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Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the
U(1) Higgs model of particle physics are described by the
Ginzburg-Landau equations (GLE):

—ApV = 121 — VPV
cur? A = Im(UV 4 V)
where (W, A) :RY - C xRY, d =2,3, Vo=V —iA Ay =V2,
the covariant derivative and covariant Laplacian, respectively, and

k is the Ginzburg-Landau material constant.

The GLE are the Euler-Lagrange equations for the
Ginzburg-Landau energy functional
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Eq(V, A) /{VA\II|2+|curIA|2 (\w\2—1)2}7 (1)

with apprpriate b.c. . Here ¥ is any domain in R2.



Origin of Ginzburg-Landau Equations

Superconductivity. V is called the order parameter,

|W|? is the density of (Cooper pairs of ) superconducting electrons;
A is the magnetic potential;

Im(WV 4W) is the superconducting current.

Particle physics. W and A are the Higgs and U(1) gauge
(electro-magnetic) fields, respectively. (Part of Weinberg - Salam
model of electro-weak interactions/ a standard model.)

Similar equations appear in other areas of physics and material
sciences.

Extensions: Yang-Mills-Higgs and Seiberg-Witten equations



Ginzburg-Landau equations on surfaces

To model superconducting thin membranes, or quantum engines
(nano-devises), one considers the GLE on 2D surfaces, ¥,

Figure: Compact and non-compact Riemann surfaces.

If the magnetic field # 0, then, instead of functions, ¥, and
vector-fields, A, we have to consider sections W and connection
one-forms, A, on a U(1) line bundle L over ¥.



Ginzburg-Landau Equations

The Ginzburg-Landau equations on a U(1) line bundle L — X over
a manifold ¥ are written as

ApV = 2(|V)? = 1)V, (2a)

d*dA = Im(WV V). (2b)

Here W is a section and A, a connection one-form on L — X,
Ap=V,3Va, Vaand V7 are the covariant derivative and its
adjoint, and d and d* are the exterior derivative and its adjoint.

The GLE are the Euler-Lagrange equations for the
Ginzburg-Landau energy functional

1 K2
Eo(¥,A) = 5 [ {IVaVP+]dAR + (¥ - 12} (@)

Let X be a Riemann surface (i.e. 2D complex Riem manif.) of finite vol.



Equivariant functions and vector fields

By the key uniformization theorem for Riemann surfaces, a Riem. surface
Y of genus 1 is torus and can be given as T = C/A, where A is a
standard lattice, and of genus > 2 can be given by

Y =H/T,
where H is the Poincaré half-plane
H:={zeC:Imz>0}.

and I, a Fuchsian group. (i.e. a discrete subgroup of the group of
isometries PSL(2,R) acting on H by M&bius transforms
vz=%g r=(2g) €l

Sections and connections of the line bundle over the Riem. surf.
<= [—equivariant functions and vector fields,

(W, A)(s™'x) = TE" (W, A), Vs €T, (4)
where TS 1 (W A) — (eXW, A + dY), the gauge transform.

The GLE on line bundles on ¥ <= the GLE for complex functions
and real vector-fields on H satisfying (4).



Examples

An important class of examples are the Riemann surfaces
Y . =H/I(N), N=1,2,..., (5)

where I'(N) is the principal congruence subgroup of level N,

r(N) := {’yz(i Z) €SL(2,Z):a=d=1,b=c=0 mod N}.

An explicit bundle E — ¥ satisfying condition
dimg Null(=A s, — by) =1,
is

Y =H/I(6), degE =12. (6)



Fundamental domains

Recall a fundamental domain, F, of a group I acting on a topological
space X is a closed subset of X s.t.

X =UgergF and gFNg'F=0(gF)Nd(g'F) Vg #g'

2

Tiling of the Poincaré (hyperbolic) plane by fundamental domains



Fundamental domains 2

The GLE on line bundles on ¥ <= the GLE for complex functions
and real vector-fields on a fundamental domain F of I satisfying
appropriate (equivariant) boundary conditions.

T

-1 0 1 x

Figure: A fundamental domain of the principal congruence subgroup I'(2)
of level 2.
a b o, o

Examples of tiling of the Poincaré disk by fundamental domains:
P SRR,




General properties

Gauge symmetry: If (W, A) is a solution of GLE, then for any
h € C®(X, U(1)) the pair (hW, A — ih~1dh) is also a soln of GLE

Quantization of flux: Let F4 = dA be the curvature of a
connection A on a line bundle L. Then

Theorem.(Chern-Weil correspondence) The flux of the curvature
Fa is quantized: 5= [¢ Fa (= c1(L)) = deg(L) € Z.

Constant curvature connections on L: A with F4 of the form
Fa = bw, where b is a constant and w is the symplectic volume
form on X. Then Chern-Weil corresp. thm implies

27Tn

~ vol( X) ~ vol(Z ()

Proposition. (0,A) solves GLEs <= A is a c. c¢. connect. on L.



Result 1: Existence and expansion
Let (X, h,), r > 0, be a compact or non-compact Riemann surface
equipped with the finite area hyperbolic metric

b= G @4z (r>0) (8)

Let L be a unitary line bundle over ¥ and deg L, the topol. degree of L.

Theorem 1 (Existence and expansion). Suppose r > 0 satisfies
0 < |k?r — b| < 1, with b :=2mdeg L/ |X| > 0.
Then 3 e > 0s.th. GLE with metric (8) has a C2 branch of solns
(W, As, 15), s € C, |s| < e, satisfying rs = b/r2 + O(|s|?) and

Vs =€ + O?-Lk(|s|3)a (9)

As = A% + s a+ Op(sl), (10)
where £ = Oyk(1) is gauge-equivalent to a holom. section of L,
b, :=b/r and a = Oy (1) is a co-closed 1-form satisfying

1

da = 5 * (1—1¢%) * = Hodge operator. (11)



Result 2: Uniqueness

Recall, b, := b/r, with b:=2mdeg L/ |x| > 0.

Theorem 2 (Uniqueness). Under the conditions of Theorem 1,
Null(—A 46, — by) is finite dimensional and, if

dimg Null(—A g, — by) =1, (12)

then we can take s € R>q, and the solution (W5, As, r5), s € R,
|s| < e, is unique in U C X*, up to a gauge symmetry, and
equation r = rg can be solved for s giving s = s(r) leading to the
solution

(W(r),A(r)) = (Ys(r); As(r),  Vr>0.



Result 3: Energy

Theorem 3 (Energy asymptotics). For the solution (W), Ag(y))
constructed above and the constant curvature solution (0, A”) ,

N b= R e
g(ws(r)ﬂqs(r)) - 5(07 a ) 4 (IiZ _ %),B(I’) + %
+0(|&% — b}, (13)

where, recall, b, = b/r, with b := 2w deg E/(|X| r) and

S (5 RO 1
B(r) = {<|§‘2>2 L€ € Null(—A s — b))}, (F) = |Z|r/f.

= E(Vy(r), As(r)) < E(0, APr), provided k > kc(r), where

—_

ke(r) = E(l— B(lr)) (14)

Hence, if K > k(r), then the solutions constructed in Thm 1 are
energetically favourable compared to the constant curvature one.



Key step: Linearized GLE

Linearize GLE around the constant curvature solution (0, A?) =
(—Aps — K2r)€ =0, d*da = 0.

Let S(X) = Sk(X) denote the space of cusp forms on ¥ with
weight k = 2b = 47n/ |Z£|. We have the following.

Theorem. Let ¥ = H/I be a non-compact Riemann surface with
elliptic points. Then —A 45 is self-adjoint and satisfies

(a) —As > b and b is an eigenvalue of —A 4 if and only if
S(X) # 0, and the multiplicity of b equals to dim S(X);

(b) The essential spectrum of —A 45 consists of m branches each
of which filling in the semi-axis [1/4 + b?, 00), where m = #
cusps (defined later). Hence,

Oess(—App) = [1/4 + b2, 0).



Cusps
Definition (Cusp) Let I' be a Fuchsian group. A point c € RU {o0} is
called a cusp of [ <= J v €T that is conjugate-equivalent to some
horizontal translation z+— z+ h, h € R, s.th. v¢ = c.

For example, I = SL(2,Z) has the only cusp ¢ = oo, as every integral
translation z — z + n, n € Z fixes c.

z=-1z=0 z=1 Imz =0

Figure: A fundamental domain of '(2) in H with three cusps
a=1,¢6=0,c =o00. (—1is equivalent to ¢, thru transl. z+— z+2.)

The principal congruence subgroup I' = T'(N) has 3 cusps for N = 2 and
3N?TT,n (1 — 2) cusps for N > 2.



|deas of the proof 1: Decomposition of %
(a) Let 90 = proj of V4 on (0, 1)-forms. By the Weitzenbdck -type
formula, —A, = 87°0” + xF,, we have

—Ag>b and  Null(—=Ag — b) = Null 9ps
— b is an eigenvalue of —A 4 iff Null 0 is non-empty.

(b) We identify X with a fundamental domain Fx C H of I and
decompose Fyx into a compact connected set, Uy, and neighbourhoods U;
of the cusps ¢;, in such a way that

UnUi=0forl<i#j<m, and Uy:=Fs \ U, U; is compact.

Us —
Ur

z=-12z=0 z=1

2—>

Imz=0

Figure: Schematic diagram for the decomposition of a fundamental domain of
I(2) in H with three cusps c1 = 1, =0, c3 = 0.



Ideas of the proof 2: Maps of cusps

We maps the domains U;, i = 1,..., m, isometrically onto the
half-cylinders (for some s; > 1)

Zi:={zeC:lmz> s}/Z.
The corresponding maps ; are given by
Z = — (C,' 75 OO)7
wi - zZ—C

z—z (¢ =00)

Imz

So---

¥2

Figure: Schematic diagram illustrating map ¢, associated to cusp ¢; = 0.

On Z;'s we solve the spectral problem explicitly and then patch different

spectra using a partition of unity.



|dea pf the proof 3: Spectrum of a cusp
By the map ;, which maps U; isometrically onto the half-cylinder Z;

Z,'—>

— zzllmz:O

Figure: The half-cylinder Z; :={z € C:Imz > s;}/Z
the operator —AAb|U‘ is mapped unitarily to then operator
—A s, with A := by~ tdx,
acting on L?(Z;) with the Dirichlet b. c. = (easy estimate)
1
Patching different spectra using a partition of unity, we conclude
Oess(—Dp) C [1/4+ b2, 0),

which concludes the essential part of (b). O



Bifurcation from Constant Curvature Connection

Recall the linearized the GLE on the constant curvature solution
uP = (0, AP), where AP is a c.c. connection on L:

(A — K2)E=0, d*da =0
where £ is a section on L and « one-form on X.

The first equation was investigated above to obtain that, if Null 5Ab
(= the space of holomorphic sections of L — X¥) is non-empty,
then b is the smallest eigenvalue of —A 4» and is isolated.

For the second equation we have
Proposition d*d > 0 and the solution space to d*da = 0 in H? is

Null d*d|, = {harmonic 1-forms on ¥} = HiR(Z,R).  (16)

= bifurcation of non-trivial energy minim. solns of the GLEs at
b = K2



Summary

» We described the Ginzburg-Landau equations on general
Riemann surfaces and its general properies.

> We presented our recent results on existence of energy
minimizing solutions and gave some ideas of the proof.



Thank-you for your attention



