
Best Constant in Sobolev Inequality (*). 

GIORGIO TALENTI (Firenze) 

S u m m a r y .  - The best constant Jot the simplest Sobolev inequality is exhibited. The proo] is 
accomplished by symmetrizations (rearrangements in the sense o] Hardy-Littlewood) and one- 
dimensional calculus o] variations. 

0. - The main result of the present paper is the following: 

THnom~t.  - Let u be any real (or complex) valued ]unction, de]ined on the whole 
m-dimensional euclidean space R ~  su]]iciently smooth and decaying Just enough at 
inJinity. Moreover let p be any number such that: l < p < m. Then: 

(1) { f luIcdx}llq<C{ f lDul~dx} 1I~ , 
t g m  - _ 1 ¢ m  - 

where: IDul is the length o] the gradient D u o ]  u, q-= m]~/(m--p)  and 

(2) c Ira-p) |r(m/p)r(1 + m-m/p)  7 ~ - ~ m -  ~ . . . . . . . . . . . . .  

The equality sign holds in (1) i] u has the Jorm: 

(3) u(x) = [a + btxI,~',-'] 1-~1~ , 

where Ix[ = (x~ @ ...-~- x~) ½ and a, b are positive constants. 

Sobolev inequalities, also called Sobolev imbedding theorems, are very popular 
among writers in part ial  differential equations or in the calculus of variations, and 
have been investigated by a great number of authors. Nevertheless there is a question 
concerning Sobolev inequalities, which seems well-known only to a restricted number  
of specialists working in geometric measure theory. The question is the connection 
between Sobolev inequalities and the classical isoperimetrie inequality for subsets 
of euclidean spaces. Our aim is to advertise such a connection. 

To be specific, we are concerned with the simplest Sobolev inequality 

(~) ][ u [I L~(~ m) < (constant independent of u)]1Du 11L~(~m), 

(*) Entrata in Redazione il 16 luglio 1975. 



354 G I o ~ I o  TALE~TI: Best constant in Sobolev inequality 

and we are interested in the smallest constant  which is admissible in (4); namely 
we will evaluate the  expression 

¢ = sup ]lu]t.(~,) 

where the sup is taken in the class of all (not identically zero) smooth (e.g. Lipschitz 
continuous) functions u which decay rapidly at  infinity (e.g. compact ly  supported) 
Easy  tests and arguments of dimensional analysis show tha t  (4) is impossible 
(equivalently C =  -]- c~) if p>~m or q ¢  mp/ (m- -p ) .  Incidentally~ dimensional an- 
alysis shows also tha t  the supremum in question does not  change if the competit ing 
functions are restricted to have their  support  in some fixed open set. 

I f  1 < p  < m and q has the value mp/ (m- -p ) ,  (4) can be proved for functions u 
in Cg(R "~') (i.e. continuously differentiable functions with compact  support) by  using 
the s traightforward representat ion formul~ 

F(m/2) f ~_,~ ~ x~-- y~ 3u 
u(x)- 2 ~  Ix-yl ~ tx-yt ~x~ 

R~ 

(y) ~y 

and by  applying to the r ight-hand side an ra-dimensional version of a theorem 
of t t a rdy-Li t t l ewood concerning fractional integrals. This is the method  of 
SOBOLEV [11-12]; for a concise presentat ion see BEtCB-JOHN-SCHECHTEt¢ [1]. Unfor- 
tunate ly ,  the Sobolev method  neither gives the exact  v~lue of the best  constant  C 
nor  explicit estimates for C. 

The theorem we present in this paper  gives the sharp form of the inequali ty (4). 
I t  turns out  t ha t  the  best  constant  C of the Sobolev inequali ty has the value (2). 
Moreover the ratio between the L~-norm of u and the L~'-norm of the gradient  of u 
attains its max imum value C on functions u of the form (3). 

We notice t ha t  a discussion of the shal~p form of Sobolev inequality,  restr icted 
to the case m ~ - 3 ,  p - =  27 q =  67 is in RosEr¢ [10]. 

We emphasize tha t  our result is valid only if p ~= 1. I f  p ~ 1~ the Sobolev in- 
equali ty behaves in a slightly different manner .  In  f~ct, i t  must  be expected tha t  
the ratio between a norm of u and the integral flDuIdx attains its max imum value 
on functions u whose gradient is a (not absolutely continuous) measure. For  in- 
stance, if we look at  the trivial one-dimensional inequali ty 

-I-co -}-co 

<--~ lu'tdx, 
- - c ~  - - o o  

suppor t  of u c  [Or L] 

we see at  once tha t  all functions for which the  inequali ty becomes an equali ty are 
step functions equal to some constant  in the interior of the interval  [0, L] and 
vanishing outside: of course for functions with jump discontinuities the integral 
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ftu']dx must  be interpreted as the total  variat ion of u. Accordingly, it  turns out  t h a t  
functions maximizing the  ratio between the  two sides of Sobolev ineqlmlity are 
"characteristic functions of balls when p = 1. This is essentially a result  of ~EDEI~EI~- 
FLE~,I~G [4] and FLE~I~G-I~IsgEL [6]. Le t  us describe briefly the situation. 

FEDERER, FLEMING and I~ISHE]~ proved the inequali ty:  

(5) I I" l l - l /~  ~/'(1 m/2)}lt'r~ f]Duldx 
v/~m ~J 

for every  u belonging to a broad class of functions which vanish at  infinity. Note  
tha t  the  constant  appearing in (5) is the limiting value (as p - > 1 )  of the  right- 
side of (2). The inequali ty (5) is sharp, for an easy computat ion shows: 

[ /' ]l--1/m[ t" 1-I  {/'(1 
l~t"~(~-'dx IDu~tdx = ij. l; i 

+ ~/2)}~I~ 
[1 + O(1/n)] (if n -> -~ oo), 

where u~(x) ~-- 1 if O < Ix141, u~(x) = 1 ~- n - -  nlx I if 1 < IxI < 1 ÷  1In and ~ ( x )  = 0 
if ]x t ) 1  @ 1In. This is a sequence of Lipschitz continuous functions which converges 
to the characterist ic function of the uni t  ball. 

The  constant  in the  r ight-hand side of (5) is the  isoperimetrie constant ;  i.e. the  
constant  which appears in the classical isoperimetric inequali ty 

where 

v/am 

E = any bounded smooth subset of R~; 

3 E =  the boundary  of E ;  

Hk = the k-dimensional (Hausdorff) measure .  

There  is ~ deep connection between the Federer-Fleming-Rishel  version of the 
Sobolev inequali ty and the isoperimetric inequality. Indeed FEDEREt~, FLEMING 
and RISHE~ deduce their  inequali ty f rom the isoperimetric inequality.  On the other 
hand,  i t  is easy to derive the  isoperimetrie inequali ty f rom the  Federer-Fleming- 
Rishel result. Le t  us sketch such a derivation. 

The key to the derivat ion is a suitable definition of the total  variat ion for func- 
tions of several real variables. The to ta l  variat ion of a real valued locally integrable 
function u of one real v~riable is 

N 
sup {k~ll~(x~)- u(x~_l)t : -  o o ~ x  1 ~ x2~  ... ~ x N ~  -~ oo}; 
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it is well-known and easy to see tha t  this is the smMlest constant  C such tha t  

for every  ~v in Co~(] - oo, ÷ oo[). I f  ~e is smooth (e.g. absolutely continuous), then 
+~x~ 

the  total  variat ion of u equals ~ [u'(x)Idx. Accordingly, we define the total  variat ion 
- - o o  

of a real valued locally integrable funct ion u, defined over R% as 

Clearly 

sup If:  } u -~dx: v~eO~(Rm), m a x  v ~ ( x ) ~ < l  . 

total  var.  of u = f lDul ax 

whenever  u is continuously differentiable. 
By  the  way, the set of all functions which are integrable in R ~ and whose to ta l  

variat ion is finite is usually called BV(Rm); see e.g. [5], [7]. 
The inequal i ty  (5) tell us t ha t  

(6) 
{ /  1~-~/~ m/2)}" 

J v /~m x t o t M  var.  of u ,  

for every function u in B V(R~). This is obvious if u is continuously differentiable. 
I f  u is not  continuously differentiable, (6) can be deduced from (5) using the cus tomary  
mollifiers technique and the easy fact  t ha t  mollifications do not  increase the total  
variation. I t  should be noticed tha t  the full result  of FEDEI~Eg, ~FLE~]N6 and 

RIS~E~ is precisely the inequali ty (6). 
Wow it  is quite clear t ha t  (6) contains the isoperimetrie inequali ty as a part icular  

case. Le t  E be a bounded smooth subset of R% and apply- (6) to IE, the  characteristic 

function of E.  
The left  hand  side then becomes the ( 1 -  1/m)-th power of the measure of E,  

while on the r ight  hand  side we have tha t  the 

to ta l  var ia t ion  of l~ --- sup vk(x)X~(x)H~°_l(dx): max ~ v~(x)~<l ~ 
k = l  

where X is the  uni t  normal vector  to DE; this follows from the  Gauss-Green for- 

mulas. Hence:  

total  variat ion of I~ = the (m -- 1)-dimensionM measure of the boundary  of E .  



GmlcGIO TALE~mI: Best constant in Sobolev inequality 357 

We mention tha t  a connection between a Sobolev inequality and an isoperimetrie 
inequali ty for point sets can be established also if the euclidean space R ~ is replaced 
by  special non-flat manifolds; see M. MIrAnDA [9]. 

Of course we have assumed in the previous discussion tha t  m, the dimension 
of the ground space, is greater than  one. In  one dimension, an analogue of the 
Sobolev inequality is perhaps the following: 

(7a) >l<'dx <re,o+,.' [)lu'l  dxj , l )  J 2(l4-qtP')'i B(llq'liP') 

where u is any real valued absolutely continuous function on a bounded interval 
[0, L] with 

(7b) u(0) = u( .L)= 0 

a n d p ,  p',  q are numbers such tha t  l < q <  0% l < p <  co, p ' = - p i ( p - - 1 ) .  The con- 
s tant  in (7a) is the best; in fact, equality holds in (7a) if and only if u is the func- 
tion implicitely defined by the relations 

(7c) 

u(z) 

f ( 1  -- tq)-~/~dt = F(1/p ' )F(1  + 1/q) 2x lD ~ / ~  --~ if O < x < ~  

u(x)=u(L--x),  

or if u is a numerical multiple of such a function. The inequality (7) might  be proved 
with s tandard techniques of the calculus of variations. 

1 .  - Symmetrization. 

The proof of the theorem stated at  the beginning consists of two steps. In  the 
first step we prove tha t  the ratio 

(8) llull~°"~m) 
IID~.H,(~,..> 

attains its maximum value on sphericMly symmetric functions. In  the second step 
we prove tha t  the ratio (8) actually has a maximum in a class of spherically symmetric 
functions; moreover we prove tha t  such a maximum has the value (2), the maximizing 
spherically symmetric  functions being of the form (3). 

Of course, if u is a Lipschitz function, then the ratio (8) is not  altered whenever 
we replace u by IuI. Hence in estimating the sup of (8) we can cut of the competi- 
tion all functions which change their algebraic sign. 
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To be more precise~ in the first step we prove tha t  the functional  .(8) increases 
if u is replaced by  a suitable rearrangement  of u; namely by  a function u* whose 
level sets {xeR'~: u * ( x ) > t }  are balls which have  the same measure as the  level 
sets {x e R ~ :  u(x)> t} of u (~). This s ta tement  is a consequence of the isoperimetric 
inequali ty for subsets of R% as the following lemma shows. 

LEMNIA 1. - Let u be any smooth (e.g. Lipschitz continuous) real valued Junction 
deJined on the whole euclidean space R ~ which decays Just enough at in]inity (e.g. with 
compact  support).  ~et u* be the spherically symmetric rearrangement oJ u; that is 

(9) u*(x) = sup {t: ~(t) > c,.Ixi ~} 

where C,,= ~'~/~/F(1 ~ m/2) is the measure oj the m-dimensional unit ball and 

(10) #(t) = meas {x e ~ :  u(x) > t} .  

Moreover suppose that u is nonnegative. Then~ Jot every exponent p>~l, the Jol- 
lowing holds: 

(i) f(u*)~dx =fu~dx;  

(ii) f[Du*[~dx <ffDu[~dx. 
Here and below~ f . . .dx stands ]or integral over the whole space R '~. 

The proper ty  (i) is trivial since the integral of any power of a funct ion is known 
when the measure of each level set is known. 

This follows from the familiar formula (Bon~ventura Cavalieri principle]): 

+oo 

(11) f u ' dx -~  f #(t)d(t'). 
0 

Once we observe tha t  the level sets of u* are balls of radius (#(t)/C,)~/~; i.e. 

(12) {x e R ~ :  u*(x) > t} = {x e R ~ :  ]x] < (#(t)/C,~) ~/'~} 

and:  

(13) meas {x e R,*: u*(t)> t }= #(t). 

(1) The monotonocity of Rayleigh-type quotients under this rearrangement is a well- 
known principle of P61ya and SzegS. It  has been used by a ~reat number of authors in the 
proof of isoperimetric inequalities, in estimates of eigenvalues, and in several other problems 
of analysis or differential geometry. See G. P6LYA - G. Sz]~G6, Isope~imetric inequalities in 
Mathematical l~hysies, Annals of Math. Studies 27, Princeton (1951); L. E. PAY~, Isoperi- 
metric inequalities and their applications, SIAM Review, 9 (1967). 

Here we revisit a proof of the P61ya and Szeg5 principle. We are indebted to Prof. E. D~ 
GIORGI for helpful suggestions. 
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The formula (12) is an easy consequence of the definition (9) since /~ is a 
decreasing and right-continuous function of t. Incidentally,  /~(t)=-~ c~ if t <  0, 
#(0)-~ meas{support of u) since u is nonnegative and #(t) vanishes if t>~maxu. 
Moreover #(t) decreases strictly from meas(sprt, u) to 0 in the interval 0 < t < m a x u  
because, from the continuity of u, ~(t')--#(t")=meas{xeR~:t'<u(x)<t"}>~ 
> m e a s { x e R ~ :  t '<u(x)< t"}~ the measure of a non empty open set whenever 
O<t'<t"<m2~xu. Let  us observe tha t  /~ will be actually discontinuous at  every 
value of t which is at tained by u on a set of positive measure; indeed #(t --) -- #(t) 
: meas {x eR~:  u ( x ) :  t}. 

For  the proof of (ii) we need results from the theory of functions of several real 
v~riables which are, in some sense, companions of the formula (11). Formula  (11) 
expresses the integral of u (or of a power of u) by  means of the measures/~(t) of the 
level sets of u. There are formulas connecting the integral of [Du I (i.e. the 
total  variation of u) with the (m--1)-dimensional  measures of the boundaries~ 
~(x eR":  u(x) ~ t}, of the level sets of u, or with the ( m -  1)-dimensional measures 
of the level surfaces {x eR~:  u(x)~- t}. These formulas are due to FEDEI~:Et¢ [3], 
FLE~I~G-I~ISH]~L [6], IJ. C. Y0V~G [13]; see also M. MIrAnDA [8]. The formula we 
shall use is tha t  of Federer, which, in our case, reads 

(14) fl-u( )t x= f u(x)= t}dt, 
0 

where H~_I stands for (m--1)-dimensional  (Hausdorff) measure. 
version of (14) (see [3]) is 

+co 

(15) fj( )lDu(x)tdx= f at f1( )Ho_l(d ) 
0 u (x )  = t 

A more general 

where ] is any  real valued integrable function. I f  u were a signed function, the 
-boo 

integrals at  the right of (14) and (15) should be replaced by f... dt. 
A rough proof of (15) might  be as follows. Le t  - ~  

q~(t): f ](x)]Du(x)ldx. 
u(~)>t 

Clearly ~(t) is a function of t with bounded variation; in fact ~(t) is monotone decreasing 
if ] is positive. The derivative of ~(t) is readily seen to be 

~0'(t)=- f f(x)It~_l(dx) 
u(~)=t 

at  every t such tha t :  a) the level surface {xeR~: u(x)=t}  contains no critical 
point  of u;  b) ] is continuous on this level surface; c) u is twice continuously dif- 
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ferentiable in a neighbourhood of this level surface. In  fact, if t satisfies the above 
conditions and if h is sufficiently close to zero, then we can describe the interspace 
{x~R~:t<~u(x)<tg-h} with a system of curvilinear coordinates [0, h ] × R ~ - ~  

(2, ~)-->x(~, ~)eR ~ such tha t  x(2,.) is a parametric representation of the level 
surface { x e _ ~ :  ~ ( x ) =  t-I-2} and the x( . ,  ~) are parametric representations of or- 
thogonal trajectories of the level surfaces of u. Such a coordinate system can be 
defined as follows: x( . ,  ~) is a solution of the system of ordinary differential equations 
dx/d2=Du(x)/]Du(x)[ 5 x(O,.) is a parametric representation of the level surface 
{xeR~: u(x)= t}. F rom the equations l~x/~2l= l/IDul, ~x/~2 is orthogonM to 
~ x / ~ ,  (~x/~)(2, ~)= (~x/~)(O, ~)-~ 0()0, we see tha t  the jacobian of the transfor- 
mation is given by  

+ o(a)} Inul 

where g~k is the inner product between (~x/~)(O, ~) and (~x/~)(O, ~), i.e. ~ coeffi~ 
cient of the riemannian metric on the surface {xeR'q u(x)= t}. Thus we obtain 

h 

0 R m-~ 

-= - h f ](xlIt~_~(dx) + o(h) . 

Suppose now we are able to check that. ~(t) is piecewise absolutely continuous (i.e. the  
difference between ~(t), and the piecewise constant  function which has the same jumps 
as ~(t), is absolutely continuous); this point is essential of course but  we do not want  
to discuss it  here. Then 

qJ(+ co) -- q~(O --) = f qJ(t)dt ~- ~, (jumps) ; 
0 

this is the same thing as (15). In  fact ?(-~ c ~ ) -  ~(0--)=--~f(x)]Du(x)]dx,  since u 
is nonnegative; furthermore all jumps of ~(t) vanish, since 

cf(t @)--q~(t--)=-- f J(x)IDu(x)tdx 
u ( x )  = t 

and this integral is zero either because the m-dimensional meas~re of {x ~ R~: 
u(x) = t} is zero or because Du vanishes on this same set (according to a theorem 
of C. B. MO~EY). 

Incidentally,  let us state explicitely some properties of the level sets we have  
used. The ~{x~R"~: u(x)>t} is a subset of {xeR*~: u(x)=t} because of the con- 
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t inu i ty  of u;  more precisely, {x e R ~ :  u(x)= t} is the union of the disjoint sets con- 
sisting of the ~{x eR'~: u(x)> t} and the set of all points interior to {x e R~: u(x)<t} 
at  which u reaches the  value t. The  la t ter  set is a collection of local maxima,  so the  
gradient  of u vanishes identically in this set. Hence ~{x E R~: u(x) > t} agrees wi th  
{ x e / ~ :  u(x)=t}  if the  la t ter  is a regular surface, i.e. does not  contain critical 
points of u. :Note tha t  if u is ve ry  smooth,  the set of all levels t for which 
{xeR~: u(x)= t} contains critical points of u has (one-dimensional) measure zero, 

via Sard's  theorem. 
F r o m  the previous argument  we deduce also the  following form of the der ivat ive 

of the measure of level sets of u: 

f lL~_~(dx) 
(16) t t ' ( t )  : -- • i D u ( x )  l 

u(x)=t 

at  every  t such tha t  no critical point  of u is on the level surface {xER~: u(x)-~ t}, 
as tong as u is sufficiently smooth in a neighbourhood of this surface. Of course if(t) 
is not  differentiable at  any value t which is a t ta ined by  u on a set of positive measure 
or at  critical points of u. I f  u is infinitely differentiable, (16) holds at  almost  every  t, 
via Sard's theorem. 

Now we are in position to prove the assertion (ii) of the lemma. The following 

inequal i ty  holds at  almost every t: 

(is) f lDul~-~H~_,(dx) > [-- ff'(t)]'-~[H,~_l{x e R'~: u (x )  = t}]~' .  
u(x) = t 

I f  p ~ 1, (18) is trivial. I f  p > 1, we obtain b y  Holder 's  inequali ty tha t  

Hm_l{X~R'r~: ~ ( ~ ) : t }  = f I D u l H / * - -  
u(x) = t 

1 

and then  we apply the formula (16). I t  must  be pointed out t ha t  inequal i ty  (18) 
can be proved without  any reference to an explicit expression for the der ivat ive #'(t) .  
In  fact  f rom Holder 's  inequali ty we obtain 

ff(t + h) - f f ( t ) ] , , - ,~  
J h 

and consequently 

d 

u(~) > t u ( ~ ) > t  
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at almost every t. On the other hand, from (15), we get  

Hence 

Analogously 

-~oo 

f IDuidx=ftt~_,{x~t~:u(x)=t'}dt'. 
u(~)>t t 

----dtd f iDuldx = H~,_,{xeR'~: u(x) -~ t} . 
u(~)>t 

d 

u(z)>t u(x)>t 

at  almost every t. Thus (18) is proved. 
The isoperimetric inequali ty tells us tha t  

(19) [i(t)]z_~/,~<~ [/"(1 q- m/2)],/-~ H~_,{x e R~: u(x) -~ t} . 
~/~m 

Now~ from (15) we have the identi ty 

(20)  f[.Drl~]$dx --" f ~t f IDu[~--II][~--I(dZ). 
0 u(x)=t 

Therefore~ from (18), (19) and (20)2 we obtain the est imate 

(21) f lDul~dx> (~/~m)~{F(1 ÷ m/2)} -~/~ f i(t)~"-"~)tff'(t)l ~-~dt" 
0 

Clearly, the inequality (21) becomes an equali ty if u is spherically symmetric.  Indeed~ 
the equali ty holds in (19) if the level set {x e R~: u(x)> t} is a ball. The proof 
of (18) shows tha t  equali ty holds in (18) if [Du[ is constant  on the level surface 
{x E R"~: u(x) -~ t}. Since the rearrangement of u, we have called u*, (a) is spherically 
symmetric  (b) has level sets with the same measure if(t) us the level sets of u (c) is 
Lipschitz continuous; then we can write 

(22) m/2)] -'~'~ f ff(t)~('-'~'~>tff'(t)i '-~ dt. 
0 

From (21) and (22) the desired conclusion follows. 
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I t  remains to prove (c). From the formula (15) we get 

t 

f I u(x)ldx= f o_l x Ro:u(x)=t' dr 
t>~u(~)>t--h t--h 

Then, using the isoperimetric inequality (19) and the monotonicity o f / t ,  we have:  

V ~ m  
(23a) JL(/~(t -- h) -- #(t)) > [P(1 + m/2)] ~j~/~(t)l-ll~h 

for all t and h such tha t  t > h > 0. In  (23) L is the Lipschitz constant of u, i.e. 

(23b) L = m~x [Du(x)l. 

As is easy to see, the estimate (23) and the definition (9) of u* give 

lu*(x)  - ~* (y ) t  < z, l ix l -  lyij- 
L e m m a  1 is proved. 

2. - Spherically symmetr ic  functions.  

If  u depends on r =  Ixl only, the ratio (8) becomes 

where 

(24) 

2-tl~,z-½[F(m/2)]ll~J(u) 

J(u)  = 

(fro llu(r)Jodr) l'q 
0 

+co 
r . \1.1~ 

( f r ~ - l l u ( r ) 1 2 ) . r )  
o 

LEMY[A 2. -- Let m, p, q be real numbers such that 

l < p < m ,  q = m p / ( m - - p ) .  

Let u be any real valued ]unction o] a real variable r, which is su]]ieiently smooth on the 
hall-line ]0, + oo[ (e.g. Lipschitz continuous) and which is such that 

(25a) 
+oo 

f r~-1]u'(r)]~dr< + co, 
0 

u(r)  ->  0 i ]  r -+  + o o .  
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Then  

J(u)  < J (~)  

where q) is  any  funct ion  oJ the Jorm 

(26) ~(r) = (a @ br~') 1-~/~ 

wi th  a and  b posi t ive  constants .  

A n  easy computa t ion  gives 

1 / p  --  1 ~1[~)' r i ! 3 - l Ira  

Here p ' =  p / ( p  - -  1). 

The lemma 2 exhibits the maximum value and maximizing functions of the func- 
tional J as given by (24). The proof will be modelled on the elassicM patterns of the 
calculus of variations; we shall use M~yer fields of externals, the Hilbert  invariant  
integral, and the Weierstrass E function (2). 

The domain we assign to the functional J is the class of all smooth functions u 
satisfying (25a). 2Vforeover we shall  restrict the competi t ing funct ions  to be posi t ive  

and  monotonical ly  decreasing. This is not  a loss of generality, because the func- 
tional J increases (and its domain is invariant) under the replacement u ( . ) - +  

~ c o  

We subdivide the proof into several steps. 

(i) Extremals .  From the formula 

+ c o  

f r~-l(iu ]q-1 sgn u) v dr 
1 

J(u)  J ' (u) (v)  = o +co 

f r~-~tul~dr 
0 

-l-co 

0 

V r dr 

4-o0 

f r.~-llu'{~dr 
0 

for the Gateaux differential of the functional J ,  and the following consequence of 
the conditions (25a) 

(25b) u(r) ---~ o(r 1-";~) as r -+ 0 or -}- eo ,  

we easily deduce, via Du Bois-l%eymond lemma and integrations by parts, the fol- 
lowing: the extremMs of J are solutions of differential equations of the form 

(28) (r~-l]u'l ~1 sgnu') '~-  Cr'- l{u] ~-1 sgnu = 0 (C = a posi t ive  constant) 

(2) Lemma 2 and its proof are closely rela~ed to a paper of BLIss [2]. 
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verifying the  conditions (25a, b) and 

(25c) u ' ( r )=  o(r -~"/~) as r-+O or + ~ .  

Conversely, every solution, endowed with the properties (25), of any  differential 
equat ion of the form (28) is an ext remal  of J .  

For tuna te ly ,  it is possible to represent in closed form a set of solutions, satisfying 
the conditions (25), of the differential equat ion (28). :Note tha t  if p ~ 2, (28) is a 
part icular ly simple case of Emden-Fowler  equations and all its solutions can be 
obtained with quadratures.  Indeed,  let p ~-- 2, m > 2, q ~ 2m/ (m  --  2), and let us 
consider only positive decreasing solutions. Pu t t ing  u ( r ) ~  r~-~/2v(r), we find for 
the new unknown the equation r ( r v ' ) ' :  ( 1 -  m / 2 ) ~ v -  Cv ~-~. This is equivalent to 
the first order equation (rv')2 = (1 --m/2)2v ~ -  (2C/q)v~ + constant,  etc. Hence, when 
p ~ 2, all the  solutions of the equat ion (28) which are positive decreasing and have 
the  properties (25) are of the form: u(r) ~ (a -~ br2) ~-~/~ with C-~ m(m  ~ 2)ab. In  
the general case (i.e. 1 < p < m, q . . . .  ) it is easy to check tha t  

(a + br~') 1-~t~ 

is a solution of (28), with the properties (25), when a and b are positive constants 
related to C by  the  formula 

C---- m ab ~-1 . 

Thus we have founded a two-parameter  family of extremals of the functional  J .  
I n  agreement  with a previous remark,  such extremals are positive decreasing functions. 
Wi th  a slight change in nota t ion we represent these externals in the form 

(29) ?(r)  -~ a(1 + br~') I-~/~ (a, b = positive constants) .  

The  differential equat ion for the extremals in (29) becomes 

(3o) m PFla -ob.-,r o-l (r/o-1. 

(ii) A n  equivalent Lagrange problem. Our goal is to show tha t  the extremals 
we have found in the previous subsection actually give the maximum. For  this 
purpose it  is convenient  to pu t  our problem 

(31) J(u)  -~ maximum 

2 4  - A n n a l f  d i  M a t e m a t i c a  
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in the form of a I~agrange problem, namely:  

(32) 

+ ¢ o  

f r~-~lu~(r)l~dr 
0 

where 

= max imum,  

T %(r) = r~-ll~'l(r)] ~ 

and 

u~(O) = O, u~(-[- oo) = O, u~(-~- co) = 1 

(a nonholonomic constraint) 

(boundary conditions). 

Clearly the problem (31) is equivalent to the Lagrange problem (32). In  fact, 
if u is a solution of (31), then 

+ o o  

0 

us(r)  = f P-~lu;(t)?at 
0 

is a solution of (32). Conversely, if a pair (u~, u~) is a solution of (32), then u =  u~ 
is ~ solution of (31) because of the homogeneity of the functional J .  

A set of extremals of the Lagrange problem is easily obtained from the results 
of the previous subsection; namely: 

(33a) 

?l(r) = a(1 + br~') I-~1~ 

q~2(r) = f t~-ll~o~ (t)l~ dt . 
0 

More explicitly 

(33b) 

where f(~) is the function 

(3~) 

(a, b = positive constants) 

t,(b,,,) ~(r )  = r ~ ( r  1 + br~' 

1 

1(~) = ~1 I,P --L~[m -- p~] ~ f (1  -- t)~°/~'(1 -- ~t)-'~dt 
0 

Claim: the two-parameter family of extremals (33) is a Mayer field in the first oetant  
{(r, ul,  u~)eR3: r > O , u ~ > O ,  u 2 > 0 }  of the three-dimensional euclidean space. In  
other words, the paths ]0, + ~ [ ~  r - ~  (r, %(r), ~ ( r ) )  are the trajectories of a smooth 
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vector field X, defined in the first oetant of Ra. Thus exactly one such path passes 
through any point of the first octant of R s, and X(r ,  u~, us) is the slope at the pbint 
(r, ul, us) of the path passing through this point. The components of the vector 
field X are given by  

Xo(r, u~, u~) = 1 

(35a) X,(r ,  ux, u D =  p ~ P  (u~/r)~ 

X~(r, u~, u~) = r~-~lXdr , u~, us)I ~ 

where ~ is the root of the equation 

(35b) / ( ~ ) = r ~ - ~ u ~ ' % ,  0 < ~ < 1 .  

The previous assertions are easily proven by solving the equations (33) with respect 
to a and b. Note that the equations (35b) has exactly one solution ~ for any right- 
hand side as long as r, u~ are positive and us>~ 0. in  fact 

(36a) ](0) = 0,  l(~) -+ + cx~ if $ -+1 ann t'(~) > 0 if 0 <  ~ <  1,  

for (34) gives 

(36b) 

und 

~-~](~) -~ (m -- p)~(p -- 1)-~/(m -t- p') 

'l p - "t - 
\ m  -- P l  

0 

-~ B( - -1  -t- m/p, 1 + m/p')  

1 

1 (m -- p ~  ~ (1 -- t) '~1~' ~ - l ( p  
1'(~) = ~ 7 \ ~ - - 1 -  ] ,] ( i :  ~ t~ i  -4- (m--p)~t)dt. 

0 

if $ - ~ 0 ,  

if ~ --> 1, 

(iii) The Hilbert invariant integral. This is the main tool in our discussion of 
the Lagrange problem (32). We prove the following: There exists an exact differ- 
ential d W  such that the integral f d W ,  along any path ]0, ~ oo[ ~ r -~ (r, ul(r), u2(r)) 

+ o o  

which satisfies the constraint u~(r) = r~-llu' l(r)P, is ~> f r~-llu~(r)l~dr and equality holds 
0 

when the path is an extremal belonging to the Mayer field (33). To see this, we look 
tentatively at a twice continuously differentiable real valued function W defined in 
the first octant of R 3 and enjoying the following property: For every point (r, ul, us) 
of the first oetant of R 3, the (linear) function 

(~o, ~ ,  &) -->r~-~u[~o- ~W (r OW ~W ~r , ul,' u~) &-- ~ (r, ul, u~)~l-- ~ (r, ul, u2) ~ 
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restr icted to the  cone of all directions issuing f rom the point  (r, u l ,  us) such t h a t  

~o:>0 and ~-1 _ 

has a critical point  at  X ( r ,  u l ,  u~). By  critical point  of a function, restr icted to a 
manifold of codimension one, we mean a point  in which the gradient  of the function 
has a vanishing component  parallel to the manifold. ~ o t e  that ,  if the  funct ion is 
homogeneous and the manifold is a cone, the value of the function at  any critical 
point  is automatical ly zero. 

F rom the Lagrange multipliers rule and the definition (35a) we obtain the relations 

(39) 

~W 
~ r  ---- r~-~u~ -}- (p - -  1 ) r ~ i x ~ I ~  

a w  
au.~ = A 

where ~ is some continuously differentiable function to be determined. Incidental ly,  
the system (39) implies tha t  ~ W / ~ X =  r~'n-lu~ where 

is the derivative in the direction of the vector field X. 
To find Z, we write down the compatibil i ty conditions for the system (39). These 

compatibi l i ty  conditions can be arranged in the form of an overdetermined system 
of linear part ial  differential equations of the first order in the  unknown ~; namely  

I i  o 
1 

( r ~ - ' l x ,  I )~-~ - ( P  - ~)(r'~-'Ix,  l ~) 

qr ~-~ u~ -1 - -  p 2  - -  - -  

, \ K r  
+ 

~2 
= 
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An analysis of the system (41) is very easy. In fact, since the matrix on the left- 
hand side of (41) has rank 2, we must impose orthogonality between the right-hand 
side of (41) and the eigenvectors of the transposed matrix; i.e. 

(42a) p). ~ (r'~-lIX~J~-~) = qrm-lU~ -1 • 

This gives the only possible value of X. A more explicit formula is 

(42b) A(r, ul, u~)= 
(p -- 1F-~ r~ul-~ 
(m--p) ~ ~-~(1--~)' 

where ~ is the root of the equation (35b). The formula (42b) follows from (42a) because 

(43) (r~-~lX~l~-~)=m\~_l  ! ~ ~ ( 1 - ~ ) ,  

where ~ is as before. 
The equation (43) is an easy consequence of the definition of X ( =  the slope 

of the Mayer field (33)) and of the differential equation (30) for the extremaiLs of 
the original functional J .  We can also cheek equation (43) by a direct computation. 
In this case one uses the equations (35) and the following formula for the derivative 
of the function (34) 

(44) ~(1 -- ~) fl(~) p' \ p  -- 1 ] 

We can prove that  the function ~, defined by (42), is actually a solution to the 
system (41). As the matrix at the left-hand side of (41) has rank 2, it is enough to 
verify two equations only. Disregarding (41.3) and combining (41.1) and (41.2) 
we have to check the following pair 

(45) 

D 
~ , ~ =  O, 

= p 

Equation (45.1) is trivial since its characteristic lines are precisely the members of 
our Mayer field and the function 2 as defined by (42) is constant along any path of 
this field. Indeed, we can write (42b) as 

,~(r, u~, 'a~) = (const) [u~(] - ~)~-'~/~]~-~/~--~ r-c/  . 
L1--¢ J 
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On the other hand, the pair of equations 

ud l  -- t) ~-'~'/~ = const -~' const l _ ~ r  = 

(where t is the root of (35b)) is an alternative representation of the extremals 
belonging to the Mayer field (33). 

The equation (45.2) follows from straightforwurd calculations using equa- 
tions (35) ~nd (44). 

The procedure just described gives us a smooth solution W to the system (39) 
when we use 2 as defined by (42). Let us show that  the differential d W  has the 
property stated at the beginning; this will follow from the fact that  2 is positive. 
The difference 

(46) E(r, u,, u~; to, ~ ,  G) = 

~ W  
r'~-~u~° - ~ V  (r, 

~ W  ~ W  
u~, u~) ~o - ~ (r, u~, u~) ~ - ~ (r, u~, u~) G 

which we have already considered, is essentially the Weierstruss excess function. 
I f  the direction (G, ~ ,  G) is so restricted that  

~o :> O and ~'-  ~¢ - -  ~ - 1  ~ ~, 

then we have from (39) the equation 

x {l~l / tol  ~ + p IXdr ,  u~, u,)[~-~(tdto) + (p - 1)lXdr, Ul, u2)I~}. 

Clearly the expression in brackets is always >0 and vanishes if (and only if) the 
direction (~0, ~1, G) is parallel to X ( r ,  Ul, u2). As the factor in front is <0, we obtain 
the desired result. 

An explicit representation formula for the function W c~n be derived; we need 
this formula to determine the boundary behaviour of W. Putting the 2 of (42) 
into (39) gives 

(4s) 

~ W  _ r~°-lu~ ~W~ _ q r~u~ -I 

~r 1 --  t ~u~ m 1 -- t 

~W _ (p-- 1) ~-! r~u1-~ 
~u~ ( m - p F  t~-~(1 - - t )  

By (48), (35b) and (36b), the limit W(r ,  ul ,  0 + )  exists at every boundary point 
(r, ul, 0) such that  rV= 0 and ul~= 0. In fact W(r ,  u~, 0 + )  = (r~/m)u[ + constant. 
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Thus 

W(r, u~, u~; = W(r, u~, 0 ÷ )  + ~ (r, u~, u~)du~= 

o ~ 

Constant + (r~/m)u~ + (p - -  1)'-i  ~f 1'(~) d~ ( m - p ) ~  r"u  ~ - : ( 1 - ~ ) '  
o 

after having performed an obvious change of variables in the integral. An integra- 
tion by  parts a.nd equation (44) give 

(q/P) ~,-~(1 - -  ~) - -  ~-~(i  - -  ~) 
o 

Therefore 

+ 

r'~u[ ~p--  l ~ p-~ r~u~-~u 2 
(49) W(r,  u~, u~) = C + m(1 - -  ~) + \-m-~---Pl m ~ l (  1 - -  ~)' 

where C is a constant and ~, as always, is the root of equation (35b). 

(iv) Conclusion. The concluding argument is standard. Let (u~, us) be a test 
pair for the Lagrange problem (32), namely 

(50) 

-{-oo 

o 

 dt. 
0 

ui(r) ~ 0 as r -~ + oo ,  

According to a remark made at the beginning we can suppose that ul is positive 
and decreasing; of course us is positive and increasing so the path ]0, + c~ [~ r ->  
-~ (r, ul(r), u~(r)) lies in the first octant of R ~. 

From the representation formula (49), the asymptotic behaviours (36b) and 

(51) u~(r) = o(r~-*"/O as r -+ 0 or  + oo ,  

which is a consequence of (50.1), we easily conclude that 

W(r ,  u l ( r ) , u 2 ( r ) ) - > C  as r - - > o .  

Also W(+  ~ ,  0, 1), the limit of W(r, ul(r), u~(r)) as r -> + co, exists and is inde- 
pendent of the path. From (36b), (49) and (51) we get 

w(+ . 
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Therefore,  f rom subsection (iii), 

~-co 

f r~-~tu~(r)l~dr<~ W ( +  c~, 0, 1) - -  C ,  
0 

and the equal i ty  holds if (and only if) the  puir ~u~, u~) belong to the l~uyer field (33). 
This concludes the  proof.  

3. - Proof  o f  the  theorem = l e m m a  1 ÷ l e m m a  2. 
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