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Preface

Group theory is a basic branch of algebra. The simple definition of a
group, as expressed through the group axioms, together with the way that
group theory interpenetrates many other fields in mathematics, make it
a good introduction to an advanced study of many areas of mathematics.
In the century and a half since the foundations were laid, many great
mathematicians have become interested in the study of group theory
because its elementary nature scarcely conceals its many deep and tanta-
lizing problems. Like number theory, group theory has many problems
which may be stated in simple terms but whose solutions lie very deep.

Recent activity in group theory has resulted in the solution of several
long-standing problems. Even a complete classification of all finite simple
groups (the basic units from which all finite groups are built) now appears
possible, in a large part due to the work of the mathematician John G.
Thompson. On one hand, there has been the discovery and development
of new tools applicable to old problems, and on the other, we have dis-
covered how the older methods can be applied to new and interesting
problems. The survey articles of Brauer [27 ] and Wielandt and Huppert
[66] illustrate these developments.



vi Preface

To study group theory seriously, you have to read and understand the
work of other mathematicians and then develop this understanding by
solving suitable problems. Often it is difficult to find good problems which
are challenging and yet accessible. This book is intended to provide such
problems, with their solutions, from various branches of group theory.
The problems are chosen and arranged so that they will be both challeng-
ing and accessible, and working through them should develop skill and
understanding of the material. If you are unable to solve a given problem,
then a study of its solution will prepare you for the later problems. Most
of the problems are from research papers published since 1950, and there
are many references to the original sources to help you find your way to
the present frontiers of the subject. The references are meant to be sug-
gestive rather than complete, but there are good bibliographies in Kurosh
[2] (up to 1956), Curtis and Reiner [16] (on group representations), and
the forthcoming book by Huppert [15] (on finite groups). The Mathe-
matical Reviews and Zentralblatt fiir M athematik give a continuing survey
of current literature.

By the nature of the book, the focus of interest is as much on techniques
used as on the results themselves, and this has partly dictated the arrange-
ment of the material. This is especially true of the few standard theorems
which appear as problems. The choice of problems has been influenced
by my own preferences, and I have not attempted to touch all aspects of
the subject. Some branches, such as the theory of infinite abelian groups
and the study of free groups, are not represented because they require
somewhat more specialized techniques than other parts of the subject.
At the same time, I believe that the selection is sufficiently wide so that
anyone studying group theory will find much that is of interest and of
importance to him in these problems.

JouN D. Dixon
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Introduction

The following are prerequisites in group theory: a knowledge of the
elementary properties of subgroups, the basic homomorphism laws, and
the properties of finite direct products (such as might be covered in any in-
troductory course in group theory). In algebra and elementary number
theory, the prerequisite is a first course at the level of Birkhoff and
MacLane’s Survey of Modern Algebra or Herstein’s Topics in Algebra. A
good knowledge of linear algebra and matrix theory is necessary in Chapters
7,10, and 11. A “naive” approach is taken towards set theory, and the
axiom of choice and Zorn’s lemma are used freely.

It is assumed that the student is presently studying or taking a course
in advanced group theory at the level of the books by Hall [1], Kurosh [2],
Rotman [3], Schenkman [4], and Scott [5]. Each chapter of problems
begins with pertinent definitions and a list of propositions; for the proofs
of the propositions there is reference to the books mentioned above. The
chapters should be tackled successively, with the exception of Chapters 10
and 11, which are independent of the results in Chapters 7, 8, and 9. At
the end of some chapters there are problems which are prefaced by an
asterisk. These are sometimes (but not always) more difficult than the
others and could be omitted at a first reading. Complete solutions of these
problems are not included in the text, but references show where such

xiii



xiv Problems in Group Theory

solutions may be found. A few problems which require the verification
of some simple property (‘“Show ...”) also have their solutions omitted.
The following outline of basic definitions and notations is intended to
refresh the memory of the reader and to clarify those notations which will
be used without comment throughout the book.

NorTATIiON

We use the standard symbols for set operations and, in particular,
denote the empty set by &. If f is a function of a set A into a set B, then
we write f(a) or o/ to denote the image of the element a € A, and corre-
spondingly use f(S) or S/ to denote the image of a subset S of 4. In
particular, when we are dealing with groups of mappings we shall always
use the right-hand notation a’, and so the composite mapping fg will
mean the mapping f followed by the mapping g. The restriction f|S of f
to a subset S of A is the function from S to B defined by (f|S)(s) = f(s)
for all s € 8.

Let a, b, and m be integers with m > 1. We write a | b (respectively,
a t b) to mean that a does (respectively, does not) divide b, and write
a = b (mod m) to denote that a is congruent to b modulo m. The set of
all integers is partitioned into m disjoint residue classes (mod m), and
these classes form a ring called ‘“the ring of integers (mod m)”’ with a
naturally defined addition and multiplication. If m is a prime, then this
ring is a field. The Euler ¢-function ¢(m) denotes the number of positive
integers < m which are relatively prime to m, and it is well known that

¢<m>=m11'(1—%)-

plm
The symbol (Z) denotes the binomial coefficient n!/k!(n — k)!.

The symbol [a;;] will denote the matrix (of given dimensions) whose
(,7)th entry is a;;. If u is a square matrix with complex entries, then det u
and tr u denote the determinant and trace of u, respectively. We use 1
(or 1,) for the unit matrix of degree r.

In the following let G' be a group, H a subgroup of G, and S a subset
of G. (Except when otherwise specified, all groups will be written using
the multiplicative notation.) Then | S| will denote the order of S, and
| @:H | will denote the index of H in (. If G is a finite group, then H is a
Hall subgroup of G if | G:H | is relatively prime to | H |. By (S) we denote
the subgroup of G generated by S; in particular, (z) is the cyclic subgroup
generated by an element x € . In this context, S may be defined by
certain conditions; for example, (x € G |z? = 1) is the subgroup gen-
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erated by all elements of order 2. If G = (S), then S is a set of generators
for G, and @ is finitely generated if it has a finite set of generators. A group
may sometimes be defined in terms of a set of generators satisfying a set
of relations; we refer to the texts mentioned earlier for the details. (For
example, see Kurosh [27, Section 18.) We use 1 to denote both the identity
element of G and the subgroup (1); 1 is the trwial element (or subgroup).
We say that H is a proper subgroup of G if H # G. An element z € G is a
p-element if its order is a power of p; G is a p-group if all of its elements are
p-elements, and it is an elementary abelian p-group if all its nontrivial
elements have order p and the group is abelian.

For any x € G, xSz is called a conjugate of S in G; and the normal
closure S¢ of S in @ is the smallest normal subgroup of G containing S;
that is, S¢ = (zSz |2 €G). The ceniralizer {z € H |zy = yx for all
y €8} of Sin H is denoted by C(S;H); and the normalizer of S in H is
N(S;H) = {x € H | z'Sx = S}. The center of H is Z(H) = C(H;H); and
H is abelian if Z(H) = H. The set S is called a normal subset of G if G is
the normalizer of S. A nontrivial group G is called simple if it has no
normal subgroups except 1 and G. If N is anormal subgroup of G, then G/N
denotes the factor (or quotient) group.

If F is a group, then a mapping 6 of F into G is a homomorphism if
(xy)® = z%? forall z;y € F. The kernel of 6 is the normal subgroup ker 6 =
{x €F |2 =1}. A homomorphism 6 is an ¢somorphism if ker 6§ = 1 and
9 maps F onto @; in this case we write F ~G. An isomorphism of the
group G onto itself is called an automorphism; and if S* = S for each auto-
morphism « of G, then S is called a characteristic subset of G.

If A and B are groups, then the set of all ordered pairs (a,b)(a € 4,b € B)
is a group under the multiplication

(a,b)(a’,b’) = (aa’,bb’) (a,0’ € A; b € B).

This group is the (external) direct product of A by B, and we shall denote
it by A X B. If A and B are normal subgroups of a group G with G = 4B
and A N B =1, then @ is the (internal) direct product of A by B. In this
case G is isomorphic to the external direct product, and we shall use the
same notation: G = A X B. When dealing with additive groups we speak
of direct sums, and we write + in place of X. The concept of direct product
generalizes easily to any finite set of groups.

When we apply the terms mazimal and minimal to various sets of sub-
groups of G, we always consider the sets as ordered by set inclusion. For
example, a maximal normal subgroup is a (proper) normal subgroup of G
not contained in any other proper normal subgroup of G. In particular,
the terms maximal subgroup and minimal subgroup mean maximal
(proper) subgroup and minimal (nontrivial) subgroup, respectively.
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1 Subgroups

The following results are assumed. For their proofs see Hall [1], Sec-
tions 1.5 to 1.6 and 2.1 to 2.3; Kurosh [2], Chapter 3; Rotman [3], Chap-
ter 2; Schenkman [4], Sections 1.1 to 1.3; or Scott [5], Sections 1.6 to
1.7, 2.2 to 2.3, and 3.1 to 3.3.

1.T.1. If H is a subgroup of finite index in a group &, and K is a subgroup
of G containing H, then K is of finite index in @, and

|G:H|=|G:K||K:H|.

LT.2. Let A and B be subgroups of a group G. If B is of finite index in
G, then A M B is a subgroup of finite index in 4, and | A:A M B | <|G:B|.
Equality holds if and only if G = AB.

In particular, if | G:A4 | is also finite, then |G:A N B | £ |G:4 | [G:B |
with equality if and only if G = AB.

1.T.3. If Sisa subset of a group G, then S has h conjugates z7'Sz (z € G)
in G if and only if |G:N(S;G) | =h. In the case that S consists of a

3



4 Problems in Group Theory

single element s, then N(S;G) = C(s;@), and s has | G:C(s;G) | conjugates
n G.

1.T.4. If N is a normal subgroup of a group G, then in the quotient
group G/N the subgroup H/N is normal if and only if the subgroup H
is normal in G. In the latter case, G/H ~ G’/N/H/N.

1.T.5. If N and K are subgroups of a group G, and N is normal in G,
then NK is a subgroup of ¢, and NK/N ~ K/(N M K).

1.T.6. If Sisa subset of a group G, then S is a subgroup of G if and only
if, for all z,y € S, we have ' € S and zy € S.

PROBLEMS

1.1. What is the order of a group @ generated by two elements = and
y subject only to the relations x*® = y* = (zy)? = 1?7 List the subgroups
of G.

1.2. What is the order of a group G generated by elements z and y
subject only to the relations 2® = y? = (zy)® = 1?

1.3. What is the order of a group G generated by elements z and y
subject only to the relations zy? = y*z and ya?® = z%y?

1.4. Let Q be the group (under ordinary matrix multiplication) generated
by the complex matrices

0 1 0 <
a=l:_1 0] and b_[i O:I

where 72 = —1. Show that (a) Q is a nonabelian group of order 8; (b) each
subgroup of Q is normal in Q; (¢) @ is isomorphic to a group generated by
elements z,y,z, and u subject only to the relations

2=y =2==u, ut =1, 2y =2, Yz = x, and 2x =1y.

(Q is called the quaternion group.)

1.5. Let T be the multiplicative group generated by the real matrices

_[01] " _[0 1]_
=110 2 V=11 0
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Then T is a nonabelian group of order 8, but T is not isomorphic to the
group @ defined in Problem 1.4.

1.6. Let D; be the group generated by elements a and b subject only
to the relations

a2=b = (ab)?=1 (k > 3).

(a) Show that Dy is isomorphic to the multiplicative group generated by
the complex matrices

R IR

where £ = exp(2ri/k). (b) Show that D; has order 2k, and that D, is
isomorphic to the group 7' defined in Problem 1.5. (c) List the conjugacy
classes of Di. (The groups Dy, are called the dihedral groups.)

1.7. If H is a subgroup of finite index in a group G, then H contains a
subgroup N which is of finite index and normal in d.

1.8. If A and B are subgroups of finite index in a group @, and | G:4 |
and | G:B | are relatively prime, then G = AB.

1.9. If H is a proper subgroup of a finite group G, then the set union
U,,EG 2-1Hz is not the whole of G.

1.10. If H is a proper subgroup of finite index in a group G (possibly
infinite), then there is some element x € G which is not in any subgroup
conjugate to H in G. (Compare this with the result quoted in Problem

*1.50.)

1.11. Let G be a group in which each proper subgroup is contained in a
maximal subgroup of finite index in G. If every two maximal subgroups of
G are conjugate in G, then @ is a cyclic group.

1..12. Let S be a finite normal subset of a group G such that for some
integer n > 0, s»=1 for all s€ 8. Then every element of the group
H = (S) may be written as a product of not more than (n—1)| 8] ele-
ments of S. In particular, H is a finite group.

1.13. If H is a Hall subgroup of a finite group @, and K is another sub-
group of the same order, then N(H;K) = HM K.
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1.14. If N is a normal subset of a group G, then its centralizer C(N ;@)
is a normal subgroup of G. If N is a characteristic subset of G (that is,
each automorphism of G maps N into itself), then C(V ;@) is a character-
istic subgroup of G.

1.15. Let N be a subgroup of the center Z(G) of a group G. Then N is
a normal subgroup of G. Moreover, if G/N is a cyclic group, then G is
abelian.

1.16. A group G in which each element x = 1 has order 2 is abelian.

1.17. If N is a normal subgroup of finite index in a group G, and H is a
subgroup of finite order in G, and if | G:N | is relatively prime to | H |,
then H C N.

1.18. If N is a normal subgroup of finite order in a group @, and H is a
subgroup of finite index in G, and if | G:H | is relatively prime to | N |
then N C H.

1.19. If M and N are normal subgroups of a group G, then G/(M M N)
is isomorphic to a subgroup of the (external) direct product G/M X G/N.

1.20. Let z be an element of finite order n in a group G, and let

n=pp - p¥ where pi,ps,...,p. are distinct primes. Then
T = 2%s . ..T,, where z; is a p.-element of order p% and z; = z™ for some
integer m; (¢t =1, 2,...,s). Furthermore, if * = y1ys...ys, where for
,j=1,2,...,s we have that y; is a p.-element and y.y; = y;y:, then
Y= Ti.

1.21. Let G be a group in which each subgroup has a finite number of
conjugates in G. Then, for each subgroup H of G, H M z'Hzx is a sub-
group of finite index in H for each z € G.

1.22. Let G be a group in which each subgroup has a finite number of
conjugates in G. Then every subgroup H of G contains a normal subgroup
N of G such that N has finite index in H.

1.23. In any group @, the subset F of all elements which have only a
finite number of conjugates in G is a characteristic subgroup.

A subgroup H of a group G will be called special if, for each pair of
elements z,y € G with z € H, there is a unique v € H such that y~lzy =
ulzu.
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1.24. If H is a special subgroup of a group @, and z is an element of G not
in H, then @ = C(z;G)H and C(z;G) N H = 1.

1.25. A special subgroup H of a group G is normal in G.

1.26. If H is a special subgroup of a group G, and H is finite, then each
coset Hz # H (z € G) is a single class of elements conjugate in G.

1.27. If H is a special subgroup of a group G, then H contains all com-
mutators z=yzy (x,y € G). In particular, if H is finite, then H is precisely
the set of all such commutators, and so no group has more than one finite
special subgroup.

1.28. If H is a special subgroup of a group G, then for each element x of G
not in H the subgroup U = C(z;@) is abelian.

1.29. With the notation of Problem 1.28, we have
UNyUy=1 for each yed,y&U.

(A group which contains a proper subgroup U with this property is called
a Frobenius group.)

A (finite or countably infinite) sequence of groups G, Gi, . . ., is called
a chain if either of the following conditions hold: (a) for each n 2 1, Gns
is a subgroup of G,; (b) for each n > 1, G, is a subgroup of G,_;. In
case (a) the chain is ascending, and in case (b) the chain is descending. A
chain is called proper if its terms are all different.

1.30. If Gy, G, ..., is an ascending chain of groups, then an operation
may be defined in a unique way in the set union
¢=U G,
n=0

so that @ is a group with each G, as a subgroup. Moreover, if each G, is
abelian, then G is an abelian group.

1.31. Using the notation of Problem 1.30, let Ho, Hi, ..., be a second
ascending chain such that, for each n > 0, H, is a normal subgroup of G,.
Then

is a normal subgroup of G.
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1.32. Let @ be a finitely generated group. Then every proper ascending
chain of subgroups of G whose set union equals @ is finite.

A group G satisfies the mazimal (respectively, minimal) condition on
subgroups if each nonempty set of subgroups of G' contains a subgroup M
not contained in (respectively, not containing) any other subgroup of
the set.

1.33. A group @ satisfies the maximal condition on subgroups if each
proper ascending chain of subgroups in @ is finite.

1.34. A group G which satisfies the maximal condition on subgroups
has the property that each proper ascending chain of subgroups of G is
finite. [Converse of Problem 1.33.]

1.35. A group G satisfies the minimal condition on subgroups if and only
if every proper descending chain of subgroups of @ is finite.

1.36. A group G satisfies the maximal condition on subgroups if and only
if each subgroup of G is finitely generated.

1.37. If a group G satisfies the maximal (respectively, minimal) condition
on subgroups, then each factor group and each subgroup of G satisfies
the same condition.

1.38. If A, B, and C are subgroups of a group G, and A C C, then
ABNC =ABNC). [Note: AB is not necessarily a subgroup of G.]

1.39. Let A, B, and K be subgroups of a group G. If A C B, and we have
ANK=BNK,and AK = BK, then A = B.

1.40. If N is a normal subgroup of a group G, and both N and G/N
satisfy the maximal (respectively, minimal) condition on subgroups, then
G satisfies the same condition. [Converse of Problem 1.37.]

A group G satisfies the maximal condition on normal subgroups if every
nonempty set of normal subgroups of G' contains a subgroup M which is
not contained in any other subgroup in the set.

1.41. Let G be a group which satisfies the maximal condition on normal
subgroups. If N is a normal subgroup of @, and G/N is isomorphic to G,
then N = 1. (A group with this latter property is called a Hopf group.)
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1.42. Let G be a finite group of order n with a subgroup H of order m.
If HN 2-'Hx = 1 for all z in G not in H, then there are exactly (n/m) — 1
elements in G which do not lie in any conjugate of H.

1.43. If A and B are abelian subgroups of a group @, then A M B is
a normal subgroup of (4,B).

1.44. A finite noneyclic group G in which every proper subgroup is
abelian possesses a normal subgroup N distinct from G and 1.

1.45. If G is a finite group such that, for each abelian subgroup A4,
N(4;G) = C(4;@), then G is abelian.

1.46. Let G be a noncyclic group which is generated by two elements
¢ and y each of order 2. Then @ has a normal cyclic subgroup C of index 2
in G. If G is finite and of order 2k, then G is isomorphic to the dihedral
group Dy defined in Problem 1.6.

1.47. Let G be the multiplicative group generated by the real matrices

_[2 0] nd _[1 1]'
*=lo 1 Y=o 1

Then @ is a finitely generated group which does not satisfy either the
minimal or the maximal condition on subgroups.

1.48. For each prime p, we define Z(p®) to be the set of all complex
numbers z such that z#* = 1 for some integer k¥ > 0. Show that (a) Z(p®) is
an abelian group under multiplication; (b) the only proper subgroups of

Z(p®) are the cyclic groups
T,={zE€Z(p>) | 27" = 1} n=0,1,...);

(¢) Z(p®) has no maximal subgroups and is not finitely generated;
(d) Z(p*)/T, is isomorphic to Z(p®) for each integer n 2> 0. (The group
Z(p*) is called the quasicyclic or Priifer p-group.)

1.49. Let @ be the set of all matrices of the form
[2’° p(x)]
0 1
where k =0, &1, £2, ..., and p(x) is any polynomial in z with rational

coefficients. Show that (a) G is a group under matrix multiplication;
(b) there exists a subgroup H of G and an element u € G such that the
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left coset uH contains an infinite number of right cosets of H; (¢) the chain
H CuHu?' Cu®Hu? C ---1is an infinite proper ascending chain.

*1.50. For each integer r > 0, there exists a number B(r) such that any
finite group with exactly r conjugacy classes has order at most 8(r). In
particular, we may take B(1) =1, 8(2) =2, B3) =6, (4) =12, and
B(5) = 60. (The case for infinite groups is entirely different. Any infinite
group in which each nontrivial element has infinite order may be embedded
in a group with just two conjugacy classes: {1} and the set of all nontrivial
elements. See [6] or [2], Section 53.)



2 Permutation Groups

A permutation z of a set Q is a one-to-one mapping of @ onto itself.
For each « € Q, we write o® to denote the image of a under z. (The ele-
ments of © will be called letters.) The set Sq of all permutations of Qis a
group (called the symmeiric group on Q) under the product defined by the
ordinary composition of mappings. If @ has order =, and @ = {1,2,...,n},
then Sq is isomorphic to Sg under an obvious mapping. We denote the
latter group by S. and note that it has order n!. A subgroup G of S, is
called a permutation group of degree n. The set of all permutations in S,
which leave the letter n fixed is a subgroup which has a natural isomorphism
with S,_; , and we shall consider S, as a subgroup of S, under this identi-
fication. In particular, S, will denote the unit group.

The following results will be assumed. For their proofs see Hall [1],
Sections 5.1 to 5.4; Kurosh [2], Sections 4 and 9; Rotman [3], Chapter 3;
Schenkman [4], Section 3.7; or Scott [5], Section 1.3.

2.T.1. Each permutation of a finite set @ may be written as a product
of disjoint cycles: = (aaaz - -+ o) (B1Be - - - B) - -+, where, for example,
11
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the permutation (aja - - - ax) maps ey — oy, ag —> s, *+, ar — a1, and
leaves all other letters fixed. These cycles commute, so the order in which
they are written does not matter. Otherwise the representation for x in
this form is unique except for cyclic permutations of the letters within
the cycles. The length of a cycle is the number of letters appearing in it.
The order of z, as an element of the group Sq, is the least common multiple
of the lengths of its cycles.

2.T.2. A cycle of length 2 is a transposition. Each permutation of a
finite set may be written as a product of transpositions (which, in general,
are not disjoint). This may be done in many ways for a given permutation
x, but the number of transpositions used is either always even or always
odd. In the respective cases, x is called an even or an odd permutation. A
cycle of length & is even or odd depending on whether k£ 4 1 is even or odd.

2.T.3. The set of all even permutations in S, is a characteristic subgroup
A, of index 2in S,, and A4, is called the alternating group of degree n.

2.T.4. If x and y are two permutations of a set @, and z = (&6 - -+ &),
then y~'zy = (&& - .- &). [Note: The product zy denotes the result of
first applying the mapping « and then the mapping y.] Thus, two permu-
tations are conjugate in S if and only if they have the same cycle structure
(in the sense of 2.T.1).

2.T.5. For n > 5, the only normal subgroup of S, apart from S, and 1
is the alternating group A,. Furthermore, 4, is a simple group.

PROBLEMS

2.1. The alternating group A, has no subgroup of order 6.

2.2. Find the conjugacy classes of the symmetric group Ss and the
alternating group As (using 2.T.4). Hence, show that As is the only
normal subgroup of Ss (apart from 1 and S;), and that As is simple.
(This gives a proof of a special case of 2.T.5.)

2.3. Find the normalizer N of the cyclic group ((12...n)) in the sym-
metric group S, (n 2> 1).

2.4. (a)Letz=(1234567891011)andy=(56410)(11837) be
elements of the symmetric group Si;. Show that My = (z, y) has order
8-9-10-11. (b) Let z = (1 12)(2 11)(3 6)(4 8)(5 9)(7 10). Show that My, =
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(z, 1, 2) is a subgroup of order 8-9-10-11-12 in Sp,. (Both these groups are
known to be simple groups. They were first discovered by Mathieu in
1860.)

2.5. Forn > 2, the n — 1 transpositions (12), (13), . . . ,(1n) generate Sa.
2.6. Forn > 3, the n — 2 3-cycles (123), (124), ... ,(12n) generate A,.

2.7. A permutation group G of degree n which contains an odd permuta-
tion has a normal subgroup of index 2.

2.8. The group

s= (s,
n=1
(see Problem 1.30) contains exactly one normal subgroup A distinct from
S and 1. Furthermore, A is of index 2 in S.

Let G be an arbitrary group, and let @ be a set for which, for each
« € Q and each z € G, we have defined an element o € Q with the proper-
ties: (a) the mapping Z:a — o® is a permutation of the set Q for each
¢ €@G; and (b) Z§ = 7y for all 2,y €G. Then, for each a €Q, the set
of = {a* |z € G} C Q is called the orbit (or transitivity set) of «, and
the number of letters which af contains is the length of the orbit. The
set Go = {2 EG | o*=a)} C G is called the stabilizer (or stability sub-
group) of a (see Wielandt [7]).

2.9. Two orbits, a¢ and 8¢ (a,8 € @), are identical whenever they have a
letter in common. Thus, Q is a set union of disjoint orbits.

2.10. The stabilizer G, is a subgroup of G for each « € Q.

2.11. If 8 = o for some z € G and o8 € Q, then z7'Guz = Gs. Thus,
letters in © which belong to the same orbit have conjugate stabilizers in d.

2.12. If G is a finite group, then | G| = | G.| | «¢ | for each « € Q.

2.13. If A and B are subgroups of a group G, then G is a union of disjoint
double cosets of the form AzB (z € G). If A and B are finite subgroups,
then the order of a double coset AzB is | A || B:z~'Az N B|. [Hint:
Consider the group B acting on the set of right cosets Az (z € @).]
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2.14. The mapping z — & (z € (), where % is defined in (a) above de-
fines a homomorphism of G into Sg. The kernel of the homomorphism
iS naeﬂ Ga .

2.15. Let Q be the set of all elements of a group G. We define a* = ax
(a,0x € Q; x € (). Then the homomorphism defined in Problem 2.14 is
an isomorphism (which is called the regular representation of G).

2.16. If G is a group of order 2*m (where m is odd), and G has a cyclic
subgroup of order 2%, then G has a normal subgroup of index 2. [ Hini:
Use Problems 2.7 and 2.15.)

2.17. Let H be a subgroup of a group G. We define @ to be the set of
all right cosets Ha (a € (), and define (Ha)®*= Hax (Ha,Hax € Q; z € G).
Then the stabilizer of Ha is a"'Ha, and the kernel K of the homomorphism
defined in Problem 2.14 is ﬂaea a~'Ha, which is the largest subgroup of
H normal in G.

2.18. If a group G contains a subgroup H of index n, then it contains a
normal subgroup K lying in H such that | G:K | is finite and divides n!
(compare with Problem 1.7).

2.19. If G is a finite group of order m, and p is the smallest prime which
divides m, then any subgroup H of index p in G is normal in G.

2.20. Let n > 5. Then the only proper subgroup of index less than n in
the symmetric group S, is the alternating group A4, (of index 2).

2.21. Let S be a finite set of order p'm, where p is a prime (which may
divide m). Let Q be the set of all subsets consisting of p” elements of S.
Then | @ | = m (mod pm).

2.22. Let @ be a finite group of order p™m, where p is a prime (which may
divide m), and let n, denote the number of subgroups of order p" in G.
Then n, = 1 (mod p), and hence n, > 1. In particular, we have:

Sylow’s theorem. If G is a finite group and p° is the highest power of p
which divides | @ |, then G has at least one subgroup of order p¢, and the
number of such subgroups is congruent to 1 (mod p). (These subgroups
are called Sylow p-groups of G.)

2.23. If G is a finite group and P is a Sylow p-group of G, then any other
p-subgroup @ of G is conjugate to some subgroup of P. In particular, all
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Sylow p-groups of G are conjugate to one another in G, and every p-sub-
group of @ is contained in some Sylow p-group. Thus, G has | G:N(P;Q) |
Sylow p-groups, and this latter number is congruent to 1 (mod p) by Prob-
lem 2.22. [Hint: Use Problem 2.13.]

2.24. How many Sylow subgroups (corresponding to the different primes)
do nonabelian groups of orders 21 and 39, respectively, have?

2.25. There is no simple group of order 56.

2.26. There is no simple noncyeclic group of order 2mp», whenm = 1, 2, or 3
and p is an odd prime. (This is a particular case of a deep theorem of
Burnside which states: a noncyclic group of order p™¢* (where p and ¢ are
primes) is not simple. The easiest proof of the latter theorem requires
character theory.)

2.27. 1If G is a group of order 6, then either G is cyclic or G is isomorphic
to the symmetric group S;. [Hent: Use Problem 2.17.]

2.28. If a group @ of order 12 has no element of order 2 in its center,
then @G is isomorphic to the alternating group A,.

A permutation group G on a set © is called transitive if it has only one
orbit, namely, . Otherwise, @ is called intransitive. A nonempty subset T
of Q is called a block (or set of imprimitivity) for G if, for each x € G, either
I* N\ T = & (the empty set) or T* = I'. All subsets of & which consist of
a single letter and the subset Q itself are blocks, and these blocks are
called trivial blocks. We say that @ is primaitive if it has no nontrivial
blocks; otherwise, it is imprimitive. We note that, for any nonempty set @,
the group Sq is both transitive and primitive. A transitive group is called
regular on Q if no letter « € @ is left fixed by a nontrivial element of G,
that is, if G, = 1 for each « € Q.

2.29. Forn > 2, n — 2 transpositions cannot generate a transitive group
of degree n (compare with Problem 2.5).

2.30. If G is a transitive permutation group on a set ©, then the stabilizers
G. (a €Q) are all conjugate to one another in G. Thus, no stabilizer
contains a nontrivial normal subgroup of G. Moreover, if | Q| = n, then
| G:G, | = n, and so n divides | G |.

2.31. If G is a transitive group on a set , then G is primitive if and only
if the stabilizers G, (o € Q), which are conjugate by Problem 2.30, are
maximal subgroups of d.
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2.32. A primitive permutation group G # 1 is transitive.

2.33. A nontrivial normal subgroup of a primitive permutation group ¢
is transitive.

2.34. A block T of a transitive group G of degree n has order dividing n.
Thus, a transitive permutation group of prime degree p is primitive.

If G is a permutation group on a set @ with orbits i, then we denote
by G|\ the group of permutations of Q) given by the mappings in G
restricted to the set Q.

2.35. G| ~G/N, where
N =G..

at Oy
2.36. If G is a permutation group on a set @ with a finite number of
orbits @, @, . . ., s, then G is isomorphic to a subgroup of the (external)
direct product G| X G| X - - - X G|Qs.

2.37. Let G be a permutation group of order p* and degree n, where
n < p?. Then @ is an elementary abelian p-group.

2.38. A regular group @ of degree n has order n.

2.39. The image of the regular representation of a group G (see Problem
2.15) is a regular permutation group.

2.40. A finite transitive abelian group is regular, and so its order is equal
to its degree.

92.41. The order of an abelian permutation group of degree n is not
greater than 33,

2.42. If G is a transitive group of degree n, then each element z # 1 in
the center Z (@) moves every letter. In particular, | Z(@) | < n.

2.43. Let G be a transitive permutation group on a set 2, and let N be a
normal subgroup of G. If @ is of order n, and N has exactly k orbits
Q, Q, ..., Q% in Q, then (a) there exists an element z: € G such that
Qi=Q, for i=1,2,...,k; (b) the order of each orbit Q; is n/k; and
(¢) Nty ~N|Q;fori=2,3,...,k.
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2.44. A regular permutation group G of finite degree is primitive if and
only if it has prime order.

2.45. If G is a primitive permutation group on a set @, then either G has
prime order or, for each pair of distinct elements @ and 8in @, G = (G, Gp).

2.46. Let G be a primitive permutation group on a set Q. If @, is an
abelian group for some v € Q, then G, M Gg = 1 for all B # «a in Q.

2.47. If G is a primitive permutation group of prime degree p, and for
two stabilizers G, and Gg we have G, M Gg = 1, then the Sylow p-group
of G is normal in G.

2.48. If G is a primitive permutation group of prime degree p, and for
two stabilizers G, and Gg we have G,/ Gg =1, then each stabilizer
G, is abelian.

2.49. If G is a transitive permutation group of degree n, and G has a
normal p-subgroup P # 1, then p | n.

2.50. If G is a primitive permutation group of degree n and its center
Z(@) is nontrivial, then G is a cyclic group of prime order p, and p = n.

2.51. If a permutation group G contains a minimal normal subgroup N
which is both transitive and abelian, then G is primitive.

2.52. Let G be a permutation group of degree n. If, for some integer k
with4 < 2k < m,wehave |G| 2> (n — k) !k, then G contains a permutation
z # 1 which leaves fixed at least n — 2k letters.

2.53. Every finite p-group P has a center Z(P) = 1. [Hint: Consider the
set © of all elements of P, and the mapping a* = z7'az (a,xax € Q;z € G).]

2.54. Let G be a group of order pq, where p and ¢ are primes. If p < gand
p ¥ g — 1, then G is abelian.

2.55. Let G be a group of order n, and n be relatively prime to ¢(n),
where ¢ is the Euler ¢-function. Then G is abelian. [ Hint: Use Problem
1.44.7

2.56. Let p be a prime. Then every group G of order p* is abelian.



18 Problems in Group Theory

2.57. Find the order of the subgroup V of S; generated by the permuta-
tions (1234567) and (2 6)(3 4). Show that V has a subgroup P of
order 7 whose normal closure P¥ equals V. Hence prove that V is simple.

2.58. Any noncyclic simple group G whose order is at most 100 is of
order 60.

*2.59. Any simple group of order 60 is isomorphic to the alternating
group As.

*2.60. Describe all transitive permutation groups which are isomorphic
to the symmetric group S:. [Hint: Use Problem 2.17. ]

%261, List all the primitive subgroups of the symmetric groups Ss
avnd Se .

*2.62. Let G be a primitive subgroup of the symmetric group S, and
let p be a prime < 7 — 3. If G contains an element x which is a p-cycle,
then G contains the alternating group A,. [Hint: Use Problem 2.33.
First solve the problem when p = 2 or 3.]

¥2.63. Let x be any nontrivial element of the symmetric group S.,.
If n = 4, then there exists an element y € S, such that S, = (z,y).

*2.64. A Sylow p-group of an infinite group @ is defined to be a subgroup
of G which is maximal in the set of all p-subgroups of G. This agrees with
the definition for finite groups because of the result of Problem 2.23.
Unfortunately, the analogues of the results of Problems 2.22 and 2.23 are
not necessarily true in infinite groups. For example, let G be the group
generated by elements a, b, and ¢ subject only to the relations

at =1, aba = ab a7l = ¢, and bc = cb.

Show that @ has two classes of conjugate Sylow 2-groups of order 4, and
a third class of conjugate Sylow 2-groups of order 2.



3 Automorphisms and
Finitely Generated Abelian Groups

An automorphism of a group @ is an isomorphism of G onto itself. The
set of all automorphisms of @ forms a group Aut G’ under the usual compo-
sition of mappings. The special automorphisms @ (v € G) defined by
i:x — ulzu (x €GQ) are called inner automorphisms. We write auto-
morphisms as mappings on the right; a product o8 in Aut G means first
«a, then B.

The following results are assumed. For their proofs see Hall [ 1], Sections
6.1 and 3.1 to 3.2; Kurosh [2], Sections 12, 6, and 20; Rotman [ 3], Chapters
4 and 7; Schenkman [4], Sections 1.4, 2.3, and 3.2; or Scott [5], Sections
2.4 and 5.1.

3.T.1. The set of all inner automorphisms of a group G forms a normal
subgroup of Aut G, and this subgroup is isomorphic to G/Z(G).

3.T.2. For each integer n > 1, there is a cyclic group of order n (for
example, the multiplicative group of all nth roots of 1in the field of complex

19
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numbers). All cyclic groups of order n are isomorphic. If x is a generator
of a eyclic group of order n, then z* is also a generator if and only if £ is
relatively prime to n.

3.T.3. Every infinite cyclic group is isomorphic to the additive group
of integers. If x is a generator of an infinite cyclic group, then the only
other generator is ™.

3.T.4. Every subgroup and every factor group of a cyclic group is also
cyclic. If G is a finite cyclic group of order n, then it contains a unique
subgroup of order d for each positive divisor d of n. If G is an infinite
cyclic group, then, for each integer d > 1, G has a unique subgroup of
index d. The only othersubgroup of the infinite cyclic group is the identity
group. In particular, each subgroup of a cyclic group is a characteristic
subgroup because it is the only one of that index.

3.T.5. If G is an abelian group which can be generated by n elements,
then G can be written as a direct product, G = C; X - -+ X C,, where
the C; are cyclic subgroups of G and m < n.

3.T.6. A direct product of a finite number of finite cyclic groups whose
orders are relatively prime in pairs is cyclic.

ProBLEMS

3.1. How many mutually nonisomorphic abelian groups have orders
P2, p*, pt, and p*¢?, respectively, where p and g are distinct primes?

3.2. Describe the five nonisomorphic groups of order 12. [Hint: Use
Problem 2.28.]

3.3. Describe the different nonabelian groups of order p? where p is a
prime. [Hint: Use Problems 2.19 and 2.22 to show that each group of
order p? has a normal subgroup of index p. Then consider the cases p = 2
and p # 2 separately.]

3.4. Let G be a finite abelian group. Then G may be written as a direct
product of cyclic subgroups in the form
G=Ci X CyX X Cp,

where the order h; of C; divides the order ki of Copafori=1,2,...,m—1,
and m is the smallest possible number of generators for G.
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3.5. Let G be an abelian group generated by n elements. Then each
subgroup of G may be generated by < n elements.

3.6. The group A of all rational numbers (under addition) cannot be
written as a direct sum of two or more nontrivial subgroups.

3.7. If a group G is generated by a subset S, then S also generates G
for any automorphism « of G.

3.8. The group of all automorphisms of a cyclic group C of order n is an
abelian group of order ¢(n) (the Euler ¢-function). The group of all
automorphisms of an infinite cyclic group has order 2.

3.9. Find the group of all automorphisms of the symmetric group Ss.

3.10. FEach automorphism of the symmetric group S; is an inner auto-
morphism, and hence Aut S, ~ S,.

3.11. Give an example of two nonisomorphic groups which have iso-
morphic automorphism groups.

3.12. If G is a finite noncyclic abelian group, then Aut G is not abelian.

3.13. Let G be a finite group whose automorphism group acts transitively
on the set of nontrivial elements of @, that is, for any x and y different
from 1 in G, there exists « € Aut @ such that 2= =y. Then G is an ele-
mentary abelian p-group for some prime p.

3.14. If the mapping z — 2! (x € G) is an automorphism of the group G,
then @ is abelian.

3.15. Let « be an automorphism of a finite group G which leaves only
the identity of G fixed. Then G= {z~'z* |2 € G}.

3.16. Let G be a finite group. If Aut G has an element o of order 2

which leaves only the identity of G fixed, then @ is an abelian group of

odd order.

3.17. If H is a subgroup of a group G, then the factor group
N(H;G)/C(H;aG)

is isomorphic to a subgroup of Aut H.
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3.18. If K is a normal cyclic subgroup of a group G, then G/C(K;G) is
an abelian group of finite order. In particular,if | K | = n, then | G:C(K;G) |
divides ¢(n) (the Euler ¢-function); and if K isinfinite, then | G:C(K;G) | =
1 or 2.

3.19. Let H be a normal subgroup of a finite group G. If P is a Sylow
p-group of H, then G = N(P;G)H.

3.20. If H is a normal subgroup of a group G, and K is a characteristic
subgroup of H, then K is a normal subgroup of G. If, moreover, H is a
characteristic subgroup of G, then K is a characteristic subgroup of G.

3.21. If @ is a finite group, and n is a positive integer relatively prime
to the order of G, then, for each z € G, there is a unique y € G such that
y* = z. In particular, if y» = 2" for two elements y and z in G, then y = 2.

3.22. Let G be a finite group of order mn, where m is relatively prime
ton. Let A be a normal abelian subgroup of order m, and let H and K be
subgroups of order n in G. Then there is an isomorphism 6 of H onto K such
that Az = Az? (x € H; 2° € K). Moreover, for some ¢ € A, cxc™' = z*
for all z € H. Thus, H is conjugate to K in G.

3.23. If H is a Hall subgroup of a finite group G, then N(H;G) is its
own normalizer in G.

3.24. If P is a Sylow subgroup of a finite group G, and two normal
subsets S and T of P are conjugate to one another in G, then S is conjugate
to T in N (P;@).

3.25. If P is a Sylow subgroup of a finite group G, and P is contained
in the center of N(P;@), then every element of P lies in a different con-
jugacy class of G.

3.26. If C is a class of conjugate elements of a group G, and « is an
automorphism of G, then C« is also a class of conjugate elements of G.

3.27. The set A of all automorphisms of a group G which map each
class of conjugate elements of G into itself is a normal subgroup of Aut G.

3.28. If G is a finite group, then the order of the group A defined in
Problem 3.27 is only divisible by those primes which also divide | G |.
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3.29. Let G be a finite group with abelian Sylow p-groups. If P is a
Sylow p-group, and G contains no normal p-subgroups except 1, then
PNz 'Px =1 for some z € G. [Hint: Consider the subgroup H gen-
erated by P and a~'Pz, when z is chosen so that P M z~'Px has smallest
possible order. ]

3.30. If G is a finite group with abelian Sylow p-groups of order p*,
and 1 is the only normal p-subgroup of G, then G has at least p* + 1 Sylow
p-groups, and | G | 2 p*(p" + 1).

3.31. If G is a finite group with an abelian Sylow p-group P, and G has
no normal p-subgroup except 1, then the permutation group of P operating
on the right cosets of P in G (as defined in Problem 2.17) has at least one
orbit on which the representation for P is faithful.

3.32. Let G be a group which can be generated by a set of k£ elements.
Then, for any integer n > 0, the number of normal subgroups of G which
have index < n is at most (n!)*. [Hini: Use Problem 2.17.]

3.33. Let @ be a finitely generated group. If H is a subgroup of finite
index in @, then there is a characteristic subgroup K of G which is a
subgroup of finite index in H (compare with Problem 1.7).

3.34. Let G be an elementary abelian p-group of order p». Then Aut G
is isomorphic to the (multiplicative) group of all nonsingular n X n matrices
with entries in the field of integers (mod p).

3.35. If G is an elementary abelian p-group of order p*, then Aut G has
order (p»— 1)(p*—1p) - (p*— p™ ') = p"™» V2% where p does not
divide d.

3.36. If G is an elementary abelian p-group of order p”, and n < p, then
G has no automorphism of order p* for k > 1. [Hint: In a field of charac-

teristic p, & — 1 = (¢ — 1)7".]
3.37. Let m be a positive integer, and define G as the set of all matrices
[o <]
0 a

where a and b are elements of the ring of integers (mod m), and a is relatively
prime to m. Show that (a) G is a group under matrix multiplication,

of the form
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and G has order m¢(m), where ¢p(m) is the Euler ¢-function; (b) if m is
an odd prime, then each automorphism of G is an inner automorphism;
and (c) if m = 8, then the mapping of G into itself defined by

o -l

is an outer automorphism of G which maps each conjugacy class of G
onto itself. (Example (c) is due to G. E. Wall.)

3.38. Give an example of a group G which can be generated by two
elements such that G has a subgroup H which is not finitely generated
(compare with Problem 3.5).

3.39. Find a finite group G with a normal subgroup H such that
| Aut H | > | Aut G |.

*3.40. The quaternion group @ defined in Problem 1.4 has its auto-
morphism group isomorphic to the symmetric group Si. [Hint: Show
that Aut Q has a normal subgroup of order 4 which is its own centralizer. ]

*3.41. Let p be a prime, and let G be the set of all matrices

a b
[c d]
with entries in the field of integers (mod p) such that ad — bc = 1 (mod p).
Show that (a) G is a group of order p(p*—1); (b) if p > 3, then the
center Z of G has order 2; (¢c) if p > 5, then any normal subgroup H of G
which contains Z as well as an element of the above form with a = d =1,
b=0,and ¢ # 0 (mod p) is equal to G; (d) if p 2 5, then G/Z is a simple
group of order ip(p? —1); and (e) if p =7, then G/Z is isomorphic to
the group V of Problem 2.57.



4* Normal Series

Let G be a group. A finite sequence of subgroups
G=G2G 2D ---DG,=A4, (4.1)

which begins with G and ends with a subgroup A, is called a normal
series from G to A when, for each ¢ with 1 < ¢ < k, G, is a normal subgroup
of G;_1. If no two subgroups in the series are equal, then the normal series
is without repetitions. The length of the series (4.1) is k, and the factor
groups G,_;/G; are called its normal factors. If A = 1, then (4.1) is called
a normal series for G.

In the case that each G, is a maximal normal subgroup of G,_;, the
normal series (4.1) is called a composition series. In the case that each
(; is maximal in the set of normal subgroups of G properly contained
in G;—; (for each 7), then (4.1) is called a principal series (or chief series).
Finally, if k is the smallest integer with the property that there is a normal
series of length & from G to A, then (4.1) is called a minimal normal series.

Let us suppose that a second normal series from G to A4 is given by

G=H,DH,D---DH =A. (4.2)
25
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If each subgroup in (4.1) also occurs in (4.2), then (4.2) is called a refine-
ment of (4.1). On the other hand, if k¥ = [, then the set of normal factors
of (4.2) is said to be isomorphic to the set of normal factors of (4.1) if,
for some ordering 41, 72, ..., % of 1,2, ..., k, we have

G8_1/Gsﬁﬂis_1/H,-s (S= 1, 2,,70)

We shall assume the following results. For their proofs see Hall [1],
Section 8.4; Kurosh [2], Section 16; Rotman [3], Chapter 6; Schenkman
[4], Section 3.6; or Scott [5], Sections 2.5 and 2.10.

4.T.1. Every finite group has at least one composition series and at
least one principal series.

4.T.2. Given any two normal series (4.1) and (4.2) from G to 4, these
series have refinements of equal lengths with isomorphic sets of normal
factors.

4.T.3. If there exists a composition (respectively, principal) series for G,
then all other composition (respectively, principal) series for G have
isomorphic sets of normal factors. (This is known as the J ordan-Holder
theorem.)

PROBLEMS

4.1. Let H and K be two groups, and let § be a homomorphism of K
into Aut H. Thus, if 6, is the image of z € K under 6, then the mapping
0.:u — u® (u € H) is an automorphism of H, and we have (u*)¥ = u® for
all w€ H and all 2,y € K. Associated with 6, we define the semidirect
(or normal) product S of H by K as the set of all pairs (z,u) (x€ K,u € H),
with the multiplication rule

(z,w) (@' ') = (w2, u"u),
for all z,2’ € K and all w,u’ € H. Show that (a) S is a group; (b) the
sets Ko= {(z,1)|z€ K} and Ho= {(1,u) |u € H} are subgroups of S

isomorphic to K and H, respectively; and (c) Ho is a normal subgroup
of 8, and S = HoK, with HyM Ko = 1.

4.2. Let Dy (k > 3) be the dihedral group defined in Problem 1.6. Then
Aut D, is isomorphic to a semidirect product of a group of order k by a
group of order ¢(k), the Euler ¢-function.

4.3. Give an example of a group @ with a composition series such that
G has a subgroup H which has neither a composition series nor a principal
series.
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4.4. Find a group G with a composition series
G=GDODGD---DG,=1,

which has the property that we cannot select any subseries
G=G DG, DO---DG, =1

(with 0 < 4; < - -+ < 1, = n) which is a principal series.

4.5. Let S and A be the infinite permutation groups defined in Problem
2.8. Let T be the abelian subgroup of S generated by the transpositions
@2m—12m) (m=1,2,...). For each z € A we define an automorphism
0:u — u® (w € T) of T by putting (2m — 1 2m)* = (2n — 1 2n) if the per-
mutation z maps the letter m onto n. Show that (a) there is an associated
semidirect product G of T by A, and (b) G has a principal series, but G has
no composition series.

4.6. The Jordan-Hélder theorem no longer holds if we extend the defi-
nition of ‘“‘principal series” to include all proper descending chains,
H,, H,, ..., of normal subgroups of G with the properties: (a) Ho = G
and n:;o H; =1, and (b) for each » > 1, the normal series

HOH,D---DOH,
has no proper refinement.

4.7. If G is a finite p-group, then all the normal factors of a principal
series of G are cyclic groups of order p. [Hint: Use Problem 2.53.]

4.8. If H is a proper subgroup of a finite p-group G, then N(H;G) = H.
In particular, each maximal subgroup of & is normal.

A group is said to satisfy the normal chain condition if the following
two conditions hold. (a) Each descending proper chain of subgroups,
G=G DG DG D -+, in which G; is a normal subgroup in G;,

fori=1,2, ..., has finite length. (b) Each ascending proper chain of sub-
groups, 1 = HyC Hi C H, C - - -, in which H; is a normal subgroup of
H,fori=0,1,..., has finite length.

4.9. If G is a group satisfying the normal chain condition, and H is a
normal subgroup of G, then both H and G/H satisfy the normal chain
condition.

4.10. If G is a group satisfying the normal chain condition, then every
proper normal subgroup of G is contained in some maximal normal sub-
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group of . Similarly, every nontrivial normal subgroup of G contains a
minimal normal subgroup of G. In particular, G' possesses both maximal
and minimal normal subgroups.

4.11. A group G satisfies the normal chain condition if and only if 1t
has a composition series.

4.12. If G is a group satisfying the normal chain condition, and K is a
minimal normal subgroup of G, then either K is simple or K is a direct
product of a finite number of simple subgroups. Furthermore, these
simple subgroups are all conjugate in G.

4.13. If G is a group satisfying the normal chain condition, then G has
a principal series. Each normal factor of a principal series of ( is either a
simple group or a direct product of a finite number of mutually isomorphic
simple groups.

A subgroup H of a group G is called subnormal (or subinvariant, acces-
sible, or finitely serial) in G if there exists a normal series from G to H.
If H is subnormal in G, then we denote by m(G,H) the length of a minimal
normal series from G to H.

4.14. If A and B are subnormal subgroups of a group G, then A M\ B
is also subnormal.

4.15. If H is a subnormal subgroup of a group G, then there is a normal
series from G to H of the form

G=HODH13"'DH7n=H7

where H; is the normal closure H#:s of H in H;, fori=1,2,...,m, and
m = m(G,H).

4.16. If H is a subnormal subgroup of a group G, and « is an automor-
phism of G, then H# is also subnormal in G, and m(G,H*) = m(G,H).

4.17. Let H be a subnormal subgroup of a group G, and let a be an
automorphism of G which maps H onto itself. Then every subgroup 1n
the normal series from G to H given in Problem 4.15 is mapped onto itself
by a.

4.18. If A and B are subnormal subgroups of a group G, and A € N(B;G),
then (4,B), which equals AB by 1.T.5, is a subnormal subgroup of G.
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4.19. Let H be a subgroup of a group G. If the set $ of all subnormal
subgroups of @ contained in H has a maximal element M, then M is
normal in H. [[Note: $ is not empty since it contains 1.]

4.20. If G is a group such that each nonempty set of subnormal sub-
groups of G contains a maximal element, then, for every pair of sub-
normal subgroups A and B of G, (4,B) is a subnormal subgroup of G.
In particular, this hypothesis holds if G has a composition series.

4.21. If H is a Hall subgroup of a finite group (¢, and H is subnormal
in @, then H is normal in G.

4.22. If A and B are finite subgroups of a group @, and A is subnormal
in G, then (4,B) is a finite group.

4.23. If A and B are finite subnormal subgroups of a group G, and the
order of A is relatively prime to the order of B, then (4,B) is the direct
product of A and B.

4.24. If A and B are finite subnormal subgroups of a group G, then
the subgroup (A,B) which they generate is also subnormal in G. [Note:
In contrast to the results of Problems 4.18, 4.20, and 4.24 (also see [8]),
Zassenhaus [9] gives an example (Example 23, page 235) of a group in
which the union of two subnormal subgroups is not subnormal. ]



5 Commutators and

Derived Series

In a group G, we define the commutator of two elements x and y to be
[z,y] =« ywy = [y,e]™". If A and B are subsets of G, then we define
[4,B]=(ab]|a€ A and b€ B) =[B,A]. Note that [A,B]=1if and
only if A C C(B;@).

The sequence of subgroups of G defined by

G =GO and G® =[G4V GEV] fore=1,2,...
is called the derived series of G. Clearly,
G =GO ) GO -0 G® (5.1)

is & normal series from G to G®, and each subgroup in it is a characteristic
subgroup of G. The subgroups G, G®, . . ., alsowritten G,Gq",...,are
called the first, second, . . . , dertved groups (or commutator subgroups) of G.
If G® = 1, and Q4P 5 1, then G is said to be solvable of length I.

We shall assume the following results whose proofs may be found in
Hall [1], Section 9.2; Kurosh [2], Section 57; Rotman [3], Chapter 6;
Schenkman [4], Sections 3.1 and 7.1; or Scott [5], Sections 2.6 and 3.4.
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5.T.1. In the derived series, the normal factors are all abelian groups.
In fact, G is equal to the intersection of all the normal subgroups N of
GV for which GV /N is abelian. In particular, if N is a normal sub-
group of @, then G/N is abelian if and only if G’ & N.

5.T.2. If G&V = 11in (5.1), then
G/G® D GED/GB D ... DGR /G® =1
is a normal series without repetitions. In fact, it is the derived series
for G/G®.
5.T.3. If N is a normal subgroup of the group @, then (G/N)' = G'N/N.

5.T.4. If G is solvable, then each subgroup and each factor group of G
is also solvable of length not exceeding that of G. The direct product of a
finite number of solvable groups is solvable.

PROBLEMS

5.1. Commutators in a group G satisfy the following identities:

(a) [zy,2] = vy {z,2lyly,2],
(b) [z,yz] = [zele [z,
(C) y—l[[x,y—‘l],z]y : z-l[[y’z_1]7x]z : x—l[[27m_1])y]x = 17

for all z, y, and z in G.

5.2. If a group @ is generated by a subset K, then the smallest normal
subgroup of G which contains [K,K]is G

5.3. If H, K, and L are normal subgroups of a group G, then
() [C#k3,L]< [[KLLHIILHK]

and

(b) [HK,L]=[HLIKL]

5.4. If H and K are subgroups of a group @, then the subgroup [H,K]
is normal in (H,K).

5.5. Let H be a subgroup of a group G. If [H,G"] = 1, then [H',G] = 1.

5.6. Let z and y be two elements of order m and n, respectively, in a
group G. If 2 and y both commute with [z,5], and d is the greatest com-
mon divisor of m and =, then [z,y]¢ = 1.
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5.7. If a group G is generated by two elements, and the identity
[[z,5],y] = 1 is satisfied for all 2,y € G, then G’ C Z(G).

Let 2 and y be elements of a group G. We define inductively the following
series of commutators in G:

fegyl=y and  Jeyl=Lanileyl] forn=12...

In particular, {[z,y] = [2,y].

5.8. Let u be an element of a group G. If, for some integer n > 0,
Jz,u] =1forall z € G, then ,[ux]=1forallz€G.

5.9. Give an example of a (finite) group G with an element u with the
property that J[u,z] = 1 for all z € G but, for some y € G, [y,u] = 1 for
all integers n > 0.

5.10. There is no group G which has its derived group G’ isomorphic to
the symmetric group S:. [Hint: Use Problem 3.10. ]

5.11. Let G be a group generated by elements z and y subject only to
the relations 22 = 1 and z~'yz = y~*. Show that (a) G is isomorphic to a
semidirect product of an infinite cyclic group by a group of order 2;
(b) each subgroup Gy, = (z,y*) (k = 0, 1, .. .) is a subnormal subgroup of G,
but

H=(6
k=1

is not subnormal in G (in contrast to Problem 4.14); and (c) the subgroups
A = (z) and B = (zy) each have order 2, but the commutator group [4,B]
is infinite. (G is called the infinite dihedral group. Compare with Prob-
lem 1.6.)

5.12. If N is a normal subgroup of a group G, and N M G’ =1, then
N CZ(G).

5.13. If A is a subgroup of a group G, then the normal closure A% of
4 in G equals [G,A]A.

5.14. If A is a subgroup of a group @, then we can define the following
chain of subgroups in G':
Ay=G and A, =[A,A.] forn=1,2,...

Then A is subnormal in G with m(G,A) = m if and only if 4,, & A and
A is not contained in 4.
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5.15. If A and B are subgroups which are subnormal in a group G, then
m(G,A N B) < max {m(G,4),m(G,B)}.
(Compare with Problem 4.14.)

5.16. Let A be a normal abelian subgroup of a group G. If © € G and
a € A and, for some positive integers kb and n, 2* € A and J[z,a] =1,
then [z,0 """ = 1.

An element z of a group G is called a nilelement (or Engel element)
of G if, for each y € G, there is an integer n, depending on y, such that

n[xyy] = 1.

5.17. If z is a nilelement of a group G, then, for each normal subgroup
H of G, N({z);H) C (x) implies that H C ().

5.18. If a finite group G contains more than one Sylow p-group, and a
p-element 2 is a nilelement of G, then x lies in at least two Sylow p-groups
of G.

5.19. Let G be a finite group with more than one Sylow p-group, and
let D be a p-subgroup of greatest possible order such that D lies in two
different Sylow p-groups of G. Then N = N(D;G) has more than one
Sylow p-group.

5.20. If G is a finite group in which all p-elements are nilelements, then
G has a unique (normal) Sylow p-group.

5.21. Let G be a group whose center Z has index n in . Then G has
at most n? different commutators.

5.22. Let G be a group whose center Z has index n in G. Then, for all
zy € G, Lo,y = [z, Ly oy, y ]

5.23. If the center Z of a group @ has index n in G, then each element
of @’ may be written as a product of < n® commutators.

5.24. If a group G has center Z of index n in @, then G is a finite group;
in fact, | @ | € n?.

5.25. If G is a group whose derived group G’ is finite of order m, then
each element z € @ has at most m conjugates in G.



34 Problems in Group Theory

5.26. If G is a group which can be generated by % elements, and the
derived group G’ of G has order m, then the center Z of G has finite index in
G. In fact, | G:Z | < m*. [Partial converse to Problem 5.24.]

5.27. If z and y are elements of a group &, and z and y both commute
with z = [z,y7!], then (xy)® = z*y*zs* 2 fors=1, 2, ...

5.28. Let G be a finite p-group where p is an odd prime. If @ has only
one subgroup of order p, then G is cyeclic.

5.29. Let G be the group, under matrix multiplication, generated by
the complex matrices

S P
where £" =1 and £ # 1 for fixed n > 2. Show that (a) G is a non-
abelian group of order 2**1; (b) G has only one subgroup of order 2; and
(¢c) if n > 2, then G has some subgroups which are not normal. (@ is
called the generalized quaternion group of order 2**'. For n =2, G is
the quaternion group defined in Problem 1.4.)

*5.30. Let G be a nonabelian group of order p» in which each subgroup
is normal. Then p =2, and G is isomorphic to the direct product of
the quaternion group @ and some (possibly trivial) elementary abelian
2-group.

*5.31. Describe all the nonsolvable groups of order at most 200.

*5.32. Let G be a group, and define G(k) = (&* |z € @) for k=1, 2, ...
Let m and n be positive integers whose greatest common divisor is d.
If G(m) and G(n) are both abelian groups, then G(d) is an abelian group.
Moreover, if G(m) and G(n) are cyclic, then G(d) is also cyclic.



6 Solvable and
Nilpotent Groups

Let G be a group. The lower ceniral series of G is defined to be the
normal chain:
G=GDG@D---DG@D---, (6.1)

where iG = [G,'G]fori = 1,2, ...} All the terms in the lower central series
are characteristic subgroups of G. If, for some k, *G = 1 and *'G # 1,
then G is called nilpotent of class k.

The upper central series for G is defined by

1=Z2<Z2,€---CZ; &, (6.2)

where Z, is the characteristic subgroup of G defined by Z./ Zia=Z(G/Zis)
fori=1,2,... In particular, Z, = Z(@).

t There are several different notations used for the lower central series. It should be
noted that the enumeration is often different; thus our °G, 'G, - - - are sometimes called
the first, second, - - - terms of the lower central series.

35
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The following results are assumed. For their proofs see Hall [1], Sections
9.2 and 10.2; Kurosh [2], Sections 57 and 62; Rotman [3], Chapter 6;
Schenkman-[4], Sections 6.1 and 7.1; or Scott [5], Section 6.4.

6.T.1. If G is a group with a normal subgroup K, and K is solvable of
length m, and G/K is solvable of length n, then G is solvable of length
<m+n.

6.T.2. The normal factors of the series (6.1) and (6.2) are all abelian.
Thus, a nilpotent group of class k is solvable of length at most k.

6.T.3. If G is a nilpotent group, then each subgroup and each factor
group of G is nilpotent of class not exceeding the class of G. A direct
product of a finite number of nilpotent groups is nilpotent.

ProBLEMS

6.1. Give an example of a group G with a normal subgroup N such that
G/N and N are both nilpotent but G is not nilpotent (compare with
6.T.1).

6.2. Let G be the generalized quaternion group of order 27! defined in
Problem 5.29. Show that G’/ = 1, and that @ is nilpotent of class n.

6.3. If, in the upper central series (6.2) of a group G, Z; = G, then, in
the lower central series (6.1), ‘G © Z;_;fori=1,2,..., k.

6.4. A group @ is nilpotent of class &k if and only if, in its upper central
series (6.2), Zy = G and Z;_; # (. Thus, for a nilpotent group, the upper
and lower central series reach G and 1, respectively, after the same number
of terms.

6.5. A finite p-group is nilpotent. [ Hint: Use Problem 2.53.7]
6.6. A finite group G with all its Sylow subgroups normal is nilpotent.

6.7. Let N be a minimal normal subgroup of a group G, and let K be a
nilpotent normal subgroup of G. Then N C C(K;Q).

6.8. If G is a nilpotent group of class k, then each subgroup H is sub-
normal in G. In fact, we have m(G,H) < k.
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6.9. In a nilpotent group, each maximal subgroup (if any exists) is a
normal subgroup. Conversely, if each maximal subgroup of a finite group ¢
is normal, then @ is nilpotent.

6.10. In a finite nilpotent group, each Sylow subgroup is normal. [Con-
verse of Problem 6.6. ]

6.11. A minimal normal subgroup N of a finite solvable group G is an
elementary abelian p-group for some prime p.

6.12. A maximal subgroup M of a finite solvable group G has its index
equal to a power of some prime.

6.13. Each nontrivial normal subgroup N of a nilpotent group G has a
nontrivial intersection with Z(G). If G is finite, then each minimal normal
subgroup of @ is a subgroup of prime order in Z(G).

6.14. Let G be a nilpotent group. Then the set of all p-elements of G
forms a normal subgroup of @ for each prime p. [Hint: Use Problem 4.22. ]

A group G satisfies the normalizer condition if each proper subgroup H
of G is a proper subgroup in its normalizer N(H;G). It follows from
Problem 6.8 that each nilpotent group satisfies the normalizer condition.

6.15. Let G be a group in which each subgroup is subnormal. If N is a
normal subgroup of G, Z(N) = 1, and G/N is cyclic, then Z(G) # 1.

6.16. Let G be a group which satisfies the normalizer condition and the
maximal condition on subgroups. Then each subgroup of G is subnormal.

6.17. A group G which satisfies the normalizer condition and the maximal
condition on subgroups has a nontrivial center.

6.18. A group G which satisfies both the normalizer condition and the
maximal condition on subgroups is nilpotent.

6.19. Let G be a group with lower and upper central series (6.1) and
(6.2), respectively. Then,fori=1,2,...,andj 2> ¢, wehave [Z;,'G] C
Z;_;. Inparticular,[Z;, 7'G] = 1.

6.20. If G is a nilpotent group of class k, then ['G,*=iG] =1 for 7 =
1,2,...,k
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6.21. If @G is a nilpotent group of class k, and n is the greatest integer
< %k, then "G is an abelian group.

6.22. If G is a nilpotent group of class k, then G is solvable of length [
where 271 < k (compare with Problem 6.2).

6.23. Let H be a normal subgroup of a group G. We define inductively
the subgroups

H0=H and Hi=[G,H.5__1] fori=1, 2,...,
and the subgroups

U.=]1[H:, H,s] forn=0,1,2,...

=0

Then U,, Us, U, .. ., is a sequence of normal subgroups of G such that
[U., 1S Uppaforn=0,1,2,...

6.24. If H is a normal subgroup of a group G, and H and G/H' are nil-
potent groups of classes &k and m, respectively, then G is nilpotent of
class < (2 — 1)m — 21 + 1.

6.25. If H and K are normal nilpotent subgroups of a group G, and
G = HK, then

"G C nHAK(H N 1K) (H N »=2K) - (*HNK)  forn=1,2,...

6.26. Let H and K be normal nilpotent subgroups of a group G, and
the classes of H and K be h and k, respectively. If G = HK, then G is
nilpotent, and the class of G is at most i + k.

6.27. If H is a maximal nilpotent subgroup of a group G, and N = N(H ; &),
then N is its own normalizer in G.

Let G be a group. The nilradical (or Fitting subgroup) of G is the
set R(Q) of elements x in G which lie in some normal nilpotent subgroup
of G.

6.28. The nilradical of a group @ is a characteristic subgroup of G. If
G is finite, then R(G) is a normal nilpotent subgroup of G. In any case,
any subgroup H of G which can be generated by a finite number of elements
from R(@) is nilpotent.

6.29. All elements lying in the nilradical R(G) of a group G are nilele-
ments of G.
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6.30. If G is a finite solvable group, then the nilradical R(®) is just the
set of all nilelements of G.

6.31. If, in the lower central series (6.1) for a group G, the factor group
G/'G is a cyclic group, then ‘G = 'G for each integer ¢ 2 1. In particular,
if G is a finite p-group with | G | > p, then | G:G" | > p.

6.32. TLet H be a normal subgroup of a group G such that H C ¢'. If
H' and H/H' are both cyclic groups, then H' = 1. In particular, in the
derived series of a group G, two successive factor groups G*-V/G% and
G® /G%+D cannot both be nontrivial eyelic groups when k > 2.

6.33. Let G be a nilpotent group with normal subgroups M and N.
If N is a proper subgroup of M, then there is a normal subgroup K of G
such that N C K € M and the factor group K/N is cyclic.

6.34. Let G be a nilpotent group satisfying the maximal condition on.
normal subgroups. Then there exists a proper chain of normal subgroups
of G of the form

Go=1CGC--CG.=6G,

where G;/G;_: is a cyclic group forv=1, ..., n.

6.35. If G is a nilpotent group satisfying the maximal condition on
normal subgroups, then each subgroup H of G is finitely generated (com-
pare with Problem 1.36).

6.36. If A is a maximal normal abelian subgroup of a nilpotent group
G, then C(A4;G) = A. [Note: A direct application of Zorn’s lemma shows
that every group possesses a maximal normal abelian subgroup, possibly
the group itself. ]

6.37. If G is a nilpotent group, and N is a finite normal subgroup of
order p” in G, for some prime p, then N & Z,, where Z, is defined as in
the upper central series (6.2).

6.38. Let A be a normal abelian p-subgroup of a group G, and let N be a
normal cyclic subgroup of G containedin 4. If | A: N |=pand[4,G]E N
then, either A is a cyclic group, or A = (N,a) where a is an element of 4
with at most p conjugates in G.

6.39. Let G be a finite p-group. If G’ has a cyclic center Z(G"), then G is
an abelian group.
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6.40. If G is a finite p-group, and H is a nontrivial normal subgroup of G,
then H contains a subgroup K which is normal in @ with | H: K | = p.

6.41. If G is a finite p-group, and | G': @’ | < p?% then G’ is an abelian
group. '

6.42. Every finite group G contains a nilpotent subgroup K whose
normal closure K¢ equals G.

6.43. Let G be a transitive permutation group of degree n. If G is nil-
potent, then each prime p which divides | @ | also divides n.

6.44. If G is a transitive permutation group of degree n, and G is a
p-group, then the solvable length [ of G satisfies p' | n. [Note: It follows
from Problem 2.30 that 7 is a power of p. ]

6.45. If (@ is a nilpotent transitive permutation group of degree n, then
the order of G divides ][,. p?V7-1, where % is the highest power to
which p divides n, and the product is taken over all primes p which divide n.

6.46. If G is a nilpotent permutation group of degree n, then the order
of G is at most 27! (compare with Problem 2.41).

6.47. Let G be a group which has a normal subgroup 4 of index 2 such
that A is isomorphic to the quasicyclic group Z(2*), defined in Problem
1.48, and G = (b,A | b~lab = a"! for all a € 4; b* =1). (Thus, G is iso-
morphic to a semidirect product of Z(2*) by a group of order 2.) Show
that (a) G is a 2-group which satisfies the normalizer condition; (b) G has
center Z(G) = 1, and so G is not nilpotent; and (¢) @' = 1, and [ oG =1,
where ‘G is defined in (6.1). (This example is due to R. Baer.)

6.48. Let G be a nonabelian group of order p™ with an abelian subgroup
of index p. Then G has either 1 or p 4 1 abelian subgroups of index p,
and in the latter case | G: Z(G) | = p*

6.49. A group G which has order 16 and is nilpotent of class 3 has one,
and only one, cyclic subgroup of index 2.

*6.50. Describe all groups of order 2» which have class n — 1 (n > 3).
[Note: It follows from Problem 6.31 that the index of the derived group of
a finite 2-group is at least 4, and so n — 1 is the maximum possible class

of a group of order 2%.]
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*6.51. Up to isomorphism, there are exactly 14 different groups of
order 16.

*6,52. If G is a group of order pq, where p and ¢ are primes, then G is
solvable.

¥6.53. If G is a finite group in which every proper subgroup is nilpotent,
then @ is solvable.

*6.54. Let G be a group in which each nontrivial element has order 3.
Then G is nilpotent of class at most 3 (compare with Problem 1.16).



7 The Group Ring and

Monomial Representations

Let @ denote the field of complex numbers. Let G be a group, and
consider the set Rg of all formal sums Y, g a:z (a-€ @) in which all but a
finite number of coefficients a, are zero. We define addition and multiplica-
tion in R¢ by

(X aax) + (O Bax) = D, (e + B)z
ze@ ze@ ze@
and

(Z axx)(z: Bxx) = Z Yl

zel@ zel@ zel@
where v, = D _,c¢ ®..B:. (Note that v, is a finite sum of elements in € be-
cause B, is zero for all but a finite number of z € (.) An element D pcq O
in Re, which, for some w € @, has o, = 1 and a, = 0 for x # u, is written
as u and is said to be an element of B¢ lying in G. It is readily shown that
Re is an associative ring with unity element 1 (the identity of &), and that
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R is commutative if and only if G is abelian. We call R¢ the group ring
of G (over @).

We wish to consider matrices over Rg. Since R is generally noncom-
mutative and possesses divisors of zero, the theory of such matrices is
more difficult than the corresponding theory of matrices over a field.
For this reason we consider only a very special class of matrices. The
set of n X n monomial matrices over G is defined to consist of those n X n
matrices which have precisely one nonzero entry in each row and each
column with all nonzero entries lying in G. Permutation mairices are
those monomial matrices for which each nonzero entry is 1; and a monomial
matrix is called diagonal if its nonzero entries all lie on the main diagonal.
A diagonal matrix is written diag(zi, 22, ..., T.), Where 21, T3, ..., Tn
are the successive diagonal entries.

The proof of the following properties is straightforward.

7.T.1. Every monomial matrix may be written as the (matrix) product
uv of a permutation matrix u and a diagonal matrix v.

7.T.2. Theset S(n) of all n X n permutation matrices forms a group, under
matrix multiplication, which is isomorphic to the symmetric group S,.

7.T.3. The diagonal matrices in the set of all n X n monomial matrices
over G form a group D(n,G). This group is isomorphic to the direct
product G X @ X - - - X G (n times).

7.T.4. The set M (n,G) of all n X n monomial matrices over G is a group
in which D(n,@) is a normal subgroup. Moreover,

M (n,G@) = S(n)D(n,G) and S(n) N\ D(n,G) = 1.

7.T.5. If G is an abelian group, then we define the determinant (det a)
of a monomial matrix a over G as the product of its nonzero entries.
There is no ambiguity in the definition because G is abelian. Thus, det a
is an element of G, and for a,b € M (n,G) we find det ab = (det a)(det b).

Let G be a group with a subgroup H of finite index n in G. Let 6 be a
homomorphism of H into a group S. Then we define § as a function of G
into the group ring of S by

. fe@@) ifz€H,
o) = { 0 otherwise.

Let r1,72,...,7s be a set of left coset representatives for H in G. We
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shall now define the monomial representation 8¢ of G induced from 6 over
the given set of coset representatives. For each z € G, we define

_é(rflxrl) 6(riiary) - 6 (rflxrn)_
§(rz'zry) O(rs'ars) - .- 80y zr)
0%(x) = . . =[6(r; 2r)]. (7.1)
r —1 2r —1 27 —1
| G(ry xry) 6(rnare) - 6(rn zr,)d

The matrix ¢(z) lies in M (n,S). To prove this we have to show that
for each r; there is exactly one r; and one r; such that »;'2r; € H and
riar; € H. Infact, r; and ry, are the uniquely defined left coset representa-
tives of the cosets x—'r,H and zr H, respectively.

ProBLEMS

7.1. Let 6% be the function of the group G into M (n,S) as defined by
(7.1). Then 6% is a homomorphism of G into M (n,S). If the kernel of 6
is N, then the kernel of 69 is [)see = 'Nz.

7.2. Using the same notation as above, let si, sz, ..., s, be a second
set of left coset representatives for H in . Define 6¢ to be the monomial
representation of G induced from 6 over this new set of coset representa-
tives. Then there exists an n X n monomial matrix u over S such that
u9%(x)u = 6%(z) for all z € G.

7.3. Let H be a subgroup of @, and put 0(z) = zH’ for all x € H. Then
the mapping 7 of G into H/H’ defined by 7(x) = det 6%(z) (x € G) is a
homomorphism of G into H/H’. Moreover, 7 is independent of the particu-
lar choice of left coset representatives for H in G. The mapping 7 is called
the transfer of G into H.

7.4. Let G be a group possessing a normal abelian Hall subgroup A of
order m and index » in G. If H is a Hall subgroup of order » in G, and
K is a subgroup of G such that n divides | K |, then, for some z € G,
x'Hx C K. [Hint: Use Problem 3.22.]

7.5. Let G be a group containing a normal abelian Hall subgroup A of
order m and index » in G. Then there exists a subgroup U of order n in G.
It follows that G = UA and UM A = 1. [ Hint: Use Problems 7.1 and 7.4. ]
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7.6. Let H be a normal Hall subgroup of a finite group G. Then H has
a complement K in G, that is, a subgroup K of @ such that G = KH and
H N K =1. [Hint: Use Problem 3.19.]

7.7. Let H be a normal Hall subgroup of a finite group G. Then any two
complements K and L of H in G are conjugate in G if either (a) H is solvable,
or (b) G/H is solvable. [Note: Because H is a Hall subgroup, one of the
groups H and G/H has odd order. Thus, from the theorem of Feit and
Thompson [107, at least one of the conditions (a) and (b) is always true.]

7.8. If the center Z(Q) of a group @ has index h in G, then the mapping
z — 2" (z € G) defines a homomorphism of & into Z(@). [Hint: Use Prob-
lem 7.3.]

7.9. If the center Z(Q) of a group @ has index h in G, then each element
of @ has an order dividing h (compare with Problem 5.24).

Let H be a subgroup of a finite group G. A set R = {ry,Te, ..., Ta}
of left coset representatives for H in @ is called exceptional if, for each
w € H, w'Ru = R. It is clear that an exceptional set of left coset repre-
sentatives is also a set of right coset representatives.

7.10. Let H be a subgroup of a finite group G. Then H has an exceptional
set of coset representatives in @ if and only if (*) for all z € @ there exists
y € HxH such that y*Hy M H = C(y;H).

711. Let H be an abelian Hall subgroup of a finite group G. Then H
has an exceptional set of coset representatives in G if and only if there
is a normal subgroup K of G for which G = HK and H N K =1. (Such
a subgroup K is called a normal complement of H in G.)

7.12. Let P be a Sylow p-group of a finite group G such that C(P;@G) =
N(P;@®). (In particular, P must be abelian.) Then P has a normal comple-
ment in G. [Hint: Use Problem 3.25. ]

7.13. Let G be a finite group of order n, and let p be a prime dividing n
such that 7 is relatively prime to p — 1. If the Sylow p-groups of G are
cyclic, then any Sylow p-group of G has a normal complement in G.
(This is a generalization of Problem 2.16.)

7.14. If G is a finite group which has all its Sylow subgroups cyclic, then
G = 1. [Hint: Use Problem 6.32.]
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7.15. If @ is a noncyclic simple group of even order, then either 8 or 12
divides | @ |. [Hint: Use Problems 7.12 and 3.17.]

7.16. There are no simple groups of order 300, 400, or 540.

7.17. If a noncyelic simple group G has odd order, then its order would
be divisible by p* where p is the smallest prime dividing | G |.

7.18. There is no noncyclic simple group of odd order less than 1000.
(It is proved in [ 10] that every group of odd order is solvable.)

7.19. Let G be a finite solvable group. If |G| = mn, where m and n
are relatively prime, then G has a (Hall) subgroup of order m. Moreover,
if K is a subgroup of @G, and the order of K divides m, then 27 'Kz & H for
some z € (.

7.20. Let G be a finite solvable group of order n = p% - - - p¥s, where the
p,; are distinct primes. Then G has a set of Sylow subgroups P, ..., Ps
such that P;is a Sylow pgroup and P,P; = P,P; for all < and j.

7.21. Let G be a finite solvable group. Then G contains a nilpotent sub-
group H such that N(H ;&) = H, that is, H is self-normalizing in G.

7.22. Let G be a finite solvable group. Then any two self-normalizing
nilpotent subgroups H and K of G are conjugate in G.

7.23. Let G be a finite group, and let H be a subgroup with the property
that 2 'Hxz N H = 1 for each x € G with x & H. Then H is a Hall sub-
group of G.

7.24. Let G be a finite group possessing a maximal subgroup A which
is abelian. Then the third derived group G® is 1.

7.25. Give an example of a group G of order mn with m relatively prime
to n such that G has no Hall subgroup of order m (compare with Problem
7.19).

7.26. Let G be the group of all 5 X 5 monomial matrices over a cyclic group
of order 5, and put H = @’. Show that (a) | H|=22-3-5% (b) H = H,
although the center of H is nontrivial.
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7.27. Tor any finite group B of order n, there exists a group C of order
n+ such that C has a normal subgroup B, isomorphic to B and By & C'.
[Hint: Construct C as a monomial group over B.]

7.98. Construct an ascending chain of groups G, (n =0, 1, ...) with the
following properties: (a) each group G.1s a finite p-group; (b) G S Grp1
foralln > 0;and (¢) G = Us_, G. is a p-group with ¢’ = G. In particu-
lar, this shows that an infinite p-group need not be solvable. [Hint: Use

Problem 7.27.]



8 Frattim Subgroup

The Frattint subgroup ®(G) of a group @ is defined to be the intersection
of all maximal subgroups of G (if G has any maximal subgroups), and
to be @ itself (if G has no maximal subgroup). Clearly, ®(G) is a char-

acteristic subgroup of G.
The following results will be assumed. For their proofs see Hall [1],

Section 10.4; Kurosh [2], Section 62; Schenkman [4], Section 1.7; or
Scott [5], Section 7.3.

8.T.1. The Frattini subgroup of a nontrivial group G is the set of all
elements z in G with the property that, whenever a set K\U {x} generates
G, K generates G.

8.T.2. If G is a nilpotent group, then G’ C &(G).

8.T.3. If Gis a finite group, and G’ C ®((G), then G is nilpotent.
48
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8.T.4. If G is a group with a finitely generated Frattini subgroup, then
the only subgroup H of G such that H®(G) = G is H = G (use 8.T.1).

PROBLEMS

8.1. Find the Frattini subgroups of the following groups: the cyclic
groups; the symmetric groups S,; the dihedral groups Dj defined in
Problem 1.6; the generalized quaternion groups defined in Problem 5.29;
and the quasicyclic groups Z(p*®) defined in Problem 1.48.

8.2. Let H be a subgroup of a finitely generated group G. Then
H®(G) = @ implies that H = G.

8.3. Let G be a nilpotent group whose derived group G’ is finitely gen-
erated. Then the only subgroup H of G such that HG' = Gis H = G.

8.4. If G is a finite group, and if the only subgroup H of G with the
property HG' = G is H = G, then G is nilpotent.

8.5. Let G be a group satisfying the maximal condition on subgroups.
If H is a subgroup of G, and H is not normal in @, then, for some z € d,
the subgroup z—'Hz is not equal to any of the conjugates u'Hu with
u € ®(@).

8.6. If G is a finite group, then (@) is nilpotent.
8.7. Let G be a group with a finitely generated Frattini subgroup .
If G/® can be generated by k elements and no fewer, then @ can also

~ be generated by k elements and no fewer.

8.8. If G is a finite group, and P is a nontrivial Sylow subgroup of G,
then P is not contained in ®(G).

8.9. Let G be a group satisfying the maximal condition on subgroups.
Then, for each subnormal subgroup H of G, ®(H) C #(G).

8.10. If N is a normal subgroup of a group G, and N C &(G), then
®(G@/N) = ®(G)/N.

8.11. Let G = (z) be an infinite cyclic group. Then (@) = 1, but there
exist normal subgroups N of G such that ®(G/N) # 1.
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8.12. Give an example of a group G such that G/®(GF) is a finite non-
trivial group but @ is not finitely generated (compare with Problem 8.7).

8.13. Give an example of a finite group G which has a subgroup H such
that ®(H) is not contained in ®(GF) (compare with Problem 8.9).

8.14. It is shown in Problem 8.6 that every finite group has a nilpotent
Frattini subgroup; however, there is no finite group G which has its
Frattini subgroup F isomorphic to the quaternion group. [Hint: Putting
C = C(F;@), show that CF/C is contained in ®(G/C) and then use Prob-
lem *3.40.]

A finite group @ is called p-closed (for a prime p) if its Sylow p-group
is a normal subgroup. In this case, the Sylow p-group is unique (by
Problem 2.23). Thus, G is p-closed if and only if the product of any two
p-elements in G is again a p-element.

8.15. If M is a subnormal subgroup of a finite group G, and M is maximal
with respect to the properties that it is subnormal and p-closed, then M
is normal in G.

8.16. Let M be a normal subgroup of a finite group G such that
®(G) C M. If M/®(Q) is p-closed, then M is p-closed. [Hint: Use Problem
8.5.]

8.17. Let H be a subnormal subgroup of a finite group G. Then H is
p-closed if H/(H M ®(@)) is p-closed.

8.18. If H is a subnormal subgroup of a finite group G, then H is nilpotent
if and only if H' C &(G) (compare with 8.T.2 and 8.T.3).

8.19. If N is a normal subgroup of a group G, and G has a finitely gen-
erated subgroup U such that N C &(U), then N C ®(G).

8.20. For any group G, Z(G) N\ G' S ¥(G).

8.21. If @ is a direct product of two subgroups A and B, then
®(F) C P(A) X ®(B).

8.22. If a finitely generated group G is the direct product of two sub-
groups A and B, then &(G) = ®(4) X ®(B).
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8.23. Let A and H be two subgroups of a group @ such that G = AH.
If A is a normal abelian subgroup of G, then H M A is also normal in G.

8.24. Let A be a finite normal abelian subgroup of a group G such that
A N &(F) = 1. Then there is a subgroup K of G such that G = K4 and
KMNA=1.

If N is a subgroup of a group G which is mapped into itself by an auto-
morphism « of G, then we can define the induced automorphism o« of the
factor group G/N by a:Nxz — Nz* (Nx € G/N).

8.25. Let G be a finite group which can be generated by a set of k elements,
and whose Frattini subgroupis ®. Then | Aut G | divides | ® |* | Aut G/®|.

8.26. TFor any finite p-group G, G/®(G) is an elementary abelian p-group.

8.27. Let G be a finite group of order p* with | G:®(G) | = p*. Then
| Aut G| divides p**R(pt — 1)(p* — p) - - - (pF — pFl) = pFen-1PA2g,
where p t d. Hence, | Aut G| always divides pr»V/%d. [Hint: Use
Problem 3.35.]

8.28. A finite p-group @ of order p» contains a normal abelian subgroup
A whose order p™ satisfies m(m + 1) > 2n. [Hint: Use Problem 6.36.]

8.29. If G is a finite solvable group, and ®;(G) denotes the intersection
of all subgroups of prime index in G, then G'" € &;(G). [Hint: Use Prob-
lem 3.18.]

8.30. Let N be a normal subgroup of a finite group G. Then there exists
a subgroup H of G such that @ = HN, and H M N is a nilpotent group.

8.31. Let N be a normal subgroup of index 7 in a group G. Let A be the
group of all automorphisms of G which leave each element of N fixed,
and map each coset of N into itself. Then A is isomorphic to a subgroup of
the direct product B of n copies of the center of N:B = Z1 X Zy X -+ - X Z,,
with each Z; ~ Z(N). In particular, 4 is abelian.

8.32. Let H be a group isomorphic to the quasicyclic group Z(5%) defined

in Problem 1.48. Show that (a) there exists a sequence ko, ki1, ko, ..., of
integers such that ko= 1, k1=2, ku.y1 = k. (mod 5") and ki =—1
(mod 57*1) forn = 1, 2, . .. ; and (b) the mapping « of H into itself defined

by z* = ", when « € H has order 57, is an automorphism of order 4 for H.
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Define G as a group which is isomorphic to a semidirect product of H
by a cyclic group of order 4 such that

G=wH|ut=1u2u=2* forall 2z€H).

Show that (¢) each maximal subgroup of G contains H; and (d) the Frattini
subgroup ®(G) of G equals (u?,H) and, in particular, is not nilpotent
(compare with Problem 8.6). (See [11].)

8.33. If A is a finite abelian group, then there exists a finite abelian
group G such that ®(@) ~ A (compare with Problem 8.14).



9 Factorization

If A and B are proper subgroups of a group G, and G = AB, then G is
called factorizable. If, in addition, A M B = 1, then B is called a comple-
ment of A in G.

If A and B are any two subgroups of a group @ such that AB = BA,
then these subgroups are said to commute. In particular, each normal sub-
group N of G commutes with every subgroup of G.

The results of 1.T.2 and Problem 1.8 should be noted. In particular,
1.T.2 implies the following result.

9.T.1. If A and B are subgroups of a finite group @, then | A || B | <
| @|| AN B|. There is equality if and only if G = AB = BA.

PROBLEMS

9.1. Let G be the symmetric group Ss. Then G has a subgroup H which
has two nonisomorphic complements in G.
53
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9.2. For which integers n > 3 does the subgroup 4, of the alternating
group A, have a complement in 4, ?

9.3. Construct a group G with two cyclic subgroups A and B such that
G = AB but neither A nor B is normal in G.

9.4. Give an example of a group G which has two subnormal subgroups
which do not commute.

9.5. If A and B are subgroups of a group @, then A and B commute
if and only if AB = (A,B).

9.6. If a group G is a product AB of two abelian subgroups A and B,
then Z(@) = (AN Z(@) (BN Z(@)).

9.7. If G is a factorizable group, G = AB, then for any elements z and y
in G we have G = (z'Ax)(y'By).

9.8. If G is a factorizable group, G = AB, then A is not conjugate to
Bin G.

9.9. A finite group @ is nilpotent if and only if each pair of maximal
subgroups of G commute.

9.10. Let A be a subgroup of finite index in a group G. If A commutes
with each of its conjugates in G, then A is subnormal in G.

9.11. If A and B are abelian subgroups of a group @, and G = AB, then
every pair of commutators of the form [a,b] (a € 4;b € B) commute.
Hence @' = 1.

9.12. If G is a factorizable group, G = AB, and A M B contains a non-
trivial normal subgroup of the group B, then the subgroup A contains a
nontrivial normal subgroup of G.

9.13. If a group @ is a product AB of an abelian subgroup B and any
other subgroup 4, then, either A contains a nontrivial normal subgroup
of G,or BNz Az =1forallz €G.

9.14. Let G be a finite group which is a product AB of abelian subgroups
A and B with A 5 B. Then either A or B is contained in a proper normal
subgroup N of G.
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9.15. If a finite group G is a product AB of proper abelian subgroups
A and B, then either A or B contains a nontrivial normal subgroup of G.

9.16. Let A and B be subgroups of relatively prime orders m and n,
respectively, in a finite group G. If G = AB, and H is a normal subgroup
of G, then H = (AN H)(BM H).

9.17. Let A and B be subgroups of a group G such that G = AB and
the index of B in @ is finite. If N is a finite normal subgroup of A4, and
the order of N is relatively prime to the index | G:B |, then the normal
closure N¢ of N in @ lies in B. [Hint: Use Problem 1.18.]

9.18. Let G be a finite group, and let A, B, and C be solvable subgroups
of G. If theindices | G:A |,| G:B |,and | G:C | are relatively prime in pairs,
then @ is solvable.

The lattice of subgroups of a group @ is called modular if the subgroups
satisfy the following condition. For any subgroups A, B, and C of @
with B C A:

(AN C,B)=AN{(B,C).
(See Hall [17], page 117, or Kurosh [2], Section 44.) A group whose lattice

of subgroups is modular is called an M-group.

9.19. Let G be a group in which each pair of subgroups commute. Then
G is an M-group satisfying the normalizer condition. [H¢nt: Use Problem
9.10.]

9.20. Every pair of subgroups of a group commute whenever it is true
that every pair of cyclic subgroups of G commute.

9.21. If G is a group such that, for every pair of subgroups 4 and B,
* NA;B)=ANB implies that BC A,

then each pair of subgroups of G commute.

9.22. If G is a group which satisfies the normalizer condition, then each
subgroup H of @ also satisfies the normalizer condition.

9.23. If G is an M-group which satisfies the normalizer condition, then
every pair of subgroups of G commute. (This is the converse of Problem
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9.19. A finite group satisfies the normalizer condition if and only if it is
nilpotent—by Problem 6.9.)

9.24. Construct a group G with two subgroups A and B and a normal
subgroup N such that @ = AB but N = (NN A)(N N B). (Compare
with Problems 9.6 and 9.16.)

*9,25. Describe all finite groups with the property that every subgroup
has a complement.



10 Linear Groups

Let € be the field of complex numbers, and let U be a vector space of
dimension n over ©. Then the general (or full) linear group GL(U) is
the group of all invertible linear transformations of U into itself, under
composition of mappings; and the special linear group SL(V) is the sub-
group of GL(V) consisting of those linear transformations with determi-
nant 1. (All linear transformations will be written as functions on the
right.) A scalar is a linear transformation ol (a€ @) where 1 is the
identity on ©. A subgroup of GL(?) is called a linear group.

If a basis is chosen for U, then to each linear transformation of U into
itself there corresponds a uniquely determined n X n matrix with entries
in @. This correspondence defines an isomorphism from GL(U) onto the
general linear group GL(n) of all nonsingular n X n matrices over C, under
matrix multiplication; this isomorphism maps SL(U) onto the spectal
linear group SL(n) consisting of the matrices in GL(n) with determinant 1.
Subgroups of GL(n) will be called matriz groups, and the correspondence
between linear groups and matrix groups will be used repeatedly in dis-

57
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cussing their properties. We use boldface letters, x, y, . . ., to denote ma-
trices, and write [£;;] to denote a matrix, of given dimensions, in which
the (7,7)th entry is &;; .

There are certain important subgroups of GL(n). The (lower) triangular
group TL(n) consists of those matrices [£;;] in GL(n) with &; = 0 for all
1 < j. The special triangular group STL(n) consists of the matrices in
TL(n) with diagonal entries all 1. The diagonal group D(n) consists of all
diagonal matrices in GL(n), and S(n), which is isomorphic to S,, consists
of all permutation matrices in GL(n). (A permutation matrix is one in
which each row and each column has exactly one nonzero entry, and that
entry is 1.) Finally, M (n) is the monomial group consisting of all matrices
in GL(n) which have a single nonzero entry in each row and each column.
We note that D(n) is a normal subgroup of M (n), and M (n) = S(n)D(n)
with S(n) N D(n) = 1 (compare with Chapter 7). If G is a subgroup of
GL(V) and, for a suitable basis of U, G corresponds to a subgroup of
D(n) [M(n) or TL(n)], then we say that G corresponds to a diagonal
[monomial or triangular] group.

If © has dimension 7, then elements and subgroups of GL(U) are said
to have degree n. If G is a subgroup of GL(V), then a subspace W of U
is an tnvariant subspace for G if ‘Wz = W for all x € G. In this case, the
restrictions z|W are elements of GL(W), and the group {z|W |z €& G}
is denoted by G|W and is called the component of G on “W. We say that
G is trreducible if it has no invariant subspace except U and 0 (the sub-
space consisting of the zero vector alone); otherwise, G is reducible. @
is completely reducible if VU = W, + - - - + W, (direct sum), where the W,
are minimal invariant subspaces for G; in particular, an irreducible group
is completely reducible. The groups G|W, (z=1, ..., k) are called the
irreducible components of G.

The above terms may also be applied to subgroups of GL(n) in the
following way. We fix a basis for 0. Then to each subgroup G of GL(0)
there corresponds an isomorphic subgroup G of GL(n). From elementary
matrix theory, we know that for any other basis of U the corresponding
subgroup will be some conjugate ¢'Ge of G in GL(n), where ¢ in some
sense describes the change of basis. If G is reducible, and ‘W is an invariant
subspace of dimension r, then we may choose a basis for U containing a
basis for W. Then the elements of the subgroup of GL(n) corresponding
to G will have the form

o
X3 X2

where x;, X2, and x; are blocks of dimensions r X r, (n — r) X (n — r), and
(n — r) X r, respectively. Thus, we say that a subgroup G of GL(n) is
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reducible if it is similar, that is, conjugate in GL(n), to a group of matrices
of the above form for some r, 1 < r < n. Similarly, G is completely

reducible if for certain 71, ..., 7 it is similar to a group of matrices of the
form
X1
0
0
Xk,
where the irreducible blocks x; on the diagonal are r; X r; ¢ =1, ..., k).

For the proof of the following result see Hall [1], Section 16.3; Schenk-
man [4], Theorem IV.8.m; or Scott [5], Section 12.1.

10.T.1. If @ is a finite linear group (over €), then G is completely re-
ducible. (This result is known as Maschke’s Theorem.)

Note: In many cases, the results of this chapter are valid when the field
involved is quite general. Sometimes, however, the properties “alge-
braically closed’”” and “of characteristic zero”” which € possesses are crucial.
Results like Problem 3.34 indicate why a generalization to fields other
than the complex numbers is of interest in the study of abstract groups.
For such generalizations the reader is referred to the literature quoted
in the solutions to the problems of this chapter. Typical applications to
abstract groups appear in [127; [13]; [14]; and [15].

PROBLEMS

Note: Throughout this chapter, U will denote a finite dimensional vector
space over the complex field €.

10.1. Let G be an irreducible subgroup of GL(V). If ¢ € GL(V) centralizes
G, then ¢ = v1 for some v € €. In particular, the irreducible components
of a completely reducible abelian group A & GL(V) are all of degree 1,
and so A corresponds to a diagonal group for a suitable basis for . [Hint:
Show that V(¢ — «1) is an invariant subspace for G for each a € c.]

10.2. Give an example of a reducible subgroup G of GL(2) for which
the only elements of GL(2) centralizing G are scalar matrices. (This
shows that the complete converse of Problem 10.1 is false.)

10.3. If G is a completely reducible subgroup of GL(V), and the only
elements of GL() centralizing G are scalars, then G is irreducible.
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10.4. The derived group of TL(n) is contained in STL(n), and STL(n)
is nilpotent of class n — 1.

If S is any set of » X n matrices over €, we define €S to be the set of
all finite linear combinations a;s; + - * + + awsSn (a; € €, 8, € S). We define
addition and multiplication by scalars in an obvious manner for elements
in CS.

10.5. Show that @S is a vector space over € of dimension at most n2.

10.6. Let G be a subgroup of GL(V), and suppose that U = W, 4.t W,
where the W, are invariant subspaces for . Then G is isomorphic to a
subgroup of the direct product G|W; X - -+ X G|Wy.

10.7. Let G be an irreducible subgroup of GL(V), and let H be a normal
subgroup of G. If W is a minimal invariant subspace for H in the under-

lying vector space U, then U =Wz, +--- + Wz, for some elements
zi=1,...,2zin G

10.8. If G is an irreducible subgroup of GL(V), then each normal sub-
group of G is completely reducible into k isomorphic irreducible com-
ponents, where k divides the degree n of G. Any subnormal subgroup of a
completely reducible group in GL(®) is completely reducible.

10.9. Let G be an irreducible subgroup of GL(V). If A is a normal abelian
subgroup of @, then A corresponds to a diagonal group over a suitable
basis for U.

Let G be a subgroup of GL(V). A root space & for G is a subspace of U
which is invariant under G such that G|® is a group of scalars and such
that ® is maximal with respect to this property. Equivalently, ® is a
maximal subspace of U with the property that, for each z € G and each
vector v # 0 in ®, v is an eigenvector for x.

10.10. Let A be a completely reducible abelian group in GL(V), and let
®i, ..., ®g be the distinct root spaces for A. Then U is the direct sum
of these subspaces.

10.11. Let G be an irreducible subgroup of GL(V). Let A be a normal
abelian subgroup of @, and let &1, . . ., ®% be the root spaces for A. Then,
for each 2 € @, the mapping ®; — ®x (1 =1,..., k) is a permutation of
the set of root spaces. Hence, G/C(A;G) is isomorphic to a transitive
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permutation group of degree k, and so, if G has degree n, | G:C(4;@Q) |
divides n!.

10.12. Let G be an irreducible subgroup of GL(V) of degree n, and let H
be a subgroup of index  in G. If H has an irreducible component of degree
n/h which corresponds to a monomial group for a suitable basis, then G
corresponds to a monomial group for some basis for V.

10.13. Let G be a finite group with the following property. For each
chain of subgroups G © H D N 2 1, where N is a proper normal sub-
group of H, either (a) H/N is abelian, or (b) there exists a normal abelian
subgroup A of H such that N is properly contained in A4, and A/N is
not in the center of H/N.

If G is a linear group, then G corresponds to a monomial group over a
suitable basis.

10.14. The condition in Problem 10.13 on the finite group G is satisfied in
each of the following cases: (a) @ is nilpotent; (b) G’ = 1; or (c) G is a
solvable group in which each Sylow subgroup is abelian. Thus, in any
of these cases, the conclusion of Problem 10.13 follows.

10.15. If @ is a finite irreducible p-group in GL(V), then the degree n
is a power of p.

10.16. Let G be an irreducible subgroup of GL(V). If Z(@) is finite, then
Z(@) is cyclic.

10.17. Let G be a finite p-group in GL(V). If the degree n > 2, then G’ is
reducible. [Hint: Use Problem 6.39.]

10.18. If G is a finite p-group in GL(V) of degree n, then G is solvable of
length [ where p"~! < n (compare with Problem 6.44).

10.19. Let G be a subgroup of GL(V)., Put C* = {al | e€Cand a # 0} &
GL(), and G, = GC* M SL(V). Then G € G:C*, and G, is irreducible if
and only if G is irreducible.

10.20. If G is an irreducible subgroup of SL(V), then Z(G) is a finite
cyclic group whose order divides the degree n of G.

10.21. Let @ be an irreducible group in SL(UV) of degree n, and let

1=2C 72, & -
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be the upper central series of G. Then, for each k > 0, x € Z;, implies
that 2 € Z;,.

10.22. Leét G be a subgroup of D(n). If, for some integer m > 0, x» = 1
for all x € G, then | G | divides m™.

10.23. If G is a finite linear group of degree n, and, for some integer
m > 0, z» =1 for all z € G, then | G | divides n!m".

10.24. Let G be an irreducible nilpotent subgroup of SL(V) of degree n.
Then G is finite. In particular, if G is nilpotent of class k, then | @ | divides
both n!n** and n®+1»,

10.25. Let G be an irreducible nilpotent linear group of degree n. If
G is of class k, then | @:Z(@) | divides n®+D~,

10.26. If G is a completely reducible nilpotent linear group of degree n,
and G is of class k, then | G:Z(G) | £ n®+Dn,

10.27. A completely reducible nilpotent linear group of degree n is
solvable of length [ where 2! < n (compare with Problem 10.18).

10.28. Let H be a subgroup of a group G € GL(n). If the set
{{x,y]|x€ G and y € H}

is a set of order m, then | G:C(H;G) | < m™.

10.29. Let G be an irreducible solvable subgroup of SL(V) of degreen.
Then G has a normal nilpotent subgroup N which properly contains the
center Z of G such that | N | < n~.

10.30. Let @G be a solvable linear group of degree n. Then G contains a
normal reducible subgroup H whose index is at most n*** in G.

10.31. If @ is a solvable subgroup of GL(V) of degree n, then G contains
a subgroup M which corresponds to a triangular group over a suitable
basis for U such that | G:M | < n*™.

10.32. Let G be a solvable linear group of degree n. Then the solvable
length ! of G is bounded above by some number depending only on n.
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10.33. Let @ be an irreducible nilpotent linear group of degree n. Then
contains a normal abelian subgroup A whose index in ( is at most 271
[Hint: Use Problem 6.46.]

10.34. Let G be a nilpotent linear group of degree n. Then @ has a
subgroup H which corresponds to a triangular group over a suitable basis
such that | G:H | < 2*! (compare with Problem 10.31).

10.35. Denote by H, the generalized quaternion group of order 27+
defined in Problem 5.29. Then

H=JH.
n=2
is a subgroup of GL(2). Show that (a) H, is nilpotent of class n; (b) H is
a group in which every proper subgroup is nilpotent; and (c¢) H is not nil-
potent, but its lower central series has the form: H="H D 'H=*H = . - .
(compare with Problem 10.32).

*10.36. Let G be a subgroup of GL(V), and let H be a subgroup of finite
index in G. Then H is completely reducible if and only if G is completely
reducible. (This generalizes 10.T.1.)

*10.37. Let G be a solvable subgroup of GL(V). Then G is completely
reducible if and only if, for each © € G, there is a basis for U over which
z corresponds to a diagonal matrix. [Hint: Note that x corresponds to a
diagonal matrix over a suitable basis for U if and only if the minimal
polynomial for z has distinct roots.]

*10.38. Let G be a finite subgroup of GL(n) in which all entries of each
matrix x € G are rational numbers. Then G is similar to a group of
matrices with integral entries. [Hint: First try the case n = 2.]

*10.39. Each element of SL(n) is a commutator of elements in SL(n).
*10.40. Let u and v be elements of SL(2) which have all their entries

integers. If uv = vu, then (u,v) is either cyclic or the direct product of a
cyclic group by a group of order 2.



l l Representations
and Characters

Let € be the field of complex numbers. A (matrix) representation of a
group G is a homomorphism R of G into GL(n) for some n > 1. We say
that n is the degree of R, and that R is faithful if its kernel is 1. The char-
acter corresponding to the representation R of @ is the function X of G
into € defined by x(x) = tr R(z). Two representations R and S of a
group G are called equivalent if they have the same degree, say n, and
if there exists a fixed ¢ € GL(n) such that R(z) = ¢7'S(z)e for all 2z € G.
A representation R of G is called reducible (irreducible or completely re-
ducible) when the image R(G) is a reducible (irreducible or completely
reducible, respectively) matrix group. In particular, every group G has
an irreducible representation of degree 1 of the form x — 1 (x € ). The
character of this representation is called the identity (or principal) char-
acter of G and is denoted by 1¢. Thus 1¢(z) = 1 for all z € G.

If G is a finite group of order g, and ¢ and ¢ are functions of @ into €,
then we define the inner product

64
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W¥) =+ X (@) V@),
g z€G@

where the bar denotes complex conjugate.

The following results are assumed. For their proofs see Hall[ 1], Sections
16.5 to 16.6 and Theorem 16.8.4; Schenkman [4], Sections 8.1 to 8.3; or
Scott [5], Sections 12.1 to 12.2. Alternatively, see Curtis and Reiner [16]
or Burrows [17].

11.T.1. Two representations of a finite group G have the same character
if and only if they are equivalent. Thus, without ambiguity, we can call a
character faithful, irreducible, etc., when that property is possessed by
a corresponding representation. Similarly, we may define the kernel of a
character to be the kernel of a corresponding representation.

11.T.2. A character X of a group @ is a class function; that is, if z and y
are in the same conjugacy class of G, then x(z) = x(y). If G is finite with
conjugacy classes C, ..., Cx, then we shall write x(z) = x; for z € C.

11.T.3. If R and S are irreducible representations of a group G and
there is a matrix ¢, of suitable dimensions, such that ¢R(z) = S(z)e for
all € G, then either ¢ = 0 or ¢ is nonsingular. In the latter case R is
equivalent to S. (This is known as Schur’s Lemma.)

11.T.4. A finite group G with k conjugacy classes has exactly k distinct
irreducible characters.

11.T.5. Let G be a finite group with k conjugacy classes, and let x®
(@=1,2,...,k) be the distinct irreducible characters of G. Then we
have the character relations:

k J—
S hxX!=gsw  forab=1,2,...,k
i=1
and
k —
> RXX] = gb; forij=1,2,...,k
a=1

where g = | G|, h: is the order of the conjugacy class C; of G, and the
Kronecker delta 6, = 1 if s =t and is 0 otherwise.

The first relations are equivalent to (x*,x?) = 6, All together, the rela-
tions may be expressed as follows. The kX k matrix u = [u;], with
wi; =~/ /g X}, is a unitary matrix; that is, uu* = u*u =1, where u*
is the complex conjugate transpose of u.
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11.T.6. If G is a finite group of order g, and its irreducible characters
x*(@a=1,2,...,k) have degrees d, (¢ = 1, 2, ..., k), respectively, then
g= 2 r diandd,|g(a=1,2,...,k). [Note: The degree d, = x(1).]

11.T.7. Let G be a finite group with irreducible characters
x(a=1,2,...,k).

Then any character x for G' may be written x = Y -_, c,x*, where the ¢,
are nonnegative integers. This representation of x is unique and, in fact,
c. = (X,x%). We call ¢, the multiplicity of x*in X, and x* is an (irreducible)

constituent of X when ¢, > 0. Finally, (x,x) = ¥ L ci and so x is irre-
ducible if and only if (x,x) = 1.

11.T.8. Let R be a representation of degree n of a finite group G. Then,
for each z € G, R(x) is a matrix which is similar to a diagonal matrix
whose diagonal entries are roots of unity. Moreover, if X is the character
corresponding to R, then x(2~!) = x(z) (complex conjugate).

PrRoBLEMS

11.1. Show that the symmetric group S; has exactly three irreducible
characters, and calculate these characters.

11.2. Calculate the irreducible characters of the alternating group A4,.

11.3. Let @ be a finite abelian group of the form:G@ = C; X Cy X - - - X Cy,
where C; is a cyclic group of order h; (z =1, 2, . .., m). Show that all ir-
reducible characters of G have degree 1, and calculate these characters.

11.4. The infinite dihedral group G defined in Problem 5.11 has an in-
finite (uncountable) number of inequivalent representations of degree 2,
all of which are both faithful and irreducible.

11.5. There are two nonisomorphic groups of order 8 which have the
same character table [x;]. [Hint: See Problem 3.3.]

11.6. Let w be a nonsingular matrix of degree n. Let u and v be permuta-
tions in S,,. Define w; as the matrix whose 7th row is the same as the ¢*th
row of w, and define w, as the matrix whose jth column is the j*th column
of w (for 4,j =1, 2, ...,n). If wi=w;, then u and v leave fixed the
same number of letters.



Representations and Characters 67

Let G be a finite group. For any representation R of G, we have the
conjugate representation R* of G defined by R*(z) = R@) (z € G); that is,
the entries in the matrix R*(x) are the complex conjugates of the corre-
sponding entries of R(z). The character x of R is called real if it equals
its conjugate character x* (corresponding to R*). We also define the
inverse of a conjugacy class C; of G to be the conjugacy class

Co={a7' |z €,

and call C; self-inverse if it equals its inverse class.

11.7. Let G be a finite group. Then the number of real irreducible char-
acters of G is equal to the number of self-inverse conjugacy classes of G.

11.8. If G is a finite group of odd order, then the only real irreducible
character of G is the identity character 1l¢.

11.9. If G is a group of odd order n, and G has k conjugacy classes, then
k = n (mod 16).

11.10. A finite p-group has a faithful irreducible representation if and
only if its center Z (@) is cyclic.

11.11. If a finite group G has a faithful representation R of degree =,
and 7 is less than the smallest prime dividing | G |, then G is abelian.

11.12. Let G be a simple group of order n, and let p be a prime dividing n.
If G has more than n/p* conjugacy classes, then the Sylow p-groups of G
are abelian.

Let H be a subgroup of a group G. If R is a representation of G, then
the restriction R|H is a representation of H defined by (R|H)(z) = R(z)
(z € H). The character Xx|H of R|H is the restriction to H of the char-
acter x corresponding to R.

Conversely, we may obtain characters of G from characters of a sub-
group H. Let us suppose that H is a subgroup of finite index in @, and
that 71, r2, ..., 7 is a set of left coset representatives of H in G. Let R
be a representation of degree m for H, and define R¢ (the induced repre-
sentation) on G by defining

Ré(z) = [RO72r)]  (@E€EG)
as a matrix of degree mn, where the m X m blocks f{(ri_ 2r;) are defined by

Y _ (R(y) if y€EH,
R(y) = {O otherwise.
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Precisely as in the case for monomial representations (see Chapter 7),
it can be shown that R¢ is a representation of degree mn for G. The
induced character X¢ corresponding to R¢ is given in terms of ‘the character
X corresponding to R by

k

Xe(@) = 2 X(rizy)  (z € G),

1=

where X(y) = x(y) if y € H and is 0 otherwise.

11.13. Let H be a subgroup of a finite group G. If X is a character of H,
then

x%(z) = T—;?—l y;; X(yzy) (z € Q).

In particular, x¢ does not depend on the choice of coset representatives
for H in G.

11.14. Let H be a subgroup of a finite group G, and let X and ¢ be char-
acters of G and H, respectively. Then (y,x|H) = (y¢,x). [Note: The
first inner product is over H, but the second is over G.] The following
result then follows from 11.T.7.

Frobenius Reciprocity. Theorem: If H is a subgroup of a finite group G,
and x and ¢ are irreducible characters of G and H, respectively, then the
multiplicity with which X occurs as a constituent of y¢ is equal to the
multiplicity with which ¢ occurs as a constituent of x|H.

11.15. Let G be the dihedral group D- defined in Problem 1.6, and let H
be the subgroup (b). Calculate the characters of G which are induced
from the irreducible characters of H, and express them in terms of irre-
ducible characters of G. Hence, calculate all irreducible characters of G.

11.16. What are the characters of the alternating group As which are
induced from irreducible characters of the subgroup As (see Problem
11.2)? Use them to calculate all irreducible characters of 4s.

11.17. Let H be a subgroup of index m in a group G. For any irreducible
character x of G, there exists an irreducible character ¢ of H such that
my(1) > x(1). In particular, if H is abelian, then every irreducible char-
acter X of G has degree at most m.

Any permutation group G of degree n has a linear representation of
degree n in terms of permutation matrices. This is defined by x — [£:],
where £; = 1if j = ¢* and is 0 otherwise. We call the character = of this
representation the permutation character of G, and note that =(z) is a
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nonnegative integer equal to the number of letters left fixed by z, for
each z € G.

11.18. Let G be a permutation group of degree n with the permutation
character . If @ has s orbits, then there exist s subgroups H, Ha, . . ., H,
of G such that == (1x)¢ + - - (1x,)¢ In particular, if G istransitive,
then = is the character induced from the identity character 1z of a sta-
bilizer H of G.

11.19. Let G be a permutation group of degree n» with permutation
character . Then G has s orbits, where s = (r,1¢). Furthermore, if G
is transitive, and H is a stabilizer of G, then H has ¢ orbits, where ¢ = (m,).

11.20. Let G be a transitive permutation group of degree n with permu-
tation character =. Then, for any irreducible character X of @,(m,x) < x(1).
There is equality if and only if the kernel of X contains all the stabilizers
of G.

11.21. Let N be a normal subgroup of a finite group G. If o}, o, ..., a®
are all the irreducible characters of G such that N € ker o/, then the group
G/N has exactly s irreducible characters 8!, 8%, ..., 8°. These are defined
by 8i(Nz) = oi(x) foreach Nr€G/Nandi=1,2,...,s.

11.22. Let N be a normal subgroup of a finite group G, and let x be an
irreducible character of G such that the kernel of x does not contain N.
If z in G does not commute with any nontrivial element of N, then x(x) = 0.

Let x = [£;] and y = [:;] be two square matrices of degrees m and n,
respectively. We define the fensor (or Kronecker) product x ® y as the
matrix of degree mn of the form

—X??n X712 cc o XNMin
X721 X7Me2 t X72n
(11.1)
L X1 XNMn2  ° °° XNan

where the m X m blocks x7,; have the form

[ Eums; Eamei v S
Eame;  Eooms; 0 ExmMij

_Emlnii £m277i:i tte smmni;i_
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If x; and y; are also two matrices of degrees m and n, respectively, then
straightforward computation shows that

(x®y)(x ® y) = (xx1) ® (yyy). (11.2)

It follows immediately that, if G and H are matrix groups of degrees
m and m, respectively, then G @ H={x Q@ y|[x€ G and yE H} is a
matrix group of degree mn which is isomorphic to the (external) direct
product G X H.

11.23. Let x and y be matrices of degrees m and n, respectively. Then

(a) tr (x ® y) = (tr x)(tr y);
(b) det (x ® y) = (det x)"(det y)™.

11.24. If x and ¢ are characters for a group G, then the function xy of
G into € defined by xy¥(z) = x(2)¥(z) (x € @) is also a character for G.

11.25. Let R be an irreducible representation of degree n of a group
which is the direct product of two normal subgroups G and H. Then R is
equivalent to a representation R; such that Ri(G X H) = S(G) ® T(H),
where S and T are irreducible representations of G and H, respectively.
Thus, for any irreducible character x of G X H, there exist irreducible
characters « and 8 of G and H, respectively, such that x(zy) = «(x)8(y)
(x € G;y € H). [Hint: Use Problem 10.7.]

11.26. Let x be an irreducible character of degree d for a finite group
G, and let K be the kernel of x. Then (a) | x(z) | =d if and only if
K € Z(G/K), and (b) x(z) = d if and only if z € K.

11.27. Suppose that x is a faithful character of degree d for a finite
group G of order g. We define the powers of X by using Problem 11.24:

X0 = 1g and X©® = x-x fors=1,2,...

If x(z) (z € Q) takes exactly r different values, say a1, a2, - . ., ar, then
each irreducible character ¢ of G occurs as a constituent of at least one
of the characters x® (s=0,1,...,r—1).

In particular, the sum of the degrees of the irreducible characters of G
is at most (dr — 1)/(d — 1).

11.28. Let X be a character for a finite group G, and let ¢ be a character
for some subgroup H of G. Then {(X|H)¢}¢ = xy%.
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11.29. Let N be a normal subgroup of index n in a finite group G. If
X is a character of G such that ¢ = X|N is an irreducible character, then

(¢%,¢%) = n.

11.30. Let x be an irreducible character of a finite group G of order g.
Let N be a normal subgroup of index n in @G, and suppose that Xx|N is an
irreducible character for N. Then, for each irreducible character ¢ of G
whose kernel contains N, xy is an irreducible character for G.

11.31. Let G be a finite group with a normal series
G=G262G2 - 2G, =1

If m of the factor groups G;1/G; (¢ = 1,2, ..., n) are nonabelian, then G
has an irreducible character of degree > 2™,

11.32. Let @ be a finite group of order g with a faithful irreducible repre-
sentation R of degree n. If @' C Z(@), then | G:Z(@) | = n®. [Hint: First
show that the character corresponding to R is zero outside Z(@).]

Let £ be the set of all n X » matrices over €. Then £ is a vector space
of dimension n? over € (see Problem 10.5). Let G be a subgroup of GL(n).
Then we can define a homomorphism R of G into the group GL(£) by

R(x): u — ux (u € &), (11.3)
for each x € G.
11.33. Let G be an irreducible subgroup of GL(n), and let R be the
mapping defined by (11.3). Then any subspace 91 # 0 of £, which is
minimal with respect to the property 9x C 91 for all x € G, has di-
mension 7.
11.34. Let G be a subgroup of GL(n), and define

GL={uc &|tr(ux) =0 for all x € G}.

If G is irreducible, then G+ = 0. It follows that €G has dimension n?;
that is, @G = £ (see Problem 10.5).

11.35. Let G be an irreducible subgroup of GL(n). If tr x (x € G) takes
only m different values, then G is finite and | G | < m™".

11.36. Let G be a group with only a finite number of conjugacy classes.
If G has a faithful matrix representation, then G is finite.
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11.37. Let G be a subgroup of GL(n). If, for some integer m > 0,
xm =1 for all x € G, then G is finite and | G| < m** (compare with
Problem 10.23).

11.38. Let G be a subgroup of GL(n) in which each x € G is similar to a
matrix in STL(n) ; that is, every eigenvalue of x is 1. Then G is conjugate
in GL(n) to a subgroup of STL(n).

11.39. Let x be an irreducible character of a finite group G. Then
x(1)? € | G:Z(G) | (compare with Problems 11.17 and 11.32).

*11.40. Let G be a finite group for which each matrix representation is
equivalent to a representation in terms of monomial matrices. Then G
is solvable (compare with Problem 10.13).
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Solutions for

Chapter 1—Subgroups

1.1. G hasorder 6 and its subgroups are: 1, {1,2,22} , {1,y}, {1,zy}, {1,2%},
and G.

1.2. @ has order 12 and has a normal subgroup {1,y,xz 'yz,zyz~'} (see
[187, page 465).

1.3. From the first relation, 2?y*x—2 = zyfz~! = y°. Using the second rela-
tion, we have y° = y~la?y - y* - y a7y = 2Py, and so zy* = y*x. Hence
wefinde=y=1,and G = 1.

1.6. (c) The conjugacy classes of Dy are: {1}, {a, ab, ..., ab¥1}, and
{bi b}, for 1 < i < ¥(k— 1), if k is odd; and {1}, {a, ab?, ..., ab¥2},
{ab, ab’, . . ., ab1}, (b*2}, and {bi,p7i}, for 1 <4< 3(k—2), if &k is
even.

1.7. H C N(H;®), and so by 1.T.3, H has a finite number of conjugates
H=H, H,, ..., H,, say, in G. Since |G:H;|=|G:H| for each ¢,
75
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we can apply 1.T.2 to show successively that H,, H "\ H,, ...,
H NHyMN---MN H, are each of finite index in G. The last of these
subgroups is the required normal subgroup of G.

1.8. By 1.T.1, | G:A M B/ is divisible by both | G:4 | and | G:B |, and
50 by their least common multiple. Since | G:A | and | G:B | are relatively
prime, their least common multiple is | G:A | | G: B |, and so this is at
most | G:A M B |. The result now follows from 1.T.2.

1.9. Let |G:H|=h and |G| =n. Since H C N(H;@G), therefore, by
1.T.3, H has at most h conjugates in G. Since all subgroups have the
identity element in common, the number of distinct elements in these
conjugates of Hisat most 1+ (|H|<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>