Exercise 2.4 (i) Let $\phi \in \widetilde{H}^{\infty}$. If M_{ϕ} is isometric on \widetilde{H}^{2} , show that ϕ is inner.

• If $\phi \in \widetilde{H}^{\infty}$ and M_{ϕ} is isometric then it sends the O.N. family $\{f_n : n \geq 0\}$ to an O.N. family. Thus $\langle \phi f_n, \phi f_m \rangle = 0$ for $n, m \in \mathbb{Z}_+, n \neq m$.

In particular $\langle \phi f_n, \phi f_0 \rangle = 0$ for all $n \ge 1$, δηλαδη $\int \phi f_n \overline{\phi} dm = 0$ for all $n \ge 1$, δηλαδη $\int |\phi|^2 f_n dm = 0$ for all $n \ge 1$.

Now, taking complex conjugates, you get $\int |\phi|^2 \overline{f_n} dm = 0$ for all $n \ge 1$, $\delta \eta \lambda \alpha \delta \eta \int |\phi|^2 f_{-n} dm = 0$ for all $n \ge 1$ $\delta \eta \lambda \alpha \delta \eta \int |\phi|^2 f_n dm = 0$ for all $n \in \mathbb{Z}$, $n \ne 0$.

Thus the function $|\phi|^2$ has all Fourier coeff. =0 except the zeroth, so $|\phi|^2$ is (a.e.) a constant multiple of f_0 , δηλαδη a constant. (Πιο αναλυτικα, if $g:=|\phi|^2$ then $\hat{g}(n)=0$ for all $n\in\mathbb{Z}, n\neq 0$, hence the function $g-\hat{g}(0)f_0$ has all Fourier coeff. =0 hence $g-\hat{g}(0)f_0=0$ a.e.) Δηλαδη η ϕ ειναι εσωτερικη.

• Το αντιστροφο ειναι ευκολο, αλλα και το εχουμε κανει.

Exercise 2.4 (ii) Let $\phi \in \widetilde{H}^{\infty}$. Deixte on $\eta \{1, \phi, \phi^2, \dots \}$ einal OK bash ton \widetilde{H}^2 and $\phi(z) = \lambda z$, $\lambda \in \mathbb{T}$.

- The family $\{f_n:n\geqslant 0\}$ where $f_n(z)=z^n,\,z\in\mathbb{T}$ is an ON basis of \widetilde{H}^2 ; this means that they are O.N and their CLOSED linear span is \widetilde{H}^2 , equivalently no nonzero element of \widetilde{H}^2 is orthogonal to the whole family. The same properties hold if you replace z^n by $\lambda^n z^n$ (since $|\lambda|=1$). So if $\phi(z)=\lambda z$ then $\{1,\phi,\phi^2,\dots\}$ is an ON basis of \widetilde{H}^2 . Auth ειναι η τετριμμένη κατευθύνση.
- Αντιστροφα, υποθετουμε οτι η $\{1, \phi, \phi^2, \dots\}$ is an ON basis of \widetilde{H}^2 . Since $\phi \in \widetilde{H}^{\infty}$, M_{ϕ} is a bounded operator.

Now $M_{\phi}(\{\mathbf{1},\phi,\phi^2,\dots\}) = \{\phi,\phi^2,\dots\}$ which is an ON family by hypothesis. It follows that M_{ϕ} is isometric, 1 so $\overline{\operatorname{span}\{\phi,\phi^2,\dots\}} = M_{\phi}(\overline{\operatorname{span}\{\mathbf{1},\phi,\phi^2,\dots\}}) = M_{\phi}\widetilde{H}^2$.

But since $\{1,\phi,\phi^2,\dots\}$ is an ON basis of \widetilde{H}^2 , the closed subspace spanned by $\{\phi,\phi^2,\dots\}$ is the orthogonal complement of 1. Similarly, the closed subspace spanned by $\{f_1,f_2,\dots\}=\{f_1,f_1^2,\dots\}$ is also the orthogonal complement of 1. So these spaces are equal. Thus $\phi\widetilde{H}^2=f_1\widetilde{H}^2$. By uniquness in Beurling's theorem, there is a constant $\lambda\in\mathbb{T}$ s.t. $\phi=\lambda f_1$ i.e $\phi(z)=\lambda z,\,z\in\mathbb{T}$, $\sigma\pi\omega\varsigma$ θελαμε.

Σχολιο: Η ακολουθη γενικοτερη ασκηση ηταν η 4η ασκηση στο 3ο φυλλαδιο ασκησεων:

Askhoh 1. Estw $\phi \in L^\infty$. (a) Deixte sti o telesthy $T_\phi := PM_\phi|_{\widetilde{H}^2}$ einal isometria an-n ϕ einal eswterikh sunarthsh.

(b) Deixte oti o T_ϕ einai unitary (= isometria kai epi) an-n h ϕ einai (s.p.) staverh. (g) An $\phi \in \widetilde{H}^\infty$, deixte oti h $\{1,\phi,\phi^2,\dots\}$ einai orbokanonikh bash tou \widetilde{H}^2 an-n $\phi(z)=\lambda z$ opou $\lambda \in \mathbb{T}$ staverh.

¹preserves norm and sc. product on an ON basis hence (linearity and continuity) on the whole space