Το γινόμενο Blaschke

Θεώρημα 1. Εστω¹ (z_k) αχολουδια στο $\mathbb{D}\setminus\{0\}$ με $\sum\limits_{i=1}^\infty(1-|z_i|)<\infty$ και $s\in\mathbb{Z}_+$. Τοτε υπαρχει μια εσωτερική συναρτήση B που έχει συνολο ρίζων $Z(B)=\{0\}\cup\{z_k:k\in\mathbb{N}\}$ και η ρίζα z=0 έχει πολλαπλοτήτα s. Για καθε $z\in\mathbb{D}$, έχουμε

$$B(z) = z^{s} \prod_{i=1}^{\infty} \frac{\bar{z}_{i}}{|z_{i}|} \frac{z_{i} - z}{1 - \bar{z}_{i}z} .$$

οπου το απειρογινομενο συγκλινει ομοιομορφα στα συμπαγη του \mathbb{D} .

Επομενως, η συνθηκη $z_n\in\mathbb{D}\backslash\{0\}$ με $\sum\limits_{i=1}^\infty(1-|z_i|)<\infty$ ειναι ικανη και αναγκαια για την υπαρξη $f\in H^2$ (μαλιστα, εσωτερικης) με ακριβως αυτες τις ριζες.

Σχολιο. Η συγκλιση του απειρογινομενου σημαινει οτι, για καθε συμπαγες υποσυνολο K του $\mathbb D$, μονον πεπερασμενο πληθος ορων του απειρογινομενου εχει ρίζες στο K και οτι το απειρογινομενο που αποτελειται απο τους υπολοιπους ορους συγκλινει ομοιομορφα στο συμπαγες K σε μια ολομορφη συναρτηση που δεν εχει καμμια ρίζα στο K.

Απόδειξη. Αρχει να δειξουμε την υπαρξη εσωτερικης συναρτησης B_0 με συνολο ριζων $Z(B_0)=\{z_k:k\in\mathbb{N}\}$ και να θεσουμε $B(z):=z^sB_0(z).$

Let ϕ_i be the inner function

$$\phi_i(z) := \frac{\bar{z}_i}{|z_i|} \frac{z_i - z}{1 - \bar{z}_i z}$$

and let

$$B_n(z) := \prod_{k=1}^n \phi_k(z)$$

which is an inner function with roots $Z(B_n)=\{z_1,\dots,z_n\}.$

Claim 1 The sequence (B_n) is Cauchy in the Banach space H^2 .

Proof of Claim 1 For n > m, we have

$$\begin{split} \left\|B_n - B_m\right\|^2 &= \left\|\tilde{B}_n - \tilde{B}_m\right\|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\tilde{B}_n(e^{it}) - \tilde{B}_m(e^{it})|^2 \, dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} (\tilde{B}_n(e^{it}) - \tilde{B}_m(e^{it})) \overline{(\tilde{B}_n(e^{it}) - \tilde{B}_m(e^{it}))} \, dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(|\tilde{B}_n(e^{it})|^2 + |\tilde{B}_m(e^{it})|^2 - 2 \operatorname{Re}(\tilde{B}_n(e^{it}) \overline{\tilde{B}_m(e^{it})}) \right) \, dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(1 + 1 - 2 \operatorname{Re}\left(\frac{\tilde{B}_n(e^{it})}{\tilde{B}_m(e^{it})} \right) \right) \, dt \end{split}$$

¹blaschke, 25 Νοεμβρίου 2024

since $|\tilde{B}_n(e^{it})|=1$ a.e., and so $\overline{\tilde{B}_n(e^{it})}=\frac{1}{\tilde{B}_n(e^{it})}$ a.e. Notice now that $B_n(z)=B_m(z)\prod_{k=m+1}^n\phi_k(z)$ and so $\frac{B_n}{B_m}$ is a well defined inner function. Hence by the Poisson integral formula (at r=0) we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\tilde{B}_n(e^{it})}{\tilde{B}_m(e^{it})} \, dt = \frac{B_n(0)}{B_m(0)} \, .$$

Now

$$\frac{B_n(0)}{B_m(0)} = \prod_{k=m+1}^n \phi_k(0) = \prod_{k=m+1}^n \frac{\bar{z}_k}{|z_k|} \frac{z_k}{1-0} = \prod_{k=m+1}^n |z_k|$$

and so

$$\left\|B_n-B_m\right\|^2=2-2\prod_{k=m+1}^n\left|z_k\right|.$$

Since $\sum\limits_{i=1}^{\infty}(1-|z_i|)<\infty$, we know that the infinite product $\prod_{k=1}^{\infty}|z_k|$ converges to a nonzero number p. It is easy to see that this implies that the quotient $\prod_{k=m+1}^{n}|z_k|=\frac{\prod_{k=1}^{n}|z_k|}{\prod_{k=1}^{m}|z_k|}$ can be made arbitrarily close to 1, making $\|B_n-B_m\|$ arbitrarily small. 2 This proves Claim 1.

Therefore there exists $B_0 \in H^2$ such that $\lim_n \|B_n - B_0\|_{H^2} = 0$.

The fact that $\lim_n \left\| \tilde{B}_n - \tilde{B}_0 \right\|_{\tilde{H}^2} = 0$ (i.e. in the norm of $L^2(\mathbb{T})$) implies in particular that there is a subsequence (k_n) so that $\lim_n \tilde{B}_{k_n}(e^{it}) = \tilde{B}_0(e^{it})$ a.e., and so $|\tilde{B}_0(e^{it})| = \lim_n |\tilde{B}_{k_n}n(e^{it})| = 1$ a.e. since the B_n are inner functions.

Thus B_0 is an inner function.

Claim 2 The infinite product $\prod_{k=1}^{\infty} \phi_k$ converges (to B_0) uniformly on compact subsets of \mathbb{D} .

Proof of Claim 2 Take any $r \in (0,1)$, so that $\bar{B}(0,r) \subset \mathbb{D}$.

Firstly, the condition $\sum_{i=1}^{\infty} (1-|z_i|) < \infty$ implies that $|z_n| \to 1$, hence at most finitely many of the z_n can be in $\bar{B}(0,r)$.

• Suppose first that no z_n is in the closed ball $\bar{B}(0,r)$. Then no $\phi_n(z)$ has any roots in B(0,r), and the same holds for the B_n . Since $B_n(z) \to B_0(z)$ uniformly on compact sets

$$\|B_n - B_m\|^2 = 2 - 2 \prod_{k=m+1}^n |z_k| < 4\epsilon \,,$$

showing that (B_n) is Cauchy.

Writing $p_n:=\prod_{k=1}^n|z_k|$ we have $\lim\frac{p_n}{p}=1$ hence $\lim\frac{p}{p_n}=1$. Thus given $\epsilon\in(0,1)$ there exists n_0 such that for $n>m>n_0$ we have $1-\epsilon<\frac{p_n}{p}<1+\epsilon$ and also $1-\epsilon<\frac{p}{p_m}<1+\epsilon$ hence $(1-\epsilon)^2<\frac{p_n}{p_m}<(1+\epsilon)^2$ and so $1-\frac{p_n}{p_m}<2\epsilon-\epsilon^2<2\epsilon$. Therefore

of B(0,r) and B_0 is not identically zero on B(0,r), ³ by Hurwitz's Theorem B_0 has no roots in B(0,r). In other words, for any $z \in B(0,r)$, the partial products $B_n(z)$ converge to the *nonzero* complex number $B_0(z)$, which means exactly that $\prod_{k=1}^{\infty} \phi_k(z) = B_0(z)$. The convergence is uniform on compact sets of B(0,r), as observed earlier.

• Suppose now that the roots $\{z_1,\dots,z_N\}$ are in $\bar{B}(0,r)$ and $|z_m|>r$ for m>N. We repeat the same argument for the sequence $(\phi_n)_{n>N}$: the partial products $B'_n(z):=\prod_{k=N+1}^n\phi_k(z)$ have no roots in B(0,r) hence their limit $B'_0(z):=\lim_n B'_n(z)$ (which, as before, is not identically zero, being the limit of inner functions) has no roots in B(0,r). This shows that $B'_0(z)=\prod_{k=N+1}^\infty\phi_k(z)$ exists and is a nonzero complex number for any $z\in B(0,r)$.

It follows that

$$B_0(z) = \left(\prod_{k=1}^N \phi_k(z)\right) B_0'(z) = \left(\prod_{k=1}^N \phi_k(z)\right) \left(\prod_{k=N+1}^\infty \phi_k(z)\right) = \prod_{k=1}^\infty \phi_k(z)$$

converges for all $z \in B(0,r)$, uniformly on compact sets, and vanishes exactly at the points $\{z_1,\ldots,z_N\}$.

Finally, let K be a compact subset of \mathbb{D} . There exists $r \in (0,1)$ so that $K \subset B(0,r) \subseteq \bar{B}(0,r) \subseteq \mathbb{D}$. By the previous arguments, the infinite product converges to $B_0(z)$ uniformly on K.

The Claim is proved.

It follows that B_0 cannot vanish at any $z_0 \in \mathbb{D} \setminus \{z_1, \dots, z_n, \dots\}$; for such a z_0 would lie in some ball B(0,r), and we have just seen that the roots of B_0 in B(0,r) must belong to $\{z_1, \dots, z_n, \dots\}$. Since conversely $B_0(z_k) = 0$ for any k (because $B_n(z_k) = 0$ for all $n \geq k$, we have shown that

$$Z(B_0) = \left\{z_1, \dots, z_n, \dots\right\}.$$

Finally we show that the multiplicity of each $\hat{z} \in Z(B)$ is exactly the number of factors $s_{\hat{z}}$ in which \hat{z} occurs. (This number is of course finite: any root of a nonzero holomorphic function must have finite multiplicity.) Writing

$$B_0(z) = \left(\prod_{z_k = \hat{z}} \phi_k(z)\right) \left(\prod_{z_k \neq \hat{z}} \phi_k(z)\right)$$

it is clear that the multiplicity of \hat{z} is at least the number $s_{\hat{z}}$ of factors appearing in the first term. To show that it cannot exceed that number, note that the second term of the product does not vanish at \hat{z} , by the earlier argument applied to the sequence $\{z_n\}$ with the (finitely many) terms for which $z_k = \hat{z}$ removed. Thus the multiplicity of \hat{z} as a root of B_0 is exactly the number of terms occurring in the first term.

 $^{^3}$ otherwise it would be identically zero on $\mathbb D$ (by the identity principle) which would contradict the fact its boundary function is nonzero