which is 1. The collection of all matrices
formed in this way is a subgroup of GL,,, and the correspondence 4 — 4
shows that GL, is isomorphic to this subgroup. In terms of linear transforma-
tions, if we identify R” with the subspace of R"*! consisting of those vectors
which have zero final coordinate, then f; acts as f, on R" and leaves the
last coordinate of each point unchanged. That is to say, R""! = R” x R and
fi: R™1 - R is given by

fa(x,2) = (f4(x),2).

An n x nmatrix A is orthogonal if A' A is the identity matrix, in which case

the sum
al‘-alj + azl'azj + -+ a,,,-a,,j

is one when i equals j and zero otherwise. Therefore, the columns of A4 all have
unit length and are perpendicular to one another; in technical language they
form an orthonormal basis for R". Of course, the rows of 4 also form an
orthonormal basis for R", and since det(4‘A4) = (det 4)?, the determinant of
A iseither +1 or — 1. If 4 and B are orthogonal, then

(AB 'YAB™' = (B 'YA4A'AB™!

= (Bt)rAtAB—l

= BA'AB™!' =1T.
Therefore, AB~' is orthogonal and by Theorem (5.1) the collection of alln x n
orthogonal matrices is a subgroup of GL,. This subgroup is called the Ortho-
gonal Group, O,. Those elements of O, which have determinant equal to + 1
form a subgroup of O, called the Special Orthogonal Group, SO, .

If A € O,, the corresponding linear transformation f, preserves distance and

preserves orthogonality. To see why, let x, y be points of R" and consider the
scalar product of f,(x) and f,(y). We have

Ja(x). fa(y) = (xA) (yA")
= xA'Ay"
=xy'=x.y

Since || x|| = \/x.x, setting y equal to x shows that || f,(x)| = |Ix||, so f,
preserves length. Also,

1 fa(X) = SaN = I fa(x = DI = lIx — ¥l
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46 9. Matrix Groups

which shows that f, preserves the distance between any two points. Finally, we
note that £, (x) . f,(y) is zero precisely when x . y is zero, therefore, if x and y are
perpendicular vectors, then so are f,(x) and £,(y).

We can argue in the opposite direction, Suppose f: R" — R" is a linear
transformation which preserves length. Then fpreserves the distance between
any two points because

I/ =i =1/x=yl=lx—-yl,
and preserves right angles because
S-Sy =3 SON? = 1) =D+ 1 FWIP)
=30Ix1% = Ix —ylI* + llyl*]
=X.Yy.

Therefore, f maps the standard basis for R” to an orthonormal basis. The
matrix A which represents f has the elements of this basis as its columns;
consequently A4 is orthogonal. We conclude that /= f, where 4 € O,.

We immediately feel more ““at home™ if we set nequalto2 or 3. If 4 € O, the
columns of A are unit vectors and are orthogonal to one another. Suppose

a=[r 4]

then (a, b) lies on the unit circle givinga = cos 6, b = sin 6 for some 6 satisfying
0 <0 < 27 As(c,d) is at right angles to (a, ) and also lies on the unit circle,
we have ¢ = cos @, d = sin ¢ where either ¢ = 8 + n/2 or ¢ = 6 — n/2. In the

first case we obtain
cos @ — siné
sin 0 cosf |’

which is an element of SO, and represents anticlockwise rotation through 6.

The second case gives
cos @ sin 6
sinf — cosf

which has determinant — | and represents reflectioninaline at angle 8/2 to the
positive x-axis. Therefore, a 2 x 2 orthogonal matrix represents either a rota-
tion of the plane about the origin, or a reflection in a straight line through the
origin, and the matrix has determinant + 1 precisely when it represents a rota-
tion. We have seen SO, before, albeit disguised as the unit circle in the complex
plane. Each point on the unit circle has the form e'’, where 0 < 6 < 2%, and

the correspondence
. [cos 6 — sin B:I
e:ﬂ )

sin @ cos@
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9. Matrix Groups 47

Now suppose that 4 belongs to SO,;. The characteristic polynomial
det(A4 — A1) 1s a cubic and therefore must have at least one real root. That is
to say, A has a real eigenvalue. As the eigenvalues all have unit modulus, and
as their product is det(A4), we see that + 1 is an eigenvalue of A. If v is a
corresponding eigenvector, the line through the origin determined by v is left
fixed by f,. Also since f, preserves right angles, it must send the plane which
is perpendicular to v, and which contains the origin, to itself. Construct an
orthonormal basis for R® which has the unit vector v/||v|| as first member. The
matrix of f, with respect to this new basis will be an element of SO, of the form

1 0 o0
0
, B

Clearly B € 50,, so that £, is a rotation with axis determined by v. Therefore,
each matrix in SO, represents a rotation of R® about an axis which passes
through the origin. Conversely, every rotation of R*® which fixes the origin is
represented by a matrix in SO, (see Exercise 9.11).

If A lies in O; but not in SO,, then AU € SO, where

1 0 0
U=|0 1 0
0 0 -1

Note that U represents reflection in the (x, y) plane. We write A4 as the product
(AU)U to give
Jo=Fwl

As above [, is a rotation. Consequently, f, is reflection in the (x, y) plane
followed by a rotation.

We shall often refer to SO, as the roration group in three dimensions. If a
regular solid is positioned in R* with its centre of gravity at the origin, then
cach of its symmetries is represented by a matrix in O,. Its rotational symme-
try group 1s therefore isomorphic to a subgoup of SO,, and its full symmetry
group to a subgroup of 0,.

ExampLE. The points P=(1,1,1), 0 =(—=1,—1,1), R=(1, -1, —1), and
S = (—1,1, —1) are the vertices of a regular tetrahedron which has its centroid
at the origin (see Figure 9.1). The two rotations about the axis through vertex
P cyclically permute the coordinate axes and are represented by the matrices

0 0 1 0 I 0
1 0 0. 0 0 1
0 I 0 1 0 0

The axis of symmetry which joins the midpoints of the edges PQ and RS is the
- axis, and rotation through = about this axis has matrix
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48 9. Matrix Groups

Figure 9.1
—1 0 0
0 —1 0
0 0 1

Reflection in the plane determined by P, Q. and O keeps P and Q fixed while
interchanging R and S. The corresponding matrix is

0 1 0
1 0 0
0 0 ]

The symmetry which cyclically permutes P, Q, R, S is neither a rotation nor a
reflection, it is the product of three reflections. What is its matrix?

We shall classify finite subgroups of SO, in Chapter 19. Any such subgroup
is either isomorphic to a cyclic group, isomorphic to a dihedral group, or iso-
morphic to the rotational symmetry group of a regular solid.

The matrices in GL,(C) correspond to linear transformations of the
standard n-dimensional complex vector space C". If z € C", the length of z is
the square root of zz*, where * denotes complex conjugation. A complex
matrix U is called a unitary matrix if U*' U is the identity matrix, and the
unitary matrices are precisely those whose corresponding linear transfor-
mations preserve length in C". The collection of all n x » unitary matrices
forms a subgroup of GL .(C) called the Unitary Group, U Those elements
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9. Matrix Groups 49

EXERCISES

In those exercises which involve the representation of linear transformations
by matrices, we assume that the Euclidean space involved is equipped with the
standard basis.

9.1. Which of the following collections of # x n real matrices form groups
under matrix multiplication?

(a) The diagonal matrices whose diagonal entries are non-zero.
(b) The symmetric matrices.

(¢) Those invertible matrices which have integer entries.

(d) Those invertible matrices which have rational entries.

9.2. Check that the set of all matrices of the form

b
[g c]’ where a, b,ce Rand ac # 0

is a subgroup of GL,(R).

9.3. Prove that the elements of GL,(R) which have integer entries and
determinant equal to +1 or —1 form a subgroup of GL,(R). This
subgroup is denoted by GL,(Z).

9.4. The points (1, — \/3), (1, \/5), and (—2,0) determine an equilateral
triangle. Work out the matrices in O, which represent plane symmetries
of this triangle. Do the same calculation for the regular hexagon, whose

corners have coordinates (2, 0), (1, \/5), (—1, \/5), (—2,0),(—-1, — ﬁ),
(1. —\/3).
9.5. Let
4, = [cosO —sin ()] and B, = [cosqo sin ¢ ]

sin 8 cos 6 sin ¢ —Ccos @

PI’OVC that AOAlp = A0+¢, ABB(,D = Bo+¢, BGA(P = BG—(p’ and BoB(p = Ag_(p,
where the angles in the matrices are read mod 2x. Interpret these results
geometrically.

9.6. Adopt the notation of the previous question and work out the products
AgB, A, ', B,AyB,, Ay B, A,"! B,. Evaluate each of these when 0 = $and

® =3

9.7. Complete the entries in
l/ﬁ 0
0
—1//2 0

ive an element of O, — SO,. Describe

to give an element of SO+, and to g
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50 9, Matrix Groups

9.8. Show that

2/3 /3 23 —1/2 11 /3 1,/6
—2/3 2/3 1/3 |, 1//2 1//3 1/,/6
—1/3 =23 2/3 0 1//3 —=2//6

both represent rotations and find axes for these rotations.

9.9. Letv,,V,, v, be three mutually orthogonal vectors in R? and let 4 be the
matrix formed by taking v, as first column, v, as second column, and v,
as third column. If

| 0 0
B=|0 1 0
0 0 —1

show that 4 B4 ~! represents reflection in the plane containing v, and v,,
and that — 4BA4 ™! represents rotation through n about the axis de-
termined by v;. Find the matrix which represents reflection in the plane
X + \/@ = Z.

9.10. Prove that the correspondence

~

[ 4 0] if 4 € SO,
0 1
4= [ A 0
] if A€ 0, — SO,
Lo —1

is an isomorphism from O, to a subgroup of SO,. Thicken the shapes of
Exercise 9.4 to produce horizontal triangular and hexagonal plates, and
write down the elements of SO, which represent the rotational sym-
metries of these plates.

9.11. Show that a rotation of R* which fixes the origin is represented by a
matrix in SO,. First assume that the axis of the rotation is the z-axis,
then deal with the general case.

9.12. Prove that the matrices

1 0 0 1 0 0

0 1 01, |0 —1 01,

0 0 1 0 0 -1
—1 0 0 —1 0 0

0 1 0], 0 —1 0

0 0 —1 0 0 1

form a subgroup of SO, and find the corresponding rotations. Draw a
picture of
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9. Matrix Groups 51

{(x,0.2) e R*}x%2 + (y —3)2 <25, x2 + (y+3)*° <25, -1z 1}

and verify that it is a *‘regular two-sided shape’ whose rotational sym-
metries are precisely those represented above. We often refer to the
rotational symmetry group of this solid as the dihedral group D, .

9.13. Check that the n x » unitary matrices do form a group under matrix
multiplication, and that the determinant of each of these matrices is a
complex number of modulus 1.

9.14. Show that the elements of U, have the form

z w
—ew* efz*

where z,we C, 8 R and zz* + ww* = 1. Which of these matrices
belong to SU,?
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CHAPTER 10

Products

The direct product G x H of two groups G and H is constructed as follows. Its
clements are ordered pairs (g, #) where g € G and k£ € H, with multiplication
defined by

(9. M) (g’.h") = (gg', hh').

Both g and g’ are elements of G, and they are multiplied in G to give the first
entry, gg’, of this product. The second entry is obtained by multiplying 4 and
h' in H. Therefore (gg’, hh’) is an element of G x H. Associativity follows
directly from associativity in both G and H. The pair (e, e) is the identity, and
(g7 ', h 1) is the inverse of (g, #). So G x Hisa group. (We hope our use of the
same symbol for the identity elements of G and H will not cause confusion.)
The correspondence (g, h) — (h, g) makes it clear that G x H is isomorphic
to H x G. If either G or H is an infinite group, then G x H is infinite,
otherwise the order of G x H is the product of the orders of G and H. If G and
H are both abelian, then G x H is abelian. Now G is isomorphic to the
subgroup {(g,e)|g € G} of G x H via the correspondence g — (g, ¢), and H is
isomorphic to the subgroup {(e, h}|h € H} via h — (e, h). Since any subgroup
of an abelian group is abelian, we see that if G x His abelian, then so are both
G and H. The direct product G, x --- x G, of a finite collection of groups has
elements (x,,..., x,) where x; € G;, 1 < i < n, which are combined via

Xy X)) (X1, X)) = (XX, .00, X0 X0)-
Again, changing the order of the factors always produces an isomorphic

group.

ExaMPLES. (i) Z, x Z, has six elements, (0, 0), (1,0), (0, 1), (1, 1), (0, 2), (1, 2),
which are combined by
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10. Products 53

[t seems sensible to use + for the group structure, since we have *““addition” in
each factor. We shall follow this convention whenever we have products of
cyclic groups. By repeatedly adding the element (1, 1) to itself we can fill out
the whole group. Therefore, Z, x Z, is cyclic and must be isomorphic to Z.
A specific isomorphism from Z, x Z, to Z is given by

(0,0) -0, (L, 1)y—-1, 0,2) -2,

(1,0)—~3, (0,)—-4, (1,2)-5.
(i1) In a similar fashion we can write down the four elements of Z, x Z, as
(0,0), (1,0), (0,1), (1, 1), this time taking addition modulo 2 in both coordi-
nates. Each non-identity element now has order 2, so the group is not cyclic.

It is isomorphic to the group of plane symmetries of a chessboard (Chapter 7)
via the correspondence

(090)-"8'3 (1’0)—)q15
(0: 1)_’q23 (19 l)_’r
Z, x Z, is often called Klein’s group.

(i) We write R” for the direct product of n copies of R. In the usual way, we
think of elements of R” as vectors x = (x,,...,x,), and the group operation is
just vector addition written

x-+_y=(xl +yl1""xn+yn)'

(10.1) Theorem. Z,, x Z, is cyclic if and only if the highest common factor of m
andnis 1.

Proof. Let k be the order of the element (1, 1)in Z,, x Z,. Adding (1, 1) to itself
k times gives (0, 0), in other words

(k(mod m), k(mod n)) = (0, 0).

This means that m and »n are both factors of k. If the highest common factor
of mand nis 1, then mn must be a factor of k, and therefore k¥ = mn. So in this
case (1, 1) generates Z,, x Z, and we have a cyclic group.

Now let d be the highest common factor of m and n, and suppose dis greater
than 1. We must show that Z,, x Z, is not cyclic. Let m’ = m/d and n’ = n/d.
For any element (x, y) of Z,, x Z,, we have

m'dn'(x,y) = (m'dn’ x(mod m), m’dn’ y(mod n))
= (mn’' x(mod m), m’ny(mod n))
= (0,0),

so the order of (x, y) is at most m’dn’. Therefore, Z,, x Z, does not contain an
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54 10. Products

EXAMPLE (iv). Let 7 denote the 3 x 3 identity matrix and write J for — /. Both
I and J commute with every other matrix in O, and together they form a
subgroup of O, of order 2. We shall show that O, is isomorphic to the direct
product of SO, and this subgroup. Define

@: SO, x {I,J} > O,

by ¢(4,U) = AU, where A € SO, and Ue {I,J}. Then ¢ preserves the al-
gebraic structures involved because

e((A4, U)(B,V)) = (4B, UYV)
= ABUV
= AUBV
= (4, U)e(B,V)
for all A,Be SO; and U,Ve{l,J}. If p(4,U) = ¢(B, V), then AU = BV,
giving det(4U) = det(BV'). But
det(AU) = det(A4).det(U) = det(U)

because 4 € SO;, and similarly det(BV) = det(V'). Hence, U=V, 4 = B,
and we conclude that ¢ is injective. It only remains to check that ¢ is
surjective. Given A € O, cither 4 € SO;, in which case 4 = ¢(A4, 1), or AJ €
SO, and 4 = ¢(AJ,J). This completes the argument.

We note that {/,J} is isomorphic to Z,; just send 7/ to 0 and J to 1.
Therefore, O, is isomorphic to SO, x Z,. The same argument shows that O, 1s
isomorphic to SO, x Z, when n is odd. For even n this result is false (see
Exercise 10.9).

The above example generalises as follows: If H and K are subsets of a group
G, let HK denote the collection of all products xy where x e H, y € K.

(10.2) Theorem. If H and K are subgroups of G for which HK = G, if they have
only the identity element in common, and if every element of H commutes with
every element of K, then G is isomorphic to H x K.

Proof. Mimic the argument of Example (iv). Define
p: Hx K- G

by o(x,y) = xyforall xe H, ye K. Then
e((x, Y)(x', ¥)) = @(xx', yy)

= xx'yy’

= xyx'y’, because elements of H commute with
elements of K

| [_ Creado por la version de demostracion de Universal Document Converter. La version completa no afiade esta marca.

WWW.PRINT-DRIVER.ES



10. Products 55

So ¢ takes the multiplication of H x Ktothatof G.If (x,y) = ¢(x’,»’), then
xy = x'y" and, therefore,
(x)7lx= 'yt

As the left-hand side belongs to A and the right-hand side to X, both belong
to H n K and must therefore be the identity. Thus, x =x', y=y’, and ¢ is
injective. We also know that HK = G, which means that every element of G
can be expressed as a product xy for some x € H, y € K. Therefore, ¢ is
surjective and provides us with an isomorphism from H x K to G. ]

The linear transformation f;: R® — R3 sends each vector x to —x and is
called central inversion. Place a regular solid in R3 with its centre of gravity at
the origin. Then, with the exception of the tetrahedron, it has central inversion
as one of its symmetries. If G is the full symmetry group of the solid, and if H
is the subgroup of rotational symmetries (so elements of H correspond to
matrices in $O;), an application of Theorem (10.2) shows that G is isomorphic
to H x {(f;> and thus to H x Z,. Therefore, the full symmetry groups of the
cube and octahedron are isomorphic to S, x Z,, and those of the dodecahedron
and icosahedron are isomorphic to As x Z,.

EXERCISES
10.1. If G x H is cyclic, prove that G and H are both cyclic.
10.2. Show that Z x Z is not isomorphic to Z.

10.3. Prove that C is isomorphic to R x R, and that C — {0} is isomorphic
to RP** x C.

10.4. Klein’s group is often referred to as the four group (Vierergruppe) and
denoted by V. Show that Z, x V is isomorphic to Z, x Z.

10.5. Show that the ““diagonal” {(x, x)|x € G} is a subgroup of G x G, and
that this subgroup is isomorphic to G.

10.6. If A is a subgroup of G, and if B is a subgroup of H, check that 4 x B
is a subgroup of G x H. Find a subgroup of Z x Z which does not
occur in this way.

10.7. Which of the following groups are isomorphic to one another?
L34, Dy x Z5, D,,, Ay x Z,,
Z, x Dy, Sas Z,, X Z,.

10.8. Theelement (¢, 1) of 4, x Z, commutes with every element of 4, x Z,.
Use this observation to prove that 4, x Z, is not isomorphic to S,
when n > 3.

10.9. Why does the construction of Example (iv) not lead to an isomorphism
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56 10. Products

with every element of O,? Show that SO, x Z, is not isomorphic to O,
when n is even.

10.10. Let G be the group whose elements are infinite sequences (a,,a,,...)
of integers which combine termwise via

(ay,as,...)(b,by,...)=(a;, + a;,b; + by,...).
Prove that G x Z and G x G are both isomorphic to G.
10.11. Show that D,, is isomorphic to D, x Z, when n is odd.

10.12. If Gis a group of order 4 which is not cyclic, prove that G is isomorphic
to Klein’s group.

10.13. Let G be a finite group in which every element other than the identity
has order 2. Prove that G is isomorphic to the direct product of a finite
number of copies of Z,.
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CHAPTER 11

Lagrange’s Theorem

Consider a finite group G together with a subgroup H of G. Are the orders of
H and G related in any way? Assuming H is not all of G, choose an element g,
from G — H, and multiply every element of A on the left by g, to form the set

g1H= {glh|h€H}.

We claim that g, H has the same size as H and is disjoint from H. The first
assertion follows because the correspondence & — g, 4 from H to g, H can be
inverted (just multiply every element of g, H on the left by g7!) and is
therefore a bijection. For the second, suppose x lies in both H and g, . Then
there is an element h, € H such that x = g, 4,. But this gives g, = xh{!,
which contradicts our initial choice of g, outside H.

If Hand g, H together fill out all of G, then clearly |G| = 2| H|. Otherwise we
choose g, €e G — (Hu g, H) and form g, H. Again, this has the same number
of elements as H and is disjoint from H. We hope that it does not meet g, H.
To check this, suppose x lies in g, H and g, H. Then there are elements A,, 4,
of H such that x = g, h, = g,h,, giving g, = g,(h,h;') and contradicting
our choice of g, outside g, H. If H, g, H, and g, H together fill out G, then
|G| = 3| H|. If not, we choose ¢, in their complement and continue, checking
that gy H does not meet any of H, g, H, or g, H. As G is finite. this process stops
after a finite number of steps, and if there are k steps we find G broken up as
the union of k£ + 1 pieces

H g, H, ...,9.H

no two of which overlap, and each of which has the same size as H. Con-
sequently, |G| = (k + 1)|H|. We have proved the following result:

(11.1) Lagrange’s Theorem. The order of a subgroup of a finite group is always
a divisor of the order of the group.
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58 11. Lagrange’s Theorem

A word of caution is appropriate at this point. If G is a finite group, and if
m is a divisor of the order of G, there is no guarantee that G will contain a
subgroup of order m. Indeed, 4, has no subgroup of order 6, as we shall see
later. This is disappointing, but we can salvage something. In Chapter 13 we
shall prove that if p is a prime divisor of the order of G, then G does contain a
subgroup of order p, and a second existence theorem for subgroups can be
found in the chapter dealing with Sylow’s theorems.

It is instructive to carry out the above procedure for a particular example.
Suppose G is S; and the subgroup is H = {¢,(13)}. Select g, outside H; say
g, = (123), then

g, H = {(123)¢,(123)(13)} = {(123),(23)}.
Select g, outside H U g, H; say g, = (12), then
g2 H = {(12)¢,(12)(13)} = {(12), (132)}.

The group is now broken up into three disjoint subsets, H, g, H, g, H, each of

which contains two elements.
Here are some useful corollaries of Lagrange’s theorem; G denotes a finite

group throughout.
(11.2) Corollary. The order of every element of G is a divisor of the order of G.

Proof. Remember that the order of an element is equal to the order of the
subgroup generated by that element. O

(11.3) Corollary. If G has prime order, then G is cyclic.

Proof. If x € G — {e}, the order of x must equal the order of G by (11.2).
Therefore, (x> = G. O

(11.4) Corollary. If x is an element of G then x'6! = e.

Proof. Let m be the order of x. By (11.2) we know that |G| = km for some
integer k. Hence
X6 = xkm = (xm) = e. O

Let n be a positive integer and consider the collection R, of all those integers
m which satisfy 1 < m < n — 1, and for which the highest common factor of
m and n is 1. We claim that multiplication modulo n makes R, into a group.
(This answers the question raised at the end of Chapter 3.) If m; and m, belong
to R,, the highest common factor of m;m, and n is certainly 1. Therefore,
m, m,(mod n) and n have highest common factor 1, verifying that R, is closed
under multiplication modulo n. Associativity is easily checked (Exercise 3.5)
and the integer 1 acts as identity. Finally, if m € R, there are integers x and y
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11. Lagrange's Theorem 59

such that xm + yn = 1. Reading this equation mod » provides a multiplicative
inverse for m, namely x(mod n). Clearly R, is abelian. Its order is written ¢(n)
and ¢ 1s called Euler’s phi-function.

ExaMPLES. (i) The elements of R, are 1, 2,4, 5,7, 8 and ¢(9) = 6. As 22 = 4,
23 = 8,2%* = 16(mod9) = 7, and 2° = 32(mod 9) = 5, we see that R, is cyclic
generated by the integer 2.

(ii) Theelementsof R gare1,3,5,7,9,11,13,15and ¢(16) = 8. Let H = (3}
and K = (15). Weeasily check that H = {1,3,9, 11}, K = {1, 15}, HK = R,
and Hn K = {1}. By (10.2) we have

Rie=HxK=Z,x Z2,.

(11.5) Euler’s Theorem. If the highest common factor of x and n is 1, then x*™
is congruent to 1 modulo n.

Proof. Divide x by n to give a remainder m which belongs to R,,. By (11.4) we
know that m®™ is congruent to 1 modulo n. Since x*™ is congruent to m*™
modulo n, the result follows. n

(11.6) Fermat’s Little Theorem. If p is prime and if x is not a multiple of p, then
xP~1 is congruent to | modulo p.

Proof. Apply Euler’s theorem noting that ¢(p) = p — 1. |

By Lagrange’s theorem, the order of a subgroup of 4, must be a factor of
12. The extreme cases 1 and 12 correspond to the subgroup which consists
Just of the identity element and to the whole group, respectively. A subgroup
of order 2 will contain the identity plus an element of order 2, so we have three
possibilities {¢, (12)(34)}, {¢, (13)(24)}, and {¢, (14)(23)}. There are four sub-
groups of order 3, each generated by a 3-cycle, namely

{€,(123),(132)}, {e,(124),(142)},
{g,(134),(143)}, {€,(234),(243)}.
There is a single subgroup of order 4
{e,(12)(34), (13)(24),(14)(23)}.

It is unique because all the other elements of 4, are 3-cycles, and a 3-cycle
cannot belong to a group of order 4 by (11.2).

As we mentioned earlier, 4, does not contain a subgroup of order 6. For
suppose H is a subgroup of 4,, which has six elements. If a 3-cycle belongs
to H, its inverse must also belong to H, so the number of 3-cycles in H is
even. There cannot be six as we need room for the identity element. Suppose
there are four, say «, ', 8, and 7. Then ¢, a, a™*, 8, 7}, af8, af~! are
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60 11. Lagrange’s Theorem

all distinct and belong to H, contradicting our assumption that |H| = 6.
Finally, if only two 3-cycles lie in H, then H must contain the subgroup
{e,(12)(34),(13)(24),(14)(23)}. But 4 is not a factor of 6, so Lagrange’s
theorem rules out this case too. We conclude that no such subgroup of order

6 exists.

EXERCISES

11.1. Carry out the procedure used in the proof of Lagrange’s theorem,
taking G = Dy, H = {r),then G = D4, H = {r*), and finally G = A4,,
H = {(2349)).

11.2. Let H be a subgroup of a group G. Prove that g, H = g, H if and only
if g7'g, belongs to H.

11.3. If H and X are finite subgroups of a group G, and if their orders are
relatively prime, show that they have only the identity element in
common.

11.4. Suppose the order of G is the product of two distinct primes. Show that
any proper subgroup of G must be cyclic.

11.5. Givensubsets X and Y of a group G, write XY for the set of all products
xy where x e Xand y € Y. If X and Y are both finite, if Y is a subgroup
of G, and if XY is contained in X, prove that the size of X is a multiple
of the size of Y.

11.6. If the highest common factor of m and n is 1, show that R,, is
isomorphic to the product group R,, x R,. Use this observation to
check that R, is isomorphic to Z, x Z,.

11.7. Let n be a positive integer and let m be a factor of 2n. Show that D,
contains a subgroup of order m.

11.8. Does A5 contain a subgroup of order m for each factor m of 60?7

11.9. Let G be a finite abelian group and let m be the least common multiple
of the orders of its elements. Prove that G contains an element of order
m.

11.10. Supply a finite non-abelian group for which the conclusion of the
previous exercise fails.

11.11. If H is a subgroup of a finite group G, and if |G| = m|H|, adapt the
proof of Lagrange’s theorem to show that g™ € H for allge G.

11.12. Prove that R, is a cyclic group when p is a prime number.
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CHAPTER 12

Partitions

A partition of a set X is a decomposition of the set into non-empty subsets, no
two of which overlap and whose union is all of X. The proof of Lagrange’s
theorem involved partitioning a group into subsets, each of which had the
same number of elements as a given subgroup. In this chapter we shall show
how to recognise partitions.

Suppose we have a partition of X, and let x,y be points of X. We shall say
that x is related to y if x lies in the same member of the partition as y. The
following properties are immediate:

(a) Each x € X is related to itself.

(b) If x is related to y, then y is related to x, for any two points x,y € X.

(c) If xisrelated to y and if y is related to z, then x is related to z, for any three
points x,y,z € X.

This may seem rather abstract, but Figure 12.1 should help. The shaded areas
represent the different members of the partition.

We now change our point of view. Let X be a set and let # be a subset of the
cartesian product X x X. In other words, £ is a collection of ordered pairs
(x.y) whose coordinates x,y come from X. Given two points x and y of X we
shall say that x is related to y if the ordered pair (x,y) happens to lie in R. If
properties (a), (b), and (c) are valid, then we call & an equivalence relation on
X. For each x € X the collection of all points which are related to it is written
A(x) and called the equivalence class of x.

(12.1) Theorem. #Z(x) = #(y) whenever (x,y) € R.

Proof. Suppose (x,y) € Z and let z € #(x). Then z is related to x. But x is
related to y, so by property (c) we know that z is related to y. Hence, z € 2(y)
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62 12. Partitions

x 1s related to y

x is not related to 2z

Figure 12.1

and we have Z(x) < 2(y). We also know that (y, x) € £ by property (b),
so reversing the roles of x and y gives us Z(y) € Z(x) and completes the
argument. O

EXAMPLE (i). Let X = Z and let £ consist of all ordered pairs (x, y)inZ x Z for
which x — p is divisible by 3. Certainly x — x is divisible by 3 for any integer
x. If x — yis divisible by 3, then so is y — x, and if both x — y and y — z are
divisible by 3, then so is their sum x — z. So £ is an equivalence relation on Z.
Any integer x is related to either 0, 1, or 2; consequently, there are three
distinct equivalence classes. The equivalence class of 0 consists of all multiples
of 3, that of 1 contains all integers which are congruent to 1 modulo 3, and that
of 2 the remaining integers which are congruent to 2 modulo 3. Notice that
Z(0), Z(1), and #(2) form a partition of Z (see Fig. 12.2). This gives a clue to
the statement of our next result.

(12.2) Theorem. The distinct equivalence classes of an equivalence relation on X
form a partition of X.
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12. Partitions 63

Proof. Each equivalence class is non-empty because #(x) always contains x by
property (a). If #(x) and #(y) overlap, there must be a point z in their
intersection. Then z is related to both x and y. By property (b), x is related to
z, and therefore also related to y by property (c). We conclude that £(x) =
Z(y). So two equivalence classes can only overlap if they coincide. Finally, as
each point x lies in its own equivalence class 2 (x), the union of the equivalence
classes is all of X. 0

ExAMPLE (ii). Replacing 3 in the previous example by the positive integer »
gives an equivalence relation on Z which partitions Z into n equivalence
classes 2(0), Z(1), ..., #(n — 1) called congruence classes. An integer x
belongs to #(m) precisely when x is congruent to m modulo n.

ExXAMPLE (iii). Let H be a subgroup of G and let & be the collection of ordered
pairs (x,y) with entries from G for which y~!x € H. It is easy to check that #
is an equivalence relation on G. (For any x e G we have x 'x =ee€ H, if
yxeH, then x 'y =(y"'x) e H, and if y~'x, z7'ye H, then z7'x =
(z7'y)(y~'x) € H.) The equivalence class of a particular element g € G con-
sists of all those x € G which satisfy g7'xe H. Now g 'x belongs to H
precisely when x = gh for some element 2 € H. Therefore, Z(g) is the set gH
obtained by multiplying every element of H on the left by g. This set gH is
called the left coset of H determined by g. By (12.2) we know that the distinct
left cosets of H in G form a partition of G, precisely what was needed in the
proof of Lagrange’s theorem. If 2 is changed to the collection of ordered pairs
(x,») € G x G, for which xy™! € H, we again have an equivalence relation on
G. This time the equivalence class of g is the right coset Hg, obtained if we
multiply every element of H on the right by g.

Nothing very new has emerged so far. We managed a perfectly satisfactory
proof of Lagrange’s theorem without (12.2), just using our common sense.
The strength of (12.2) is its generality. It will allow us to check quickly and
easily that certain decompositions of sets are partitions. We hint at two
applications below. Both will be important in later chapters.

EXAMPLE (iv). Let x,y be elements of a group G. We say that x is conjugate to
yif gxg™' = y for some g € G. The collection of all elements conjugate to a
given element is called a conjugacy class, and we claim that the distinct
conjugacy classes form a partition of G. Let # be the subset of G x G
consisting of pairs (x, y) for which x is conjugate to y. Each x € G is conjugate
to itself because exe™! = x. If x is conjugate to y, say gxg~' = y, then y is
conjugate to x because g~ ' yg = x. Finally, if x is conjugate to y and y to z, say
g1xg,' =y, g,yg3:" = z, then x is conjugate to z because

(gzgl)x(gzgl)_l = gz(glxgl_l)gzl
= g,y93"
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64 12. Partitions

Therefore, # is an equivalence relation on G and its equivalence classes, the
conjugacy classes mentioned above, partition G. These conjugacy classes will
be worked out for various groups in Chapter 14.

EXAMPLE (v). Let X be a set and let G be a subgroup of Sy, so that each element
of G permutes the points of X. Let £ be the subset of X x X defined as follows.
An ordered pair (x, y) liesin Z if g(x) = y for some g € G. This is an equivalence
relation on X whose equivalence classes are called the orbits of G. (As usual the
verification is easy. For each x € X we have ¢(x) = x, so x is related to itself.
If x is related to y, say g(x) = y, then g 7' () = x which shows that y is related
to x. Finally, if x is related to y and y to z, say g(x) = y and ¢g’'(y) = z, then
g'g(x) = g’'(y) = z, showing that x is related to z.) It will be important to us
later that the distinct orbits always form a partition of X, and we can be sure
of this by (12.2). To make this more concrete, take X to be R? and G to be the
group of linear transformations f, for which 4 € SO,. The origin is fixed by
every linear transformation, so the orbit of 0 is just {0}. Remembering that
orthogonal transformations preserve length, it is not hard to check that the
orbit of a non-zero vector X is the sphere which has the origin as its centre and
|x|| as its radius. The spheres of different radii, together with the point at the
origin, do indeed form a partition of R?.

We end this chapter by introducing a group whose elements are most
naturally defined as the equivalence classes of an equivalence relation.

EXAMPLE (vi). Begin with a pair of horizontal planes, three points in the top
plane and the corresponding three vertically below them in the lower plane.
Add strings which join the top points to the lower ones (Fig. 12.3). These
strings must not intersect, and an individual string should meet each level
between our two planes exactly once. Such a configuration is called a braid.
Given two braids b,, b, we can “multiply them” to give a new braid b, b, by
simply stacking b, on top of b, as in Figure 12.4.

We write e for the trivial braid whose strings are vertical. The essential
quality of a braid is the way in which its strings wind around one another, so
the trivial braid seems to act as an identity for our multiplication (Fig. 12.5).
Reflecting a braid & in the lower plane gives a braid which we denote by 57",
Notice that !4 is to all intents and purposes trivial (Fig. 12.6). We are very
close to the structure of a group, and the notion of an equivalence relation
is ideally suited to handle the remaining lack of precision.

If b, and b, are braids, we shall say that b, is related to b, provided the
strings of b, can be deformed in a continuous fashion until they land on top of
those of b,. During the deformation the strings must stay between the two
horizontal planes, their end points should remain fixed, and they are not
allowed to intersect. The resulting relation # is an equivalence relation on the
collection of all braids, and its equivalence classes form a group under the

multiplication
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66 12. Partitions

as the reader may easily check. It should not cause any surprise when we say
that Z(e) is the identity element, and that 2(b~!) is the inverse of #(b). This
is the braid group B, on three strings. There is of course a corresponding group
B, for each positive integer n.

EXERCISES

12.1. Which of the following subsets of R x R are equivalence relations on
R?

(a) {(x,y)|x — yis an even integer}
(b) {(x,»)|x — y is rational}

(© {(x,y)|x + y is rational}

(d) {(x,»lx—y =0}

12.2. Do any of the following define equivalence relations on the set of all
non-zero complex numbers?

(a) zis related to w if zw is real.
(b) zis related to w if z/w is real.
(c) zis related to w if z/w is an integer.

12.3. Find a group G and a subgroup H for which {(x, y)|xy € H} is not an
equivalence relation on G.

12.4. Supply a group G and a subgroup H for which {(x, y)|xyx~'y™' € H}
is not an equivalence relation on G.

12.5. Let # be an equivalence relation on X. Given x € X, choose y € X such
that (x,y) € Z. Property (b) gives (¥, x) € #, and property (c) then
shows that (x, x) € #. Therefore, the first property of an equivalence
relation seems to be redundant. What is wrong with this argument?

12.6. Let n be a positive integer and consider the equivalence relation on Z
given by congruence modulo n. Write [x] for the congruence class of x
and define the sum of two such classes by

[x] + [¥] =[x + y].

At first sight this rule seems to depend on the particular representatives
chosen from the two equivalence classes. Show that addition is in fact
well defined; in other words, if [x] = [x']and [y] = [y’], then[x + y] =
[x" + y’]. Prove that the collection of congruence classes forms an abe-
lian group under this operation, and that the resulting group is isomor-
phic to Z,. (Indeed, many authors prefer to define Z, in this way.)

12.7. Work out the left and right cosets of H in G when
G = A, H = {£,(12)(34),(13)(24), (14)(23)}

and when
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12. Partitions 67

Verify that the left and right cosets coincide in the first case, but not in
the second.

12.8. Let G be a finite group and let H be a subgroup of G which contains
precisely half the elements of G. Show that gH = Hg for every element
gof G.

12.9. Here is a prescription which enables us to construct the rational num-
bers from the integers. Begin with the set X of all ordered pairs (m, n) of
integers in which the second coordinate is non-zero. We think of (m, n)
as representing the fraction m/n. Of course many different ordered
pairs represent the same rational number, for example (2, 3), (4, 6), and
(—6, —9) all represent 3. Somehow we have to identify all these pairs,
and the notion of an equivalence relation is the appropriate tool. Agree
that (m, n) is related to (m’, n’) whenever mn’ = m’'n. Show this is an
equivalence relation on X. Write [(m, n)] for the equivalence class of
the ordered pair (m, n) and, motivated by the rules for adding and
multiplying fractions, define

((m,n)] + [(m,,n,)] = [(mn, + m n,nn,)],

[(m,m)].[(my,n)] = [(mm,,nn,)].

Check that both operations are well defined, that the set of all equiva-
lence classes forms an abelian group under addition, and that if we
remove the “zero class’ [(0, #n)] the remainder form an abelian group
under multiplication. Each rational number is represented by precisely
one equivalence class and we have now modelled the algebraic struc-
ture of the rationals.

12.10. Consider the relation of conjugacy defined in Example (iv) and work
out the conjugacy classes when G = D,. Try to do the same for the
infintte dihedral group D, .

12.11. Convince yourself that the braid group B, is infinite, is not abelian, and
1s generated by the two braids b,, b, shown in Figure 12.4.

12.12. The construction of B; involves a pair of horizontal planes, three
points in the top plane and the corresponding three vertically below
them in the lower plane. Label the upper points, and the lower points,
1, 2, 3 so that points which are vertically aligned have the same label.
Sliding along the strings of a braid now produces an element of S;.
Show that the function from B, to S, constructed in this way is
surjective and sends the multiplication of B, to the multiplication of S,.
Find two different braids which both map to the permutation (123).
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CHAPTER 13

Cauchy’s Theorem

Here is the partial converse to Lagrange’s theorem promised in Chapter 11.

(13.1) Cauchy’s Theorem. If p is a prime divisor of the order of a finite group G,
then G contains an element of order p.

Proof. We need an element x € G — {e} such that x? = e. Consider the set X of
all ordered strings X = (x,, x,, ..., x,) of elements of G for which

xle...xp=e.

Our problem is to find such a string which has all its coordinates equal, but
which is not (e, e, . .., e). We shall do this by a careful analysis of the size of
X.

How big is X7 If the string (x,, x,,...,X,) is to lie in X we may choose x,,
X3, ..., Xp_; arbitrarily from G, when x, is completely determined by x, =
(xyX3...x,-1)"". So the number of strings in X is |G|?~!, which is a multiple
of p.

Let # be the subset of X x X defined as follows. An ordered pair (x,y)
belongs to # if y can be obtained by cyclically permuting the coordinates of x.
In other words y is one of

(xy,X5,...,%p)
(Xps X1s0vvsXpoy)

()

(X2,.-.,Xp, X))

Note that these cyclic permutations do all belong to X. For example,
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13. Cauchy’s Theorem 69

which shows that (x,, x,,...,x,_;)€ X, and repeating this process deals with
the others. One easily checks that # is an equivalence relation on X and that
the equivalence class #(x) of the string x = (x,, x,,...,x,) is precisely the
collection (*).

Does cyclic permutation of the coordinates of a string always produce p
different strings? Certainly not in the case of e = (e, e, . . ., e) where cyclically
permuting the entries does not give anything new, and #(e) contains just one
element. The distinct equivalence classes of # partition X, so adding together
the sizes of these classes gives the total number of elements in X. If every
equivalence class other than #(e) contains p elements, then the size of X will
be congruent to 1 modulo p, contradicting our earlier calculation. Therefore,
there must be a string x = (x,, x,, ..., X,), other than e, whose equivalence
class contains less than p elements. So two of the cyclic permutations in () are
equal, say

(Xpa1se s Xpy Xpseo o3 X)) = (Xgipsee s Xpy Xpy vy Xg)-
Assume r > s and cycle back p — r times to give
(X013 X250 005 Xp) = (Xpgoe -2 Xps Xpseney X3)

where k = p — r + 5. Equating corresponding coordinates we observe that
X; = Xprimodp 10T 1 < i < p, and consequently

X1 = X1 = Xog+1 = 07 = Xp-1)k+1

where the suffices are read mod p. Suppose ak + 1 and bk + 1 are congruent
modulo p where 0 < @ < b < p — 1. Then p divides (b — a)k, which is impos-
sible because p is prime and both » — a and k are less than p. Therefore the

numbers
Lk+1L,2k+1,....,(p— Dk +1

are all different when read mod p. As there are p of them, reading them mod
P just gives 1,2,...,p possibly jumbled up in some different order. We

conclude that x, = x, = --- = x,, which gives x = e as required. (Once we
have a little more machinery at our disposal we will be able to steamline this
type of argument; see Chapter 17.) O

As an application of Cauchy’s theorem we show that a group of order 6
must be either cyclic or dihedral. We should be more precise.

(13.2) Theorem. A group of order 6 is either isomorphic to Z or isomorphic to
D,.
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70 13. Cauchy’s Theorem

Proof. Let G be a group which contains six elements. Use Cauchy’s theorem to
select an element x of order 3 and an element y of order 2. The right cosets {x),
{xD>y give six elements e, x, x%, y, xy, x>y which fill out G. Now yx is one of
these six and it is certainly not in {x)> or equal to y. If yx = xy, then (10.2)
shows that G is isomorphic to {x)> x {y), and hence to Z; x Z,, which is
cyclic by (10.1). Otherwise yx = x?>y and (in the notation of Section 4)
changing x to r and y to s gives an isomorphism from G to D,. 4

It is not much harder to show that if p is an odd prime, then any group of
order 2p is either cyclic or dihedral (see Chapter 15).

We now have a good deal of information about groups of small order. Any
group of order 2, 3, 5, or 7 is cyclic by (11.3), a group of order 4 is isomorphic
to either Z, or Klein’s group (see Exercise 10.12), and any group of order 6 is
cyclic or dihedral. The situation for order 8 is more complicated. We have
already met four groups, each of which has eight elements, namely Z,,
ZyxZ,, Z,x 2, x Z,, and D,. Here is a fifth. A quaternion (or hyper-
complex number) is an expression of the form a + bi + ¢j + dk, where a, b, c,
d are real numbers and i, j, k satisfy

i2=j2=k'=—1, ij=—ji=k (*)

and the set of all quaternions is denoted by H. The eight symbols +1, +i, +/,
+ k when multiplied according to (x) form a group Q called the quaternion
group. Its multiplication table is shown below

1 -1 i =i i = kK —k

1 1 -1 i —i i = kK —k

-1 | =1 1 =i i = i —k k
i i =i =1 1 kK —k - j

—i | —i i 1 -1 —k k i =
j i =j -k ko —1 1 i —i

— | —J j kK —k 1 -1 —i i
k kK —k i =i =i i =1 1

—k | -k kK - j i =i 1 -1

Q is not abelian (so it cannot be isomorphic to one of Zg, Z, x Z,, Z, %
Z, x Z,) and as +1 are the only elements of order 2 it is not isomorphic
to D,, which contains five elements of order 2.

(13.3) Theorem. A group of order 8 is isomorphic to one of the following: Zg,
Z,x2,,Z, x Z, x Z,, D,, Q.

Proof. Let G be a group which has eight elements. If there is an element of
order 8, then G is isomorphic to Zg. Suppose now that the largest order of an
element of G is 4. Choose an element x whose order is 4 and an element y from
G — {(x>. The cosets {x fill out G and provide the elements
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13. Cauchy’s Theorem 7

2 3 2 3
€, X, X%, X7, Y, XV, X“ Y, X" }.

We know that yx is not in {x), cannot equal y (as yx = y gives x = ¢) and
cannot equal x?y (because yx = x?yleads to x = y~ ! x?y, which in turn gives
x? =y x*yy~'x*y = e). Therefore, yx is either xy or x>y. In addition the
order of the element y is 2 or 4. Observe that y? does not belong to (x> y (as
y ¢ <x>)and cannot equal x or x> (because the order of y is not 8). So if y has
order 4, then y? = x2. Hence we have four possibilities:

(i) If yx = xy and y? = e, the group is abelianand x — (1,0), y — (0, 1) leads

to an isomorphism between G and Z, x Z,.

(i) If yx = x*y and y? = e, then (with the usual notation) x —»r, y—s
determines an isomorphism between G and D;.

(iii) If yx = xy and y? = x?, the group is abelian, xy~! has order 2, and
x —(1,0), xy~' = (0, 1) leads to an isomorphism between G and Z, x
Z,.

(iv) Finally, if yx = x3y and y? = x2, then x — i, y — j determines an iso-
morphism between G and Q.

What if every element of G — {e] has order 2? In this case G is an abelian
group. Choose x, y, z from G — {e} and make sure xy is not equal to z. The
subgroup H = {e, x, y, xy} is isomorphic to Z, x Z, and if K = {z) we easily
check that HK = G and H n K = {e}. Therefore, G= H x K= Z, x Z, x
Z, by (10.2). ]

EXERCISES

13.1. Verify that the relation # used in the proof of Cauchy’s theorem is
indeed an equivalence relation.

13.2. Ifp,,p,,...,psaredistinct primes, show that an abelian group of order
P1Pa ... ps, must be cyclic.

13.3. In Theorem 13.2 we showed that a group of order 6 must be cyclic or
dihedral. Follow the proof until you have the six elements e, x, x2, y,
xy, x2y. There are three possibilities for the order of xy. Show that one
leads to Z, a second to D5, and the third to a contradiction.

13.4. Prove that a group of order 10 is either isomorphic to Z,, or isomor-
phic to Dx.

13.5. Let G be a group of order 4n + 2. Use Cauchy’s theorem, Cayley’s
theorem, and Exercise 6.6 to show that G contains a subgroup of order
2n + 1.

13.6. Check that every proper subgroup of Q is cyclic.

13.7. Given quaternions g=a+ bi+c¢j+dk, g =a +b'i+c'j+dk
define
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72 13. Cauchy’s Theorem

gt+qg =(@+a)+b+b)i+(c+ )+ (d+ d)k,
q.9' =(aa’' — bb' — cc’ — dd') + (ab’ + ba’ + c¢d’ — dc')i
+ (ac’ — bd' + ca’ + db')j + (ad’ + bc' — cb’ + da’)k.

Prove that H forms an abelian group under addition, and that H — {0}
is a group (though not an abelian group) under multiplication. Show
that the correspondence

a+ bi+cj+ dke(a,b,c,d)
is an isomorphism from the additive group H to R*,
13.8. The conjugate of a quaternion ¢ = a + bi + ¢j + dk is defined to be
q* = a — bi — ¢j — dk, and the length of g is the square root of g. g*;
in other words ./(a® + b? + ¢ + d*). Show that the quaternions of

unit length form a subgroup of H — {0}. We shall denote this group by
S3 because it corresponds to the unit sphere if we identify H with R*.

13.9. Prove that the correspondence
a+ib c+id
+ bi + ¢j + dk
aroTy H[—c+id a—ib]
defines an isomorphism between S? and SU,.

13.10. Write out the elements of SU, which correspond to the subgroup Q of
S3. Find a subgroup of $3 which is isomorphic to C.

13.11. An element of H of the form bi + ¢j + dk is called a pure quaternion.
Show that ¢ . (bi + ¢j + dk).q™! is a pure quaternion for every g € H.

13.12. Given x = (x;, x,,x3) in R?, let g(x) denote the quaternion x,i +
X,/ + x3k. If X,y € R? prove that

qg(x xy)=x.y + q(x).q(y).

| [_ Creado por la version de demostracion de Universal Document Converter. La version completa no afiade esta marca.

WWW.PRINT-DRIVER.ES



CHAPTER 14

Conjugacy

The relation of conjugacy was introduced in Chapter 12 and shown to be an
equivalence relation. We recall the definition. Given elements x,y of a group
G we say that x is conjugate to y if gxg~! = y for some g € G. The equivalence
classes are called conjugacy classes, and we begin by working out these classes
for some specific groups.

For a fixed element g € G the function from G to G given by x — gxg~! is an
isomorphism called conjugation by g. (It is a bijection because it is invertible,
its inverse being conjugation by g, and it preserves the algebraic structure of
G because
g(xy)g™" = (gxg™")(gyg™")
for any two elements x,y € G.) Since an isomorphism preserves the order of an
element we see that elements in the same conjugacy class must have the same
order.

ExXAMPLE (i). If G is abelian and if x is an element of G, then gxg~! = x for all
g€ G. So x is only conjugate to itself and the conjugacy classes are the
singletons {x} where xe G.

ExaMmpLE (ii). Take G to be the dihedral group D, and adopt the notation of
Chapter 4. The elements of D are

e, r,ri, r3 rt, r’

s, rs, r2s, ri3s, r*s, ris

and multiplication is completely determined once we know r® = ¢, 52 = ¢,
sr = r3s. To find the conjugacy class of a power of r, say r* where 1 < a <5,
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74 14. Conjugacy

we must calculate gr°g™! for every g in Dg. If g is the identity or a power of
r, we get r* back again. Taking g = s (and remembering that s™! = s5) we

have

2 _ ,6-a

sris =%t =r

Finally, if g = r®s where 1 < b < 5, then
(rPs)ro(rPs)™t = ro(sris)ré®
— rb(rﬁ—a)r6—b
=674,
Therefore, the conjugacy class of r* is {r®, r7?}. For the remaining elements
note that
b ypb

rosr7? = rPrbs = r2bs

and

ro(rs)r=® = rb*tpbs = P24,

Conjugation by r’s also sends s to r2%s and sends rs to r2*~!s. Therefore, the
elements s, 25, r*s form a conjugacy class, as do rs, r’s, r°s. In summary, the
conjugacy classes of D¢ are

(e () 2P0, 1),
{s,r2s,r*s}, {rs,r3s,r’s}.

At this point we recommend Exercises 14.1 and 14.2.

ExaMPLE (ii1). Two elements of S, are said to have the same cycle structure if
when they are decomposed as products of disjoint cyclic permutations they
both have the same number of 2-cycles, the same number of 3-cycles, and so
on. If 6, ¢ € S, have the same cycle structure, write out the cycle decomposi-
tion of ¢ underneath that of 6, taking the constituent cycles in order of
decreasing length. In both cases include the integers left fixed by the permuta-
tion as cycles of length 1. Let g be the element of S, which sends each integer
mentioned in 6 to the integer vertically below it in ¢. Then gf8g~' = ¢ because
moving an integer up from ¢ to 6, pushing it along one position in 8, then
dropping it back down to ¢ is the same as moving along one position in ¢.
Therefore, permutations which have the same cycle structure are conjugate in
S,.

Here is a specific calculation. The permutations § = (67)(2539)(14), ¢ =
(12)(38)(5467) are both elements of S, and have the same cycle structure
consisting of two transpositions plus a single 4-cycle. Our procedure gives

(2539)(67)(14)(8)
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14. Conjugacy 75

and we read off g = (136)(254897). Thus,
gbg™" (1) = g6(6)
=g(7)
=2 = ¢(l), etc.

The element g is not unique. Writing 8 as (2539) (14)(67) (8) and keeping ¢ the
same gives g = (254)(36)(789).

Conversely, conjugate permutations have the same cycle structure. To see
why, let 8 = 0,6, ...0, be an element of S, written as a product of disjoint
cyclic permutations. For any g € S, we have

g0g~' = g(6,6,...6)g7"
= (90,97")(g90297")...(9097").
Assume 6, has length &, say 8, = (a,a, ... a), then
90,97 (g(a,)) = gbi(a,) = g(a,),
90:97'(g(az)) = gbi(az) = g(as),

96:.97 " (g(a)) = gbi(a;) = g(a,).
Also, if m is not one of g(a,), ..., g(a,) then 8, fixes g~ ! (m) and
g0,g™" (m) = gg™ (m) = m.

Therefore, g0.g7! = (g(a,)g(a,)...g(a,)), a cyclic permutation of the same
length as 8;. Since gf,97!, 90,97, ..., gb,g~! are clearly disjoint, we conclude
that g8g~! has the same cycle structure as 6.

ExaMPLE (iv). From the previous example we know that the conjugacy classes
of §, are

{e}

{(12), (13), (14), (23), (24), (34)},

{(123), (132), (142), (124), (134), (143), (243), (234)},
{(1234), (1432), (1243), (1342), (1324), (1423)},

{(12)(34), (13)(24),(14)(23) }.

How about those of 4,? We must be careful, if ,¢ € A, have the same cycle
structure, there is certainly an element g € S, such that gg™' = ¢, but it may
not be possible to produce an even permutation g with this property. For
example if g(123)g~! = (132), then (g(1)g(2)g(3)) = (132) and g must be one
of the transpositions (23), (13), (12). So g cannot lie in 4,. We quickly check
that the conjugacy classes of 4, are
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76 14. Conjugacy

et

{(123), (142), (134),(243)},
{(132),(124),(143),(234)},
{(12)(34), (13)(24), (19) (23)}.

These classes have a simple geometrical interpretation. Identify 4, with the
rotational symmetry group of a regular tetrahedron in the usual way. Given
an axis of symmetry through one of the vertices, we can rotate by 27/3 so that,
when viewed from the vertex in question, the opposite face appears to move
clockwise. The four rotations of this type are conjugate, as are the other four
where the face moves anticlockwise. These classes correspond to the two
distinct conjugacy classes of four 3-cycles. The identity rotation forms a
conjugacy class on its own, and the remaining class consists of the three
rotations through 7= about axes determined by the midpoints of pairs of
opposite edges.

ExXAMPLE (v). Take G to be O, and let

cos @ —sin @ COS @ sin ¢
Ag = . ’ B‘p = . .
sin 6 cos 8 sin ¢ —Ccos @
Remember that 4, represents anticlockwise rotation through 6, and B, reflec-
tion in a line inclined at an angle of ¢/2 to the positive x-axis. Conjugate

matrices have the same determinant, so each conjugacy class will consist
entirely of rotations or entirely of reflections. As

Aqu,Ag_l = AgB‘pA_.o = Btp+26
we see that any two of the B’s are conjugate. Also
Aq,AoA‘;l = Aﬂ
and
B‘pAgB(p—l = Bq,Ang, = A_9

which shows that the rotation matrices divide up into conjugacy classes of the
form {A4,, A_,}. Thus, the distinct conjugacy classes of O, are

{1},

{Ag, Ay}, 0<O<m,

{Az}>
{B,10 < ¢ <2mn}.
In the next chapter, we shall study subgroups which are made up of complete
conjugacy classes. One such is the so-called centre of a group. The centre of a

group G consists of all those elements which commute with every element of
G. It is usually denoted by Z(G) so that Z(G {xe Glxg = gx,Vge G}.
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14. Conjugacy 77

(14.1) Theorem. The centre is a subgroup of G and is made up of the conjugacy
classes which contain just one element.

Proof. If x,y € Z(G) and g € G, then
gxy ! = xgy™* (because xe Z(G))
= x(yg™)™"
=x(g~y)! (because y € Z(G))
=xy’lg.

Therefore, xy~! belongs to Z(G). Certainly e e Z(G), so the centre is a
subgroup by (5.1). Since xg = gxif and only if gxg~! = x, we see that x lies in
Z(G) precisely when the conjugacy class of x is the singleton {x}. Cl

ExXAMPLE (vi). The centre of any abelian group is the whole group.

EXAMPLE (vii). For n > 3 the centre of S, is the trivial subgroup {e}. This
follows from Example (iii).

ExAMPLE (viii). The centre of Dg is {e,r*} as we see from Example (ii). We ask
the reader to work out the centre of D, in the general case, distinguishing
carefully between the cases n even and n odd (Exercise 14.10).

ExAMPLE (ix). The centre of GL, consists of all (non-zero) scalar multiples of
the identity matrix (Exercise 14.11).

EXERCISES
14.1. Work out the conjugacy classes of Ds.

14.2. Explain the structure of the conjugacy classes of D,, distinguishing
carefully between the cases where 7 is even and where 7 is odd.

14.3. Let ¢: G — G’ be an isomorphism. Prove that ¢ sends each conjugacy
class of G to a conjugacy class of G".

14.4. Calculate the number of different conjugacy classes in S¢ and write
down a representative permutation for each class. Find an element
g € Sg such that

g(123)(456)g~" = (531)(264).

Show that (123)(456) and (531)(264) are conjugate in A, but
(12345)(678) and (43786)(215) are not conjugate in Ag.

14.5. Prove that the 3-cycles in 45 form a single conjugacy class. Find two
5-cycles in A5 which are not conjugate in A4s.
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78 14. Conjugacy

14.6. How many elements of Sg have the same cycle structure as
(12)(345)(678)?

14.7. Work out the conjugacy classes and the centre of the quaternion group
Q. What is the centre of S*?

14.8. Use Exercise 6.10 to show that the centre of S, is the trivial subgroup
{¢} when n > 3.

14.9. The group A, is abelian, therefore Z(A4;) = A,. Prove that Z(4,) = {¢}
when 7 is greater than 3.

14.10. Read off the centre of D, from your calculations in Exercise 14.2. You
should find that Z(D,) is {e} when n is odd and {e, r"?} when n is even.

14.11. Consider the matrices which can be obtained from the n x n identity
matrix either by altering one of the diagonal entries to — 1, or by
interchanging two rows. Show that these matrices are all invertible and
use them to compute the centre of GL,(R).

14.12. Find the centres of O, and SO,. Prove that the centre of U, consists of
all matrices of the form e, where 8 € R and I, denotes the n x n
identity matrix.
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CHAPTER 15

Quotient Groups

We shall devote this chapter to subgroups which are made up of complete
conjugacy classes.

A subgroup H of a group G is called a normal subgroup of G if H is a union of
conjugacy classes of G.

Normal subgroups are important because their left cosets form a group in a
natural way. If X and Y are subsets of G, we can multiply them to form the set
XY of all products xy where xe Xand ye Y.

(15.1) Theorem. If H is a normal subgroup of G, the set of all left cosets of H in
G forms a group under this multiplication.

Proof. The product of two left cosets is again a left coset because
(xH)(yH) = xyH (*)

for any two elements x, y € G. Accepting this for the moment, associativity
follows from associativity in G, the coset e H = H actsasanidentity,and x ' H
is the inverse of xH for each x € G. So we do indeed have a group.

Just why does (*) hold and what does it have Lo do with the hypothesis that
H be a normal subgroup of G? Each element of (xH )( yH ) has the form xhyh’
for some h,h’ € H. Rewrite this as

xy(y thy)h'

and notice that y "'hy is a conjugate of h. By assumption the subgroup H is a
normal subgroup of G and therefore contains the whole conjugacy class of A.
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80 15. Quotient Groups

Hence, y 'hy = h” for some h” € H, giving
xhyh' = xy(y thy)h' = xy(h"h').

Now we can sce that xAyh’ belongs to xyH. So far we have (xH)(yH) < xyH.
The reverse inclusion is easier to check and works for any subgroup H. Each
element of xy H has the form xyh for some 4 € H. Rewriting this as (xe)(yh)
shows that it belongs to (xH)(yH) and we deduce xyH < (xH)(yH). This
completes the argument. O

If H is a normal subgroup of G we write H<a G. The group of left cosets of
H in G introduced above is called the quotient group (or factor group) of G by
H and denoted G/H. We recall that the left cosets of H in G form a partition
of G. Each of these cosets represents a single element in G/H and it is in this
sense that we have *“‘divided G by H.”

EXAMPLE (i). Let H be the subgroup of Dy generated by the element r*; then
H is a normal subgroup of Dy as it is made up of the conjugacy classes {e}
and {r’}. There are six distinct left cosets, namely

eH = {e,r*}, rH = {r,r*}, riH = {r*,r®},
sH = {s,sr3} = {s,r’s}, rsH = {rs, r*s},

and
risH = {r?s, r’s}.

These are the elements of Dg{H. Our definition of multiplication gives
(rH)(sH) = {xy|xerH, y e sH}
= {rs, rris, r*s, r*ris}
= {rs, r*s}
=rsH
exactly as predicted by () in (15.1). Writing our cosets as

eH, rH, (rH)?, sH, (rH)(sH), (rH)*(sH)
and checking
(rH) =r*H = eH,

(sH)? = s?H = eH,
(sHY(rH) = srH = r*sH = (rH)*(sH)

we conclude that the quotient group Dg/H is isomorphic to D;.

ExaMpLE (ii). The conjugacy classes {e} and {(12)(34),(13)(24), (14)(23)}
make up a normal subgroup J of A4 There are three left cosets &J, (123)J,
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15. Quotient Groups 81

ExXAMPLE (iii). Every subgroup of an abelian group is a normal subgroup
because in this case the conjugacy classes are just the elements of the group.
Let n be a positive integer and consider the subgroup nZ (all multiples of n) of
Z. There are n distinct cosets

O+nZ, 1 +nZ,....,(n—1)+nZ

which when combined via
x+nZ)+ (y+nZ)=(x+y)+nZ

make up the quotient group Z/nZ. The element | + nZ generates the whole
group; therefore, Z/nZ is isomorphic to Z,.

If we wish to check that the subgroup H of G is normal, without first
working out all the conjugacy classes of G, we can do so by showing that

ghg e H forallhe H geG.

For example, SO, is a normal subgroup of O, because every conjugate of a
matrix of determinant + 1 also has determinant + 1. We can sometimes be
more efficient using the following result.

(15.2) Theorem. Let H be a subgroup of G and let X be a set of generators for
G which, if G is infinite, contains the inverse of each of its elements. Then H is
a normal subgroup of G, provided xhx ' € H forallhe H, x € X.

Proof. If h e H, we must show that every conjugate ghg ~! also belongs to H.
Express g as a product x, x, ... x in which each x; is an element of X. Then

ghg™' = (x;x5...)h(x;x5...x)7"

-1

=X X5...hx x5t x!

and conjugation by g amounts to repeated conjugation by elements of X. By
assumption, each time we conjugate by an element of X we produce another
member of H. Therefore, ghg ~*! does indeed belong to H. O

EXAMPLE (iv). The subgroup H of D, generated by r? is a normal subgroup.
Take X = {r,s} and check that conjugating a power of r? by either r or s gives
back a power of 2. If nis odd, then H = {(r*> = {r), so D,/H has two elements
H,sH, and is isomorphicto Z,. If nis even there are four distinct cosets H, rH,
sH, rsH. We note that

(rH)?=r*H=H (because v € H),

(sH)? =s*H = H,
and
(rsH)? = (rs)*?H = H.

Therefore we have a group of order 4 in which the square of every element is
the jden ence, D, /H is isomorphic to Z, x Z,.
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82 15. Quotient Groups

We have chosen to work with left cosets, but the next result shows that H is
a normal subgroup of G precisely when its left and right cosets coincide.

(15.3) Theorem. The subgroup H of G is normal if and only if xH = Hx for all
xeq.

Proof. Suppose H is normal. Given x € G, h € H, we know that the conjugates
xhx~! and x “'hx must belong to H. Therefore,

xh = (xhx V)x e Hx

and we have xH = Hx. Similarly, Ax = x(x "'hx) € xH provides the reverse
inclusion Hx < xH. Now assume xH = Hxforallxe G.If he H, x € G, the
conjugate xhx ! belongs to

(xH)x ' =(Hx)x"! = H,

and therefore H must be normal in G. O

This means that we can equally well think of the elements of G/H as the
right cosets of H in G, multiplying them via (Hx)(Hy) = Hxy. The index of a
subgroup H of G is the number of distinct left (or right) cosets of H in G. Even
if H is not a normal subgroup it does not matter which type of coset we use,
since the correspondence xH — Hx™! is a bijection between the set of left
cosets and the set of right cosets.

(15.4) Theorem. If the index of H in G is equal to 2, then H is a normal subgroup
of G and the quotient group G/H is isomorphic to Z ,.

Proof. We show that xH = Hx for every x € G. This is clear when x e H. If
X € G ~ H, the left cosets H, xH form a partition of G. But H and Hx also
partition G. Therefore, xH must equal Hx as required. As there are only two
distinct cosets, the quotient group G/H has order 2 and is isomorphic to Z,.

O

EXAMPLE (v). A, is a normal subgroup of S,.
ExaMPLE (vi). The subgroup generated by r is a normal subgroup of D,.

EXAMPLE (vii). For a second time we see that SO, is a normal subgroup of O,.
The index of SO, in O, is equal to two because the cosets /1SO,, USO, fill out
O,, where [ is the identity matrix and U is obtained from /by changing the final
| on the diagonal to — 1.

(15.5) Theorem. If p is an odd prime, any group of order 2p is either cyclic or
dihedral.

Proof. Use Cauchy’s theorem to select an element x of order p and an element
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15. Quotient Groups 83

¥, Xy, ...x?71y, which fill out the group, and {x) is a normal subgroup
because its index is equal to 2. By Lagrange’s theorem the order of xy is 2p, p,
or 2. If xy has order 2p, then our group is cyclic. If it has order 2, then
xyxy = e, giving yx = x "1y, and we have a group which is isomorphic to the
dihedral group D,. We claim that xy cannot have order p. For suppose
(xy)? = e, then

x> = O p) = (K xp)f = ({xOp) = (xoyP = (x5,

which leads to the contradiction y € (x). U

We now change tack and describe a process which allows us to ““abelianise”
an arbitrary group G. An element of G of the form xyx~'y~! is called a
commutator and the subgroup generated by all commutators is the comm:sta-
tor subgroup (G, G] of G. Since x and y commute precisely when the commuta-
tor xyx “'y~!is the identity, the size of [G, G] can be thought of as a measure
of how far G is from being abelian. The commutator subgroup of any abelian
group is just the trivial subgroup {e}.

ExaMPLE (viii). Each commutator in S, is obviously an even permutation and
therefore [S,, S,] is contained in 4,. Every 3-cycle is a commutator because

(abc) = (ab)(ac)(ab)(ac),

and the 3-cycles generate 4, when »n > 3. We conclude that the commutator
subgroup of S, is all of A4,

(15.6) Theorem. The commutator subgroup is a normal subgroup, the quotient
group G/[G, G is abelian, and if H is a normal subgroup of G for which G/H is
abelian, then [G, G] is contained in H.

Proof. Any conjugate of a commutator is again a commutator because
glxpx~ly g™t = (gxg ™ ) (gyg ') (gxg ) M (gyg ).

A general element of [G, G] may not be a commutator, but is a product of
commutators, say ¢, c, ... c,. Conjugating by an element of G gives

gleyca...0)g t =(geig ' )(geag™) . (gag™)

which again lies in [G, G]. Therefore, the commutator subgroup is a normal
subgroup of G.

If x, y are elements of G, then xyx 'y~ ! € [G, G]. Hence, [G,G)xyx'y~! =
[G. G). which in turn gives [G, G]xy = [G, G]yx and shows that G/[G, G] is

abelian.

Finally, if G/H is abelian and if x,y € G, then Hxy = Hyx. Therefore,
Hxyx~'y~! = H, which tells us that the commutator xyx ~'y~! must lie in H.
So H contains [G, G]. J
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84 15. Quotient Groups

the corresponding quotient group is abelian. In forming G/[G, G] we say that
we abelianise G.

EXAMPLE (ix). With our usual notation {r?) is a normal subgroup of D,. If n
is odd, then {(r*> = {r) hasindex 2 in D,, whereas for n even the index of (r?>
in D, is 4. In both cases the quotient group D,/{r?> must be abelian and
therefore the commutator subgroup of D, is contained in {r?). But

1 2

rsrls ™V =rrss=r

showing that r? is a commutator. Hence, [D,, D,] = {r?). If nis odd, we have
D,/ID,, D,)=Z,, and for neven, D,/[D,, D, =7, x Z,.

ExaMPLE (x). The subgroup {+1} of the quaternion group Q is a normal
subgroup and Q/{ + 1} is isomorphic to Z, x Z,. Therefore, the commutator
subgroup of Q is contained in { + 1}, and it must equal { + 1} because Q is not
an abelian group.

EXERCISES

15.1. If H and J are both subgroups of a group G, prove that HJ is &
subgroup of G if and only if H/ = JH.

15.2. Find all normal subgroups of D, and Ds. Generalise and deal with D,
for arbitrary n.

15.3. Show that every subgroup of the quaternion group Q is a normal
subgroup of Q.

15.4. Is O, a normal subgroup of GL,(R)?

15.5. Let H be a normal subgroup of a group G, and let J be a normal
subgroup of H. Then of course Jis a subgroup of G. Supply an example
to show that J need not be normal in G.

15.6. If H, J are normal subgroups of a group, and if they have only the
identity element in common, show that xy = yx forallxe H, ye J.

15.7. Let K be a normal subgroup of G x H, which has only the identity in
common with each of G x {e} and {e} x H.Show that K'is abelian.

15.8. Find the commutator subgroup of A4,. If n is at least S, show that the
commutator subgroup of 4, is all of 4,.

15.9. Let ¢: G — G’ be an isomorphism. Prove that ¢ sends the commutator
subgroup of G to the commutator subgroup of G".

15.10. Improve Theorem 15.2 as follows: Let H be a subgroup of a group G,
let X be a set of generators for G which contains the inverse of each of
its elements, and let Y be a set of generators for H. Show that H is a
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15.11. Let H be a subgroup of finite index of an infinite group G. Prove that
G has a normal subgroup of finite index which is contained in H.

15.12. A simple group is one whose only normal subgroups are {¢} and the
whole group. Find a proper normal subgroup of 4,. Now consider the
alternating group 4. Work out the commutators

(12345)~1(345) "1(12345) (345),
(12)(34)(345) 71 (12) (34) (345).

Show that a non-trivial normal subgroup of 4, must contain a 3-cycle.
Use the first part of Exercise 14.5 to conclude that this subgroup must
be all of A5, and that A, is therefore a simple group. (It is not much
harder to verify that A4, is simple when »n is greater than 5.)

15.13. If His a cyclic normal subgroup of a group G, prove that any subgroup
of H is also a normal subgroup of G.

15.14. Show that every element of the quotient group Q/Z has finite order,
but that only the identity element of R/Q has finite order.

15.15. If G contains a normal subgroup which is isomorphic to Z,, and if the
corresponding quotient group is infinite cyclic, prove that G is isomor-
phicto Z x Z,.

15.16. Suppose that G contains an infinite cyclic normal subgroup for which
the corresponding quotient group is cyclic of order 2. Show that G
must be isomorphictoone of Z, Z x Z,, D,.
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CHAPTER 16

Homomorphisms

Let G, G’ be groups. A function ¢: G — G’ is a homomorphism if it takes the
multiplication of G to that of G’; in other words if

p(xy) = e(x)o(y) forallx,yeG.

The kernel K of ¢ is then defined to be the set of those elements of G which ¢
maps to the identity of G’; in symbols K = {x € Glo(x) = e}. If ¢ is also a
bijection, then it is an isomorphism, and in this case its kernel is just the
identity element of G. Various properties of isomorphisms were checked in
Chapter 7. Those arguments which do not use the fact that an isomorphism is
a bijection are equally valid here. Therefore, a homomorphism sends the
identity of G to that of G, sends inverses to inverses, and sends each subgroup
of G to a subgroup of G'. In particular, ¢ maps the whole group G to a
subgroup of G’ which is called the image of ¢.

Notice that if H is a normal subgroup of G the function ¢: G — G/H defined
by ¢(x) = xH is a homomorphism because

e(xy) = xyH = (xH)(yH) = @(x)p(y)

for all x,y € G. The image of this homomorphism is G/H and its kernel is
precisely H.

(16.1) First Isomorphism Theorem. The kernel K of a homomorphism
©: G — G’ is a normal subgroup of G, and the correspondence xK — ¢(x) is
an isomorphism from the quotient group G/K to the image of .

Proof. Suppose x,y € K, then ¢(xy™') = @(x)¢(y)™' = e, showing that
xy~! € K. Certainly K is non-empty because e¢ € K, hence K'is a subgroup of G
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