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Preface

The term “weakly differentiable functions” in the title refers to those inte-
grable functions defined on an open subset of B* whose partial derivatives
in the sense of distributions are either L? functions or (signed} measures
with finite total variation. The former class of functions comprises what
is now known as Sobolev spaces, though its origin, traceable to the early
1900s, predates the contributions by Sobolev. Both classes of functions,
Sobolev spaces and the space of functions of bounded variation {BV func-
tions), have undergone considerable development during the past 20 years.
From this development a rather complete theory has emerged and thus has
provided the main impetus for the writing of this book. Since these classes
of functions play a significant role in many fields, such as approximation
theory, calculus of variations, partial differential equations, and non-linear
potential theory, it is hoped that this monograph will be of assistance to a
wide range of graduate students and researchers in these and perhaps other
related areas. Some of the material in Chapters 1-4 has been presented in
a graduate course at Indiana University during the 1987-88 academic year,
and [ am indebted to the students and colleagues in attendance for their
helpful comments and suggestions.

The major thrust of this book is the analysis of pointwise behavior of
Sobolev and BV functions. I have not attempted to develop Sobolev spaces
of fractional order which can be described in terms of Bessel potentials,
since this would require an effort beyond the scope of this book. Instead,
I concentrate on the analysis of spaces of integer order which is largely
accessible through real variable techniques, but does not totally exclude
the use of Bessel potentials. Indeed, the investigation of pointwise behavior
requires an analysis of certain exceptional sets and they can be conveniently
described in terms of elementary aspects of Bessel capacity.

The only prerequisite for the present volume is a standard praduate
course in real analysis, drawing espectally from Lebesgue point theory and
measure theory. The material is organized in the following manner. Chap-
ter 1 is devoted to a review of those topics in real analysis that are needed
in the sequel. Included here is a brief overview of Lebesgue measure, L7
spaces, Hausdorff measure, and Schwartz distributions. Also included are
sections on covering theorems and Lorentz spaces—the latter being neces-
sary for a treatment of Sobolev inequalities in the case of critical indices.
Chapter 2 develops the basic properties of Sobolev spaces such as equiva-
lent formulations of Sobolev functions and their behavior under the opera-
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tions of truncation, composition, and change of variables. Also included is a
proof of the Sobolev inequality in its simplest form and the related Rellich-
Kondrachov Compactness Theorem. Alternate proofs of the Sobolev in-
equality are given, including the one which relates it to the isoperimetric
inequality and provides the best constant. Limiting cases of the Scbolev
inequality are discussed in the context of Lorentz spaces.

The remaining chapters are central to the book. Chapter 3 develops the
analysis of pointwise behavior of Sobolev functions. This includes a dis-
cussion of the continuity properties of functions with first derivatives in
I” in terms of Lebesgue points, approximate continuity, and fine conti-
nuity, as well as an analysis of differentiability properties of higher order
Sobolev functions by means of LP-derivatives. Here lies the foundation for
more delicate results, such as the comparison of LP-derivatives and dis-
tributional derivatives, and a result which provides an approximation for
Sobolev functions by smooth functions (in norm) that agree with the given
function everywhere except on sets whose complements have small capacity.

Chapter 4 develops an idea due to Norman Meyers. He observed that
the usual indirect proof of the Poincaré inequality could be used to es-
tablish a Poincaré-type inequality in an abstract seiting. By appropriately
interpreting this inequality in various contexts, it yields virtually all known
inequalities of this genre. This general inequality contains a term which in-
volves an element of the dual of a Sobolev space. For many applications,
this term is taken as a measure; it therefore is of interest to know precisely
the class of measures contained in the dual of a given Sobolev space. For-
tunately, the Hedberg-Wolff theorem provides a characterization of such
measures.

The last chapter provides an analysis of the pointwise behavior of BV
functions in a manner that runs parallel to the development of Lebesgue
point theory for Sobolev functions in Chapter 3. While the Lebesgue point
theory for Sobolev functions is relatively easy to peneirate, the corre-
sponding development for BV functions is much more demanding. The
intricate nature of BV functions requires a more involved exposition than
does Sobolev functions, but at the same time reveals a rich and beautiful
structure which has its foundations in geometric measure theory. After the
structure of BV functions has been developed, Chapter 5 returns to the
analysis of Poincaré inequalities for BV functions in the spirit developed
for Sobolev functions, which includes a characterization of measures that
belong to the dual of BV.

In order to place the text in better perspective, each chapter is con-
cluded with a section on historical notes which includes references to all
important and relatively new results. In addition to cited works, the Bib-
liography contains many other references related to the material in the
text. Bibliographical references are abbreviated in square brackets, such as
|DL). Equation numbers appear in parentheses; theorems, lemmas, corollar-
ies,and remarks are numbered as a.b.c where b refers to section b in chapter

Preface ix
a, and section a.b refers to section & in chapter a.

I.wlsh to thank David Adams, Robert Glassey, Tero Kilpeliinen
Christoph Neugebauer, Edward Stredulinsky, Tevan Trent, and Williarr;

K. Ziemer for having critically read parts of the manuscript and supplied
many helpful suggestions and corrections.

WILLIAM P. ZIEMER
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Preliminaries

Beyond the topics usually found in basic real analysis, virtually all of the
material found in this work is self-contained. In particular, most of the in-
formation contained in this chapter will be well-known by the reader and
therefore no attempt has been made to make a complete and thorough pre-
sentation. Rather, we merely introduce notation and develop a few concepts
that will be needed in the sequel.

1.1 Notation

Throughout, the symbol 2 will generally denote an open set in Euclidean
space " and @ will designate the empty set. Points in-R® are dencted by
€= (zy,...,Z,), where 71 € R, 1 < i< n. If 2, ¥ € R", the inner product

of z and y is

T-y= inyi

i=1

and the norm of z is

2l = (= - 2)/2,

If w: @ — R? is a function defined on {2, the support of u is defined by
sptu = 0N {z:u(z) # 0},

where the closure of a set § C R™ is denoted by 5. If S c 0, § compact
and also S C 2, we shall write § cC §I. The boundary of a set S is defined

by -
85 =85n(R* - 3).

For E C R" and x € R™, the distance from z to E is
d{z, E) = inf{|lz — y| : y € E}.
It is a simple exercise (see Exercise 1.1} to show that
|d(z, E) - d(y, E)| < |z - ]
whenever z,y € R". The diameter of a set £ ¢ R" is defined by

diam{E) = sup{jz — y{ : x,¥ € E},
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and the characteristic function E is denoted by xg-. The symbol
Bz,7)={y:lz -yl <7}

denotes the open ball with center z, radius r and
B(z,r)={y:lz~yl<r}

will stand for the closed ball. We will use a(n) to denote the volume of the
ball of radius 1 in R*. If &« = (a1,...,@,) is an n-tuple of non-negative
integers, a is called a mulii-indez and the length of o is

la| = Z a;.

Ifz=(z1,...,2,) € R*, we will let

(4] k]

r* =gz 29 an

---In

and ol = aylag!- - ay!. The partial derivative operators are denoted by
D; = 8/8z; for 1 < i< n, and the higher order derivatives by

Dcx — DCH . “Dan —_ akﬂl —_
It L Tl

The gradient of a real-valued function u is denoted by
Du{z) = (D1u(z), ..., Dyu(z)).

If k is a non-negative integer, we will sometimes use D*u to denote the
vector D*u = {D%u}jq|=k-

We denote by C%(2) the space of continuouns functions on 2. More gen-
erally, if k is a non-negative integer, possibly oo, let

CHO) = {u:w: - R, D*u e C%(Q), 0< el <k},
CE() = C¥(Q) N {u : spt u compact, spt u C 2},
and
C*() = C*(Q) N {u: D®u has a continuous extension to 2,0 < la| < k}.

Since §2 is open, a function « € C*{£2) need not be bounded on (. However,
if u is bounded and uniformly continuous on {1, then u can be uniquely
extended to a continuous function on §I. We will use C¥(£}; R™) to denote
the class of functions u:§2 — R™ defined on Q whose coordinate functions
belong to C*{Q). Similar notation is used for other function spaces whose
elements are vector-valued.

1.2. Measures on R™ 3

' Ifo <‘a < 1, we say that u is Hélder continuous on  with exponent o
if there is a constant C such that

lufz) —u(y)l < Clz - yi*, z,yeq.

We designate by C%*(0) the space of all functions u satisfying this condi-
tion on {1 In case a = 1, the functions are ealled Lipschitz and the constant

C if :ienoted by Lip(x). For functions that possess some differentiability,
we le ’

k. /ey ol —
CHQ) = C™* @) N {u: DPu e CO(R), 0 < |4) < k).
Note that C*({}) is a Banach space when provided with the norm

|DPu(z) — DPu(y)|

Sup sup + b
I8i=k = yea [z =g o J2X  SUD D7 u(z)).
z#y

1.2 Measures on R"

For the definition of Lebesgue outer measure, we consider closed n-dimen-
sional intervals

I={.r:a,-5:r,-$bi, i=1,...,ﬂ}

and their volumes
n

v(l} = H(be - @;).

=1

The Lebesgue outer measure of an arbitrary set £ C R™ is defined by

|E| = inf{z v(Il): EC U I, I an interva.l} (1.2.1)

A set F is said to be Lebesgue measurable if
|[A| ={ANE[+]ADN (R" - E)| (1.2.2)

whenever A C R™.
The reader may consult a standard text on measure theory to find that

_the Lebesgue measurable sets form a o-algebra, which we denote by A; that
is

() &, R" € A.

(ii) If E1,Es,... € A, then
UEiea (1.2.3)
i=1
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(iii) f E€ A, then R* — E € A.

Observe that these conditions also imply that A is also closed under count-
able intersections. It follows immediately from (1.2.2) that sets of measure
zero are measurable. Also recall that if Ej, E2,... are pairwise disjoint

measurable sets, then
(= ») ol
UE|= Z | B3 (1.2.4)
i=1

=1
Moreover, if By C E; C ... are measurable, then
| Ei| = lim |Ei] (1.2.5)
f— o0 -
i=1
and if E; D E; O ..., then
= e]
) Ei| = lim |Ei| (1.2.6)
11— 00
i=1

provided that |Eg| < co for some k.
Up to this point, we find that Lebesgue measure possesses many of the

continuity properties that are essential for fruitful applications in analysis.
However, at this stage we do not yet know whether the o-algebra, A, con-
tains a sufficiently rich supply of sets to be useful. This possible objection

is met by the following result.
1.2.1. Theorem. Each closed set C C R"™ is Lebesgue measurable.

In view of the fact that the Borel subsets of B® form the smallest o-
algebra that contains the closed sets, we have

1.2.2. Corollary. The Borel sets of R™ are Lebesgue measurable.

Proof of Theorem 1.2.1. Because of the subadditivity of Lebesgue mea-
sure, it suffices to show that for a closed set C' C R™,

A= |[ANC|+ [AN(R" - C}] (1.2.7)
whenever 4 ¢ R™. This will follow from the following property of Lebesgue
outer measure, which follows easily from (1.2.1):

|Au Bl = |A| + B} (1.2.8)
whenver A, B € R* with d(A, B) = inf{|z~y| : # € A,y € B} > 0. Indeed,

it is sufficient to establish that |AL B > |A|+|B|. For this purpose, choose
£ >0 and let

AUBC UIk where

k=1

1.2, Measures on R® 5
(s a)
D_ v} <|AUB|+e. (1.2.9)
i=1

Because d{A, B) > 0, there exists disjoint open sets U/ and V such that
AcCU, BcvV. (1.2.10)
Clearly, the covering of AU B by {Ix} ean be modified so that, for each k,
LLcUuv (1.2.11)

and that (1.2.9) still remains valid. However, (1.2.10) and (1.2.11) imply

o0

Y o) > |41 +B).

i=1

In order to prove (1.2.7), consider A € R* wi
2.7), th |4] < d I j =
{z :d(z,C) < 1/i}. Note that Al < 00 and et G

dA-Ci,ANC)>0
and therefore, from (1.2.8),
JA| 2 (A-C)u(ANC) 2 JA- G| + [AnC). (1.2.12)
The proof of (1.2.7) will be concluded if we can show that
lim |A - Cil=|4-C).

i—0o

Note that we cannot: invoke (1.2.5) because it is not known that A — C; is
measurable since A is an arbitrary set, perhaps non-measurable. Let

. 1 1
T,= AN {;-,- 3 < d(,0) < E} (1.2.13)

and note that since C is closed,

A-C=(A-C)u (U T.-) (1.2.14)

i=j
which in turn, implies
lA-Cl<iA-Gl+ 3 1Tl (1.2.15)
i=j

Hence, the desired conclusion will follow if it can be shown that

>_ITi| < oo. (1.2.16)

i=1
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To establish this, first observe that d(T;,T;) > 0 if |i — j} 2 2. Thus, we
obtain from (1.2.8) that for each positive integer m,

U Ty

i=1

m
= Z | T2 < |A| < o0,

=1

ZT25~1 = UTzi—l < JA| < o0
i=1 i=1
This establishes (1.2.16) and thus concludes the proof. O

1.2.3. Remark. Lebesgne measure and Hausdorff measure (which will be
introduced in Section 1.4) will meet most of the applications that occur
in this book, although in Chapter 5, it will be necessary to consider more
general measures. We say that x 18 a measure on R"™ if p assigns a non-
negative (possibly infinite) number to each subset of B" and w(o) =0. It
is also accepted terminology to call such a set function an outer measure.
Following (1.2.2), a set E is called u-measurable if

#(A) = g(AN E) + p{AN(R" — E))

whenever A C R™. A measure p on R" is called a Borel measure if every
Borel set is y-measurable. A Borel measure u with the properties that each
subset of B® iz contained within a Borel set of equal p measure and that
p#{K) < oo for each compact set K C R" is called a Radon measure.

Many outer measures defined on R" have the property that the Borel sets
are measurable. However, it is sometimes necessary to consider a larger o-
algebra of sets, namely, the Suslin sets, (often referred to as analytic sets).
They have the property of remaining invariant under continuous mappings
on R", a property not enjoyed by the Borel sets. The Suslin sets of R™ can
be defined in the following manner. Let A denote the space of all infinite
sequences of positive integers topologized by the metric

i 2 ¥a; — bl

pry + IO‘..' - b,ﬁl
where {a;} and {b;} are elements of V. Let R* x N be endowed with the
product topology. If

p: A" x AN — R®
is the projection defined by p(z,a) = =z, then a Suslin set of R* can be
defined as the image under p of some closed subset of R® x A,

The main reason for providing the preceding review of Lebesgue measure

is to compare its development with that of Hausdorff measure, which is
not as well known as Lebesgue measure but yet is extremely important in

geometric analysis and will play a significant role in the development of
this monograph.

1.3. Covering Theorems 7
1.3 Covering Theorems

Befolre discussing Hausdorff measure, it will be necessary to introduce sev-
eral 1mp01.'tant and useful covering theorems, the first of which is based on
the following implication of the Axiom of Choice.

Hausdorff Maximal Principle. If € is a family of sets (or a collection

of families of seis) end if {UF : F € F} € £ ;
with the property that } for any subfamily F of £

FCGorGCF whenever F,G € F,

then there exists E C € which s mazimal tn the sense that it is not a subset
of any other member of €.

. The following notation will be used. If B is a closed ball of radius r, let
B denote the closed ball concentric with B with radius or. ,

1.3.1. Theorem. Let G be a family of closed balls with
R =sup{diam B : B € G} < .

Then there is 6 subfamily F C G of pairwise disjoint elements such that
{UB:BeG)c{uB:BeF)

In fact, 3

Bcfgllfor each B € G there ezists B, € F such that BNB; #0 and

Proof. We determine F as follows. For i=12. . let

G;:gn{B:§<diamBg—R },

251
and observe that ¢ = U® ,G;. N . ]
as follows, 7=19;- Now proceed to define F; C G; inductively

lLet FiL C ¢ bean arllz)itrary maximal subcollection of pairwise disjoint
elemnents. Such a collection exits by the Hausdorff maximal principle. As-

suming that F,, 5, i—1 h i
! g th s+« +175-1 have been chosen, let F; be ir-
wise disjoint subcollection of , 7 0% & maximal pair

i-1
G;n {B : BN B = @ whenever B € U .7-'.} (1.3.1)

i=1

Thus, f(')r each B ¢ g,-_, J 2 1, there exists B, € U;LIJ-',- such that BN B, #
@. For if not, the family F} consisting of B along with all elements of F;
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would be a pairwise disjoint subcollection of (1.3.1), thus contradicting the
maximality of F;. Moreover,

. R R .
diam B 5 F = 25; S 2d1&ﬂ1B1

which implies that B C By. Thus,

j
{UB:BEQ,-}C{UB‘:BEUR},

i=1

and the conclusion holds by taking

o
F=|JF. o

i=1

1.3.2. Definition. A collection G of closed balls is said to cover a set
E ¢ R™ finely if for each £ € E and each ¢ > 0, there exists B(z,r) € G
and r < €.

1.3.8. Corollary. Let E C R" be a set that is covered finely by G, where
G and F are as in Theorem 1.3.1. Then,

E-{UB:BeF}c{UB:BeF-F}
for each finite collection F* C F,

Proof. Since R*~{UB : B € F*} is open, for eachz € E—{UB: B € F*}
there exists B € G such that ¢ € B and BN[{UB: B € F*}} = 0. From
Theorem 1.3.1, there is B; € F such that BN By # & and By O B. Now
B, ¢ F* since BN B; # @ and therefore

ze{UB:BeF-F}. o

The next result addresses the question of determining an estimate for
the amount of overlap in a given family of closed balls. This will also be
considered in Theorem 1.3.5, but in the following we consider closed balls
whose radii vary in a Lipschitzian manner. The notation Lip(h) denotes
the Lipschitz constant of the mapping A.

1.3.4. Theorem. Let § C U C R" and suppose h: U — (0, c0) is Lipschilz
with Lip(h) < A. Let a > 0, 8 > 0 with Aa < 1 and A3 < 1. Suppose the
collection of closed n-balls {B(3, h(s)) : s € §} is disjornted. Let

S; = 50 {s: B(x,ah(z)) N B(s, Bh(s)) # 0}.

1.3. Covering Theorems

Then

(1-28)/(1+ Aa) < h(z)/h(s) < (1+ AB)/(1 - Aa) (1.3.2)

whenever s € 5, and

card(S) < [+ (B + 1)(1+ Ma)(1 ~ A (L + AZ)/(1 — Ao

where card(S,) denotes the number of elements in S,.

Proof. If 3 € S,, then clearly |z — 8} < ah(z) + Bh(s) and therefore
Ih(z) ~ h(s)| < Mz — s| < dah(z) + ABh(s),

(1 - AB)h(s) < (1 + da)h(z),

(1-2da)h(z) < (1 + AB)h(s). (1.3.3)
Now,

£ — 8| + h(s} < ah(z) + (B+ 1)h(s)
< ah(z) + (8+ 1)[(1 + da)/(1 - AB)jk(z)
= vh(z)
where v = a + (8 + 1)(1 + Aa)/(1 ~ A8). Hence
B(s,h(s)) ¢ B(z,7h(r)) whenever s ¢ Sz.
Since {B(s, h(s)}} is a disjoint family,
Zsj (B(s, h(s))] < [B(s, vh(z))]
3€S;

or from (1.3.3)

card(Sz)a(n){(1+2a)(1-28) A=) < 3 a(n)h(s)" < a(n)yh(z)]". O
. aES,

We now consider an arbitrary collection of closed balls and find 2 sub-

cover which is perhaps not disjoint i
o ver which joint, but whose elements have overlap which

1.3.5. Theorem. There is g 141
n. positive number N > 1 depending only on
;} iht:: ;:n?_ family B of closed balls in R™ whose cardinality is go Ie.s!:r tha:i
A n k = sup{r : Q(a, r)_ € B} < oo contains disjointed subfamilies B;
2., B such that if A is the set of centers of balls in B, then ’

N
Ac|{J{uB: B eB.

i=1
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Proof.

Step I Assume A is bounded.

Choose By = B{ay,r1} with r{ > 3R. Assuming we have chosen By, ...,
Bj;_y in B where j > 2 choose B; inductively as follows. If 4; = A ~
Uf;ll B; = 0, then the process stops and we set J = j. If A; # @, continue
by choosing B; = B(a;,r;) € B so that a; € A; and

rj > gsup{r : B(a,r) € B,a € Aj}. (1.3.4)

If A; # o for all j, then we set J = +00. In this case limj_,7; = 0
because A is bounded and the inequalities

;2 i Ty .
]ai—aj|>r;=E+-r;>§'+?J, fori < 7,

3 3
imply that
{B(aj,r;/3) : 1 < j < J} is disjointed. (1.3.5)
In case J < oo, we clearly have the inclusion
Ac{uB;:1<j<J} {(1.3.6)

This is also true in case J = +00, for otherwise there would exist B{a,r) €
B with a € N$2,4; and an integer j with r; < 3r/4, contradicting the
choice of B;.

Step II. We now prove there exists an integer M (depending only on n)
such that for each k with 1 < k < J, M exceeds the number of balls B;
with 1 <¢ <k and B; N B # @.

First note that if r; < 10r, then

B(a.-,ri/B) C B(ak, 151‘;:)
because if ¢ € B{a;,r:/3),

|z ~ e £ |z — a;| + |a; — ekl
<0k /3 + 7 + 7x
< 43ry /3 < 157y
Hence, there are at most (60)" balls B; with
1<i<k, BinBy #0, and r; < 10r;
because, for each such 1,
B(a,', !"if3) C B(ak, 151';:),

and by (1.3.4) and (1.3.5)

iy ey " 1
|Blasry/3) = Bi- (3) > 1Bil- () = gl Blar 157l

1.3. Covering Theorems 11

To complete Step 11, it remains to estimate the number of points in the set
I= {i 11Ki<g k,B,'an # O, > 107, }.

For this we first find an absolute lower bound on the angle hetween the two
vectors
i —ox and a; —ay

corresponding to 4,5 € I with { < J. Assuming that this 1 /
consider the triangle s wele o < /2,

and assume for notational convenience that r, = 1, d = |a; — ai|. Then
0 <ry <ag—ag) <ry+1 and la; —a;| > ry
because i € I, ay, ¢ B;, B, n By # 0, and a; € B;. Also
We<ry<d<r; +1 <gr,-+1

because j € I, g5 ¢ B;, B;N By # 0, and (1.3.4) applies to r;.
The law of cosines yields

. — 2
cosa = |a; a| +d2_[aiha}_|2< (Ti+1)2+d2—-r‘?

2ja; — axjd - 2r;id
2r; +1+d%2 ] 1 d 1 1 dr; 1
= —_— = - + r— + —_— _ —_ ._.._1 —_—
ored d 2wrd o “atwmate, t o

1 1 4 1
< —_ 4 — - _. .
=10 200+6+2{] < .822;

hence |af > arccos .822 > 0. Consequently, the rays determined by a; — ay

and a, —a intersect the boundary of B ax, 1} at points that are separated
by a distance of at least 1/2(1 — cos @). Since the boundary of B(ay, 1)
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has finite H*! measure, the number of points in I is no more than some

constant depending only on n.

Step III. Choice of By, ..., By in case A is bounded.

With each positive integer j, we define an integer A; such that A; = J
whenever 1 € j < M and for j > M we define ;. inductively as follows.
From Step II there is an integer A;41 € {1,2,..., M} such that

BJ-+1 N {UB,‘ 1<i<i M= )ﬁj+1} = (.
Now deduce from (1.3.6} that the unions of the disjointed families
Bl = {B, :/\,‘ =1},...,BM = {B,' :/\,; T—M}

covers A.

Step IV. The case A is unbounded.

For each positive integer £, apply Step III with A replaced by E; =
AN {z:3(¢ - 1)R < |z| < 3R} and B replaced by the subfamily Cy of B
of balls with centers in E;. We obtain disjointed subfamilies B{, ..., B of
C¢ such that

M
E;c | J{uB: BeBf}.
t=1
Since PN Q = @ whenever P € B!, @ € B™ and m > £+ 2, the theorem
follows with
o0 o0
B =JB¥",....Bu=JBY"’
=1

=1

oo oo

2t 2¢

Byy = U31 sy Bapg = UB:!M
=1 =1

and N = 2M, O

We use this result to establish the following covering theorem which
contains the classical result of Vitali involving Lebesgue measure. An in-
teresting and novel aspect of the theorem is that the set A is not assumed
to be p-measurable. The thrust of the proof is that the previous theorem
allows us to obtain a disjoint subfamily that provides a fixed percentage of
the u measure of the original set.

1.3.6. Theorem. Let p be a Radon measure on R" and suppose F is a
family of closed balls that covers a set A C R™ finely, where u(A) < oo
Then there exists a countable disjoint subfamily G of F such that

p(A-{UB:Beg})=0.

1.3. Covering Theorems 13

_Proof. Chf:-ose € > Osothat ¢ < 1/N, where NV is the constant that appears

?}11 tile previous theorem. Then F has disjointed subfamilies By,...,Bysuch
a

N
Ac|J{uB: BeB}
i=1
and therefore

N
u(4) <3 u{U(AN B): B € By)).

i=1

Thus, there exists 1 < & < N such that
W{U(ANB): B e B} > 1N u(4),
which imphes
wA-{UB:BeB})<(1— 1/N}u(A).
Hence, there is a finite subfamily By, of By such that
#(A - {UB:BeB}) <(1-1/N +¢)u(A).

Now rep(?at. this argument by replacing A with A, =1 — {UB: B¢ By}
afu.i .F with 71 = Fn{B: BN {UB: B € By,} = 9} to obtain a finite
disjointed subfamily By, of F; such that
Thus,

#(A-{UB:B€ B, UB,}) <{1— 1/N +&)%u(A).

Continue this process to obtain the conclusion of the theorem with
[e =]
g= B 0
t=1

1.3.7. Lemma. Let u and v be Radon measures on R". For each positive

number o let
_J. .. ulBz,r)]
2= {z:oum e )

Then, u(E,) > av(E,).

Proof. By restricting our attention to bounded subsets of Eq, we may
assume that u(E,), v(E,) < co. Let U 3 E4 be an open set. For ¢ > 0
at}d for each x € E,, there exists a sequence of closed balls B(z,ry) U
with r; — 0 such that

u(B(z, )] > (a + e)v[B(z, )]
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This produces a family F of closed balls that covers E, finely. Hence, bﬂ
Theorem 1.3.6, there exists a disjoint subfamily G that covers v almost a

of E,. Consequently

(a+e(Ba) < (ate) Y w(B)< ) w(B) < w(l).
Beg Beg

Since ¢ and U are arbitrary, the conclusion follows. O

If £ is a continuous function, then the integral average of f over a balll ﬁf
small radius is nearly the same as the value of f a_t. t-he center of the ball,
A remarkable result of real analysis states that this is true at (Lebsfsgue)
almost all points whenever f is integrable. The followmg result provides a
proof relative to any Radon measure. The notation

7[ F{y) duly)
Bz}

u[B(z, )] / fly) duly).

{Iir)

denotes

1.3.8. Theorem. Let p be a Radon measure on R and f a locally inte-
grable function on R® with respect to u. Then

lim fy) duly) = f(z})
r—0 B{z,)

for p almost all = € R™.

Proof. Note that

- d
< f @) - s@lduty)

f RIOLTORNE

r

- d
+ ﬁ oy 90— (@)

and if g is continuous, the last term converges to |g(z) — f(z)| as r — 0.

Letting L{z) denote the upper limit of the term on the left, we obtain

L(z) < supf F@) — 9@)ld(@) + lo(z) - F(2).

r>0JB(z,r)

Hence,

>0

{z: L{z) > a} C {w sup ﬁ(x " | f(y) — g(w)idnly) > r:t'/2}

1.4. Hausdorff Measure 15

Ud{z:lg(x) - fz)l > af2},

and therefore, by the previous lemmna,
Wiz 1) > P <2/a [ 17 gldu+2/a [ 11~ sl
n Rn
Since f an |f — gldp can be made arbitrarily small with appropriate choice

of g, cf. Section 1.6, it follows that p({z : L{z) > a}} = 0 for each o > 0.
a

1.3.9. Remark. If 4 and v are Radon measures with u absolutely con-
tinuous with respect to v, then the Radon-Nikodym theorem provides
f € LY(R",v) such that

WE) = [E f(z) dv(z).

The results above show that the Radon-N tkodym derivative f can be taken
as the derivative of 4 with respect to v, that is, ~

. B[B(z,r)]
" o{Blary ~ 1)

for v almost all z € ™.

1.4 Hausdorff Measure

The purpose here is to define a measure on R" that will assign a reason-
able notion of “length,” “area” ete. to sets of appropriate dimension. For
example, if we would like to define the notion of length for an arbitrary set
E C R*, we might follow (1.2.1) and let

[a =) o
AME) = inf {ZdiamA,- EC UA;,}.

i=1 i=1

However, if we take n = 2 and E = {¢sin(1/)):0<t <1}, itis easily
Been that A(E) < co whereas we should have A(E) = oo. The difficulty with
this definition is that the approximating sets A4; are not forced to follow
the geometry of the curve. This is changed in the following definition.

1.4.1. Definition. For each Y20,e>0,and EC R", let

HY(E) = inf {i a{7)27"diam(A;)" : E C D Ai,diam 4; < E} .

i=1 i=1
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Because HY(E) is non-decreasing in &, we may define the v dimensional
Hausdorff measure of E as

H(E) = lim H} (E). (14.1)

In case v is a positive integer, a(y) denotes the volume of the unit ball
in RY. Otherwise, a(y) can be taken as an arbitrary positive constant.
The reason for requiring a(y) to equal the volume of the unit ball in R?
when 4 is a positive integer is to ensure that H”(E) agrees with intuitive
notions of “y-dimensional area” when F is a well-behaved set. For example,
it can be shown that H™ agrees with the nsual definition of n-dimensional
area on an n-dimensional C* submanifold of R***, k > 0. More generally,
if f:R® — R"*k is a univalent, Lipschitz map and £ C R™ a Lebesgue
measurable set, then

[ Jf = HYf(E))
E

where J f is the square root of the sum of the squares of the n x n deter-
minants of the Jacobian matrix. The reader may consult {F4, Section 3.2]
for a thorough treatment of this subject. Here, we will mnerely show that
H™ defined on R"® is equal to Lebesgue measure.

1.4.2. Theorem. If E C R®, then H*(E) = |E|.

Proof. First we show that
HP(E) <|E| forevery €>0.

Consider the case where |E| = 0 and E is bounded. For each 5 > 0, let
U/ O E be an open set with |I/| < #. Since U is open, I/ can be written as
the union of closed balis, each of which has diameter less than ¢. Theorem
1.3.1 states that there is a subfamily F of pairwise disjoint elements such
that

17 c {UB:BeF}

Therefore,

HNE)<HAMU)< Y HE(B) < 3 27 a(n)(diam By)"
BieF B,cF
= ) 27"a{n)5"(diam B;)"
BicF
=5 3 1
BieF
<8"MU| < 5%y,
which proves that H™*(E) = 0 since £ and 5 are arbitrary. The case when E
is unbounded is easily disposed of by considering E 1 B(0,4), i = L,2,....

1.4. Hausdorff Measure 17

(Pj]ach Ef these sets has zero n-dimensional Hausdorff measure, and thus so
oes E, ’

Now suppose E is an arbitrary set with |E
< 00, L
set such that |E| < 0. Let U O E be an open

U] < |E| + 9. (14.2)

Appealing to Theorem 1.3.6, it is i i isjoi
3.6, possible to find a family F of disjoint
closed balls By, B,, ..., such that U B; CU,diam B; < ¢, = 1,2.’, .

and
F-Um

i=1

=0. (1.4.3)

Let E* = U2 (ENB,) and observe that E = (E-E*)UE* with |[E-E*| =
0. Now apply (1.4.1) and (1.4.2} to conclude that

HMNE") < Z 2™ "a(n)(diam B;)"

-
—

1B -

M

1

i

s

Il

B,

1
Ul <1E|+n.

-
0N

il

Because ¢ and n are arbitrary, it follows that A "E*) < |

a n \ < |E|. However,
HYEY< H (E—E*)+H"(E*) with H*{(E—~E*) = (} because |E-E*| =0.
Therefore, H*(E) < |E|.

In o.rdgr to egtablish the opposite inequality, we will employ the isodi-
ametric inequality which states that among all sets £ C R™ with a given

diameter, d, the ball with diameter d has the largest Lebesgue measure:
that is, ‘

|E| £ 27"a(n)(diam E)* (1.4.4)

wht'anew'er E C R™. For a proof of this fact, see [F4, p. 197). From this the
desired inequality follows immediately, for suppose

o
Z: 27 "a(n)(diam E;)" < HYE) +q
i=1

where E C U2 | E;. Applying {1.4.3) to each E; yields

(Bl < Y IB| <3 27 a(n)(diam E;)* < HME) + 5,

=1 =1
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which implies, |E| < H*{E) since £ and n are arbitrary. O

1.4.3. Remark. The reader can easily verify that the outer measure, Hl"’,
has many properties in common with Lebt?sgue outer measure: Fmi examr[; (f.,
(1.2.4), (1.2.5), and (1.2.6) are also vall_d for H” as well as the .an;tha%
of Corollary 1.2.2. However, a striking dlffe.rence between the t:vo E:s that
|E|] < 0o whenever E is bounded whereas this may be false for H7{E). e
important ramification of this fact is the following. A Lebesgue 1';'16&8].[1'8. e
set, E, can be characterized by the fact that_ fpr every £ > {}, there exi

an open set U D F such that
U~ E| <e. (1.4.5)

i i i al for H”.
This regularity property cannot hold in gener.

The tga.ct that H7(E) may be possibly infinite for bounded sets £ can Ibe
put into better perspective by the following fact that the reader can easily
verify. For every set E, there is a non-negative number, d = d(E), such

that
HY(E)=0 if v>d
HYE)=00 if y<d.

The number d(E) is called the Heusdorff dimension of E.

Finally, we make note of the following elementary but useful fact. Sup-
pose f: R¥ — R**" is a Lipschitz map with Lip(f) = M. Then for any set
ECER*

H*[§(E)] < MH*(E). (1.4.6)
In particular, sets of zero k-dimensional Hausdorff measure remain invari-
ant under Lipschitz maps.

1.5 LP Spaces

For 1 < p < 00, I}, () will denote the space consisting of all measurable
functions on § that are p*!-power integrable on each compact subset of £.
L*(0) is the subspace of functions that are p‘"-power integrable on (2. IIL
case the underlying measure is g rather than LebesgPe measure, we will
employ the notation L (Q;p) and LP(§1, ) respectively. The norm on

toc
LP(11) is given by .
llper = ( /ﬂ [u|pd:r:) (15.1)

and in case p = oo, it is defined as

Jlloo.o = essq sup ful. (1.5.2)

1.5. L? Spaces 19

Analogous definitions are used in the case of LP(Q; p) and then the norm
is denoted by

““”p,p:n .

The notation | u(x)dz or sometimes simply [« dr will denote integration
with respect to Lebesgue measure and f udp the integral with respect to
the measure p. Strictly speaking, the elements of LP(R2} are not functions
but rather equivalence classes of functions, where two functions are said
to be equivalent if they agree everywhere on §) except possibly for a set of
measure zero, The choice of a particular representative will be of special
importance later in Chapters 3 and 5 when the pointwise behavior of func-
tions in the spaces W*?(§1) and BV(Q) is discussed. Recall from Theorem
1.3.8 that if u € L1(R"), then for almost every o € R™, there is a number
z such that

]( u(y)dy >z as r— 07,
B(’—‘o;"')

where § denotes the integral average. We define u(zo} = z, and in this
way a canonical representative of  is determined. In those situations where
no confusion can occur, the elements of LP(Q) will be regarded merely as
functions defined on 0.

The following lemama is very useful and will be used frequently through-
out,

1.5.1. Lemma. If u > 0 is measurable, p>0, end E; = {z: u(z) > t},
then

j{; u(z)Pde = fﬂ |EeJdt? = p fn P71 B, |dt. (1.5.3)

More generally, if 1 is a measure defined on some o-algebra of R™, u >0
s @ pu-measurable function, and @ is the countable union of sets of finite
4 measure, then

j‘; wPdy = j; w(Ee)de? = p j; 7 (B, t. (1.5.4)

The proof of this can be obtained in at least two ways. One methed is to
employ Fubini’s Theorem on the product space @ x [0,00). Another is to
observe that (1.5.3) is immediate when u is a simple function. The general
case then follows by approximating u from below by simple functions.

The following algebraic and functional inequalities will be frequently used
throughout the course of this book.

Couchy’s inequality: if ¢ > 0, a,b € R, then

£ 1
ladl < 3lal® + - [b}" (1.5.5)
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and more generally, Young's inequality:
|ab| < _[E{l.lp + EZ%";E (156)
p

herep>1and 1/p+1/p' = 1. ) . '
N Fmr:l) Young's inequality follows Holder’s mequq_hty

/ wwds < [ullpalvlya, p21, (15.7)
0

which holds for functions © € LP{f}), v € ¥ (Q)‘. In case p = 1, we
take p’ = oo and |jvfp.0 = essqsuplv|. Hélder's mequal}ty can be ex-
tended to the case of k functions, u,...,us lying respectively in spaces

(), ..., LPx(fl) where \
| LI (1.5.8)
Z i !

i=1

By an induction argument and (1.5.7) it follows that
[t < - el (1.5.9)
Q

Oune important application of (1.5.7) is Minkowski’s inequality, which states

that (1.5.3) yields a norm on L?(f2). That is,
b+ ol <l + ol (1.5.10)

for p > 1. Employing the notation

][ vdr = |ﬂ|_1][ udz,
2 Q

another consequence of Hélder's inequality is

[ﬁ u”da:] v < [7{; uqu} v (1.5.11)

whenever 1 < p < q and £ C R™® a measurable set with' Q] < oc. .
We also recall Jensen's inequality whose statement involves thef notion
of a convex function. A function A: B® — R! is said to be convex if

A[(1 - t)zy + txg) £ (1 — t)A(z1) + tA(T2),

whenever z;,22 € R™ and 0 < ¢ < 1. Jensen’s inequality states that if A is
a convex function on B and £ C R™ a bounded measurable set, then

A (fE f(w)dr) < f Alf(olas | (1.512)
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whenever f € LY(E).
A further consequence of Hélder's inequality is

lully < fullpfulli =, «e L), (1.5.13)

wherep < g <r,and 1/g = A/p+{1-=X)/r. In order to see this, let o = Ag,
8 = (1— A)q and apply Hélder's inequality to obtain

/ﬂlulqd:',':/nm!a'ufﬁdxs (/ﬂ |U)“zdz)1/z (fnlu',sydx) 'y

where z = p/Ag and y = r/(1 ~ Ag.

When endowed with the norm defined in {15.1), IP(Q), 1 < p < oo,
is & Banach space; that is, a complete, linear space. If 1 < P < 00, it is
also separable. The normed dual of LP() consists of all bounded linear
functionals on LP(Q) and is isometric to L¥ () provided P < 00. Hence,
LP(2) is reflexive for 1 < p < oo, We recall the following fundamental result

concerning reflexive Banach spaces, which is of considerable importance in
the case of LP(02).

1.5.2. Theorem. A Banach space is reflezive if and only if its closed unit
ball is weakly sequentially compact.

1.6 Regularization

Let ¢ be a non-negative, real-valued function in C§°(R™) with the property
that

/ plr)dr =1, spte c B(o,1). (1.6.1)
An example of such a function is given by

_ JCexp[-1/(1 - |z2)]if x| < 1
plz) = {0 if 2] > 1 (1.6.2)
where C is chosen so that _[R,, ¥ = 1. For € > 0, the function welz) =
£ p(x/¢) belongs to C§°(R™) and spt g C B(0,¢). ¢ is called a regular-
izer {or mollifier) and the convolution

we(2) = g ¥ u(z) = /R eele —yu(y)dy (16.3)

defined for functions » for which the right side of (1.6.3) has meaning,
is called the regularization (mollification) of u. Regularization has several
important and useful properties that are summarized in the following the-
orern.
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1.6.1. Theorem.
(i) If u€ L} (R"), then for every ¢ > 0, u, € C°(R"} and D*(pc*u) =
{(D%p.) x 1 for each multi-indez .

(ii} (2} — u(z) whenever z is a Lebesgue point for u. In cose u is
continuous then u. converges untformly fo u on compact subsels of

R,
(iii) If u € IP(R™), 1 < p < o0, then uc € LP(R"), [uclly < [lullp, and

limg o |ue — ul[p = 0.

Proof. For the proof of (i), it suffices to consider |a| = 1, since the case ?f
general @ can be treated by induction. Let e1,..., e, be the standard basis

of B* and observe that
b
ue(T + hey) ~— ue(z) = / f Dipe(x — z + te;)uf2)dtdz
n Jo
h
= f Dipe(x — 2 + tey)u(z)dzdt.
o Jrr

As a function of ¢, the inner integral on the right is continuous, and thus

(i) follows.
In case (ii) observe that

maw—umNs/wax—wmwy—mmwy
Smmwf*j' lu(z) — u(y)|dy — 0
Bz}

as £ — 0 whenever x is a Lebesgue point for u. Clearly the convergence
is locally uniform if u is continuous because u is uniformly continuous on

compact sets. . _
For the proof of (iii), Holder's inequality yields
fue ()] = f ve(T — yu(y)dy

s(/¢4m~w¢0”f(f¢4x—wwwwa0”p

The first factor on the right is equal to 1 and hence, by Fubini’s theorem,

/Rn |ue [Pdz < /" /Rn @e{z — y)|uly)|Pdydz
£ f . /R _e(z — y)luly)[Pddy

= / |u(y){Pdy.
Rﬂ
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Consequently,
ljuelly < llecfi- (1.6.4)

To complete the proof, for each 7 > 0 let p e Co(R™) be such that
= vl < 1. (1.6.5)

Because v has compact support, it follows from (ii) that [lv — ve||, < 7 for
¢ sufficiently small. Now apply (1.6.4) and (1.6.5) to the difference v —
and obtain

lfs = teflp < Jtu - ollp + Jlv - Vellp + {lve — tellp < 3.
Hence u; — uin LP(R") as ¢ — 0. |

1.6.2. Remark. If u € L}(9), then u(z) = e * u(x) is defined provided
z € 2 and ¢ < dist(z,80), It is a simple matter to verify that Theorem
1.6.1 remains valid in this case with obvious modification. For example, if
v € C(2) and ¥ CC N, then v, converges uniformly to u on 2" as ¢ — 0.

Also note that (iii) of Theorem 1.6.1. implies that mollification does
not increase the norm. This is intuitively clear since the norm must take
into account the extremities of the function and mollification, which is an
averaging operation, does not increase the extremities,

1.7 Distributions

In this section we present a very brief review of some of the elementary
concepts and techniques of the Schwartz theory of distributions [SCH] that
will be needed in subsequent chapters. The notion of weak or distributional
derivative will be of special importance,

1.7.1. Definition. Let @ C R* be an open set. The space S ({1) is the
set of all p in C§°(N) endowed with a topology so that a sequence {wi}
converges to an element ¢ in Z(R) if and only if

(i} there exists a compact set K C §) such that spty; C K for every i,
and

(ii) lim; .o, D*p; = D%y uniformly on K for each multi-index a.

The definition above does not attempt to actually define the topology
on Z(£2) but merely states a consequence of the rigorous definition which
requires the concept of “generalized sequences” or “nets,” a topic that
we do not wish to pursue in this brief treatment. For our purposes, it
will suffice to consider only ordinary sequences. It turns out that & (12)
is a topological vector space with a locally convex topology but is not
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a normable space. The dual space, Z'(2), of () is called the space of
(Schwartz) distributions and is given the weak*-topology. Thus, T; € Z({)
converges to T if and only if T;(p) — T(i) for every p € Z(Q).

We consider some important examples of distributions. Let i be a Radon
measure on {I and define the corresponding distribution hy

T(p) = [ o(z)ds

for all ¢ € @ (Q). Clearly T is a linear functional on Z(Q) and |T(¢)| <
|2i(spt )il oo, from which it is edsily seen that T is continuous, and thus a
distribution. In this way we will make an identification of Radon measures

and the associated distributions.
Similarly, let f € Lf (), p > 1, and consider the corresponding signed

loc

measure u defined for all Borel sets E C R™ by
WE) = [ 1oy
B
and pass to the associated distribution
1= [ eo)Es.

In the sequel we shall often identify locally integrable functions with their
corresponding distributions without explicitly indicating the identification.

1.7.2. Remark. We recall two facts about distributions that will be of
importance later. A distribution T on an open set {2 is said to be positive if
T(yp) > 0 whenever p > 0, p € Z({1). A fundamental result in distribution
theory states that a positive distribution is a measure. Of course, not all
distributions are measures. For example, the distribution defined on R! by

7(0) = [ /(o)

is not a measure since it is not continuous on Z (1) when endowed with
the topology of uniform convergence on compact sets.

Another important fact is that distributions are determined by their local
behavior. By this we mean that if two distributions T and § on {2 have
the property that for every £ € (1 there is a neighborhood U such that
T(p) = S(p) for all ¢ € Z(Q) supported by U, then T = §. For example,
this implies that if {Q,} is a family of open sets such that U, = §} and
T is a distribution on  such that T is a measure on each {15, then T is a
measure on {}. This also implies that if a distribution T vanishes on each
open set of some family F, it then vanishes on the union of all elements of
F. The support of a distribution T is thus defined as the complement of
the largest open set on which T" vanishes.
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We. now proceed to define the convolution of a distribution with a test
function ¢ € P(Q). For this purpose, we introduce the notation @(z) =

¢(—x) and 7,¢(y) = p(y — z). The convolution of a distributi
! ( . ution T defined
on R™ with ¢ € 2(Q) is a function of class O given by )

T* p(z) = T{r,%). (1.7.1)

An obvious but important observation is

T'* (0) = T(r09) = T ().

h If the distribution T is given by a locally integrable function S then we
ave

(T *p)(z) = / f(z ~ y)oly)dy

which is the usual definition for the convolution of two Functions. It is easy
to verify that

Trlpxd)=(Trp)ry
whenever ¢, € &.

Let T be a distribution on an open set Q. The partial derivative of 7" is
defined as

DiT(p) = -T(D;p)
for ¢ € Z(12). Since D;p € P (N) it is clear that D;T is again a distriby-

tion: Since the test functions ¢ are smooth, the mixed partial derivatives
are independent of the order of differentiation:

DiDjp = D;Dip
and therefore the same equation holds for distributions:

QOmequently, for any multi-index o« the corresponding derivative of T is
given by the equation

DT(p) = (~DllT(Dy).

Firfally, we note that a distribution on £ can be multiplied by smooth
flfnctzlons. Thus, if T € 2’(Q) and f € C(R2), then the product f7 is a
distribution defined by

(IT)e)=T(fp), €PN

The Leibniz fo'rmula is easily seen to hold in this context (see Exercise 1.5).
The reader is referred to [SCH] for a complete treatment of this topic.
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1.8 Lorentz Spaces

We have seen in Lemma 1.5.1 that if f € L}(R"), f > 0, then its integral
is completely determined by the measure of the sets {x : f(z) > t},t € R".
The non-increasing rearrangement of f, (defined below) can be identified
with a radial function f having the property that for alt t € R}, {x : flx) >
t} is a ball centered at the origin with the same measure as {z: f(z) > t}.
Consequently, f and f have the same integral. Because f can be thought
of as a function of one variable, it is often easier to employ than f. We
introduce a class of spaces called Lorentz spaces which are more general
but closely related to LP spaces. Their definition is based on the concept
of non-increasing rearrangement. Later in Chapter 2, we will extend basic
Sobolev inequalities in an I setting to that of Lorentz spaces.

1.8.1. Definition. If f is a measurable function defined on R", let
Ef = {z:|f()] > s}, (1.8.1)
and let the distribution function of f be denoted by
asls) = |BL. (18.2)

Note that the distribution function of f is non-negative, non-increasing,
and continuous from the right. With the distribution function we associate
the non-increasing rearrangement of f on (0,0o0) defined by

F*(t) =1inf{s > 0: ay(s) <t} (1.8.3)

Clearly f* is non-negative and non-increasing on {0, co). Further, if oy is
continuous and strictly decreasing, then f* is the inverse of ay, that is,
f* = aj*. 1t follows immediately from the definition of f*(t) that

flag(s)) < s (1.8.4)
and because oy is continuous from the right, that

a(fft) <t (1.8.5)
These two facts lead immediately to the following propositions.
1.8.2. Proposition. f* is continuous from the right.

Proof. Clearty, f*(t) > f*(¢ + k) for all h > 0. If f* were not continuous
at £, there would exist y such that f*(¢) > y > f*(t+ h) for all & > 0. But
then, (1.8.5) would imply that a;(y) < ag(f*(t+h)) <t+hforall h > 0.
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Thus, as(y) < t and therefore, f*(¢) < ¥, a contradiction. a
1.8.3. Proposition. ay.(s) = ag(s) for all s > 0.

f}:rc:of. Because f* is non-increasing, it follows from the definition of o £ ()
a

ag(s) =sup{t > 0: f*(t) > s}. (1.8.6)
Henee, f*(as(s)) < s implies a{ ite i
: , < 7{8) > ay.(s). For the opposite inequal-
ity, note from (1.8.6) that if ¢ > ay«(s), then f*(t) < s and consequently,

ar(s) < as(f*(£)) < t, by (1.8.5). Thus, a(s) < ay. i
tion is established. 7(9) % pe(s) and the PTOPOSCII-

1.8.4, Proposii?ion. Let {f;} be a sequence of mensurable Junctions on R
such that {|fi|} is a non-decreasing sequence. If |£(x)| = im0 | fi(2)] for
cach z € R", then oy, and f} increase to ay and f* respectively.

Proof. Clearly
oc
Ef ¢ E! and UE{‘ =Ef

i=1
for each. s and .I;herefore ay,(8) = ay(s) as 8 — 0o, It follows from definition
of non-increasing rearrangement, that ff(¢) < f2,,(t) < F*(¢) for each ¢
alnd 1=1,2,.... Let g(t) = lim;_o, f(t). Since fi{t) < g(t) it follows from
(1.8.5) that ap,g(t)] < ay[fr (D) < . Therefore,
aslo(®)] = lim aylo(t) < ¢

?vhich implies that f*(¢) < g(t). But g(t) < f*{(¢) and therefore the proof
18 complete, o

1.8.5. Theorem. If fe LP, 1 < P < 00, then

|/ ] s |/ w[f*(t)]”dt] v (18.7)

Proo{. This follows immediately from Lemma 1.5.1 and the fact that f
and f* have the same distribution function {Propesition 1.8,3). a

4 {\iNe now introd'uce Lorentz spaces and in order to motivate the following
ehinition, we write (1.8.7) in a more suggestive form as

i1, = (,/(;m[wpf'(t)]”dt/t) 1p
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It is sometimes more convenient to work with the average of f* than
with f* itself. Thus, we define

fww=§£fwﬁn

1.8.6. Definition. For 1 € p < oo and 1 < ¢ € oc, the Lorentz space
L(p,q) is defined as

L(p,q) = {f : f measurable on R, | f|[¢p,y < o0} (1.8.8)

where |} f|l(p,q) is defined by

o0 dt 1/q
[7[prr@n®] L 1spcoiso<
0 t
I lp,ay =
sup t1/7 f**(t), 1<p<00,g=o00.
t>0

It will be shown in Lemma 1.8.10 that
L{p,p) = L. (1.8.9)

The norm above could be defined with f** replaced by f* in case p > 1
and 1 < ¢ < oo, This alternate definition remains equivalent to the original
one in view of Hardy's inequality (Lemma 1.8.11) and the fact that f** > f*
(since f* is non-increasing). For p > 1, the space L(p, co) is known as the
Marcinkiewicz space and also as Weak LP. In case p = 1, we clearly have
L(1,00) = L', With the help of Lemma 1.5.1, observe that

o =)

t
/ frr)dr = tf*(1) +/ ag{s)ds
0 F ()

and therefore
oo

1
=M+ —/ a{s)ds. (1.8.10)
t L]
v

For our applications it will be necessary to know how the non-increasing
rearrangement behaves relative to the operation of convolution. The next
two lemmas address this question. Because g** is non-increasing, note that
in the following lemma, the first and second conclusions are most interesting
when ¢ < r and ¢ > r, respectively.

1.8.7. Lemma. Let f and g be measurable functions on B™ where sup{f(z):

z € R} < a and [ vanishes outside of a measurable set E with [E| = 7.
Let h= f+g. Then, for t > 0,

h** () < arg™(r)
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and

h**(t) < arg™(3).

Proof. For a > 0, define
da(2) = {gm lo(a)l < a
asgng(x) if lg(z)| > a
and let

9 (x) = g(2) ~ ga(z).
Then, define functions hy and hy by

h=frg=frgs+fxg
= hy + hy,

From elementary estimates involvi ;
ving th
we obtain E the convolution and Lemma 1.5.1,

sup{hz(x):z € R*} <sup{f(z):x € EHg®h < afm ag(s)ds (1.8.11)
because g°(z) = 0 whenever lg(z)| < a. Also

sup{hi(x): z € R"} < |if|l, sup{g.(z) : z € E} < ara, (1.8.12)
and
Al < 1sI o™ < ar [ ag(o)ds (18.13)

Now set @ = g*(r) in (1.8.11} and (1.8.12) and obtain

w L[
w) = [ < ol
S ithilleo + ffAzlloo

o0
<argt(r) + af g(s)ds
g*{r)

fa [rg*(r) + fj ) O‘g(s}dsJ

=arg**(r}).
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To prove the second inequality, set a = g*(r) and use (1.8.12) and (1.8.13)
to obtain

£ t £
the* (1) = / B (y)dy < /U Ry (w)dy + / hy(y)dy

in 4]
< Hlhalleo + / Ry = tiAallos + hally
]
o0

<targ(t) +ar/ )ag(s)ds
g*(r

<ar {tg*(t) + [ 0: | ag(s)ds]
g*(r

< artg™(t)
O
by (1.8.10).

1.8.8. Lemma. If h, f, and g are measurable functions such that h = fxg,
then for any t > 0

RM(E) < tf7 (g™ (1) + /t N fH{u)g” (u)du.

Proof. Fix i > (. o
Select a doubly infinite sequence {4;} whose indices ranges from —oo to

+o00 such that
vo = f*(t)

¥ < Wi

lim y; =00
=00

Jim y; = 0.
Let o
fy= 3 52
where
0 if [f(2)] < yi1
filz) = f(z) —yi-isgn flz) fpia <|f() Swi
¥i — Yi-15gn f(z} if y; < |f(2}]

Clearly, the series converges absolutely and therefore,

h=f*9=(i f.-)*y

= —00

(2o (5]

=h;+ ha
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with
RE(t) < AT () + h3™(1).

To evaluate h3*(t) we use the second inequality of Lemma 1.8.7 with
Ei={z:|f()l >y} =Eand a=1y; — y;_, to obtain

hy*(t) < Z(ye ~ Yi-1)as(yim1)g™" (1)

i=1
o
=g (t) Za.f(yi-—l}(yi = Yi-1)-
i=1
The series on the right is an infinite Riemann sum for the integral
o0
f as(y)dy,
(6

and provides an arbitrarily close approximation with an appropriate choice
of the sequence {y;}. Therefore,

() < g(8) -/f :} ar(y)dy. (18.14)

By the first inequality of Lemma 1.8.7,

A1) < Z('ys ~ Yi-1)as(yio1)g" (op(yi-1)).

i=1

The sum on the right is an infinite Riemann sum tending (with proper
choice of y;) to the integral,

f(t)
/ﬂ s ()6 (s () dy.

We shall evaluate the integral by making the substitution y = f*(u) and
then integrating by parts. In order to Jjustify the change of variable in the
integral, consider a Riemann sum

Z af(yl'-l)g“(af(y:‘—l))(yi - y,-_1)

i=1

that provides a close approximation to

£ ()
fu e ()9 (s ().

By adding more points to the Riemann sum if necessary, we may assume
that the left-hand end point of each interval on which aj is constant is
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included among the y;. Then, the Riemann sum is not changed if each y;
that is contained in the interior of an interval on which oy is constant, is
deleted. Tt is now an easy matter to verify that for each of the remain-
ing y; there is precisely one element, ug, such that y; = f*(u:) and that
as(f*(u;)) = u;. Thus, we have

ZGf(ﬂs‘—l)?“(ﬂf(ye—l))(w — ¥i-1)
=1

= 3 uimag™ (i) (£ (w) — £ (1))
i=1

which, by adding more points if necessary, provides a clese approximation
to

- f ug® (w)df* (u).
Therefore, we have
i
B () < f ()™ (oey ()
- " ug W ()
i
= —ug™ (W) W) + f: F*(u)g* (w)du
Sttt ) + /too F*{u)g*(u)du. (1.8.15)

To justify the integration by parts, let A be an arbitrarily large number
and choose u; such that ¢t = u; < us < ... < uj;; = A. Observe that

i
A A) -t () () = Zumy”(usﬂ){f*(um) — £ (w)]

=1
J
+ Y £ (u)[e™ (i i — 97 ()]
i=1
i
=3 g™ (i) [ (mia) — f7 ()]
=1

LIFEN}

(|

+ ;Zlf‘(ua) []

J
< 3 i1 () (wirn) ~ £7 ()]

i=1

i
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J
+ 2 )" (s — il
This shows that -
AGTAFT(A) — tg () F7 (1) < /t ’ ug™* (u)df*(u) + / ’ H{u)g*(u)du.
To establish the opposite inequality, write t

AgTAFT(A) = tg™ (O (1) = Y wig™ (w)[f (wirr) — £* ()

=1

b
+ Z FH i) e™ (inn Y en — g™ (u i)

i=t

= g™ () [f* (wis) — £ (w5)]

i=1]

+ gf‘(usﬂ) [/‘.

J
> Y g ) * (wirs) — £4(us)]

i=1

Uipr
i

e

J
+ D i) (e ais — .
=1
Now let A — o0 to obtain the desired equality. Thus, from (1.8.15}, {1.8.14),

and (1.8.10},

20

hT*(8) + h3*(2) < g**(2) [tf‘(t) + /f “ﬂrf(y)dy] + / ” I*(u)g* (u)du
¢ t
<t 0em + " (e (w)du. 0

1.8.9. Lemma. Under the hypotheses of Lemma 1.8.8,
o0
@< [ f )
t
Proof. We may as well assume the integral on the right is finite and then

conclude
“liI.I(}o uf*"(u)g** (u) = 0. (1.8.16)
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By Lemma 1.8.8 and the fact that f* < f**, we have

B () < L (D™ (1) + [ " () (w)du

< tf* (et + -/too J (w)g™ (u)du. (1.8.17)

Note that since f* and g* are non-increasing,

d

ok ___1 () — " (y
() = P ()~ 1 ()

and

&g () =g

for almost all (in fact, all but countably many) . Since f** and g** are
absolutely continuous, we may perform integration by parts and emplay

{1.8.16) and (1.8.17) to obtain

B8 < LF7 (09" (1) + uf* (w)g™ ()5
4 [ 1 ) — £ (W)])g™ ()
-/ T ) — F(u))e" () du

< " e (W o

We conclude this section by proving some lemmas that provide a com-
parison between various Lorentz spaces. We begin with the followiny that

compares L* and L{p,p).
1.8.10. Lemma. If 1 < p < oo and 1/p+1/p’ =1, then
Ifllp < ”.f"(P‘P) < P’“f“p-

Proof. Since f* < f**,

g = [Tirera- [Cwerers < [Terrors
= (I £ llppy )P
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The second inequality follows immediately from the definition of f **{t) and
the inequality

[ﬁm [%{f -/Oz f(t)dt]p %} p <y [_/om[zlfpf(a:)}i’d?z] 1/p

which is a consequence of the following lemma with r = p — 1. O
"The next result is a classical estimate, known as Hardy’s inequality, which

gives .information related to Jensen’s inequality (1.5.12). If f is a non-
negative measurable function defined on the positive real numbers, let

Fiz) = % j CHtdt, x>0,

Jensen's inequality gives an estimate of the p** power of ¥; Hardy's in-
equality gives an estimate of the weighted integral of the p*® power of F.

1.8.11. Lemma.(Hardy). Ifl<p<oo,r>0and f is 6 non-negative
measurable function on (0, 00}, then with F defined as above,

| Farsae < (2Y [ reprrta

Proof. By an application of Jensen’s inequality (1.5.12) with the measure
t/P)~1dt we obtain

([ )" = ([ sop-emiemra)’

PP - B _
< (;) x {1 lfP)-/O [f(t)]?tp r l+r/pdt.

Then by Fubini's theorem,

fum (j: f(t)dt) ! ™"z

( )p_l jom z—1—{r/p) (j:[f(t)]ptp—"““'("/p)dt) dz
( )P—l Am[f(t)]ptp—r-—ﬁ(rfp) (./tm z_l_('/p)d&:) dt

(&) [Tuowrea o

1 IA

- A N -

~
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The following two lemmas provide some comparison between the spaces
L(p,q) and L(p, ).

1.8.12. Lemma.

Ve ||
™ q "f”(p‘Q) Lie ”f {p.q)
[ < (1_3) zl/p se PAVE I

Proof.

o dt
'("f"(p,q})q=/u [tl”pf**(t)]q-t—
e aeste/e)-144
> [l

2 (@) [t

= S @l

The first inequality follows by solving for f**(z) and the second by ob-

ifg
serving that (;-';) < gl/e < elfe, W

1.8.13. Lemma (Calderdn). If 1 < p < oo and 1 € g <r < 00, then

)(1/11)—(1,”‘}

1l < (;% Wl <[ F -

Proof.

U llpry)" = /Dm[f"(x)ir:ﬂ{’/")“‘dx
= [T @ e -
4]

1/q ra
* . q ”f"(,) (r/p)—-1
< [T [(;,) Tl

q (rig)—1
=(;) g2 Nep )

and the first inequality follows by taking the r*" root of both sides. The
second follows by the same reasoning as in the previous lemma. 0
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Exercises

1.1. Prove that if E c R" is an arbitrary set, then the distance function
to E is Lipschitz with constant 1. That is, if d{z) = d(z, E), then
ld(z) — d(y)| < |z — y] for all z,y € R™.

1.2. (a) Prove that if E is a set with H*(E) < oo, then HA(E) = 0 for
every 3 > o,

(b) Prove that any set E C R™ has a unique Hausdorff dimension.
See Remark 1.4.3.

1.3. Give a proof of Lemma 1.5.1. More generally, prove the following:
Let :[0,00} — {0,00] be a monotonic function which is absolutely
continuous on every closed interval of finite length. Then, under the
conditions of Lemma 1.5.1, prove that

[eoudu= [~ umma

1.4. Prove that C*2(Q) is a Banach space with the norm defined in Sec-
tion 1.1.

L.5. Let f € C§°(R™) and T a distribution. Verify the Leibniz formula

o — o 8 oa—1
D>(fT) éﬁ————!(a_ﬁ)!p fDe—BT

where we say 8 < « provided 5 < a; for 1 <i < n.

1.6. Prove that if T is a distribution and ¢ € C§°(R"), then T x ¢ €
Cg°(R™) and D(T + ¢) = (DT) % ¢ where D denotes any partial
derivative of the first order. This may be accomplished by analyzing
difference quotients and using the fact that Th(DT) = D{nT).

L.7. Lemma 1.8.13 shows that if l < p< oo and 1 < g < r < oo, then

L{p,g) C L{p,q) C L(p,r) C L{p, 0).
Give examples that show the above inclusions are strict.

1.8. As we have noted in Remark 1.4.3, the measure H” does not satisfy
the regularity property analogous to (1.4.5). However, it does have
other approximation properties. Prove that if A ¢ R" is an arbitrary
set, there exists a Gs-set @ O A such that

HY(A) = H'(G).
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1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

1. Preliminaries

It can also be shown (although the proof is not easy) that if A is a
Suslin set, then

HY(A) =sup{H"(K): K C A, K compact, H'{K} < c0}.
See [F4, 2.10.48).

Prove the statement that leads to (1.8.10), namely, if f € L'(R"),
then

o0

¢
/ fH{r)dr = tf*{1) +/ ag(s)ds.
0 )

Hint: Consider the graph of f and employ Lemma 1.5.1.

Another Hausdorfi-type measure often used in the literature is Heus-
dorff spherical measure, H]. It i3 defined in the same manner as H”
{see Definition 1.4.1) except that the sets A; are taken as n-balls.
Clearly, HY(E} < HJ(E) for any set E. Prove that H}(E) = 0
whenever HY(E) = 0.

Suppose u is a function defined on an open set € C R™ with the
property that it is continuous almost everywhere. Prove that u is
measurable.

Using only basic information, prove that the class of simple functions
is dense in the Lorentz space L{p, g).

Let & be a Radon measure on B®. As an application of Theorem 1.3.6
prove that any open set I/ C R® is essentially {with respect to p) the
disjoint union of n-balls. That is, prove that there is a sequence of
disjoint n-balls B; C IJ such that

U-— DB,] = 0.
i=1

Let ¢ be a Radon measure on R™. Let I be an arbitrary index set
and suppose for each « € I, that E, is an y-measurable set with the
property that

H

. #Ea N B(z,7)] _
M WBEnl

for every x € E,. Prove that Uses By is p-measurable.
From Exercise 1.1 we know that the distance function, d, to an arbi-

trary set E is Lipschitz with constant 1. Looking ahead to Theorem
2.2.1, we then can conclude that d is differentiable almost everywhere.
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Prove that if E is a closed set and d is differentiable at a point x ¢ E,
then there exists a unique point é(z) € E nearest z. Also prove that

Dd(z) = fd‘_(mg"”"_),

1.16. (a) 'If f i8 a continuous function defined on R™, prove that its non-
Increasing rearrangement f* is also continuous. Thus, continu-
ous functions remain invariant under the operation of rearrange-
ment,

(b} Now prove that Lipschitz functions also remain invariant under
rearrangement. For this it will be necessary to use the Brunn-
Minkowski inequality. It states that if £ and F are nonempty
subsets of B™, then

|E + Fi'/™ > |E|Mm 4 |F/n

where E+ F={zx+y:z€ E,y€ F}.
(c) Looking ahead to Chapter 2, prove that if f € W1?(R"), then
f* € WhP(R™). Use part (b) and Theorem 2.5.1.

(d) Show by an example that C'(R") does not remain invariant
under the operation of rearrangement.

1.17. Let u € CO(R1). For each h # 0, let u;, be the function defined by

w{z + h} — u(z)

up(z) = .

Prove that up, — ' in the sense of distributions.

1.18. Let {u} be a sequence in LP(R")} that converges weakly to u in
LP(R™), p> 1. That is,

lim u v dx — uvdz
=0 BRn R

for every v € LP (R"). Prove that D*; — D% in the sense of
distributions for each multi-index o.

Historical Notes

1.2. The notion of measures has two fundamental applications: one can be
used for estimating the size of sets while the other can be used to define
integrals. In his 1894 thesis, E. Borel (cf. [BO)) essentially introduced what
is now known as Lebesgue outer measure to estimate the size of sets to assist
his investigation of certain pathological functions. Lebesgue [LE1] used
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measures as a device to construct his integral. Later, when more general
measures were studied, Radon (1913) for example, efnphaslzed measure
as a countably additive set function defined on a o-ring of sets whereas
Carathéodory (1914) pursued the notion of outer measures defined on all

sets.

1.3, The material in this section represents only & very small plortion of the
literature devoted to differentiation theory and the related subject of cover-
ing theorems. Central to this theory is the celebrat(?d theorem of Lebesgue
[LE2] which states that a locally integrable function can be repreﬁented
by the limit of its integral averages over concentric balls’ whqse rz}du te'.nd
to zero. Theorem 1.3.8 generalizes this result to the m?;uatlon in which
Lebesgue measure is replaced by a Radon measure. This re:sult and the
covering theorems {Theorems 1.3.5 and 1.3.6) which lead to it are c_lue {0
Besicovitch, [BE1], [BE2]. The proof of Theorem 1.3.5 was commum.cated
to the author by Robert Hardt. The original version of Theorem 1.3.6 is due
to Vitali [VI] who employed closed cubes and Lebesgue measure. Lebesgue
[LE2] observed that the result is still valid if cubes are replaced by gen-
eral sets that are “regular” when compared to cubes. A sequence of sets
{Ey} is called regular at a point zp if xp € 02":1'5';;, diam(Ex) — 0 and
liminfg_.g p{ Ex) > 0 where p(E;) is defined as .the infimum of .t.he numbex:s
IC|/|Ex| with C ranging over all cubes containing Ey. In particular, one is
allowed to consider coverings by nested cubes or balls that are 'not neces-
sarily concentric. However, in the case when Lebesgue measure is replacgd
by a Radon measure, Theorem 1.3.6 no longer remains valid if the ball§ in
the covering are allowed to become tooc non-concentric. At about the time
that Besicovitch made his contributions, A.P. Morse developed a theor:y
which allowed coverings by a general class of sets rather than by cencentric
closed balls. The following typifies the results obtained by Morse [MSEZ]:
Let A C R® be a bounded set. Suppose for each z € A there is a set H{z)
satisfying the following two properties: (i) there exist M > 0 independent
of z and v{z) > 0 such that

Bz, r(z)) C H(z) C B(z, Mr(z)):

(i) H(z) contains the convex hull of the set {y} U B(z,r(z)) whenever
¥ € H(x). Then a conclusion similar to that in Theorem 1.3.5 holds.
Another useful covering theorem due to Whitney [WH] states than an
open set in R™ can be covered by non-overlapping cubes t_hat become
smaller as they approach the boundary. Theorem 1.3.5 is a similar resfult
where balls are used instead of cubes and where the requirement of disjoint-
ness is replaced by an estimate of the amount of overlap. This treatment
is found in [F4, Section 3.1]. ‘
Among the many results concerning differentiation with respect to irreg-
ular families is the following interesting theorem proved in [JMZ]: Suppose
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 is a measurable function defined on R® such that
/lu{(l +log™ |u|)*ldz < oo.

Then, for almost every r € R",

tim 117" Ju(y) = u(o)ldy = 0

where the limit is taken over all bounded open intervals I containing the
point x. This result is false if u is assumed only to be integrable. Such ir-
regular intervals are useful in applications concerning parabolic differential
equations, where it is natural to consider intervals of the form C x [0,7%],
where C is an (n — 1)-cube of side-length .

For further information pertaining to differentiation and coverings, the
reader may consult [DG], [F4, Section 2.8].

1.4. Carathéodory [CAY] was the first to introduce “Hausdorf” measure in
his work on the general theory of outer measure. He only developed linear
measure in R* although he indicated how k-dimensional measure could be
defined for integer values of k. k-dimensional measure for general positive
values of k was introduced by Hausdorff [HAU] who illustrated the use
of these measures by showing that the Cantor ternary set has fractional
dimension log 2/ log 3.

1.7. There are various ways of presenting the theory of distributions, but
the method employed in this section is the one that reflects the original
theory of Schwartz [SCH] which is based on the duality of topological vector
spaces. The reader may wish to consult the monumental work of Gelfand
and his collaborators which contains a wealth of material on “generalized
functions” [GE1], [GE2], [GE3], [GE4], [GES).

1.8. Fundamental to the notion of Lorentz spaces is the classical concept
of the non-increasing rearrangement of a function which, in furn, is based
upon a notion of symmetrization which transforms a given solid in R?
into a ball with the same volume. There are a variety of symmetrization
procedures including the one introduced by J. Steiner [ST] in 1836 which
changes a solid into one with the same volume and at least one plane of
symmetry. The reader may consult the works by Pélya and Szegd [PS] or
Burago and Zalgaller [BUZ] for excellent accounts of isoperimetric inequal-
ities and their connection with symmetrization techniques, In 1950 G.G.
Lorentz [LO1], {LOZ], first discussed the spaces that are now denoted by
L(p, 1) and L(p, 00). Papers by Hunt [HU] and O'Neil [O] present interest-
ing developments of Lorentz spaces. Much of this section is based on the
work of ('Neil and the main results of this section, Lemmas 1.8.7-1.8.9,
were first proved in [O]. The reader may consult [CA2), [CA3], [LP), [PE]
for further developments in this area.
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Sobolev Spaces and Their
Basic Properties

This chapter is concerned with the fundamental properties of Sobolev
spaces including the Sobolev inequality and its associated imbedding the-
orems. The basic Sobolev inequality is proved in two ways, one of which
employs the co-area formula (Section 2.7) to obtain the best constant in the
inequality. This method relates the Sobolev inequality to the isoperimetric
inequality.

The point-wise behavior of Sobolev functions will be discussed in Chap-
ters 3 and 4 and this will entail a method of defining Sobolev functions
on large sets, sets larger than the complement of sets of Lebesgue measure
zero. It turns out that the appropriate null sets for this purpose are de-
scribed in terms of sets of Bessel capacity zero. This capacity is introduced
and developed in Section 2.6 but only to the extent needed for the analysis
in Chapters 3 and 4. The theory of capacity is extensive and there is a vast
literature that relates Bessel capacity to non-linear potential theory. It is
beyond the scope of this book to give a thorough treatment of this topic.

One of the interesting aspects of Sobolev theory is the behavior of the
Scbolev inequality in the case of critical indices. In order to gain a better
appreciation of this phenomena, we will include a treatment in the context
of Lorentz spaces.

2.1 Weak Derivatives

Let u € LL (). For a given multi-index «, a function v € L} () is called

loc
the at® weak derivative of u if

/(pvd:c = (—1)'“'/ uD®pdx (2.1.1)
o [+]

for all ¢ € C§°(82). v is also referred to as the generalized derivative of u
and we write v = D*u. Clearly, D®u is uniquely determined up to sets
of Lebesgue measure zero. We say that the o*® weak derivative of u is a
measure if there exists a regular Borel (signed) measure p on {2 such that

/{pdp.:(—l)'“l/ uD%pdz (2.1.2)
2 1]
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for all ¢ € C5°(R2). In most applications, |af = 1 and then we speak of u
whose partial derivatives are measures.

2.1.1. Definition. For p > 1 and k a non-negative integer, we define the
Sobolev space

WhP(Q) = LP(Q) N {u: D%u € LP(Q), |a < k). (2.1.3)

The space W*P(£)) is equipped with a norm

/p
el = / > [D*ulPdz (2.1.4)
P jatgk
which is clearly equivalent to
> ID%ulyq. (2.1.5)

|aj<k

It is an easy matter to verify that W*#(Q) is a Banach space. The space
WEP(Q) is defined as the closure of C5°(R2) relative to the norm (2.1.4).
We also introduce the space BV(£) of integrable functions whose partial
derivatives are (signed measures) with finite variation; thus,

BV(Q) = LY () N {u: D% is a measure, [ D*u)(Q) < o0, || = 1}.
_ (2.1.6)
A norm on BV(Q) is defined by

lullaviey = lullye + > (D). (2.1.7)

=1

2..1.2. Remark. Observe that if u € W5?(Q) U BV (), then u is deter-
1]11118(.1 only up to a set of Lebesgue measure zero. We agree to call these
functions u continuous, bounded, etc. if there is a function T such that
U = u a.e. and @ has these properties.

We will show that elements in W*#(Q) have representatives that permit
us to regard them as generalizations of absolutely continuous functions
on R!. First, we prove an important result concerning the convergence of
regularizers of Sobelev functions.

2.1.3. Lgmma. Suppose u € WEP(Q), p > 1. Then the regqularizers of u
(see Section 1.6), u,, have the property that

ij_% ”us - qu,p;ﬂ‘ =0
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whenever §' CC Q. In case 1 = R™, then lime—o [[ue — ulle,p = 0.

Proof. Since §¥' is a bounded domain, there exists ep > 0 such that gy <
dist(§¥, 9RN). For ¢ < &, differentiate under the integral sign and refer to
(2.1.1) to obtain for z € {¥’ and |a| < &,

D%u(z)=¢" /ﬂ D2y (x — y) u(y)dy

£

= (~1lelen /ﬂ DZp (x ; y) u(y)dy

= [0 (Z22) prutoay
= (D°u).(2)

for each z € (¥'. The result now follows from Theorem 1.6.1(iii). i

Since the definition of a Sobolev function requires that its distributional
derivatives belong to LP, it is natural to inquire whether the function pos-
sesses any classical differentiability properties. To this end, we begin I:.Jy
showing that its partial derivatives exist almost everywhere. That is, in
keeping with Remark 2.1.2, we will show that there is a function % such
that # = u a.e. and that the partial derivatives of T exist almost every-
where. However, the result does not give any information concerning the
most useful concept of total differential, the linear approximation of the
difference quotient. This topic will be pursiied in Chapter 3.

-~ 2.1.4. Theorem. Suppose u € LP(Q). Then u € WIP(Q), p > 1, if and
only if u has a represenlative T thal is absolulely conlinuous on almost
all ine segments in 1 parallel to the coordinate azes and whose (classical)
partiel derivatives belong to LP((1).

Proof. First, suppose © € WLP(2). Consider a rectangular cell in £
R=la,b) x ... x[an,bn]

all of whose side lengths are rational. We know from Lemma 2.1.{5 that the
regularizers of u converge to u in the Wlif(ﬂ} norm. Thus, writing z € R
as ¢ = (%, ;) where £ € R*™! and x; € [a;, 5], 1 < i < m, it follows from
Fubini’s Theorem that there is a sequence {ex} — 0 such that
b X

lim [uk{Z, £;) — w(Z, ;)| + |Due(Z, x:) — Du(s, x:)|Pdz; = 0

k—oo Jo,
for almost all . Here, we denote u,, = u. Since u is smooth, for each
such % and for every n > 0, there is M > 0 such that for b € [a;, b},

by
|ug (2, b) — u(Z, i)} < / | Dug (£, 2:) |dz;
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by
S/ [Du(Z, z;:)|dz; + 1
o
for k > M. I {us(Z,0;)} converges as k — oo, (which may be assumed
without loss of generality), this shows that the sequence {uy} is uniformly
bounded on [a;,b;). Moreover, as a function of z;, the ug are absolutely
continuous, uniformly with respect to k, because the I?! convergence of
Duy to Dy implies that for each € > 0, there is a § > 0 such that
Je 1Dur(Z, z)|dz; < ¢ whenever HY(E) < 6 for all positive integers k.
Thus, by the Arzela-Ascoli theorem, {u;} converges uniformly on [a;, ;]
to an absolutely continuous function that agrees almost everywhere with
u. This shows that  has the desired representative on R. The general case
follows from the familiar diagonalization process.

Now suppose that « has such a representative 7. Then i also possesses
the absolute continuity properties of %, whenever ¢ € C$°(Q). Thus, for
1 <i<n, it follows that

/EDgcpd:c = —/D,—ﬁpd&:

on almost every line segment in © whose end-points belong to B® — spt ¢
and is parallel to the ! coordinate axis. Fubini’s Theorem thus implies
that the weak derivative D;u has D% as a representative. a

2.1.5. Remark. Theorem 2.1.4 can be stated in the following way. If u €
LP((2), then u € WP(0) if and only if u has a representative % such that
% € W1P(A) for almost all line segments A in 2 parallel to the coordinate
axes and {D%| € LP(Q). For an equivalent statement, an application of
Fubini’s Theorem allows us to replace almost all line segments A by almost
all k-dimensional planes A in £ that are parailel to the coordinate k-planes.

It is interesting to note that the proof of Theorem 2.1.4 reveals that
the regularizers of u converge everywhere on almost all lines parallel to the
coordinate axes. If u were not an element of W1#(£2), but merely an element
of L1(), Fubini’s theorem would imply that the convergence occurs only
H'-a.e. on almost all lines. Thus, the assumption u € WiP(Q) implies
that the regularizers converge on a relatively large set of points. This is an
interesting facet of Sobolev functions that will be pursued later in Chapter
3

Recall that if ¥ € LP(R"), then |lu(z + k) — u(z)llp - 0ash — 0. A
similar result, provides a very useful characterization of wWle(R").

2.1.6. Theorem. Let 1 < p < 00. Then u € WUYP(R") if and only if
u € L?{R™) and
(/’ u{z + h) — u(zx)

p 1/p
A2 de) = e )~ u@)l
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remains bounded for all h € R™,

Proof. First assume u € C§°(H"). Then

u(z + h) — ufz) (4] ( h) L
] |h|/ Dulz ) m

so by Jensen’s inequality (1.5.12),

w(z+h) —u(@)|? 1 /“‘[ ( h)p
7 el €= Dulrz+i— dt.
2 S (T

Therefore,
» » 1 {h| h P
flu(z + h) — u(@)]f < |A| Tl fo f“ Du (:c+t—lh|)

lu(z + &) — ulz)|lp < |k || Dulp.

By Lemma 2.1.3, this holds whenever u € W1P{R").
Conversely, if e; is the i*! unit basis vector, then the sequence

{ u(z + e,—lll? — u(x) }

is bounded in LP{R™). Hence, by Theorem' 1.5.2, there exists a subsequence
(which will be denoted by the full sequence) and u; € L?(R™) such that

dzdt,

or

w(z + e;/k) — u{z) _
1/k T

weakly in LP(R™). Thus, for ¢ € &,

j};“ wipde = llm f.. [U(I + 63'1//? — u(I)] o(z)dr

o Pz —ei/k) — so(:r)]
- k]i.n(}c: Rn u(m) [ llk dz
= —f uD.'(pdx.
This shows that
Diu = u;

in the sense of distributions. Hence, u € WP(R").
2.1.7. Definition. For a measurable function u: @ — R!, let

ut = max{u,0}, u~ = min{u,0}.
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2.1.8. Corollary. Let v € WIP(Q), p > 1. Then ut,u” € WHP(Q) and

Duif u=0
+ _
Du ‘{0 if <o

Du- = {0 if u>0

Duif u <.
Proof. Because u has a representative that has the absolute continuity
properties stated in Theorem 2.1.4, it follows immediately that ut,u™ €
W12(1). The second part of the theorem is reduced to the observation
that if f is a function of one variable such that f’ exists a.e., then (f1) =

I xygsoy m]

2.1.9. Corollary. If Q is connected, u € WhP(Q), p > 1, and Du =0 a.e.
on §1, then u is constant on ).

Proof. Appealing to Theorem 2.1.4, we see that u has a representative
that assumes a constant value on almost all line segments in £ parallel to
the coordinate axes. a

2.1.10. Remark. The corollary states that elements of W1#(£2) remain
invariant under the operation of truncation. One of the interesting aspects
of the theory is that this, in general, is no longer true for the space WhP().
Motivated by the observation that u* = H o u where H is defined by

tt20
H(t):{OtZO

we consider the composition H o 4 where H is a smooth function. It was
shown in [MA2] and [MA3] that it is possible to smoothly truncate non-
negative functions in W2P. That is, if H € C®(R!) and

sup [ THU()) < M < o0

for j = 1,2, then there exists C = C(p, M) such that for any non-negative
v € C§°(R™)
ID*H(v)||; < C|Dv]lp

for 1 < p < n/2 and any multi-index a with ja| = 2. Here D?v denotes the
vector whose components consist of all second derivatives of v. However,
it is surprising to find that this is not true for all spaces W**, Indeed, it
was established in [DAl} that if 1 <p < n/k,2<k <n,orl < p<nfk,
k=2, and H € C*(R') with H*)(¢) > 1 for |t| < 1, then there exisis a
funct:on u € WEP(R™) N C°(R") such that H(u) ¢ Wk, 2(R"}. The most
general result available in the positive direction is stated in terms of Riesz
potentials, I, * f (see Section 2.6), where f is a non-negative function in
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L?. The following result is due to Dahlberg [DA2]. Let 0 < a < n and
1 < p < nfe. Let H € C°(R') have the property that

sup |tj_1H(j)(t)] <M< oo
i>»0

for j = 0,1,...,a*, where a* is the smallest integer > a. If f € LP{R")
and f > 0, then there exists g € L*{R") such that

H(l,*g)=I,xg ae

and |gllp < C|fllp where C = C{a,p,n, M). The case of integral a was
treated in [AD4] and in this situation the result can be formulated as

D7 [H(La + £]llp < CIFIG

for any multi-index y with [y = k.

To continue our investigation of the calculus of Sobolev functions, we con-
sider the problem of composition of a suitable function with u € W#(Q).
Before doing so, we remind the reader of the analogous problem in Real
Variable theory. In general, if f and g are both absolutely continuous func-
tions, then the composition, fog, need not be absolutely continuous. Recall
that a function, f, is absolutely continuous if and only if it is continuous, of
bounded variation, and has the property that | f(E)| = 0 whenever |E} = 0.
Thus, the consideration that prevents f o g from being absolutely continu-
ous is that fog need not be of bounded variation. A result of Vallée Poussin
[PO] states that f o g is absolutely continuous if and only if ffog- g is
integrable. An analogous result is valid in the context of Sobolev theory, cf.
[MM1], [MM2], but we will consider only the case when the outer function
is Lipschitz.

2.1.11. Theorem. Let f : R! — R' be a Lipschitz function and u €
WLP(2), p > 1. If fou€ LP(f), then f ou € WIP(£) and for almost ail
z €],

D(f o u)(z} = f'[u(z)] - Du(z).

Proof. By Theorem 2.1.4, we may assunie that u is absolutely continuous
on almost all line segments in £, Select a coordinate direction, say the
ith and consider the partial derivative operator, D;. On almost all line
segments, A, in  parallel to the i*" coordinate axis, fou is clearly absolutely
continuous because f is Lipschitz. Moreover,

Di(f o u)(z) = f'[ulz)) - Dyu(z) (2.0.8)

holds at all z € A such that D;u(z) and f'ju(z)} both exist. Note that if
D;u(z) =0, then D;(f o u)(x} = 0 because
[flute + hes) = flu@)l _ sl + hes) — u(z)]
Al i

<
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where M is the Lipschitz constant of f and g; is the i*® coordinate vector.

Thus, letting N = AN {z : Diu(z) = 0}, we have that (2.1.8) holds on N.
Now let

P=(A=N)N{z: D;u(z) exists and Dju(z) # 0}

and note that P U N occupies H'-almost all of A. From classical consid-
erations, we have that if § C P and H[u(S)] = 0, then H(5) = 0. In
p?.rticula.r, if we let E = {y : f'(y) fails to exist}, then H'[u Y E)NP] =0.
Since (2.1.8) holds if z € A — "} (E) N P and D;u(z) exists, it follows
therefore that (2.1.8) holds at H!'-almost all points of A, At all such z, we
may conclude that

IDi(f o u)(@)P < MP|Dyu(z)P. (2.1.9)

Once it is known that the set of z € Q for which (2.1.8) holds is a mea-
surable set, we may apply Fubini’s Theorem to conclude that f o u sat-
isfies the hypotheses of Theorem 2.1.4. This is a consequence of the fact
that the functions on both sides of (2.1.8) are measurable. In particular,
f' o u is measurable because §' agrees with one of its Borel measurabie
Dini derivates almost everywhere. A

2.2 Change of Variables for Sobolev Functions

In addition to the basic facts considered in the previous section, it is also
useful to know what effect a change of variables has on a Sobolev function.
For this purpose, we consider a bi-Lipschitzian map

T:0 - ).
That is, for some constant M, we assume that both 7 and 71 Sétisfy,
|T($) _T(y)l < Mfz_yls for all z,y € 41,

[T~Hz") =T y") < M|z’ — 4], forall o',y €SV, (2.2.1)

In order to proceed, we will need an important result of Rademacher which
states that a Lipschitz map T:R* — R™ is differentiable at almost all
points in R™. That is, there is a set E C R™ with |E| = 0 such that for
each £ € R" — E, there is a linear map dT(z): R® — R™ (the differential
of T at z} with the property that

im L&+ ) ~ T(@) — dT(z,y)| _ 0.
y—0 |yl

(2.2.2)
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In order to establish {2.2.2) it will be sufficient to prove the following

result.
2.2.1. Theorem. If f: R® — R! is Lipschitz, then for almost all T € R",

b @9 = f@) =Dy _
y—0 lyl

Proof. For v € R® with |v] = 1, and z € R", let 4(t) = f(z + tv). Since f
is Lipschitz, - is differentiable for almost all ¢,
Let df (z,v) denote the directional derivative of f at . Thus, df{(z,v) =

+'(0) whenever ¥'(0) exists. Let

N, = R* N {x : df(z,v) fails to exist}.

Note that
w- [z +t) ~ @)

flz+1tv)— f(x)}

> Il]tfll 151f n

z : lim sup
-0 t

and is therefore a Borel measurable set. However, for each line A whose
direction is v, we have H'(N, N A) = 0, because f is Lipschitz on A
Therefore, by Fubini’s theorem, |N,| = 0. Note that on each line A paraltel

to v,

[ df (2, v)p(@)dz = — / F(z)dg(z, v)dz
A A

for ¢ € C§°(R"). Because Lebesgue measure remains invariant under or-
thogonal transformations, it follows by Fubini’s Theorem that

[ df(z,vpye =~ [ flo)dp(z,v)dz
R Rn

—- /R (@)Dpla) - vds

- —JZ [ 1@Ds@) v, de

— - 5 M 'dx
> [ pitew v

:/ ple)Df(x) - vdz.
R‘l

Because this is valid for all ¢ € C§°(R"), we have that
df(x,v) = Df(z)-v, ae z€R" (2.2.3)
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Now let v1,vs,... be a countable dense subset of $"! and observe that
there is a set £ with |E| = 0 such that

df (z,0) = Df(z) - 00 (22.4)

forailze R* - E, k=1,2,....
We will now show that our result holds at all points of B* — E. For this
purpose, let x € R™ —F, Jv| = 1, t > 0 and consider the difference quotient

z +tv) ~ f(z)

Qz,vt) = il ;

~ Df(x)-v.

For v,v' € S"~! and ¢ > 0 note that

lQ(x,v,t) - Q(z, ', t)] = Ifiz + tv) — flz+ t‘[:) + (v - v') - Df($]|
< Mlv—v'| + v —o'|-|Df(x)] < M(n + Ve - /| (2.2.5)

where M is the Lipschitz constant of f. Since the sequence {v;} is dense in
871, there exists an integer K such that

|v — v} < for some %€ {1,2,...,K} {2.2.6)

g
2n+1)M
whenever v € §°~1. For xy € R — E, we have from (2.2.4) the existence
of & > 0 such that

1Q(z0, vk, 8)] <§ for 0<t<é, ke{L,2,..,K). (2.2.7)

Since
|Q(J;Us v, t)[ < |Q(:’£{),‘L’k,t)! + ;Q(:‘:ﬂ’ L t) - Q(xﬂjvks t)’
for k € {1,2,...,K}, it follows from (2.2.7), (2.2.5), and (2.2.6) that

|@(zo, v, 8)| < % + % =g

whenever |v| =1 and 0 < ¢ < 4. a

Recall that if L: B* — R™ is a linear mapping and E C R a measurable
set, then
|L(E)| = | det L{ | E].

It is not difficult to extend this result to more general transformations.
Indeed, if T: R® — R" is Lipschitz, we now know from Theorem 2.2.1
that T has a total differential almost everywhere. Moreover, if T is also
univalent, one can show that

HPT(E)} = /; JT dz for every measurable set E, (2.2.8)
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where JT is the Jacobian of T. From this follows the general transformation
formula

/ foTJTds= | fds (2.2.9)
B T(E)

whenever f is a measurable function. We refer the reader to {F4; 3.2.3] for

a proof. . . .
We are now in a position to discuss a bi-Lipschitzian change of coordi-

nates for Sobolev functions.

2.2.2. Theorem. Lei T: R* — R™ be ¢ bi-Lipschitzian mapping ?s in
(221). f ue W(Q),p> 1, thenv =uoT € WHF(V), V = T (1)),

and
Du[T'(z)] - dT{z,€) = Dv(z) - £ (2.2.10)

for a.e £ €Q and for all £ € R™.

Proof. Let u, be a sequence of regularizers for u, defined on £’ CC 2, (see
Section 1.6). Then v, = u, o T is Lipschitz on V' = T~1(£) and because
v, is differentiable almost everywhere (Theorem 2.2.1), it follows that

Div.(z) = iDjus [T(2))D; T (x) (2.2.11)
i=1

for a.e. z € V. Here we have used the notation T = (T*,T2,...,T") where
the 77 are the coordinate functions of T. They too are Lipschitz. (2.2.11)
holds at all points x at which the right side is meaningful, i.e., at all points
at which T is differentiable. If M denotes the Lipachitz constant of T, we
have from (2.2.11) that

| Dve(z)| < n?M|Du[T{z)]} forae. z€ V" (2.2.12)
In view of the fact that
M™ <JT{(z) < M" forae z€R",
(2.2.12) implies that there exists a constant C = C(n, M) such that
|Dve(z)f < C|Du [T (2)]|P - JT(z), ae. =,

and therefore

/ |Dv,[Pdr < C/ |Du, |Pdz
v o

from (2.2.9). A quick review of the above analysis shows that in fact, we

have
|Dve — Dyg[Pdz < C/ |Due — Dug|Pdz. (2.2.13)
v 0
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Also,
/ [ve — ver [Pdz < C/ [tte — ue: [Pdz. (2.2.14)
v -4

From 2.2.11 we see that the regularizers the converge to u in the norm of
W1P(Q) whenever ' cC Q. Thus, (2.2.13) and (2.2.14) imply that {v,}
is a Cauchy sequence in WU'P(Q)'), and thus converges to some element
v € WLP(V') with

ivllipv < Clluflypnr < Cllufipa- (2.2.15)

Since u,(z) — u(z) for a.e. z € Q, it is clear that v is defined on V with
v=uoT. Moreover, v € W'P(V’) whenever V' CC V and (2.2.15) shows
that, in fact, v € W#(V). Finally, observe that (2.2.10) holds by letting
e —0in (2.2.11). O

2.3 Approximation of Sobolev Functions by
Smooth Functions

From Theorem 1.6.1, we see that for each u € W*?({}), there is a sequence
of C5°(£2) functions, {u.}, such that u, — u in W*2(Q) for (¥ cC Q. The
purpose of the next important result is to show that a similar approximation
exists on all of 2 and not merely on compact subsets of .

We first require a standard result which concerns the existence of a 0
partition of unity subordinate to an open cover.

2.3.1. Lemma. Let E C R® and let G be a collection of open sets U such
that E C {UU : U € G}. Then, there erists o family F of non-negative
Junctions f € C§°(R™) such that 0 < f <1 end

(i) for each f € F, there erists U € G such that spt f C U,

(i) if K C F is compact, then spt f N K 3 0 for only finitely many
fEeF,

(iii) 2rer f(x} =1 for each z € E.

Proof. Suppose first that E is compact, so that there exists a positive
integer N such that E c UY.,U;, U; e G. Clearly, there exist compact sets
E; C U; such that E C UY,E;. By regularizing xgz,, the characteristic
function of E;, there exists g; € C§(Us) such that g; > 0 on E;. Let g =
Z:\;l g: and note that g € C*°(R") and that ¢ > 0 on some neighborhood of
E. Consequently, it is not difficult to construct a function h € C> (™) such
that & > 0 everywhere and that h = g on E. Now let F = {f; : f; = gi/h,
1 <1< N} to obtain the desired result in case E is compact.
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If E is open, let
— 1
E;, = EnB(0,))n {x : dist{z,3E) > ;} .

Thus, E; is compact and E = U, E;. Let G; be the collection of all open

sets of the form
Un{int By — E;_a}

where U € G. (We take Ey = E.; = @). The elements of G; provide an
open cover for F; — int F;_; and therefore possess a partition of unity F;
with finitely many elements. Let

=33 oz)
i=1 gEFi

and observe that only finitely many positive terms are represented and that
3(z) > 0 for z € E. A partition of unity for the open set E is obtained by

defining

F={f: f(z:):f{f}forsomegef,- if z€kE,
1Y flxy=0 if z¢E.

If E C R" is arbitrary, then any partition of unity for the open set
{UU : U € G} provides one for E. O

Clearly, the set
S =C*)N{u: fullesn < oo}
is contained in W**(Q) and therefore, since W*?(Q) is complete, S cC
W P(01). The next result shows that § = WFP{Q).

2.3.2. Theorem. The space
C2M) 0 {u: JJullepn < oc}
is dense in WhP((}),

Proof. Let 2; be subdomains of 2 such that £; CC (i4; and U2, ; = Q.
Let F be a partition of unity of £ subordinate to the covering {;41—:_1},
i=0,1,..., where £}y and 2_; are taken as the null set. Thus, if we let fi

denote the sum of the finitely many f € F with spt f C Qi1 - Qi 1, then
i € C°{Qiy1 — £diy) and

ififl on {2.3.1)

i=1
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Choose ¢ > 0. For u € W*?(2), there exists £; > 0 such that
spt ((fi)e,}) C Qi1 — 05, (2.3.2)

(fetde, — Fiullepr < €274

With v = (fiu).,, (2.3.2) implies that only a finite number of the v; can
fail to vanish on any given Q' CC Q, and therefore v = Yoo, v; is defined
and belongs to C*°(§2). For z € §;, we have

u(z) = Y fi(z)u(z),

=1

v(z) = Z( fiu)e,(x) by (2.3.2)

and consequently,

i
Il = vlk g, < Z N(fiwde, = fiullkpa <e.
=t

The conclusion follows from the Monotone Convergence theorem. a

The approximating space C®() N {u : |jullk po < oo} admits functions
that are not smooth across the bonndary of Q and therefore it is natural to
ask whether it is possible to approximate functions in WEP(Q) by a nicer
space, say _

Co) N0 {u: Jullrpir < o0} (2.3.3)

In general, this is easily seen to be false by considering the domain §2 defined
as an n-ball with its equatorial {n—1)-plane deleted. The function v defined
by % = 1 on the top half-ball and « = —1 on the bottom half-ball is clearly
an element of W""P(ﬂ) that cannot be closely approximated by an element
in {2.3.3). The difficulty here is that the domain lies on both sides of part
of its boundary. If the domain €2 possesses the segment property, it has
been shown in [AR2, Theorem 3.18] that the space (2.3.3) is then dense in
W¥?(Q). A domain (2 has the segment property if for each « € 11, there is
anr > 0 and a vector v, € R® such that if y € BN B(z, 1}, then y+tv, € Q
forall0 <t < 1.

2.4 Sobolev Inequalities

One of the main objectives of this monograph is to investigate the many
inequalities that allow the LP-norm of a function to be estimated by the
norm of its partial derivatives. In this section the Sobolev inequality, which
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is of fundamental importance, will be established for functions in the space
W(} P((1). We will return to the topic of Sobolev-type inequalities in Chapter

4.

2.4.1. Theorem. Let § C R*, n > 1, be an open damaltfn. There is a
constant C = C(n,p) such that if n > p, p 2 1, and u € Wy'P(82), then

lttnp/in—pyn < CliDUlp0.
If p > n and Q bounded, then u € C(2) and
sup [u| < CIUY*V/7|| Dullpq.
Q

Proof. First assume that u € C§°(Q) and that p = 1. Clearly, for each 4,
1<i<n, N
@I < [ IDauler bl

— 0o

where t occupies the ¢ component of the vector in the integrand. Therefore

n ac 1/n—1
|H(:B)i"fn——1 < (H/ |D,-u]dx;) ' (241)
=177

If this inequality is integrated with respéct to the first variable, z;, and
then Holder’s inequality is applied, we obtain

+oo
f |u(z)|™ " Vdar

— D0

o0 1/{n—1}
< (f ]Dlu(t,zg,...,mﬂndt)

—n

oo B o l/(!’l—l)
f H (/ |D,-u[d:r,-) dz,
—o0 g3 \J—o0
o 1/(n-1}
< (f fDlu(t,zrg,...,andt)

bl s

n oo poo 1/{rn—1)
1_[ (f / |D,-u|da:,—d:c1) B (242)
i=2 o0 S ol

Continuing this procedure and thus integrating (2.4.1) successively with
respect to each variable, we obtain

n 1/{n—1)
f |u(z)I™ Ve < ] ( f |D,-u|da:)
Rn Rn

i=1
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and therefore, using the fact that the geometric mean is dominated by the
arithmetic mean,

1 n
(Haj}lfn S. E Zﬂj, a; 2 0,
i=1
we have

n i/n n
l I 1
”u"n/(n-—l) < (L ID,-uId:c) < ;L E iD;UId.’L'
i=1 * " i=1

< *?I!Dufh- (2.4.3)

This establishes the result in case p = 1. The result in full generality can
be obtained from (2.4.3) by replacing |u| by powers of |tz Thus, if g > 1,

oty < %2 [ DGz
<o 2 [ uiriDulas

avr, . g
< S el 1 Dull,

by Hélder’s inequality. Now let ¢ = (n — 1)p/(n — p} to obtain the desired
result for the case 1 < p < n and u € C§°(R). Now assume u € W, P(12)
and let {u;} be a sequence of functions in C§°(Q} converging to u strongly
in W)'F(§2). Then, with p" = np/(n — p), an application of the inequality
to u; — u; yields

llwi = wjllps < Cllus — ugly p.

Thus, #; — u in L?’ {€2) and the desired result follows. This completes the
proof in case 1 < p < n.

In case p > n and  bounded, let {u;} be a sequence such that u; €
C8°(R?) and u; — u WP(Q2}. The proof is thus reduced to the case when
u € C§°(§2). Now select € R™ and because 4 has compact support, note
that '

@l < [ IDutrar ) (24.4)
where A, is any ray whose end-point is r. Let 57=1{z) denote the (n —1)-
sphere of radius 1 centered at x and denote by Az (@) the ray with end-point
x that passes through 6, where 8 € $"~{z). By integrating (2.4.4) over
5"~1(z) we obtain

) dH" 18
‘/-.Sunl(z) 'u( )l ( } S Ln-l(x)
/ \Du{r)|dH (r)dH™1(9)
A (8)
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=/ / |Du(r){rn-—ldHl(r)dHn—l(g)
§n-1(x) SAz(8)

pr—1

= / Mdy (2.4.5)
R

o |z — gy ?

where r = |z — y|. Thus, for any z € K",

/¢
otn= D@ < 10uly ([ Je-al0Fay) L 24

ptu

where w(n — 1) = H*"1{§"~1]. We estimate the potential on the right side
of (2.4.6) in the following way. Let B(z, R) be the ball such that |B(z, R)| =
|spt u|. Observe that for each y € sptu— B(z, R) and 2 € B{(z, R) — sptu,

we have ) '
|z — y| " < |z — P

and because |sptu — B(z, R)| = |B(z, R) — spt u|, it therefore follows that

/ fo -yl ay < [ o — 3]~ ay.
sptu— Bz, R) B{z,R)-sptu

Consequently,

f |z -yl dy < / o =y dy, (2.4.7)
aptu B(z,R)

However,

1/p'
f lz =yl dy ) = (v ()R (2.4.8)
B{x,R)

where v = {1 — n)p’ + n and a(n) is the volume of the unit n-ball. But
a{n)R" = |sptu| and therefore

(a(r)R")M? = oD/ |sptu|t/n 1P, (2.4.9)

The second inequality of the theorem follows from (2.4.9), (2.4.8), and
(2.4.6). To show that u € C(f}) when p > n, let {u;} € C§°(2) be a
sequence converging to u in Wﬂl P(Q2). Apply the second inequality of the
theorem to the difference u; — u; and obtain that {u;} is fundamental in
the sup norm on 2. =i

The first part of Theorem 2.4.1 states that the L norm of u can b[e
bounded by ||ul|1p, the Sobolev norm of «, where p* = np/(n — p). It is
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possible to bound a higher L” norm of u by utilizing higher order deriva-
tives of u as shown in the next theorem. Observe that the proof is slightly
different from that of Theorem 2.4.1 in case k = 1, p > n.

2.4.2. Theorem. Let @ C R® be an open set. There is a constant C =
Cln,k,p) such that if kp<n,p> 1, and u € W‘;"'”(Q), then

llwllpr 0 € Cllullepn, where p* = np/(n — kp). (2.4.10)
If kp > n, then u € C(Q) and

k—1
suplu] < CIKPHP [Z (@iam )L | Dl
Jaj=0 )
+ (diam(K))* —1— (k D 2.4.11
k- 1)! P 1D ullp;x (2.4.11)

where K =sptu and C = C(k,p,n).

Proof. When kp < n, the proof proceeds by induction on &. Observe that
Theorem 2.4.1 establishes the case k =1,
Now assume for every v € Wi~ 1P(Q) that

livlge-, < Cllolla-1,p (2.4.12)

where
9%-1 = np/(n — kp + p).
An application of (2.4.12) to v = Dyu, 1 € j < n, yields

1B5ull, .. < CliDsulle—1,p € Cllulx,p- (2.4.13)

However, (2.4.12) holds with v replaced by u and this, combined with
(2.4.13), implies
lleell1,00 -1 < Cllulls p- (2.4.14)

Since kp < n, we have gx—; < n and therefore, Theorem 2.4.1 implies

lluity < Cllull1.qs-. (2.4.15)

where ¢ = ngx_;/{n — ge—1) = np/(n — kp). (2.4.14) and (2.4.15) give the
desired conclusion.

In order to treat the case kp > n, first assume u € C§°((?) and for each
¥ € £ use the Taylor expansion of u te obtain, with the notation of Section
1.1,

u(y) = Pe(y) + R.{y)
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60
where m1 .
P:(y)= ), —D%ul@)(y - 2)*
laf=0
and
Ra(y) =k Y é [/1(1 =t ID%((1 — )z + ty)dt | (y — z).
* Lo

la|=k

To estimate Ju(y)[, note that
K] Ju(y)] < fK 1P.@)| + | Re(w)l] dz (2.4.16)

and employ Holder’s inequality to obtain

k-1

l o o
[ etz < [ |3 Somute)y - o) ds
|a{=0
, k=1 1
< IKIYP 3 (diam KO =1 Dufyk. (24.17)
jx|=0

Similarly, to estimate the remainder term, we have

. - 1/ _ k-l
[ iretwite < @am@rr ¥ [ [ a-o

x| =k
D*ul(1 — )z + ty)|dedt
<@am(fk 3 5 [ [ a-o=ia- g
< {diam(K)) la|=ka! o Jx,
- | D™ ulz)|dzdt,

where K; = Ty (K} and Ty(z) = (1 — )z + ty. Note that |Kt| = (1 -t)*| K|
Consequently, by Holder’s inequality and kp > n, we obtain

[ IRz < KU (gt S o

o=k

1 T
f (1 = )¥=1(1 — £ D®ulpyxc (1 — )7 i
0

-1
‘ 1 n
< KPP (diam(K)*k Y7 — (k - 5) D% ullp.se.

lal=k

which, along with (2.4.16) and {2.4.17), establishes the desired ineql.lality.
If u € WEP(Q), let {1} be a sequence of smooth functions converging to
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u in W{:"” (2). The application of (2.4.1) to each u; thus establishes the
inequality for u € Wé"P(Q). To conclude that u € C®(12), apply (2.4.11) to

the iiiﬂ”erence u; — u; and obtain that {u;} is fundamental in the sup norm
on {1. 0

2.4.3. Remark. An important case to consider in the previous two the-
orems is ! = R™. In this situation, W*?(R") = WEP(R") (see Exercise
2.1} and therefore the results apply to Wke(RR),

Observe that for p > n, the proof of Theorem 2.4.1 as well as that of
Theorem 2.4.2 yields more than the fact that u is bounded. Indeed, u is
Hélder continuous, which we state as a separate result.

2.4.4. Theorem. If u € Wﬂl"’(ﬂ), P > n, then u € C%2(Q), where a =
1-n/p.

Proof. Assume u € Cg(f?) and select © € . Let B = B(z,r) be an
arbitrary ball and choose 2 € BN Q. Then,

Ju(z) - u(z)) < A D) (r)aE )

where A (9) is the ray whose end-point is # and passes through the point
8, 6 € 5%~ !(z). Proceeding as in {2.4.5) and (2.4.6), we obtain

/9
w(n — Diju(z) — u{2)| < ||[Dull, (j;’ lz - yl“‘")"’dy) (2.4.18)

But, .
L 1!?’ . !
(f = emway) ™ = tagmyuryis

where v and a(n) are as in (2.4.8). Since the smooth functions are dense
in WyP(R2), we find that (2.4.18) holds for u € W3 P(8) and for almost all
x, z. O

An interesting aspect of the Sobolevy inequality is the limiting case kp =
n. This will be considered separately in Chapter 2, Section 2.4.

2.5 'The Rellich-Kondrachov Compactness
Theorem
As a result of the inequalities proved in the previous section, it follows

that the Sobolev spaces Wi '(Q) are continuously imbedded in L*' ()
where p* = npf(n — kp), if kp < n. In case kp > n, the imbedding is
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into the space C°(Q), and if kp > n + mp, it can easily be shown that
the imbedding is into C™(f1). In this section it will be shown that the
imbedding possesses a compactness property if we allow a slightly i;;rger
target space. Specifically, we will show that the injection map from Wyt (Q)
into either L), ¢ < p*, or C™({1) has the property that the closure of an
arbitrary closed set in W{f"’ (€1} is compact in the range space. Tha't is, the
image sets are precompact. We recall here that a set § in a metric space
is said to be totally bounded if for each ¢ > 0, there are a finite number of
points in § such that the union of balls of radius ¢ with centers at these

points contains 5.

2.5.1. Theorem. Let §) C B™ be a bounded domain. Then, if kp < n and
p=1, Wg"’(ﬂ) 15 compactly imbedded in L2(2) where g < npf(n—kp). If
kp > n + mp, Wg’p(ﬂ) is compactly imbedded in C™ ().

Proof. Consider the first part of the theorem and let B C Wé‘ P(Q) be
a bounded set. We will show that B is a compact set in L%Q). Since
C§° (1Y) is dense in Wé‘ "P(£)), we may assume without loss of generality that
B © C(Q). For convenience, we will also assume that ||ul|x o < 1 for all

u € B.
For £ > 0, let u, be the regularization of u. That is, u, = u * ¢, where

e i8 the regularizer (see Sectipn 1.6). If u € B, then
fue(e)] < [ fu(z — lpe(y)dy
B(0,&)
< e " sup|lullx
<& "sup{p(y):y € R},
and ’
{Due(z)] < f
<& " sup{{De(y)| : y € R"}lull
< e lsup{|{De(y)| : y € R"}.

Therefore, if we let B, = {u, : u € B}, it follows that B, is a bou_nded,
equicontinuous subset of C°($2). With the help of Arzela’s theorem, it fol-
lows that B, is precompact in L1(£2). Next, observe that

) [u(z — )| 1 Dpe(y)|dy

O,

fu(z) - ue(z)) < f () — u(z — )l (w)dy

B(0,)

1
o 4(8) - ¥ ()| e (1) dtd
< fB o fo |Du o y(2) - v (£)|e () dedy

1
< f f Du(z — ty)] lyloe (v)dtdy
B(o,e) Jo
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where ¥(t) = t(z — y) + (1 — t)z = x — ty. Consequently, Fubini’s theorem
leads to

1
[R Ju(z) - ule)lde < /ﬂ /R 1Dutz — ty) lohv (y)dadtdy

B(0,)

< sf |Dujdz < ¢.
0

Thus, B is contained within an e-neighborhood of B, in L'(f). Since B, is
precompact in L'(R) it is totally bounded. That is, for every r > 0, there
exist a finite number of balls in L'(Q) of radius r whose unton contains
B.. Hence, B is totally bounded and therefore precompact in L1($2). This
establishes the theorem in case ¢ = 1.

If 1 < g < npf(n — kp), refer to (1.5.13) to obtain

elle < el el sy

where
5= Ma—(n—kp)/np
1~ {n—kp)/np

Then, by Theorem {2.4.2)

—-A
lully < Cllulliuli;

which implies that bounded sets in Wé‘ {2) are totally bounded in LI(£2)
and therefore precompact.

The second part of the theorem follows immediately from Theorem 2.4.4
and Arzela’s theorem in case k = 1. The general case follows from repeated
applications of this and Theorem 2.4.1, O

2.5.2. Remark. The results of Sections 2.4 and 2.5 are stated in terms
of functions in W;"’(ﬂ). A natural and important question is to identify
those domains {2 for which the results are valid for functions in WkP(Q).
One answer can be formulated in terms of those domains of § having the
property that there exists a bounded linear operator

L:W5P(Q) » wks(R) (2.5.1)

such that L(u)la = u for all u € W*P(Q). We say that @ is an (k,p)-
extension domain for W*P(Q) if there exists an extension operator for
W5P(Q) with 1 < p < oo, k a non-negative integer. We will refer to
this definition extensively in Chapter 4, and if the context makes it clear
what indices & and p are under consideration, for brevity we will use the
term extension domain rather than {k, p)-extension domain, Clearly, the
results of the previous two sections are valid for 4 ¢ WHP(Q) when 2
is a bounded extension domain. Indeed, by Lemma 2.3.1 there exists a
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function f € C3°(R") such that £ = 1 on Q. Thus, if u € W*P(22), then
f-L{u) € Wo'"‘"(ﬂ’) where () is some bounded domain containing spt f. It
is now an easy matter to check that the results of the previous two sections
are valid for the space W*?(()) by employing Wé" P,

A fundamental result of Calderén-Stein states that every Lipschitz do-
main is an extension domain. An open set {1 is a Lipschitz domain if its
boundary can be locally represented as the graph of a Lipschitz function de-
fined on some open ball of R*~*. This result was proved by Calderén [CA1]
when 1 < p < n and Stein [ST)] extended Calderdén’s result to p = 1, co.
Later, Jones [JO] introduced a class of domains that includes Lipschitz
domains, called (¢,4) domains, which he proved are extension domains
for Sobolev functions. A domain  is called an (g, &) domain if whenever
z,y € R™ and |z — y| < §, there is a rectifiable arc y C {) joining z to y
and satisfying

lengthy < e |z — ¢l
and

(e, Br — ) > Al Al
' = |e—yl

Among the interesting results he obtained is the following: If & C R? is
finitely connected, then {1 is an extension domain if and only if it is an
{,8) domain for some values of £, > 0.

for all z on 7.

2.6 Bessel Potentials and Capacity

In this section we introduce the notion of capacity which is critical in
describing the appropriate class of null sets for the treatment of pointwise
behavior of Sobolev functions which will be discussed in the following chap-
ter. We will not attempt a complete development of capacity and non-linear
potential theory which is closely related to the theory of Sobolev spaces,
for these topics deserve a treatment that lies beyond the scope of this expo-
sition. Instead, we will develop the basic properties of Bessel capacity and
refer the reader to other sources for further information, cf. [HM], [ME1],
[ADS].
The Riesz kernel, I, 0 < o < n, is defined by

La(®) = ¥(a) ™ |z[*™

where /2
R e22T (e f2
Yy = T 2T
I'{nf2 — af2)
The Riesz potential of a function f is defined as the convolution
1 flyddy
v(a) Jpe |& —yI*

I, f(x}=
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The _precise value of () is not important for our purposes except for the
role it plays in the Riesz composition formula:

Iﬂ*fg:fa+ﬁ, a>0, >0, a+8<n

cf. [ST, p. 118].

Observe that I, + f is lower semicontinuous whenever f = 0. Indeed, if
7 — T, Fhen [z: — 41" f(y) — |z — y|*~" f(y) for all y € R™, and lower
sernicontinuity thus follows from Fatou’s lemma.

The Riesz. potential leads to many important applications, but for the
purpose of investigating Sobolev functions, the Bessel potential is more
suitable. For an analysis of the Bessel kernel, we refer the reader to [ST,
Chapter 5] or [DO, Part I1I] and quote here without proof the facts relevant
to our development.

The Bessel kernel, g,, a > 0, is defined as that function whose Fourier
transform is

dal®) = (2m) (1 + |wf?) /2

where the Fourier transform is
flo) = @my [ e sgyay (2.61)

It is known that g, is a positive, integrable function which is analytic except
at T = 0. Similar to the Riesz kernel, we have

Ja ¥ 95 = Ga+py a0 2 0. (2.6.2)

There is an intimate connection between Bessel and Riesz potentials
which is exhibited by g, near the origin and infinity. Indeed, an analysis
shows that for some C > 0,

ga(@) ~ Claef/DenDelol 55 |5/ —, o0,

Here, a(x) ~ b(z) means that a{x)/b(x) is bounded above and below for
all large Jz{. Moreover, it can be shown that

galz) = "fy'(‘: +o(lzl*™) as |zl -0

if 0 < a < n. Thus, it follows for some constants C; and Cjy, that

c
0a(2) < | ¢ Calzl (2.6.3)

xln—a
for all x € R™. Moreover, it also can be shown that

C1__ -calal.

[Dga(z)] £ We (2.6.4)
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From our point of view, one of the most interesting facts concerning
Bessel potentials is that they can be employed to characterize the Sobolev
spaces W¥P(R"). This is expressed in the following theorem where we

employ the notation
L*"(R*}, a>0,1<p<x
to denote all functions u such that
¥ =go*f

for some f € LP(R").
2.6.1. Theorem. If k is a positive integer and 1 < p < oo, then

LEP(RM) = WhP(RM).
Moreover, if u € LFP(R™) with u = gq » [, then

CH ANl < Hlulles < Cllfilp

where C = Ca,p,n).
Remark. The equivalence of the spaces L*? and W*? fails whenp =1 or
¥ thi):.also interesting to observe the following dissimilarity between Bessel

and Riesz potentials. In view of the fact that [|gal1 £ €, Young’s inequality
for convolutions implies

lga * flle £ Cllfllyy, 1<p< 0. {2.6.5)

On the other hand, we will see in Theorem 2.8.4 that the Riesz potential
satisfies

Hox fllg < Clfllp, 2>1 (2.6.6)

where ¢ = np/(n — ap). However, an inequality of type (2.6.6) is possible
for only such g, cf. (Exercise 2.19), thus disallowing an inequality of type
(2.6.5) for I, and for every f € LP.

We now introduce the notion of capacity, which we develop in terms of
the Bessel and Riesz potentials.

2.6.2. Definition. For a > 0 and p > 1, the Bessel capacity is defined as
Bop(E) = inf{{ifl} : ga % f 2 1 o0 E, f > 0},

whenever £ C B". In case a = 0, we take B,,; as Lebesgue measure. The
Riesz capacity, Ra,p, is defined in a similar way, with g, replaced by I,.

2.6. Bessel Potentials and Capacity 67

Since go(z) < Is(2z), z € R", it follows immediately from definitions
that for 0 < @ < n, 1 < p < n, there exists a constant € = Cla, p,n) such
that

Ry p(E) £ CBop(E), whenever E C R™. (2.6.7)
Moreover, it can easily be shown that
Rop(E) =0 ifand only if B, (E)=0, (2.6.8)

{Exercise 2.5),
We now give some elementary properties of capacity.

2.6.3. Lemma. For 0 < a < n and 1 < p < oo, the following hold:
(i) Ba,p{g) =0,

(ii) If Ey C Ey, then By y(Ey) < Bap(Ey),
(i) If B;CR", i=1,2,..., then

Bag ( E.v) <Y Bap(Ed).
1 i=1

Proof. cg) and (ii) are trivial to verify. For the proof of (iii), we may assume
that 377, Bo,(E:) < oc. Since each term in the series is finite, for each
€ > 0 there is a non-negative function f; € L?(R™} such that

G * fi >1 on El's ".fs“? < Ba,p(Ei) + 2_‘\5.

Let f(z) = sup{fi(z) : i = 1,2,...}. Cleatly, go * f > 1 on U, E; and
Flz)? < 372, fi(z)P. Therefore,

Bap (U E.-) Sfllp S Y Millp € Bap(Bs) +e. o
i=1

i=1 i=1
Another useful characterization of capacity is ti.e following:
Bap(E) = inf{inf g, « f(£)} "7 = {sup inf g, » f{z)}~? (2.6.9)
f “zcE } z€E

where f € LP(R"), f > 0 and || f||, < 1 (Exercise 2.4).

Although Lemina 2.6.3 states that B, , is an outer measure, it is fruitless
to attempt a development in the context of measure theory because it can
be shown that there is no adequate supply of measurable sets. Rather, we
will establish other properties that show that the appropriate context for
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B, is the theory of capacity, as developed by Brelot, Choquet, [BRT),
[CH].

2.6.4. Lemma. If {f;} is a sequence in LP(R") such that ||fi — fllp — 0
as i — 00, p > 1, then there is a subsequence {fi,} such that

9o * [;;(%) = ga * fl2)
for B, p-qe. z € R*.

(We employ the time-honored convention of stating that a condition
holds B, p-g.¢., an abbreviation for B, p-quasi everywhere, if it holds at all
points except possibly for a set of By p-capacity zero.)

Proof. It follows easily from the definition of B, capacity that if f €
IP(R"™), then lg, * f(2)| < 0o for B, p-q.e. z € B*. Thus, for ¢ > 0,

Bop({z : l9a * filz) — ga » f(3)| Z €} = Bop({z : |90 » (fi — F)(2)| 2 €})
< e PlIfi— FlIp-

Consequently, there exists a subsequence {f;; } and a sequence of sets E;
such that

|90 * f3,(z) = ga * f(2)| < §7, @z € R" - E;

with .

Bo p(Ej) € €277,
Hence, ga * fi, — ga* f uniformly on R® —U2, E;, where By p (U2 B;) <
¢. Now a standard diagonalization process yields the conclusion. m]

2.6.5. Lemma. If {f;} is a sequence in LP(R™), p > 1, such that f; — f
weakly in LP(R™), then

liminf g * fi(2) < ga * f(2) < limsup go * fi(z) (2.6.10)

=00

for By p-q.e. x € R™. If in addition, it is assumed that each f; > 0, then

go * F(z) < lillnil;lfga x fi{lz) for ze R (2.6.11)
and
g * f(z) = liminf ga * fi(%) (26.12)

Jor By p-q.e. € R,

Proof. Under the assumption that f; — f weakly in LP(R_n), b}_’ the
Banach-Saks theorem there exists a subsequence of {fi} (which will be
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denoted by the full sequence) such that

i
gi=i1)f
i=1

converges strongly in LP(R") to f. Lemma 2.6.4 thus yields a subsequence
of {g:} (denoted by the full sequence) such that

go * f(z) = lim gq * gi(2)
T
for Bap-q.e. £ € R". However, for each z € R",
liminf g, * fi(z) < lim g, * g:(2),
100 t— 0

which establishes the first inequality in (2.6.10). The second part of (2.6.10)
follows from the first by replacing f; and f by —fi and — f respectively.
In the complement of any ball, B, containing the origin, gellpsmn -8 <
00, by (2.6.3). Thus, (2.6.11) follows from the weak convergence of fito f.
(2.6.12) follows from (2.6.11} and (2.6.10). m

2.6.8. Lemma. For every set E C R®

Bop(E) = inf{Bay(U) : U D E,U open}.

Proof. Since g, is continuous away from the origin, the proof of the lower
semicontinuity of g, * f when f > 0 is similar to that for the Riesz potential
given at the beginning of this section. The lemma follows immediately from
this observation, 0

The lemma states that B, , is outer regular. To obtain inner regularity

on a large class of sets, we will require the following continuity properties
of B, p.

2.6.7. Theorem. If {E;} is a sequence of subsels of R®, then

Ba, (nminfE,-) < lim inf By ,(E;). (2.6.13)
P00 [ Jamde w)
I ECEyC... then
Bay (U E.-) = Hm B, p(E;). (2.6.14)
i=1 I—O0

If K1 DKy D... are compact sets, then

[+ =)
Bap (ﬂ K.—) = lim By p(K:). (2.6.15)
i=1
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Proof. For the proof of {2.6.14) assume that the limit is finite and' let f;
be a non-negative function in LF{A™) such that g, * f; > 1 on E; with

I /ill < Bap(Es) + 1/1- (2.6.16)

Since | f;[? is a bounded sequence of real numbers, Theorem 1.5.2 asserts

the existence of f € LF{R™) and a subsequence of {f;} that convosérge‘s
weakly to f. Hence, (2.6.12) implies that there exists aset B C E = U2 | F;
with B, ,(E — B) = 0 such that g, * f > 1 on B. Therefore,

Bap(E) = Bap(B) < If13
< liminf |2
=00

< lim Bqp(E;),
=00

from (2.6.16). If

then {A;} is an ascending sequence of sets whose union equals lim inf E;.
Therefore, since A4; C E; for i > 1, (2.6.14) implies {2.6.13} because

Bo,, (Iminf Bi) = Bay (G Aa)

i=1

= lim Bap(A:)

< liminf By, p(F;).
o0

Finally, it {K;} is a descending sequence of compact sets, Lemma 2.6.6
provides an open set U/ D N{2, K; such that

Ba,p(U) < Bap (ﬁ Ks‘) +e

i=1

for an arbitrarily chosen ¢ > 0. However, K; C U for all sufficiently large i
and consequently By p(K;) € Bap(U). (2.6.15) is now immediate and the
proof is complete. ]

(2.6.14) states that B, is left-continuous on arbitrary sets w:herea.s
(2.6.15) states that B, is right continuous on compact sets. The impor-
tance of these two facts is seen in a fundamental result of Choquet [CH,
Theorem 1] which we state without proof.

2.6.8. Theorem. Let C be a non-negative set function defined on the Borel
sets in R™ with the following properties:
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(i) (o) =0,
(i) If By C By are Borel sets, then C(B1) < C(By),

(iii) If {B;} is a sequence of Borel sets, then CUZ,B;) < 3.2, C(By),

i=1

(iv) C is left continuous on arbitrary sets and right continuous on compact
sets.

Then, for any Suslin set A C R™,
sup{C(K) : K C A, K compect} = inf{C(U) : U > AU open}.

Any set A for which the conclusion of the theorem applies is called C-
capacitable. In view of Lemma 2.6.3 and Theorem 2.6.8, the following is
immediate.

2.6.9. Corollary. All Suslin sets are B, p- capacitable.

The usefulness of Theorem 2.6.8 and its attending corollary is quite clear,
for it reduces many questions concerning capacity to the analysis of its
behavior on compact sets.

We now introduce what will eventually result in an equivalent formula-
tion of Bessel capacity.

2.6.10. Definition. For 1 < p < 00, and E C B® a Suslin set, let M(E)
denote the class of Radon measures 4 on R" such that (R —E) =0 We
define

bap(E) = sup{u(R")} (2.6.17)
where the supremum is taken over all p € M(E) such that
19a * pellpr < 1. (2.6.18)
Clearly,
bap(E) = (inf{[iga * viip }) ™ (2.6.19)

where the infimum is taken over all v € M(E} with v(R") = 1. We have
that

||gaw|4,f=sup{[ﬂ ga*v-fdx:fzﬁallf!lpsl}

:sup{/;tnga*def?.Ua”f”pSl}'

and thus ¢btain

bop(E) ! = (igfs?p/g‘, *fdy) (2.6.20)
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where v € M(E), v{R®) =1, and f > 0 with || fl, < 1.
Recall from (2.6.9} that if E C R", then

B, p(E) = {sup inf gq * f(2)}™?
I =€k

where f € LP(R"), f > 0 and || f]l, < 1. By considering measures concen-
trated at points, this is easily seen to be

Ba,p(E)_”" = sup inf/ga * f dv (2.6.21)
F v

where f and v are the same as in (2.6.20).
We would like to conclude that there is equality between (2.6.20) and
{2.6.21). For this purpose, assume E C R® is a compact set and let

F(fv)= fgc. * fdv (2.6.22)

where f € LP(R™), f 2 0, {|fll, £ 1 and » € M(E), v(R*} = 1. Clearly
F is linear in each variable and is lower semicontinuous in v relative to
weak convergence. Since the spaces in which f and v vary are compact we
may apply the following minimax theorem, which we state without proof,
to obtain our conclusion, [FA].

Minimax Theorem. Let X be a compact Hausdorff space and Y en ar-
bitrary set. Let F be a real-valued function on X x Y such that, for every
y €Y, F(z,y) is lower semicontinuous on X. If F is convex on X and
concave on Y, then

inf sup F(xz,y) = sup inf F(x,y).
reX ye¥ y€Y z€ X

We thus obtain the following result.
2.6.11. Lemma. If K C R" is compact, then
[bap(K)P = Bap(K)- (2.6.23}

Our next task is to extend (2.6.23) to a more general class of sets. For
this purpose, observe that if £ C R" is a Suslin set, then

bop(E) = sup{bap(K) : K C E, K compact}. (2.6.24)

To see this, for each Suslin set E, let u € M{E) with |{go * pilpr < 1. If
K C F is compact, then ¥ = u|K has the property that v € M(E) with
llge * ¥llpr < 1. Since p is a regular measure, we have

u(E) = sup{p(K}: K C E,K compact},
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and therefore

bip(E) = sup{by o(K) : K C E, K compact}. (2.6.25)
From (2.6.25), (2.6.23), and Corollary 2.6.9 we conclude the following.
2.6.12. Theorem. If E C R" is a Suslin set, then

[bﬂl -P(E)]p = Bct,p(E)t

_Tlllus f&l:, we have developed the set-theoretic properties of Ba . We now
will investigate its metric properties. ‘

2.6.13. Theorem. For p > 1, ap < n, there exists a constani C =
Cla,p,n) suck that

C™lrm P < B, J[B(z,7)] < Orn—or
whenever £ € R™ and 0 < r < 1/2.

Proof.. Without loss of generality, we will prove the theorem only for B(0,r)
and write B(r) = B(0,r). Let f € LP(R™), f > 0, have the property that

ga*xf>1 on B(2). (2.6.26)

By a change of variable, this implies

/Rn 9o (x - y) s (g) rdy > 1 (2.6.27)

E)]r z € B(2r}. From {2.6.3) and (2.6.4), there exists ¢ = C{a,p,n) such
at

C_1|.’L‘ _ yla——ne——ﬂtx—-yl < Galz — y) < C{:r _ yl"‘_"e‘l”_”l,

and therefore

o (&2‘ - y) S CI&T _ yla_nf‘ﬂ_ae"l"’_yl"'-l
T

< Clz —y*~mrimre™Hevl (r < 1/2)
SCH" Pga(z —y) (r <1/2).

Consequently, from (2.6.27),

c? fR galz —y)f (g) r7%y >1 for zeB(2r), (r<1/2).
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However,
2 —a g P _ 2p n—ap f o
[ frer (O] = cmeem
Hence,
BayB(2r)] < CPe"P|fIF, 7 <1/2
for every f € LP(R™) satisfying (2.6.26). Thus,
B, p[B(2r)] < C¥rimo?B, [B(2)], 71<1/2

from which the conclusion follows.
For the proof of the first inequality of the theorem, let f € LP(R"),

f > 0, be such that go * f 2 1 on B(r). Then
|B(r)| < f 9o * f dz <|B(r)Y7 lIga # fllg»
B{r)

where g = p* = np/{(n—ap). It follows from (2.6.3) that g, < Cl,. Because
there is no danger of a circular argument, we employ the Sobolev inequality
for Riesz potentials (Theorem 2.8.4) to obtain

reP < ClA-
Taking the infimum over all such f establishes the desired inequality. O

The case ap > n requires special treatment.

2.6.14. Theorem. If p > 1, op = n and 0 < F < 1, there exists C =
C(n,7) such that

CMlogr~)1"? < B, p[B(z,r)] < Clogr™1)'™?
whenever 0 < r <F¥ <1 and z € R".

Proof. As in the proof of the previous theorem, it suffices to consider only
the case z = 0. Let 4 be a Radon measure such that u[R® — B(r)] = 0 and
llga * gill; < 1, where we write B(r) = B(x,r). Because of the similarity
between the Riesz and Bessel kernels discussed at the beginning of this
gection, there exists a constant C independent of r such that

[ Garwrizso [ Garurassc
B(l] R"

If [y] < 7 and |z} > r, then |z —y| < || + |y} £ |o{ +r < 2|z and
therefore

pf
C2 f (o # p)f de = f ( f |z - yi“‘“du(y)) dx
r<e|<1 r<el<1 n

> Ci[R™P / lo|"de

r<)z|<1

= Cy[n(R™)" [log r™"].
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Thus, by Theorem 2.6.12, it follows that
B, p[B(r)] < Clogr—1)}17P,

To establish the opposite inequality, let A, denote the restriction of
Lebesgue measure to B(r). Since g, < I, we have

Ga * Ap(z) < C , Iz —y|® "dy. (2.6.28)
B(r)

If x| < 5/7, |yl < r, then |z — y| < er where ¢(F) = 1 + 1/F. That is,
B(r) € B{z,cr). Therefore,

iy [ eyl
L(") B(zx,cr) | d Y
< CF)re

which, by {2.6.28), implies

Ga * Ae(2) SCF)r* if |z| <r/F (2.6.29)
Iy} <randr/F<|z| €1, then |z —y| > |z| - |y| > |z]| — r > e(F)||,
where now ¢(F) = 1 — 7. Hence,

Ga*Ar(z) < ij;{ ) |z —yl* "dy < Crr®|z]* ™ if r/F < |z| < 1. (2.6.30)

I |z| > 1, then (2.6.3) yields
Ga * Ar(z) € Croe 12, (2.6.31)
Thus, (2.6.29), (2.6.30), and (2.6.31) yield
fi9a * Arllyr < Cr"(logr=1)1/%',

Appealing again to Theorem 2.6.12, we establish the desired result. O

2.6.15. Remark. In case ap > n, it is not difficult to show that there is a
constant C = C{o,p,n) such that

Bap(E) 2 C

whenever E # 0. See Exercise 2.6.

Because B, p[B(x,r)] = r"~°P one would expect that Bessel capacity
and H_ausdorﬂ' measure are related. This is indeed the case as seen by the
following theorem that we state without proof, [ME1], [HM). See Exercises
2.15 and 2.186.

2.8.18. Theorem. If p > 1 and ap < n, then B, ,(F) = 0 if H" °?(E) <
oo. Conversely, if B, ,(E) =0, then H*~%P*¢(E} = 0 for every € > 0.
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2.7 The Best Constant in the Sobolev Inequality

There is a fundamental relationship between the classical isoperimetric in-
equality for subsets of Euclidean space and the Sobolev inequality in the
case p = 1. Indeed, it was shown in [FF] that the former implies the latter
and, as we shall see in Remark 2.7.5 below, the converse is eagily seen to
hold.

We will give a method that gives the best constant in the Sobolev In-
equality (Theorem 2.4.1), by employing an argument that depends critically
on a suitable interpretation of the total variation for functions of several
variables. This is presented in Theorem 2.7.1 and equality (2.7.1} if referred
10 as the co-area formula. This is a very useful tool in analysis that has
seen many applications. We will give a proof for only smooth functions but
this will be sufficient for our purposes.

2.7.1. Theorem. Let u € CF{R™). Then

+od
/ | Du|dx = / H™ Hu~ () nQldt. (2.7.1)
11 —o0

Before giving the proof of this theorem, let us first consider some of
its interpretations. In case n = 1, the integrand on the right-hand side
involves Hausdorff 0-dimensional measure, H®. H%(E) is merely the number
of points {including oc) in E and thus, the integrand on the right side of
(2.7.1) gives the number of points in the set u~*(¢) N {¥. This is equivalent
to the number of times the graph of u, when considered as a subset of
R? = {(z,y)}, intersects the line y = t. In this case {2.7.1) becomes

[ iz = [ Nway (2.7.2)

where N(y) denotes the number of points in u~}(y) N Q. (2.7.2) is known
as the Banach Indicatrix formula, [SK, p. 280].

The Morse-Sard Theorem [MSE1], [SAl, states that a real-valued func-
tion u of class C* defined on R™ has the property that H![u{N)] = 0 where
N = {z : Du(z) = 0}. For example, if we consider a function v € CZ(R?),
an application of the Implicit Function theorem implies that = '(£) N is
a l-dimensional class C? manifold for a.e. ¢. In this case, H[u"1(¢) N ]
is the length of the curve obtained by intersecting the graph of u in R® by
the hyperplane z = t. Thus, the variation of w, fn |Du|dz, is obtained by
integrating the length of the curves,  Nu~!(t), with respect to ¢.

The co-area formula is known to be valid for Lipschitzian functions. {We
will see in Chapter 5, that another version is valid for BV functions.) The
proof in its complete generality requires a delicate argument from geometric
measure theory that will not be given here. The main obstacle in the proof
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is to show that if u is Lipschitz, then

/Rl H '™t $)n N)dt = 0
where NV = {z : D(z) = 0}. Once this has been established, the remainder
of the proof follows from standard arguments. Because our result assumes
that u € C", we avoid this difficulty by appealing to the Morse-Sard the-

orem referred to above. In preparation for the proof, we first require the
following lemma.

2.7.2. Lemma, If U C R" is a bounded, open set with C? boundary, then

sup {Ldivpdx : ¢ € C3(R™; R™),sup Joo| < 1} = H""YaU|.

Proof. By the Gauss—Green theorem,

/Udi\r(pd:t: = /&U o(z) - v(z)dH" {z)

where v is the unit exterior normal. Hence
sup {/U divede:p € Cé(R“; R™), sup |(p| < 1} < H""(&U},

To prove the opposite inequality, note that v iz a €' vector field of unit
length defined on AU and so may be extended to a C! vector field V
defined on R" such that [V{z)} < 1 for all z € R", ¢f. Theorem 3.6.2. If
¥ € C§°(R™) and || < 1, then with ¢ = ¥V, we have

/Udivgod:r = /aU By dH" (y)

80 that

sup {/Udiw t ¢ € C3(R™; R™),sup Jg| < 1}

> sup {LuwdH“'l 19 € CF(R™),sup |¢] € 1} =H"Y9U). D

Proof of Theorem 2.7.1. We first consider linear maps L: R* — R!,
Then there exists an orthogonal transformation f: R* — R™ and a non-
singular transformation g such that f(N1) = RY, f(N) = R*~1, (N =
ker L) and

L=gopof
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where p: R* — R! is the projection. For each y € R!, p7!(y) is a hy-
perplane that is a translate of the subspace p~!(0). The inverse images
p~1(y) decompose R™ into parallel (n — 1)-dimensional slices and an easy
application of Fubini’s theorem yields

181 = [ HE 0 (27.3)
whenever E is a measurable subset of R"*. Therefore
£ = 1Bl = [ EEn e )l
= [ @ s oy

= J HUEN S (p™ (y))]dy.

Now use the change of variables z = g{y) and observe that the last integral
above becomes

1181 = [ BN /07 e e

_ / HYEN LY (2)|dz. (2.7.4)
Rl

But {g'| = |DL| and thus (2.7.4) establishes Theorem 2.7.1 for linear maps.
‘We now proceed to prove the result for general u as stated in the theorem.
Let N = {x : Du(x) = 0} and for each t € R}, let

Ei =R {z:u(z) >t}
and define a function f, : B* — R! by

5= [x= if £>0
7 —xmoog, if t< 0.

Thus,
u(x) =/ fi(z)dt, =€ R™
Rl

Now consider a test function ¢ € C§5°(R® — N), such that sup|p| < 1.
Then, by Fubini’s theorem,

/Rn u(z)p(z)dr = /Rn /Rl fe(2)p(z)dtdx

- /R 1 /R h@)le)dsdt. (2.7.5)
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Now (2.7.5) remains valid if ¢ is replaced by any one of its first partial
derivatives. Since Du # 0 in the open set B® — N, the Implicit Function
theorem implies that ¢! (t) N {R™ — N) is an {n — 1)-manifold of class C".
In addition, since spt ¢ C R® — N, it follows from the Divergence theorem
that

divpds = / w{z) - v(z)dH "} (x).
E, (8B )N(R" ~ N}

Therefore, if ¢ is now taken as ¢ € C§°(R" — N; ") with sup ¢} < 1, we
have

- Du-cpda:z/ u-divgod:c=/ div @ dedt
A" R= R J B,

- f f o(z) - v{z)dH " (z)dt
R J{R» —N)NOE,

< / H*Y(R™ - N)nu~l(t))dt
R

< / H* Hu t(1)]dt. (2.7.6)
n

However, the sup of (2.7.6} over all such ¢ equals

/ \Duldz = f |Du|dz.
R%"—-N R"

In order to prove the opposite inequality, let Ly: R® — R! be piecewise
linear maps such that

lim |Eg —u|ldz =0 (2.7.7)
k—oc fpn
and :
lim |DLy|de = / |1Duldz. (2.7.8)
—+D0 Rw m"
Let

EF=R*n{z: Li(z) > £},
Xf=XE§-

From (2.7.7) it follows that there is a countable set § C R® such that

lim / Ixt — xF|dz =0 (2.7.9)
k—oo Rr

whenever ¢ € 5. By the Morse-Sard theorem and the Implicit Function
theorem, we have that u~1(¢) is a closed manifold of class C™ for all t €
R! — T where H}(T) = 0. Redefine the set § to also include 7. Thus, for
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t¢ S, and € > 0, refer to Lemma 2.7.2 to find @ € C§°(R®; B™) such that
lg| <1 and

H (1) - [ diveds < % (2.7.10)
B,

Let M = [, |divp]dz and choose kg such that for k > ko,

s < £
[ =t < 5o

For k > ko,

/divqodz:~/ div ¢ dz
E, Bk

Therefore, from (2.7.10) and (2.7.11)

£
<M f Ixe — x{ldz < 3. (2.7.11)
Rt

HY Hu~ (1)) 5/ divr,ad.?:+§

By

5/ divedr + ¢
B

= / ¢-vdH* 1 +e¢
BB}

< H L)) + e

Thus, fort & S,
Hu (1)) < tim inf H LI

Fatou’s lemma, {2.7.8), and (2.7.4) imply
H* Yy~ H{#)]dt < liminf / HY L ()] de
R k—oo fm

k—oo

Sliminf/ | DLy |d
R0

= f | Duldz. o

Theorem 2.7.1 is a special case of a more general version developed by
Federer [F1] which we state without proof.

2.7.8. Theorem. If X and Y are separable Riemannian manifolds of class

1 with
dimX =m>k=dimY
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and f: X =Y is a Lipschitzian map, then
[ rearm@) = [ Bt - guEt)

whenever A C X is an H™-measurable set. Moreover, if g is an H™
integrable function on X, then

r ™" = T m—k TNy
Js@awar@ = [ [ g@anm -t

Here, Jf(z) denotes the square root of the sum of squares of the deter-
minant of the & x k minors of Jacobian matrix of f at z.

The proof of Theorem 2.7.1 above is patterned after the one by Fleming
and Rishel {[FR] which establishes a similar result for BV functions. Their
result will be presented in Chapter 5.

We now give another proof of Theorem 2.4.1 that yields the best constant
in the case p=1.

2.7.4. Theorem, If u € C°(R™), then

”u"n/(ﬂ.-l) < n-la(n)-lfn ||Du{|

Proof, For t > 0, let
Ay ={z:|ulz)| > t}, By={z:|u(z)=1t}

and let u; be the function obtained from u by truncation at heights ¢ and
-t If

F(@) = uitllnsin—1)s

then clearly
ten| < Jue| + hxa,

FE+h) < f(t) + hjAy - /m (2.7.12)

for & > 0. It follows from the Morse-Sard theorem that for a.e. ¢ > 0, B, is
an (n — 1)-dimensional manifold of class co and therefore, an application
of the classical isoperimetric inequality yields

| 4|1/ < n~la(n)~ Y HY(B,). (2.7.13)
It follows from (2.7.12) that f is an absolutely continuous function with

F(#) < |4 D/m
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for a.e. £. Therefore, with the aid of (2.7.13), it follows that
{r—1)/n
(f turre=as) ™ = f00) - £0)

_ j; Pt

Sn‘la(n)‘”"/ H™[B]dt.
0

The co-area formula, Theorem 2.7.1, shows that the last integral equals

/ |Duldz,

thus establishing the theorem. ]
From the inequality
lella/tn-1y € 7~ a(n) ™" | Dull {2.7.14)
one can deduce the inequality
lullpe < np(n ~1)/(n — p) || Dull, (2.7.15)

by replacing » in {2.7.14) by u? where ¢ = p(n — 1)/(n — p). Then

(n-1)/n
(/ unp/{ﬂqp)dx) < n"'la(n]_u"qfIu|q_l|D“[dx

(r—-1)/p
< n-la(n)"V"g ( / u“?ff“-”dx) 1Dull,

by Holder’s inequality.
Of course, one cannot expect the constant in (2.7.15) to be optimal.
Indeed, Talenti [TA] has shown that the best constant C(n,p) is

T e e L R L Ea N O TR e
Clayp) = w271 (F‘p) [r(n/p)r(1+n~(n/p))]

where 1 < p < n.

2.7.5. Remark. The proof of Theorem 2.7.4 reveals that the classical
isoperimetric inequality implies the validity of the Sobolev inequality when
p = 1. It is not difficult to see that the converse is also true.

To that end let K C R™ be a compact set with smooth boundary. Let
dx{(z) denote the distance from z to K,

di(z) = inf{|z — y| : y € K}.
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It is well-known and easy to verify that dx(z) is a Lipschitz function with
Lipschitz constant 1. (See Exercise 1.1.) Moreover, Rademacher’s theorem
(Theorem 2.2.1) implies that dx is totally differentiable at almost every
point z with |Ddy(x)| = 1 for a.e. z € R*. For each h > 0, let

Fu(z) = 1 — min[dg (), h]- A~}
and observe that F} is a Lipschitz function such that
(i) Fy(r)=1ifz e K
(it} Fr{z)=0ifdg{z) > h
(iti) {DFu(x)] < h~! for a.e. z € R™,

By standard smoothing techniques, Theorem 2.7.4 is valid for F}, because
F}, is Lipschitz. Therefore

Hz: 0 < dx(z) < h}
5 )

Since |Ddg (x)| = 1 for a.e. x € R", the co-area formula for Lipschitz maps,
Theorem 2.7.3, implies that

(KD®=™ < n™lafn) 7"

: d
{z: 0 <dx(z) <h} _ l/ {Ddg |dz
h h {0<d<h}

h
=5 | e
= B d7 ()]

where 0 < ¢, < h. Because K is smoothly bounded, it follows that
H“Fl(d}}l(th)] —- H* Y 8K) as h—0

and thus, the isoperimetric inequality is established.

Of course, by appealing to some of the more powerful methods in geo-
metric measure theory, the argument above could be employed to cover the
case where the compact set K is a Lipschitz domain. By appealing to the
properties of Minkowski content, cf. [F4, Section 3.2.39], it can be shown
that the above proof still remains valid.

2.8 Alternate Proofs of the Fundamental
Inequalities

In this section another proof of the Sobolev inequality {2.4.10) is given
which is based on the Hardy-Littlewood—Wiener maximal theorem. This
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approach will be used in Section 2.9, where the inequality will be treated

in the case of critical indices, kp = n.
We begin by proving the Hardy-Littlewood-Wiener maximal theorem.

2.8.1. Deflnition. Let f be a locally integrable function defined on R™.
The maximal function of f, M(f), is defined by

M(f)(z) = sup { ]ﬁ > o} -

2.8.2. Theorem. If f € LP(R™), 1 < p < o0, then M(f) € LP{R"} and
there exists a constant C = C(p,n)} such that

1M {)llp < Cilfllp-

Proof. For each t € B!, let A; = {z : M(f)(z) > t}. From Definition 2.8.1
it follows that for each x € A,, there exists a ball with center x € A, such

that
][ |F|dy > t. (2.8.1)
By
If we let F be the family of n-balls defined by F = {B; : x € A}, then The-
orem 1.3.1 provides the existence of a disjoint subfamily {B1, Ba, ..., By,...}
such that

o
318k 2 574l
k=1

and therefore, from (2.8.1},

o0
£l > j fldy > £ 3 [Bel > 57 A,
9o By

Uk‘-:lB k=1
or
5ﬂ
|4:] < ?"fﬂl whenever t€ R'. (2.8.2)

We now assume that 1 < p < oo, for the conclusion of the theorem
obviously holds in case p = 0o. For each t € R!, define

_ [ fyif | f(z)| 2 ¢/2
flz) = {0 i | f(z)] < tﬁz.
Then, for all z,
[f(2) < |fe(=)] + /2,
M(f)(z) € M(fi)(z) +t/2

and thus,

{z: M(f){=) > t} C {M(fi}(x} > t/2}.
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Applying (2.8.2) with f replaced by f, yields

Ad < M) > t2H < 228 [ gy = 2250 .
t -/R"lfly t f{mzt/z}mdy

2.8.3)
Now, from Lemma 1.5.1, and (2.8.3),

/R (M ppdy = fﬂ " | Aulde?

a0
=pf 7 A, ldt
a

L= <]
<p2-5° / -2 ( f | f{d&:) dt
0 {1fi>¢/2}
=]
=p2P . 5" f P2 ( f | fld:c) dt
0 {171>t}

-5 [ T > e

where p is a measure defined by u(E) = fE | fldz for every Borel set E.
Thus, appealing again to Lemma 1.5.1, we have

fr e = B [ it > i

p2P - 5" -

=B [ i

_pope5n
p—1

|fiFdz < co.
Rn
8ince p > 1. This establishes the theorem. |

For 0 < a < n, we recall from Section 2.6 the definition of the Riesz
potential of f of order a:

o 1l = Lof(@) = 55 [ TR

The following lemma is the final ingredient necessary to establish the
Sobolev inequality for Riesz potentials.

28.3. Lemma. If 0 <a<n, >0,and § > 0, then there is a constant
C = C(n) such that for each z € R®,

" /; LWl gy

8 T -y~
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. |/ (y)|dy -8
(i) e 5iay |7 — 9P < CFPM(f)(z).

Proof. Only (i) will be proved since the proof of (ii) is similar. For z € R*
and § > 0, let the annulus be denoted by

& & ) )
.A (x,g—k,ﬁ) =B ($,2—k) - B (x,—-——zk“),
and note that
/ Sy _ 5
B yln—a p

(z.6) |z —

/ £ (y)|dy
Alw i) 2000
oo 6 -7
< Z (2k+1) [B{:,-’g) I'fldx
= a(n}g (5) (Q—k) /B(z,;i-) {fldz

< C5*M{f)(z),

where a(n) denotes the volume of the unit n-ball. This proves (i). 0

We now will see that the Sobolev inequality for Riesz potentials is an
eagy consequence of the above results.

2.8.4. Theorem. Lef & > 0,1 < p < oo, and ap < n. Then, there is a
constant C = C(n,p) such thet

()l < Clfllgy p* = —F

n—ap’

whenever f € LP(R").

Proof. For ¢ > (, Holder's inequality implies that
oo 1/
[ Yo ([ e
R* - B{(z,8) lz — ) 5

where 7 = |z — y|. The integral on the right is dominated by §~ /7 since
ap < n, and therefore, by Lemma 2.8.3(i),

a(£)(@)| < C [6*M()() + 527 fl] (2.8.4)

If we choose —pfn
o- (M) ™",
/1l
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then (2.8.4} becomes
ol £)(2)] < CIM(D) )]~/ ol

or,
HalD@)F" < O )P flEe/ ™"

An application of Theorem 2.8.2 now yields the desired conclusion, o

2.8.5. Remark. If we are willing to settle for a slightly weaker result in
Theorem 2.8.4, an easy proof is available that also provides an estimate of
the constant C that appears on the right-hand side of the inequality. Thus,
if £} is a domain with finite measure, f € LP(2), and p < g < p*, we can
obtain a bound on ||1,(f){l; by a method that essentially depends only on
Hélder’s inequality.

For this purpose, let + =1 — (;7 — &) and note that because ¢ < p*,

o~ yl°™ € L7(®) (28.5)
for each fixed = € R™. As in the proof of (2.4.7), if |B(x, R)| = |€2], then

a—nlr —nir win —1 R(ﬂ_n)r+n
/Iz—y!( ’dyS/ iz — yllemrgy = ¥ 21
0 B{z,R) (@ —n)r+n
— DIy
win - DI Cla, , Q) (2.8.6)

- [(& = n)}r + nja(n)?

where ¥ = ((x — n)r)/n + 1. For each fixed x, observe that
1/q
[z = 51@=1£ @)l = (lo -yl G)P)

(I = glle=m/#) )8 (28.7)

where 6 = !l, - %. Because 1% + % +6 = 1, we may apply Hélder’s inequality
to the three factors on the right side of (2.8.7) to obtain

i/q
a(f)(a)] < ( [i- yl‘“"")'if(y)f"dy)

- ( fﬂ ix—yi(“"“)'dy) " ( fn If(y)l"dy)ﬁ-

Therefore, by Fubini’s theorem and (2.8.6),
/ (Iaf)idz < f / o — 9] | £ (y) Pdzdy
Y] nJIn
- C{a,6,9) 5 1171228

< Cla, 6,2 - |7|12 - Cla, 6,0) 5 - L 7Eee.
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Thus,
afily < Cla, 8, Q) MA+WRY| £,
< Cla, §, W)Y £lp-

2.8.6. Remark. It is an easy matter to see that Theorem 2.8.4 provides
another proof of Theorem 2.4.2. Indeed, if v € C§(R"), recall from (2.4.5)
that for every z € B",

[u(z)| < C(n)L (D). (2.8.8)
In fact, if we employ the Riesz composition formula which states that
Iaxlg=I4p a+p<mn,
an application of (2.8.8) to the derivatives of u gives the estimate
Ju(2)| < C(n, k)u{| D el).
From Theorem 2.8.4 we have

Ik (1D%u)|lps < CHD*ullp

if kp < n. Thus, .
pe < Cl|D%ullp < Cllujix,p

which is the conclusion in (2.4.10) when 2 = R".

Of course, one could also employ Theorem 2.6.1 which states that each
u € W*P?(R") can be represented as u = g, * f for some f € LP(R"), where
| fllp ~ lllix p;r> - Then, in view of the fact that g, < Cli, (2.4.10) follows
from Theorem 2.8.4.

[l

2.9 Limiting Cases of the Sobolev Inequality

In previous sections all Sobolev-type inequalities were established under
the restriction kp # n. We now treat the case kp = n in the context of
Riesz potentials and since the Riesz kernel I, is defined for all positive
numbers ¢, we will therefore replace the integer & by a.

When ap = n, one might hope that I, * f iz bounded because p* — oo
as ap — n. However, while boundedness is trivially true when n = 1, it
is false when n > 1. As an example, consider u(z) = |log |z|)*~%/(~1;
clearly u € W3*(B(0,r)) for r < 1, but » ¢ L*(B(0,7)). Although an
L estimate cannot, in general, be obtained it is possible to obtain results
that provide a good substitute. Our first result below offers exponential
integrability as a substitute for boundedness. We begin with a simple and
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elegant proof of this fact which follows easily from the estimate discussed
in Remark 2.8.5.

2.9.1, Theorem. Lef f € LP(Q), p > 1, and define

g= Infp * f.
Then there are constants Cy and Cy depending only on p and n such that
g 1"
exp | =———| dzr < (Cs. 9.

foo ] wese (23D
Proof. Lot p € ¢ < 0o and recall from Remark 2.8.5 the estimate

Haflly < Cla, 6,07 (2.9.2)

1_1-¢1_1
where - =1- (2 - 2),
C(Ct, 8, Q) = w(n — l)lnp s
(e — n)r + nla(n)*
and
S Gl LY

In the present situation, ap = n, and therefore

- - "
{(a—n)r+n Py Pt

Thus, we can write
Clanti) = ¢ = Kl (BE2=0) < kjapg

where Ky and K are constants that depend only on p and n. Thus, since
¥g/r = 1, from (2.9.2) we have

[ lotvas < o
< (gK)TIQUIFIE = (k)20 o) |1 £)g.
Now replacement of ¢ by p'q (which requires that ¢ > p — 1) yields
[ laeds < Gary gl

'In preparation for an expression involving an infinite series, substitute an
integer k, k > p — 1, for ¢ to obtain

1{ sl )"”‘ . (Kp')“
— de <9 K——|52| | ==
/nk' (Cﬂfllp v Kyl o




90 2. Sobolev Spaces and Their Basic Properties

for any constant C' > 0. Consequently,

/ﬂ Z # (cufup)p’k 1< P’Klmkiu e (;gg)’“

where ky = [p]. The series on the right converges if 7 > eK p‘: and thus
the result follows from (1.5.12) when applied to the terms involving k < kg
and the monotone convergence theorem. ]

By appealing to a different method, we will give another proof of expo-
nential integrability that gives a slightly stronger result than the one just
obtained.

2.9.2. Theorem. Let f € LP(R™), spt f C B where B is ¢ ball of radius R,
and let p = nja > 1. Then, for any € > 0, there is @ constant C = C{e,n,p)

such that
]( [n Lol £)()
exp
| Wn-1

11l
Proof. Clearly, we may assume that || fj|, = 1. Then,

_ g jo—n — yl*nd
L@ = [ wle-seas [ -l

¥

pl
—-€ ] dr < C. (2.9.3)

where € B and 0 < § < R. By Lemma 2.8.3(i}, the first integral on the
right is dominated by C§*M{(f)(z). By Holder’s inequality and the fact
that || f]l, = 1, the second integral on the right can be estimated as follows:
if r = |z — y|, then

R I/P'
T o -1 (a—n)p’+n—1dr
fB _B(sz(y)lx y|*dy < [w(n ) fa r ]
= fw(n — 1) log(R/8)]"/7.

Thus )
a{f)(@)] < CE*M(F)}(x) + (w(n — 1)log(R/6))'/7 .

I we choose
6% = min(eC ™} [M{f)(2)] 7, R®),

then we have
1/’
Ha(f)(z)| < e+ [w(n - 1)]0g+(Rg_l'/“c‘l/aM(f}(m}l/a)] B

" (Ia(f)(z) — €)™ < win— 1n " log" (R"e"PCPM(f)(x)")
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since ap = n. Because [{f]|, = 1, the conclusion now follows immediately
from Theorem 2.8.2. O

2.9.3. Remark. Inequality (2.9.3) clearly implies that if 4 < n/w(n — 1),
then there is a constant C' = C(3,n,p) such that

f o
B

Il £t
thus recovering inequality (2.9.1).

Although it is of independent mathematical interest to determine the
best possible constants in inequalities, in some applications the sharpness
of the constant can play a critical role.

The sharpness of the Sobolev imbedding theorem in the case of critical
indices has had many dlﬂ'erent approaches. For example, in [HMT), it was
shown that the space W, (§2) could not be embedded in the Orlicz space

L,{(Q) where p{t) = exp(lt|"/(“ 1} —1). On the other hand, with this
Sobolev space, it was shown by Moser [MOS] that (2.9.4) remains valid for
B = nfw(n — 1); that is, £ can be taken to be zero in (2.9.3). Recently,
Adams [ADS] has shown that (2.9.4) is valid for § = n/w(n — 1) with no
restriction on a.

Theorems 2.9.1 and 2.9.2 give one version of a substitute for boundedness
in the case ap = n. We now present a second version which was developed
by Brezis and Wainger [BW).

For this, recall the definition of the Bessel kernel, g4, introduced in (2.6.1)
by means of its Fourier transform:

da(z) = 277 "/3(1 4 |zj2)/2,

] de < C, (2.9.4)

Also, recall that the space of Bessel potentials, L*?(R"), is defined as all
functions u such that u = g, * f where f € LP(R"). The norm in this space
is defined as ||ula,p = ||f]l. Also, referring to Theorem 2.6.1, we have in
the case « is a positive integer, that this norm is equivalent to the Sobolev
norm of u.

For the development of the next result, we will assume that the reader
is familiar with the fundamental properties of the Fourier transform.

2.9.4. Theorem. Let v € LY9(R") with £g > n, 1 < g < oo and let
ap=mn,1 <p<co. If |uflap <1, then

lelloo < © 1+ log™™ (1 + flulle,)] - (20.5)

Proof. Because C§°(R"} is dense in L%9(R™) relative to its norm and
also in the topology induced by uniform convergence on compact sets, it is
sufficient to establish (2.9.5) for u € Cg°(R").
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Let ¢,n € C°°(R™) be functions with spty compact, ¢ = (2m)~"/?
on some neighborhood of the origin, and p +7 = (27:)”“/ 2 on R™. Since
u € C°(R™), u may be written in terms of the inverse Fourier transform

as

u(z) = j = Vi(y)ply/ R)dy + / = Va(y)n(y/R)dy
= w(z) + uala), (2.9.6)

where R > 2 is a positive constant to be determined later.
The proof will be divided into two parts. In Part 1, the following inequal-
ity will be established,

Jurlloo < Clog RY'?
while in Part 2, it will be shown that
Huzlloo < CR™%(lulle,q

for some 8 > 0. The conclusion of the theorem will then follow by taking

&
R = max(2, [[ull?)-

Proof of Part 1. We proceed to estimate 1u; as follows:

u1{z) = {Zﬂ)'“”/e‘”’(%)"”(l + Iylzl"'ﬂﬁ(y)—“'—(li(ry/'gl.;z
= fxKp(x)
where
Fly) = @031 + W) ?aly)
and
Katy) = 2L (29.7)

(L2
Note that u = g, * f (see Section 2.6) and therefore
1£llp = lullop < 1.
Consequently, in order to establish Part 1 it will be sufficient to show that
IKally < Cllog R)'/*', R>2.

We now define a function L such that L = . Note that L is a rapidly
decreasing function and thus, in particular, L € LY{(R®} N C*°(R"). Let

Lg(z) = R*L(Rz).
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From (2.9.7) we have that

(22)""2Kr{y) = Lr(y) - faly)

and
(2n) "2 Kp = Lp % ga.

Let B(R) be the ball of radius R centered at the origin. Define two functions
G} and G2 by

Gc‘r('r) = 9a(Z)xB(R-1)(7)
GL(z) = galT) — Gh(2).
Then
(QW)_HHKR(-T) =Lp* Gé(:c) +Lp+ Gi(m).

An application of Young's inequality yields
ILr * Golly < HLrlly - IGaH (2.9.8)

and it is easily verified that

L&y = CR™?
while from (2.6.3) and ap = n, it follows that

IGLlly < CR™™/P,
Similarly, from (2.6.3) we see that

9a(®) < Cfa]*~me™ 2l

and therefore
1/5'
(GRlyr < C (/ Cy x|t d:c)
1/R<|T|<1

1/p'
+C ( f e=Colel gy
1<)z|<o0

< C(log R)V" +C
< C(log RYM¥

since R > 2. Hence,
L& * Gilly < C(log R)V¥ (2.9.9)

because
[Lrl}1 = L1 = C < oo.
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Thus, from {2.9.8), and (2.9.9} we have

IKrlly < Cllog RV, (2.9.10)
thereby establishing Part 1.

Proof of Part 2. We write up as follows:

; R
(@) = (20)™/2 [ Vi) 2n) /0 4+ ”'(—f%n—zfz dy
= g*Kp(z) (2.9.11)
where
Kaly) = ﬁ% (2.9.12)
and

(y) = a2 + [y
By assumption, u € L4¢(R"™), and therefore it follows from definition that
g € LI(R™) with u = g4+ g. In order to establish Part 2, it suffices to show

that
|Kglly < CR™® forsome &> 0.

First, consider the case g = 1. Since £¢ > n by assumption, we have
£ > n. Now write

_ iz.y Ny/R)dy In{y/R)|dy
'K“*(”'“V e S T e

Recall that 5 vanishes in some neighborhood of the crigin, say for all y such
that |y} < eR. Thus, for all =,

|n(y/R)ldy
K r(=)] < »/;i"—B((],eR) |y|‘

SC/ 1ty
eR
< CRn—-E

since £ > n. Thus, Part 2 is established if ¢ = 1.
Now consider ¢ > 1, so that ¢ < oo and without loss of generality, let
¢ < n. Since @ + 1 = (27)"™/2 on R, (2.9.12) can be written as

1 __oly/R)
(L+ g2 1+ )%

(2m)"/*Kr(y) =

Thus, we have
Kr(x) = ge(x) — ge * La(x) (2.9.13)
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where
Lr(z) = R"L(Rz), L(y) = o(y).
We can rewrite (2.9.13) as

Kn(z) = / l9e(2) — ge(z — )| L)y (2.9.14)
because

£

(2m)y ™2 = 0(0) = (Zw)_“/2/ e 0V L(y)dy.

To estimate [ {gs(z —~ y) — ge(2)|? dz we write
[ Jatz =) =adlde = [ otz 1) - eto)? o
R# lwl=2iyt

+ / lge(z — y) — gela)|7 dz
J|>2{y|
=11 + I

Now

L<cC (/ lge(z — y)i7 dx + / |ge(2)| do
<] < 2|yl Jzl<2(3]

<C ( / Ige(z — y)|7dz + / Ige (w)[“'d:c)
le—y|<3|yl |=|<2|yi
< Oy,

by (2.6.3). To estimate I, note that g; is smooth away from the origin,
and therefore we may write |ge(x — y) — ge(z)| < [Dge(2)} - ly| where z =
t{x —y)+ (1 —t)z = r — ty for some ¢ € [0,1]. Since, |z| > 1/(2|z|) when
|| > 2{y| we have, with the help of (2.6.4),

f l9e(z — ¥) - ge(@)|¥ dz < © ¢=Clal|g| =m0 |y 1o' g
Jz]>2{y| {x[>2ly|

<ttt [ e Cjal(¢r i g
R,I
<Oyl
Comnsequently, combining the estimates for f; and I, we have

lge(z — ) — ge(z)llg < Clyl® (2.9.15)

where § = [{(£ + 1 — n)¢’ + n]/¢’ > 0. Referring to (2.9.14), we estimate
HK Ry with the aid of Minkowski's inequality and (2.9.15) as follows:

f

([ intariac) e [ ([ 10z =) - s az) Y Ly
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< C’fILR(y)IIyTEdy

=R [ LR Ryl dy
<CR™%,
The integral [ |L(2)]|z|°dz is finite because L = ¢ and thus L is rapidly

decreasing. The proof of Part 2 is now complete and the combination of
Parts 1 and 2 completes the proof of the theorem. O

2.10 Lorentz Spaces, A Slight Improvement

In this section we turn to the subject of Lorentz spaces which was intro-
duced in Chapter 1, Section 8. We will show that the Sobolev inequality
for Riesz potentials {Theorem 2.8.4) as well as the development in Chapter
2, Section 9, can be improved by considering Lorentz spaces instead of L7
spaces.

We begin by proving a result that is similar to Young’s inequality for
convolutions.

2.10.1. Theorem. If h = f x g, where

1 1
f€L(pi,q), g€ Lipz,g2), and —+—>1,
n P2

ther h € L(r,s) where

and s > 1 is any number such that
1,11
1 g2 3
Moreover,
1Rllere) < 371 fllor.a0 9oz 05

Proof. Let us suppose that qi, gz, 3 are all different from oo, Then, by
Lemma 1.8.9,

= []m [;1!7— f: F (&) g (%) g] %!’—'. (2.10.1)
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The last ‘equa.lit-y is by the change of variables £ = 1/y, t = 1/u. Now use
Hardy’s inequality {(Lemma 1.8.11) to obtain,

Ll @)@ al s

< r’fom [yl-(lfr)f"(l/y)f“(l/y)]’@.

¥ v’
= =]
= v [T Eears,
o x
by letting y = 1/z.
Since s/g; + 8/g2 > 1, we may find positive numbers m,, mq such that
1 i 1
— +— =1 and *Si, L<~8—.
my  Ma m T @1 Mz qa

Therefore g: < smy, g2 < smay. An application of Holder’s inequality with
indices m;, ma, yields

% (1771 f4r(g)]® [£1/P2 g™ ()]"
("hu(rm))ssrs‘/ﬂ [x :t:ljr;ml(x)] [ j‘:lﬂmz(m)]

o lfm;
<o | [T o ]
0

I

A e t]
) z
= rd(uf“(Pl,Smx})s("g"(pz.-?m:z))s'

Thus, by Lemma 1.8.13

dx

”h‘"(".s) < r”f”(}h ,aml]“g“pz,smg)
1 1
S € /ee /er”f“(i’hfhl”9"(132-42)
S 3r"f"(P1 -m)”g“(quzJ'

Similar reasoning leads to the desired result in case one or more of ¢,
12, 8 are oo, 0

As an application of Theorem 2.10.1, consider the kernel I,(z) = |z "
which is a constant multiple of the Riesz kernel that was introduced in
Chapter 2, Section 6. For simplicity of notation in this discussion, we omit
the constant y(a)~! that appears in the definition of I,(z). Observe that
the distribution function of I, is given by

ar, (t) = [z [« > t}]
= [{x: [z] < ¢}/ lem)y
= (](n)t“/(a_“}
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and because I* is the inverse of the distribution function, we have I3(t) =
{ —(‘-—)){“'“)f " It follows immediately from definition that

ain

) = (ﬁ) gla—n)/n

and therefore that I, € L(n/(n —a),o0). If we form the convolution I, * f
where f € L? = L(p,p), then Theorem 2.10.1 states that

Io* f € L{q,p)

where : 1 a
l:}.-{-n a-—l:———‘

g p n p n
Moreover, it follows from Lemma 1.8.13 that L{g,p) C L{g,q) and thus we
have an improvement of Theorem 2.8.4 which allows us to conclude ogly
that I *f € L9. As a consequence of Theorem 2.10.1, we have the following

result that is analogous to Theorem 2.8.4.

2.10.2. Theorem. If f € L(p,g) and 0 < a < n/p, then

I, x f € Lir,q)

and
1o * gy < Malltn/in—a).co)lf e
= C"fli(p,q}
where 1 o
r p 7w

We now consider the limiting case of 1/p; +1/p; = 1 in Theorem 2.10.1.
In preparation for this, we first need the following lemma.

2.10.3. Lemma. Let ¢ be a measurable function defined on (0,1} such
that t@(t) € LP(0,1;dt/t}, p > 1. Then,

1
w(8)ds| oo a7y < 1{%||t‘9(t)||M(0.1;dt;’t)'

11 + {log )~ /

Proof, By standard limit procedures, we may assume without loss of gen-
erality that ¢ € L'(0, 1) is non-negative and bounded. Let

P

I= /:(1+ [logit])~? (/t.ltp(s)ds) E:-
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I'= gi—ﬂfol ([w(s)ds)pd(l — logt)—PH

integration by parts yields

Since

P 1 i p—1
I= p—"——l (/ ‘P{S)ds) (1- log t)-p+ltp(t)dt,
—tJo t

and Hélder’s inequality implies

1
—_._p - —
I S p - 1 ”(1 + i IOg t') 1[ ‘P(S)ds“ip 1(]11,@:/” "t‘p(tJ"L”(U,l;dt/t)‘

from which the conclusion follows, ]

2.10.4. Remark. Before proving the next theorem, iet us recall the fol-

lowing elementary proof concerning convolutions. If f,g € LY{R™) we may
conclude that

/" /R HEE r;)g(z;r)ltsfm:lgr:/er lg() fR |F(x — y)|dzdy

= [ 1) iflhdy
=170 lols < oo

Thus, the mapping y — f(z — y)g{y) € LY{R™) for almost all z € B" and
frge LY(R™). :

In the event that one of the functions, say f, is assumed only to be an
element of L(p,g), p > 1, ¢ > 1, while g € LY(R"), then the convolution
need not belong to L'(R™), but it will at least be defined. To see this, let

1 i flz)>1
Hlz)=4 fl@) if ~1<f(z) <1
-1 if f(z) < -1

and let fa = f — fy. Then f; * g is defined because fi is bounded. We
will now show that f, € LY(R") thus implying that f, * ¢ is defined and
therefore, similarly for f * . In order to see that j2 2 LY (R™) let

Fi) = J 7@ it jf(z)] >1
falz) = {0 it f(z) < 1.
Clearly aj(s) = as(1)if0<s <1 and oy {s) = as(s) if s > 1. Conge-
quently .
fi(ap(1)) = inf{s: af, (5) < ay(1)} = 0.

Thus, since f} is non-increasing, f3(t) vanishes for all ¢ > af{l) and it
is easy to see that f*(t) = f3(¢) for all ¢t < ay(1). We may asswme
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that ¢ > p for, if ¢ < p, then Lemmas 1.8.13 and 1.§.10 imply that
f € Lip,q) C L(p,p) Consequentiy, by Young's inequality for convolu-
tions, f * ¢ is defined. In fact, f xg € IF. Withg > pand a = ap(l), w
have

oG pEw oo LYY ] a f*(t)ﬁ‘
Ok (0 »
> fu #1—(a/p) dt 2 o tl-{a/p) dt 2 o t1-(4/p}

25((:;‘19)—1/ fF*()%dt

0

=ﬁ(qu)—1/ f—:(t]th
o )

= gle/p)—t / fa(tyedt
0

where @ € [0,4]. Since f;(t) vanishes for ¢ > a whereas )y >1fort<a,
it therefore follows that

/ “htas [ " B ()%t < oo,
0] 1]

thus showing that f, is integrable because f2 and f3 have the same distri-
bution function. Therefore f; is integrable.

2.10.5. Lemmma. Let 1 < p < 00,1 < g1 < 00,1 £ g2 € 00 be such
that 1/g, 4+ 1/g2 < 1 and set 1fr = 1/q, + 1/qa. Assume f € L(p,q1) and
g€ (@, @)N LI (R") and let u= f +g. Then

O 4 Gy ol + o)
[/ [1 + |logt|] t ] = ) TG

where C depends only on p, q,, and g¢s.

Proof. Note from the preceeding remark, that » is defined. For simplicity

we set || fll(p,q,) and |Igll = |||z ,5) + 1|1+ Also, for notational c_ofwenience
in this discussion, we will insert a factor of (g/p)*/¥ in the definition of the

£ llgp.ayi thus,

ifq /¢
(2) (fm{tllpf**(g)]?%i) , 1<p<oo,0<g<
r o

Ifllpa) =

q L/g
(*) sup tY/P f**(t), 1<p<oo,g=0c0
P >0

We distinguish two cases:

(i) r < oo
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(ii) 7 = 00 (ie. g, = g3 = ).

(i) The case r < co. Recail from Lemma 1.8.8 that for every t > 0,

WO <O + [ £ (o)), (2.10.2)

£

Clearly, the following inequalities hold for every s > (1

- *y 1
fr8) < f*(s) < m“f"(::.ql)s (2.10.3)

* *n 1
g' (s} < g™ (s) < s 19l e (2.10.4)

- [T 1

g°(8) <g*(s) < ~Hgllx. (2.10.5)

For ¢ <1, it follows from (2.10.2), (2.10.3), and {2.10.4) that,
T 1 I ! * *
w0 < G ool + [ £ ()

+ f [ (s)g"(s)ds. (2.10.6)
1
From (2.10.3) and (2.10.5) we have that

jl ()9 s < plll lepars - Ngll.

This in conjunction with (2.10.6} yields

1
w™(8) < plIF) gll + j ()" ()ds. (2.10.7)
4
By Lemma 2.10.3, (2.10.7), and (2.10.4) we have

ML+ Nog ¢}~ ™ ()l (0,1:0e/6y < CNFl gl + CllEF*(E)a™ ()i 0.1:00 0y
= Cliflllgl + Cle/ £ )/
g (Ol Lr(o,1a/8)
S CUSI NN + CN iy Hollcor gy
(ii) The case r = 0o. By (2.10.7), (2.10.3), and (2.10.4) we have, for t < 1,
u™(t) < pllFll gl + Nog 8] .11l p.00) U9l cs o0}

and therefore
L+ [log ¢)) ™ u™ () oo,y < CIFH gl o

2.10.6. Theorem. Let 1 < p < 00,1 < ¢q; < oo, 1 € g3 < o0 be such

that 1/q: + 1/gz < 1 and set 1/r = 1/q, + 1/g,. Assume f € L(p,q1) and
gELP ,pINL andlet u=f+g. Then
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{i) if r< oo, Ml ¢ Ll (R™) for every X > 0.

(i) if r < oo, there exists positive numbers C = C(p, q1,92) and M =
M(|Q|) such that

/ M dy < M
Q
for every f and g with || fllgpq) < 1 and |Igllgr g +ilgls < 1.

Before proceeding with the proof, let us see how this result ex_tends tte
analogous one established in Theorem 2.9.1. To make the comparison, take
one of the functions in the above statement of the'theorzem, say f,.as
the Riesz kernel, I,/,. As we have seen from I:I{e dlscpssmn preceeding
Theorem 2.10.2, f € L(p’,00). The other function g is assumed to be
an element of IF({1) where € is a bounded set. Thus, by Lemma 1.8.’10,
g € L(p,p) N L1 (R"). In this context, ¢y = 0o and ga = p > 1 thus proving
that this result extends Theorem 2.9.1.

Proof. Consider part (i) first. Because u* (1) is non-increasing we have that

wer [ 1-togs) % < /

for every ¢ < 1. The first integral equals (1 — logt)~"*!/r — 1 with » > 1
and Lemma 2.10.5 implies that I(t) — 0 as ¢ — 0 where I{#) denotes the
second integral. Note that there exists a constant K = K(r) such that

t _,ds
u*(s) (1~ logs) "

W (O < KQ+|logtI®)Y"Y, o<i<l. (2.10.8)

With ¢ C R" any bounded measurable set, we have with the help of
Lemma 1.5.1,

! |QI » f', to L] ‘!'i
fQ exp(Clu()))" dz = ] exp(Clu ()] dt = ]0 exp(Clu® (1)) dt

+ /lQ‘ exp(C|u*(t]i)Trdt (2.10.9)

tpy

where 0 < #; < |Q]. Because u* is non-increasing, it is only necessary to
show that the first integral is finite. For this purpose, choose {q < 1 so that
CT KI(t))Y/¢~1) < 1. Then, from (2.10.8),

exp(Clu* ()Y < (e/t)®

where a = C" KI{tg)/"—1), Thus, part (i) of the theorem is established.
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For the proof of (ii), Lemma 2.10.5 and the fact that u*(t) is non-
increasing allow us to conclude that for 0 < ¢ < 1,

i
* T - ds r r
O [ (=100 % <l o,
where ”f“ = “f”(p,q:} and "9“ = IIQ”(p’,q:} + ”9"1 Therefore!

(O < K1 —log £ gl

Similar to part (i), the proof of (ii) now follows from (2.10.9) by choosing
KC <1, 0

Exercises

2.1. Prove that W*P(R™) = WE» (g,

2.2. If f and g are integrable functions defined on B such that

/fsodx=/ysodx

for every function @ € C§°(R*), prove that f = g almost everywhere
on R".

2.3. Prove the following extension of the Rellich-Kondrachoy compactness
theorem. If 2 is a domain having the extension property, then

WET™P(0) — Wha(q)

is a compact imbedding if mp < n, 1 < ¢ <np/(n—mp) and m a
non-negative integer.

2.4. Verify the following equivalent formulation of Bessel capacity:

Bop(E) = i?f{f:EEga *f(x)}_p

-p
{op foames}

where f € LP(R™), £ > 0, and [|f], > 1.

2.5. Prove that the Riesz and Bessels capacities have the same null sets;
that is, R, ,(E) = 0 if and only if Bo p(E) = 0 for every set E C R™.
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2.6. Show that there is a constant C = C(a, p,n) such that
B, p(E) 2 C

provided ap > n and E is non-empty.

2.7. As an extension of Corollary 2.1.9, prove that if 2 is connected and
u € Wk2((}) has the property that D%u = 0 almost everywhere on
€, for all |} = k, then u is a polynomial of degree at most k — 1.

2.8. Let 1 < p, kp <n. If K C R" is a compact set, let
Yi,p{K) = inf{||u]l} , : » > 1 on a neighborhoed of K,
u € C(RM)}.

With the aid of Theorem 2.6.1, prove that there exists a constant
C = C(p, n) such that

C™'Brp(K) < Yep(K) < CBep(K)-
2.9. Show that for each compact set K C R",

inf{/ |Pu|*dz:u>1 on K, uEC&’O(R")} = Q.

2.10. Prove that there exists a sequence of piecewise linear maps
Lk: I{ﬂ - Rl
satisfying (2.7.7) and (2.7.8). See the discussion in Exercise 5.2.

2.11. Suppose that u: B — R! is Lipschitz with || Dul;.g» < oo. Define
a,: R' — R! by o, (t) = |{z : u(z) > t}]. Since a, is non-increasing,
it is differentiable almost everywhere.

(a) Prove that for almost all ¢,

—ol (1) 2 f \Du| " dEH™
w=(2)

(b} Prove that equality holds in (a) if
{z : Pu{z) =0}] = 0.

2.12. Theorem 2.8.4 gives the potential theoretic version of Theorem 2.4.2,
but observe that the latter is true for p = 1 whereas the former is
false in this case. To see this, choose f; > 0 with fp, fidz = 1 and
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2.13.

2.14,

2,15,

spt fi C B(0,1/5). Prove that I, + f; i
’ i — I uniform! "
for every r > 0. Thus conclude clk;hat oty on B = B(,7)

(Ta * i)™/ (n=cdgy > /
Rn

B(o,r)

(o * J)M =,
The right side tends to

IV = o / £l
L(o‘r) B0m) |<f"d.

But
f, |z]™™dx — 0 as r — 0.
B(0,r)

Show that Theorem 2.8.4 is false when ap = n. For this consider

lzf <1
|z} > 1

f(a:) - {]xl—u (lﬁg r%[) —a(l+e)/n
0

where ¢ > 0, Then f € LP since ap = n b =
AR ap =n but I, * f(0) = 0o whenever

Prove the following extension of Theorer,

e t n 2.8.2. Suppose |f|log{2
i f{) 1s integrable over the unit ball B. Then A fe FI),I;(B)!{}‘OO?;&O\;
this, note that (with the notation of Theorem 2.8.2)

[= =]
j;MfdxggBH/A deng|+/ [Adldt + |4y,
1 1

Now use (2.8.3) and Exercise 1.3.

:I‘here is a variety of methods available to treat Theorem 2.6.16. Here
15 one that shows that B, ,(K) = 0 if H* P < 00, 1<p<n

STEP 1. Use Exercise 2.8 to replace By p(KH) by v ,(K).

STEP 2.‘ There exists C' = C(n, k) such that for any openset I/ D K
there exist an openset V O K and u ¢ W, P(R™) such that ,

B uz0

(ii) sptu C U
(i} K CV C {z:u(z) =1}
(iv} fpo |DulFdr < C.
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To prove Step 2, first observe that H;ﬂp'(K ) < oo (see Exe;‘)t:lslz
1.10). Since K is compact, there exists a finite sequence of open

{B(r:)}, i =1,2,...,m, such that

Kc Lﬂj Br)c|)B@rn)cU

i=1 i=1

and o
3 a(n—pyrl P < HgTP(K) + 1.
=1 .
Let V = U, B(r;) and define u; to be that piecewise linear function
=Ur an t .
such that u; = 1 on B(ry), u; = 0 on R* — B(2r;). Let

u:max{u":izls2s"'!m}

to establish Step 2.
STEP 3. For each positive integer k, let

1
Up = {.1: 1d(z, K) < E} .
Employ Step 2 to find corresponding ui such that

/ |DuyfPdz < C
R“

fork=1,2,.... o] and u €
1} and

STEP 4. Use Theorem 2.5.1 to find a subsequence

W2P(R™) such that uy — u weakly in Wy P(R") and u — u stronglyt'

inOL". Hence, conclude that ¢ = 1 almost everywhere on K and tha

u=0on A" - K.

STEP 5. Conclude from Theorem 2.1.4 that |K| = 0 and therefore

that u = 0.

STEP 6. Use the Banach-Saks theorem to find a subsequence {ux}

such that . ;
Ui = = Z U
J k=1

converges strongly to u in Wo?(R"). Thus, |[Dvsllp — 0 as j — oc.

But
Y1,9(K) 5/ |Dvj|Pdz
R!I

foreach j = 1,2,....
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2.16. In this problem we sketch a proof of the fact that Y1,5(K) = 0 implies

217.

2.18.

H""P*¢(K) = 0 whenever ¢ > 0. The proof requires soine elementary
results found in subsequent chapters,

STEP 1. For each positive integer 4, there exists u; € C§°(R™) such
that u; > I on a neighborhood of K and

/ |DuPde < -
o >

Let v = 37 u,; and conclude that v & W1P(R™). Also note that
K C interior {z : v(z) > k} whenever k > 1. Therefore, for x € K,

liminf%(z,r) = oo
r—0
where

¥z, r) = fB( Jv(y)dy.

STEP 2. Forall z € K and ¢ > 0,

limsup rp_““/ [DviPdy = oo.
B(z,r)

r—{

If this were not true, there would exist k¥ < oo such that
r”‘“'e][ |Dv[Pdy < k
B(z.r)

for all small r > 0. For all such r, it follows from a classical version
of the Poincaré inequality {Theorem 4.2.2) that

][ lv(y) — o(x, r)|Pdy < Cr.,.p—n/
B{z,r)

Bz,

|DvlPdy < Cre,
r)
Thus conclude that
o(z,r/2) — v(z, r)| < CrefP

for all small r > 0. Therefore, the sequence {%(x,1/27)} has 2 finite
limit, contradicting the conclusion of Step 1.

STEP 3. Use Lemma 3.2.1 to reach the desired conclusion.
At the end of Section 2.3 we refer to [AR2] for the result that C*°(§3)
is dense in W*2(Q) provided possesses the segment property. Prove

this result directly if the boundary of §} can be locally represented as
the graph of a Lipschitz function.

Show that C%1(Q} = W1*°(0}) whenever 2 is a domain in R®,
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2.19. This problem addresses the issue raised in (2.6.6). If f € L?(R") and
ap < n, then Theorem 2.8.4 states that

e * fllg < Cliflle

where ¢ = p*. A simple homogeneity argurnent shows that in ord(:r
for this inequality to hold for all f € L?, it is necessary for ¢ = p".

For 8 > 0, let 75f(z) = f(éz). Then
o (755)lg < 6774 £llp

e To % (r6f) = 67%7s(La * ).

Hence, .
"ch * (Tﬁf)"q =§"% M”Iu * f"q:

thus requiring

i
SR

=R ]
Il
=i

Historical Notes

2.1. It is customary to refer to the spaces of weakly diﬁer_entiablfa fl:lll}c-
tions as Sobolev spaces, although various notions of weak differentiabi lt)f
were used before Sobolev's work, [SO2]; see also [SOl],- [S0O3]. Beppol Levi
in 1906 and Tonelli [TO] both used the class of functlons_that are d.bsl?-
lutely continuous on almost all lines parallel to the‘ coordinate a.xe;,lt4 e
property that essentially characterizes Sobolev functions (Theorem 2.1. )f
Along with Sobolev, Calkin [CA] and Morrey {MO1] developed nl:any o
the properties of Scbolev functions that are used today.. Althoug rinat};y
authors contributed to the theory of Sobolev spaces, special note should be
made of the efforts of Aronszajn and Smith, [ARS1], [AI_QS2}, who made a
detailed study of the pointwise behavior of Sobolev functions through their
investigations of Bessel potentials,

2.2. Theorem 2.2.1 was originally proved by Rademacher [RA]. The prooi
that is given is attributed to C.B. Morrey [MO1, Theorem :}.1.6]; the proo
we give appears in {S]. In our development,'Had?machers theorem.‘fras
used to show that Sobolev functions remain mv*ta,rl:'a.nt un.der compom!:lon
with bi-Lipschitzian transformations. H(?wever, it is pusz_nble to (;btam a
stronger result by using different techniques as shc:wn in [23]. up[t)lclm(:
T : R® — R" is a bi-measurable homeomorphism with the E;opirty i a
it and its inverse are in Wli;f(R“,R"), p>n—1LIfu e l:quc (R )‘w ere
Pp=plp—(n—1)]"!, then uo T € WL (R"). With this it is p(?SSlble to
show that if u € W'"(R™) and T is a K-quasiconformal mapping, then

loc
uoT € Wil (R™).
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2.3. Theorem 2.3.2 is due to Meyers and Serrin, [MSE].

2.4. Theorem 2.4.1 is the classical Soboley inequality [SO1], [SO2], which
was also developed by Gagliardo [GA1], Morrey [MO1], and Nirenberg
[NI2]. The proof of Theorem 2.4.1 for the case p < n is due to Nirenberg
[N12].

2.5. Theorem 2.5.1 originated in a paper by Rellich [RE] in the case p =
2 and by Kondrachov [KN] in the general case. Generally, compactness
theorems are of importance in analysis, but this one is of fundamental
importance, especially in the calculus of variations and partial differential
equations. There are variations of the Rellich-Kondrachov result that yield
a slightly stronger conclusion. For example, we have the following result
due to Frehse [FRE|: Let @ ¢ R" be a bounded domain and suppose
u; € WH(Q), 1 < p < n, is a bounded sequence of functions with the
property that for each i =1,2,...,

f |Dwl?™*Duy - Dy de < M'illoo
Rn

for all p € W1»(Q) N L%°(12). Then there exist « € WLP(0) and a subse-
quence such that u; — u strongly in W14(Q), whenever g<p

2.8. Potential theory is an area of mathematjcs whose origins can be traced
to the 18th century when Lagrange in 1773 noted that gravitational forces
derive from a function. This function was labeled a potential functjon by
Green in 1828 and simply a potential by Gauss in 1840, In 1782 Laplace
showed that in a mass free region, this function satisfies what is now known
as Laplace’s equation. The fundamental principles of this theory were de-
veloped during the 19th century through the efforts of Gauss, Dirichlet,
Riemann, Schwarz, Poincaré, Kellogg, and many others, and they consti-
tute today classical potential theory. Much of the theory is directed to the
understanding of boundary value problems for the Laplace operator and its
linear counterparts. With the work of H. Cartan [CAR1), [CAR2], in the
early 1940s, began an important new phase in the development of potential
theory with an approach based on a Hilbert-space structure of sets of mea-
sures of finite energy. Later, J. Deny [DE] enriched the theory further with
the concepts and techniques of distributions. At about the same time, po-
tential theory and a general theory of capacities were being developed from
the point of view of an abstract structure based on a set of fundamental
axioms. Among those who made many contributions in this direction were
Brelot [BRT], Choquet [CH], Deny, Hervé, Ninomiya, and Ohtsuka. The
abstract theory of capacities is compatible with the recent development of
capacities associated with non-linear potential theory which, among other
applications, is used to study questions related to non-linear partial differ-
ential equations. The first comprehensive treatment of non-linear potential
theory and its associated Besse] capacity was developed by Meyers [ME1],
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Havin and Maz'ya [HM], and Resetnjak [RES]. Most of the material in
Section 2.6 has been adopted from [ME1].

2.7. The co-area formula as stated in Theorem 2.7.3 was proved by Fed-
erer in [F1]. In the case m = 2, k = 1, Kronrod [KR] used the right side of
(2.7.1) to define the variation of a function of two variables. Fleming and
Rishel [FR) established a version of Theorem 2.7.1 for BV functions. An-
other version resembling the statement in Theorem 2.7.3 for BV functions
appears in [F4, Section 4.5.9].

The proof of the best possible constant in the Sobolev inequality (Tlhe-
orem 2.7.4) is due to Fleming and Federer [FF]. Their result can be stated

as follows: D
na(ﬂ] == up _.__.ll_.&
"u"n{(n—l}
where the supremum is taken over all u € C§°(R"). Talenti [TA] extended
this result to the case p > 1 by determining the constant C(n, p) defined
by
| Pullp
C(n,p) = sup ——.
( e

He showed that

p_:l)lf(lf’ﬂ ra+5re 17
I'( o

: — . li2 -1/2
Cln,p)=m""""n (n—p Br(l+n—§

He also showed that if the supremum is taken over all functions which
decay rapidly at infinity, the function u that attains the supremum in the
definition of C(n,p) is of the form

u(z) = (a+ b|x\pf{p—1))1-nfp

where a and b are positive constants. This leads to the following obser-
vation: in view of the form of the extremal function, it follows that if §)
is 8 bounded domain and if u € W& (1) has compact support, then by
extending u to be zero ocutside of {1, we have

[l

Brezis and Lieb [BL] provide a lower bound for the difference of the two
sides of this inequality for p = 2. They show that there is a constant C(, n)

such that

p < Cln, )| Dully.

C(,m)ulfy ) + lull3. < Clr,p)IDullz
where ¢ = n/(n — 2) and ||u|(g00) denotes the weak Li-norm of u (see
Definition 1.8.6).

2.8. The maximal theorem 2.8.2 was initially proved by Hardy-Littlewood
[HL)] for n = 1 and for arbitrary n by Wiener [WT]. The proofs of Theorem
2.8.4 and its preceding lemma are due to Hedberg [HE1].
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2.9, Tht? proof of exponential integrability in Theorem 2.9.1 is taken from
[GT] while the improved version that appears in Theorem é.Q 2 was proved
by !—Iedberg [HEll]. The question concerning sharpness of this i;lequality has
an m:erestlng history. Trudinger [TR)] proved (2.9.1) for Sobolev functions
in W P, n/p = k, with the power p' replaced by r'. However, when nip>1
Strichartz [STR] noted that Trudinger’s result could be im[;roved wifh thé
appeara.r}ce of the larger power p’. The reason why Trudinger’s proof did
not obtain the optimal power is that the case of k > 1 was redu(:l;d to th
case oflk = 1 by using the result that if u ¢ WEP kE>2 kp=n the::
vwEW " However, in this reduction argument, some i;lfo’rmation ;s lost
because 1f.u € W*? then u is actually in a better space than Wb, In fact
by appealing to Theorem 2.10.3, we find that the first derivatives a;e in thej
Lorentz space L(n,p) C L". This motivated Brezis and Wainger to pursue
the matter further in [BW] where Theorem 2.9.4 and other interestin
results are Proved. The sharpness of the Sobolev imbedding theorem in th§
case of critical incl]ices was also considered in [HMT), where it was shown
that the space Wy™(Q) could not be imbedded in the Orlicz space L,(Q)
where (1) = exp([i"/~D - 1), ’
e ather question of sharpness of the inequality wertai

B that appears in (2.9.4). It was shown in [ISIOS] fh?it (2.3?4;122;?:::8\;?&
for 3 = nfw(n — 1) in the case of Sobolev functions that vanish on the
R(:;;nd&ri Sf a domain. The optimal result has recently been proved by
" am)s !{J 8] where (2.9.4) has been established for § = nfw(n — 1) and

2.10. Most of the material in this section
\ was developed by Brezis and
Wainger [BW] although Theorems 2.10.1 and 2.10.2 and due tJ:) Ol;lilzf:; ?3}
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Pointwise Behavior of
Sobolev Functions

In this chapter the pointwise behavior of Sobolev functions is investigated.
Since the definition of a function u € W*B(Q) requires that the k*"-order
distributional derivatives of u belong to LP(f2}, it is therefore natural to
inquire whether the function u possesses some type of regularity (smooth-
ness) in the classical sense. The main purpose of this chapter is to show
that this question can be answered in the affirmative if interpreted ap-
propriately. Although it is evident that Sobolev functions do not possess
smoothness properties in the usual classical sense, it will be shown that if
u € WH5P(R"™), then u has derivatives of order k¥ when computed in the
metric induced by the LP-norm. That is, it will be shown for all points
r in the compiement of some exceptional set, there is a polynomial P, of
degree & such that the LP-norm of the integral average of the remainder
lu ~ P,| over a ball B(z,r) is o{r*). Of course, if u were of class C¥, then
the I?-norm could be replaced by the sup norm.

We will also investigate to what extent the converse of this statement is
true. To this end, it will be shown that if u has derivatives of order & in the
LP-sense at all points in an open set £, and if the derivatives are in LP({2},
then u € W*P(£1). This is analogous to the classical fact that if a function
u defined on a bounded interval is differentiable at each point and if «' is
integrable, then « is absolutely continuous. In order to further pursue the
question of regularity, it will be established that u can be approximated in a
strong sense by functions of class C¢, £ < k. The approximants will have the
property that they are close to u in the Sobolev norm and that they agree
pointwise with u on large sets. That is, the sets on which they do not agree
will have small capacity, thus establishing a Lusin-type approximation for
Sobolev functions.

3.1 Limits of Integral Averages of
Sobolev Functions

In this and the next two sections, it will be shown that a Sobolev function
1 € W5P(Q) can be defined everywhere, except for a set of capacity zero,
in terms of its integral averages. This result is analogous to the one that
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holds for integrable functions, namely, if u € L', then
Fo 100 - utellds 0 15 £ 0

for almost all = € R™. Since our result deals with Sobolev functions, the
;{roof obviously will require knowledge of the behavior of the partial de;'iva-
tives of u. The development we present here is neither the most efficient nor
elega.nt. These qualities have been sacrificed in order give a presentation
that is essentially self-contained and clearly demonstrates the critical role
played by thfe gradient of v in order to establish the main result, Tﬁeorem
3.3.3. Later, in Section 3.10, we will return to the subject of Lebesgue points
ar}d prove a result (Theorem 3.10.2) that extends Theorem 3.3.3. Its proof
will employ the representation of Sobolev functions as Beasel i)otentials
gléh;?rem 2.6.1) and the Hardy-Littlewood maximal theorem (Theorem

In this first section, it will be shown that the limit of integral averages
of Sobolev functions exist at all points except possibly for a set of capacity
zero. We begin by proving a lemma that relates the integral average of u
over two concentric balls in terms of the integral of the gradient.

3.1.1. Lemma. Let u € WYP{B(xp, ). p > 1 i
Let 0 < § < r. Then [B(xo,7)], p 2 1, where 2 € B® and r > 0.

-n -n 1 —n
r /B - u(y)dy—6 /B s u(y)dy = el /B [Duly)-(y—=o)]dy

(20 Tr)

| R
- 5 /13(:0,6)[Du(y) - (¥ — zo)]dy

1/
- - _n " -_—
7 J B(o,)—B(zo,8) | — 2ol ~*[Du(y) - (v — z0)]dy. (3.1.1)

Proof. Define u on R! hy
& gt s
)=t —p Tt <y
0 t>r

[ieﬁne a \.rector field V by }«’(y) = u(ly — zo))(y — 20). Since u is the
strong ll.mlt of smooth functions defined on B(zq, r) (Theorem 2.3.2), an
application of the Gauss—Green theorem implies ,

-/B(zu,r} u(y)div V(y)dy = - /B(%,r) Du(y) - (y — zo)u(|y - zp|)dy. (3.1.2)

An easy calculation of div V establishes equation {3.1.1). m]
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3.1.2. Lemma. Let £ be a positive real number such that fp < n, p > 1,
and let u € WHP(R™). Then

[ w-st it s [ el Dy (319)
Rn Rn

for all x € RP.

Proof. (i) We suppose first of all that ¢ vanishes outside a bounded set.
Let z € R™ and for each positive integer j, define a € vector field V; on

R" by

(1/2)(¢—n)
] (y — ).

1
Vi) = [3+|y—x|2

Since |u| € WHP(R") (by Corollary 2.1.8), lu| is therefore the strong limit
of smooth functions with compact support. Therefore, by the Gauss-Green
theorem,

[ awvi@htldy == [ Vi) Duiwldy
R R®
Moreover, since |D(lu|)| = [Du| a.e.,
[ avvinelis [ voDuwid. 619
Rn R®

By calculating the divergence on the left-hand side of (3.1.4) one obtains

) (1/2)t=n-2) . n
/ [—. fly- m|2] [ew ot t —.] fu(y)ldy
Rr L2 2

. /B
< [ [3+:y—z|] v - | |Du(y)ldy.

The inequality (3.1.3) now follows, in this case, when j — oo.
(ii) The general case. Let 5 be a C™ function on R, such that 0 < <1,
7(¢) = 1 when ¢ < 1 and 5{t) = 0 when ¢ > 2. Define

ui{y) = uw(y)n(G ™ lyl)
for y € R®. By applying (i) to u; and then letting j — oo, one can verify
(3.1.3) in the general case. o

3.1.3. Lemma. Let £ be a positive real number and k a positive integer
such that (k+£—1)p < n. Then there exists a constant C = C(n, k, £} such
that

[v-atruwitse X [ w-atrriomueiay
Rn Rn

el =k
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Jorallz e R® and all u € Whe(Rn),
This follows from Lemma 3.1.2 by mathematical induction. O

. We are now in a position to prove the main theorem of this section
ncerning the existence of integral averages of Sobolev functions.

3.1.4. Theorem. Let k be o positive integer such that kp < n, p > L, let Q

be a non-empty open subset of R®
and let k.p .
a subset E of Q. such that et u € WP(Q). Then there exists

Bk,p(E) =0
and

v ‘E(ziﬁ) ( ( )

Proof. (i) We suppose first of all that Q = R, Define

9¥) = 3 1D%u(y)| (3.1.6)

leel=k

for y € B®. Th n
o ihi(:h en g € LP(R"). Let E be the set of all those points x of B*

(Ix * gH{z) = 0. (3.1.7)
Then, from the definition of Riesz capacity (Definition 2.6.2),
Rk,p(E) = 01
and therefore from (2.6.7),
By p(E)=0.

Consider x € R* ~ E. By (3.1.1),

_ 1
/Bi(z.l) u(y)dy — 8 /B(x,a) u(y)dy = ;/};(z.l)[pu(y) (y— =)y

1 -n
- oy IDH0) -~ 2y

1
“n /5 <lysi<t ly — =™ [Duly) - (y - 2)}dy.  (3.1.8)

When k = 1, it follows from (3.1.6) and (3.1.7) that

— plli=n
/:;{z,l) [y — 21"~ Du(y)|dy < oo. (3.1.9)
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When & > 1, it follows from Lemma 3.1.3 with £ = 1 and & — 1 substituted
for k, that

[ w=atipagiy<ce 3 [ y-apiornamli,

R* |a=k=—1 &

which, by (3.1.6) and (3.1.7), is finite. Thus (3.1.9) still holds when k > 1.
By (3.1.9)

lim ly — =" [Duly) - (¥ — z))dy (3.1.10)
5=0+ §<|y—=|<1

exists. It also follows from (3.1.9) that

lim y — 2" Duly)|dy = 0,
LY S ly— =" I
hence
5‘“] [Du(y) - (y — z)|dy — 0 (3.1.11)
B{z,8)

as § == 0+. It now follows from (3.1.8), {3.1.10), and (3.1.11) that the limit

in (3.1.5) exists.
(ii) The general case. Let Q be an open set of R”. There exists an in-

creasing sequence {y;} of non-negative C* functions on R", with compact
supports, and spt ¢; C Q for all j such that the interiors of the sets

{r:z€R* and ¢;(z) =1}

tend to § as §j — c0. Define
o [eila)-ulz) zeQ
uj(z) = { 0 z & Q.
By applying (i) to each of the functions w;, one can easily prove the theorem
in this case. O

3.2 Densities of Measures

Here some basic results concerning the densities of arbitrary measures are
established that will be used later in the development of Lebesgue points

for Sobolev functions.

3.2.1. Lemma. Let i1 > 0 be a Radon measure on R®. Let 0 < A < o0
and 0 < a < n. Suppose for an arbitrary Borel set A C R tha!

lim sup
r—0

uBE ] | |
rﬂ
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for each z € A. Then there is a constant C = C(a,n) such that
p(4) > CAH*(4).

Proof. Assume u(A4) < oo and choose €>0.Let U > A be an open set

with i
thlat #{U} < 0o, Let G be the family of all closed balls B(z,r) C U such

TE€EA 0<r<ef?, M>,\.
r

Clearly, G covers A finely and thus, b .
! y DY Corollary 1.3.3, ros
subfamily F ¢ @ such that there is a disjoint

AC[U{B:BeFYJU[U{B: B e F - 5
whenever F* is a finite subfamily of F. Thus, by Definition 1.4.1,
o o
Hi () sc Y (-—6(‘9)) +o5t ¥ (__5(3))
Here 2 2
BeF-F-

where §(B) denotes the diameter of the ball B. Since F C G and F is

disjoint, we have
)3 S(B)\* -
( 2 ) <cx! E :ﬂ(B)

< CAu(U) < .

6(8)\*

s E ——
BeF—F» ( 2 )

can be made arbitrarily small with an appropriate choice of F*, we conclude

Hg (4) < CA7 (D).

Since k is a Radfm measure, we have that p(A4) = inf{u(U): U > A, U
open}. Thus, letting ¢ — 0, we obtain the desired result. ’I:!

Since

3.2.?. Lemn.la. Let 1 > 0 be a Radon measure on B™ that is aebsolutely
continuous with respect to Lebesque measure. Let

A=R"ﬂ{z:limsupM >0}.
rﬂ'

r—0

Then, H*(A) = 0 whenever 0 < a < n.

PI'C-IC.Df. The result is obvious for o = 0, so choose 0 < & < n. For each
positive integer ¢ let

A =R"ﬂ{.1: : x| <£,limsup@—-(~:’—r)] > :7*’}

r—0 r
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and conclude from the preceding lemma that
#{A;) > Cim H(Ay). {3.2.1)

Since A; is bounded, u(A;) < oco. Therefore H*(4;) < oo from (3.2.1).
Since a < n, H™(A;) = 0 and therefore |4;] = 0 from Theorem i‘4.2. The
absolute continuity of x implies p(A;) = 0 and consequently H*(A4;) = 0
from (3.2.1). But A = U2, A;, and the result follows. ]

3.2.3. Corollary. Suppose u € LP(R*}, 1 Sp< oo, andlet 0 <a <n. If
E is defined by

E= {m : lim sup r'“/ ftu(x)|Pdx > 0} .
r—0 B{z,r)

then HX(E) = 0.

Proof. This follows directly from Lemma 3.2.2 by defining a measure y as

wA) = [ jupds. e

3.3 Lebesgue Points for Sobolev Functions

We will now prove the principal result of the first three sec?.ions (Theorem
3.3.3) which is concerned with the existence of Lebesgue points for Sobolev
functions. We will show that if u € W*?(R"), then

limn |u(y) — u(z)lPdz =0
r—0 B{(z,r)

for Bi p-q.e. z € R®. This is stronger than the conclu'sion .reached in Theo-
rem 3.1.4, which only asserts the existence of the limit of 1-ntegr.al averages.
However, in case u € W1P(R"), the existence of the limit of ulltegra.l av-
erages implies the one above concerning Lebesgue points. In this case, we
can use the fact that |u — p| € W,;P(R") for each real number p and then

apply Theorem 3.1.4 to conclude that

lim lu(y) — pldy
"0/ B(z,n)
exists for By p-q.e. z € R, Of course, the exceptional set here depends on p.

The object of Exercise 3.1 is to complete this argument. This appro:,ch far.‘ils
to work if u € W*P(R™) since it is not true in general that |u| € W*P(R"),

3.3. Lebesgue Points for Sobolev Functions 119

ef. Remark 2.1.10.

3.3.1. Lemma. Let k be a non-negative tndeger and A, p real numbers such
that p> 1, kp < n, and k <A< n/p If

u € WhP(R), (3.3.1)

then
e }[ u(y)dy — 0 (3.3.2)
Biz,6)

as & — O+, for all x € B except for a set E with By p(E)=0.

Theorem 3.1.4 states that the integral averages converge to a finite value
at all points in the complement of a By p-null set. This lemma offers a slight
variation in that the integral averages when multiplied by the factor §*—*
converge to 0 on a larger set, the complement of a By p-null set. At some
points of this larger set, the integral averages may converge to infinity, but
at a rate no faster than §~2*,

Proof of Lemma 3.3.1. (i) Suppose k = 0. It follows from Corollary 3.2.3
that

o [ Py =0 (333)
xy

as § — 0+, for all z € R™ except for a set E with H**(E) = 0. From
the definition of Hausdorff measure, for £ > 0 there is a countable number
of sets {E;} such that E C UE; and Z(diam E;)"* < ¢. Each E; is
contained in a ball B; of radius r; where r; = diam E;. Therefore, with the
aid of Theorem 2.6.13,

oo o0
Brp(E)S Y Bry(Ei) < CY i < e

=1 i=]

Since ¢ is arbitrary, we have that Byp(E)=0.
Now consider x € B* — E. From Holder’s inequality, there is a constant

C = C(n,p) such that
6‘\"" <C 6,\1,_“/
- B{x

[ sy
Blz.8)

(3.3.2) now follows from (3.3.3) and (3.3.4), and (i) is established.
(ii) Now suppose k > 0. Let E be the set of all z for which

/R Ny -z [ > ID“u(y)i] dy = co. (3.3.5)

lai=k

¥

1/p
5 Iu(y)lpdyJ : (3.3.4)
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= =0 by (2.6.8).
hen Ry ,(E) = 0 and therefore B) ,(E) = 0 by
' (;:)lnsiiirgtg x)e R® — E. When k = 1, it follows from (3.3.5) that

/ |y - $|A_k+1_"ipu(y)|dy < 00, (336)
B(z,1)

When k > 1, we replace by A—k+1and k by £ —1 in Lemma 3.1.3 and
again derive (3.3.6) from (3.3.5). For z € R® — E, we now show that

5H‘/ ly — |* " Du(y)|dy — 0, (3.3.7)
§<ly—-z|<1

as § | 0. Let r € (0, 1) be arbitrary. Clearly

§r* / ly — 2[* " Du(y)|dy ~ 0 (3.3.8)
r<|y—s|<l

as § | 0. When 0 < é < r we have

o[ e iouldy s [ - e D)y
§<|ly—=l<r T,r (339)
It follows from (3.3.6) that the right-hand side of (3.3.9} approaches zero
as r | 0. {3.3.7) now follows from (3.3.8) and (3.3.9).
Clearly,

/ ly — =] | Dul(y){dy < oo. (3.3.16)
B{z,1)
Since A — k —n < 0, it follows that

gk / ly — 2| |Du(y)idy < / ly = 2"+ | Du(y)ldy,
B{z 8) x

so that by (3.3.6),

6,\—k—n/ ly — x| | Du(y)|dy — 0 (3.3.11)
B(x.5)

as § | 0. By putting r = 1 in Lemma 3.1.1, one can obtain (3.3.2) from
Lemma 3.1.1, (3.3.10), (3.3.11}, and (3.3.7). o

3.3.2. Theorem. Let ¢,k be integers such that k > 1,0 < k < ¢ and
fp<n,p> 1l Let ue WP(R") and for each = € R™ and v > 0 pul

Ug,r = f ‘h‘.(y)dy-
B{z.r)

Then
r(z—k)p][ [u(y) — 1z, |Pdy — 0 (3.3.12)
B(x,r)
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as r 1 0, for all x € RB" except for a set E with By, (EY=0.

Proof. We proceed by induction on k. Suppose to begin with that k = 0.
It follows from Corollary 3.2.3 that

r"’_“f Ju(g)|Pdy — 0 {3.3.13)
Bz,r)

for all z € R™, except for a set E' with H"%(E') = 0 and therefore

By, (E') = 0. (3.3.14)
We now have, for z ¢ Br — E,

/p 1p
= (n/p)) [ / |u(y) = vz pfPdy] < plt-(o/md) f |u(y)Pdy
B(z,r} B(zr)

ifp
+ f(‘_{“/"n]uz,r] [f dy] . (3315)
B{z,r)

But by Lemma 3.3.1,

LTI (3.3.16)
asr | 0, for all z € R™ except for a set E” with Brp(E") = 0. (3.3.12) now
follows from (3.3.13), (3.3.15), and (3.3.16) in the case k = 0,

Now suppose that k > 0 and that the theorem has been proved for all
functions of W*-17(B"). Let € WEP(R™). By the Poincaré inequality,
which we shall prove in a more general setting later in Chapter 4 (for
example, see Theorem 4.4.2},

plt=klp—n f [6(¥) — g, [Pdy < Orlt-(k=Dip—n [ |Du(y)|Pdy,
B(z,r) B(z,r)

(3.3.17)
for all x € R, where C depends only on n. By the induction assumption,
there exists a set F, with

Byp(F) =0 (3.3.18)
and
AU [ Duty) — (Diay Py - o (3.3.19)
B(xxr)

asr | 0, forallz € B* — F’, But

1/p 1/p
[ f ;D.-u(y)rpdy} < [ f |Deas(y) — (D.-u>=,,:9dyJ
B{z,r) Biz.r)
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e
+ {(Dit)z.q| [f dy] , (3.3.20)
B(z,r)
by Lemma 3.3.1
and by Le rC-D(Diu)y, — 0 (3.3.21)
as r | 0, for all z € R®, except for a set F” with
B ,(F") =0.

(3.3.12) now follows from (3.3.17), (3.3.19), (3.3.20), and (3.3.21). Tlll:ils
completes the proof.

3.3.3. Theorem. Let k be a positive infeger such that kp < n, let Q be an
open set of R™ and let u € W*P(Q), Then

][ [u(y) — w(z)[Pdy — 0 (3.3.22)
B(z,r)

as | 0, for all = € Q, except for a set E with By y(E) = 0.

Proof. (i) When 2 = R™, (3.3.22) follows from Theorem 3.3.2 and Theorem

3.1.4. _ ' -
(if) When §2 is arbitrary, the theorem can be derived from (i) as in the

proof of Theorem 3.1.4. O

3.3.4. Corollary. Let k be a positive integer such that kp < n, let §) be an
open set of R™ and let w € WEP(Q). Then

lim fu(y)|Pdy  exists and = |u(z)P (3.3.23)
=0+ fBa.r)

for all x € Q, except for a set E with By y(E) = 0.

3.3.5. Remark. Theorem 3.3.3 states that on the average, the oscil.la.t.ion
of u at z is approximately equal to u(z) at By j-q.e. T € 0. Th?s can
also be stated in terms of the classical concept of approzimate cm.rztmmty,
which will be used extensively in Chapter 5. A function u is said to be
approximately continuous at z, if there exists a measurable set A such

that

lim [BE0TI AL (3.3.24)
=0 |B(zq,7)|

and u is continuous at zq relative to A. It is not difficult to. show that if

u has a Lebesgue point at xg then u is approximfxtely c('mtmuous at zg.

A proof of this is given in Remark 4.4.5. Thus, in pzf.rtlcular, Theorem

3.3.3 implies that ¥ € WHP(R") is approximately continuous at By p-q.e.

x € R".
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Approximate continuity is a concept from measure theory. A similar con-
cept taken from potential theory is fine continuity and is defined in terms
of thin sets. A set A C R™ is said to be thin af zo relative to the capacity

By, if
1 1/(p—1)
ka[Aﬂ B(.’Eo,f‘)]] dr
’ — < oo, 3.3.25
A [ Bk,p[B(ED,f)] r <0 ( )

A function u is finely continuous at zg if there exists a set 4 that is thin
at x5 and

zli%‘o u{z) = ulzg).

TEA

It follows from standard arguments in potential theory that 4 can be taken
as a measurable set. In the case of the capacity, B s, which is equivalent
to Newtonian capacity, these definitions are in agreement with those found
in classical potential theory. In view of the fact that

[A] € C[Bg,p,(A)*/ " —*p)

for any set A C R, it follows that (3.3.25) implies

limn =

r—0 | B(zo, )| ’

Bl ) (R~ )] _ |

and therefore fine continuity implies appreoximate continuity.
We now will show that the approximate continuity property of Sobolev

functions can be replaced by fine continuity. First, we need the following
lemma.

Lemma. If {A;} is a sequence of sets each of which is thin at zg, then
there ezists a sequence of real numbers {r:} such that

U A; N B{zp, 1)

¢s thin at xg.

Proof. Because A; is thin at Zg, it follows that there exists a sequence
{ri} — 0 such that

BiplA: N B(zo, 7))
By p|B(zo, )]

We may assume the r; to have been chosen so that

/"" [Bk,P[Ai n B(Ios")]] Ve dr < 2=+
o Bk‘p[B(xOY T)] r

— 0 as §{-— 00,
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Then,
1(p-1) 4

/ | [Bk"’[A‘ 0 B(zo,7) nB(mo,fs)]]
0 B p[B(z0,7))
/ri [Bkm[Ai N B(zg,7) N B(:r:n,rs)]] 1/{p—1) dr
0 B"»P[B(xﬂa T)] r
1 Bk,p[Ai N B{zg,r) N B(-'ﬂ[]s'r;')] 1/(p-1) ﬁ
+ [. [ By, p[B(zq, 7)) ] ;

T

I

_ 1 1 Yip=1) 4.
2760 4 By 5[4 N B(x, ro] /@1 / [Crn—k.p] T
ry

A

r

A

; 1
—(i+1)} ] 311/(p—1) .
2=U+1) ¢ B, [A; N B(zo, r )}V @10y [1 BBl ,(p_u]

< 27% for r; sufficiently small.

Since capacity is countably subadditive, the result easily follows. a

For ease of exposition, we now restrict our attention to u € W' P(R").
Again, we see the important role played by the growth of the gradient in
order to obtain some regularity at a given point.

Theorem. Let ©o € R*, p > 1, and suppose w € WLP(R™) has the property

that . 1 /(p=1) W
/ r”"‘/ | Du|?dz — < 00.
0 B(xq.r) r

Suppose also that

lim u(y}dy = u(xyp).
=0 J B(ze,r)

Then u is finely continuous at xp.
Proof, For each £ > 0, let
A{zg, ) = R* 0 {z : |u{z) — u(zo)| > €}

For r > 0, let
ve(z) = pp(z){u(z) - T(2r)]

where ¢, is a smooth function such that ¢, = 1 on B(xg, 7}, spter C
B(zq, 21}, |Dyr| € Cr~! and where

G(2r)y = / udz.
B{.’I:g ,2"‘)
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Because of the assumption %(2r) — u(z;) as r — 0, note that for all
sufficiently small r,

v(z) 2 e/2 for z € A(zp,e) N Bz, 7).
:I‘herefore, by appealing to Exercise 2.8, which allows B, p to be expressed
in terms of a variational integral, there exists C = C(p,n) such that
Byl A(o,€) N Blzo,r)] < C(2e~1)P / Dy, [Pds
B(xg,2r)

<O / |DufPdz

8(10,21")

+ (6‘25‘11’1)"/ lu — @(2r)|Pdz. (3.3.26)
B{xq,2r}

An application of Poincaré's inequality (cf. Theorem 4.4.2) yields
/ lu - &(2r)Pdz < Cr® |DujPdz
B{zy,2r) B(zo,2r}
and therefore (3.3.26) can be written as

B1,p[A{z0,£) 0 B(zo, 7)]

rh-r

< Qe lppm |DulPdz,
Blrg.2r)

which directly implies that A(xg,¢) is thin at z4. Now let €5 be a sequence
tending to 0. By the preceding lemma, there is a decreasing sequence r;y —0
such that

A= J{Al=o, ;) N B(zo,75)]
j=1
is thin at xq. Clearly
x]i'n:lo w(z) = u{zg)
rER™—A
and the theorem is established. a

It can be shown that

1 1/{p-1) d
_ r
/ [r” "/ |Du|”dm] — < o0 (3.3.27)
0 B(zo.r) r

for By p-q.e. x9 € R® cf. [ME3|. Therefore, with Theorem 3.3.3, we obtain
the following,

Corollary. If u € W'?(R") then u finely continuous at all points except
for a set of By, capactiy zero.
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Observe that Corollary 3.2.3 implies

Hmsuprf™" / |DulPdr =0 (3.3.28)
B(:l‘o,f‘)

r—

for H* P-a.e. zo € R™. Although {3.3.27) implies (3.3.28) for each zy, the
exceptional set for the former is larger than that for the latter.

3.4 IP-Derivatives for Sobolev Functions

In the previous three sections, the continuity properties of Sobolev func-
tions were explored through an investigation of Lebesgue points and fine
continuity. We now proceed to analyze their differentiability properties. We
begin by proving that Sobolev functions can be expanded in a finite Tay-
lor series such that for all points in the complement of an exceptional set,
the integral average of the remainder term tends to 0, {(Theorem 3.4.2). In
keeping with the spirit of this subject, it will be seen that the exceptional
set has zero capacity. Observe that Theorem 3.3.3 provides the first step
in this direction if we interpret the associated polynomial as one of degree
0 and the remainder at x as |u(y) — u(zx)|.

When k, m are integers such that 0 < m < &k, (k — m)p < n and
u € WEk?(R"), it follows from Theorem 3.1.4 that there exists a subset E
of R® such that

Bi_mp(E)=10 (3.4.1)

and

limn D™u(y)dy (3.4.2)
r=0% JB(a,r)

exists for all ¥ € R® — F and for each multi-index o with 0 < |a| < m.

Thus, for all such x, we are able to define the Taylor polynomial ™) in
the usual way:

PG = T SDuE)y - o). (343)

0<al<m

(Recall the notation introduced in Section 1.1.) Observe that when = is a
C™ function on R®, Taylor's theorem can be expressed in the form

s =P +m 3 L [a-gmo

|et=m

- D%ul(1 - )z + ty]dt] (y — ©)°. (3.4.4)

3.4.1. Theorem. Let 1 < m < k and suppose (k — m)p < n. Let u €
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WEP(R™) and E be the set described in (3.4.1} and (3.4.2). Then

1/p .
-n 1/p
. [t -[B(z,tr) | D*uly) — Dﬂfu(;g)lpdyJ dt (3.4.5)

and

1/p
[/B(z,f‘) Iu(y)—Pém_l}(y),pdyJ <y g (1-ym?

1/p
A / Duly)Pdy|
et |1D%u(y}| yJ ; (3.4.6)
Jor all z € R except for a set E' 5 E with Bi_mp(E')=0.

Proof. (i) Suppose first of all that u is a €™ function on R Let z € R,
r>0 a.r:c} put B = B(z,7). Let ¢ be a function of L*'(B) with Bollpr <1
where p’ is the conjugate of p. By (3.4.3) and (3.4.4), B

[ - P oiay = 3 T g

lal=m

- [ [ D01 - 32 +19) - Doula)yiy - z)“w(y)dy] d.

Hence, by Hélder's inequality,

l /B [u(y) - P,—f"‘)(y)]so(y)dy! <rm Y

laj=m

1
g/o (1—¢m!

1/p
. [/B [D%u({1 - )z + ty) — D“u(x)[pdy] dt.

By making the substitution z = z + t(y — z) in the right-hand side and
then taking the supremum over all ¢, one obtains (3.4.5).

The inequality (3.4.6) can be derived similarly.

(ii) Now let u be an arbitrary function of W¥P(R™). By Theorem 3.3.3
there exists a set £ > E, with By, p(E’') = 0 such that -

Jlim s |D%u(y) — D*u(z)[Pdy = 0 (34.7)
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when 0 < Ja| < mand z € R* - F'.
Consider € R™ — E’. There exists a constant M (depending on z}, such

that
f ipcuPay <M (3.4.8)
B{(z,5)

for all o] = m and all 6§ > 0. Let {¢.} be a sequence of regularizers as
discussed in Section 1.6. Thus, ¢, € C*(R"),

[ ez =1, (3.49)
spt v, C B{0,¢) and
sup @{z) < Ce™ (3.4.10)
zER™
for all £ (where C depends only on n), while
(pe ¥ D*u)(®) — D%u(x) (3.4.11)

ase | 0, for 0 <la| <mandx € R* — E'. Put #, = @ * u. Bach u, €
Co(R*)NW5P(R™). Let us denote by (3.4.5), and (3.4.6), the inequalities
(3.4.5) and (3.4.6) with u replaced by u.. Since u. is smooth we know
that (3.4.5), and (3.4.6). are valid. By (3.4.11) and Fatou’s lemma, the
lower-limit a8 ¢ | 0 of the left-hand side of {3.4.5), and (3.4.6). is greater
than or equal to the left-hand side of (3.4.5) and (3.4.6). The result of the
theorem will thus follow from Theorem 1.6.1(ii) and Lebesgue’s Dominated
Convergence theorem when we show for each o with |aj = mand r > 0
fixed, that the following function of ¢, 0 < ¢ < 1, is bounded; that is,

t'“/ iD™u(y){Pdy < Mr" {3.4.12)
B{x,tr)

where M is independent of ¢.
We now proceed to establish (3.4.12}. For any measurable subset E of

R", we have (when Ja| = m)

-/E|D“ue(y)|pdy = -/E t/ﬂn ey — 2)D*u(2)dz
hence by (3.4.10)

o
f |D*u, (y)|Pdy < CPe™ P f l f |D°‘u(z)|dz] dy. (3.4.13)
E E |/ B(y.e)

P
dy,

Thus, when p > 1, we have by Hilder’s inequality

p—1
[ 1D uypray < creem [ U ID"u(z)I”d”] U dz] w
B E Bly.e) Bly,&)
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so that
/ | D%, (y)[Pdy < Cs‘“/ f | D u(2}|Pd2dy, (3.4.14)
E E JB{yr)

E;h;rrles)c depends only on n and p. When p = 1, (3.4.14) follows from

When tr < 3¢, we let E be the ball with center # and radius tr. Since
B(y,e) C B{z, 4¢) when y € B(z, tr), (3.4.14) implies that

|D%ue(y)Pdy < Ce™™ f / Dowul P
-/B(z,tr) Bie.tr) B(Ms)l u(z)[Pdzdy.

It now follows from (3.4.8) and (3.4.12) holds in the case where £r < 3c.
When tr > 3¢, we have -

Daus Pd =/ o r o
/B(m)' WFdy = [ o [P )P dy + / D% (3)Pdy

Jel|y—zh<ir

and a double application of (3.4.14) yields

D%, ()P dy < Ce™ / / Dou(e)Pdzd
'/B(z’t"‘) B(z,3e) B(z,4s)l H(Z)l =y

+ CS—"/ / 1D%u(2)[Pdzdy
deL|y—z|<ir ¥y Biy,e)

and by (3.4.8)

< C'tP et 4 O /

Fe<ly—z|<tr

/ |D*uf{w + y)|Pdwdy
B{0,z)

< C'Rrt 4 C‘E_"/ [/ |D*u(y)Pdy | dw
B{0,z) 2eg|y—z|<tr+e

/ 1D%u (y)Pdy < C"t"r™.
Bz ir)

Thus (3.4.12) is established. O

so that

3.4.2, Theorem. Let 0 < m < k and suppose (k —m)p < n. Let u €
W¥*P(R"}. Then,

1l/p
o [f |u(y)-P£m’(y)|ﬂdy} ~0
B{zx.r)

es r | 0, for all x € R™, except for a set F with
Br_mp(F)=0.
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This is the main result of this section. In particular, it states that the
integral average over a ball of radius r of the remainder term involving the

formal Taylor polynomial of degree k tends to 0 as r — 0 at a speed greater
than r* at almost every point. If a Taylor polynomial of smaller degree is
considered, the integral average tends to 0 at perhaps a slower speed, but

on a larger set.

Proof of Theorem 3.4.2. When m = 0, the theorem reduces to Theorem
3.3.3. Suppose m > 0. By Theorem 3.3.3,

f [D*u(y) — D*u(z){Pdy — 0 (3.4.15)
Blx,r)
asr | 0, for all o] = m for all z € R®, except for a set F' with
Bk—m,p(F) = 0'
Consider z € R® — F and an a with |a| = m. Define
l/p
n(r) = [r‘”/ | D*u{y) — D*u(z)|Pdy (3.4.16)
Biz.r)
for r > 0. By (3.4.15), n(r) — 0 as r | 0, hence
1
/ (1—8)™ n(tr)dt = 0 (3.4.17)
0

7 | 0. The required result now follows from (3.4.16), (3.4.17), and Theorem
3.4.1. n

3.5 Properties of IP-Derivatives

In this section we consider arbitrary functions that possess formal Taylor se-
ries expansions and investigate their relationship with those functions that
have Taylor series expansions in the metric of L?, such as those discussed

in the previous section.

3.5.1. Definition., Let E ¢ R®. A bounded function u defined on E
belongs to T*(E), k£ > 0, if there is a positive number M and for each
z € E there is a polynomial P.(:) of degree less than & of the form

Pa=3 0y e w=w (35.1)

ol
|20

whose coefficients u, satisfy

[uaf{z)l < M for z€E, 0<|a]l <k,
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and
ua(y) = Dapz(y) + R,(x,y)

whenever x,yke E and where R, (z,y) < Cly— zj*-lel g < || < k.
The class t*(E) is defined as all functions u on E such that for each

x € E there is a polynomial P (-) of de
T gree less than o al
form (3.5.1) such that for 0 < I < k, r equal to & of the

D*Py(y) = D*Py(y) + Ra(z, y),

whenever 7,y € E with [R,(z,y)] < Cly - zlF=tal and

: Ro(z,y)
limp ——20¥7
vz [y - afe-tol = 0

uniformly on E.

' As a mnemonic, T*(E) and t*(E) may be considered as classes of func-
tior}s that possess formal Taylor series expansions relative to E whose re-
mainder terms tend to 0 “big O” or “little O,” respectively,

nglRefl?;lé Clearly, if u € T*(E) then u_ is locally Lipschitz on E
<la| < k. is an open set, note that the derivatives % i ,
Dot b ves D%y exist on F,

D%u(z) = D*P,(x) = ua(z) for ze€E,

Since |D*P,(x)| < M for = € E, it follows that u € W]k_l'p[E) for every
p 2 1. The space t*(E) may be considered as the class ::ch functions on E
that admit formal Taylor series expansions of degree k. Of course, if E were
0;-)51111 and u € C*(E}, then u would have an expansion as in Deﬁn’ition 3.5.1
wi
P(y)= Y %D“u(z)(y — )"
0<lal<k

Moreover, if 4« € C*(R") and E C R", then the restriction of u to E
'ufE, belongs to ¢*(F) for each compact set F C E. One of the reasons for
1<.ientifying the class ¢*(E) is that it applies directly to the Whitney exten-
sion theorem {WH], which we state here without pruof. We will provide a
different version in Section 3.6,

3';5.3. Whitney Extension Theorem. Let E ¢ RB» be compact. If u e
Tg'(i):kk > 0 an integer, then there exisis T € C*(R™) such that for 0 <
DPE(z) = DPP,(z) forall zcE.

In view of this result, it follows that « € t*(E) if and only if u is the
restriction to E of a function of class C*(R).
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We now introduce another class of functions similar to those introduced
in Definition 3.5.1 but different in the respect that the remainder term
is required to have suitable decay relative to the LP-norm instead of the
L-norm. The motivation for this definition is provided by the results
established in Section 4 concerning Taylor expansions for Sobolev functions.

3.5.4. Definition. For 1 < p € o0, k a non-negative integer, and r €
R", T*¥(z) will denote those functions u € L? for which there exists a
polynomial P;(-) of degree less than k and a constant M = M(x,u) such

that for 0 < r < oo

1/p
(][ ju(y) — Pz(y)l”dy) < Mrk. (3.5.2)
B(xz.r)

When p = co, the left side of (3.5.2) is interpreted to mean esssupycp(z r)
ju(y) — P:(y)|. T*#(z) is a Banach space if for each u € T%?(x) the norm
of u, ||ulpe.r(z), is defined as the sum of ||ufj, the absolute value of the
coefficients of P, and the smallest value of M in (3.5.2).

3.5.5. Definition. A function u € T*P(z) belongs to t*7(z) if there is a
polynomial of degree less than or equal to k such that

1/p
(][ Iu(y)—Pz(y)I”dy) =o(r*) as r—0. (3.5.3)
B(z,r)

Note that if u € T¥?(z) the polynomial P, is uniquely determined. To

see this write
u(y) =P, (y) + Rz(y)

. ifp
(][ |R.(y)Pdy | < Mr*.
Bz,r)

Ii P, were not uniquely determined, we would have u(y) = Q.(y) + Ra(y),
where B, satisfies an integral inequality similar to that of R..
Let So(y) = Po(y) — Qz(y). In order to show that S; = 0, first note that

where

1/p
][ 1Sz(y)|dy < (]L 1S (1)|Pdy <Crf, 0<r<oo.
B{xr} B(z,r)

Now let I; be the sum of terms of 5; of lowest order and let M; = 5§, —L..
Thus, L, has the property that for each A € R!, L;(Ay+x) = A°L,(y + z),
where a is an integer, 0 < @ < k — 1. Since M, is a polynomial of degree
at most ¥ — 1, we have

f @l o<r<on
B{z.r

3.5. Properties of LP-Derivatives 133

It follows from the inequality |L.(y)| < S, (y)| + IM:{y)| that

ey =
Blz,1)

= f |z (y)idy
B{x,r)

<Crf+ Cr¢ L, 0<r < .

This is impossible for all small » > 0 ifa < k — 1 and L. is non-zero. If
a =k —1, then M; = 0 and the term Cr*~! above can be replaced by 0.
A similar argument holds in case u € t*?(z).
Obviously, t*(E) C t*?(z) and T*(E) ¢ T*?(z) whenever r € E and
p 2 1. We now consider the question of the reverse inclusion. For this
purpose, we first need the following lemma.

3.050.6. Len.'lma. Let k be a non-negative integer. Then there exists ¢ €
C§°(R") with spty C {|z] < 1} such that for every polynomial P on R
of degree < k and every e > 0,

. pexP=P
where pe(z) = e~ p(z/e).

Pf'oof. Let V = C§°(B)} where B is the closed unit ball centered at the
origin and let W denote the vector space of all m-tuples {¥a} whose compo-
nents are indexed by multi-indices a = (a),a,...,a,) with 0 < lo] < k.
The number m is determined by k and n. Define a hinear map TV — W

by
1) = { [ elooas);

Ya =/ p(x)zdz

where 0 < |a| < k and 2 = 2237 ... gan,
Note that vector space, range T, has the property that range T = W for

.if not, there would exist a vector, ¢ = {a,} orthogonal to range T. That
is,

thus,

YaaYa =0 whenever y={y,} € rangeT.
This implies,

/;a p{x)Laar%dr =0 whenever @&V,
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Select 5 € V such that 7 > 0in {z : || < 1}. Now define 4 by ¥ = Za,z%y
and note that 4 € V. Therefore,

f (£ aaz®) Wx)dz = 0,

which implies ¥ a,2® = 0 whenever || < 1. But this implies that ail m
numbers a, = 0, a contradiction. Thus, range 7" = W. In particular, this
implies there is ¢ € V such that

/ elz)dz = 1, / plr)z®dr =0, 0<|a| <k

Since any polynomial @ of degree no greater than k is of the form

Q(z) = z baz®,

0<|a|<k

it follows that

f 9(2)Q2)dz = Q).

Given a polynomial P = P(z) as in the statement of the lernma, let z =
{x — y)/e and set Q(z) = P(x — ez} to obtain the desired result. o

The next theorem is the main result of this section. Roughly speaking,
it states that if a function possesses a finite Taylor expansion in the LP-
gense at all points of a compact set E, then it has a Taylor expansion in
the classical sense on E. It i3 rather interesting that we are able to deduce
a L®-conclusion from a LP-hypothesis. A critical role is played by the
existence of a smoothing kernel ¢ that leaves all polynomials of a given
degree invariant under the action of convolution.

3.5.7. Theorem. Let E C R be closed and suppose u € T*?(z), 1 < p <
00, k > 0, with [[ullrssmy < M for all z € E. Then u € TH(E). Also, if E
is compact and if u € t*P(x) for all z € E with (3.5.3) holding uniformly
on E, then u € t*(E).

In view of Whitney’s Extension theorem (Theorem 3.5.3), note that a
function satisfying the second part of the theorem is necessarily the restrie-
tion of a function of class C*(R"™). In the next section, we will investigate
Whitney's theorem in the context of LP.

Proof of Theorem 3.5.7. Let ¢ € C§°(R™) be the function obtained in

Lemma 3.5.6 such that
e * P(x) = P(x) (3.5.4)
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whenever P is a polynomial of degree less than &, ¢ > 0
' ) & d R®,
that (3.5.4) implies nd z € Note

D% x P(z) = e ¥ D*P(z) = D*P(x). (3.5.5)

Since u € T%?(z) for all x € E, we have for gg and z € E,

u(y) = Pro(y) + R{zo, y) (3.5.6)
and
u(y) = Po(y) + R(z,y) (3.5.7)
where
1/p
( /B . IR(-'c*-y)l”dy) < Mr¥, (3.5.8)

with z* either zg or z. Now let ¢ = [z — 20| and for 0 < 8| < k consider
I=DPp, xu(z).

1 2 t 1

I= DB(PE * P () + Dﬁ(ﬂs * R, (x)
= Dﬁpxa (z) + D'S‘Pe * Rz, (x).

Similarly, using (3.5.7) and (3.5.5), we have

I=DPP,(z} + DPg,  Ry(x)
= ug(z) + Dy, » Ry ().

Therefore,

Dﬁp:c(z) = Dﬁp:no (z) + [Dﬂ‘PS * Ry, — Rz))(z)
= DPP, (z)

. / e~(nHBD DA, [(—5”;_3’)] (B(z0, 4} — R(z, y)]dy.

Because ¢ = 0 on |z| > 1, the last integral is taken over B(r,¢). Since
B(z,e) C B(zq,2¢), the integral is dominated by

C [][ [R{zo, v)|dy +J[
B(zg,2¢) B(z

where €' depends on an upper bound for [DPp|. Jensen’s inequality and
gi?.S} implies that (3.5.9) is bounded by CMe*—18!, thys proving u €
E).

) |R(z, y)ldy} e lAl (3.5.9)
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A similar proof establishes the second assertion of the theorem. Indeed,
as before we obtain

DPP,(z) = DPP,,(x) + [DPoe » (Rzy — Ra))(x)
= D‘GPJccl (x)

+ / g~ (nHAD B, [(_I.;_y)] [Rizo,y) — R{z,y)ldy

<C l)[ | R{zq, y)|dy +)£ |R{=z, y)|dy] e~ 18l
B(zo,2¢) B(z.£)

Since (3.5.3) is assumed to hold uniformly on E, for 5 > 0 arbitrary, the
last expression is dominated by ne* 18l = y|z — 20|71 provided |z — xq|
is sufficiently small. The compactness of E is used in this case to ensure
that |Rg{z,y)}| < C)x — y/* 18! whenever 7,y € E. O

3.6 An LP-Version of the Whitney Extension
Theorem

We now return to the Whitney Extension Theorem (Theorem 3.5.3) that
was stated without proof in the previous section. It states that for a com-
pact set E C R™, a function u is an element of t*(£) if and only if it is the
restriction to E of a function of class C*{R"). The result we establish here,
which was first proved in [CZ], is slightly stronger in that the full strength
of the hypothesis u € t*( E) is not required. Instead, our hypothesis requires
that u € t?(x) for all z € F with (3.5.3) holding uniformly on E.

We begin by proving a lemma that establishes the existence of a smooth
function which is comparable to the distance function to an arbitrary closed

set.

3.6.1. Lemma. Let A C R® be closed and for x € R™ lel d(z} = d(z, A)
denote the distance from = to A. Let U = {x : d{z) < 1}. Then there is a
function § € (U — A) and a positive number M = M(n) such that

M ld(z) < §(x) < Md(z}, z€U-A,
|D?6(z)| < Cla)d(z)'~1, zeU-4, |of 20

Proof. Let k(z) = 35d(z), £ € U — A, and consider a cover of U — A by
closed balls {B(z, h(x))}, with center x and radins h(z), € U — A. From
Theorem 1.3.1 there is a countable set § C U — A such that {B(s, h(s)) :

s € 8} is disjointed and
R" — AD> {UB(s,5h(s)): s€ S} DU — A.
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Witha=F=10and A = 2—10, we infer from Lemma 1.3.4 that

1
3 < hix)/h{s) <3 for scS§,. (3.6.1)

Let 8(x) = H°(S,) < C(n) and let 5 : B! — [0,1] be of class O™ with
nE)=1fort<1, nt)=0fort>2
Now define ¥ € C™(R"™) by 9(z) = n(l=]) and v, € C=(U) by

ve(x) = h(s)y [(5%%—;—)} for s€8, 2zl

Note that B = B
thate at spt vs C B(s, 10A(s)), v, = h(s) on B(s, 5/(s)} and from (3.6.1)

[D%vs(2)] < h{s)N(a)[5h(s)] "
<5713l N (@) h(z) 1 for s € S,
where N{a) is a bound for |D?y|, 8] < |a|. Now define

§(z) = Zva(:c) = Z ve{z) for zeU.

°es "€Se
Clearly,
dl h
_(g_) - _(;_} < 6(z) < 30(x)h(z) = %e(x)d(zJ
and

|D*8(z)j < 571131 19() N(a)h(z)! 1o, for zel/— A, O

. The following is only a prelude to the LP-version of the Whitney exten-
sion theorem, although its proof supplies all of the necessary ingredients
Its hypothesis only invokes information pertaining to the spaces T"'P(xj
.(bounded difference quotients) and not the spaces t5?(x) (differentiabil-
ity). In particular, the theorem states that if u is Lipschitz on A (the case
when & = 1) then u can be extended to a Lipschitz function on an open
ge; ;ontaining A. This fact is also contained in the statement of Theorem

3.8.2. Theorem. Let A C R* be closed and let U = {z : d(z,A) < 1}.
If ue IP(U), 1 < p < oo, and there is ¢ positive constant M such that
"u"j‘k.p(r) SMforallx € A, where k is a non-negative integer, then there
exists T € CF~ 11 (U) such that DPu(z) = DPP,(z) forz € A,0<|f] < k.

Proof. Let § denote the function determined in Lemma 3.6.1. Define @ = «
onAandforzel/ — A let

#(r) = ps(e) * ulx) (3.6.2)
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where { is the function determined by Lemma 3.5.6 and where

Poz) (W) = 8(z) " (%) :

Thus, % is defined at x as the convolution of ws(;) and u evaluated at z.

Because both ¢ and 6 are of class C* i is easily verified that T € O (/-
A). For z € U, let z* be a point in 4 such that |z — z*| = d(x) = d(z, 4).
Because u € T*?(z) we may write

w(z) = Pye(z) + Rpe (7} (3.6.3)

1/p
(f | Rz (x)F’d:c) < Mr*.
Blxz*r)

By substituting this expression into (3.6.2), we obtain

where

DPa(z) = DP [ps(a) * Poe(2)] + DP [p5(z) * R (2)]
= (DPgiay * Par (z) + / Ra(z,y)Re- (y)dy

= Pg(z) * (D Por)(z) + / Rg(z,y)Ro- (y)dy (3.6.4)

where Rg{z,y) = D?{8(z) "p[(z — y)é6(z)~']}. Applying Lemma 3.5.6 to
the first term on the right side of (3.6.4) we obtain

DPi(z) = DPP,.(x) + / Ra(w, ) Re (v)dy. (3.6.5)

We wish to estimate the remainder term in (3.6.5) which requires an anal-
ysis of Rg(z,y). It can be shown that

|Ra(z,y)| < C(B)d(z)™" Al

and consequently
‘ / Rﬁ(z,y)Rz-(y)dy‘ < C(B)d(z) "1l LB( B @ldy. (3.66)
*,y
Because 8(c) is comparable to d(z) (Lemma 3.6.1) and |z — z*{ = d(z), it
follows that B(z,é(2)) C B{z*, Kd(z)) for some K > 0. Therefore from
(3.6.3) and Holder’s inequality,

/ R ()ldy < M{Kd()]" (36.7)
Blz* Kd(z))
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which along with (3.6.5) and (3.6.6) implies,
DP%(x) — DAP,.(z) = Sp(z*, ) (3.6.8)

where
1Ss(z*, 2)| < C(8, k)M|z — z* [k~ 18,

We emphasize here that for given x € U — 4, (3.6.8) is valid only for z* € 4
such that d(z) = |z — z*|. We now proceed to establish the estimate for
arbitrary z* € A.

By assumption {|ullrepizy < M for all z € A. Therefore, we may apply
Theorem 3.5.7 to conclude that u € T%(A). Thus, if z* € 4,

Ppe(2™) = u(z*)
and
D%Fye(2*) = DPpy (2%} + Ra(z},2*), 0<|a| <k (3.6.9)

where
|Ba(z],2%)] < Cla, k)M|z* — g}~ 1o,
By Taylor’s theorem for polynomials, it follows that

k—-1-8
1
DﬁPm‘(x) — Z ETD'G‘FGP:“(“"*)(Z: - z*)*
faj=0

Thus, by (3.6.9) and Taylor’s theorem,

k—1-|8i
1
DPPe(z)= 37 Z{D™**Py(a") + Ravs(si,o"))(z — 2%)°
lal=0
k—1-18] 1 k—1~(|cl|-+]8]) 1
= X al X SDFTRENE - )
|a]=0 |vi=0 )
+ Roil(a},a")](z - %) (3.6.10)

By Taylor’s theorem, it follows that

1
DﬂPz: (x) = Z a_',Dﬂ'H!P:; (I;)(:L‘ _ II)Q_
lalz0

Therefore, since

lo—2*| <o —2fl and |o* ~ 23| < |2* — 2]+l — o) < 2o — 23],
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(3.6.10) becomes (after some algebraic simplification}

(k=1)—18] i
DPPe(@)- Y oD P(al)e - aD)* = Oz — i ).

for| =0 )

It follows from (3.6.8), that
(k—1}-18

Dﬂﬁ(m} — Z $D’G+"'P¢; (z)(z — 23)* = O}z — x:lknlﬂl}
|ai=0 )
i DP(z) — DP Py (z) = O(jx ~ ¥~ 1A1). (3.6.11)

Thus, (3.6.11) holds whenever 2} € A and z € U — A and Theorem 3.5.7
implies that it also holds with D?%(x) replaced by ug(z) whenever x €
A. This implies that D?% is a continuous extension of ug and t.hat this
extension has a Taylor series expansion about each point in A. Since T €
C®(U — A) it now follows that & € C*~1(U). e

In order to prove that @ € C*~L1(U) it suffices to show that DT is
Lipschitz, |8] = k — 1. We know from (3.6.11) that if e € 4, and || =k -1

|D%a(z) — DPu(a)| < C(k)M|z — a {3.6.12)

for £ € U. Therefore, it is necessary to consider only the case x,y € U — A.
First suppose |z — y| > 1d(y) and let @ € A be such that d(y) = |a — .

Then, la — y| < 2{z — y| and
lz~af < |z —y| +ly—a| <3z -3
Thus, utilizing (3.6.12),
|D%a(z) - DPa(y)| < |D?a(z) - DPu(a)| + | D7a(y) — DH(a)|
< |Da(z) - DPu(a)| + [D7u(y) — DPu(a)
< C(k)M[lz —af + |y — al]
< 5C(k)M|x —y|.
Finally, suppose |z — y| < 3d(y) and d(y) = |a — y|. Using (3.6.5} with
|8l = & — 1 and the Mean Value theorem, we have
|DP(z) ~ Daa)] = [ Rla, ) IRpte ) — Ry, )} d=
<lz -yl f | D, Ra(To, )| 1R(a, 2)|dz (3.6.13)
where g is & point on the line segment joining r and y. Now spt Rg (zo0,4) C
-E(xo,é(xo)) and 5(35‘0) < Cd(:{.‘o) Thus,
D, Ral(wo, 2)| < C(B)d(wa) ™,
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(18] = k — 1). Therefore, (3.6.13) implies

ID%5(e) = DPa(y)| < G(6)a o) [ IR(e,2)dz.
B(”U!Cd{zﬁ))
(3.6.14)
Since Lip(d) = 1, we have
1
2d{zo} 2 d(z) 2 d(y) — |z — y| > 74} > |z —¢l.
If z € U, |z — xp] < Cd(xy), then
|z — a| £ |z — 2| + |20 — q
< Cd(:ﬂo) + |3.'Jo - a|
< Cd(mo) + |zo — y| + d(y)
< Cd{zo) + [z — yl + d(y)
< Cd(ﬂ:g) + d(ﬂ:g) + Qd(l‘o).
That is,
B(zo,Cd(x0)) C B(a, (C + 3)d(z0)).
Therefore, reference to (3.6.7) implies
/ |R(a, 2)|dz < C[d(zo)]***
B(zp,Cd{z0))
and this, along with (3.6.14) completes the proof. a

This proof leads directly to the following which is the Whitney extension
theorem in the context of t*P(z) spaces.

3.6.3. Theorem. Let A C R" be closed and let U = {z : d(z,A) < 1}. If
u€ LP(U), 1 <p < 0o, and u € t57(z) for all T € A with (3.5.3) holding
uniformly on A, then there ezists & € C¥(U) such that DPa(z) = DPP,(z)
forre A, 058 <k

Proof. The proof is essentially the same as the one above with only minor
changes necessary. For example, the polynomials in (3.6.8) and (3.6.9) are
now of degree k and the remainders can be estimated, respectively, by

|Sa(e”, 2)| < of|z — &*|F~18)

and
|Ra(a], z*)| < of|z* — zi[F1o),

thus allowing (3.6.11) to be replaced by
DPu(z) - DPP,:(x) = of|x — z} [+ ).

The remainder of the argument proceeds as before. m|
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3.7 An Observation on Differentiation

We address the technicality of showing that [ulre.r(s) is & measurable
function of = and then establish a result in differentiation theory that will

be needed later in the sequel.

3.7.1. Lemma. Let u € THP(z) for all z in a measurable set E. Then,
leellre.riz) i @ measurable function of z.

Proof. Recall that the norm [|u|/zss(z) is the sum of the numbers [jully,
iD*P,(z)|, 0 < |a| < k— 1, and the p™ root of

supr P ][ lu(y) — Pa(y)|Fdy.
>0 B(z,r)

Also recall that D*P;(z) = ua{z). To show that D®P,(z) is measurable
in = consider the function ¢ of Lemma 3.5.6 and define

ue(z) = e » ufz).
If we write u(y) — P:(y) = Rz(y), then
D%u.(z) = D*(pe * Pr)(z) + D*(pe * Re)(2)
= D°P,(z) +/E‘(“+|°’|)D“(p [g] R.(z — y)dy.

The above integral is dominated by

CE—(n+|ai] / |Rz(x _ y)Idy < CE—(n+|ai)Ek+n
B{x.e) -
=Ce* el 50 as e =0

This shows that D*P,{z) is the limit of smooth functions D®u.(x) for all
r € E, and is therefore measurable. The remainder of the proof is easy to

establish. o

3.7.2. Lemma. Let u € IP(R"), 1 € p < 00, be such that for some C,

a>0and allr >0,
l/p
(f |u<y)1?dy) <cr,
B{z,r)

for all = in a measurable set E C R™. Then, for almost all z € E,

tfp
(][ l“(y)Ipdﬂ) =o(r*) as r |0
B{zxr)
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Proof. Without loss of generality we may assume that E is bounded and
that u has compact support. Given ¢ > 0, let A C E be a closed set such
that |E — 4| <¢. Let U be the open set defined by

U= {zr:d(z,A) < 1)}.
It wili suffice to establish the conclusion for aliost all z € A.

First, observe that the hypotheses imply that

lim [u(y}ldy = 0
r— B(z,r)

forz € A and tlherefore, u = {} almost everywhere on A,
Let h(z) = 5d(z, A). Recall_f_rom Theorem 1.3.1 that there is a count-
able set § C U — A such that {B(s,h(s)) :s € 5} is disjointed and

{UB(s,5h(s)) : s € S}oU- A

Therefore, since © = 0 almost everywhere on A,

/A /U ﬁ—li‘-%gdydr < /A /U . E%dydx

S/Z/ de
A B

5B sae) [T — ynte

=S el [ = a. @y
B(s,5h(s)) alz—y[rte

gy
Let 2, € A be such that {s — z,{ = d(s, A) = d(s). Hence, B(s,bh(s)) C

B(zy, |5~ z,!+5h(s)) and |8 — z,| = d(s) = 10h(s). B i
-3 g F| = - . J ! i
and the hypothesis of the lemma : (8] By Jeasen's inoquality

f 1/p i/p
|uf < / u|? < f P a
B(s,5h(s)) Blo,5h(s)) i - B(z.,15h(s)) ful < Ch(s)*.

3.7.2
Now for z € A, y € B(s, 5h(s)), we have ( :

[z =y 2 [ — 8| - |s - y| 2 d(s) — 5h(s) = 5h(s).

g;ence, for y € B(s,5h(s)) we estimate by spherical coordinates with origin
¥

/ dz < C/oo ”
Tp — pyinta = reT
A f.’B — yfrte |Sh(s)] "

< Cla)h(s)™".
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This, along with (3.7.2) yields
f f ﬂl—dyd:r < Cla}h(s)™.
AJEB

{5.5h(a)) |z — y|*t®

Since {B(s, h(s)) : s € S} is disjointed, it follows from (3.7.1) that

f f Mdgdﬂ: < Cla) Z h(s)" < o0
AJu

|I _ y|n+a s

[T
v lz— "
for almost every r € A. Clearly,
/ Iu(y)ldya ‘o
v le—yl*t

for all £ € A, and therefore

f julelldy
R

n t_r — y|n+a

and therefore,

for almost all z € A. - ' .
An analysis of the argument shows that this was established by using

only the fact that

][ Il < Cre.

B(z,r}
If we apply the above argument with v = |ul?, our hypothesis becomes
£ k<
B(z,r)

for all x € E and therefore

lo(y)idy  _ f |u(y)Pdy

7 Jan =l = Jpo Ty ol

for almost all z € E. But, for all such z, and for € > 0,

f Ju@Pdy e ol small + > 0.
B{xr) |y - $|n+1m

1/p
][ Iu(y)l”dy) <er®
B{z,r}

That is,

for all small r.
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3.8 Rademacher’s Theorem in the LP-Context

Recall the fundamental result of Rademacher which states that a Lipschitz
function defined on R™ has a total differential at almost all points { Theorem
2.2.1). We rephrase this result in terms of the present setting by replacing
the hypothesis that u is Lipschitz by u € T*®(z) for all z in some set E.
Ifk =1 and p = oo, this yields the usual Rademacher hypothesis. The
conclusion we will establish is that u € t*¥(z) for almost all z € E.

3.8.1. Theorem. Let u € T*?(z) for qll z € E, where E C R® is measur-

able, k a non-negative integer and 1 < p < 0o. Then u € t*P(z) for almost
all t € E.

Proof. By Lemma 3.7.1 and Lusin’s theorem we may assume that F is
compact and that [lullzesy) < M for all 2 € E. Since u € T*#(z) for
z € E, we may write u(y) = P,(y) + R.(y) where P, is a polynomial of
degree less than &k and where

/p
( f jR,_,(y)P’dy) <Mt r>0. (3.8.1)
B(a,r)
From Theorem 3.6.2 it follows that there exists an open set IV > F and
% € C*¥ LU such that
DPu(z) = DPP,(x), 0< || <k. (3.8.2)

Because 2 is of class C*~1! it follows from Theorem 2.1.4 that T € WEP(R")
and therefore we may apply Theorem 3.4.2. Thus, for almost all z € k™,
there is a polynomial Q, of degree at most k such that B(y) = Q{y)+R.{y)
where

/p
(][ lﬁz(y)l”dy) =o(r*) as r|o0. (3.8.3)
Biz.r)

Because @ € C*~'(R"), the argument following Definition 3.5.5 implies
that
Dfa(z) = D°Q.(z), 0<{f]<*k. (3.8.4)

Therefore, in view of (3.8.1), (3.8.2), and (3.8.3)

1/p
][ ju—=|P < Cr*
Biz,r)

for almost all z € E. Appealing to Lemma 3.7.2 we have

1/p
(f |u__ﬁ|p) =o(r*) as r0
Biz,r)
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for almost all x € E. Consequently, for all such z,

1/p 1/p
(][ [u(y) — Qx(‘y)l”dy) < (}L luly) — ﬁ(y)lpdy)
B{z,r) Biz,r)

/p
ﬁ - T Pd
4 (fm,ﬂ' () - Qoly)] y)

<ofr*) as r—0,

thus establishing the result.

3.9 The Implications of Pointwise Differentiability

We have seen in Section 4 of this chapter that Sobolev functions possess
L?-derivatives alinost everywhere. This runs parallel to the classical result
that an absolutely continuous function f on the real line is differentiable
almost everywhere. Of course, the converse is false. However, if it is assumed
that f' exists everywlere and that |f'| is integrable, then f is absolutely
continuous (Exercise 3.16). It is natural, therefore, to inquire whether this
result has a counterpart in the multivariate L* theory. It will be shown
that this question has an affirmative answer. Indeed, we will establish that
if a function has an L? derivative everywhere except for a small exceptional
set, and if the coefficients of the associated Taylor polynomial are in E?,
then the function is in a Sobolev space.

We begin the investigation by asking the following question. Suppose
u € LP(R™) has LP-derivatives at * € R"; that is, suppose u € the ()
where k is a positive integer. Then, is it possible to relate the distributional
derivatives of u {which always exist) to the LP-derivatives of u? The first
step in this direction is given by the following lemma. First, recall that
u € t5P(z) if there is a polynomial P, of degree k such that

1/p
(]( fuly) - Pz(y)[”dy) =o(r*) as r—0, (3.9.1)
B(z,r)

and u € T*P{z) if there is a polynomial P; of degree less than & and a
number M > 0 such that

l/p
(]L july) - Px(ﬂ)de) < Mr*, 0<r<oc.
Bixr)

3.9.1. Lemma. Suppose u € L*(R"), p 2 1.
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() If ueT*#(z), then
ﬁilig‘f w1 D%y} > —oo,

t t, o0 -
£ < I < ; n ores lke liistf Sb‘ufiﬂﬂal de? s‘vﬂt“)e

(i} If uet®®(x), then
lirtn SUp g * D%u(y) = D*P,(z),

with [z —y] <, 0< |af < k.

The function ¢, above is a mollifier as deseribed in Section 1.6. Since
@t E.CS"(R"), its convolution with a distribution 7T is again a' s‘mooth
function. Moreover, for small ¢ and |y — x| < ¢, the quantity ¢, * T'(y) gives
an approximate description of the behavior of T in a neighborhood of z
Indeed, if T is a function, then .

limsup ¢ * T(y) = T(z)
ly—z|<e

whenever r is a Lebesgue point for T This will be established in the proof of
Lemma 3.9.3. Very roughly then, the statement in (i) of the above lemma
states that, on the average, the behavior of the distribution D™y near =

is reﬂef:ted in the value of the coefficient, DP, (z), of the Taylor series
expansion.

Let F(y,¢) = py#u(y). F is thus a function defined on a subset of R*t!
Parr'mly R" x (0, 00) and is smooth in y. The lower and upper limita sta.ted1
in (i) and (ji) above can be interpreted as non-tangential approach in R®+!
of (y,¢) to the point (z,0) wheh is located on the hyperplane ¢ = 0.

Proof of Lemma 3.9.1. Proof of (ii). Let

u(y) = Po(y) + Ro(y) and Fy(y) = F(y,1).

Then
D*Fy(y) = Dps * wl(y) = D%y * u(y).
Therefore

DeFy(z + h) = / D%py(z + h — y)u(y)dy
= / D%oy(z + h — y) P (y)dy + / D%(z + h — y) Ry (y)dy

= (o s DR+ 1)+ [ Do+ h- Ry (392)
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There is a constant C' = C(|D¢|) such that
ID*pule +h—y)| < CtT7F

for Ja| = k. Consequently, for h € B(0,t), it follows that

a — y)R.(y)d <Gt‘“"‘f |Re () |dy
|/D wi(x +h— y)R(y) y| < parhgy

scr**/ |Ra(y)ldy — 0 as 10,
B(z,2t)

by (3.9.1). Writing P, in terms of its Taylor series, we have

k o _ 1Y
Px(y}= Z D P:r(x)(y 3’.‘) ,

i
[+ 3
fox| =0

and therefore D*Pr(y) = D*P,(z) for all y € R™ if || = k. Hence,
@y * DOPg(x + h) = D*Py(x), and reference to (3.9.2) yields

limsup g * D%u(z + h) = D*P,(z), 0<[h| <, (3.9.3)
£10

thus establishing (ii) if | = k. However, f 0 < £ < k,thenu € t8P(z) and
the associated polynomial is

°\ DPy(z)(h - x)*
> ” '
| =0 '

Thus, applying (3.9.3) to this case leads to the proof of (ii). ' .
The proof of (i) is similar and perhaps simpler. The only difference is
that because P, is of degree at most £ — 1, we have

DeFy(z+h) =0+ / D%py(h — y}Ro (y)dy

if [a| = k. The integral is estimated as before and its absolute value is seen
to be bounded for all ¢ > 0, thus establishing (i). o

The next two lemmas, along with the preceding one, will lead to the
main result, Theorem 3.9.4.

3.9.2. Lemma. Let T be a distribution and suppose for all x in an open
set £} C R™ that

lim i(]):lf we *T(y) > —00, |x—y|<Y,
tes
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where § C (0,00) 45 a countable set having 0 as its only limit point. Let C
be a closed set such that C'NQ #£ 0. Then there exist N > 0 and an open
set {1y CQ with CNQY # @ such that o, * T(y) 2 ~N > —0 whenever
ly—zl|<t,zeCnQy,tes,

Proof. Let
F.(z) =inf{o xT(y): [z —y| < t,t € §).

Then, F.(z} > ~oo for z € Q since 0 is the only limit point of § and it is
easy to verify that F, is upper semicontinuous. Thus, the sets

cnan{z:F(z)>-i}, i=12,...,

are closed relative to C'N {2 and their union is ¢ N Q. Since C N Q is of the
second category in itself, the Baire Category theorem imnplies that one of
these sets has a non-empty interior relative to €' 11 Q. [

One of the fundamental results in distribution theory is that a non-
negative distribution is a measure. The following lemma provides a gener-
alization of this fact.

3.9.3. Lemma. Let § > 0, N > 0, and suppose S is as in Lemma 3.9.2. If
T is a distribution in an open set Q such that

prxT(z) > —N>-00 for z€Q, t€8N(0,8)

and
limsup @; *T(x) 2 0 for almost all z, € Q,
t]0

|z~xol<t

then T is a non-negative measure in §2.

Proof. Let ¢ € Z(Q), ¢ > 0, and recall from Section 1.7, that the convo-
lution ¢y + T is a smooth function defined by

@ * T(z) = T(12id)
where @(y) = w:(—y) and 7,@:(y) = $;(y — x). Then,

T( % Ge) =T * (4 » 01)(0)
= (T 1) % 9(0)

- / T * o (—y ) (y)dy
- f T * oy (y)(y)dy.
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Now 9 * ¢, — ¢ in Z(82) as t — 0. Moreover, since 3 is non-negative
and @y * T(x) > —N for z €  and t € SN {0,4), it follows with the help
of Fatou's lemma, that
T(¢) = l:il%l T(* @)
tes
> timint [ 7+ ouly)0 )y
i&s 10

> [ limint T« o (u)to)dy
18

>-N [n ¥{y)dy.

Thus, the distribution T'+ N has the property that
(T+N)¥) >0 for peD(Q), ¢=0.

That is, T + N is a non-negative measure on §2, call it p. Let p = v + o
where v is absolutely continuous with respect to Lebesgue measure and o
is singular. Clearly, Q is the union of a countable mumber of sets of finite
v measure. Thus, by the Radon-Nikodym theorem, there exists f € L!({2)

such that
W(E) = L f(2)dz

for every measurable set £ C (2. Since T+ N = 4, it follows that
pe xT(z} + N = o x (T + N)(2} = o * u(z)

== ] pulz — y)f(y)dy + [ ez — y)do(y), (3.9.4)
0 0

for z € ). Because o is a singular measure, a result from classical differen-
tiation theory states that

J[B(Iﬂrt)] —
250 |Blxo, )|

for almost all zg € Q, cf. [SA, Lemma 7.1]. Therefore, at all such zy with
|I - J’.?[)l <t

[ orlz - y)doly) = [B . eE =)o)

< [ o4z — y)do(y)
B(xo,2t)

o[{B(xo, 2t)]
| B(xo, )|
—0 as t - 07 with |z -z} <t

0

< Cllplleo
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To treat the other term in {3.9.4), recall that f 1 i
almost all zg € 2. That is, ) Jms & Lebeogue point at

Jé—..(m.,.) f&) ~ f(zo)idy =0 as r— O,

Therefore,

Joy [0 =0~ ) = [ ) = St — iy

< Cllofos ]g 20 O = £y =0 a5 40, s~ a0) <1,

Consequently,
N< lil?ﬁju]) wr % T(z) + N = f(xg)
[x—zp{<t

for almost all 2, € 2. This implies that
v(E) > N|E|

for all meas]Jrable E C 2. Since p(E) > v(E) it follows that the measure
# — N =T is non-negative. a

3.9.4. Theorem. Let T be a distribution in an [
pen set 2 C R™ and let
J e Ll (Q). Assume ’

lir?liuw: *T(y) > flz), lz-y]<t,

for almost all z € Q, and

liminf o« T(y) > —00, |z -] <,
tes

forallze Q. Then T~ fisa non-negative measure in §1.

Proof. We first assume that f = 0. Lemma 3.9.2 implies that every open
subset of {2 contains an open subset £’ such that for some N > 0, pxT(zx) >
~Nforzef¥,tcS. Lemma 3.9.3 implies that T is a measure in £,

Let 2y be the union of all open sets ' ¢ € such that T is a non-negative
measnfre on {). From Remark 1.7.2 we know that T is a measure in ;.
We wish to show that £, = . Suppose not. Applying Lemma 3.9.2 with
C = R"— Ql; there is an open set ' ¢ © such that @ xT(x) > —N
g:fglc;rg%{lic ;eg:| =t andt € S Let Q3 = Q; U and note that

Q3=Q2n{z:d(a:,R“~—ﬂg)>e}
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for some ¢ > 0. Take ¢ sufficiently small so th_at 13 N (R" - ) # 6.
Consider o, » T{z) for x € 3 and t < . Now T is a non-negative measurde
in . Therefore, if d{z, R* — W) > ¢, ¢ * T(x} > 0. On the other hin ,
if d(z, R* — ;) < i, there exists y € R" — (}; such th’at lz — yl _lt.
Since B(x,t) C (g, it follows that y € 2o — ) = cngy. Conseque‘;lt v,
@3T{(z) > —N. Hence, p,*T(z) is bounded below for z € (13, ie §N{0, ),
and thus T is a measure in Q3 by Lemma 3.9.3. But Q3N (R® — ) # 0
thus contradicting the definition of €1;.
For the case f # 0, for each N > 0 define

N, flz)2N
fu(@)=4{ flz}, - N<Fflz)s N
_Ns _f(.'l?} < -N

and let R be the distribution defined by R =T — fn. Cl(?arly ‘R satisfies
the same conditions as did 7 when f was assumed to be identically zero.
Therefore, R is a non-negative measure in 2. Thus, for ¥ € C§°(R2), ¥ > 0,

R)=T() - [ fupda 20
Letting N — oo, we have that

T(¢) - ] fode > 0.

That is, T' — f is a non-negative measure in 2. o

Now that Theorem 3.9.4 is established, we are in a position tok consider
the implications of a function u with the property that u € T™¥(x) for
every = € §), where € is an open subset of R®. From 'The.orern 3.8.1 we
have that u € t5P(z) for almost all x € §}. Moreover, in view of Lemma
3.9.1 (ii), it follows that whenever u € t*¥(z},

limsup @,  D%u(y) = D°Pr(z), |z-y} <4,
o

for 0 < |a] € k. For convenience of notation, let u,(z) = D“{’z(?). a.nd
assume u, € LP(2). Then Theorem 3.9.4 implies that t'he distribution
D®u—u, is a non-negative measure. Similar reasoning applied to the fur'lc-
tion —u implies that D?{—u) — (—ts) i & non-negative measure or equiv-
alently, that D%u — u, is a non-positive measure. Thl.lS, “.re corlclufie tlhat
D%y = u, almost everywhere in 2. That is, the distrlbutmr}al derivatives
of u are functions in LP(§2). In summary, we have the following result.

3.9.5. Theorem. Let 1 < p < oo and let k be a non-negative integer. If
u € T*P(z) for every z € §} and the LP-derivatives, uq, belong to LP(£2),
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0 < |a] <k, then u € Whr(Q),

Clearly, the hypothesis that the LP-derivatives belong to LP(§2) is neces-
sary. On the other hand, we will be able to strengthen the result slightly
by not requiring that u € T*#(z) for all z € 2. The following allows an
exceptional set.

3.9.6. Corollary. Let K C R™ be compact and let Q = R* — K. Suppose
H" Uni(K)] = 0 where the m; : R* — R* ' i=1,2,....n, are n inde-
pendent orthogonal projections. Assume u € T*P(z) for ol = € Q and that
Ug € LP(Q), 0 < |o| < k. Thenu € W(RY,

Proof. Assume initially that the projections m; are given by
7i{z) = (x1,..., &0, ..., 25)

where (z1,...,4,...,2,) denotes the {n —1)-tuple with the z;-component
deleted. Theorem 3.9.5 implies that u € W+ (£2). In view of the assumption
on K, reference to Theorem 2.1.4 shows that u € WHP(R") since u has a
representative that is absolutely continuous on almost all lines parallel to
the coordinate axes. Now consider D%u, |a] = 1. Since D% e WwE=Lr(Q)
& similar argument shows that D%y ¢ WHP(R™) and therefore that « ¢
W2P(R"). Proceeding inductively, we have that 4 € W¥»(Rn),

Recall fromm Theorem 2.2.2 that u ¢ W*P(R™) remains in the space
W P(R™} when subjected to a linear, non-singular change of coordinates.
Thus, the initial restriction on the projections m; is not necessary and the
proof is complete. 0

In the special case of k¥ = 1, it is possible to obtain a similar result
that does not require the exceptional set X to be compact. We state the
following [BAZ, Theorem 4.5], without proof.

3.9.7. Theorem. Let K C R™ be a Borel set and suppose H* Y m(K) =0
where the m; : R* — R*1, { = L,2,...,n, are n independent orthogonal
projections. Let Q@ = R* — K and assume u € LY ($2) has the property that

its partial derivatives exist at each point of Q and that they are tn LY (Q).
Then u € WhP(R").

3.10 A Lusin-Type Approximation for Sobolev
Functions

Lusin’s Theorem states that a measurable function on a compact inter-
val agrees with a continuous function except perhaps for a closed set of
arbitrarily small measure. By analogy, it seems plausible that a Sobolev
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function u € W*?({1) should agree with a function of class C*(82) except
for a set of small measure. Moreover, if the requirement concerning the
degree of smoothness is lessened, perhaps it could be expected that there
is a larger set on which there is agreement. That is, one could hope that u
agrees with a function of class C4(1), 0 < ¢ < k, except for a set of small
By.—¢ p-capacity. Finally, because Sobolev functions can be approximated
in norm by functions of class C*{(2), it is also plausible that the Lusin-type
approximant could be chosen arbitrarily close to u in norm. The purpose
of this and the next section is to show that all of this is possible.

In this section, we begin by showing that if u € W*?(R"), then u agrees
with a function, ¢, of class C* on the complement of an open set of ar-
bitrarily small Bi—¢p-capacity. In the next section, it will also be shown
that flu — |y can be made small. The outline of the proof of the exis-
tence of v is as follows. If « € W5P(R?) and 0 < £ < k, then Theorem
3.4.2 implies that u € t4?(z) for all = except for a set of By—g y-capacity 0.
This means that the remainder terms tends to 0 (with appropriate speed)
at Br-gp-q.e. £ € R*. We have already established that if a function u
has an LP-derivative of order € at all points of a closed set A (that is, if
u € t8P(z) for each z € A) and if the remainder term tends to 0 in L” uni-
formly on A, then there exists a function v € Ct(R™) whick agrees with u
on A (Theorem 3.6.3). Thus, to establish our result, we need to strengthen
Theorem 3.4.2 by showing that the remainder tends uniformly to 0 on the
complement of sets of arbitrarily small capacity. This will be accomplished
in Theorem 3.10.4 below.

In the following, we will adopt the notation

ifp
M, gu(z) = sup (f |u(y>|=’dy)
0<r<R B(z,r)

whenever u € LP{R™), 1 < p < oo, and 0 < R < 0o.

3.10.1. Theorem. If 1 < p < oo and k i3 a non-negative integer such that
kp < n, then there is a constant C = C(k,p,n) such that

C
Bipl{z : Mp ru(z) > t}] < t—PNu"E,p (3.10.1)
whenever u € WFP(R") and R < L.

Proof. We use Theorem 2.6.1 to represent « as u = gi* f where f € LP(R")
and [[uflxp ~ [|flly- Thus, it is sufficient to establish (3.10.1) with ||ullk
replaced by ||f||p. Since [u| < gk * |f], we may assume f 2> 0. Let

E; = {z: M, gu(z) >t}

and choose r € E;. For notational convenience, we will assume that z =0
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and denote B(0,7) = B(r). Thus, there exists 0 < r < R < 1 such that

f rwra>e
B{r)

]Ez(,.; (/R,, gx(y — ‘*"')f(‘bb*)du,')]rJ dy > 1P,

Utilizing the simple inequality {a + b)? < 2P~1(aP + b¥) whenever a,b > 0
it therefore follows that either T

r
ng (/lwrszr gy — w)f(w)dw) dy > 2\ PP (3.10.2)

or

or

r
]i(r} (~/1HJI>2:~ yk(y - w)f(ﬂ’)d‘w) dy > ol-pyp. (3.10.3)

If y € B(r), then from Lemma 2.8.3(i) and the fact that g, < CT, (2.6.3)
we obtain - ‘ ,

/ gr{y — w) f(w)dw < C ——{ﬂ—dw
hw|<2r ly—w|<3r ly — wjn—*
<COr*Mf(y),

where C = C'(k,n). Thus, in case (3.10.2) holds, we have

< Cr*» ][ M f(y)rdy (3.10.4)
B(r)

where C = C{k,p,n).
We will now establish the estimate

/ gxly —w)f(w)dw < C  inf
|wi>=2r

YEB(r) Jiwp>ar 9x(y —w)f(w)dw  (3.105)

for all y € B(r). Recall that r < 1. Now if
. y and w are such that
2r < |w} £ 2, we have i <7 <

3
3l 2 bl 4 b > = 1> ol ~ Il 2 ol — 2

Con‘sequent'ly, if 1 and y, are any two points of B(r), refer to (2.6.3) and
the inequality preceding it to conclude that for some constant ¢ = Cik,n)
C C
ge(w — ) <
N T R

c
= = gF < Co(w — ). (3.10.6)
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If fw] > 2 and y € B(r), then 3|w| > |w| +1 2 jw —y| 2 |w| - gl 2
Jw| — 1 > |w|/2. Therefore, in this case we also have

gr(w — 1) < Cgr{w — 42} (3.10.7)

Our desired estimate (3.10.5) follows from (3.10.6} and {3.10.7). Thus, in
case (3.10.3) holds, there is a constant C = C(k,p,n} such that

yEB(r)

2
< C inf (/ grelw — y)f(w)dw)
Juw|>2r
<C yé’é{r;(f”‘ « flyh)P.

To summarize the results of our efforts thus far, for each = € E; there
exists 0 < r < 1 such that either

P < Crke ][ M f(y)Pdy (3.10.8)
B{z,r)
ar
t<C inf g+ fly). {3.10.9)
yEB{z 1)

Let G, be the family of all closed balls for which (3.10.8} holds. By Thecrem
1.3.1, there exists a disjoint subfamily F such that

By [{UB: B € Gi}] < Bipl{UB: Be F}|

< Z Bk.p(g)
BeF
<€ Y. (57" * (by Theorem 2.6.13)
B(z,r)erF
<& > / Mf(y)dy
=% o
BEF
C
< t—5||f||§ (by Theorem 2.8.2). (3.10.10)

Let G, be the family of closed balls for which (3.10.9) holds, then the def-
inition of Bessel capacity implies that By ,[{UB : B € G3}] < (C/)i flI3.

Thus

Bl < Bepl{UB : B € GiJ] + Buol{UB : B € Ga}] < ZIAIE,

which establishes our result. a

We now have the necessary information to prove that integral averages

of Sobolev functions can be made uniformly small on the complement of
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Ze;s of smal c_apa.c.ity. This result provides an alternate proof of Theorem
-3.3, as promised in the introduction to Section 1 of this chapter.

t3h1?k2 Theorem, Letkl <P < o0 and k be a non-negative integer such
at kp 5:&. I:f u € WHP(R™), then for every £ > 0 there exists an open
set U C R™ with B () < & such that

lu(y) — u(z)|Pdy — 0
ﬁ(m )~ u(z)Pdy
uniformly on R — U qs 7 | 0.

Proof. With the result of Theorem 3.3.3 in mind, we define

Arulz) = ]g o, o)~ u@Pdy

+

for x € R™ and r > 0. Select 7 such that 0 < F i
: . < F < 1. Since Wk g
there exists g € C¥(R") such that “E (=,

flu ~ g}, <2P+!/2.
Set A =1 — g. Then

Aru(z) < 277V A g(2) + A, h{2)),

Ach(z) < 201 ( f
Bz

and therefore,

Y |h{y)IPdy + Ih($)|”) ,

E.7

Aufz) < C [Arg(z) +][( ) [h(y}*dy + Ih{x)f”] ;

where C' = C(p). Consequently, for each z € R,

DE?ER Arufz) < C Ljfgﬂ Arg(z) + My plhl(x) + ]h(x)l’} .

Since g has compact su it i i i
pport, 1t is uniformiy continuous on B®
there exists 0 < R < 1 such that " therefore

sup CAqg(z) <F
0<r< R

whenever z € RB", Therefore,

{“’ S8, Acu(a) > B} C o OMy alhl() > 2 U (o ORGP > 2)
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c {z:CM,zlhl(z) >} U {z: (CT1)!/?[h(z)] > 1}.
Since h € W5?(R"®), by Theorem 2.6.1 we can write A = gx * f, where
1711z ~ liAllk,p- Now

{z: (Ca7)?[h(z)] > 1} C {2 : (CE1) P +|f|(z) > 1}

and therefore, by the preceding theorem and the definition of capacity, we
obtain a constant C = C(k, p,n) such that

Bipl{z: sup Au(z)> 38} < CEPIRIE , +ETIIRIE ]
o<r<R

gptl
LCEP| —
<O ( 2 )
L CE
For each positive integer i and ¢ as in the statement of the theorem, let

£; = C~ 127 to obtain 0 < R; < 1 such that

Byp [{:c : sup  Arufz) > 3‘5;}] <e27i,
' 0<r< Ry

Let -
U= U {:r: . sup Aqu{z) > 35:‘}
i=1

0<r<R;

to establish the conclusion of the theorem. a

3.10.3. Remark. If we are willing to accept a slightly weak?.r c.onclusion.in
Theorem 3.10.2, the proof becomes less complicated. That is, if we require

only that
f lu(y) — u(z)|dy — 0
Bi{x,r}

uniformly on B™ — I/ as r | 0, rather than
£ @ -uEpy—o
B(x,r)
then an inspection of the proof reveals that it is only necessary to show
< C \ul2
Bisl{z : Mu(@) > )] < £l

To prove this, let u = gy * f, where || flly ~ ||uj|x.» and define

& if jz[ <7
Ly (x) = 0 otherwise.

——
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Then
F oty =1, « ol
B(z,r)

=Ty (ge x 1) ()
< g+ M| f|(z),
which implies Mu < g, « M |f]- From the definition of capacity,
Bipl{z : Mu(z) 2 t)] < Biyl{z : g5 x Mf)(z) > t})
SEPIMIAG
< Ct_"”f”,’j, by Theorem 2.8.2,
< CEP(lullg
As an immediate consequence of Theorem 3.10.2 and the proof of The-
orem 3.4.2, we obtain the following theorem which states that Sobolev

functions are uniformly differentiable on the complement of sets of small
capacity.

3.10.4. Theorem. Let £,k be non-negelive integers such that £ < k and
(k—8)p < n. Let u € Whr(R™). Then, for each € > 0, there exists an open
set U with By_¢ (U} < ¢ such that

1/p
[J[ o) - P;ﬂ(ynvdyj o
B(z,7)
uniformly on R* — U as r | 0.

Finally, as a direct consequence of Theorems 3.10.4 and 3.6.3, we have
the following,

3.10.5. Theorem. Let ¢,k be non-negative integers such that ¢ < k and
(k—Op<n Let ue W P(R") and ¢ > 0. Then there exists an open set
U C R" and a C*? function v on R™, such that
Bk_g,p(U) < £
and
D% (z) = D*u(z}
Joralz € R* —U and 0 < |o < ¢.

3.11 The Main Approximation

We conclude the approximation procedure by proving that the smooth
function v obtained in the previous theorem can be modified so as to be
close to u in norm.
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In addition to some preliminary lemmas, we will need the following ver-
sion of the Poincaré inequality which will be proved in Theorem 4.5.1.

3.11.1. Theorem. Let o € (0,1), £ a positive integer, and 1 < p < 0.
Then there exists a constant C = C{a, £, p, 1) such that for every non-empty
bounded conver subset (@ of R™ with diameter p and every u € whe(()

Jor which
[N {z : u(z) = 0}] = o9,

we have the inequality

Pdr tp “u(x)|Pdz.
[ 1pas <o 3 [ peuta)pd

o=t

3.11.2. Lemma. Let £ be a positive integer and let u be a function WHP(R")
which vanishes outside a bounded open set U. Let 6,5 € (0,1) and let

K(z,t) rlfR"—U)l 20} (3.11.1)

E=8Un{x: inf I
0<t<E

where K(z,t) denotes the closed cube with center x and side-length L. Let
m be a positive integer such that m < £ and let £ > 0. Then there exists a
function v € W™2(R"®) and an open set V such that

(@) lu—vlmp <
(i) ECV and v(z) =0 when x € VU(R" - U).
Proof. For A € (0,1], let Ky denote the set of all closed cubes of the form
[y = 13A, 404 x [(2 — 1)A, 9] x -+ x [{3q — 1)A Qg A]
where iy,1s,...,1, are arbitrary integers. Let A < %6 and let
K, K,,...,K,
be those cubes of K5 that intersect E. Let a,; be the center of K; and let
P, = K(a;,4)).

Let ¢ be a C° function on R®, such that 0 < { <1, {{z) = 0, when
z € K(0,1) and {(x) = 1 when z ¢ K(0,3/2). Define

o) = (e [T ¢ (S5
i=1

for x € R™. Clearly ux(x) = 0 when d{(z, E) < 3, so that, for any X, we
can define v by v = v, and find an open set V satisfying (ii).

) (3.11.2)
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We keep i fixed for the moment and estimate

e — valle pip, - (3.11.3)

We observe that there exists a constant 7, depending only on n and such
that at iost 7 of the cubes P; intersect P, (including P;). Denote these by

PPy, .., P,
where s < 7. Then, for r € P,

ur(z) = u(z)w(z), (3.11.4)
where .
w(z) = }]I (U ~ az)/22). (3.10.5)
Now, for x € P; and any multi-index o with 0 < |a| < ¢, we have
[D*w(z)| < Aia~le,

wher.e Ay depends only on £ and n. Hence for almost all ¢ € F; and any
multi-index v with 0 < || < £, we have

Ivl
[D7ux(z)] < A2 Y A1 3T [ DPuz)), (3.11.6)

r=0 |,8|=1"

where A; depends only on £ and n.

Le.t y be a point where K, intersects E. Clearly, there is a subcube @; of
P; with center y and edge length 3. By (3.11.1), v and hence its derivatives
are zero on a subset Z of ); with

|Z] > o(3))". . {3.11.7)

By aPplying the Poincaré inequality to the interior of the convex set F; we
obtain, when |§] < £,

A r {£—18I)
/P ‘_ IDPu(z)Pdr < AzAP >

/P | D*u(z)|Pd (3.11.8)
le=e

w!xere A3 = Aa(¢,0,p,n). But, with a suitable constant Aj, (3.11.8) will
still hold when {4 = £. By (3.11.6) and {3.11.8) {since A < 1)

JRLECTRYS

/P | DA u(x)|Pdx (3.11.9)
lel=e” P
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for 0 < |¥| < ¢, where Ay = Aq{¢,p,0,n). Let
T
X =P
i=1

Then

f DT @Pds < A Y S f | Déu(z) Pdz
X, P

[El=£ i=1

for 0 < |] < £. But each point of X, belongs to at most 7 of the cubes by,
hence

Tyx(z)|Pde < TA | DS u(z) Pz, {3.11.10)
[ @i < “mngm

for 0 < |y| < €. Now

e —wally, <22 Y U;:,\ (D7uy(z)Pdz + /XA IDTu(z)[de] :

o<|y|<e

so that by (3.11.10}

lu—oallf, <45 D j;

0L |y <L

| DY ulx)|Pdz (3.11.11}
i'ats

where A5 = As(€,p,o,n). But
X\NU cUN{z:d(z,8U) < 2v/nA}.
Hence {(Xx NU)| — 0 as A | 0. Therefore by (3.11.11)

lu—valley — O

as A — 07, _ . —
The required function v is now obtained by putting v = vy, with su

0
ciently small A.

3.11.3. Lemma. Let 0 < A < n. Then there exists a constant C = C(A,n)

such that
][ [z —y|*"dz < Cly —2*", (3.11.12)
B(z,5}

forally, z€ R* and all § > 0.

Proof. We first show that there exists a constant C, such that (3.11.12)
holds when y = 0 and z is arbitrary.

e — ———— -

e
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When [2| > 38, we have
1
el <zl + 2 - 2f < || +6 < o] + o

8o that (2] < 3[z|, Jz|*-" < Alz{*~", and (3.11.12) holds.
When [z| < 36,

ﬁ_ﬂf 2" "dz < 67 f 2} "dz = C8* .
B(z,6) B(0,46)

Hence, it is clear that (3.11.12) holds with y=0.
Since we have shown that

5”“/ lz*"dz < Cjz)* ™,
B(z,8)

for all z € R", the general result follows by a change of variables; that is,
replace z by z - y. ]

Throughout the remainder of this section, it will be more convenient
to employ the Riesz capacity, Rg p, rather than the Bessei capacity, By ,.
This will have no significant effect on the main result, Theorem 3.11.6. See
Remark 3.11.7.

3.11.4. Lemma. Let k be o non-negative real number such that kp < n.
Let U be a bounded non-empty open subset of B* and F a subset of 8U
with the property that for each x € F, there is a t € (0,1) for which

|7 0 B(x, t)]
YR 3.11.13
B > B
where o € (0,1). Then there ezists a constant € = C(n,p, k) such that
Rpp(UUF) < Co™PRy ,(U). (3.11.14)

Proof. Let ¢, U, and F be as described above. The cases k =0and k > 0
are treated separately.

(i} We consider first the case where k& > 0. Let ¥ be a non-negative
function in LP{R™) with the property that

;(IT) j;“ |z — y* ")y > 1 (3.11.15)

for all x € U. Let ¢, be the constant of Lemma 3.11.3. It can be assumed
that €, > 1. Consider a point b € F and let ¢ be such that (3.11.13) holds
for z = b. By Lemma 3.11.3,

Cily — 8" > ][

B{b,2)

|z — y|* "dz
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so that
o [ to- bty 2 / [ [ o= ut o] da
A" Bt LR

and by (3.11.15),
> (k)" |U N B(b,¢)|-

Hence by (3.11.13},

C. -n
Tz)fn ly ~ b/* " p(y)dy > 0.
Put 5 = Coo~ 4. Then
1 _
W/ ly — z|* "n(y)dy > 1
Rn

for all z € F, and therefore,
¢ \?
Repl) <l = (2 1ol

Thus Ca\P
ReolB) < (2 Ruy(0).

The required inequality now follows.
(ii) Now let k = 0, so that R, becomes Lebesgue measure. Let 5 be

the collection of all closed balls B with center in F and radius between 0

and 1 such that
wos,, (3.11.16)
{8

Hence, by Theorem 1.3.1, there exists sequence {B,}, B, € B, such that
B, NB, =0 when r # s and

B..

¢

Fc

1

.,
Il

Thus o oo
IFI <Y {8 =5")_|B
r=1

r=1

and by (3.11.16)

< 5% Y WNB <5 UL

r=1

Since o < 1, the required inequality follows.

———— e —
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3.11.5. Lemma. Let p > 1, k a non-negative real number such that kp<n
and ¢ a posttive integer. There exists a constant ¢ = C(n,p, k, £) such that
for each bounded non-emply open subset U of R®, each u € WHP(R™)
which vanishes outside U and every ¢ > 0 there exists ¢ C° Junction v on
R" with the properties

(i) flu—vlle, <,
(it} Rip(sptv) < CRyp(U) and
(i) sptv CV = R" N {z : d(z,U) < £}.

Proof. Let U, u, and ¢ be as described above. Since I7 # @, it follows that
Ri p(U7) > 0. Let

E=6Uﬂ{x: inf B@&O U 1}. (3.11.17)
0<t<1/2 A 2

Then E js closed. By Lemma 3.11.2 there exists a function v € WhHe(R™)
and an open set Vg such that

1
1w — vollep < 56 (3.11.18)

E C Vo and vp(x) = 0 when z € Vo U (R™ — U). Set
F=9gU-E.
Then, for each z € F there exists ¢ € (0,1/2] such that

-

B

B 2 (3.11.19)

where ¢ = 1 — 1/{2a{n)). Let Cy be the constant appearing in Lemma
3.11.4. Then

Rip(U UF) < ZCRi,(U), (3.11.20)
where ' = 2C 0P, Let
B = R" N0 {z:v(z) # 0}.

Then B C U U F and hence Ry ,(B) < 1CRy, ,(U), so that there exists an
open set W with B ¢ W and

By p(W) < CR; ,(U).

By applying a suitable mollifier to v, we can obtain a € function v with
sptv C VN W and

1
o — vllep < e (3.11.21)
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It follows from (3.11.18) and (3.11.21) that » has the required proper-

ties. O

We are now in a position to prove the main theorem.

3.11.6. Theorem. Let £, m be positive integers with m < & ({—m)p<n
and let Q be a non-emply open subset of R*. Then, for u € W5?(Q) and
each ¢ > 0, there exists a C™ function v on §Q such that if

F=Qn{z:u(x)# v(z}},

then
R!—m,p(F) <e and "u - v”ﬂ’hp <E.

Proof. It can be assumed that the set A = QN {zx : u{x) # 0} is not empty.
Initially, it will be assumed that & = R"™ and A bounded. We will show
that there exists a C™ function v on R® satisfying the conclusion of the
theorem and that sptv is contained in the set V = R" N {z : d(x, A) < e}.

Let C' be the constant of Lemma 3.11.5. Let u be defined by its values
at Lebesgue points everywhere on ) except for a set E with By p(E) =
Ry p{E) = 0. By Theorem 3.10.5 there exists an open set U of R and a
C™ function h on R™, such that I/ D E,

£
Re-mp(U) < 175 (3.11.22)

and
h(z) = u(z)

for all z € R* — U. We may assume that spth € V and U C V. By
substituting £ — m for k¥ and « — A for u in Lemma 3.11.5, we obtain a C*°
function ¢ on B™ such that

lu =k — @limy <e, (3.11.23)
Ry—m p{spt ) < CRy_mp(U), (3.11.24)

and
sptp C V. (3.11.25)

Put v = h+¢. Then the second pari of the theorem follows from {3.11.23).
Clearly,

FC R*"N[{x: h(z) # u(z)} Uspty] C U Usptey, (3.11.26)
so that by (3.11.24)
Re-mp(F) € {1+ C)Re-m o).

.
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Thus, the first part of the conclusion follows from (3.11.22). Since spt k and
spt ¢ are both contained in V, it follows that sptv C V.

r:lw‘Ve now consider the .genera.l case when (1 is an arbitrary open subset of
:’;!1 a.t Let {C; }325 be an infinite sequence of nen-empty compact sets, such

Ci CIntCypy (3.11.27)

for ¢ a non-negative integer and

lim C; = Q. (3.11.28)

T—00

Put C_y = @. For each i > 0, let p; be a C™ function on R™ such that
0 S P S 11

C; Cint{z : pi(z) = 1}, (3.11.29)

and
spti; C Int Ciyy. (3.11.30)

Put
Yo=wo and ¢ =y;—p;_, (3.11.31)

when i > 1. Then each ; is €™ on R™ with compact support and
sptiy C (Int CH_;) — O (31132)

Hence, for each = € , #i(z) # 0 for at most two values of i. Therefore

3wy =1 (3.11.33)

for all z € . For each i =0,1,2, ... define

ui{z) = {“(I)",bi(;g) when z € ()

0 when = # Q. (3.11.34)

BK the conch.mion of our theorem proved under the assumption that 2 =
H", there exists for each i > 0 a C™ function 1; on R™ with compact
support such that

s = villmp < g 3
¢ Uillmp < oy (3.11.35)
and
£

Re-mp(Fi) < 57 (3.11.36)

where
Fy= R" N {x: u;(x) # vi(z)}.

Moreover,

sptv; C (Int Ci+1) —Cia. (3.11.37)
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For each z € 1, there are at most two values of i for which v(z) # 0.
Hence we can define -
() =Y vi(x)
=0
for € Q. It is easily seen that F' C Uj24F}, hence
Rg_m'p(F) < E.
Also -
s~ vlimp < Y i = villmp <& o
i=0

3.11.7. Remark. We have seen from earlier work in Section 2.6, that
Ry p < OBy and that Ry, and By p have the same null sets. However, it
also can be shown that By , < C[Rkp+ (Rk )™ ®~*)} for kp < n, cf. [A5].
Therefore, the Riesz capacity in the previous theorem can be replaced by

Bessel capacity.
Exercises
3.1. Prove that the statement

lim u(y)dy = u(z)
r—0 Biz,r)

for By y-q.e. € R* and any u € W'?(R") implies the apparently
stronger statement

lim |luly) — u(z)ldy = 0
r—0 fB(z.r)

for By ;-q.e. £ € R™. See the beginning of Section 3.3.

3.2. It was proved in Theorem 2.1.4 that a function u € WHP(R") has
a representative that is absolutely continuous on almost all line seg-
ments parallel to the coordinate axes. If a restriction is placed on p,
more information can be obtained. For example, if it is assumed that
p < n— 1, then u is continuous on almost all hyperplanes parallel
to the coordinate planes. To prove this, refer to Theorem 3.10.2 to
conclude that there is a sequence of integral averages

= f  uwy
¥y

which, for each ¢ > 0, converges uniformly to « on the compiement
of an open set U, whose B p-capacity is less than £. Hence £ =

o
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3.3

34.

3.5.

3.6.

3.7.

3.8.

Mesole is a set of By p-capacity 0. It follows from Theorem 2.16.6
(or Exercise 2.16} that the projection of E onto a coordinate axis
has linear measure 0. Note that # is continuous on a71(t), t & n(E)
where 7 denotes the projection. Corresponding results for p > n — k,
k an integer, can be easily stated and proved.

At the beginning of Section 3.9, an example is given which shows that
u need not be bounded when u € W»[B(0,r)], » < 1. This example
can be easily modified to make the pathology even more striking. Let
u(:v) = log log(1/|x|} for small x| and otherwise defined so that u is
positive, smooth and has compact support. Now let

v(x) = Z 27 u(z — ry)

k=1

where {ry} is dense in R”. Then v € W1*(R") and is unbounded in
a neighborhood of each point.

Use (2.4.18) to show that if u € W]L;f(R"), P > n, then u is classically
differentiable almost everywhere.

Verily that ||ul|pr.» (), which is discussed in Definition 3.5.4, is in fact
4 norm.

If u € WHP(R™), the classical Lebesgue point theorem states that

lim [u(z} — u(xo)|de = 0 (*)

=0 fBige,r)

for a.e. wp. Of course, u € L'(R") is sufficient to establish this result.
Since u € W1P(R"), this result can be improved to the extent that
(x) holds for Bj,-q.e. 75 € B* (Theorem 3.3.3). Give an example
that shows this result is optimal. That is, show that in general it is
necessary to omit a By g-null set for the validity of (x).

Pr;)ve that (3.3.22) can be improved by replacing p by p* = np/(n —
Ep).

A measurable function u is said to have a Lebesgue point at zg if

mf () — u(zo)ldy = 0.
Blxg,r)

A closely related concept is that of approzimate coniinuity. A mea-
surable function « is said to be approximately continuous at zp if
there exists a measurable set E with density 1 at xq such that % is
continuous at xg relative to £. Show that if » has a Lebesgue point
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3.9.

3.10.
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ab zp, then u is approximately continuous at Zy. See Remark 4.4.5.
Show that the converse is true if 4 is bounded and that it is false
without this assumption.

Another definition of approximate continuity is the following. u is
approximately continuous at zy if for every € > 0, the set

Ae = {z: [ulz) — u(mo)| 2 €}
has density 0 at . A, is said to have density 0 at zp if

lim iAE N B(IO: r)l

L TP

Prove that the two definitions of approximate continnity are equiva-
lent.

The definition of an approzimate fotal differential is analogous to
that of approximate continuity. If u is a real valued function defined
on a subset of R", we say that a linear function L : R* — R! is an
approximate differential of u at zg if for every £ > 0 the set

ho= o ) o= Lla =) )

|5‘: —.’Bol

has density 0 at xo. Prove the analog of Exercise 3.8; show that if
is an element of t1'!(zy), then u has an approximate total differential

at xp.

The definition of an approximate total differential given in Exercise
3.9 implies that the difference quotient

[u(x) — u(zo) — L(x — xo)

T — 0|

approaches 0 as * — zp through a set E whose density at zo is
1. In some applications, it is necessary to have more information
concerning the set E. For example, if u € W'?(R"), p > n— L, then
it can be shown that u has a regular approzimate total differential at
almost all points zy. The definition of this is the same as that for an
approximate total differential, except that the set E is required to be
the union of boundaries of concentric cubes centered at xp. To prove
this, consider
_ u(xo +tz) — u(xo)

‘u:o(t,Z) = t —L(ZJ,

and define
Yz () = sup{|ue(2)] : z € 8C}
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where C is a cube centered at . Since xp is fixed throughout the
argument, let w,(z) = w,, (¢, 2).

STEP 11. For each zy and each cube C with zg as center, observe that
w; € WHP(C) for all sufficiently small ¢ > 0. With

Oz, {t) = /(;('utip + |Du,|F)dz

prove that o, (t) — 0 as t — 0 for almost all z;.

STEP 2. Show that u has a regular approximate differential at all z
thfit satisfy the conclusion of Step 1 and for which Du(zq) exists. For
this purpose, let L{z) = Du{x,) - z. Since u, € WHP{C), it follows
that uw, € W1P(K,) for almost all + > 0 where K, is the boundary of
a cube of side length 2r. Moreover, from Exercise 3.2, we know that
; is continuous on all such X,. Let

@a(r) =/ ([we}? + | Dug |PYdH™ L,
K,

Let By = [1/2,1) N {r : p4{r) < auzo(£}/2} and conclude that

[([1/2,1] = Ep)| < ag, (8)'/2.

STEP 3. Use the Sobolev inequality to prove that for z € K, r € E,,
and 8 = (n - 1)/p

1/p
[ty(2)] < Mr~P (/ Iutlde"”‘)
K,

M8 parran—1 Y
+ My | Dy |PdH
Kr

< Mr=Ppy(r)!P + Mr' =P, (r)V/
< [M2% + Mag, (£)V/?P,

where M = M(p,n).
STEP 4. Thus, for z € K, and r € E,,

Yoo(t - 7} = r T sup{|u{2)| : z € K,)
< 2[M2P + 1] oy, (1)1

STEF.' 5. For each positive integer ¢, let {; = 27* and let E;, be the
ass.ocmted set as in Step 2. Set A = U, E,;, and note that 0 is a
point of right density for A (Step 1) and that ~.,(t) — 0 as t — 0,
te A
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3.11.

3.12.

3.13.

3. Pointwise Behavior of Sobolev Functions

Prove that T defined in (3.6.2) belongs to C°(U — A).

Give an example which shows that the uniformity condition in the
second part of the statement in Theorem 3.5.7 is necessary.

In this and the next exercise, it will be shown that a function with
minimal differentiability hypotheses agrees with a 1 function on a
set of large measure, thus establishing an extension of Theorem 3.11.6.
For simplicity, we only consider functions of two variables and begin
by outlining a proof of the following classical fact: If u is a measur-
able function whose partial derivatives exist almost everywhere on a
measurable set E, then u has an approrimate total differential almost
everywhere on E. See Exercise 3.9 for the definition of approximate
total differential.

STEP 1. By Lusin’s theorem, we may assume that E is closed and
that u is its partial derivatives are continuous on .

STEP 2. For each (z,y) € E consider the differences
Alz, i b k) = [u(z + b,y + k) — u(z,y) — hD1u(z, y) - kDzu(z, y)|

Ay(z,y;h) = |ulz + hy) — ulz,y) — hD1u(z, y)|
Ag(z,y; k) = lu(z,y + k) — u(z,y) — kDau(z, y)|

where D) = 8/8z and D, = 8/8y. Choose positive numbers ¢, 7.
Using the information in Step 1, prove that there exists o > 0 such
that the set 4 C E consisting of all points (z,y) with the property
that

Kz +h: Az, yh) <1h, (x+h,y) €E,

a<z<bh lb—al<a b <|b=al}| 2 (1 —¢€)b-al

satisfies |[E — A| < €. Perhaps the following informal description of A
will be helpful. For fixed (x,y), let us agree to call a point {z + A, )
“good” if Aj(z,y;h) < 7h and (z + h,y) € E. The set A consists
of those points (z,y)} with the property that if I, is any interval
parallel to the z-axis containing z whose length is less than o, then
the relative measure of the set of good points in I is large.

STEP 3. Now repeat the analysis of Step 2 with E replaced with 4 to
obtain a positive number oy < o and a closed set B C A, |[A—-B| <«
which consists of all points (x,y) with the property that

Hy + k: Aalz,yi k) < 7k, (2,9 + k)e A,

a<y<h b-al <oy |kl <fp—al}tz(1-e)o—al
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3.14.

STEP 4. Let 03 < &y be such that
|Dru(z + hayy + ko) — Dru(z + b,y + k)| < 7

for any 2 points (z+hg, y+kz}, (z+hy, y+k1) in E with |he—h| < o3,
!kg - ’C]I < 01.

STEP 5. Choo&lse. {To,50) € B and let R = [a1,b] % [az,b2] be any
iectangle containing (g, yo) whose diameter is less than 73 < oy < 0.
et

Ez = {{yo + k) : Az(zo, o k) < 7]k],
{(Zo,yo+ %) € A, a2 Syo+k < by},
and for each (yo + k)
Ei(yo + k) = {(zo + k) : Ar{zo, yo + k; h) < 74|,
(To+ h,yo + k) € E}.

Now for any (i, k) such that yo + k € F; and ¢ + h € Ei(yo + k),
we have (zo + h,yo + k) € E N R and therefore

A(xg, yoi b, k) € A1 (2o, Yo; h) + Ax(zo, yo; k)
+ 11| {Dyu(o, yo + k) — Dru(zo, o)
< 7(Jh] + ).
From this conclude that
[BNRN{(zo+h,yo+ k) : Az, yor b, k) < 2r(th| + |k} }
2 (1—&)(by— a1)(b2 —az) = (1 — ¢)?(R].

STEP 6. Take R to be a square with {zg,0) as center and appeal to
Exercise 3.8 to reach the desired conclusion.

We continue to outline the proof that a function whose partial deriva-
tives exist almost everywhere agrees with a C! function on a set of
large measure. Let u be a real valued function defined on a measurable
set £ C R", and for each positive number M and z € E let

Az, M) = En{y : Ju(y) — u(z)l < Mly - ={}.

If A(x, M) has density 1 at x, u is said to be of approzimate linear
distortion at z. Our objective is to show that if u is of approximate
linear distortion at each point E, then there exists sets Ej such that
E =uU$,E and u is Lipschitzian on each of the sets Ey.
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STEP 1. If #; and x5 are any two points of R®, then

_[B{m1, |2z — 31]) N B(zg, |z — z1])}
B |§(I11 |-T2 - I1|N + {E(ﬂ'}z, l:’r"Z - $1|)|

is a positive number less than 1 which is independent of the choice of
zy and x3. |

STEP 2. For each positive integer k, let Ej be the set of those points
x € E such that |u(z}| < k and that if r is any number such that

0 <r <1/k, then

|A(z, k) N B(z,7)|

— >1—q.
|B{z,7)|

Prove that E = UJ2, Ez.
STEP 3. In order to show that » is Lipschitz on Ej, choose any two
points z1,%9 € Ey. i |z2 — 1 > 1/k, then

fu(mz) — ulz1)} < 2k%|z2 — 7}

Thus, assume that .

O<|n‘:g—:c1|SE.

Let _
Al = A(l‘h k) N B(Il, |.‘rg - .\"‘L‘ll),
Ag = A(l‘z,k) N F(Iz, |.‘172 - .’L‘ll).
Prove that |4y N A| > 0. If * € A; N Az, show that
lu(z*) — ulzi)| < k|lz" — =z, 2=1,2
lx* — x| < |2y — 21|, i=1,2.

Now conclude that

[u{ze) — u{x))| £ 2k|zz — 4]

STEP 4. If u has partial derivatives almost everywhere, appeal t-o the
previous exercise to conclude that u is of approximate linear dlstorl-
tion at almost every point. Now refer to Theorem 3.11.6 to find a C

function that agrees with u on a set of arbitrarily large measure.

3.15. Suppose u € WHP{R"). Prove that for By ,-qe. x € E“,‘u is abso-
lutely continuous on almost every ray A; whose endpoint is x.

3.16. Let f be a measurable function defined on [0, 1] ha.\.ring the property
that f’ exists everywhere on {0,1] and that |f’| is integrable, Prove
that f is an absolutely continuous funetion.

gy s
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Historical Notes

3.1. The idea that an integrable function has a representative that can be
expressed as the limit of integral averages originates with Lebesgue [LE2).
The set of points for which the limit of integral averages does not exist (the
exceptional set) is of measitre zero. Several authors were aware that the
exceptional sets associated with Sobolev functions or Riesz potentials were
much smaller than sets of measure zero, ¢f. [DL], [ARS1], [FU], [FL], [CT).
However, optimal results for the exceptional sets in terms of capacity were
obtained in [FZ], [BAZ], [ME2], [CFR). The development in this section is
taken from [MI1Z].

3.2. The results in this section are merely a few of the many measure
theoretic density theorems of a general nature; see [F, Section 2.10.9] for
more.

3.3. Theorem 3.3.3 was first established in {FZ] for the case k = 1, and for
general k in [BAZ], IME2], and {CFR]. The concepts of thinness and fine
continuity are found in classical potential theory although their develop-
ment in the context of nonlinear potential theory was advanced significantly
in [AM], [HE2], [HW], [ME3]. The proof of the theorem in Remark 3.3.5
was communicated to the author by Norman Meyers.

3.4, Derivatives of a function at a point in the [P-sense were first studied
in depth by Calderén and Zygrmmd [CZ}. They also proved Theorem 3.4.2
where the exceptional set was obtained as a set of Lebesgue measure zero,
The proof of the theorem with the exceptional set expressed in terms of
capacity appears in [BAZ)], [ME2], and [CFR].

3.5. The spaces T*(E), t*(E), T%2(z), and t5P(z) were first introduced
in [CZ] where also Theorem 3.5.7 was proved. These spaces introduce but
one of many methods of dealing with the notion of “approximate differen-
tiability.” For other forms of approximate differentiability, see [F, Section
3.1.2], [RR).

3.6-3.8. The material in these sections is adopted from [CZ]. It should
be noted that Theorem 8 in [CZ] is slightly in error. The error occurs
in the following part of the statement of their theorem: “If in addition
f € 8(zg) for all £y € Q, then f € b5,(Q).” The difficulty is that for
this conclusion to hold, it is necessary that condition (1.2} in [CZ] holds
uniformly. Indeed, the example in (WH] can be easily modified to show
that this uniformity condition is necessary. Theorem 3.6.3 gives the correct
version of their theorem. In order for this result to be applicable within the
framework of Sobolev spaces, it is necessary to show that Sobolev functions
are uniformly differentiable on the complement of sets of small capacity.
This is established in Theorem 3.10.4.

In comparing Whitney’s Extension theorem (Theorem 3.5.3) with the
IP-version (Theorem 3.6.3), observe that the latter is more general in the
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mainder term of the function u in question is required‘ to
:;I;Sr(:);:l?tzzrs (ﬁ?ﬂy in LP and not in L™, (_)11 the. othe,r hand, the fuxllctlc})ln
is required to be defined only on the set £ in Whitney's theorem, while t ﬁ
condition u € t*?(z) in Theorem 3.5.3 implies that_ u € IP[B(z,r}] (for a
small r > 0) thus requiring u to be defined in a neighborhood of z.

3.9. Theorem 3.9.4 and the preceding lemmas are due to Calderén [CA4];
the remaining results are from [BAZ].

8.10. The main result of this section is Theorem 3.10.2 which easily implies
that Sobolev functions ate uniformly differentiable in L? on the complement
of sets of small capacity. The proof is due to Lars Hedbe‘rgl. Observe that
the proof of Theorem 3.10.2 becomes simpler if we are willing to accept a

subsequence {r;,} such that
£l - uaypdy — 0
B(Ilrij)

uniformly on R®—U where Bi ,(U) < £. This can be proved by the methods
of Lemma 2.6.4. However, this result would not be strong enough t_o apply
Theorem 3.6.3, thus not making it possible to establish the approximation

result in Theorem 3.10.5.

3.11. These results appear in [MIZ]. The main theorem (Theorem 3..11.6)
is analogous to an interesting result proved by J.H. Mic!na.el [MI] in the
setting of area theory. He proved that a measurable funf:tlon f tl_“leﬁned on
a closed cube @ C R™ can be approximated by a Lipschitz function g such

that
Hz: fz) # 9(@)} < ¢

and |A(f, Q) — A(g, Q)| < ¢ where A(f, @) denotes the Lebesgue area of f
on @. Theorem 3.11.6 was first proved by Liu [LI] in the case m = £.

e

4

Poincaré Inequalities—
A Unified Approach

In Chapter 2, basic Sobolev inequalities were established for functions in
the space Wy ?(Q). We recall the following fundamental result which is a
particular case of Theorem 2.4.2.

4.1.1, Theorem. Let ) C R™ be an opent set and 1 < p < n. There is @
constant C' = C(p,n) such that if u € W)P(S1), then

”u"p";ﬂ < C"Du”l.p;ﬂ (4.1.1)

where p’ = np/(n ._p)'

Clearly, inequality (4.1.1) is false in case u is the function that is identi-
cally equal to a non-zero constant, thereby ruling out the possibility that
it may hold for all ¥ € W1P(Q2). One of the main objectives of this chapter
is to determine the extent to which the hypothesis that u is “zero on the
boundary of (2" can be replaced by others. It is well known that there are
a variety of hypotheses that imply (4.1.1). For example, if we assume that
£ is a bounded, connected, extension domain {see Remark 2.5.2) and that
u is zero on a set § with |§] = & > 0, then it can be shown that (4.1.1)
remains valid where the constant C now depends on a, n, and €. This in-
equality and others similar to it, are known as Poincaré-type inequalities.
We will give a proof of this inequality which is based on an argument that
i fundamental to the development of this chapter. A general and abstract
version of this argument is given in Lemma 4.1.3.

There is no loss of generality in proving the inequality with p* replaced
by p. The proof proceeds as follows and is by contradiction. If (4.1.1) were
false for the class of Sobolev functions that vanish on a set whose measure
is greater than a, then for each integer i there is such a function u; with
the property that

"ui"P;Q > i|| Dusllpe.

Clearly, we may assume that l#:fi1,p.2 = 1. But then, there exist a sub-
sequence (denoted by the full sequence) and u € WIP(Q) such that u
tends weakly to u in W12(2). By the Rellich-Kondrachov compactness
theorem (Theorem 2.5.1, see also Remark 2.5.2) uy tends strongly to u in
LP(gY). Since [[uiff1,p0 = 1 it follows that | Dusj),. — 0 and therefore that
| Dullpa = 0. Corollary 2.1.9 thus implies that u is constant on 2. This
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constant is not 0 since [|u||p.o = 1. Now each u; is 0 on a set 5; whose mea-
sure is no less than a. The strong convergence of u; to u in LP(§}) implies
that (for a subsequence) u; — u almost everywhere on § = N32, UfZ; 5;.
Since |S| > a > 0, this contradicts the conclusion that u is equal to a

non-zero constant on 2.
A close inspection of the proof reveals that the result also remains valid if

we assume [, u(z)dx = 0 rather than u = 0 on a set of positive measure. In
this chapter we will show that these two inequalities and many other related
ones follow from a single, comprehensive inequality obtained in Theorem

4.2.1.

4.1 Inequalities in a General Setting

We now proceed to establish an abstract version of the argument given
above which will lead to the general form of the Poincaré inequality, The-

orem 4.2.1.

4.1.2. Definition. If X is a Banach space and Y C X a subspace, then a
bounded linear map L : X — Y onto Y is called a projection if .o L = L.

Note that
Liyy=y, y€Y, (4.1.2)

for there exists # € X such that £L{z) = y and y = L(z) = L[L(z)] = L(y).

4.1.3. Lemma. Let X be a normed linear space with norm | ||o and let
X C X; be a Banach space with norm || ||. Suppose || [| = || fla+ | Il where
|| |1 is a semi-norm and assume that bounded sets in X are precompact in
Xo. et Y =Xn{z:|zlh =0}. If L: X =Y is a projection, therc is a
constant C independent of L such that

iz — L{z)llo < CIL] [lzlx (4.1.3)
forallz e X.

Proof, First, select a particular projection L' : X — Y. We will prove that
there is a constant C" = C’(J}L'||} such that

|z — L' (x}llo < C'fizll1, (4.1.4)

for all x € X. We emphasize that this part of the proof will produce a

constant that depends on L',
If {4.1.4) were false there would exist x; € X such that

le: = E'(z)llo > él|lzslha, £=1,2,....
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Replacing z; by x;/||z; — L' (z;)||p it follows that
2 = L'(zi)llo =1 and (&) — 0.
Let z; = z; — L'(z;). Then

lz:lly = llzs = L'(z) 2 < flafhy + L (2]l
< 1=l
since ”L’(:c,;_)ll; = 0. Hence, 2; is a bounded sequence in X and therefore,
by assumption, there exist a subsequence (which we still denote by {=})
and z € Xj such %hat ltzi ~ zllo — 0. Since ||z|l, — 0 it follows that Zisa
ﬁfa"uchy sequence in X and therefore ||2; — 2 — 0. Note that [|z|[p = 1 and
Zl1=0.Thus 2 #0,2€ Y, and L'(2) = 2 b ! !
) , y (4.1.2). But L/(2) — L
and L'{z;) = 0, a contradiction. ) )
The next step is to prove (4.1.3) for any projection L where € does not
depend on L. Let L: X — Y be a projection and observe that

¢ - L(z) =z~ L'(z) - L(z - I/ (z)).
Hence, by {4.1.4),

Iz~ Li=z)llo < 2 — L'(2)llo + Lz — L'(z))llo
< Clally + ([ Lz - L'(2)))
< Clill + D2 (2 — L' (=)
< Cll=ll + UL Dz ~ L' (@) + lizily]

since ||L/(x)]{1 = 0. Appealing again to (4.1.4) we obtain,

2 = L{=)llo < C’llzlly + || [Clizfiy + liziiy]
=(C"+(C"+ DLl

Since L is a projection, ||L|j > 1 and the result now follows. O

. We now will apply this result in the context of Sobolev spaces. In par-
ticular it will be convenient to take X = W™#((),
F01: notational simplicity, in the following we will let the characteristic
function of 2 be denoted by 1. That is, let yq = 1. Also, let Pi(R"™) denote
the set of all polynomials in B™ of degree k.

4.1.4. Lemma. Let k and m be integers with 0 <k<mandp > 1.
Let S C R™ be an open set of finite Lebesgue measure and suppose T €
(Wm=*P(01))* has the property that T(1) # 0. Then there is a projection
L : W™P(Q2) — Pi(R™) such that for each u € W™P(Q) and all jo <k,

T(D®u) = T(D*P) (4.1.5)
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where P = L(u). Moreover, L has the form
L(u)= ) T(Pa(Du))z"

led<k

where P, € Pp(R™), Du = {Du, Dau, ..., Dyu}, and

2> o (1Y,

C = C{k,p,[92).

Proof. If P € P,(R") then P has the form Pz} = zlk'fl=l) a,z? and

therefore
D*P{0) = alaq

for any multi-index o. Consequently, by Taylor’s theorem for polynomials,

k=lal o4 g
D°P(z) = Z wlﬁ

1
|81=0 A
or
k—le
o +
.DQP Z aa.hg( ﬂ)
|18|=0
In particular,
D2P(z) = aqal

if || = k. Thus, in order to satisfy (4.1.5), the coefficients a, of the poly-

nomial must satisfy
T(D"u)

alT(1}’
if || = k. Similarly, if [e| = k — 1 then

Ay = (4.1.6)

DeP(z} = asal + Z B+ (@ ;ﬁ)

18l=1
Consequently by using (4.1.6), {4.1.5) will hold if

T(D°u) (o + B)! T(=P)
alT (1) wZ:laM gl T

Qn =

where [a| = k — 1. Proceeding recursively, for any |a| < k we have
k—
T(D°w) & (e + BT (17

Ga = ——m715 aa-i-ﬁ_'_-i_ 1 '
aT(D) 2, ap TQ)

|
|
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It is easily verified that L is a projection since L{u) = P implies De[L{u)} =
DeP for any multi-index o. But then,

T(D%) = T(D*P) = T[D*(Lu)]

and reference to (4.1.7) yields the desired conclusion.
In order to estimate the norm of L, let « € W"‘ P(2) with JJully pn < L.

Then [L|} £ JL(#}[lmp2 = [|P]lm.p;e Where Pz Zm ¢ @7, Now

1Pl i < G0 Z [y |-

IrI=0

To estimate the series, first consider |a,|, lo| = k. Note that for le| = &

and any non-negative integer £,
£+1
T
) (201 (4.18)

because T(1) < |Q|'/P{iT). In particular, this holds for ¢ = &. Hence from
{4.1.6) it follows that

I )\
0ol € gy < Cemlan (I s

If || = k=1, k > 1, then from (4.1.7), (4.1.9) and the fact that |T||/T(1) >
0]/,

170 _ iTl-Ty
alT(1)  oIT(1)FE =

i [k
laal <y + Ol rnl)m;1 )

< ctkpia) (L2 )2

k+1
< C'(k,p JﬂD(“ﬂD .

In general, if |a| = k& — 4, k > i, we have
i+1
oal < (e ) ( 171)

< C'(k,p, 1) ("T" )Hl.

Proceeding in this way, we find that

k41
1LY < C(k,p, |2 (“T") . o
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In the preceding analysis, if we knew that the distribution T' was a non-
negative measure 4, then we would be able to improve the resnlt. Indeed,
suppose the measure satisfies the inequality

/ s*du(z) < Mp(st) (4.1.10)
Q

for every |a| < k. Of course, such an M exists if either 2 or spt 4 is bounded.
Then the estimate of [[L|| becomes sharper because, with T = u, the term
T(x?)/T(1) in {4.1.7) is bounded above by M, thus implying that

T

Il < Clk,p Mz

Hence, we have the following corollary.

4.1.5. Corollary. Let k and m be infegers with 0 < k < m and p > 1.
Let @ C R" be an open set and suppose p € (W™ FP(Q))* is e non-
negative non-trivial measure satisfying {4.1.10). Then there is a projection
L: W™P()) — Pi(R*) such that for each uw € W™P(8)) and all |a| < &,

w{(D%u) = u(D*P) {4.1.11)
where P = L{u). Moreover, L has the form

L) = Y w(Pa(DW)s"

laf<k

where P, € Pp(H*), Du = (D1u, Dyu,..., Dyu), and

L <c- (%)

C =Clk,p, M).

4.2 Applications to Sobolev Spaces

We now consider some of the consequences of the previous two results when
applied in the setting of Sobolev spaces. Thus, if 0 < k& < m are integers,
p> 1and  C R® is a bounded, connected, extension domain (see Remark
2.5.2}, we employ Lemma 4.1.3 with X = W™P?(Q} and X, = WEP(). 1t
follows from the Rellich-Konrachov imbedding theorem (sce Exercise 2.3)
that bounded sets in W™?(f}) are precompact in W5P(Q). Set |lullo =
llellx pr and [[22]]y = (D% sllin—k41),02 Where DEFluis considered as the
vector {D*u} joi = k + 1. Clearly, [[uf] = |ullo + llull, is an equivalent
norm on W™#{§1). Moreover, it follows from Exercise 2.7 that [[u[; =0 if

o ——
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and only if u € Py(R"). If T € (W™ %P(Q))* with T(1) # 0, then Lemma
4.1.4 asserts that there is a projection L : W™2(Q2) — Pp(R"™) such that

k+1
i <c (%) .

Therefore, Lemma 4.1.3 implies

e = Z{w)llk.ps2 < CRLIND**  ullim— (h41) i

I \*+
<c (m DM o s 1y e

These observations are summarized in the following theorem.

4.2.1. Theorem. Suppose 0 < k < m are inlegers and p>1l Let Q1 C R
be a bounded, connected extension domain. Let T € (Wm=EB(Q))* be such
that T(1) # 0. Then, of L : W™P(Q) — Py(R") is the projection associated
with T,

k+1
= Llegn <€ (k) 1Dl (420)
where C' = C{k,p, ).

It will now be shown that the norm on the left side of {4.2.1) can be
replaced by the LP -norm of u ~ L(u), where p* = np/(n — mp). For this
we need the following lemma.

4.2.2. Lemma. Suppose m > 1 is an integer and p > 1. Let Q C R® be @
bounded extension domain. Then for each integer k, 1 < k < m — 1, and
£ > ( there is a constant C' = C{n,m,p, k,£, Q) such that

”Dku”p;ﬂ < Cliullpia + el D" ullpio, u € W™P(Q) {4.2.2}
whenever uw € W™2{Q).

Proof. We proceed by contradiction. If the result were not true, then for
each positive integer ¢ there would exist u; € W™P() such that

1D*uillpe > iuillpn + e D™ willpq. {4.2.3)

By replacing u; by u;/||t|lm p:0 we may assume that ||t;|lmpe = 1, ¢ =
1,2,.... Hence, from Exercise 2.3 there is u € W™2(£2) and a subsequence
(which we assume without loss of generality is the full sequence) such that
u; — u strongly in W™~12(2). In particular 4; — v in LP(£2). Since

”Dk“i"p:ﬂ < ”“l’"m—l.p;ﬂ = "“i"m,p;ﬂ! {(4.2.4)
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it follows from (4.2.3) that «; — 0 in LP{Q) and therefore u = 0. But then
u; — 0 in Wm=L2()) and consequently [|[D¥u;|lp.0 — 0 by (4.2.4). This
implies that | D™ |lp.n — 0 or u; — 0 in W™P(Q), a contradiction to the
fact that {[t;[mme = 1. m)

If v € W™P(R™) has compact support, then it follows from the funda-
mental Sobolev inequalities, namely Theorem 2.4.2, 2.9.1, and 2.4.4 that

l#llpe < Cllvlim p
where p* is defined by

if mp < n,

-
3|3

1
p‘
I<p*<oo if mp=mn,

and

p= if mp>n.
Since 2 C B™ is an extension domain, u € W™P(Q2) has an extension
to v € W™P{R"} with compact support such that ||[vflmp < Cllulimpq-
Therefore,

lulipe . < C“U"P‘
L Clvllm,p
< Cleflmpe

< Clllullpe + |1 D™ ullpal (4.2.5)

by Lemma 4.2.2. Now apply this to (4.2.1) while observing that D*{L{u)) =
0, ja| = m, and obtain

flu = L(ullpesn < Cilu - L{u)lpa + D™ ullpeal

17y <+
<C (T—(i-j ||D"+’u||m-(k+1),p;ﬂ'

We have thus established the following result.

4.2.3. Corollary. With the hypotheses of Theorem 4.2.1,

k+1
1m—ummﬂsc(£%) (T

4.2.4. Remark. In many applications it is of interest to know when L{u) =
0. In this connection we remind the reader the coefficients of the polynomial
L{u) are given by (4.1.7) and will be zero if T(D%u) = 0 for 0 < |u| <
k. The question of determining conditions under which L(u) = 0 will be
pursued in Sections 4.4 and 4.5.
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4.3 The Dual of W™»(Q)

In order to obtain more information from inequality (4.2.1) it will be helpful
to have a representation of (W™#((2))*, the dual of W™ P(£2). This is easily
accomplished by regarding W™»(Q) as a closed subspace of the cartesian
product of LP{1}.

To this end let

N=N@nm)= Y 1

0<lalgm

be the number of multi-induces o with 0 < |e] < m. Let

L5 () = HL‘“{Q)-

L% (Q) is endowed with the norm

m 1/p
( > IIva!!,‘;;n) if 1<p<oo
"U”p,N:ﬂ =

|ex}=0D

% olonif p=oo
where v = {v,} € L (Q).

4.3.1. Theorem, Let Q@ C R™ be an open set. Then each linear functional
Te(Wm™P(Q))*, 1 <p< oo, can be represented as

T(u)= Z /ﬂva(x)D“u(:c)dx for ue W™P(Q), (4.3.1)

lal=0
where v = {v,} € Lﬂ:(ﬂ}.
P}:;:of. Clearly, the right side of (4.3.1) defines an element T & (Wm-P(Q))*
wi
ITH < Cllvllp, v,

see (2.1.5). In order to express T(u) in the form of (4.3.1) first observe
that W™#(Q) can be identified as a subspace of L% (). The operator
D W™R(Q) — L () defined by

D(u)={Dau}! OSfﬂf]Sm

has a closed range since W™?(£1) is complete. Define a lincar functional
T* on the range of D by

T*[D(w)] = T(uw), «e W™r(Q).
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By the Hahn-Banach theorem, there is a norm preserving extension T’
of T” to all of L%, (f2). By the Riesz Representation theorem, there exists

v={va} € Lf,’;,[ﬂ) such that

T(w)=3 /ﬂ V()W (z)dx

fa|=0

whenever w = {w,} € L5 (). Thus, if v € W™P(£2), we may regard

Du = {Dyu} € L5,(§1) and therefore
T(u) = T*[{D(u)] = T'(Du)

= Z LvJa:)D“u(x)dx. =

la=0

In the event that @ € R"™ is a bounded extension doimnain, the repre-
sentation of (W"*#((2))* is slightly simpler, as described in the following
result.

4.3.2. Theorem. If §{} C R" is o bounded exiension domain and 1 < p <
oo, then each element T € (W™P(1))* can be represented as

T(u) = /ﬂ (vu+ > vaD“u)dz (4.3.2)

lo|=m

where v, va € L¥(Q), |a| = m.

Proof. The proof is almost the same as in Theorem 4.3.1 except that now
W™P(§1) can be identified with a subspace of L% ({2) where N = k(m) +1,
and k(m) = the number of multi-indices & such that |a| = m. Thus u €
W P(§1) is identified with (u, {D*u}aj=m). In view of Lemma 4.2.2 this
provides an isometric embedding of W™?(Q?) into L%, (02). O

It is useful to regard the restriction of the linear functional T in Theorems
4.3.1 and 4.3.2 to the space 2 (1) as a distribution. Indeed, if ¢ € Z(Q1)
is a Schwartz test function (see Section 1.7), then from (4.3.1) we have

T(p) = va D@ dx (4.3.3)

where vy € LF (). In the language of distributions, this states that T is a
distribution in & with

T = i (—1)1* Dy, (4.3.4)
{or|=0
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where v, € LP (). Similarly, if T is the functional in Theorem 4.3.2, then

T=v+ Y (-1klDoy, (4.3.5)

Jae|=m

where v, v, € L¥' (1) However, not every distribution T of the form (4.3.4)
or (4.3.5) is necessarily in (W™?(£2))*. In case one deals with WP (5)
instead of W™ ((1), distributions of the form {4.3.4) or (4.3.5) completely
describe the dual space, for if T is a distribution as in (4.3.4), for example,
then it possesses a unique extension to W P(§2). To see this, consider
u € Wi™(2) and let {;} be a sequence in Z(Q) such that ¢; — u in
W P(Q2). Then

m
IT(0:) ~ T = [ 3 j teD*0; — oD% psds
)=t~ &

< Z 10%(es — @5 )llpllvallp 2
|af=0
<ei = illmplltallp o — 0

as 1,j — co. Thus, T'(p;) converges to a limit, denoted by T(u), which is
well-defined. T is clearly linear and bounded, for if @ — u in WyHP(Q),
then

[Pl = Jim [T(@)] < Jim [T igillmg
.

The norm |IT(| in this context is defined relative to the space WohP(82).
These remarks are formalized in the following theorem.

4.3.3. Theorem. Let 1 <p < oo. If X C R is an open set, then the dual
space (Wo P ()" consists of all distributions T of the form

T= Zm: (-1)l* D2y,

lor{=0

where v, € LP (). If Q0 is a bounded extension domain, then (Wy"P(2))*
consists of those T such that

T=v+ Y (-1)eiDo,
|ai=m
v, v € LP' ().
The dual space (W5 "P(52))* is denoted by W—m»'(Q).



188 4. Poincaré Inequalities—A Unified Approach

4.4 Some Measures in (Wg*(Q2))*

We now exploit Theorem 4.2.1 and its Corollary 4.2.3 to derive some of the
most basic and often used Poincaré-type inequalities. These inequalities
are obtained below by considering Lebesgue measure and its variants as

elements of (W™?((2))*.
In order to demonstrate the method that employs the results of Section

4.2, we begin by reproving the inequality
|D*ullp < CHD™ully (44.1)

for u € C§°(R™), where 0 < k < m are integers and p > 1. Suppose that the
support of u is contained in some ball: sptu C B{0,r). Let @ = B(0,2r).
With this choice of §, we wish to apply Corellary 4.2.3 by selecting T so
that the associated projection I will have the property that L{u) = 0.
Then by appealing to (4.2.2), we will have established (4.4.1). Define T' €
(Wm—k2(Q))* by

T(w) =f vwdz
a
for w € W™ %2({), where v = Xp(0,2r)-8(0,r)- Since sptu C B(0,7),
T(D%) =0 for 05 |a|<k

and therefore L{u) = 0 by Remark 4.2.4. Hence, (4.4.1) is established.

In case §} is a bounded open set and u € C§°(§2), a similar result can
be established by defining u to be identically zero on the complement of £
and by considering a ball B(0,r) that contains . Since C§°(f2) is dense
in W[{“p(ﬂ) the following is immediate. (Of course, this result also follows
from the inequalities established in Chapter 2.)

4.4.1. Theorem. Let Q@ C R™ be a bounded set. Let 0 < k < m be integers
and p > 1. Then, there is a constant C = C(k,m,p, diam Q) such that

”Dku”p;ﬂ < C||D™ullp-
for uw € WymP(Q2).

A slight variation of the preceding argument leads to the following results.

4.4.2. Theorem. Suppose 0 < k < m are integers and p > 1. Let Q be a
bounded extension domain. Suppose u € W™P({1) has the property that

/D“ud.rz{] Jor 0< ol £k,
B

where E C §} is a measurable set of positive Lebesgue measure. Then,

lullpe < CID*  ullm-gren ma

e
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where C = C{k, m,p,Q, |E|).

Proof. Define T € (W™~%2(02))* by
T(w) = f wdz, we WP,
E
Then T(1) # 0,
T(D%u) =0 for 0<|af <k,
and therefore by Remark 4.2.4 the associated functional L has the property
that L{u) = 0. The result now follows from Theorem 4.2.1. |

4.4.3. Corollary. If u € W™?(Q) has the property that D% = 0 almost
everywhere on E for 0 < o} < k, then

fullspin < CIIDk+lullm—(k+1),p;ﬂ-

Theorem 4.4.2 provides a Poincaré-type inequality provided the integral
averages of the derivatives of u over a set E of positive measure are zero. In
the next result, the integral average hypothesis is replaced by one involving
the generalized notion of median of a function. If the sets A and B below
are of equal measure, then we could think of 0 as being the median of «
over AU B.

4.4.4. Theorem. Let ) € R™ be a bounded extension domain and let
ue WIP(Q), p> 1. Suppose u >0 on A and u < 0 on B, where A and B
are measurable subsets of (! of positive Lebesque measure. Then

fulle < CilDulipn

where C = C(p,n, |4}, |B]).

Proof. Let

a=/ud:c and ﬁ:fudx
A B
and define T € (W1P(£2))* by

T(w):/évwd:c, w e W)

where v = (1/a)xa —{1/8)xp. Then T{u) = 0 and the result follows from
Theorem 4.2.1 and Remark 4.2.4. O

4.4.5. Remark. In the remainder of this section, we will include a small
development of the notion of trace of a Scbolev function on the boundary
of a Lipschitz domain as well as some related Sobolev-type inequalities
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{Theorem 4.4.6 and its corollary). This material will be subsumed in the
development of BV functions in Chapter 5, but we inctude it here for the
benefit of the reader who does not wish to pursue the BV theory.

If Q C R" is a bounded Lipschitz domain and u € WP(£2), 1 < p < oo,
it is possible to give a pointwise definition of u on 8} in the following way.
Since §} is an extension domain, let % denote an extension of u to all of
R™ where & € WHP(R™). Therefore, % has a Lebesgue point everywhere on
R™ except possibly for a set of By ,-capacity zero (Theorem 3.3.3). Since
p > 1, we know from Theorem 2.6.16 that sets of B, p-capacity zero are of
H™_measure zero and therefore 4 is defined H"~'-almost everywhere on
99. We define the trace of u on 3} by setting u = & on .

We now show that this definition is independent of the extension . For
this purpose, we first show that at each Lebesgue point zo of u, there is a
measurable set A such that the Lebesgue density of A at zq is 1 and that
@ is continuous at zg relative to A. Since

][ i) — d(zo)lde — 0 as r—0,
5(330"‘)

for each positive integer i, there is a number r; such that the set E; =
R" N {z : |u(z) — u(xo)| > 1/i} has the property that

| B{zo,7) N Ei}
|B{zo,7)|

We may assume that the sequence {r;} is strictly decreasing. Let

<27%, for r< ;. (4.4.2)

E= U[B(I(],Ti) - B(.’.Cg,i"g_l)] ﬂEi.

i=1
We now will show that the Lebesgue density of E at zp is zero, that is

. |B(If_], i") f El
m ————— =1 4.4.3
BT (443)
Choose a small r > 0 and let k& be that unique index such that re ;1 <
7 < 7. For notational simplicity, let B(r) = B(zg,r). Then from (4.4.2) it
follows that
s =]
|1B(r)NE| < U[(B(T] N Eg) N(B(r:) — B{rix1))

i=k
0o

<27%(B(r)|+ Y 27"B(n)

i=h+1
< 27%|B(r)| + 274 B(r)]
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whic.h establishes (4.4.3). Clearly, if we set A = R® — F we have that u is
continuous at zg relative to A and that the Lebesgue density of A at g is
one.

Because £ is a Lipschitz domain, the boundary of £ is locally repre-
sentable as the graph of a Lipschitz function. Thus, the boundary can
be expressed locally as {(z, f(z)) : z € U}, where U is an open ball in
R* ! and f is a Lipschitz function. Recall from Theorem 2.2.1 that a Lip-
schitz function is differentiable almiost everywhere. Moreover, the function

f: R — R* defined by

fl2) = (z, f(2))

is Li;l)schitz and carries sets of Lebesgue measure zero in R" ! into sets of

H" -mleasure zero in K". Consequently, 32 possesses a tangent plane at

all H"~*-almost all points of #§2. From this it is not difficult to show that
. |B(zo,r)NQ 1

lim ————~ = — =
r—0  |B(zy,7)| 2’

for H™~1.almost all £, € 89). Since the Lebesgue deusity of A at xp is equal
to one, it follows that

" |B(zg, ") NANAl 1
im =,
=0 |B{zo, )i 2

Also, because u is coutinuous at zg relative to A, it is clear that

zll{’;'u u(z) = i{xe).
rERNA

This shows that the value of @(zo) is determined by u in Q, thus proving
tihat the trace of » on the boundary of €1 is independent of the extension
.

In the statement of the next theorem, we will let i denote the restriction
of (n —1)-dimensional Hausdorff measure to Q. That is u(A) = H*"Y{An

0f) whenever A C R™.

4.4.6. Theorem. Let §2 C R™ be a bounded Lipschitz domain and suppose
ue WP (Q), 1 < p<oo. Let

c{u) =f udH" 1 =f wdp.
an an
Then € (WIP(2))" and

(/{; [ — c(u)|”‘da:)l/p. <c (/ﬂ |Du|pd:c) .
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where p* = np/(n — p} and C = C(n,p,}).

Proof. Because (I is a bounded Lipschitz domain, 4 has an extensim_1 i

to all of R™ such that J|&||, , < C|lulli,pn- By multinlying it by a function

@ € C§°(R™) with ¢ = 1 on {2, we may assume that & has compact support.
In order to show that u € (W1{Q))*, we will first prove that

j vdp < Clloflup (4.4.4)

whenever v is a non-negative function in C§°(R"). From Lemma 1.5.1, we

have 0
f vdp = / p(Ey)dt {4.4.5)
0

where E; = {z:v(z) > t}. By the Morse-Sard theorem, for a.lm_ost all £,
E,; is bounded by a smooth manifold. We now borrow an essentially self-
contained result of Chapter 5. That is, we employ Lemma 5.9.3 and Remark
5.4.2 to conclude that for all such ¢, E; can be covered by balls B(z;,r;)

such that

]

S ot <o o)), (4.4.6)

i=1
where € is a constant depending only on n. Because 91 is l(?cally the graph
of a Lipschitz function, it follows from (1.4.6) that there is a constant C
such that u{B{z,r}) < Cr®*~1. Thus, from (4.4.6) it follows that

u(Ey) £ ) p(B(mi,1i})

&, 12

1l
A

7 < CHR (v (1)),

1A

C

L

Appealing to (4.4.5) and co-area formula {Theorem 2.7.1), we have

fvd;u = '[Jw p(Ey)dt

r— -1
< cfn H* Y v~ 1(8))dt
= C|| Dyl
< C(){| Dvlly
< Clivlis,p,

thus establishing (4.4.4). o
If v is now assumed to be a bounded, non-negative function in W1?(R"),

we may apply (4.4.4) to the mollified function ve. From Theorem 1.6.1 we

—_— —— m—

———— ——— - ————
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have that |jve — v{j1,, — 0 and that ve(x) — v(z) whenever x is a Lebesgue
point for ». From Theorem 3.3.3 we know that v has a Lebesgue point at all
 except possibly for a set of B, , capacity zero, therefore of H*~'-measure
0, and therefore of y-measure 0. Consequently, by Lebesgue’s dominated

convergence theorem,
j vedp — j v du.

It now follows that (4.4.4) is established whenever v is a non-negative,
bounded function in WiP(R"),

If we drop the assumption that v is bounded, then we may apply (44.4)

to the functions
o) = k if vz)>2k
RE= vz) i v(z) < k.

It follows from Corollary 2.1.8 that vy € WLP(R") for k = 1,2,.... Thus,
an application of the Monotone Convergence theorem yields (4.4.4) for non-
negative functions in WHP(R"), in particular, for #* and 4—. Hence (4.4.4)
is established for ii.

From Remark 4.4.5 we have that u = & H*-almost everywhere on 99},

and therefore
j udy = j tdu

< Clidtisp
< Ol g

Thus, we have shown that . € (WP(£2))*, and reference to Corollary
4.2.3 completes the proof. |

The following is an immediate consequence of Theorem 4.4.6.

4.4.7. Corollary. If ¥ is a bounded Lipschitz domain and u € wlr(Q),
p>1, then

j wdH™" < C[{lullyeq + | Dullpga]
a0
and

el < € [nnuu,,;n + L‘ ) udH"“l] .

As mentioned in the beginning of Remark 2.4.5, these inequalities will
be extended to the situation when u € BV, thus including the case p = 1.
4.5 Poincaré Inequalities

Here we further develop the results in Section 4.2 to obtain Poincaré-type
inequalities for which the term L{x) in inequality (4.2.1) is zero. We will
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show that this term vanishes provided the set {z : u(z) = 0} is sufficiently

large when measured by an appropriate capacity.
First, recall from Corollary 2.6.9 that if A C R" is a Suslin set, then

By p(A) = sup{By,(K}: K C A, K compact}.

Moreover, if K C R® is compact Theorem 2.6.12 implies that there is a
non-negative measure y such that spt p C K,

llge * ulizr < 1,

and Y
u(R™) = [Beo(K)'?.

Now consider u € W™ %?(Q}) where {1 C R" is a bounded extension
domain. Then u has an extension @ defined on R* such that [i|lm-rp <
C)|6|lm—k,p;2- Without loss of generality, we may assume that & has com-
pact support. From Theorem 2.6.1 it follows that 4 has the representation

ﬂ=gm—k*f

where f € LP(R™) and ||fllp ~ [@llm—ts- |
Now suppose that x is a non-negative measure with the properties that
spt o C Q and ,
gm—k * p € LF (R")

where k is an integer, 0 < k < mn. Observe that u can be considered as an
element of (W™*{Q))* for if we define T : W™ *(Q) — R! by

T{u) = /ud,u,

then,

/#du=/ﬁd#
=/ym_k*fdu

= /gm_k * u- fdr, by Fubini's theorem,

< |lgm—k * Bllp | fllp, by Holder's inequality,

< Cllgm—k * #llz ll@lm—rp
< Cllgm—k * pllp lullm—k p;0- (4.5.1)

Thus, s € (W™ HP{Q))*.
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This leads to another application of Theorem 4.2.1 which allows the
main constant in the inequality to be estimated by the capacity of the set
on which u vanishes,

4.5.1. Theorem. Let @ € R" be a bounded ertension domain and let
A C R" be a Suslin set with By, g{A) > 0 where 0 < k < m are infegers
and p > 1. Then, there exists a projection L: W™P(Q}) — Pe(R™) such that

"“ - L(“)“km;n <C (Bm—k,p(A))_lfp "Dkﬂuum—{kﬂ),p;ﬂ
where C' = C(k, m,p, ).

Proof. From the above discussion, there exists a non-negative measure g
such that p is supported in A4,

| gm—k * .u”P’ <1
and ; _
ME") 2 5 (Br-kp(4)"".

If we set T = p in Theorem 4.2.1, we have T(1) = u(R*} > 0 and from
(4.5.1) that
ITH < Cllgm—& *+ pllp < C.

The result now follows from Theorem 4.2.1 and Corollary 4.1.5. O
4.5.2, Corollary. Let u € W™P(§}) and let

N=0n{z: D%(z)=0for all 0 < [o| < k}.
If By i p(N)} > 0 then

Hullepin < C(Bmoxp(N) P | D* e ea 1y i

and
p222 € C{Bom_ie p(N) 2| D* gl hg1y -

lJu

Proof. The coefficients of the polynomial L{x) in Theorem 4.5.1 depend
upon

T(D%u) =/D°’ud,u

for 0 < |a| < k, and thus are all zero, (see Remark 4.2.4). The second
inequality follows from Corollary 4.2.3. m]

Because of the importance of the case m = 1, k = 0, we state the Poincaré
inequality separately in this situation.

4.5.3. Corollary. If u € WP(82), then
”“"P";ﬂ <C (Bl,p(N))_Up "D“"p;ﬁ (4.5.2)
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where N = {z : u(z) = 0}.

4.6 Another Version of Poincaré’s Inequality

We can improve the inequalities of Corollary 4.5.2 if we allow dependence
on the set N and not merely on its capacity. In particular, if j, k, and m are
integers such that 0 < j < k < m, then the assumption By, —x »(N) > 0 will
be replaced by the weaker one, By,_(x_j) p{N) > 0, provided an additional
condition is added which requires dependence on the set N in the resulting
inequality.

To make this precise let {2 be a bounded extension domain and let ¥ C Q
be a Suslin set with the property that

Bm—(k—j],p(N - Z) >0 (4.6.1)
for every set Z of the form

zZ= () {z:D°P(z)=0, 0# P e Py(R")}. (4.6.2)
|| <k—3

These sets comprise a subclass of the class of algebraic varieties. Thus, for
any algebraic variety of the form (4.6.2), we require some subset of V of
positive capacity to lie in the complement of Z.

Let M(N) denote the set of all non-negative Radon measures 4 com-
pactly supported in N such that

Im—(k—j) * b € L7 (R").
Consider all functionals of the form

T{u) = /D“‘u du, pe M(N), (4.6.3)

where Ja| < k—j. We will verify that all such T' are elements of (W™?(§2}}*.
Let u € W™P(12). Since {I is an extension domain, there is an extension ¢
of u to B™ with ||i|lmp < C|lullm,p;n. From Theorem 2.6.1, we know that @
has the representation @ = gy, * f, where f € LP(R") and {f{, ~ [&]lm.p-
Since u is supported in N € §2, it follows that

/D“u dp = /D“ﬁ dy.

But D*i € Wm—1al?(R™) and therefore

D% = Im—|a| * G

s
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where g € LP(R"). By Fubini’s theorem we have

/D“ﬁ-dn = /gm_m *gdp
= /gm-lrxl *p-gde.
It follows from {2.6.2) that

Fm—|a] * £ = 9 * (Gm—(k—j) * 1),

where £ = (k — j) — |a|. Since gp_(x—) * 4 € L*' (R™) by assumption and
ge € L'(R"), it follows from Young’s inequality that Fm—|a| * ft € L (R™),
Therefore an application of Hélder’s inequality yields

/D"ud.u = /Qm—-ial *p-gds
< "9m—|a| * P""p' "9"9
< Ngm—jal * #tllp | P8l - oy p-

However,
“Daﬁ”m—|a|,p < ”ﬁ”m.p < C"u"m,p;

thus proving that T' € (W™#{Q))*.
Let V C (W™P(Q1})* be the space spanned by all such functionals T as
defined in (4.6.3). Let

Vo={T|P:: T eV},
so that Vy C P. Observe that

dim V5 = dim P, (R}
or

Vo = [Pe(B™)]",
for if this were not true, there would exist 0 # P € Pp{R") such that
T(P) =0 for every T € V. This would imply
[pPau=0, lal<k-;

for all 4 € M(N). That is, from Theorem 2.6.12, this would imply
D*P{z) =0,

for By, _(x—j)-a.e. z € N and |a|] < k — j, a contradiction to (4.6.1) and
(4.6.2). Therefore dim Vg = dimPx(R"™) or Vy = [Pr(R")]*. This implies
the existence of T, € V such that

Ta(xﬁ) = 6&,,8- . (464)
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Hence, if we define L : W™P?(Q) — P(R") by

L(u) = Y Talu)z®, (4.6.5)

fal=0

then (4.6.4) shows that L is a projection. An appeal to (4.1.3) results in
the following theorem.

4.6.1. Theorem. Let 2 C R" be a bounded extension domain. Suppese
N C @ is a Suslin set such that (4.6.1) is satisfied. Then, with L given by
(4.6.5}, there is a constant C = C{j,k,m, N, Q) such that

||‘4l - L(u)"k,p;ﬂ < C"DkH“"m—(Hl),p;ﬂ'

The special nature of the projection L is what makes this result inter-
esting. For example if we assume that D*u = 0 on N except possibly for
8 Bpy—(k—j)p-null set, then all T of the form (4.6.3) are zero and therefore
L{u) = 0. The following is a consequence.

4.8.2. Corollary. Let @ C R" be a bounded estension domain. Suppose
N c Q is a Suslin set such that (4.6.1) is satisfied. If u € W™P(QQ) i3 such
that

Du(z} =0 for Byu_p—jpqe TEN

and all 0 < |a| < k — j, then
Jelle g < C”DkH“Hm*(Hl)m;ﬂ

where C = C(j,k,m, N, Q).

4,7 More Measures in ( W™P(§2))*

The general inequality {4.2.1) involves a projection operator L : W™P(}) —
Pr(R™) which is determined by an element T € (W™ %#(Q))*. It is there-
fore of importance to have an ample supply of elements in the dual of
W™—%P()) that are useful in applications. In Section 4.4 we have already
seen that Lebesgue measure (more precisely, suitably normalized neasures
which are absolutely continuous with respect to Lebesgue measure) and
normalized (n—1)-dimensional Hausdorff measure belong to (W™ ~%2(Q2))*.
The fact that these measures are elements of (W™ %?(Q2))* allowed us to
deduce interesting Poincaré-type inequalities. In this section we will per-
form a finer analysis to establish that a large class of measures belong
to (W™ %P(02))*, including those that are obtained as the restriction of
Hausdorff measure to sub-manifolds of appropriate dimension in R™.
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We begin with a result that provides a generalization of the Sobolev
inequality for Riesz potentials and also gives us a method of exhibiting a
large class of measures that are elements of (W™=5#(0))*. It will depend
on the Marcinkiewicz Interpolation Theorem which we state here without
proof.

Let (po,g0) and (p;,¢;) be pairs of numbers such that 1 < p; < ¢; < o0,
i=10,1, po < p1, and gy # q1- Let u be a Radon measure defined on R
and suppose T is an additive operator defined on C§°{R") whose values are
p-measurable functions. The operator T is said to be of weak-type {p;,q;)
if there is a constant C; such that for any f € C®(R™), and o > 0,

#{z: [(Tf)(x) > a}) < (™ Cillflip,)*.

477.1. Theorem (Marcinkiewicz Interpolation Theorem). Suppose T' is
stmultaneously of weak-types (pg,go) and (pr.q1). If 0 < 8 < 1, and

1-68 @
l/p=-——+—
Do "
1-8 @
1/q= +—,
qdo Fo 1

then T is of strong type (p,q); that is,
1T lgn < €3G fNp, £ € CE(R),

where C = C(p,-,q,-, 9), i =01

. We are now in a position to prove the basic estimate of this section which
is expressed in terms of the Riesz kernel, J;, that was introduced in Section
2.6.

4.7.2. Theorem. Let u be a Radon measure on B® such that forallz ¢ B
and 0 < r < oo, there is o constant M with the property that

plB(z,7)] < Mr®

where a = g¢/p{n—kp), k> 0,1 < p< g < oo, and kp < n. If f € LP(R™),
then

1/q
( [1ne fl"du) < oMYA g,
where C' = C(k,p, q,n).

This inequality is obviously an extension of the Sobolev inequality for
Riesz potentials that was established in Theorem 2.8.4. In that situation,
the measure p is taken as Lebesgue measure. In Remark 4.7.3, we will
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discuss further what other measures play an important role in the inequality
of Theorem 4.7.2.

Proof of Theorem 4.7.2. For t > 0 let
= {y: I x|fI(y) > t}.

Qur objective is to estimate u(A;) in terms of || f||,. Let g = x| A,. Then

(4) s [ fos\ndu= [ Boxifidug

= /R Tex (@)1 ()lde (47.1)

where the last equality is a consequence of Fubini’s theorem. Referring to
Lemma 1.5.1 it follows that

I # pelz) = ;(}a /000 e [B (.7:, rl”“‘_“))] dr
_(n—k)

(k)

For R > 0 which will be specified later, (4.7.1) becomes

o
e[ Bz, r)]r* ™ tar.

f @) Blz, ) )tz dr

(r;(kk / / (@) we[ Bz, v)]r* " dz dr

=I+5. (4.7.2)

tu(Ar) <

Since u[B{x,r)] € Mr® by hypothesis, the first integral, I, is estimated
by observing that

B, )] < p[Blz, r)]/¥ (Mre)/?
and then applying Holder’s inequality to obtain
{n—k) 1/ R e k—n—1+{a/p)
L £ Nl M7 1| Bz, r)jdz T Pdr.
0 o

(k)
(4.7.3)
We now will evaluate

[ miBlz,nlds.
Rﬂ
For this purpose, consider the diagonal

D=(R"x B )n{(z,y): 2 =y}
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and define for r > (0,
D, = (R x B*)N{(z,y) : |-yl < }.

Finally, let F = xp,. Then, by Fubini’s theorem,

[mime o= [ [ s

= [ [ Pendue
= / s o e p)dzdue(y)

= [ 1Bt
= a{n)r” u{A).
Therefore {(4.7.3) yields

I p(n—k)
= Y k)kp - (n—a)

Similarly, by employing the elementary estimate

Sl (n) /5 i )17 RE= =

Bz, 7)] < mlBla, n)]'Y u(4)M?,

we have

k v
b< CoNtuar [T ([ wipeniss) Pt

R aln)L/? pk-nip
~[n- kp|v(k) | fNlpae( Ae)ex(n) R* .

Hence

MVPy (AP RE-(n-a)/p
kp—(n—a)

n—k .
b+ b < BB oy, [

p#{A;)RE-/p
n—kp )

In order for this inequality to achieve its maximum effectiveness, we seek
that value of R for which the right-hand side attains a minimum. An ele-
mentary calculation shows that
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and the value of the right-hand side for this value of R is
P K0 )7 M A
y{k)(n — kp)(kp — n + a)
Consequently, from (4.7.2)

tu(A)Y9 = tu(A) p(Ag) M9

p(n—k)a aln 1/p" arl/q
= (w(k)(n—kp)(kp—nm) () M )

(A Ve £l

2q i aslfe .
ST s pny afn) " MY fllp. (4.7.4)

Expression {4.7.4) states that the Riesz potential operator I is of weak
type (p,q) whenever p and ¢ are numbers such that

l<p<g<oo, kp<m (4.7.5)

Hence, if (pg, ga), (p,q) and (p1,q1) are pairs of numbers such that (po. go),
(m,q) satisfy (4.7.5) and for 0 < 8 < 1,

1i—-6 @
1/p=— + —
/p Po "
1-8 @
l/g= — + —,
/q & "

then the Marcinkiewicz Interpolation Theorem states that Iy is of type

(p,q), with
I B * fllgs < CMYY( £ |5,

thus establishing our result. a

4.7.3. Remark. The number ¢ that appears in the statement of Theorem
4.7.2 is equal to n when g = np/(n — kp) = p*. In this case the conditions
of the theorem are satisfied by any measure p that is absolutely continuous
with respect to Lebesgue and that has bounded density. In particular, if
we take p as Lebesgue measure, we can recover Theorem 2.3.6, which is
Sobolev’s inequality for Riesz potentials.

Theorem 4.7.2 also provides an inequality for Riesz potentials restricted
to a lower dimensional submanifold M of R*. For example, if M* is a com-
pact, smooth A-dimensional submanifold of R, then it is easy to verify that
A-dimensional Hausdorff measure restricted to M satisfies the condition of
Theorem 4.7.2. That is, if we define u by

#(E) = H(E QO M?),
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for every Borel set £ C R®, then there is a constant M such that

u[B(z, )] € Mr* (4.7.6)
for every ball B(z,r) C R®. Now let f € L?(R") and consider the potential
w=Jp* f

By Theorem 4.7.2 we have

RS
( I du) < Olfll

where A* = Apf(n — kp), n — A < kp < n. In other words,

. 1/4\‘
( [t dH*{z)) < AUl (4.7.7)
Ml

where C' = C(k, p, A, n, M). Note that the constant € depends on M which,
in turn, theory, it is sometimes possible to obtain an equality similar to
(4.7.7) where the constant is independent of the manifold.

Inequality (4.7.7) is valid for Riesz potentials u = Iy * f and thus does
not automatically include Sobolev functions. However, it is immediate that
Theorem 4.7.2 and (4.7.7) apply as well to Sobolev functions u € W*P(R*)
because Theorem 2.6.2 states that u can be represented as

u=gg*f

where gy is the Bessel kernel, f € LP{R") and )|f[l, ~ llullxp. Moreover,
we know from (2.6.3) that there is a constant € such that gg(x) < Cli(x),
z #0.

To reassure ourselves that the integral on the left-side of (4.7.7) is mean-
ingful, recall from Theorem 3.3.3 that u is defined pointwise everywhere on
R™ except possibly for a set A with R; ,(A) = 0. Therefore, by Theorem
2.6.16, H"=*p+¢(4) = 0 for every ¢ > 0. By assumption, X > n — kp and
consequently H*(A) = 0. Thus, u is defined H* almost everywhere on M*
which is in accord with inequality {(4.7.7).

Also, we observe that if u is a non-negative measure on R® with compact
support, and otherwise satisfies the conditions of Theorem 4.7.2, then g €
(WEP(Q))* whenever {2 is a bounded extension domain. To see this, let
u € WFP(Q) and let i be an extension of u to R™ such that [k, <
C||u/lx,p:2- Because @i € WEP(R"), we have

t=gp*f
where [[f|lp ~ |l4]|+,p. Hence, by Theorem 4.7.2 and the fact that spt p is

compact,
l/q
[1uidu<c([riran) " <cu,
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= Cllélx.p
< C"”"k,p;ﬂ-

This establishes the following result.

4.7.4. Theorem. Let } C R" be a bounded extension domain and suppose
i is a compactly supported Radon measure on R™ with the property that if
e >0, there is a constant M such that

u[B(x,7)) < Mrrkete
for all x € R* and all v > 0, where kp < n, p > 1. Then p € (WFP(Q))*.

This result obviously is not sharp and thereby invites the question of
determining an optimal condition for x4 to be an element of (W*?(R"))*.
By using a different approach, it is possible to find a condition, related
to the one in the theorem above, that provides a characterization of those
Radon measures that are elements of (W*P(R"))*.

For this purpose, we need a few preliminaries. If ¢ is a Radon measure,
we will use the fractional maximal operator

Mp(z)

There is an obvious relationship between the Riesz potential of u and the
fractional maximal operator: Myu{z) < CI*u(z) for every z € R®, where
C = C(k,n). The opposite inequality in integrated form is not so obvious
and is implied by a result due to [MW]. It states that for every 1 < p < o0
and 0 < k < n, there exists ' = C(k,p, n) such that

= sup{r* " u{B(z,7)] : 7 > 0}.

17k * pllp < CllMusllp. (4.7.8)

The (k, p)-energy of u is defined as
Euoli) = [ (gun 'z
Since the Bessel kernel is dominated by the Riesz kernel, we have
Erplp) <C /R RUT p) dz
= [ Geen)- (s woVas
= / ) Iy * (I » g}/ Vdy, by Fubini’s theorem. (4.7.9)

The expression
T » (B x )/ 270

PR gy a1

4.7. More Measures in (W™-P{(2))* 205
is called the non-linear potential of p.

4.7.5. Theorem. Lef p > 1 and kp < n. If p is n Radon measure, then
p € (WEP(R™))® if and only if

[ ()™ S <o

Proof. In order to avoid technical details involving the behavior at infinity,
we will give a proof for measures y with compact support.

If 4 is such a measure with g * u € L¥ | then by Fubini’s theorem and
with u = gy * f we can write

/ud#=/gk*fdu

= /gk *p- fdr
< llgx * &g 1 £ llp
< Cllge * allp el

which implies that g € (W*P(R?})*. Conversely, if 4 € (W*P(R™))*, then
the reflexivity of L¥ implies that g * 4 € L7 . Therefore u is an element
of (W*P(R™))* if and only if ||gx * pl|p < 00, i.e., if and only if the (k, p)-
energy of u is finite.

‘We proceed to find a (sharp) condition on u that will ensure the finiteness
of its (k,p)-energy. For each r > 0,

B ( [ ez gft_t) "
<C (/ﬂ‘” [u[i{f:;t)]]”’ ?) "

Mku(x}<0(/ [ t"— ]I%E)Up'.

Eup) SO [ Unn'do
R™

(4.7.10)

Thus,

Therefore,

<C _/ (Myp)? dz, by (4.7.8),

<of [° [F‘[f“(”k‘)]] dt
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Now to evaluate the last term, we have

[ uB@oP = [ uB o) upe, vl

1/(p-1)
< j “(MIB(M)] » ]B (z’”du(y)) dz

< fR ) ( fB - p[By, 2)]Y “"”du(y)) dz
< /m (fR F(Isy)ﬂ[B(y.2*)]"‘”‘”@(3;)) dx

< [ w8201/ B, tlduty)
oAl
where F(z,y) = xp, and D; = R® x R* N {(z,y) : |z — y| < t}. Therefore,

Erp(4) < C f (t-=m)? j W{B (v, 2015V Bz, Oldp(a)

u[B y‘ 1/(.?_1) dt
sof [T(Ha) T e

Since p has compact support and finite total mass, it is evident that the
expression on the right side of the above inequality is finite if and only if

[ ()"

This establishes the sufficiency of condition {4.7.10).
For the proof of necessity, we employ the estimate

gx(z) 2 Clz/* e ™ for z€R", z#0 (4.7.11)
(see Section 2.6). As in (4.7.9), we have

el = [ (@rulds= [ auxione > Van

To estimate the last integral, let f = (g * 2£)*/?~1) and use Lemma 1.5.1
and (4.7.11) to obtain

e d
o+ f@ 20 [ ( /. )f(y)dy) phone L

Clearly, for r > 0,

1/(p—-1)
fy) > ( fB R z)d.u(z))
T

g
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and therefore,

ge* f(z) > Cf (/ f{y)dy) rk'“e‘i"‘ﬁ
0 B{z,r) r
00 1/{p—1) J
>C / " ( / gr(y — Z)du(Z)) dy) rk-ne=2r
0 B{y.r) L&
oo 1/(p—1)
= Cf 7 (/ rk_"e_z'"d,u(z)) dy r"‘"e—”ﬁ
0 Byr) r

> Cj:" (M)l/(pw1)8_2prdr

rr—kp r

This implies

tswzef [7 (f,(f’k:”)mpq”e*”’”‘?dn(y)

o f, [, (5% )])W S L)

1/{p-1)
_2p’ glBy,r dr
> Ce /“/ ( kP ) —;_—dp(y). o

4.8 Other Inequalities Involving Measures in
(Whoy

:;’e now return to the inequality (4.2.1) for another application. It states
) 7\
I = Ll <€ (L) 105 uln gy
where T € (Wm—Ep())* and L : W™2(0)) — Pr(R") is the associated
projection. L(u) has the form

L{u) = Y T(Pa(D)u)z®

laj<k

where P, is a polynomial of degree |a| whose argument is D = (Dy,...,D,).
In Corollary 4.5.2 we found that L(u) = 0 if B,,_¢ ,(N} > 0 where

N=00{z: D*{z) =0for all 0 < |a| < k}.

This was proved by the establishing the existence of a measure 4 > 0
supported in N with g € (W™ %52(Q))*. By taking T = p it clearly follows
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that
Lw)= Y [ Pa(D)udu=0. {4.8.1)

ja|<k

Now, if 4 is taken as any non-negative measure in (Wm—kp(Q))* with the
property that
D% du=0 forall 0<|a| <k,

then (4.8.1) holds. This observation along with Theorem 4.2.1 and Corol-
lary 4.2.3 yield the following result.

4.8.1, Theorem. Let p > 1 and suppose 0 < k < m are infegers. Let
§} C R" be a bounded extension domain. If u is a non-negalive measure on
R" such that p € (W™ 5P(Q))*, u(R") # 0 and

/D“ud,u =0 forall 0<]o] <k,
then

lullepe < CID*  ullm—n m0

and k+1
nqu';ﬂ < C"D U"m—(k+1),p;ﬂ

where C = (k,p,m, 1, ).
In particular, with k = 0 and m = 1, we have
Nullp- < CllDullp0
if p e (WLP(Q))* and
wdp =0.

From the preceding section we have found that a non-negative measure
p with compact support belongs to (W™~*?(1))* if, for some ¢ > 0,

#[B(Isr)] . n 4.8.2
Sup{rm—_&n—-_m.itER,f)O < 00, (8]

Consequently, if A is an integer such that A > n—(m — k)p.+ £ and M* ‘is
a smooth compact manifold of dimension ), then H* | M* is a measure in
(W™—kP(())*. As an immediate consequence of Theorem 4.8.1, we have

4.8.2. Corollary. Let A be an integer such that A 2 n — (m — k)p.+ €
where p > 1 and £ > 0. Suppose M?> is a smooth compact submanifold
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of dimension A of R™, Q@ C R™ is an extension domain and suppose u €
W™P(Q) has the property that

/ DudH =0 forall 0<)al<k
MAnQ

where HN{M* N Q) # 0. Then

ik pser < CIP*  ullpe (1) pi2

and
ulle-se < ClID* ulln—gs1ypin

where C = Clk,p,m, M*, Q).

4.9 The Case p=1

The development thus far in this chapter has excluded the case p = 1,
a situation which almost always requires special treatment in LP-theory.
Our objective here is to extend Theorem 4.7.2 to include the case p = 1.
Since the analysis will depend upon estimates involving ||Duj);, it is not
surprising that the co-area formula (Theorem 2.7.1) will play a critical role.
We begin with the following lemma that serves as a first approximation to
Theorem 4.7.2 in the case p = 1. We will return to this later (in Chapter
5) for a complete development in the setting of BV functions.

4.9.1. Lemma. Let i1 > 0 be o Radon measure on R" and q @ number
such that 1 < g<nfn—1. I

sup{-%)l:zel‘?", r>0}5M

for some M > 0, then there exists C = C{q, n) such that
1/q
( / u“dp) < CMY4|| Dyl (4.9.1)

whenever u € C°(R™).

Proof. First consider ¢ = 1 and refer to Lemma 1.5.1 to conclude that

/ wdp = '/0 ” w(Edt (4.9.2)

whenever « € C§°(R") is non-negative. Here £, = {z : u(x) > t}. Because
% is continuous, 8E, C u~'(f) for each ¢ > 0; moreover the smoothness
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of u and the Morse-Sard theorem states that u~'(t) is a smooth (n — 1)-
manifold for almost all ¢ > 0. Consequently, Lemma 5.9.3 and Remark 5.4.2
imply that for all such ¢ there exists a covering of E; by a sequence of balls
B(z;,r;) such that

i‘f’?‘l < CH" '(BE,) < CH"'({u™()})

i=1

where € = C'(n). Henee,

ue)

u(Ee) €3 u{B(zi,7)]

i=1

< Mi pa-t
< OMBE ' [{wm O]

where C = C(n). Referring to {4.9.2) and the co-area formula (Theorem

2.7.1) we have
(= =)
/ud,u=/ w( By )dt
0

<CM fu T e )t

=CM | Du| dz.
Rn

If u i3 not non-negative, write |u] = u* — w~, and apply the preceding
argument to u* and u” to establish our result for g = 1.
Now consider ¢ > 1 and let g € L9 (), g > 0. Then, Hdlder’s inequality

implies
1/q'
f gdu < ( f yq’du) u[B(z, )]
B{z,r} B(z,r)

< Ml/q".?"q'm"ﬂ_l'

Thus, gp is a Radon measure which satisfies the conditions of the lernma
for ¢ = 1. Consequently, if u € C§°(R") we have

[ oo du < CM Vgl [R |Duldz
R T

for all g € LY (), g > 0. However, by the Riesz Representation theorem,

[1%[lg; = sup {./R lulgdp @ llgllgsn €1, 9 2 0}
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and our result is established. O

4.9.2. Remark. The restriction ¢ < n/n —1 in the lemma is not essential.
If ¢ > n/n — 1, the lemma would require a Radon measure g to satisfy

p[B(z, 7)) < Mr™

for all z € R™, all r > 0, and some m > n. However, there is no non-trivial
Radon measure with this property. In order to see this, let U € R" be a
bounded open set. Choose & > { and for each x € U, consider the family
G of closed balls B(x,r) such that 0 < r < € and B(z,r) C U. Defining

G={B:BeG,rel}

we see that G covers U and thus, by Theorem 1.3.1 there is a disjointed
subfamily F C G such that

UCUB:Beg}cu{B:Be F}.
Hence, denoting the radius of B; by r;, we have
. f=.=]
p(U) <) By < MY (5m)™
BeF i=1
e =]
< MEmemn§ g
i=1
< M5™e™ U
Since U is bounded and ¢ is arbitrary, it follows that x(U) = 0. O

Our next objective in this section is to extend inequality (4.9.1) by re-
placing }Du||; on the right side by ||D%ul|;. For this purpose it will be
necessary to first establish the following lemma.

4.9.3. Lemma. Let y > 0 be a Radon measure on B*, £ < n,1 € g <
(n—8+1}{n—£) and 771 = 1—{q— 1)(n—£)/n. Then there is a constant
C such that for all x € B® and r > 0,

PO s pgen) < Csupfré™9u[Bla,r)] 1z € R r > 0}.

Proof. It will suffice to prove the lemma for z = 0. An application of
Minkowski's inequality for integrals yields

d T 1/1
/ / ”(y.?-l dz
B0 \JB(0:20) |2 — ¥
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1/r
< f / — ) duy (4.9.3)
= JB.2r) \JB0s) |7 —y|®-7

Observe that
/‘ dz B [ dz
B 12— ¥V Jponnpe 1o - yln T

+ f dx
B(o.r)—Bly.r) 1% — yln 7

The first integral can be estimated by

/ dz < Crn—r(ﬂ-l}
Biy.r) |I - yl{n—l)‘r -

and the second integral is dominated by #*~7(*~1), Here we have used the
fact that (r — 1)7 < n. Thus,

f dz < Crﬂ«—'r{n—l]’
B

o |2 —yjtr-um —

and therefore from (4.9.3)

T /T
pl-(a+1) f / ___dp(y) dr
B0 \JB(oar) |2 — ¥V

< ol [B(0, 2r)). (4.9.4)
If |z| < v and |y = 2r, then |y| < 2|y — z|. Consequently,

T+ 1/7’
-t 1) / / du(y) dr
B0,y \Jjg|zer [2 —y[0"V

< Cr(t-—l)—{q—d)(ﬂ——f]/ d’”‘(?"), (4.9.5)
= wizer (97!

Appealing to Lemma 1.5.1, we have
ol
[ B <oy [ upo.a
|

yl>2r |y 2r

Now define a measure v on R by v = t{®~89-74t and write

/ ~ u|B(0, t)}t " dt = / ” u[B(0, 1)t~ dy

r 2r

o
< sup {r-"nBO, i} [~ av
r>0 2r

< Cr(n=8entl gyp p(E=mey [ B(0, ).
r>0
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This combined with (4.9.5) and (4.9.4) yield the desired result. o
We are now prepared for the main result of this section.

4.9.4, Theorem. Let 4 > 0 be 2 Radon measure on B and let £ < n,
¢ = 1. Then if

Sup{M:zeR”,r>0}=M<oo,

1‘9("_‘}

there exists C = C(g,n) such that

1/q
( / uqd,u) < MY Dlully

whenever u € Ci°(R").

Proof. If £ = n, then for u € C§°(R™) and = € R®,

u(z) < / D™ uldy,
Rn

from which the result follows.

If 1 = £ < n, the result follows from Lemma 4.9.1.

Next, consider the case £ < n, £ > 1 and ¢ > nf{n — 1). Since u €
C5°(R"), it follows that v € Wg‘l'“/("hl)(R") and therefore u = gy_1 * f,
;€ LYCO(R®) with {{fllnm-1y ~ Mlle=ansn-1y ~ 104 6llnpn—1y-
Thus, Theorem 4.7.2 implies

Nullgn < CMIMHDt_t“”nf(n—l)-

Since | D¢, /n-1 < C||D*ul|; by Theorem 2.4.1, our result is established
in this case.

Finally, consider £ < n, £ > 1, and ¢ < n/(n — 1). We proceed by
induction on £, assuming that the result holds for derivatives of orders up
to and including ¢ — 1. As in (2.4.5),

[ @ <o [ [ L?Mdy|du(r}

I |$ - ylﬂr—l
< Cq/ |Dul |u|? Iy * g dy (by Fubini’s theorem)
Rﬂ

< qulu",‘i;(ln_t)" |Du|fy * ui]- (by Holder's inequality)
where 71 =1 — (g — 1){(n — &)n—L. By Sobolev’s inequality,

leliZ7 g —gy < CHD (1.9.6)

n =
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To estimate || |[Du|l; * pll, let m be a measure on R* defined by m =
(I, * p)7dzr and apply the induction hypothesis to obtain

| 1Du)ty * ull- = [[1Dul |7:m
< Csup{r Y "m[B(x, Y™ :r> 0,0 € R"} (1051
= Csup{r(l—l)—nllrl * .u'”‘r;B{z,r) :r>0,z€ R“} ”Deulll‘

This combined with (4.9.6) and Lemma 4.9.3 establishes the proof. 0

Exercises

4.1. Give a proof of Corollary 4.5.3 based on the argument that imme-
diately precedes Section 4.1. You will need the material in Section

2.6,

4.2. The following provides another method that can be used to define
the trace of a Sobolev function u € W1#{Q) on the boundary of a
Lipschitz domain €.

STEP 1. Assume first that « € C1{Q2), u > 0. For each z € & and
with the (n + 1)-cube centered at zo with side length 2r denoted by
C(zq, 1), we may assume {after a suitable rotation and relabeling of
coordinate axes) that there exists r > 0 such that C(zo,r) N 3% can
be represented as the graph of Lipschitz function f where the unit
exterior normal ¥ can be expressed as

(Dl.fy"-vpnsf}l)
V1+|Df?

H™-a.e. on C{zg,7) NN With e, 41 = (0,...,1) and under the as-
sumption that spt u C C(zo,r), appeal to the Gauss—Green theorem
(see Theorem 5.8.7) to conclude that there exists a non-negative con-
stant C, depending only on the Lipschitz constant of f, such that

/ udH® <C | (uepyy) vdH"
[219] an
= C] div{ue,+1)de
y]
< Cf | Du|dz.
Y]

If u assumes both positive and negative values, write |u} = u* +u~

to obtain
/ |u|dH™ < C'f |Du|dz.
iy Y

© B o gt
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43.

4.4.

4.5.

STEP 2. With no restriction on sptw, use a partition of unity to
obtain

j; < C fﬂ (1l + | Duf)d.

STEP 3. Prove that
f luPdH™ < © / (fuf? + [Duf?)dz
it 1

by replacing |u| by |u[? in the preceding step.

STEP 4. Now under the assumption that u € W12(1), refer to Ex-
ercise 2.17 to obtain a sequence of smooth functions uy such that
llus — wll1,p0 — 0 and

/ |uk—u,g]”dH"—>0 as k,f—;oo.
a0

The limiting function u* € LP{d) is called the trace of u.

Prove that u* obtained in the preceding exercise is equivalent to the
trace obtained in Remark 4.4.5.

Prove the following Poincaré-type inequality which provides an esti-
mate of the measure of {{u| > k} in terms of || Dulfl,. Let u € W'#{B)
where B is an open ball of radius r and suppose y is a measure of
total mass 1 supported in B N {z : u{z) = 0}. Then, if & > 0,

bz @l > ) < r [ pul+ore [ (e (ul

where R, is the Riesz kernel (see Section 2.6). Hint: Choose z,y € B
with u(y) = 0 and obtain

|u(z)| < |ulz) — u(z)] + lu(z) — u(y)|
whenever z € B. An application of polar coordinates yields

w(z) < Clh *(x8 - [Dul)(z) + I » (x5 - [ Duf)(¥)].

The technique in the preceding exercise yields yet another proof of
Corollary 4.5.3 which is outlined as follows. Let « € W1?(B(r)) where
B(r) is a ball of radius r and let N = {z : u(z) = 0}. Let ¢ be a non-
negative smooth function with spt ¢ contained in the ball of radius
2r and such that ¢ is identically one on B(r). Select £ € B{r) in
accordance with the result of Exercise 3.15 and define h = ¢[u{z)—1].
Then, for each y € R®,

w(y)u(z) = p{y)uly) + h(y).
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4.6,

4.7.

4. Poincaré Inequalities—A Unified Approach

Recall frem Theorem 2.6.1 that the operator J : IP(R™) — W1P(R")
defined in terms of the Bessel kernel g1 by J(f} = g1 * f is an isom-
etry. Therefore, with s as any non-negative Radon meagure p, an
application of Fubini’s theorem yields

[rau= [oremau= Jr s nde.

Thus, if z is concentrated on B(r) N N and satisfies |jg, * plly 1,1t
follows that

#[B(r) n Nllu(z)| < 177 [e(u —uw(@))]llp < Cllee ~ w(@)1,-

Taking the supremum over all such p leads to

By4[B(r) N N]ju(z)F < C lr—v f

B(2r

+ / |Du1pdy] .
B(2r)

) |lu{z) — w(y)"dy

Use Exercise 3.15 to estimate
[ futa) - sy
B{2r)

in terms of the norm of Du.

Poincaré’s inequality states that if w € WP(Q) and u vanislies on
a set N of positive By p-capacity, then |[ullp-,a < C||Dullpa, where
C depends on £ and the capacity of N. In the event that more is
known about u, this result can be improved. Using the indirect proof
of Section 4.1, prove that if u € WLP(f)) is a harmonic function that
vanishes at some point zg € £2, then there exists C = C(xo, {2) such
that
lully=s < CllDullpa.

Lemma 4.2.2 is one of many interpolation results involving different
orders of derivatives of a given function. In this and the next exercise,
we will establish another one that has many useful applications. Prove
the following: Let g be a measurable function on R*, and let 0 < & <
n, 0 < ¢ < 1. Then

[Lac(g)(@)] < C(Mg(z)' ™" - (Lallgl){=))",

where Mg is the maximal function of g. Refer to the proof of Theorem
2.8.4 and choose § in(2.8.4) as

5o = La(lg|)(=)
Mg(z)
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4.8. Let f = I,(g), g > 0. Prove the interpolation inequality

4.9,

4.10.

4.11.

1D £l < CIFIEY =) lS ke

where & is any multi-index with 0 < [k| < a, 1/r = |ki/ap+(1-|k|)/3,
and p < ¢ £ 00. Use the previous exercise to prove

Hae(@)lr < Cligllz™* MallgDIl;

where 1 < p < 00, 1/r = (1 —¢)/p+¢/3, p < s < oco. Then let
f = I.{g) and observe that

|DXf ()| € Ta-n{g)().

Prove the following as a consequence of Theorem 4.2.1, Let R C R™
be a bounded, connected, extension domain. Suppose v € L (),
n # 0, p > 1. Prove that there exisis C' = C(p,v,) such that

Hullpa < CllDu|lpa
whenever u € WP(Q), fouvdz = 0.

When © C R"*! is a Lipschitz domain, Exercise 4.2 shows one way
of defining the trace, u* € LP(89), when u € W1?(Q), p > 1. Note
that

f |[u*PdH™ < Cf(|u|" + |Du|P}dz.
o0 2

Let v € L7 (8§2), v # 0. Prove that there exists C = C(p, v, Q) such
that
el < CliDullpa

whenever u € Wh#(Q), f. u'v*dH"™ = 0.

At the beginning of this chapter an indirect proof of the following
Poincaré inequality is given: If w € W'P(f}) and u = 0 on a set of
positive measure S, then |u|p0 < C||Du|p.0. Show that essentially
the same argument will establish the same conclusion if it is only
assumed that u = 0 on a set of positive B; ,-capacity.

Historical Notes

4.1. Lemmas 4.1.3 and 4.1.4 provide the main idea that serves as the key-
stone for the developments in this chapter. They are due to Norman Meyers
[ME4] and many other results in this chapter, such as those in Sections 2,
5, and 6 are taken from this paper. It should be emphasized that Lemma
4.1.3 is an abstract version of the usual indirect proof of the basic Poincaré
inequalities.
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4.4. Tn Remark 4.4.5 an approach to the subject of trace theory on the
boundary is indicated which is based on the material in Chapter 3 con-
cerning the property of Sobolev functions being defined everywhere in the
complement of small exceptional sets. Another approach to this subject is
presented in [LM].

In the proof of Theorem 4.4.6 it is not necessary to use the Morse-Sard
theorem if we are willing to use the full strength of the “Boxing Inequality”
[GU] and not the version reflected in Lemma 5.9.3. The inequality in {GU]
states that there is a constant C' = C'(n) such that any compact set K C R"
can be covered by a sequence of balls { B(r;)} such that

> it < CHVY(8K).

i=1

This inequality could be used to establish (4.4.6) if K is taken as E, and
by observing that 8F; C v~'(¢) since v is continuous.

4.5. The proof of the Poincaré inequality here is, of course, based on the
material in the previous sections, particularly Theorem 4.2.1. This proof is
contained in {ME4]. There are several other proofs of the Poincaré inequal-
ity including the one in [P] which is especially interesting.

4.7. All of the Sobolev-type inequalities discussed thus far are in terms
of inequalities defined on R™. There also are similar inequalities that hold
for functions defined on submanifolds of B™. For example, in minimal sur-
face theory, Sobolev inequalities are known to hold for functions defined on
submanifolds where the inequality includes a term involving the mean cur-
vature of the submanifold, cf. [MS)]. In case of a minimal surface, the mean
curvature is 0. Theorem 4.7.2 is a result of the same ilk in that the left
side involves integration with respect to a measure u which can be taken
as a suitable Hausdorff measure restricted to some submanifold. However,
it is different in the respect that the right side of the inequality involves
the LP-norm of the gradient relative to Lebesgue measure on R® and not
the norm relative to Hausdorff measure restricted to the submanifold. This
interesting result was proved by David Adams [AD2]. Theorem 4.7.4 states
that measures with suitable growth over all balls are elements of the dual
of W¥P(R"). Thus, Theorem 4.7.2 is closely related to (4.2.1).

Theorem 4.7.5 which yields a characterization of those measures in the
dual of W*?(R") is due to Hedberg and Wolff [HW) although the proof we
give is adapted from [AD7].

4.9. Inequality (4.9.1) is due to Meyers-Ziemer [MZ) in case ¢ = 1. The
proof for the case 1 < ¢ < n/(n — 1} is taken from [MA3]. This inequality
is also established in Chapter 5 in the setting of BV functions, cf. Theorem
5.12.5. Corollary 4.1.5 is an observation that was communicated to the
author by David Adams. This result when applied to Theorem 4.5.1 yields
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more information if Lemina 4.1.4 were used. This is an interesting example
of the critical role played by the sharpness of a constant, in this instance, the
exponent of B _k,(A) in Theorem 4.5.1. Indeed, in the work of Hedberg

[HE2], it was essential that the best exponent appear. He gave a different
proof of Theorem 4.5.1.
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Functions of Bounded
Variation

A function of bounded variation of one variable can be characterized as
an integrable function whose derivative in the sense of distributions is a
signed measure with finite total variation. This chapter is directed to the
multivariate analog of these functions, namely the class of L' functions
whose partial derivatives are measures in the sense of distributions. Just
as absolutely continuous functions form a subclass of BV functions, so it
is that Sobolev functions are contained within the class of BV functions of
several variables. While functions of bounded variation of one variable have
a relatively simple structure that is easy to expose, the multivariate theory
produces a rich and beautiful structure that draws heavily from geometric
measure theory. An interesting and important aspect of the theory is the
analysis of sets whose characteristic functions are BV (called sets of finite
perimeter). These sets have applications in a variety of settings because of
their generality and utility. For example, they include the class of Lipschitz
domains and the fact that the Gauss—Green theorem is valid for them
underscores their usefulness. One of our main objectives is to establish
Poincaré-type inequalities for functions of bounded variation in a context
similar to that developed in Chapter 4 for Sobolev functions. This will
require an analysis of the structure of BV functions including the notion of
trace on the boundary of an open set.

5.1 Definitions

5.1.1, Definition. A function u € L*(Q) whose partial derivatives in the
sense of distributions are measures with finite total variation in £ is called
a function of bounded variation. The class of all such functions will be
denoted by BV(§). Thus u € BV(RQ) if and only if there are Radon (signed
MeAsUTeS) Measures fy, 43, . . . , by defined in Q such that fori = 1,2,...,n,
[ D] () < oc and

/uDi:pdxz-—/t,od,u,v (5.1.1)

for all ¢ € CF°(51).
The gradient of v will therefore be a vector valued measure with finite
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total variation:
| Duf| = sup{/ udivvde: v = (vy,...,vs) € CF{G R™),
aQ

[v{z)j < 1 for z € R} < co. (5.1.2)

The divergence of a vector field v is denoted by divv and is defined by
dive = 31, Dyv;. Observe that in (5.1.1) and (5.1.2), the space C(R)
may be replaced by C}(§2). The space BV () is endowed with the norm

lullav = {lule + | Dyl (5.1.3)

If.u € BV(1) the total variation |[Du|| may be regarded as a measure,
for if f is a non-negative real-valued continuous function with compact
support 2, define

1Dull{f} = sup{Ludivvdx cv = (v1,...,0n) € CF°(S; ™),

z)| € f{z) for z € ). (5.1.4)

5.1.2. Remark. In order to see that ||[Du|| as defined by (5.1.4) is in fact
a measure, an appeal to the Riesz Representation Theorem shows it is
sufficient to prove that || Du|| is a positive linear functional on Cp(f2) which
is continuous under monotone convergence. That is, if {f;} is a sequence
of non-negative functions in Co(1?) such that f; T g for g € Cy(82), then
(i Dull(f;) — i|Duli(g), cf. [F4, Theorem 2.5.5). In order to prove that || Du]|
has these properties, let 4 = Du and refer to (5.1.1) to see that u satisfies

/udivgodx=~—/<p-du

where ¢ € C§°(Q; R™). Therefore, we may write (5.1.4) as
[[Dull{f) = s,up{/n vedpv={vg,...,v) € Ca({; R*)

lw(z)| £ f(z) for x € 2}. {(5.1.5)

To show that |[Du|| is additive, let f,g € Co(€2) be non-negative functions
gn;li suppose v € Co(€2, R*) is such that |[v| < f +¢. Let A = inf{, Jv|} and
efine

)
ey = VP ORG lol 20

0 |v(z)l =0
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It is easy to verify that w € Co(£2) and |v — w| = |[v] — h < ¢g. Therefore,
gsince |lw|=h £ f,

Lv-d,u:/nw-du-F/n(v—»w)-dp

< 1Duf{(F) + | Duli(g)-

This implies that [[Duli(f + ¢) < |1Du|l(f) + | Duli{g). The opposite in-
equality is obvious and consequently it follows that [|Du| is additive. It
is clearly positively homogeneous. It remains to show that it is contin-
uous under monotone convergence. For this purpose, let f; T g and let
v € Cp(£2, R®) be such that |¥| < g. Also, define h; = inf{f;, lv|} and

wiz) = { "y @I#0
0 |v{z)] = 0.

Note that w; € Co(f}), |wy] = h: < f;, and that |v —w;| = |vf — hy | 0 as
i — 00. Since |v —wy| = |v|— ki < 2|v|, Lebesgue’s Dominated Convergence
Theorem implies

/Ud,u =Du-v=lim Du-w; € lim ||Dul|(h:).
100

Limg s ]

By taking the supremum of the left side over all such » it follows that
| Dull{g) < limioo ||Du||(h:). Since h; < g for all i = 1,2,..., we have
| Dll{g) = lim;_.o || Dul|(h;). This establishes that || Dul} is a non-negative
Radon measure on (3.

We know that the space of absolutely continuous u with v’ € L!(R?!)
is contained within BV{R!). Analogously, in R® we have that a Sobolev
function is also BV. That is, W(Q) € BV (), for if u € W11(Q), then

udivedr = —f D,uvdzx

and the gradient of u has finite total variation with

IDu) () = fn \Duldz.

5.2 Elementary Properties of BV Functions
In this section we establish a few results concerning convergence propertics
of BV functions. We begin with the following which is almost nrnediate

from definitions, but yet extremely useful.

5.2.1. Theorem. Let £ C R" be an open set and u; € BV () a sequence

a
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of functions that converge to a function u in LL (). Then

liminf || Du; (U > || Duef| (V)
for every open set U C L.

Proof. Let v be a vector field such that v € C§°(U; R*) and |v{z)| < 1 for
x € /. Then

/ udivedr = lim | wdivede < liminf || D)) (U).
tr i—o0

I—o0 u
The result follows by taking the supremum over all such v. o
5.2.2. Remark. Note that the above result does not assert that the limit
function u is an element of BV (2). However, if u € L'(£2) and we assume

that

sup{||Dw;)|(f2) : i =1,2,...} < 0
then u € BV(Q). Indeed, if ¢ € C§°(2), and Du; is any partial derivative
of u;, then

lim { ¢pDude =~ lim | w;Dopder= | uDgpdr

i—oa fo i—oo Jo n

f u D dz
0

Since C3°(§1) is dense in the space of continuons functions with compact
support, we have that

and therefore

< sup o[ liminf || Du,;[|{2) < co.

Du(p) = —Lchpdx

is a bounded functional on Cp{f2}. That is, Pu is a measure on {}.

Theorem 5.2.1 established the lower semicontinuity of the total variation
of the gradient measure relative to convergence in LL_. We now will prove
an elementary result that provides upper semicontinuity.

5.2.3. Theorem. Let {u;} € BV(Q) be a sequence such that u; — u in
L}, () and
Jim | Du () = [ Dul(€).

Then, _
limsup || Dul|(T N Q) < [|Dul(T NQ)
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whenever U is an open subset of Q.

Proof. Since V = @ —~ T is open, it follows from Theoren1 5.2.1 that
|Dul(U) < limint | Du (D)
IDull(V} < lim inf | Dug |(V)-
But,
IDul@ N Q) + Dui(V) = [Dul(@) = Jim | Dusll(@)
2 limsup | Du|(T N 92) + lim inf | Dus (V)

o0

> limsup tDug{(U N QY + | Duf|(V). O

11— 00

In view of the last result and Theorem 5.2.1, the following is immediate.

5.2.4. Corollary. If {u;} € BV(Ql) is a sequence such that u; — u
L (), im0 || Du|(2) = § Dufl(Q), and ||Du[|(8U) = 0, where U is an
apen subset of §1, then

lim {iDw|[(U) = |Dul(V).

5.3 Regularization of BV Functions

Here we collect some results that employ the technique of regularization
introduced in Section 1.6. Thus, for each £ > 0, . is the regularizing kernel
and e = u*@.. From the proof of Theorem 1.6.1, it follows that if U/ CC 11,
and u € L} (), then |Jus|l;;v < |lullye for all sufficiently small £ > 0. In
this sense, regularization does not increase the norm. We begin by showing

that a similar statement is valid when the BV norm is considered.
5.3.1. Theorem. Suppose U is an open set with U C  and let v € BV(12).
Then, for ail sufficiently small € > 0,

luellsvivy < iellavm-

Proof. In view of Theorem 5.2.1, it suffices to show that ||Du.|(U) <
{|Duli($2) for all sufficiently small ¢ > 0. Select v € C§(U, R*} with |[v] < 1.
Choose 7 > 0 such that {z : d(z,U) < n} C . Note that || < 1 and
sptve C {r : d{z,U) < n} for all small ¢ > 0. For all such £ > 0, Fubini’s
Theorem yields

/u,,divvd:c:fuedivvdmzfu(divv)sdx
U Iy e

- /’ udivv.dzr < || Dul| ().
4]
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The result follows by taking the supremum over all such v. 0

5.3.2. Proposition. Let u € BV () and f € C§°(SY). Then fu € BV(Q)
and D(fu) = Dfu+ fDu in the sense of distributions.

Proof. Let U be an open set such that sptf ¢ U C U C . Then,
u. f € C°(U) with D(fu.) = (Df)u, + f Du, at all points in U. However,
fue—ull1,z — 0 ase — 0. (Of course, we consider only those £ > 0 for which
ug(z) is defined for z € U.} In particular, when considered as distributions,
ue — u. That is, u, — u in Z'(U) and therefore Dy, — Du in Z'(U), (see
Section 1.7). Since f € C§°(UV), it follows that fDu, — fDu in Z'(U).
Clearly, (Df)u, — (Df)u in &'(U). Finally, with the observation that
fu. — fuin @’ (U) and therefore that D{fu,) — D{fu} in Z'(U), the
conclusion readily follows. u]

We now proceed to use the technique of regularization to show that
BV functions can be approximated by smooth functions and thus obtain a
result somewhat analogous to Theorem 2.3.2 which states that C°{{)N{u :
llullxpin < oo} is dense in W*P(£2). Of course, it is not possible to obtain
a strict analog of this result for BV functions because a sequence {u;} €
(1) that is fundamental in the BV norm will converge to a function in
WL1(Q}). However, we obtain the following approximation result.

5.3.3. Theorem. Let u € BV(Q). Then there exists a sequence {u;} €
C(Q) such that

lim | ju; —uldz =0
=00 Jn

and
Tim || Du(2) = D) ()

Proof. In view of Theorem 5.2.1, it suffices to show that for every £ > 0,
there exists a function v, € €°°(£2) such that

f lu—vedr <¢ and [[Dull(®) < |Dull(€) +e. (5.3.1)
[#]

Proceeding as in Theorem 2.3.2, let §; be subdomains of §} such that
Q; CC Qyq and U8, = . Since {{Dull is a measure we may assume,
by renumbering if necessary, that [|Du|(52 — €%) < e. Let Up = @ and
U= — O, fori = 1,2,.... By Lemma 2.3.1, there is a partition of
unity subordinate to the covering U; = Qi1 — @_3, £ = 0,1,.... Thus,
there exist functions f; such that f; € C°(Ui), 0< fi<l,and 3} 0, fi=1
on {1. Let ¢, be a regularizer as discussed at the beginning of this section.

Then, for each ¢ there exists £; > 0 such that

spt({fiu)e,) C Ui, (5.3.2)
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/ [(fins)e, — Siuldr < 52_(“_1) (5.3.3)
)
/ (uDf;)e, — uDfijdz < 27 0+1, (5.3.4)
o
Define -
Ue = Z(u’fi)n-
i=0
Clearly, v. € C*(2) and u = 3, uf;. Therefore, from (5.3.3)
/ [ve — uldz < Z/ (ufi)e, — ufildr <& (5.3.5)

Reference to Proposition 5.3.2 leads to

Dve =Y _(fiDu)e, + )_(uDfi)e,

i=0 =0
=3 (fiDu)e, + Y_[(uDf)e; — uDJi].
i=0 =0

Here we have used the fact that £ D f; = 0 on {i. Therefore,

[ 1podz < 2 [ 10wz + > [ D), ~ D

The last term is less than ¢ by (5.3.4). In order to estimate the first term,
let ¥ € C§°(€t; R™) with sup 4] < 1. Then, with ¢, * 3 = 9,

|/ e * (fiDu) -y dzl = l‘/wef.-d(Du) by Fubini’s theorem,
= |/udiv(q’;sfg)d:c
< | Dul|(T5)

since spt ¥ fi C U; and |9, fi] < 1. Taking the supremum over all such ¢
yields
[ 1aDwlde < 1Dul@), i=01,....
0

Therefore, since each = € £ belongs to at most two of the sets U;,

/ |Dv,|dz < i [[Du)|(Ts) + €
Q

i=0

< |1Dul(f) + D _ I Dull(U) +¢
=1

< [|Dul|($21) + 21| Dul| (2 — Qo) + €

< | Dufi(§2) + 3e.
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Since € > 0 is arbitrary, this along with {5.3.5) establishes {5.3.1). O

5.3.4. Corollary. Let @ C R" be a bounded extension domain for WH1(S2).
Then BV(Q) N {u: (lullpv < 1} is compact in L1(S).

Proof. Let u; € BV((1) be a sequence of functions with the property that
(l;f v < 1. By Theorem 5.3.3 there exist functions v; € C°°(1}) such that

/ lvi —uldr <i™! and f | D |dz < 2.
0 o

Thus, the sequence {||vs][1,1,0} is bounded. Then, by the Rellich-Kondra-
chov compactness theorem (Theorem 2.5.1), there is a subsequence of {vi}
that converges to a function v in L}(£2). Referring to Remark 522, we
obtain that v € BV (). O

In Theorem 2.1.4 we found that u € WP if and only if u € L? and u has
a representative that is absolutely continucus on almost all line segments
parallel to the coordinate axes and whose partial derivatives belong to L7,
We will show that a similar result holds for BV functions.

Since we are concerned with functions for which changes on sets of mea-
sure zero have no effect, it will be necessary to replace the usual notion of
variation of a function by essential variation. If u is defined on the interval
[a,], the essential variation of u on [a,b] is defined as

k
ess VA{u) = sup {Z lu(t;) — u(ti—l)f}

i=1

where the supremum is taken over all finite partitions ¢ < t5 < £, .. A < b
such that each ¢; is a point of approximate continuity of u. (See Remarks
d.3.5 and 4.4.5 for discussions relating to approximate continuity.) From Ex-
ercise 5.1, we see that u € BV (a,b) if and only if ess V() < co. Moreover,
ess V2{(u) = || Dul|[(a, b)]. We will use this fact in the following theorem. As
in Theorem 2.1.4, if 1 € i < n, we write x = (&, ;) where # € R*! and
we define u;(z;) = u(Z, ;). Note that u; depends on the choice of Z but for
simplicity, this dependence will not be exhibited in the notation. Also, we
consider rectangular cells R of the form R = (a;, bi)x{az, b2) % -x(am, by ).

5.3.5. Theorem. Let u € L} (R™). Then u € BV|o(R™) if and only if

loc
f ess V:"_"(u,-)d:f < 00
R
for each reclangular cell RcC R*1 eachi=1,2,...,n, and n; < b;.

Proof. Assume first that ¥ € BV (R"). For 1 < i < n it will be shown
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that
/_ 58 ‘/ﬁ".‘ (u)dZ < o0
R

for each rectangular cell R ¢ R* ! and a; < b;. For notational simplicity,
we will drop the dependence on i and take R of the form R = R x [a,8].
Now consider the mollified function %, = ¢, * u and note that

/Iuc—u{da:-»O as ¢—0
R

and

e—0

limsup/ [Ducldz < oo (Theorem 5.3.1).
R

Consequently, with ue ;(;) = ue (£, z;), it follows that u.; — u; in L'(a,b)
for H* l-a.e. # € R. Theorem 5.2.1 implies that iminf._ || Duc ;]|[(2,b)] >
| Du:ll[(a, b)] and therefore, from Exercise 5.1,

ess V2 (1) < lim iélf ess Vo{ue )
£E—
for H"'.a.e. # € R. Fatou's lemma yields
/ ess Vo{u)dH™"1(%) < liminf/ ess V2 (ue o JAH" ()
R «~0 SR
=liminf | |D;u.ldz
e—0 R

Slimsup/ 1Du,|dz < .
R

e—D
For the other half of the theorem, let u € L}, (R™) and assutne
/_ ess Vo (u; ) dH™ 1) < o0
R

for each 1 < i < n, a < b, and each rectangular cell R ¢ R*~!. Choose
P E Cg"(Ri L(,o-|_ < 1, where R = R x (a,b) and employ Exercise 5.1 to
obtain
/ uDipdr < /_ ess V2 (u;)dH*~1(%) < 0.
n R

This shows that the partial derivatives of u are totally finite measures over
R and therefore that u € BV, (R"™). c

5.4 Sets of Finite Perimeter

The Gauss—Green theorem is one of the fundamental results of a:naly'sis
and although its proof is well understood for smoothly bounded domains
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or even domains with piece-wise smooth boundary, the formulation of the
result in its ultimate generality requires the notion of an exterior normal to
a set with no smoothness properties in the classical sense. In this section,
we introduce a large class of subsets of R" for which the Gauss—Green
theorem holds. These sets are called sets of finite perimeter and it will be
shown that they possess an exterior normal which is defined in the same
spirit as Lebesgue points of L?-derivatives. The Gauss—Green theorem in
the setting of sets of finite perimeter will be proved in Section 5.8.

5.4.1. Definition. A Borel set £ C R" is said to have finite perimeter
in an open set § provided that the characteristic function of E, Xg, isa
function of bounded variation in . Thus, the partial derivatives of X E are
Radon measures in 2 and the perimeter of E in (2 is defined as

P(E,Q) = | Dxgl{(Q).

A set E is said to be of locally finite perimeter if P(E,Q) < x for every
bounded open set {2 If E is of finite perimeter in R*, it is simply called a
set of finite perimeter. From (5.1.4}, it follows that

P(E, Q) =sup {/E divedr:v={(y,...,u,) € CP(Q, R™), In(x)] < 1}_
(5.4.1)

5.4.2. Remark. We will see later that sets with minimally smooth bound-
aries, say Lipschitz domains, are of finite perimeter. In case £ is a bounded
open set with C% boundary, by a simple application of the Gauss-Green
theorem it is easy to see that F is of finite perimeter. For if v € C§e(§t; R™)
with JJvfle < 1, then

/diw;d:!::/ v-vdH" ' < H"H{1NJE) < 00
B 8E

where v(z) is the unit exterior normal to E at z. Therefore, by (5.4.1),
P(E, 1) < o0 whenever £ is an open set.

Moreover, it is clear that P(E, Q) = H*~'(NJE). Indeed, since E is a
C?-domain, there is an open set, U, containing @F such that d(z) = d(z, E}
is C! on U - 3E and Dd(z) = (z — £{z))/d(z) where &(z) is the unique
point in F that is nearest to x. Therefore, the unit exterior normal v to
E has an extension # € CJ{R") such that || < 1. Hence, if v = ni# with
n € C5°{1), we have,

/djvvd:c=/ divppde = | ndH" .
E E OE
This implies

P(E.Q) > sup { [ aamn= e o), < 1}
aE
= H""Y{QNBE).
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Intuitively, the measure DXg is nothing more than surface measure
(H™~1-measure) restricted to the boundary of E, at least if £ is a sinoothly
bounded set. One of the main resuits of this chapter is to show that this
idea still remains valid if E is a set of finite perimeter. Of course, since we
are in the setting of measure theory, the topological boundary of £ is no
longer the appropriate object of study. Rather, it will be seen that a subset
of the topological boundary, defined in terms of metric density, will carry
the measure DXg.

In Theorem 2.7.4 we observed that the isoperimetric inequality lead to
the Sobolev inequality via the co-area formula. Conversely, in Remark
2.7.5 we indicated that the Sobolev inequality can be used to establish
the isoperimetric inequality. We now return to this idea and place it in
the appropriate context of sets of finite perimeter. We will establish the
classical isoperimetric inequality for sets of finite perimeter and also a local
version, called the relative isoperimetric inequality.

5.4.3. Theorem. Let E C B™ be a bounded set of finite perimeter. Then
there is a constant C' = C(n) such that

|E|®-1/" < C||DXg|(R") = CP(E). (5.4.2)
Moreover, for each ball B(r) C R,
min {}B(r) N El, |B(r) - E)}" /" < C||DX&|[(B(r) = CP(E, B(r)).
(5.4.3)

Proof. The inequality (5.4.2) is a special case of the Sobolev inequality for
BV functions since Xg is BV. We will give a general treatment of Sobolev-
type inequalities in Section 11. If u € BV(R"), refer to Theorem 5.3.3 to
find functions u; € C§°(R"™) such that

lim § |u; —ulde =0,
100
Jim {|Dui|(R®) = || Dull(R™).
By passing to a subsequence, we may assume that u; — u a.e. Then, by
Fatou’s lemma and Sobolev’s inequality (Theorem 2.4.1),
lellnj(n-1) < lim inf llu:lle -1
< lim C||Dwl|(R™)
. e o]
< C||Dul|(R™).
To prove the relative isoperimetric inequality (5.4.3), a similar argument

along with Poincaré's inequality for smooth functions (Theorem 4.4.2),

vields
"“’ - ﬁ{'r')“‘n/(ﬂ--l);B(r} < C"DH"(B(T))
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where T{r -{Ti(r) z)dz and B(r} is any ball in R". Now let u = Xz and
obiain

D) g, {1BE) — B[NV
L, e st = (BOZEN T

1B(r) 0 E|\™/"
*( 1B()| ) IB(r} — B

I£1B(r) ~ | > |B(r) N E|, then (|B(r) ~ E)/(|B()]) > } and

ClDxgl(B(r)) = CIDufi(B(r)) 2 |lu ~ B(rMajta-1):8()
> (lB T') E) B( }nEl(n-l)/‘n

| B(r){
! IB(r) N E{ [B{(r) — E[\""V/"
2 5 i ( o e
A similar argument treats the case |B(r) N E| > |B(r) — E|. .

We now return to the topic of the co-area formula which was proved
in Theorem 2.7.1 for smooth functjons. Simple examples show that {(2.7.1)
cannot hold for BV functions (consider a step function}. However, a version
is valid if the perimeters of level sets are employed. In the following, we let

Ey=00{z: u(z) > t}.
5.4.4. Theorem. Let 2 C R be open and v € BV(S)). Then

1Dul) = [ IDxe, (@)t
Ma;;eover, if u€ L1(Q) and E; has finite perimeter in § for almost all ¢
wil
[ 1oxs @t < o,
RI

then u € BV(92).

Proof. We will first proof the second assertion of the theorem. For each
t € R!, define a function f; : R® — R' by

7, = {xE. ift>0
: —Xpn-g, if t<O.

Thus,
u(z) = /Rl fi{z)dt, =€ R™.
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Now consider a test function @ € C§°(£2), such that sup [¢| < 1. Then

[ utodla)ds = [ [ et
=-/};1 " fi(x)p(x)dzdt. {5.4.4)

Now (5.4.4) remains valid if ¢ is replaced by any one of its first partial
derivatives. Also, it is not difficult to see that the mapping ¢ — | DXg, [{€2)
is measurable. Therefore, if ¢ is taken as ¢ € C5°(§%; R™) with sup |¢| < 1,
we have

Du{p) = “/R“ u-divpdr = —/};1 /R“ fi(z)div p(x)dzdt

< /R D)t < /R (DX, ()t < oo. (5.4.5)

However, the sup of (5.4.5) over all such ¢ equals ||[Dul|(2), which estab-
lishes the second assertion.

In order to prove the opposite inequality under the assumption that
u € BV{Q), let {P} be a sequence of polyhedral regions invading {2 and
Ly : P, — R! piecewise linear maps such that

lim |Li — uldz =0 (5.4.6)
k— o0 P,
and
lim / \DLelds = | Dull (), (5.4.7)
ko PI:

(see Exercise 5.2). Let
EF = PN {z: Ly(z) > t},
Xf =Xgt-
From (5.4.6) it follows that there is a countable set § C R' such that for
eachj =1,2,...
lim /F X (z) — X¥(z)|dz =0 (5.4.8)
H

k—ox
whenever ¢ € S. Thus, for t € 8§, and € > 0, refer to (5.4.1) to find
@ € C§°(£2; H™) such that |p| <1 and
£

quE,,u(Q}-fE divipds < 5 (5.4.9)

Let M = fp. |div|dz and choose j such that spt C Fj. Choose ko 2 J
such that for k > kg,

X: - X*ldz < ——.
P ¢ 2M
3
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For k > kq,

/divgad:r-—/ divp dz
Ey Ef

Therefore, from (5.4.9) and (5.4.10)

< M/ |xe — Xf'd&: < % (5.4.10)
By

DX, () < j divpds +¢
EI
< IDXg ) +e.
Thus, for t ¢ 5,
DX, 1(Q) < liminf | DX ) (2).

Therefore, Fatou’s lemma implies
/ DXz, | (Q)dt < limint / IDX e ()t
Rl k=00 Jm ¢

< lim inf/ H* UL H¢)nQ)dt  (by Remark 5.4.2)
Fral

k—oo
< ]ikminf [DLgldz  (by (2.7.1))

= [[Dull(R) (by (5.4.7)). =

5.5 The Generalized Exterior Normal

In Remark 5.4.2 we observed that a smoothly bounded set has finite perime-
ter. We now begin the investigation of the converse by determining the reg-
ularity properties possessed by the boundary of a set of finite perimeter.

5.5.1. Definition. Let E be of locally finite perimeter. The reduced bound-
ary of E, §~ E, consists of all points x € R® for which the following hold:

(i) |1 Pxgll[B(x,r)} > 0 for all r > 0,

(it} If v (z) = —Dxg[B(z,))/|Dxg|i[B(z,r)], then the limit »(z) =
lim,_.q () exists with {v(z)| = 1.

v(z) is called the generalized exterior normal to E at x. We will employ
the notation v(z) = v(x, E) in case there is a possibility of ambiguity. The
notation @~ is used in §~ E to indicate that the normal to E is pointing in
the direction opposite to the gradient.

Observe that »(z, E) is essentially the Radon—Nikodym derivative of
Dxg with respect to |DXg|. To see this, let p(x) be the vector-valued
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function defined by

i DXelBE ]
Plz) = = I DX Bz )]

From the theory of differentiation of measures in Chapter 1 (see Remark
1.3.9) this implies that p is the Radon- Nikodym derivative of DXg with
respect to | DXg|| and that

Dx(B) = - [ ple)IDXsle)
for all Borel sets B € R". Moreover,
/ divvde = — /'v(:r) - p(z)d|| DX g
E

whenever v € C3(R"; R™). Consequently, by (5.1.2), |p(z}| = 1 for || DXxg|-
ae. r € R™ and therefore, p(z) = v{x, E) for |[DXgll-a.e. # € R™. Thus,
we have

Dxe(B) =~ [ v E)IIDXs ),

IDXE|[(R* = 8" E) = 0.

The next lemma is a preliminary version of the Gauss—Green theorem.

5.5.2. Lemma. Suppose E is of locally finite perimeter and let f € C{°(R™).

Then, for almost all v > 0,
[ pds==[ jae)+ [t BEMET)
ENB(r) B(r) Ena(B(r))

where B(r) = B(z,r) and vi(y,B(r)} is the i'® component of the unit
exterior normal.

Proof. To simplify notation, we will take = 0. From Proposition 5.3.2,
we have that fXg € BV({l). Let § be the countable set of r such that
(D (fxe)|[B(B(r))] # 0. Select r ¢ § and let 5. be a piecewise linear
function on {0,oc} such that n. = 1 on (0,7] and . = 0 on {r + £, 00).
Since D;[fXg] is a measure, we have

j F(2)x(x) Dilne (el dz = - j ne (=N d(Difxel) (=)
f’r R™
= —-Di(fxg)|B(r)]
- j e (=) d(DiLfXa]) (2)-
B(r+¢)-B(r}
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Therefore

1 T
- E -/B(r+e)—B(r] f(x)XE(x) F";—[dx

= ~DixeIBC) - [
B(r+e)-B{(r)

Since r € § and || < 1, the integral on the right converges to 0 as e | 0,

By the co-area formula (Theorem 2.7.3), the integral on the left can be

expressed as

nell=)d(Di[fxg]) (x).

1 I
€ ~/B(r+s)—B(r) f[:c)x,g(z)mdm

1 r+c e
= - / / Flx)2dH" Y z)dt.
€Jr ENs(B(+)) ||

Therefore
l/ T T;
-= flz)Xxp(z)—dz —» ~ —LdH*1
€ JB(r+c)-Blr) el )|-’€| EN8(B(r)) ﬂx)fﬂ @)

which implies

/ f(z) 2 dH"\(z) = Di(fXg)|B(r)]
En&(B(r))

|zt
for almost all r > 0. Moreover, from Proposition 5.3.2,
Dilfxg|(B(r)) = (Dif)xg(B(r)) + fDiXs(B(r))
:f D;f(z)dz + fd(DiXg). o
EnB{r) B(r}
5.5.3._Corollary. If F has finite perimeter in §1, then for almost all r > 0
with B(r) C 4,
P(EN B(r), Q) < P(E,B(r)) + H* Y[En 8(B(r)))].

Proof. Choose v € C§°(f2, R*) with Jv| < 1 and let 7 > 0 be a number for
which the preceding lemma holds. Then

/ divvd:c=—/ v-d(DXxg)
ENB{r) B(r)

* Lna(g(r)) w(z) - v(z, B(r))dH" (z)

< 1DXxel(B(r)) + H" ' [E N 8(B(r))}.
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Taking the supremum over all such v establishes the result. ]

Remark. Equality actually holds in the above corollary, but this is not
needed in the immediate sequel.

The next lemma will be needed later when we begin te investigate bound-
ary regularity of sets of finite perimeter.

5.5.4. Lemma. Let E be a set with locally finite perimeter. Then, for euch
x € 8™ E, there is a positive constant C = C(n) such that for all sufficiently
small r > 0,

r "|B(z,r)NE| > C, (5.5.1)
r~"|B(z,r) - E| 2 C, (5.5.2)
C < r' ™| Dxg||(Ble,r)) <O (5.5.3)

Proof. To simplify the notation, we may assume that £ = 0. Since 0 €
8~ E, there is a positive constant C' = C'(n) such that

(0] = | DX (B )/ NDXE|[B(r)] 2 C (5.5.4)

for all small » > 0. For almost all r > 0, it follows from Lemma 5.5.2 that
Dxg(B(r)) = / 2 dH" (x)
En8(B(R)) [z|

and therefore
|Dxg(B(r)| < H* ' [ENJB(r))}.

Consequently, {5.5.4) implies
IDXe(B(r)) < CTTH ' EN&B(r))) < C™r" L, (5.5.5)

Note that {5.5.5) holds for all small values of r since the left side is a
left-continuous function of r. This establishes the upper bound in {5.5.3).

To establish (5.5.1), recall from Corollary 5.5.3 and (5.5.5) that for almost
allr >0,

P(EN B(r)) < P(E, B(r)) + H* Y{En 8(B(r))]

and
P(E,B(r)) < C"'H™ ' [ENn3(B(r))].

Thus, an application of the isoperimetric inequality (Theorem 5.4.3) and
the previous two inequalities lead to

{E N B(r)|"""/" < CP(EN B(r)) < CH" {E NA(B(r))];

- I
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for some constant €' = C(n). Let A{r) = |E N B{r}| and observe that the
co-area formula (Theorem 2.7.3) yields

h(r) = /E o 1Dl = /ﬂ H™YE N 8(B(t))dt.

Hence, h'{r) > Ch(r)®~ /" and therefore that A(r)(/®)=1p/(r) =
n(hY"(r}Y > C. This implies {(r)}™ > Cr, thus establishing (5.5.1).
Note that (5.5.1) implies (5.5.2) since P{E} = P(R® — E} and vg =
—VRr_E.
The lower bound in {5.5.3) follows immediately from {5.5.1), (5.5.2), and
the relative isoperimetric inequality (Theorem 5.4.3)

IDXsW(B() S 5 i (IB(r) NE| |B(r)~ E|)("‘W“ i

pn-l rn ™

5.6 Tangential Properties of the Reduced
Boundary and the Measure-Theoretic Normal

Now that we have introduced the definition of the unit exterior normal to a
set of finite perimeter, we ask whether the existence of the exterior normal
implies some type of regularity of the boundary. In order for the theory
to run parallel 1o the classical development, the hyperplane orthogonal to
the generalized normal in some sense should be tangent to the reduced
boundary {see Definition 5.5.1). Although it cannot be expected that this
plane is tangent in the usual sense, it will be shown that it is so in the
measure-theoretic sense.

For this purpose, we will employ a “blow-up” technique which views the
local behavior of a set at a point by examining a sequence of dilations of the
set at the point. Specifically, let E be a set of locally finite perimeter and
suppose for notational simplicity that 0 € 9~ E. For each € > 0, consider
the dilation T.(z) = z/¢ and let E, = T.(E). Note that Xg, = Xgo T, !
and that the scaling of DX g, is of order n — 1. That is,

Dxg |B(r/e)) = e!™"Dxg[B(r)] for >0
(5.6.1)

IDXx, J[B(r/e)] = €I DXgIB(r)] for 7> 0.
The proof of the second equation, for example, can be obtained by choos-

ing a sequence {u;} € C®[B(r)] such that uw; — Xg in L'[B(r)] and
IB(‘,) | Du;ldz — | DXgll[B(r)] (Theorem 5.3.3). However,

/ [Dug cldz = €17 [ | Du;|dz
B(r/e) B(r)
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where u; = u; o T,Y. Then, ujc — Xg© T =Xxp, in L[B(e/r)] and by
Theorem 5.2.1,
lim inf |Du; |dz 2 || DXg, H{B(r/e)].

oo Bir/e)

Hence,
|Dxg, |[B(r/e)) < ' ™| Dxg|[B(r)]-

The reverse inequality is obtained by a similar argument involving a se-
quence of smooth function approximating Xg o T, %

5.6.1. Definition. For z € 8~ E, let 7(x) denote the (n —1)-plane orthog-
onal to v{z, E), the generalized exterior normal to E at z. Also, define the

half-spaces
HY(z)={y:v(z} - (y -2} > 0}

H (z)={y:viz) (y —2) <0}
5.8.2. Theorem. If E is of locally finite perimeter and 0 € 0™ E, then
Xp, = Xg- in L (B®) as €10
and
1Dxe (V) — |1DXg- ||(U)
whenever U is a bounded open set with H*~1[(8U} N x(0)} = 0.
Proof. Without loss of generality, we may assume that the exterior normal
to E at 0 is directed along the x,-axis so that »,{0) =1 and 1 (0} = ... =

Yn_1(0} = 0. It is sufficient to show that for each sequence {&;} — 0, there
is a subsequence (which we denote by the full sequence} such that

[ e, ~xu-ldz =0 ad D5 )~ DX @) (562)

as €; | 0.
From (5.6.1) and (5.5.3) we obtain for each r >0,

1DXE.[B(r)) = £ DXg|{Bler)] < €7l er)m™t = €4,
(5.6.3)
and

I1DXg[B(r)] = ' |IDXp|[Bler)] 2 Ce ™ (er)* ™ = Cr* 71 (5.6.4)

for all sufficiently small £ > 0. Thus, for each B(r}, Cr™ ! < ||IXg,|lsv(Biry
< ¢! for all sufficiently small € > 0. Therefore we may invoke the
compactness of BV functions (Corollary 5.3.4) and a diagonalization pro-
cess to conclude that Xg, — X4 in L} .(R™). For each bounded open

b
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set ), Xg,. — x4 in 2'($2) (in the sense of distributions) and therefore
DXg,, — DX4 in 2'(Q2). Note that Dx4 # 0 from (5.6.4). Moreover
Dx E,, = DX4 weakly in the sense of Radon measures and therefore, for
all but countably many r > 0,

Dxg, [B(r)] = Dx4[B(r)]. (5.6.5)
From (5.6.1), and the definition of the generalized exterior normal,

lim DiX e [B(r)I/ | DX NI[B(r)]

= lim DXg[B(en)|/IIDXgl[B(er)] =0, i=12,...,n—1, (56.6)

whereas
lim DoXe, [BO)/IDX g, |[B(r)] = -1. (5.6.7)

Thus, from {5.6.7) and ({5.6.3),
sl_l.rtr}o |DxEg, |I[B(r)] = -‘_I_ifgo DoXg, |B(r)] = —DpXxal[B(r)]. (5.6.8)

From the lower semicontinuity of the total variation measure (Theorem
5.2.1) we obtain

liminf (| DX, ([B{r)] 2 {DXAN[B(r)]

and therefore || DX a[|[{B(r)] < —DyXa[B(r)] from ({5.6.8). Since the oppo-
site inequality is always true, we conclude that

DX All[B(r)] = —DnXa[B(r)]
for all r > 0. Therefore, by Theorem 1.3.8 and Remark 1.3.9,

- (5.6.9)

IDXA(B(r)) = ~DuXa(B(r)) = / (e, AIDXAI(@).

B(r

This implies that v, (x, A) = 1 for || DX 4{j-a.e. z and thus that »(z, 4} = 0
for |DX 4]]-a.e. 2, i = 1,2,...,n — 1. Consequently, we conclude that the
measures ;X 4 are identically zero, i = 1,2,...,n— 1. Hence, X 4 depends
only on z, and is a non-increasing function of that variable. Let

A = sup{zy : X4{z) =1}.

Since DX 4 # 0, we know that A # oo. The proof will be completed by
showing that A = 0. If A < 0, we would have B(r) C R* — A for r < ||
and since Xg,, — X4 in L} (R"),

0=|B(r)n A} = lim |E. 0 B(r)| = fim &7"|B(re) N B

= lim r*(re;) | B{re) N E|
00
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which contradicts (5.5.1). A similar contradiction is reached if A > 0. There-
fore, A = H~ and by (5.6.8) and {5.6.9),

Jlim DXz, (|[B(r)] = | DaX - [B(r)]

for all but countably many r > 0. If U is an open set with U C B(r) for
such an + > 0 and

NDXg-1(8U) = H* ' [x(0) N 8U] = 0,
then Corollary 5.2.4 implies |Dxg, [|(U) — || DXg-(U). 0

We now will explore the sense in which the hyperplane 7{x) introduced in
Definition 5.6.1 is tangent to 8 E at z. For this, we introduce the following.

5.6.3. Definition. Let v € R" with [v| = 1. For x € R" and £ > 0, let
Clz,e,v) =R*N{y:|{y—z)- v} >ely — 2l}.

In what follows, it will be clear from the context that both x and v are
fixed and therefore, we will simply write C{¢) = C(z,¢,v).

C{e) i8 a cone with vertex at x whose major axis is parallel to the vector
v. If M were a smooth hypersurface with » normal to M at x, then for
eache >0

CleynMnB(z,r)=0 (5.6.10)

for all r > 0 sufficiently small. When M is replaced by 6~ E, Theorem 5.6.5
below yields an approximation to (5.6.10).

Before we begin the proof of Theorem 5.6.5, we introduce another con-
cept for the exterior normal to a set. This one states, roughly, that a unit
vector i is normal to a set E at a point z if E lies completely on one {the
appropriate) side of the hyperplane orthogonal to =, in the sense of metric
density. The precise definition is as follows.

5.6.4. Definition. Let E C BE™ be a Lebesgue measurable set. A unit
vector 1 is called the measure-theoretic normel to E at z if

}in}]r_“|B(m,r}ﬂ{y y—x)n<0,ygE}=0

and
lintllr_“|B(:c,r) N{y:(yg~z)-n>0,y€ E}} =0.

The measure-theoretic normal to F at z will be denoted by n(x, E') and we

define
O*E = {z : n(a, F) exists}.
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The following result proves that the measure theoretic normal exists
whenever the gencralized exterior normal does. Thus, 8~ E < 8*E.

5.6.5. Theorem, Let E be a sel with locally finite perimeter. Suppose
0 € 97 E. Let v be the generalized exterior normal to E at 0 and =(0) the
hyperplane orthoyonal to v. Then,

lim " Dxg[[Cle)ynB(r)) =0, (5.6.11)
}i_x‘l‘l}r_“iEﬂH"'ﬂB(r)] =0, and {5.6.12)
lim r="|(B(r) ~ E) N H~| =0. (5.6.13)

Proof. Again we use the “blow-up” technique that was employed to obtain
(5.6.1). Thus, let T, (x) = z/r and recall that

IDXE, IIB(1} = #' ™| Dxg(|[B(r))-
Note that 7,.[C{e) N B(r)] = C(e} N B{1}. Therefore
IDXE[Cle) N B()] = r'"iDXElC(e) N B(r)],
and by Theorem 5.6.2,
=" Dxg[[C(e)} N B(r)}] — H* C(e) N B(1) N (D)) = 0.

This proves (5.6.11}.
Similarly,
rENBFRNHY = |E,NB1)NHY|

and since Xg, — Xg- in L (R") (Theorem 5.6.2),
lim |E, 0 B(1) N HY=|H " NnBQ)nHY| =0
This establishes (5.6.12) and (5.6.13) is treated similarly. O

The following is an easy consequence of the relative isoperimetric in-
equality and complements {5.5.3).

5.6.6. Lemma. There exists a constent C = C(n) such that

o 1DXel[B(, 1)

i >
llE.ILIl s >C

whenever £ € J*E.

Proof. Recall from Definition 5.6.4 that if # € " E, then
linillr_“]B(a:, DNENHY )| =0
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and
mr | [B(z,r) - E|NH (z)| =

where H*(z} and H™(z) are the halﬂspaces determined by the exterior
normal, n{z, E). Since B(z,r)NH(z) = ([B(z,)—~E|NH (z))U(B(z,7)N
En H (), the last equality 1mphes that

I f|B r}ﬂEi>l B(x,r)ﬂEﬂH'(:rH:l
it =Eor = % |B(z,7)] 2’
Similarly,
lim inf M 1
P TIBOT <2
and consequently,
o IBONE . |BO) - B 1
AR IBOT s B 2

The result now follows from the relative isoperimetric inequality (5.4.3). O

This result allows us to make our first comparison of the measures || DXg||
and H"! restricted to 8*E.

5.8.7. Theorem. There is a positive constant C such that if E is a set
with locally finite perimeter, and B C O"E is a Borel sel, then

H""}(B) < C||Dxg||(B).

Proof, For each £ € B we obtain from Lemma 5.6.6 that
| DX gli[B(z,7)]

lif_njgf ; 1 >C.
Our conclusion thus follows from Lemma 3.2.1. O

5.8.8. Corollary. If F is a set with locally finite perimeler, then
H" Y 8*'E-0 E)=0. (5.6.14)

Moreover, ||DXg|| and the restriction of H*™! te 8*E have the same null
sets.

Proof. From the discussion in Definition 5.5.1, we have that JDXglj{ R —

9~ E) = 0 and therefore |[Dxg||(8*E — 8~ E) = 0. Thus, (5.6.14) follows
from the previous theorem. Moreover, if B C 8~ E with H*~ 1{B) = 0, then
|Dxg||(B} = 0 because of the second inequality in (5.5.3). This establishes
the second assertion. O

Arasiad
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5.7 Rectifiability of the Reduced Boundary

Thus far, we have shown that the measure-theoretic normal to a set E
of locally finite perimeter exists whenever the generakized exterior normal
exists (Theorem 5.6.5). Moreover, (5.6.11) states that the measure [DXg||
has no mass inside the cone C(g), at least in the sense of measure density.
This indicates that the reduced boundary may have some appealing tan-
gential properties. Indeed, it will be shown that H® }-almost all of 8 E
can be decomposed into countably many sets each of which is contained
within some C? manifold of dimension (n — 1).

5.7.1. Definition. A set A C R™ is called countably (n — 1)-rectificable if
AC AgUUR,fi(R* 1)} where H"*(Ag) =0, and each f;: R*! — R" is
Lipschitz, = 1,2,.... Because a Lipschitz map defined on an arbitrary set
in R*~1 can be extended to all of R"~! (Theorem 3.6.2), countable {n—1)-
rectifiability is equivalent to the statement that there exist sets E; ¢ R*!
and Lipschitz maps f;: E; — R™ such that A C Ag U [UR, f:(E;)].

The next result is an easy consequence of Rademacher’s theorem and
Theorem 3.6.2, concerning the approximation of Lipschitz functions.

5.7.2. Lemma. A set A C R™"! is countably (n — 1)-rectifieble if and
only if A C URA; where H" Y (Ay) = 0, and each A;, i > 1, is an
{rn — 1}-dimensional embedded C! submanifold of R™.

Proof. Obviously, only one direction requires proof. For this purpose, for
each Lipschitz function f; in the Definition 5.7.1, we may use Theorem
3.10.5 to find C?! functions g;;, j = 1,2,.. ., such that

LR e MU gis(RPY

Jj=1
where H"~1(N;) = 0. Let C;; denote the critical set of g; ;:
Ciy =R N {y: Jgi;(y) = 0},

where Jg; ;(y) denotes the Jacobian of g; ; at y. By an elementary area
formula, see [F4, Theorem 3.2.3], H" '{g; ;(C; ;)] = 0 and therefore the

set
Ap = (U Ni) U ( U Qi,j(ci.j)) =0
i=1 =1

has zero H*~! measure.
For each y € R*' — C;; an application of the implicit function the-
orem ensures the existence of an open set U ;{y) containing y such that
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gi.; | Ui (y) is univalent and that g; ;(Us,;(y)) is an (n — 1)-dimensional C*
submanifold of R®. Clearly, there exists a sequence of points g1, y2,... in
Rl - C;',J' such that U?;lUi,j(yk) DRV - C.'J' and

U 2:5(Us(um)) 3 @i s(B* ™! = Cu)-
k=1

Therefore, for each i,

R = Ao € | 905 Uiilun))

Jik=1

from which the result follows. (]

5.7.3. Theorem. If E C R" is of locally finite perimeter, then 0™ F is
countably (n — 1)-rectifiable.

Proof. Clearly, i view of Corollary 5.5.3, we can reduce the argument to
the case of E with finite perimeter. Now recall from the proof of Lemimna
5.6.6, that if x € 8~ E, then

lim r~"|B(z,r)EN HY{z)}| =0

r—0

and
li_r.r%)r_"”B(:z,r) —EInH (z))=0.
Since B(z,r)N H ™ (z) = ([B{z,r)~ E]n H~-(2)) U(B(x,r) N EN H (z)),
the last equality implies that
. |Blz,r)NENH (z)] 1

1 = —.
T Bz, )] 2

Therefore, with the aid of Egoreff’s theorem, for each 0 < ¢ < 1 and
each positive integer ¢, there is a measurable set F; C 87 F and a positive
number r; > 0 such that ||DXxg||[(3 E) — F] < 1/(2i) and

|EN H*(z) N B(z, r)| < %(-;—)R|B(x,r)| (5.7.1)
|ENH(z) N B(z, )| > i~|B(:c,r)| (5.7.2)

whenever € F; and r < r;. Furthermore, by Lusin’s theorem, there is a
compact set M; C Fy such that | DXgl|[F; —M;] < 1/{2¢) and the restriction
of v(, E) to M; N8 E is uniformly continuous. Since H™ ! restricted to
0~ E is absolutely continuous with respect to || DXg|| (Theorem 5.6.7}, our
conclusion will fellow if we can show that each M; is countable {n — 1}-
rectifiable.
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We will first prove that for each = € M;,

Clz, e, v{z, E))NM;NB (:r, %) =0 (5.7.3)

where C(z,¢,v(z, F)) is the cone introduced in Definition 5.6.3. Thus, we
will show that |v(z) - (z — y}| < €|z ~ y| whenever z,y € M; and |z — y| <
(1/2)r;. If this were not true, first consider the consequences of v(z) - (y —
x} > €z — y|. Since the projection of the vector y — z onto v(z) satisfies
|prej, (¥ — )| 2 elz — y|, it would follow that B(y,elx — ¢|) € Ht(z).
Also, since ¢ < 1,

B(y! EI.’L‘ - yl) C B(J:,?lx - yi)

and therefore
By, ele — y) © H*(z) N B(z, 2}z - ). (5.7.4)

However, since 2|z — y| < r, it follows from (5.7.1) and (5.7.2) that

B0 HY(2) N Bz, 20z - o)l < 5 (5) 1Bz, 20— )
< ¢"1BO, [z — o) (5:7.5)

and

|E N Bly,elx —y)| > |EN By, elz —yl) N H ()]
1
2 1[Bly;ele -y

1
= 7€ 1B(0 ]z —y])I- (5.7.6)

Thus, from (5.7.4), a contradiction is reached because
1
26 1B, [z =yl < |E 0 By, elz — o))
1
S |IENH*(2)N Bz, 2z — )| < 1e"1B(0, 1= - y])}.

A similar contradiction is reached if v(z) - (y — ¢} < —¢|z — y| and thus,
(5.7.3) is established.

We will now proceed to show that each M; is countably (n—1)-rectifiable.
In fact, we will show that M, is finitely (n — 1)-rectifiable. First, recall that
M; is compact and that (-, E) is uniformly continuous on M;. 1t will be
shown that for each xy € M; there exists a £ > 0 such that M; N B{x,t)
is the image of a set A C B! under a Lipschitz map. For this purpose,
assume for notational simplicity that v{xo, E) = wv(xp) is the nt® basis
vector (0,0,...,1). Let w(xo) be the hyperplane orthogonal to v(xs) and
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let p: M; — w(zp) denote the orthogonal prajection of M; into 7{(zq). The
conclusion will be established by showing that p is univalent on B(xg, t)NM;
and that p~{p[B(zp,t) 0 M;] is Lipschitz.

To see that p is univalent, assume the contrary and suppose that y,z €
M; are points near zo with |z—y| < 3r; and p(y) = p(2). Let u = z—y/|2—y|
and note that |v(zo) - u| = 1. Since v is continuous, it would follow that
|v(y) - u| > ¢ if y were sufficiently close to zo. However, (5.7.3) implies that
|v(y} - u| < €, a contradiction. Thus, there exists 0 <t < %n such that p is
univalent on B(xg,t) N M;.

Let L be the inverse of p restricted to p[B(zg,t) N M;} and let y,2 €
plB{zo,t) N M;). Then

() - L)l _ L) - L)
=yl (LG LGP = prohge L) ~ LI
1
= — 2)—L(x))|? 1/2°
()

Using again the continuity of v, the last expression is close to

1

(1 _ ipro}vmlﬂ(z}—ﬂ(y)]l’)1/2
Ll-L)

(5.7.7)

provided that y is close to xo. by (5.7.3), (5.7.7) is bounded above by
1/(1—€2)'/2, which proves that L is Lipschitz in some neighborhood of xo.
Since M; is compact, this proves that M; is finitely (n — 1)-rectifiable. O

The following is an immediate consequence of Lemina 5.7.2 and the pre-
vious result.

5.7.4. Corollary. If E C R" is of locally finite pertmeter, then

dEc|JMuUN
i=1
where H*L(N) = 0 and each M; is an (n — 1)-dimensional ernbedded C*
submanifold of R™.

5.8 The Gauss—Green Theorem

In this section it will be shown that the Gauss- Green formula is valid on
sets of locally finite perimeter. The two main ingredients in the formulation
of this result are the boundary of a set and the exterior normal. Since we
are in the setting of sets of finite perimeter, it should not be surprising

T
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that the boundary of a set will be taken as the reduced boundary and the
exterior normal as the measure-theoretic exterior normal.

In Definition 5.6.4, we introduced the notion of the measure-theoretic
exterior normal and demonsirated {(Theorem 5.6.5) that

d"ECd'E. (5.8.1)
Moreover, from (5.6.14),
H" Y 8*E-8"E)=0. {(5.8.2)

One of the main objectives of this section is to strengthen this result by
showing that if B C 8°FE, then

H"~'(B) = | Dxs||(B). (5.8.3)
This is a crucial result needed for the proof of the Gauss—Green theorem.
5.8.1. Theorem. If £ C R" has locally finite perimeter, then

H""Y(B) = || Dxs||(B)
whenever B C *F is a Borel set.

Proof. If z € 8~ F, it follows from Theorem 5.6.3 that

' DX gll[B(z, 7)] = |1 DX, ([B(z, 1)} — | DXg- Bz, )]
= H"[B(z,1) N n(z)]

=al(n—1)
where (z) is the hyperplane orthogonal o v(z, ). Therefore,
e 1DX1B(z. 7)) _

i S et =L 2€0E. (5.8.4)

Since H*~Y(9*"E — 8~E) = {|DXg|{[8*E — 8 E] = 0 {Corollary 5.6.9) we
may assume that B C 8~ F and B C U | M;, where each M; is an (n—1)-
manifold of class C! (Corollary 5.7.4). Fix i and let g = H*}|M;. Since
M; is smooth,

. p[Blz,r)] :
}l—lflll a(n— -1 L, zeBNM,
and therefore, by (5.8.4),
tim —£BE e paa

r—0 IIDXE"[B(x, r)] B
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By the Besicovitch Differentiation Theorem (Theorem 1.3.8 and Remark

1.3.9},
H*"Y(BN M) = u(B) = [|Dxell(B N M;).

The result easily follows from this. a

We now are able to establish the Gauss—Green theorem in the context of
sets of finite perimeter.

5.8.2. Theorem. Lei E be e sel with locally finite perimeter. Then,
/ divV dz =/ n(z, E) - V{z)dH" *(x)
B B

whenever V € C}(R™; R™).

Proof. Choose a ball B(r} containing spt V. Then

/ divVde = - / V d(Dxg) (from Lemma 5.5.2)
B

= V(z) v(x, E)d}DXgl (from Definition 5.5.1)
a8

= V(z) - n(x, E)dH" !(z) (by the preceding theorem).
O E

5.8.3. Remark. The Gauss—Green theorem is one of the basic results in
analysis and therefore, the above result alone emphasizes the importance
of sets of finite perimeter. Therefore, a question of critical importance is
how large is the class of sets of finite perimeter. The definition alone does
not allow easy identification of such sets. However, it is not difficult to see
that a Lipschitz domain, §2, is a set with locally finite perimeter. An outline
of the proof will be given here while details are left as an exercise, for the
reader. We may assume that {2 is locally of the form

Q= {(w,y):0 <y < g{w)}

where ¢ is a non-negative Lipschitz function defined on an open cube
Q C R™ L, Since g admits a Lipschitz extension (Theorem {3.6.2) we may
assume that ¢ is defined on R"~!, Let g. be a mollifier of g (Section 1.6)

and recall that
[ 1Dscide < [ Dgias (5.8.5)
Q Q

for all £ > 0. Each set

2. = {(wmy) 0=y < gs(w)a w € Q}

N WP
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is obviou.sly of finite peritneter because the classical Gauss -Green theo-
rem applies to it (see Remark 5.4.2). Let X, denote Xq, and observe that
| DX [{(R™) = H*~1(682). Since

/Q VI ¥ DRz = H*[{(w, ) : y = go(w), w € Q}],

it follows from (5.8.5) that |Dx.||(R") < C where C is some constant
independent of e. We may apply the compactness property of BV functions
(Corollary 56.3.4} to conclude that X is BV in R", thus showing that § is
locally of finite perimeter. Moreover, Rademacher’s theorem on the almost
everywhere total differentiability of Lipschitz functions (Theorem 2.2.1)
implies that the measure-theoretic normal is H™~!-almost everywhere given
by

n(z, 0) = — 28w (5.8.6)

- V1+1Dg(w)?
where x = (w, g(w)}).

We conclude this section by stating without proof a useful characteriza-
tion of sets of finite perimeter. This will be stated in terms of the measure-
theoretic boundary.

5.8.4. Definition, If E C R" is a Lebesgue measurable set, the measure-
theoretic boundary of E is defined by

OuE = {z : D(E,z) > 0} N {z : D{R" - E,z) > 0}.

If we agree to call the measure-theoretic interior (exterior) of E all points
z for which D(E,z) = 1 (D(E, z) = 0), then 8, E consists of those points
that are in neither the measure-theoretic interior nor exterior of E. See
Exercise 5.3 for more on this subject. In Lemma 5.9.5, we shall see that
9*E and 3,, E differ by at most a set of H* l-measure 0.

5.8.5. Theorem. Let E C R" be Lebesgue measurable. Then E has locally
finite perimeter if and only if

HYK N3, E) < oo

for every compact set K C R™.

The reader is referred to [F4, Theorem 4.5.11] for the proof.

5.9 Pointwise Behavior of BV Functions

We now begin a treatment for BV functions analogous to that developed for
Sobolev functions in the first three sections of Chapter 3. It will be shown
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that a BV function can be defined by means of its Lebesgue points every-
where except for a set of H*l-measure zero and a set that is analogous
to the set of jump discontinuities in R!.

In the definition below, the following notation will be used:

Ay = {z 1 u(z) > t},
B, = {z : u(z) < t},

- . |E N Bz, )]

INE,z) = limsup ——————
(B2} = mswe g,y

and |E N B(z,1)]
L. I,r

In case the upper and lower limits are equal, we denote their common value
by D(E, x). Note that the sets A; and By are defined up to sets of Lebesgue
measure zero.

5.9.1. Definition. If v is a Lebesgne measurable function defined on R",
the upper {lower) approzimate limit of u at a point z is defined by
ap lim sup u(y) = inf{t : D(A;,x) = 0}

y
{(ap Ii;n inf u(y) = sup{t : D(By,z) = 0}).
We speak of the approximate limit of v at = in case

aplimsupu(y) = ap li!rfn_.iilf uly).

y—z

u is said to be approximately continuous at x if

ap lim uly) = u(z).

5.9.2. Remark. If u is defined on an open set {2, reference to the definitions
imply that u is approximately continuous at z if for every open set U
containing u(z),
D Y (U)NQ,z) = 1.

An equivalent and rather appealing formulation is the one used in Remark
3.3.5. It is as follows: u is approximately continuous at z if there exists a
Lebesgue measurable set E containing x such that D(E,z) = 1 and | E
is continuous at x. It is clear that this formulation implies the previous
one. To see the validity of the opposite direction, let r; > ry > 13> ... be
positive numbers tending to zero such that

[B(=,7)|

TR for r < rg.

<

8,0 {u: ) - w) > 1}
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Define
B =~ 180 - Blameh 0 {y: o) - u(@l > 1.
k=1

Clearly, u| E is continuous at z. In order to complete the assertion, we will
show that D(E,z) = 0. For this purpose, choose ¢ > 0 and let J be such
that 37,7 ; & < ¢. Let r be such that 0 < r < r; and let K > J be the
integer such that rx41 < v < rg. Then,

el

(R* - B)n B(@,r)| < ¥
k=K

0{v: ) - u(a)} > Ul

{B(ﬂ?, T‘k) - B(:l:? Tk+1)}

1Bln] | A 1B

k
2 k=K+1 2
1Bz, §~ [Blr)
<SSEt D
k=K+1

=1
S lB(I: ?‘}l Z 2_;‘
k=K
< |Biz,r)le,

which yields the desired result since ¢ is arbitrary.

One of the main results of this section is that a BV function can be
defined in terms of its approximate limits H*~!-almost everywhere. For
this, the following is needed.

5.9.3. Lemma. Let n > 1 and 0 < 7 < 1/2. Suppose E is a Lebesgue
measurable set such that D{E, x) > v whenever £ € E. Then there exists o
constant C' = C(7,n) and a sequence of closed balls B(z;,r;) with z; € E
such that
EC U B(zi,r;)
i=1
and
> ()"t < C|IDxgl[R"].

i=1
Proof. For each & € RB™, the continuous function

_|Bz.7)nE|
) = @0
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agsumes the value 7 for some r; > { because it exceeds this value for some
possibly different r and approaches zero as r — oco. Since 7 < 1/2, the
relative isoperimetric inequality, (5.4.3), implies

[ra(n)rf)® =0/ < CIDXEN[B(z, r2)].

Now apply Theorem 1.3.1 to the family of all such balls B{x, r;) to obtain a
sequence of disjoint balls B(x;,7;) such that U2, B(xs, 57:} O E. Therefore,

[ra(n)) D/ _Z(fﬂ"s)“'1 < 5("‘”02 DXl Bz, )]

< 57=VC| Dxgl|[R"). a

In addition to (5.5.3) concerning the (n — 1)-density of the measure
[IDXE|, we will need the following.

5.9.4, Lemuna. Let E C B® be a set with locally finile perimeter. Then,
for H* 1. glmost every zx € R* — *E,

DX, )] _
B e — Dyt

Proof. For each positive number A let

A= (R“_@*E}ﬂ{z:lil:ljgp%ﬁg >/\}.

It follows from Lemma 3.2.1 that
|Dxgl{(4) > CAH™(A).

Therefore H* 1{A4) = 0 since ||DXgl|(A) = 0, thus establishing the con-
clusion of the lemma. O

This leads directly to the next result which is needed to discuss the
points of approximate continuity of BV functions. Recail the definition of
the measure-theoretic boundary, 8,, F, Definition 5.8.4. The next result,
along with {5.8.2) shows that all of the boundaries associated with a set
of finite perimeter, 8~ F, 3*E, and 3 E, are the same except for a set of
H* L.measure zero.

5.9.5. Lemma. Let E C R™ be a set with locally finite perimeter. Then
*E C 8,F and H* Y (0, E - 0*E) = 0.

Proof. It follows immediately from Definition 5.6.4 that *E C &, E. In
order to prove the second assertion, counsider a point z € 3, F such that
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D(E,2) > § and D(R* — E,2) > 6 where 0 < § < 1/2 and define a
continuous function f by

_ |E N Blz,r)| _|B(2,r) - E|
=5 = Ee
Thus,
ﬁms:}lpf(r) =D(E,z) > 6
and

liminf f(r) =1 - D(E,2) <1-34,

with § < 1 -~ §. Hence, there are arbitrarily small r > 0 such that § <
f(r) <16 and for all such r, the relative isoperimetric inequality, (5.4.3),
implies

[ba(n)r®|(*=1/" < €| Dxg||[B(z, 7).

Thus,
. Dxg|[B(z,7)]
litn su I-I-———’—
,-_.ap a(n — 1}pn-1 >0,
and reference to Lemma 5.9.4 now establishes the conclusion. a

In the next theorem, it is shown that a BV function is approximately
continuous at all points except for a set of H"~!-measure zero and a count-
ably (n — 1)-rectifiable set E which, roughly speaking, includes the points
at which « has a jump discontinuity (in the sense of approximate limits).
It is also shown that at H™~!-almost all points of £, u has one-sided ap-
proximate limits. Later, these results will be refined and stated in terms of
integral averages.

Recall from Definition 5.9.1 that 4; = {x : u(z) > t}.

5.9.6. Theorem. Let u € BV (R"). If

#{z) = ap limsup u(y),

y—z
A{z) = ap liminf u(y),
y—e

and
E=R'N{x: Az} < pu(z)},

then
(i) E is countebly (n — 1)-rectifiable,
(ii} —oo < Alz) < p(z) < oo for H* L-almost all z € R”,

(iti) for H" l.almost all z € E, there is a unit vector v such that n{z, A;) =
v whenever A(z) < s < pu{z).
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(iv) For all z as in (iii), with —oo < A(z) < p(z} < oo, let H (z)={y:
(y—2)-v <0} and H*(2) = {y : (y — 2} - v > 0}. Then, there are
Lebesgue measurable sets E~ and E* such that

|[E- NH™(2) N B(z,7)] |E+ N HY(z)N Bz, 1)

. 1o
" H-() N Bz, " IE* (@ N Bl
and
hm o ule) = u(2), lim  ufe) = Alz).
zeE"NH " (z) zeBYNHT ()

Proof. Applying Theorems 5.4.4 and 5.7.3, there exists a countable dense
subset @ of R! such that P(A4;) < oo and 8"4, is countably (n ~ 1)-
rectifiable whenever t € . From Remark 5.9.2 we see that

H Y {U(OnAr — 8" Ay) i t€ Q)] =0
It follows immediately from definitions that
{z: Mz) <t <p(x)} COuAr for te R, {(5.9.1)

and therefore F C {U8, A4, :t€ Q}, H* 1 E—{U8*A,: t € Q}] = 0. This
proves that E is (n — 1)-countably rectifiable.

Let I = {z: Mz) = —oo} U {z : u(z) = oo} We will show that
H™(I) = 0. For this purpose it will be sufficient to assume that u has
compact support. First, we will prove that H* 1[{z : A(z) = oo}] = 0. Let
Ly = {z : Mz} > t} and note that D(L;,z) = | whenever ¢ € Ly. Now
apply Lemma 5.9.3 to conclude that there is a sequence of balls {B(r:)}
whose union contains L, such that

fas)
> ot < olDxe |

i=1

Since 4 has compact support, we may assume that diam B{r;) < a, for
some positive number a. Therefore, Theorem 5.4.4 implies

HY ' [{z s Ma) = co}] = HF Y{NL: : t € R'}]
< Climinf | DX, [|(R™) = 0.

From this it easily follows that H*~1{{z : A(z) = c0}] = 0. A similar proof
yields H*~[{z : p(z) = —oo}] = 0. Thus, the set {z : u(x) — Ax}} is well
defined for H® 1-a.e. z and the proof of (ii) will be concluded by showing
that H* '[{z : u(z) — M) = +oo}] = 0. Since E is countably (n — 1)-
rectifiable, it is o-finite with respect to H"~! restricted to E. Therefore,

5.10. The Trace of a BV Function 2558

we may apply Lemma 1.5.1 to obtain
/E(p — A)H™ = /Om HY{z : () < t < p(z)})dt
< /Om H* Ya,A)dt (by5.9.1)
< /U ” H™" (8" A,)dt (by Lemma 5.9.5)

L= ]
< C/ DX 4,lldt (by Theorem 5.6.7)
0
< C||Pu||(R*} (by Theorem 5.4.4)

< og, since spt u is compact.
We will prove that (iii} holds at each point
z€E - {U(@yA—3"A}: t€Q).

Ift € @ with A(2) < t < u(2), then z € 8,, A; and therefore z € §" 4,. Con-
sequently, n{z, A;) exists. But is must be shown that n(z, A;) = n(z, 4,)
whenever A(z) < s < p{2). It follows from the definition of the measure
theoretic exterior normal (Definition 5.6.4) that

D(Ay,z) = 1/2 = D(4,, 2). (5.9.2)

If s < t, then A, O A; and therefore D(A, — A;, z) = 0, which implies that
n(z, Ay) = nlz, A,).

For the proof of the first assertion of (iv}, let z € E— I and choose € > 0
such that A{z) < u(z) — ¢ < p{z). Observe that D(A,(;)4+e, 2) = 0 while

lim |A.u(z)—s NH™(z}N B(Z,T)l

b |[H=(z) N B(z,7)| =1

from (5.9.2). Therefore

i [P 22) — e, plz) + ] N H(z) 0 B(z,7))

LLp \H-(2) 1 B{z.7)| =1

By an argument similar to that in Remark 5.9.2, this implies that there
is a set £~ with the desired properties. The second assertion is proved
similarly. : 8]

5.10 The Trace of a BV Function

For a given set {1 C R™ with suitably regular boundary and u € BV(£),
we will show that it is possible to assign values to w at H™ !-almost all
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points of &0 even though u, when considered as a member of L(§2), is
defined only as an element of an equivalence class of functions. Recall that
two measurable functions are called equivalent if they differ at niost on
a set of Lebesgue measure zero. The difficulty with defining the trace of
a function on the boundary is that #§) may have zero Lebesgue measure,
precisely where the function may be undefined. The theory requires further
development in order for this difficulty te be circumvented. The approach
we use for this is as follows. For a certain class of domains Q C R” (called
admissible domains below), if v € BV(£) is extended to all of R™ by
defining # = 0 on K® — §2, then an easy application of the co-area formula
shows that « € BV(R"). By means of Theorem 5.9.6 we then are able
to define u H"™ l-almost everywhere including E, the set of approximate
jump discontinuities.

5.10.1. Definition. A bounded domain §2 of finite perimeter is said to be
admissible if the following two conditions are satisfied:

() H100-8,0) =0,

(ii) There is a constant M = M(Q) and for each x € 3% there is a ball
B{z,r) with

H* (8, E) N (Ouf)] < MH™Y[(8,E) N Q) (5.10.1)

whenever K C 1 B(z,7) is a measurable set.

5.10.2. Remark. It is not difficult to see that a Lipschitz domain is ad-
missible. For this purpose, we may assume that 1 is of the form

Q= {(w,y):0<y < g(w)}

where g is a non-negative Lipschitz function defined on an open ball B C
f*~! From Remark 5.8.3 we know that £ is a set of finite perimeter. Let
E C {1 be a measurable set and we may as well assume that H* (2N
O £) < 0o for otherwise (5.10.1) is trivially satisfied. Since 8, E = (8, EN
AN U(NNELE) and H*1{3Q) < oo, we conclude from Theorem 5.8.5
that E has finite perimeter. Hence, we may apply the Gauss Green thearem
(Theorem 5.8.2) with the constant vector field V = (0,0,...,1) and (5.8.6)
to obtain

/ V- n(z, OdH" (1) +/ V- nlz, EMH™ 1(z) = 0.
(8= E)N{8) (& By

Therefore, if A is the Lipschitz constant of g, we have

1

14 |AR

H" [(8*E) n (8Q)] < H* (8" E)n €,
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and reference to Lemma 5.9.5 establishes the desired conclusion.,

5.10:3. Definition. Whenever v is a real valued Lebesgue measurable
gnctlon defined on an open set 2, we denote by ug the extension of u to
_Ju(z) zeq

uﬂ(m}_{ﬁ r€R"-Q.

Observe that up is merely a measurable function and is therefore de-
fined only almost everywhere. Later in the development, we will consider
u € BV(Q) where £ is an admissible domain, and then we will be able
to define up everywhere except for an H* l-null set. If £ is a smoothly
bounded domain and » € BV((), it is intuitively clear that ug € BV(R")
because the variation of ug is greater than that of u by only the amount
contributed by H*~1{#Q). The next result makes this precise in the context
of admissible domains.

5.10.4. Lemma. If ) is an admissible domain and v € BV(Q), then
ug € BV(R™) and [[uoll gy rey < Cllullpv (qy where C = C(8).

Proof. It suffices to show that ug is BV iu a neighborhood of each point of
92 because 9N is compact. If we write  in terms of its positive and negative
parts, u = u* — u~, it follows from Theorem 5.3.5 that u € BV(9) if and
only if u*(€2), u=(22) € BV(R). Therefore, we may as well assume that u is
non-negative. For each z € 99, let B(xz, r) be the ball provided by condition
(ii) of Definition 5.10.1. Let  be a smooth function supported by B(z, T)
such that 0 < ¢ <1 and ¢ = 1 on Bz, r/2). Clearly, puy, € BV(§2) and
Theorem 5.4.4 and Lemma 5.9.5 implies :

/ﬂ HY QN 8, Agldt = | D(puo) l(Q) < oo (5.10.2)

where A, = {z : puo(z) > t}. Since |4, ~ 0N Bz, r)} = 0 for ¢t > 0, (5.10.1)
and (5.10.2) imply

/Dm H*1(8,,As)dt < C||D(pu)]| () < oo.

Hence, by Theorem 5.4.4, pug € BV{R"®) with
| Duoli{B(z, r/2)]Il < | D{puo)l|(R*) < CllD{pu0)li(€).

However, by (5.1.2),

100 I(@) =sup { [ vopdiv v da v € b o) V] < 1}
2
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and

/ugtpdidea:=/udjv(ch)da:—/uDgo-de.
a o Q

Therefore

| Puoll{B(z, r/2)]]| £ Cll D{wug)ll(2) < C||Dul|(2) + C{r)llull1a
< [C+ Cr)lllul pviny-

This is sufficient to establish the result because J€) is compact. a

We now are able to define the trace of u on the boundary of an admissible
domain.

5.10.5. Definition. If  is an admissible domain and u € BV({), the
trace, u*, of u on 84} is defined by

6 () = puo(Z) + Ao (2)

where () and A, (z) are the upper and lower approximate limits of ug
as discussed in Definition 5.9.1 and Theorem 5.9.6.

5.10.68. Remark. We will analyze some basic properties of the trace in light
of Theorem 5.9.6. Let B = {z : Ay, (z) < puo (2)}, A¢ = {2 : wo(z) > ),
and select a point zg € EN&*Q where (iii} of Theorem 5.9.6 applies. Thus,
there is a unit vector v such that

n(xo, As) =v whenever Ay (To) <t < puo{o).
We would like to conclude that
v = n(xy, Q). (5.10.3}

For this purpose, note that 0 € [Ay, (o), fu, (o)} and A, C 2 for ¢ > 0.
If ¢t > 0 and v # £n(xg, 1), then simple geometric considerations yield

A [(A; - £2) N B(zq, 1))
limsu
0" |B(zo,1)|

This is impossible since A; C 3. On the other hand, if ¢ < 0 and v #
+n(zg, 12}, then

> 0.

. [{By — 2) N B(xg, )
timsu
r-v()p |B{$0) T)!

an impossibility since By = {z : up(z) < t} C Q. Hence, (5.10.3) is estab-
lished.

>0,
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Also, observe that
if v = n{zq, ), then Ay, (zo) = 0. (5.10.4)

For, if Ay, (T0) < 0 there would exist ¢ < 0 such that Auo (Z0) < £ < py,(q).
Because v = n(xq, A;), it follows that

DA {z: (2 —x0)-v > 0},70) = 0.

But ¢ < 0 implies [(R® — Q) — A;| = 0. This, along with the fact that
v = n{zg, 1) yields

DA N {z:(z —xo) v >0},20) > 1/2,

a contradiction. Therefore, Ay, (7o) < 0.
On the other hand, if Ay, (zo) > 0, there would exist ¢ > 0 such that
D{A;, 24} = 1. This would imply that

D{A 0 {z: (z—x0)-v > 0},29) = 1/2
which is impossible since |4; — 2| = 0 and
Dn{z:{z—zo) v>0},z) =0.
Thus, (5.10.4) follows and a similar argument shows that
if v = —n(zo,§2), then py,(z0) = 0. (5.10.5)
Later, in Section 5.12, after certain Poincaré-type inequalities have been
established for BV functions we will be able to show that if £ is admissible
and u € BV (1), then

r—0

limy / lu(y) — u* ()| Hdy =0 (5.10.6)
Bz, r)nft

for H*~!-almost all z € 1.
We conclude this section with a result that ensures the integrability of
u* over 9(L.

5.10.7. Theorem. If 1 is an admissible domain, there is a constant M =
M({Q) such that
[ it < Miloviay
a0
whenever w € BV (Q1).

Proof. Since by definition, u* = Ay, + py,, it suffices to establish the
inequality for the non-negative function g = pu,,, the case involving A
being treated in a similar manner. As in the proof of Lemma 5.10.4, we
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need only consider the case when p is replaced by u, where is a smooth
function with 0 < ¢ €1, ¢ =1 on B(z,7/2), and sptu C B(z,r), where
B(z,r) is a ball satisfying the condition (5.10.1).

First, with 4; = {z : wu(z) > t}, observe that 4; N 9,0 C (B Ay N
(8, 8), for t > 0. Indeed, let z € A; N3y and suppose & & Oy Ay. Then
either D{A;,z) = 1 or D(A¢,x} = 0. In the first case D(f,x) = 1 since
|A; = Q] = 0 for t > 0. Hence, z & 02 a contradiction. In the second
case, a contradiction again is reached since the definition of pu(z) implies
r & A;. Therefore, we have

H™ A, N8, < HY (8 A) N (80)], t>0. (5.10.7)

Thus, we have

pdH™! S/ ppdH™!

[B(I,T{'Q)naMﬂ Bi{z,rINdp {t

te )
5/ H" (4,1 8,9) (by Lemma 1.5.1)
i}

< / ” H (84 A) N (8, Q)]dt  (by 5.10.7)

—Jo
gM/ H* V{8, Ay) N0)dt  (by 5.10.1)
0

< M||D(ep)|(£2) (by Theorem 5.4.4}
< Myl|lu|l pv(a)-

Since i1 = u almost everywhere, the last inequality follows as in the proof
of Lernma 5.10.4. O

5.11 Poincaré-Type Inequalities for BV Functions

In this section we prove the main inequality {Theorem 5.11.1) from which
essentially all Poincaré-type inequalities for BV functions will follow. This
result is analogous to Theorem 4.2.1 which was established in the context
of Sobolev spaces. In accordance with the previous section, throughout we
will adopt the following conventions concerning the point-wise definition of
BV functions. If u € BV(R™) set

ulz) = %[Au(m) + pa ()] (5.11.1)

at any point where the right side is defined. From Theorem 5.9.6(ii}, we
know that this occurs at H»l-almost all z € R*. If u € BV (2}, 2 admis-
gible, then we know by Lemma 5.10.4 that ug € BV(R") and therefore g
is defined A" !-a.e. on R®. Thus, we may define u on {2 in terms of ug as
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follows:
_Juslz) z€
ue) = {2“0(3«‘) z € Q. (5.11.2)

At first glance, it may appear strange to define u(x) = 2up{z) on 90,
but reference to (5.10.4) and (5.10.5) shows that this definition implies the
intuitively satisfying fact that at H* l-a.e. z € 89, either u(z) = py,(x)
or u{x) = Ay, {z). Consequently, u is a Borel function defined H"!-a.e. on

{. Note that we have for H* l.a.e. ,
au(z) + bu(x) = (au + bu)(x)

whenever a,b € R,
5.11.1. Theorem. Let @ be a connected, admissible domain and suppose
w€ BV(Q). If T € [BV()]* and T{Xg) = 1, then

6 = T()ljmoryiz < CITI 1Dl (9), (511.3)
g:'(!(e]re %|T|] denotes the norm of T as an element of [BV(Q)]", and C =

\n).

Proof. It suffices to show that
lu — T(u)llia < CIT| | Dull(R), (5.11.4)
for if we set f = u — T'(u), then by Sobolev’s inequality and {5.11.4),

W lnsin—1y,0 = Il follns(n—1y:mn < CillfollBviany € Ol Bvin)-

The last inequality follows from Lemma 5.10.4. Also, note that the Sobolev
inequality holds for fo because it holds for the regularizers of f;, whose BV
norms converge to || fo)| pv(gn) by Corollary 5.2.4. Thus, in view of the fact
that ||7]| > |§2)~!, {(5.11.3) follows from (5.11.4).

To prove {5.11.4), it is sufficient to assume f,u(z)dr = 0 since the
inequality is unchanged by adding a constant to u. With this assumption,
(5.11.4) will follow if we can show

lull e < Cl|Dull(2) (5.11.5)
because

e = T(w)llie < lluflie + QT ulsvo
< [+ 1GITNlellge + DUl $2)
< 21 IT (el e + I1Du(€2).
If (5.11.5) were not true for some constant C, there would exist a sequence
ug, € BV (£}) such that

/ wp(z)dz =0, [uallua =1, and [|Dugl|(€) — 0. (5.11.6)
13
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For each wug, form the extension ui o by setting w = 0 on R™ — . From
Lemma 5.10.4, it follows that the sequence {||uxollpv(r~)} is bounded
and therefore an application of Corollary 5.3.4 implies that there exist
u € BV{R"} and a subsequence of {uso} (which will still be denoted by
the full sequence) such that uzo — u in L'{2). Therefore ||[ufl;;n = 1
from (5.11.6). But (5.11.6) also show that ||Duf{{£2) = 0 and therefore u =
constant on 2 since £} is connected. Consequently, & = 0 which contradicts
llujl1.0 = 1. Thus, (5.11.5) and therefore (5.11.4) is established. 0O

5.11.2. Corollary. Let Q! be e connected, admissible domain. Let ¢ and
M be numbers such that

lag + a1¢) < Mlleo + arullpyv(n)
Jor all ag,a1 € R!. Then there exists C = C(Q) such that
I = ella/(n-150 < CM||Dul|(R*). (5.11.7)

Proof. Define a linear map Ty on the subspace of BV{Q}) generated by
Xq and u by Ta{Xg) = 1 and Ty(u) = ¢. From the hypotheses, the norm
of Ty is bounded by M and therefore an application of the Hahn-Banach
theorem provides an extension, T, to BV({}) with the same norm. Now
apply Theorem 5.11.1 to cbtain the desired result. O

5.12 Inequalities Involving Capacity

We now will investigate the role that capacity plays in Sobolev-type in-
equalities by considering the implications of Theorem 5.11.1. Recall that
the BV (1?) is endowed with the norm

Hullsv ey = llulle + (| Dul|(£2).

However, for notational convenience, we will henceforth treat BV{R") sep-
arately and its norm will be given by

By ary = I1Du||(R").

In Section 2.6, Bessel capacity was introduced, developed, and subse-
guently applied to the theory of Sobolev spaces. Because of the irreflexivity
of L, it was necessary to restrict our attention to p > 1. The case p = 1
is naturally associated with BV functions and the capacity in this case is
defined as follows:

¥ E) = inf{||Dv||(R"*) : v € Y{R"), E Cint{v > 1}},

where
Y(R") = L™ (""Y(R*}n BV(R™).
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Note that W!(R") C Y(R") and by regularization (cf. Theorem 5.3.1),
that

li#etln /-1y < CHDull(R™) (5.12.1)

for u € Y(R"). A simple regularization argument also yields that in case
E is compact,

¥(E) = inf{||Dvf} : v € C°(R"), E Cint{v > 1}}. (5.12.2)

5.12.1. Lemma. If E C R™ is a Suslin set, then

Y E} =sup{¥(K): K C E, K compact}.

Proof. Referring to Theorem 2.6.8, we see that it is only necessary to
show that v is left continuous on arbitrary sets since right continuity on
compact sets follows directly from (5.12.2). Thus, it suffices to prove that
if By C E5 C ... are subsets of R*, then

L= <]
B (U Ei) = lim v(E).
=1

For this purpose, suppose

A= lim y(E;) < o0, and € > 0.

Choose non-negative #; € Y{R"™) so that

E; Cint{z: vi(s) > 1} and {Dull(R*) < y(E;) + €277,
and let k; = sup{vi,vs,...,v;}. Note that h; € Y(R") and

hj =sup{h;_1,v;}, Ej—1 Cint{z : inf{h;_y,v;}(z) > 1}.

Therefore, letting I; = inf{h;_1,v;}, it follows from Theorem 5.4.4 (which
remains valid for functions in Y{R")) and Lemma 5.9.5 that
I1DA;[(R”) + ¥(Ej—1) < | DAGII(R™) + | DI )(R™)

+oo

=/ H* Y0, {h; > t})dt
- +ow

+ HY Y0, {1; > t})dt.

It is an easy matter to verify that
8M{hj > t} UBM{I_,; > t} C BM{h_,-_l > t} UaM{ﬂj > t}
3M{hj > t} naM{I,- - t} C 8M{hj_1 > t} naM{Uj > t}.
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Consequently,
HY (8 h; > t}) + H* Y (0u{L; > t})
< H ' Bu{hjor > t}) + H* HBu{v; > t})

and therefore,

+o0
DR + 2By} < [ B (g > e
+oo
+ H™ 18y {v; > t})dt
—0a

= | Dh;—1[[(R") + | Dy I(R™)
< | Dh;-al|(R™) + +(E;) +e277.

It follows by induction that

i
DR (R < Y(Ej)+ > 27

i=1
Therefore, letting w = lim;_,q, by, {5.12.1) implies
lwllnsaym = Hm {iRsllen3)/m < limsup C|IDR;|I(R") < C(A +e),
— j—oo
whereas the proof of Theorem 5.2.1 implies

|Dwl(R") < limin | DA {[(R") < oo.
i—o0
Thus, w € Y (/") and

y (U E) < IDw](R") < liminf [ Dh; j(R™) < A+ .

i=1
In addition to the properties above, we will also need the following.

5.12.2. Lemma. If A C R® is compact, then

+(A) = inf{P(U): A C U,U open and |U| < o}. {(5.12.3)

Proof. Let y; (A) denote the right side of (5.12.3).

¥{A) < 11{A): Choose 7 > 0 and let A C U where U is bounded, open

and
P(U} < ni(A) + 7.
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Let X = Xy and X, = X * ¢, where @e is a regularizer, Then X, > 1 on
A for all sufficiently small € > 0 and

¥(4) £ f IDx.|dz (by (5.12.2))
Rn
< [[DXyl[(R®) (by Theorem 5.3.1)
<m(A4) +7.
This establishes the desired inequality since 7 is arbitrary.

T1(A) < ¥{A): If 5 > 0, (5.12.2) yields u € C§°(R™) such that > 1 on
A and

f |Duldz < v(A) + 9.
R"

By the co-area formula,

f |Du|dx='/WH“_l[u_1(t)]dt
n 0

1
n—1r,,~1
> /; H =Y (0)]dt
> H" u™(t))]

for some 0 < tp < 1. Since &{u > #o} C u~'(p), with the help of Lemma
5.9.5, it follows that

71(4) < P({u>to}) < H* '[B{u > to}] < H* Mu"(tp)]
<y(A) +n. ]

We now are able to characterize the null sets of -y in terms of H?~1.

5.12.3. Lemma. If E C R" is a Suslin set, then
HE)=0 ifand only if H"(E)=0.

Proof. The sufficiency is immediate from the definition of H™*? and the
fact that v[B(r)] = Cr™~L, In fact, by a scaling argument involving z — rz,
it follows that v[B(r)] = ~{B(1)]r"~1.

To establish necessity, Lemma 5.12.1 along with the inner regularity of
H"=! [F4, Corollary 2.10.48) shows that it is sufficient to prove that if
A C R" is compact with y(A) = 0, then H*~1(4) = 0. For ¢ > 0, the
previous lemma implies the existence of an open set I/ 3 A such that
P(U) < ¢. Lemma 5.9.3 provides a sequence of closed balls {B(r;)} such
that U2, B(r;) DU D A and

d Pt < ePU) < Ce. o

i=1



266 5. Functions of Bounded Variation

We proceed with the following result which provides some information
concerning the composition of [BV(R"}]*.

5.12.4. Theorem. Let u be a positive Radon measure on R™. The following
four statements are equivalent.
(i) H*~Y(A) = 0 implies that u(A) = 0 for all Borel sets A C R" and
that there is a constant M such that | [ udp| < Mlju||pyv(a») for all
u € BV (R"}).

(ii) There is a constant M such that u(A) < MP(A) for all Borel sets
A C R™ with JA] < 0.

(iii) There is a constant M, such that u(A) < Myvy(A) for all Borel sets
AC R

(iv) There is a constant M, such that p{B(z,r)] < Mar®~! whenever
z € R* and r € R..

The ratios of the smallest constants M, My, and M3, have upper bounds
depending only on n.

Proof, By taking u = X4, (ii) clearly follows from (i) since
l#ll avirey = |Dull{R"} = P(A).

For the implication {ii) = (iii), consider a compact set K and observe

that from the regularity of u and (ii),
w(K) = inf{p{U) : K C U,U open and |U] < oo}
< Minf{P(U): K C U,U open and {U| < o0}.

Lemma 5.12.2 yields u(K) € M~(K). The inner regularity of 4 and Lemma
(5.12.1) give (iii).

Since y[B(r)] = Cr™~1, (iii) implies (iv).

Clearly, (iv) implies that u vanishes on sets of H~!-measure zero. Con-

sequently, if v € BV(R"), our convention (5.11.1) implies that u is defined
p-a.e. If u is also non-negative, we obtain from the co-area formula

vl
IDuE") = fullsvinn = [ PCAa: (5.12.9)
o
where A; = {z : u{z) > t}. In particular, this implies that for a.e. ¢, A; has
finite perimeter. For all such ¢, define
Ft = A.g n {I ' ﬁ(At,SC) 2 1/2}

For = € A, the upper approximate limit of 4 at x is greater than ¢ (see
5.11.1), and therefore

A —F, c {z:0 < D{A;,z) < 1/2}. {5.12.5)
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Therefore, Ay — F; C 8,A;. In fact, A, — F, C 0,4, — 8" A, because
xr € 3'A; implies that D(A;,z) = 1/2. Therefore, H* (A, — F;) = 0
by Lemma 5.9.5. Thus, we may apply Lemina 5.9.3 to ¥, and obtain a
sequence of balls { B(r;)} such that Fy C U%, B(r;) and

STt <oP(R).
i=1
Therefore {iv) yields
u(Fy) < CMP(Fy). (5.12.6)

Now, P(A;} = P(F,) and since u vanishes on sets of H"~'-measure zero,
we have p{A;) = p(F;). Thus, Lemma 1.5.1, (5.12.6), and (5.12.4) imply

/udp, = / ,U.(Ag)dt S CM2||u||BV(Rn).
0
If u is not non-negative, apply the above arguments to |u| to obtain (i). O

5.12.5. Remark. A positive Radon measure y satisfying one of the con-
ditions of Theorem 5.12.4 can be identified with an element of [BV{R™)]*
and M can be chosen as its norm.

Suppose (2 is an admissible domain and p a positive measure such that
sptp C §1. In addition, if g € [BV(Q)]*, then there exists a constant
C = C(f1, ) such that

/udp

whenever u € BV(R"). Thus, € [BV{R")]* and Theorem 5.12.4 applies.
On the other hand, if spt 4 C £ and one of the conditions of Theorem 5.12.4
holds, then p € {BV(§2)]* because of Lemma 5.10.4. Thus, for measures u
supported by €0, u € [BV(Q)]* if and only if one of the conditions of
Theorem 5.12.4 holds and in this case there is a constant C = C(}) such
that

< Cllullaviny < Cllullsy(rry

C Y ullisvirmy < lelliavey < Cllpllizy (zry-- (5.12.7)
For the applications that follow, it will be necessary to have yet another
formulation for the capacity 7.

5.12.6. Lemma. If A C B™ is a Suskin set, then
7(A4) = sup{u(A4)} (5.12.8)

where the supremum is taken over the set of positive Radon measures p €
[BV(E™)]* with {ullipvrnye < 1.

Proof. Because of the inner regularity of v+ (Lemma 5.12.1) it suffices to
consider the case when A is compact. Referring to the Minimax theorem
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stated in Section 2.6, let X denote the set of all positive Radon measures
i with sptpp C A and u(R") = 1. Let Y be the set of all non-negative
functions f € C§°(R™) such that ||[Df}|; < 1. From the Minimax Theorem,
we have

sup inf /fdu— inf Sup/fd,u

fEV BEX
It is easily seen that the left side is equal to the reciprocal of v(A) whereas
the right side is the reciprocal of the right side of (5.12.8). o

One of the most frequently used Poincaré-type inequalities is
lulipe < CE)|Dullp0

where p > 1, u € WH(R2), and [, u(z)dz = 0. Inequalities of this type were
treated from a general perspective in Sectlon 4.2, In the next theorem, we
will obtain a Poincaré-type inequality for BY functions normalized so that
their integral with respect to a measure in [BV{{2)]* is zero. That is, the
measures under consideration are those with the property that u|B{z,r)] <
Mr®=1 for all balls B(x,r). For example, this includes Lebesgue measure
restricted to a bounded domain or (rn — 1)-Hausdorff measure restricted to
a compact smooth hypersurface in R".

5.12.7. Theorem. Let Q be a connected admissible domain in R™ and let
i be @ non-trivial positive Radon measure such that spt u C §1 and for some

constant M > 0 that

p.[B(.'B, T)] < Mot
for all balls B(x,r) in R™. Then, there exists a constant C' = C(Q) such
that for each u € BV(}),

1t = Tl roryir < cfﬁ—)unun(m

where Ty (ﬂ) —— f u(

Proof. Theorem 5.12.4 states that p € [BV(R")]* and because { is admis-
sible, (5.12.7) shows that u may be regarded as an element of [BV(2)]".
Therefore, Theorem 5.11.1 is applicable and the result follows immedi-

ately. a
This leads directly to the Poincaré inequality for BV functions.

5.12.8. Corollary. Let ) be a connected, admissible domain and let A C Q)
be a Suslin set with H""1(A) > 0. Then for u € BV{{l) with the property
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that u{z) = 0 for H*'-almost all x € A, there exists a constant C = C(§1)
such that

C
(wla/tn-1y0 < m“Du”(Q).

Proof. From Lemma 5.12.6 we find that A supports a positive Radon mea-
sure u € {BV(Q)]* such that u(A4) > 27y(A) and |ulliav(an)- < 1. Thus,
for any u € BV(Q) with the property in the statement of the corollary,
Judu = 0. Our conclusion now follows from the preceding theorem. O

We now consider inequalities involving the median of a function rather
than the mean, The definition of the median is given below.

5.12.9. Definition. If v € BV (£} and pu a positive Radon measure in
[BV(Q)]*, we define med(u, 4} as the set of real numbers ¢ such that

Wln (2 u(2) > )] < Zu@)

ul0 {2 ulz) <t}] < %u (&)

It is easily seen that med(w, &) is a non-empty compact interval and that
if ag and a; are constants, then

med{ap + a1u, &) = ag + aymed(u, ). (5.12.9)

If ¢ € med(u, ), then u(A:) > Lu(2) where A, = Q0 {z : u(z) > c}].

Consequently,
c

S < cula) < [ futa)ldu).
Similarly, if ¢ < 0, then u(B.) > 1u(D) where B, = 0N {z : u(z) < ¢}]
and

L@ < ~eu(Bo) < ] —u(z)du(z) < /ﬁ_ Ju(z) ldu(z).

C

Therefore,
L/ Jos] e (5.12.10)
@Jm o
and (5.12.9) thus implies
2

ag +ajef € — .

lag + a1¢} < Wis) sy - llao + a1ullavq)-
The following is now a direct consequence of Corollary 5.11.2.
5.12.10. Theorem. Let £ be a connecled admissible domain in R™ and let
u be a positive Radon measure such that spt i1 C {1 and for some constant

M > 0 thet
u[B(x,r)] < My*?
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for ail balls B(z,r) in R". Then there exists @ constant C = C(§1) such
that for v € BV () and ¢ € med(u, i),

M
- _1a < O—[|Dull(£)).
e = cllnjn-1)m < ”(Q)H ull(€2)

5.12.11. Corollary. Let §} be a connected, admissible domain and let A
and B be disjoint Suslin subsets of Q0 of positive H" '-measure. Then
there ezists a constant C = C(Q) such that for each v € BV{(Q) with u > 0
H* l-ae. on A and u< 0 H* -ae on B,

lullnstn-1yi0 < CIY(A) ™ + ¥(B)IDull ().

Proof. Lemma 5.12.6 yields measures g and v supported by A and B
respectively such that

1(A4) 2 u(4) 2 5¥(A), fulpvamyr <1,

b | —

Y(B) 2 w(B) 2 3¥(B). Ivlaveamy- < L.

Define

A= p(A)y +v(B)p
and observe that 0 € med(u, A) for u € BV(§}). Since A(Q) = 2u{A)v(B)
and |[Alljavernye € p(A) + v(B), the conclusion follows from Theorems
5.12.4 and 5.12.10. w]

5.13 Generalizations to the Case p > 1

Since a BV function u is defined H™ 1-almost everywhere by means of
(5.11.1), an obvious question arises whether the results of the previons
section can be extended by replacing {u|l,/(n—1);0 that appears on the left
side of the inequalities by the appropriate LF-norm of u defined relative to a
measure that is absolutely continuous with respect to H™~1. We will show
that this can be accomplished by establishing Poincaré-type inequalities
that involve ||u||n/(n—1),» where X is a positive measure that satisfies one
of the conditions of Theorem §.12.2.

5.13.1. Theorem. Let A be a posilive Radon measure on B®. The following
two condifions are equivalent:

(i) H* 1(A) = 0 implies A(A) = O for all Borel sets A and for 1 <p <
n/(n — 1), there exists a constant C = C(p,n, A) such that

lullp.s < CllDul[R"]
for all u € BV(R").
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(ii) There is a constant C; such that
A[B(z,7)] < CPrp(n—1)
Jor all balls B(z, 7).

The ratios of the smallest constants C and C; have upper bounds de-
pending only on n.

Proof. The case p = 1 is covered by Theorem 5.12.2, so we may assume
that p > 1. Suppose (ii} holds and let f € LP (A), f > 0. Then, by Holder’s
inequality,

1/p'
/ flz)dr < ([ f”'dA) A[B(z,r)]/?
Blz,r) B(z,r}
<Gl

Thus, the measure fA defined by
e = [ f@a)

satisfies condition (ii) with p = 1. Therefore, by Theorem 5.12.2,

|[ut | < mcusiy ulvian

for all v € BY(H"). From the definition of Hausdorff measure, it is clear
that H""1{A) = 0 implies A(4) = 0. Thus, (i) is established.

Now assume that (i) holds. For each Borel set A C R" and each £ > 0,
reference to Lemma 5.12.1 supplies an open set U/ 3 A such that P(U) <

¥(A) + €. Therefore, from (i) with u = X 4,
#

AP < MUV < C)|Dxpll(RY)
=CP(U)
< Cy(A) + Ce.

In view of the fact that v[B{z,7)] = Cr"1, (ii) is established. m

With the help of the preceding theorem, results analogous to those of
the Section 5.12 are easily obtained. For example, we have the following.

5.18.2. Theorem. Let S be a connecled, admissible domain in R™. Lel p
and A be posilive Radon measures supported by Q such that

“[B(z: r)} = Clrn‘_ly
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AB(z,r)] € C3r?*~D 1<p<n/(n-1),
for all balls B(z,v). Then, there ezists a constant M = M(Q) such that

C1C;

— NI
~ IDul@)

lu—a(p)llpr < M

for all w € BV(Q).
Proof. From Theorem 5.13.1 and Lemma 5.10.3 we have

"u"p')l;ﬂ = "T‘D"p,)\
< Cluollsv(an)
< Cllullavs)-

Applying this inequality to u — %(u}, we obtain

|l — @(pe)|lpre < Clle — Glge) |l By ()
< Cllu — a0 + CliDul|(22)
< CIDul(®). 0

Other results analogous to those in the preceding section are established
in a similar way and are stated without proof.

5.13.3. Theorem. If ¢ € med{u, u}, then

C1Cy
e — eftp,n < M—==(|Dul|(£2).
y #($2)
Also,
If u(x) = 0 on A where A is a Suslin set of positive H"~'-measure, then
Cs
ullpr < M2 | Dul(®).

5.14 The Trace Defined in Terms of Integral
Averages

For u € BV(R™), recall the following facts established in Theorem 5.9.6:
(i) E ={z:AMz) < pu(z)} is countably (n — 1)-rectifiable,
(il) —oo < A(x) < p(x) < oo for H*l-almost all z € R",

(iii) For H»~'-almost every z € E, there exists a unit vector v such that
n(z, A,} = v whenever A(2) < ¢ < u(2).
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Although our convention (5.11.1} of setting u(z) = %{/\.,(J:) + pty ()]
allows a meaningful pointwise definition of « at H™ l-almost all points,
the simple example of u as the characteristic function of a ball shows that
it is not possible to define  in terms of its Lebesgue points H™!-almost
everywhere. This is merely one of the ways that the BV theory differs from
the Sobolev theory developed in Chapters 3 and 4. However, iu this section
we will show that a slightly weaker result holds:

lm f  uly)dy = 5{(s) + pufz)]
rRJ B,

for H* '-almost all £ € Q. If {2 is admissible, then a similar result will be

shown to hold for the trace u*, the only difference being that the ball B(z, r)

in the above expression will be replaced by B(z,r)N{}. Briefly stated then,

a BV function can be defined pointwise H"!-almost everywhere on {2 as

the limit of its integral averages.

5.14.1. Remark, If u € BV{(R"} is bounded, then it is easily seen that
(with convention (5.11.1) in force),

lim lu(z) — u(xp){dz =0 (5.14.1)
m=0JB(zo,r)
for xg € E and that for all z € E for which (iii) above holds,
lim [u{z) — Ae{2)|7dz = 0, (5.14.2)
r—0 B+ (z,r)
lim ju(z} — pu(2){%dz =0, {5.14.3)
r=0/B(2,r)
where
B¥(z,r)=B(z,;r) 0 {y: {y —2)-v >0},
B7(z,r)=B(z,r)Nn{y: {y— 2} v <0},
and n
T -1

To verify {5.14.1), use Remark 5.9.2 to conclude that there is a Lebesgue
measurable set A such that D{A,xp) = 1 and

Jim = u(zg).
a:eAu
Then

lim r‘“/ |u(z) — u(xg)|dx = lim r‘“/ [1e{z) — u{zo))”dx
B(xa,r) r—0 B(xg,r)nA

r—0

+ Lim " f () — w(zo)|” d.
B(zg,rind

r—0
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The first term tends to 0 by the continuity of u| A. The second term also
tends to 0 because u is bounded and D(A, xg) = 0, where A=R"- A

Now consider (5.14.3), the proof of {5.14.2) being similar. From the def-
inition of u(z), we have that D(A4,2) = 0 for each £ > p(z). From (iii)
above, D(A,N{y: (y—2) v < 0}) = 0 for A(z) < 8 < pu(z). Thus, if€ > 0,
t—s<¢ and s<,u(z)<t, we have

limsupr_"/ [u{z} — pu{2)|°dz < limsupr™" / e”
B-{z,r) B-{z,r)N(A,—AL)

r—0 , r—0

1B~(2,7) 0 (4 U A))]

Tﬂ

+ sup |u(z)} — pu{z))° - limsup
TER" r—0

The last term is zero since u is bounded and therefore the conclusion follows

since ¢ is arbitrary.
Owr task now is to prove (5.14.1), (5.14.2), and (5.14.3) without the
assumption that u is bounded. For this we need the following lemma.

5.14.2. Lemma. If u € BV(R") and W\, (%o} = pul(zo), then there is a
constant C = C(n) such that

/e
limsup (f fu{z) — u(a:g)|"da:) < Climsup r* ™| Duf|[B{z¢, 7)|.
B(zo,r) r—l

r—)
Proof. For each r > 0, consider the median of u in B(xg,r),
1
tr =inf{t: [B{zg, 7} N{z:u(z) > t}| < EIB{.’EU,T)”,

and apply Theorem 5.12.10 and Minkowski’s inequality to conclude

1/o
lim sup (f ju(z) — u(:.r:g)}"da:)
r—0 B(zo,r)

< Climsupri="|Dul[B(zs, 1)} + C'ltr — u(zo).
r—
Moreover, ¢, — u(xg) since Ay,(zo) = pu(zo). O

5.14.3. Theorem. If u € BV(R"), then (5.14.1} holds for H" -almost
all ©y € R™ — E, whereas {5.14.2) and (5.14.3) hold for H™ '-almost all
Tp € E.

Proof. For each positive integer 1, let

i it u(z)>i
wi{z) = ¢ ulz) if ju(z)| <i

—i if u(z) < —i,
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Wi={z:—i<Aul(x) < pylx) <i},

and observe that

(=]
Hn 1 (R" - W,-) = (5.14.4)
i=1
by Theorem 5.9.6(ii).
For each ¢ > 0, let
L i e 1P = w0, )]
Z; = {.1:0 : 111:1_?:]1p (= 1)1 <e (5.14.5)
and refer to Lemma 3.2.1 to obtain
eH" Y (U - Z) < )\ D(u - w)[I(V) (5.14.6)

whenever I/ ¢ R" is open. By Theorem 5.4.4,
I1Duu = wI0) < [ P (u= whe) 2 o}, Ulds
+ /: Pl{z : (4 — u)(z) < 8}, Ulds
= [ Pl ) 2 i+.01,Ulds
+ /: Pl{z : u(z) < —i + s}, Uds

= P{{z : u(z) > 8}, Ulds. (5.14.7)
|a)>i
If UV is bounded, then
/ ” Pl{z: u(z) > 5}, U)ds = | Dul|(U) < .

—Do

and therefore the last integral in (5.14.7) tends to zerc as i — co. Hence,
we obtain from (5.14.6) that H*1(U — Z;) - 0 as i — oo. Then,

oo oQ

it O -] -0
F=1lé=3

and

H*! [R" - ﬁ G Z.] =0. (5.14.8)

f=li=j
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To prove {(5.14.1), it suffices by (5.14.4) to consider zq € (U2, W;) — E.
Because © — u; has 0 as an approximate limit at each such point x( of W,
it follows from Lemma 5.14.2 that

1o
limsup (f lu(z) — 'u,-(z:)|"da:)
r—0 B(zg,v)

< Climsupr! ™| D{u — u;)||[[B(zo, r)]. (5.14.9)
r—0

From (5.14.8) we may as well assume that z, € M52, U Z;i. For i suffi-
ciently large, reference to Remark 5.14.1 yields

e
lim ][ |ui{z) — u(z)|"dz =10
r—0 B(xﬂsr)

From (5.14.9), there exists ¢ sufficiently large such that

/e
lim f Ju(z) — u;(:t:)i"dz) < Ce.
"0\ JB(z0.r)

Consequently, (5.14.1) follows for unbounded u € BV (R") by Minkowski’s
inequality and the fact that ¢ is arbitrary.
Essentially the same argument establishes (5.14.2) and (5.14.3). ]

As an immediate consequence of the above result, we obtain the follow-
ing.

5.14.4, Theorem. If ) C A" is open and u € BV(Q), then

lim |u{z) — w(ae)|™/ ™ Vde =0
70 B(za,r)
for H" l.almost all zg € Q — E, and
lim u(z)dz = u{xzg)
"0/ B(z0.7)
for H* 1-almost all zg € Q. If Q is admissible, then the trace u* satisfies
lim [u(z) — w*(zo) | ™ Vdz = 0
o0 f Blag,r N0

for H" '-glmost every zy € 942

Proof. The statements concerning the integral averages of u follow imme-
diately from (5.14.2) and (5.14.3). Also, referring to Remark 5.10.6 leads
to the last part of the theorem. 0
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Exercises

5.1. Suppose u is a function of a single variable and that u € BV (a, b},
@ < b. Prove that || Dul|(a,b) = ess V*(u). Hint: Use regularizers of u.

9.2, Suppose © C R is an open set and u € BV(£2). Prove that there
exists a sequence of polyhedral regions { P, } invading § and piecewise
linear maps Ly : P, — R! such that

lim / |Lk - ul =1,
k—o0 P

lim /P IDL = D).

Hint: By Theorem 5.3.3, it suffices to consider the case when u €
C*{Q)N BV(Q). Let Py C P> C ... C £ be polyhedral regions such
that |Q — Py — 0. Choose each Py as a simplicial complex, so that
it is composed of n-dimensional simplices. Since [[Duliie < oo, we
may choose k so as to make f, p, | Dul arbitrarily small. Moreover,
we may assume without loss of generality that each simplex, o, in
Py has its diameter small enough to ensure that the oscillation of 2]
and |Du| over ¢ is small, uniformly with respect to all o. Suppose o
is spanned by the unit vectors vy, vs,...,v,. Define the linear map
Ly on ¢ so that it agrees with v at the n + 1 vertices of o. Clearly,
NZilli;p, = Nullye- To see that the L'-norm of the gradients also
converge, note that

f Duf = | Du(p){lo]|

for some p € ¢. On each of the edges of & determined by the vectors v;,
i=1,2,...,n, there is a point p; such that [Du(p;) — DL (p;)]-v; = 0
(by the Mean Value theorem). But DLy(p;) = DLy(p) since Ly is
linear and |Du(p;)| is close to | Du(p)| becanse of the small oscillation
of | Du} over ¢. Therefore, | Du(p)— DLy (p)| is small and consequently,
S, {DLy] is close to { {Dul, uniformly with respect to all o.

5.3. If E C R" is a measurable set, let us say that E is open in the density
topology if D(E,z) = 1 for each z € E. Prove that the sets open i
this sense actnally produce a topology. In order to show this, it must
be established that an uncountable unton of density open sets is open;
in particular, it must be shown that it is measurable. Hint: Use the
Vitali covering theorem. If we agree to call the exterior of E all points
z such that D(E,x} = 0, we see that 8,,F is the boundary of E in
the density topology.
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5.4. In the setting of metric spaces, there is an inequality, called the Eilen-
berg Inequality, that vaguely has the form of the co-area formula. It
states that if X is a separable metric space and u : X — R™ is a
Lipschitz map, then for any E C X and all integers 0 <k < n

* -k
KB N u M) < 220D )

o a(n)
Here, L is the Lipschitz constant of u and f * denotes the upper
Lebesgue integral. Also, H™ denotes m-dimensional Hausdorff mea-
sure which has a meaningful definition in a metric space.
STEP 1. By the definition of H?, for every integer s > 0 there exists
a countable covering of E in X by sets E;,, i = 1,2,..., such that
diam E; , < 1/s and

HY(B) > “2(:‘) E(diam&,,)ﬂ -

Hence,

an—k) . . =, - -
< -(fk)han_l. inf ) "[diam (E; o N ™ (3)]"*.

2ﬂ
i=1

HMEnuy))

STEP 2. Consider the characteristic function of the set u{4), X{u(4}),
where u(A) denotes the closure of u(A). Then

[diam (A Nu™H(y))]** < (diam 4)*~*x(u(A),y).
Hence, from Step 1,
afn — k) —

= llmlan(dmmE”)" Ex(u(E), y).

i=1

H™ 8 nu™l(y)) <

STEP 3. Apply Fatou’s lemma {which is valid with the upper integral)
to obtain

H" MENa Y y)dH(y) < (—i)hmmf): (diam E; )%
R® i=1

[ XlE vy ).
However,
[ XTED paH" 0) = B (i) < atm)ldiam u(Bso)]"

Now use Step 1 to reach the desired conclusion.
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9.5, Let u € BV(Q} where 2 C R® is an open set. For each real number
t, let Ay = {x: u(z) > t}. As usunal, let X4 denote the characteristic
funetion of the set A. For any Borel set E, prove that

+oo
Du(E) = Dx 4,(E)dt.

—

5.6. Prove the following version of the Gauss-Green theorem for BV vector
fields. Let €2 be a bounded Lipschitz domain and suppose % : {} - R™
is a vector field such that each of its components is an element of
BV((?). Then the trace, u*, of u on 94 is defined and

divu@) = [ u*(o)ulz, dH"(z).
an
For this it is sufficient to prove that
Du(Y) = / u* (@), QAH ()
an

where u € BV (1), 1 £ i < n, and D; = 8/8z;. With the notation of
the previous exercise, observe that

Doa@ == [ e A (o)

= —/ vi(z, A )dH" Y{z)
anngt A,
(since D;x 4, (R™) = 0)

= — f vi{z, Q)dH* (1)
80ng* A,

= —f vi(z, Q)dH" " (x)
4,080
= DiXa(8" 4,).

With the help of the previous exercise, conclude that

+o0
Diu(}) = D (Q)dE
+oo
= [ Dixad* A)dt
—(;m +oo
- / Dixa(0"Ag)dt +
—0 0

Dhixa(8" A)dt

+oa

]
= Dixa{0*A)dt — f DiXxp(8*Q — 8* A,)dt
o —~oo
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oo 0
=[ Dixa({z : 2t})dt-f Dixa({z : u* < t})dt
] -

= [ uwdD;iXq
a9

- / (&) (x, Q)dH ().
a8

5.7. Give a description of the result in the previous exercise on the line,
ie., when n = 1.

5.8. Under the conditions of Corollary 5.2.4, prove that {Dw;} — Du
weakly as measures as { — 00,

5.9. Suppose ( is an open subset of R*~} and that w: — R! is differ-
entiable at xp € {2 in the sense defined by (2.2.2). Also, let M =
{(z,u{z)) : z € R}. Show thai there exists a vector, v, that satisfies

(5.6.10) at {zq, u(xo)).

5.10. Let 2 C R™ be an open set with the property that &€} has a tangent
plane at xg € 8. That is, assume for each ¢ > 0, that

C{e)ndin Blzg,r) =0

for all small r > 0, where C(e) is introduced in Definition 5.6.3.
Assume also that

. |'nﬂ B(-T(],T)l
limsup ———r——= >0
ol |Blzo, )|

and R*—Q)nB |
i sup [ = 91 Blzo,r)

70 | B(za,7)|
Prove that £g € 0" (2.

>0.

Historical Notes

5.1. BV functions were employed in several areas such as area theory and
the calculus of variations before the formal introduction of distributions,
ef., [CE], [TO]. However, the definition employed at that time was in the
spirit of Theorem 5.3.5.

5.3. Theorem 5.3.3 is a result adopted from Krickerberg [KK]. This result
is analogous to the one obtained by Meyers and Serrin [MSE] for Sobolev
functions, Theorem 2.3.2. Serrin [SE] and Hughs [HS] independently dis-
covered Theorem 5.3.5.
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5.4. The theory of sets of finite perimeter was initiated by Caccioppoli €]
and DeGiorgi {DG1}, [GD2] and subsequently developed by many contrib-
utors including [KK], {FL}, {F1], and [F2]. Sets of finite perimeter can be
regarded as n-dimensional integral currents in R" and therefore they can
be developed within the context of geometric measure theory. The isoperi-
metric inequality with sets of finite perimeter is due to DeGiorgi [D1], [D2]
and the co-area formula for BV functions, Theorem 5.4.4 was proved by
Fleming and Rishel [FR).

5.5. The notion of generalized exterior normal is due to DeGiorgi [D2] and
is basic to the development of sets of finite perimeter. Essentially all of the
results in this section are adapted from DeGiorgi’s theory.

5.6. The concept of the measure-theoretic normal was introduced by Fed-
erer [F'1] who proved {F2] that it was essentially the same as the generalized
exterior normal of DeGiorgi.

Definition 5.6.3 implicitly invokes the notion of an approximate tangent
plane to an arbitrary set which is of fundamental importance in geometric
measure theory, cf. [F4]. Theorem 5.6.5 states that the plane orthogonal to
the generalized exterior normal at a point zg is the approximate tangent
plane to the reduced boundary at x;.

5.7. Countably k-rectifiable sets and approximate tangent planes are closely
related concepts. Indeed, from the definition and Rademacher’s theorem,
it follows that a countably k-rectificable set has an approximate tangent
k-plane at H* almost all of its points. Lemma 5.7.2 is one of the important
results of the theory developed in [F4]. Theorem 5.7.3 is due to DeGiorgi
(D1], [D2], although his formulation and proof are not the same.

5.8. In his earlier work Federer, [I'1], was able to establish a version of the
Gauss—Green theorem which employs the measure-theoretic normal for all
every open subset of B" whose boundary has finite H™~!-measure. After
DeGiorgi had established the regularity of the reduced boundary (Theorems
5.7.3 and 5.8.1), Federer proved Theorem 5.8.7 [F2].

5.9. A different version of Lemma 5.9.3 was first proved by William Gustin
[GU]. This version is due to Federer and appears in {F4, Section 4.5.4].
Theorem 5.9.6 is only a part of the development of BV functions that
appears in [F4, Section 4.5.9)]. Other contributors to the pointwise behavior
of BV functions include Goffman [GO] and Vol'pert [VO]. In particular,
Vol'pert proved that the measure-theoretic boundary 8y E is equivalent to
the reduced boundary.

5.10-5.11. The trace of a BV function on the boundary of a regular domain
as developed in this section is taken from [MZ]. Alternate developments can
be found in [GI1] and [MA3]. This treatment of Poincaré-type inequalities
was developed in [MZ].
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5.12. Lemma 5.12.3 was first proved by Fleming {FL]. The proof of the
lemma depends critically on Lemma 5.9.3. Fleming publicly conjectured
that the claim of the lemma (his statement had a slightly different form})
was true and Gustin proved it in [GU]. Theorems 5.12.2, 5.12.8, and the
material in Section 5.13 were proved in {MZ)].
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