Best Constant in Sobolev Inequality (*).

Gioraio TALENTI (Firenze)

Summary., ~ The best constani for the simplest Sobolev inequality is exhibited. The proof is
accomplished by symmetrizations (rearrangements in the sense of Hardy-Littlewood) and one-
dimensional calculus of variations.

0. - The main result of the present paper is the following:

THEOREM. — Let u be any real {(or complex) valued funetion, defined on the whole
m-dimensional euclidean space Rm, sufficiently smooth and decaying fast enough at
infinity. Moreover let p be any number such that: 1<<p<<m. Then:

(1) {{ }uiqu}uq< 0{ [ {Duif’dw}m,
A

Rm
where: |Dul| is the length of the gradient Du of w, g = mp/(m — p) and

2 O — mtmiio Pwl)“’”{ I'(1 -+ m|2) I (m) }ﬂm
@ e (W~p I'(mp)I'(1 + m — m(p)

The equality sign holds in (1) if w has the form:
(3) w(w) = [a 4 b{.ﬁvi”/@_”]lmm@ ,

where |o| = (2*+ ... 22)* and a, b are positive constants.

Sobolev inequalities, also called Sobolev imbedding theorems, are very popular
among writers in partial differential equations or in the calculus of variations, and
have been investigated by a great number of authors. Nevertheless there is a question
concerning Sobolev inequalities, which seems well-known only to a restricted number
of specialists working in geometric measure theory. The question is the connecfion
between Sobolev inequalities and the clasgsical isoperimetric inequality for subsets
of euclidean spaces. Our aim is to advertise such a connection.

To be gpecific, we are concerned with the simplest Sobolev inequality

4) |%] ozm < (constant independent of w)|Du| szm,

(*) Entrata in Redazione il 16 luglio 1975.
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and we are interested in the smallest constant which is admissible in (4); namely
we will evaluate the expression

_ H w H LYEB™)
R T P —

where the sup is taken in the class of all (not identically zero) smooth (e.g. Lipschitz
continuous) functions « which decay rapidly at infinity (e.g. compactly supported)
Easy tests and arguments of dimensional analysis show that (4) iz impossible
(equivalently €= 4 co) if p=m or g mp/(m — p). Inecidentally, dimensional an-
alysis shows also that the supremum in question does not change if the competiting
fanetions are restricted to have their support in some fixed open set.
If 1 <p<m and g has the value mp/(m — p), (4) can be proved for functions »

in O3(R™) (i.e. continuously differentiable functions with compact support) by using
the straightforward representation formula

_ Tmj2) ypion § P28 0
wu(w) = Sois f} - 2 ey (y)dy

and by applying to the right-hand side an m-dimensional version of a theorem
of Hardy-Littlewood concerning fractional integrals. This is the method of
SoBoLEV [11-12]; for a concise presentation see BERS-JOHN-SCHECHTER [1]. Unfor-
tunately, the Sobolev method neither gives the exact value of the best constant €
nor explicit estimates for C.

The theorem we present in this paper gives the sharp form of the inequality (4).
It turns out that the best constant C of the Sobolev inequality has the value (2).
Moreover the ratio between the Le-norm of « and the L?-norm of the gradient of
attains its maximum value C on functions # of the form (3).

We notice that a discussion of the gharp form of Sobolev inequality, restricted
to the case m=3, p=2, ¢g= 6, is in ROSEN [10].

We emphasize that our result is valid only if p=£1. If p=1, the Sobolev in-
equality behaves in a slightly different manner. In fact, it must be expeected thab
the ratio between a norm of # and the integral f |Du|ds attains its maximuom value
on functions « whose gradient is a (not absolutely continuous) measure. For in-
stance, if we look at the frivial one-dimensional inequality

e Ve Jjil ¥
f]u{qdw <5 | da support of »c[0, L],

we see at once that all functions for which the inequality becomes an equality are
step functions equal to some constant in the interior of the interval [0, L] and
vanishing outside: of course for functions with jump discontinuities the integral
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f lu'|dz must be interpreted as the total variation of w. Accordingly, it turns out that

funetions maximizing the ratio between the two sides of Sobolev inequality are

‘characteristic functions of balls when p =1. This is essentially a result of FEDERER-

FreMING [4] and FreMiNG-RIsHEL [6]. Let us describe briefly the situation.
FEDERER, FLEMING and RISHEL proved the inequality:

1-1/m 1 1/m
(5) {f{uim“m“”dm} <—-{F( +—_m——-/2)} f]Du[dac
A/Tm
Em B
for every u belonging to a broad class of functions which vanish at infinity. Note
that the constant appearing in (5) is the limiting value (as p —1) of the right-
gide of (2). The inequality (5) is sharp, for an easy computation shows:

{ J‘ Wm;{m_ndx}l_w{ f {D@an}dm}_lz @%}%‘?)ﬂ” [14+00/n)]  (f n—> 1+ oo),
_Rm Rm

where #,(@)=1 if 0<lo|<], #(0)=1+n—njr] f 1<|p|<1l-+1/n and u,(e)=0
if |#|>1-+1/n. This is a sequence of Lipschitz continuous functions which converges
to the characteristic function of the unit ball.

The constant in the right-hand side of (5) is the isoperimefric constant; i.e. the
constant which appears in the classical isoperimetrie inequality

{ra+ m/2)}11’***‘E

{Hu(B)p—m< Vam m-1(0H)

where
E = any bounded smooth subset of Rm;
O0F = the boundary of F;

H, = the k-dimensional (Hausdorff) measure.

There is a deep connection between the Federer-Fleming-Rishel version of the
Sobolev inequality and the isoperimetric inequality. Indeed FEDERER, FLEMING
and RisHEL deduce their inequality from the isoperimetric inequality. On the other
hand, it is easy to derive the isoperimetric inequality from the Federer-Fleming-
Rishel result. Let us sketch sneh a derivation.

The key to the derivation is a suitable definition of the tofal variation for func-
tions of several real variables. The total variation of a real valued locally integrable
function » of one real variable is

N

sup {kz [ () — w3}t — oo < Iy << B << .. << @y < -+ oo} :
=1
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it is well-known and easy to see that this is the smallest constant € such that

4oa

‘ f u(w)¢/(x)dw,<0maxl¢(w)[

for every ¢ in Ci(]— oo, -+ oo[). If # is smooth (e.g. absolutely continuous), then

+ o
the total variation of % equals f jo'(@)ldew. Accordingly, we define the total variation

- 00

of a real valued locally integrable funection %, defined over E=, as

k=1

sup{ fu > éﬁ dz: v, € C5(R™), max Zwk(x)2<1} .
A k=1 0%

Clearly
total var. of u:f]l)u{dm
Rm

whenever u is continuously differentiable.

By the way, the set of all functions which are integrable in R~ and whose total
variation is finite is usually called BV(R™); see e.g. [5], [7].

The inequality (5) tell us that

(6) { f{“f”"(m_l)dm}l—l/m<wwxtotal var. of u,
\/Tm

R™

for every function » in BV(R™). This is obvious if » is continuously differentiable.
If « is not continuously differentiable, (6) can be deduced from (5) using the customary
mollifiers technique and the easy fact that mollifications do not increase the total
variation. It should be noticed that the full result of FEDERER, FLEMING and
RisHEL is precisely the inequality (6).

Now it is quite clear that (6) contains the isoperimetric inequality as a particular
case. Let E be a bounded smooth subset of B, and apply (6) to 15, the characteristic
funetion of E.

The left hand side then becomes the (1 — 1/m)-th power of the measure of F,
while on the right hand side we have that the

total variation of 1; = sup { f > vila) Xp(a0) H o a(do): max > vk(m)zgl} s
B=1 F=1
o

where X is the unit normal vector to 9F; this follows from the Gauss-Green for-
mulas. Hence:

total variation of 1, = the (m — 1)-dimensional measure of the boundary of .
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We mention that a connection between a Sobolev inequality and an isoperimetrie
inequality for point sets can be established also if the euclidean space E™ is replaced
by special non-flat manifolds; see M. MIRANDA [9].

Of course we have assumed in the previous discussion that m, the dimension
of the ground space, is greater than one. In one dimension, an analogue of the
Sobolev inequality is perhaps the following:

L

L
(Ta) Ululadmr“@lmw ¢ +p'ja” {ﬁ“’[wdwrp:
0 .

2(1+¢/p")"*B(1/q,1/p")

0

where # is any real valued absolufely continuous function on a bounded interval
[0, L] with

(78) w(0) = u(L) = 0

and p, p’, ¢ are numbers such that 1<g< oo, 1< p < o0, p'=p[(p—1). The con-
stant in (7a) is the best; in fact, equality holds in (7a) if and only if # is the func-
tion implicitely defined by the relations

ulz)

IapHra41jq) 2«
e fY—1/D — e
(o) f == 1jg T

0

, L
if O<w<-2—
w(w) = (L — 2),

or if % is a numerical multiple of such a function. The inequality (7) might be proved
with standard techniques of the caleculus of variations.

1. — Symmetrization.

The proof of the theorem stated at the beginning consists of two steps. In the
first step we prove that the ratio

\. % || Lormy
®) 1Dl

attaing its maximum value on spherically symmetric functions. In the second step
we prove that the ratio (8) actually has a maximum in a class of spherically symmetric
functions; moreover we prove that such a maximum has the value (2), the maximizing
spherically symmetric functions being of the form (3).

Of course, if ¢ is a Lipschitz function, then the ratio (8) is not altered whenever
we replace u by |u|. Hence in estimating the sup of (8) we can cut of the competi-
tion all functions which change their algebraic sign.
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To be more precise, in the first step we prove that the functional (8) increases
if » is replaced by a suitable rearrangement of #; namely by a function »* whose
level sets {xeRm: u*(x)>>1} are balls which have the same measure as the level
sets {wec Rm: u(x)>1} of u (*). This statement is a consequence of the isoperimetric
inequality for subsets of Bm™, as the following lemma shows.

LeMmA 1. - Let u be any smooth (e.g. Lipschitz continuous) real valued funciion
defined on the whole euclidean space B™ which decays fast enough at infinity (e.g. with
compact support). Let u* be the spherically symmetric rearrangement of w; that is

(9) u*(x) = sup {¢: u(t) > Oz}
where C,,=a"2[['(1 + m|2) is the measure of the m-dimensional unit ball and

{10) u(t)y=meas {x € B™: u(w) > i}.

Moreover suppose that u ts nonnegative. Then, for every exponent p>1, the fol-
lowing holds:
(i) [(w*pde =[urds;
(i) [|Du*rdo < [|Dulrds.
Here and below, folw stands for integral over the whole space Em™.
The property (i) is trivial since the integral of any power of a function is known

when the measure of each level set is known.
This follows from the familiar formula (Bonaventura Cavalieri principle!):

(11) f wds = Ty(tm(m .
0

Once we observe that the level sets of u* are balls of radius (u(t)/0n)'m; i.e.

(12) {we Bm: w¥*(@) >t} = {w e Bm: |z < (u(t)/0u) ™}
and:
(13) meas {& € Bm: w*(8) > 1} = u(t) .

(*) The monotonocity of Rayleigh-type quotients under this rearrangement is a well-
known principle of Pélya and Szegb. It has been used by a great number of authors in the
proof of isoperimetric inequalities, in estimates of eigenvalues, and in several other problems
of analysis or differential geometry. See G. Pérya - G. 8zre0, Isoperimeiric tnequalities in
Mathematical Physics, Annals of Math. Studies 27, Princeton (1951); L. E. PavYNE, Isoperi-
metric inequalities and their applications, SIAM Review, 9 (1967).

Here we revisit a proof of the Pélya and Szeg privciple. We are indebted to Profl. E. p2
Grorer for helpiul suggestions.
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The formula (12) is an easy consequence of the definition (9) since uy is a
decreasing and right-continuous funetion of 7. Inecidentally, p(f)= 4 oo if t<C 0,
u(0) = meas(support of %) since « is nonnegative and wu(f) vanishes if ¢>maxw.
Moreover u(t) decreases strictly from meas(sprt. ) to 0 in the inferval 0 <f<maxu
because, from the continuity of u, u(l’)— ()= meas{zeR™: t'<ulz)<t’}>
>meas {2 € Bm: t'< u(r) < "} = the measure of a non empty open set whenever
O0<t’'<t'<maxu. Let us observe that yx will be actually discontinuous at every
value of ¢ which is attained by  on a set of positive measure; indeed u(t —) — u(f) =
= meas {& € R™: u(z) = t}.

For the proof of (ii) we need results from the theory of functions of several real
variables which are, in some sense, companions of the formula (11). Formula (11)
expresses the integral of u (or of a power of #) by means of the measures u(f) of the
level sets of u. There are formulas connecting the integral of |Du| (i.e. the
total variation of #) with the (m —1)-dimensional measures of the boundaries,
o{w e R™: u(w) > t}, of the level sets of u, or with the (m — 1)-dimensional measures
of the level surfaces {#eR™: u(x)=1}. These formulas are due to FEDERER [3],
FLEMING-RISHEL [6], L. C. YoUNG [13]; see also M. MIRANDA [8]. The formula we
ghall use is that of Federer, which, in our case, reads

-+ o0
(14) f | Du(w)| dos = f H, . {we R ulz)=t}dt,
0

where H,,_, stands for (m — 1)-dimensional (Hausdorfl) measure. A more general
version of (14) (see [3]) is

+ oo
(15) Ji@Du@ldo= [ at | f@)H, (a2)

[ u(x)=1

where f is any real valued integrable function. If » were a signed function, the
+ oo
integrals at the right of (14) and (15) should be replaced by f dt.
A rough proof of (15) might be as follows. Let e

pt)=[ f)|Duia)|do.

ul{z) >t

Clearly g(f) is a function of ¢ with bounded variation; in fact ¢(¢) is monotone decreasing
if f is positive. The derivative of ¢{f) is readily seen to be

9)=— [ fa)Hor(do)

ulw)y =t

at every ¢ such that: a) the level surface {xeRm:u(x)=1} contains no ecritical
point of u; b) f is continuous on this level surface; ¢) w is twice continuously dif-
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ferentiable in a neighbourhood of this level surface. In fact, if ¢ satisfies the above
conditions and if A is sufficiently close to zero, then we can describe the interspace
{reRm: t<u(z)<t+ h} with a system of curvilinear coordinates [0,%]x Rm13
3(4, &) > u(4, EYe R such that x(1,-) is a parametric representation of the level
surface {x € R™: u(z)=1t- A} and the x(-, &) are parametric representations of or-
thogonal trajectories of the level surfaces of . Such a coordinate system can be
defined as follows: (-, &) is a solution of the system of ordinary differential equations
dzjdA = Du(z)/|Du(x)|?, 2(0,-) is a parametric representation of the level surface
{we R™: u(w)=1}. From the equations [0x/04|=1/|Du|, 0x/0A is orthogonal to
Ox 08, (0m[0E.) (A, &)= (0n]08)(0, EY4- 0(4), we see that the jacobian of the transfor-
mation is given by

] (V) + 02},
where g, is the inner product between (0x/0£,)(0, &) and {0x/2£,)(0, &), i.e. a coeffi-
cient of the riemannian metric on the surface {weR™: u(r)=1}. Thus we obtain

1
Pl ) — plt) = — f i f Ho(h, £)) (VEot (ga) + O()) d&

0 Rm-1

=—h f(w)Hm—l(dm) Jf— O{h) *

u{wy=1

Suppose now we are able to check that ¢(f) is piecewise absolutely continuous (i.e. the
difference between g(f), and the piecewise constant function which has the same jumps
as @(), is absolutely continuous); this point is essential of course but we do not want
to discuss it here. Then
+ o0
9(+ 00) = ¢(0 —) = [ @'(t)dt+ 3 (jumps)

0

this is the same thing as (15). In fact gp(-+ oo) — @{0 —)= —ff(w)}Du(m)}dx, since
is nonnegative; furthermore all jumps of ¢(f) vanish, since

o) —gt—)=— [ f@)Du@)dz

w(x)=t

and this infegral is zero either because the m-dimensional measure of {x € Rm:
u(x)==1} is zero or because Du vanishes on this same set (according to a theorem
of C. B. MORREY).

Incidentally, let us state explicitely some properties of the level sets we have
used. The o{we B": u(x)>1} is a subset of {x e R™: u(x)= 1} because of the con-
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tinuity of u; more precisely, {# € Rm: u(x)= 1} is the union of the disjoint sets con-
sisting of the 0{w € B™: u(x) >} and the set of all points interior to {x € Rm: u(z) <1}
at which u reaches the value . The latter set is a collection of local maxima, so the
gradient of u vanishes identically in this set. Hence 0{x € R™: u(x) >t} agrees with
{we Rm: u(x)=1t} if the latter is a regular surface, i.e. does not contain eritical
points of u. Note that if v is very smooth, the set of all levels ¢ for which
{# e Rm: w(x)=1t} contains critical points of u has (one-dimensional) measure zero,
via Sard’s theorem.

From the previous argument we deduce also the following form of the derivative
of the measure of level sets of u:

v [ Hualds)
19 wo== [ T

wlw)=t

at every ¢ such that no critieal point of « is on the level surface {w e R™: u(x)=t},
as long as # is sufficiently smooth in a neighbourhood of this surface. Of eourse u(f)
is not differentiable at any value ¢ which is attained by « on a set of positive measure
or at critieal points of w. If u is infinitely differentiable, (16) holds at almost every ¢,
via Sard’s theorem.

Now we are in position to prove the assertion (ii) of the lemma. The following
ineguality holds at almost every ¢:

(18) [ DU o s(da) > [ OF [ Hosfr e B u@) = ]2

ulx)==¢

If p=1, (18) is trivial. If p>1, we obfain by Holder’s inequality that

1
Hm_;{m e Rm: ’LL((L’) = t} = f |D’Mll_1/p Wﬂm-]_(dm) <

wlxy=t
ot ip Hm—l(dvaz i—ifp
U [ )] [ Bl

u{x)=1 u(@)=t

and then we apply the formula (16). It must be pointed out that inequality (18)
can be proved without any reference to an explicit expression for the derivative u'(t).
In fact from Holder’s inequality we obtain

I e
h

t<u{e)y<t+h t<<ulmy<t+h

(1/h) f 1Du|dm<{1 .

and consequently

d ifp
-5 f 1Du;dx<{—ﬁ'<t>1“””[“a f wuvdf”]

w(w) >t u(wy>t
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at almost every ¢{. On the other hand, from (15), we get

4+ oo
[ 1pujde=[H, foe R u@) =t}ar.
ulw) >t ¢
Hence
a
-5 f |Du|de = H,, ,{& e R™: u(z)=1}.
wlzy >t
Analogously
d
~ 1Dulpde = f |[Dujr H,,_,(dx)

ufw) >t ufz) >t

at almost every ¢. Thus (18) is proved.
The isoperimetric inequality tells us that

[T mf2)Jm
(19) im0

H,  {zecRm: u(r)=1t}.

Now, from (15) we have the identity

(20) f |\ Dur o =Tdt f |\ Du|r-1 H,,_y(da) .

¢ ulwy=t

Therefore, from (18), (19) and (20), we obtain the estimate

+ oo

(21) [1Dujp > (Vam)T@ + mi2)yin [ pom-mi o).
0

Clearly, the inequality (21) becomes an equality if « is spherically symmetric. Indeed,
the equality holds in (19) if the level set {we R™:wu(x)>1t} is a ball. The proof
of (18) shows that equality holds in (18) if |Du| is constant on the level surface
{# € R™: u(x) = t}. Since the rearrangement of , we have called u*, (a) is spherically
symmetric (b) has level sets with the same measure u(¢) as the level sets of « (¢) is

Lipschitz continuous; then we ean write
+on

(22) f}Du*[mdx = (\/:/?m)z»{]‘(l -+ m/Z)]—i\/mf (=2 ! (1) e dt
0

From (21) and (22) the desired conclusion follows.
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It remains to prove (c). From the formula (15) we get

14
|Du@)|de = [ H, fve Rm: u@)=1}at'.
b-B

t=u(x)>t—h

Then, using the isoperimetric inequality (19) and the monotonicity of u, we have:

(23a) L{u(t — h) — u(t)) > ﬁ% p(t)r=1mh

for all ¢ and & such that ¢>A>0. In (23) L is the Lipschitz constant of u, i.e.
(23D) L = max |Du(x)| .
As is easy to see, the estimate (23) and the definition (9) of w* give

[u(@) — w*(y)| < Lfjw| — [y]| .

Lemma 1 is proved.

2. — Spherically symmeiric functions,

If 4 depends on r==|x| only, the ratio (8) becomes

2-Yma=3[ ['(m[2)]/m T (u)

where

(24) J(u) =

(}jm—lju(r)]q dr)l/q
4]
]

(fr’”—lju’(?) I dr)m |

4
LemMA 2. — Let m, p, q be real numbers such that
1<p<m, gq=mp[(m—p).

Let w be any real valued function of a real variable r, which is sufficiently smooth on the
half-line 10, 4- oof (e.g. Lipschitz continuous) and which is such that

+ oo

(25a) frm“llu’(f){f’dr< + o0, ulry—>014if r—>+ co.
o
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Then

J(u)<J(p)
where @ is any function of the form
(26) plr) = (@ + bro'y=mi

with a and b positive constanis.
An easy computation gives

(27) T () = me (f—;—"{;—;)' [ B, mi)| ™.

Here p’'=p|(p —1).

The lemma 2 exhibits the maximum value and maximizing functions of the func-
tional J as given by {24). The proof will be modelled on the classical patterns of the
caleulus of variations; we ghall use Mayer fields of extemals, the Hilbert invariant
integral, and the Weierstrass # function (2).

The domain we assign to the functional J is the class of all smooth functions «
satisfying (28a). Moreover we shall resirict the competiting functions to be positive
and monotonically decreasing. This is not a loss of generality, because the fune-
tional J increases (and its domain is invariant) under the replacement u{-) —

oo
— [ ' (8)]dt.
)
‘We subdivide the proof into several steps.

(i) Ewtremals. From the formula

L’m‘l( fuletsgnu)vdr | rmt(ju/ Pt sgnu’) o dr
1 o
M J'(u)(v) =

p=1

o

+
fvm'llu{q dr
0

X}

oty |P dy

Og,____},;_

for the Gateaux differential of the functional J, and the following consequence of
the conditions (25a)

{(25b) w(r)=o(rrm7) ag y->0 or -} oo,

we easily deduce, via Du Bois-Reymond lemma and integrations by parts, the fol-
lowing: the extremals of J are solutions of differential equations of the form

(28) (rm=tu'[71sgnu’) 4 Orm=Yuljlsgnu=0 (C=a positive constant)

(?) Lemma 2 and its proof are closely related to a paper of Briss [2].
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verifying the conditions (254, b) and
(25¢) W (r) == o(r—=?) as r->0 or + oo.

Conversely, every solution, endowed with the properties (25), of any differential
equation of the form (28) is an extremal of J.

Fortunately, it is possible to represent in closed form a set of solutions, satisfying
the conditions {25), of the differential equation (28). Note that if p=2, (28) is a
particularly simple case of Emden-Fowler equations and all its solutions can be
obtained with quadratures. Indeed, let p=2, m >2, ¢=2m/(m —2), and let us
consider only positive decreasing solutions. Putting u(r) = r=2¢(r), we find for
the new unknown the equation #{rv')'== (1 —m/2)2v — Cv*-', This is equivalent to
the firgt order equation (rv)? = (1 — m/2)?v% — (20/q)v7 - constant, ete. Hence, when
p =2, all the solutions of the equation (28) which are positive decreasing and have
the properties {25) are of the form: u(r)= (a+ br2)* =2 with 0= m{m —2)aeb. In
the general case (i.e. 1<<p<<m, ¢=...) it is easy to check that

(@ + br?'yimiz

is & solution of (28), with the properties (25}, when a and b are positive constants
related to ¢ by the formula

_— —1
C=m (m—f ),, ab™t,

Thus we have founded a two-parameter family of extremals of the funetional J.
In agreement with a previous remark, such extremals are positive decreasing functions.
With a slight change in notation we represent these extemals in the form

(29) @(ry=a(l+ br*)i-mr (g, b = positive constants).

The differential equation for the extremals in (29) becomes

(30) (1! (r) |P1) = m (m:%))pﬂ ar-ahr=1 pr—igp(p)el

(ii) An equivalent Lagrange problem. Our goal is to show that the extremals
we have found in the previous subsection actually give the maximum. For this
purpose it is convenient to put our problem

(31) J (1) = maximum

24 ~ Annali di Matematica



366 G1orGI0 TALENTI: Best constant in Sobolev inequality

in the form of a Lagrange problem, namely:

+ oo
f 7™y, () [*dr = maximum ,
0

where
Uy (1) = 77|y (1) |7 (a nonholonomic constraint)

and

(0) = 0, Uy(+ 00) = 0, Uy({4 c0)=1 (boundary conditions) .

Clearly the problem (31) is equivalent to the Lagrange problem (32). In fact,
if w is a solution of (31), then

g (1) = u(r) ( ]‘?""’»]u’(t) |2 dt)

0

~1{p

wg(r) = | 2wy (t) | dt
]

is a solution of (32). Conversely, if a pair (u,, 4,) i a solution of (32), then u == u,
is a solution of (31) becanse of the homogeneity of the functional .

A set of extremals of the Lagrange problem is easily obtained from the results
of the previous subsection; namely:

@:(r) = a(1 + bro)y=nls (g, b= positive constants)

(33a) r
gulr) = [tmlgl (O] dt

g

More explicitly
(33b) (r) = rmrgy (o f - 07—
PP =TI

where f(£) is the function

(34) o= (5=2) szfu — a1 — gty

Claim: the two-parameter family of extremals (33) is a Mayer field in the first octant
{(ry w1, ;) € R3: 7> 0, u; >0, 4, >0} of the three-dimensional euclidean space. In
other words, the paths J0, -+ co[ 27 — (r, i(r), a(r)) are the trajectories of a smooth



GI0R6TI0 TALENTI: Best constant in Sobolev inequality 367

vector field X, defined in the first octant of R3. Thus exactly one such path passes
through any point of the first octant of R?, and X(r, u;, 4,) i3 the slope at the point
(7, uy, u;) of the path passing through this point. The components of the vector
field X are given by

Xo(ry gy #y) =1

m._
(35a) X (1) Uny tg) = — Py f (wifr)&
Xo(ry tyy we) = 7YX (1, Uy, o) |7
where £ is the root of the equation

(35b) fE)=r"""u%u,, O0<&<1.

The previous assertions are easily proven by solving the equations (33) with respect
to ¢ and b. Note that the equations (35b) has exactly one solution & for any right-
hand side as long as r, u; are positive and #,>0. In fact

(36a) f0O)=0, flf)>+ooifé—>1 and fE>01if 0<ié<1,
for (34) gives

&2 f(&) = (m — p)*(p — 1)*/(m + p") if £-0,

m—p

&
(36b) p' (iti)Sp 1— 5)—1+mfpf(§) = giz—mlp’)—lftmip'(l — p)mi-2
0]

—>B(—14m[p, 1+ m[p’) if £—>1,
and ‘
1

ey L (m—p\ [ A=ty _
f(é)_p’(p—l)f(l—ft)mﬂg (p -+ (m—p)Et)dt.

0

{iii) The Hilbert invariant integral. This is the main tool in our discussion of
the Lagrange problem (32). We prove the following: There exists an exact differ-
ential dW such that the integral f dW, along any path 10, 4+ co[ 37 — (r, us(r), u(r))

+ o0

which satisfies the constraint u,(r) = r==2|u;(r)]?, is > f ™Y uy(r)|2dr and equality holds
0

when the path is an extremal belonging to the Mayer field (33). To see this, we look
tentatively at a twice continunously differentiable real valued function W defined in
the first octant of E® and enjoying the following property: For every point (7, 41, u,)
of the first oetant of R?, the (linear) function

w oW
(7, Uy, Ug) Eg— (7, Uy, Uy Ey — — (7, Uy, USER

(Eos 517 52) »rm—lugéo - 8u1 au2

or
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restricted to the cone of all directions issuing from the point (v, 4., 4s) such that
>0 and &= r"lg

has a critical point at X(r, u,, 4,). By critical point of a funetion, restricted to a
manifold of codimension one, we mean a point in which the gradient of the function
has a vanishing component parallel to the manifold. Note that, if the funetion is
homogeneous and the manifold is a cone, the value of the function at any critical
point i automatically zero.

From the Lagrange multipliers rule and the definition (35a) we obtain the relations

9_1/17 — Tm—lug + (p . 1)¢m—11X11p}b
or
ow
0 [ P | -1
(3 ) aul pr letp A
ow
Otts =4

where A is some continuously differentiable function to be determined. Incidentally,
the system (39) implies that 0W/0X = r™ 'u! where

9/0X = 3/0r - X, 8)du, + =1 X,|? 9/Ou,

is the derivative in the direction of the vector field X.

To find A, we write down the eompatibility conditions for the system (39). These
compatibility conditions can be arranged in the form of an overdetermined system
of linear partial differential equations of the first order in the unknown A; namely

oA
1 0 — (p — 1)(r"] X4]7) o
(41) 0 1 _ p(ym—llelﬁ“l) % % —
oA
prm X 1) —(p—1D)(r Xul) 0 S
0
0 X, F
grtustl 0§ —ph - -8—3— (rm=t| X, 1) .
2
0 2
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An analysis of the system (41) is very easy. In fact, since the matrix on the left-
hand side of (41) has rank 2, we must impose orthogonality between the right-hand
side of (41) and the eigenvectors of the fransposed matrix; i.e.

)
{42a) pa e (rm1| X, [1) = grm—tugt .

This gives the only possible value of . A more explicit formula is

(p—1)> _roug
(m—p) E(1—8)’

(420) Alry Uy up) =

where £ is the root of the equation (350). The formula (426) follows from (42a) because

a -1 -1y — m—p o M—D—1 gy p—1 Ep—1 .
4s) o 1) = (B2 g -,

where £ is as before.

The equation (43) is an easy consequence of the definition of X (= the slope
of the Mayer field (33)) and of the differential equation (30) for the extremals of
the original functional J. We can also check equation (43) by a direct computation.
In this case one uses the equations (35) and the following formula for the derivative
of the function (34)

— / ——_1_ m__p_ ? ? — _i
(u4) f1—876 = 3 (2=2) et o) (= )60

We can prove that the funetion 1, defined by (42), is actually a solution to the
system (41). As the matrix at the left-hand side of (41) has rank 2, it is enough to
verify two equations only. Disregarding (41.3) and combining (41.1) and (41.2)
we have to check the following pair

G
X
0
ouy

i=0,
(45)

P
Z:p%—z(?‘ 1}X11 1/1).

Equation (45.1) is trivial since its characteristic lines are precisely the members of
our Mayer field and the function A as defined by (42) is constant along any path of
this field. Indeed, we can write (42b) as

2(7’5 Uy 7//2) = (const) [’Lh(l — 5)1_7,,,/1,](1__1, l:l —f— E 1"1"]1—” '
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On the other hand, the pair of equations

(1 — E)-mir = const 7% = const

&
1—¢&

(where & is the root of (35b)) is an alternative representation of the extremals
belonging to the Mayer field (33).

The equation (45.2) follows from straightforward caleulations using equa-
tions (35) and (44).

The procedure just described gives us a smooth solution W to the system (39)
when we use A as defined by (42). Let us show that the differential dW hag the
property stated at the beginning; this will follow from the fact that A is positive.
The difference

(46) E(’"y Uy y Uz ‘:::07 §1y Ez) =
oW

ow ow
iy — W‘(T, Uy Ug) Eg — B0 (ry Uyy Ug) &, — T (ry Usy Ua) &,
1 2

which we have already considered, is essentially the Weierstrass excess funetion.
If the direction (&,, &, &) is so restricted that

§>0 and T =r"T ),
then we have from (39) the equation

B(ry wyy g5 &0y &1y &) = — Eqrmt A, Uy, Us) X

X A{IEu&ol” + P X, us, us) [P (E1fb0) + (p — 1) | Xa(ry way ws)[7}

Clearly the expression in brackets is always >0 and vanishes if (and only if) the
direction (&,, &, &,) is parallel to X(r, u,, u,). As the factor in front is <0, we obtain
the desired regult.

An explicit representation formula for the function W can be derived; we need
this formula to determine the boundary behaviour of W. Putting the 1 of (42)
into (39) gives

oW gy lug oW g rmurt
o T 1—¢ u, m 1—¢
oW _ (p—1)7t  pryg

Bu,  (m—p) 18"

(48)

By (48), (35b) and (36b), the limit W(r,u,, 0 +) exists at every boundary point
(ry ug, 0) such that rs40 and u, 0. In fact W(r, u,, 0 -+) = (#"/m)u? -+ constant.
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Thus

W
Wir, sy o) = Wi(r, u,, 0 +) +f e {ry sy, Uy) dthp ==
2
0

(p—1t 0 f(EdE
m—pp " ") EII=E)

Constant + (r™/m)ug 4

after having performed an obvious change of variables in the integral. An integra-
tion by parts and equation (44) give

£
F&aE e m—p\t €
(le)f i1 —f) &1 + (p — 1) 1—¢°

0

Therefore

" — —1 g~
(49} W(?‘, U1y ’?,&2] = + mr u’f ‘i‘ (]9 1)1’ yl’ul puz

1—& "\m—p] mér1-¢’
where C is a constant and &, as always, is the root of equation (35b).

(iv) Conclusion. The conecluding argument is standard. Let (u;, u,) be a test
pair for the Lagrange problem (32), namely

+o0

f o=ty (r)|rdr=1,  wu(r)—>0 as r — 4+ oo,

(50) 0 ,

() == | t%=2|uy (2) |7 dt
I

According to a remark made at the beginning we can suppose that u, is positive
and decreasing; of course u, is positive and increasing so the path 10, + oo[37r —
= (1, us(r), uy(r)) lies in the first octant of R:.

From the representation formula (49), the asymptotic behaviours (360) and
(51) wy(ry=o(r=) ag r—>0 or + oo,
which is a consequence of (50.1), we easily conclude that

W(r, us(r), us(r)) = C as r—0.

Also W(+ o0, 0,1), the limit of W(r, u,(r), us(r)) as r — - oo, exists and is inde-
pendent of the path. From (36b), (49) and (51) we get

B p—1 ]q/p' [ 1 , ]~lem
W(+ o0, 0,1)=C oz — B y .
(+ )=C+m [m_ iR (m[p, m/p')
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Therefore, from subsection (iii),

+ oo
frm‘liul(r)Pdr< W(+ 00, 0,1)— 0,

0

and the equality holds if (and only if) the pair (u,, 4,) belong to the Mayer field (33).
This conecludes the proof.

3. — Proof of the theorem = lemma 1 - lemma 2.
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