On the Toeplitz algebra

Εισαγωγη¹ The norm-closed unital subalgebra of $\mathcal{B}(\widetilde{H}^2)$ generated by the (unilateral) shift $S = T_1$ is $\{T_f : f \in A(\mathbb{D})\}$ where $A(\mathbb{D}) := \{f \in C(\mathbb{T}) : \widehat{f}(-k) = 0 \forall k > 0\}$ (the disc algebra). It is a commutative Banach algebra, isometrically isomorphic to the disc algebra (via the multiplicative unital isometry $A(\mathbb{D}) \to \mathcal{B}(\widetilde{H}^2) : f \mapsto T_f$).

What if we consider the norm-closed algebra $C^*(S)$ generated by the shift S and its adjoint $S^* = T_{-1}$? This certainly contains $\{T_f : f \in C(\mathbb{T})\}$; but this (closed, unital, selfadjoint) subspace is not an algebra, nor is the isometry $C(\mathbb{T}) \to \mathcal{B}(\widetilde{H}^2) : f \mapsto T_f$ multiplicative. The purpose of these notes is to determine the algebra $C^*(S)$.

Oquouóg 1. For the purpose of these notes, a C* algebra is a norm closed *-subalgebra (i.e. closed under sum, product and the map $T \mapsto T^*$) of $\mathcal{B}(H)$ for some Hilbert space H.²

Παραδείγματα 1.

- $\mathcal{B}(L^2(\mathbb{T}))$: unital, non commutative;
- its subalgebra $\{M_f : f \in C(\mathbb{T})\}$: unital, commutative;

• the algebra $\mathcal{K}(H)$ of compact operators on a Hilbert space H (for us, the norm closure of the *-algebra of finite rank operators on H): non commutative, non unital (iff dim $H = \infty$).

Ορισμός 2. The Toeplitz algebra $C^*(S)$ is the C* algebra generated in $\mathcal{B}(\widetilde{H}^2)$ by the shift, i.e. the norm-closed linear span of all products of S and S^{*}.

Θεώρημα 2. The Toeplitz algebra is equal to

$$\mathcal{T}:=\{T_f+K: f\in C(\mathbb{T}), \, K\in \mathcal{K}(\widetilde{H}^2)\}\subseteq \mathcal{B}(\widetilde{H}^2).$$

Aπόδειξη. • Recall that

$$T_{f_k} = \begin{cases} S^k, & k \ge 0\\ (S^*)^k, & k < 0 \end{cases}$$

Thus if $p = \sum_{|k| < n} \hat{p}(k) f_k$ is a trigonometric polynomial, then

$$T_p = \sum_{k=-n}^{-1} \hat{p}(k) (S^*)^k + \sum_{m=0}^n \hat{p}(m) S^m \, .$$

belongs to $C^*(S)$. Since every $f \in C(\mathbb{T})$ is a norm-limit of trigonometric polynomials and the map $f \to T_f$ is continuous (in fact, isometric) we have that $\{T_f : f \in C(\mathbb{T})\} \subseteq C^*(S)$.

• We show that every rank one operator of the form $f_m f_n^* (m, n \in \mathbb{Z}_+)$ is in $C^*(S)$: ³ Indeed recall that $SS^*(f_0) = 0$ and $SS^*(f_n) = f_n$ for n > 0; this means that SS^* is the projection onto the closed linear span of $\{f_n : n > 0\}$, and so $I - SS^*$ is the projection onto its orthogonal complement, span f_0 , i.e. $I - SS^* = f_0 f_0^*$. Hence for $m, n \in \mathbb{Z}_+$ we have

$$S^m(S^*)^n - S^{m+1}(S^*)^{n+1} = S^m(I - SS^*)(S^*)^n = S^m(f_0f_0^*)(S^*)^n = (S^mf_0)(S^nf_0)^* = f_mf_n^* \, .$$

The left hand side is in $C^*(S)$ (for m = n = 0 recall that $I = S^*S$ is in $C^*(S)$), hence $f_m f_n^* \in C^*(S)$ as claimed.

• It follows that $\mathcal{K}(\widetilde{H}^2) \subseteq C^*(S)$: indeed, it is a simple exercise to show that every rank one operator can be approximated by linear combinations of operators of the form $f_m f_n^*$ and hence

¹cstars, modified 12 Iavovaçíov 2025

²There is an axiomatic characterization, which will not concern us here.

 $[\]label{eq:recall} \mbox{``recall that } (f_m f_n^*)(g) := \langle g, f_n \rangle f_m = \hat{g}(n) f_m.$

the same holds for any operator in the closed linear span of rank one operators, i.e. for any compact operator.

• We have now shown that $\mathcal{T} \subseteq C^*(S)$. This is a unital selfadjoint subspace; we now show it is an algebra.

Indeed, if $T_f + K_1$ and $T_g + K_2$ are in \mathcal{T} then recalling that $T_f T_g - T_{fg} = K$ is a compact operator (exercise)⁴

$$\begin{split} (T_f+K_1)(T_g+K_2) &= T_f T_g + (T_f K_2 + K_1 T_g + K_1 K_2) \\ &= T_{fg} + (K+T_f K_2 + K_1 T_g + K_1 K_2) \in \mathcal{T} \end{split} \tag{1}$$

since the compact operators form an ideal. Thus \mathcal{T} is an algebra.

• To show that \mathcal{T} is closed in $\mathcal{B}(\widetilde{H}^2)$, we will need the following Lemma (proved in class):

А́пµµа 3. If $\phi \in L^{\infty}(\mathbb{T})$, then for every $K \in \mathcal{K}(\widetilde{H}^2)$ we have

$$||T_{\phi} + K|| \ge ||T_{\phi}||$$
.

Now let $(T_{f_n} + K_n)_n$ be a sequence in \mathcal{T} which converges to some $X \in \mathcal{B}(\widetilde{H}^2)$. Recalling that $f \mapsto T_f$ is an isometry and using the Lemma, we have

$$\begin{split} \|f_n - f_m\|_{\infty} &= \|T_{f_n - f_m}\| \leq \|T_{f_n - f_m} + (K_n - K_m)\| = \|T_{f_n} - T_{f_m} + (K_n - K_m)\| \\ &= \|(T_{f_n} + K_n) - (T_{f_m} + K_m)\| \end{split}$$

and so (f_n) is Cauchy in $C(\mathbb{T})$; hence the limit $f = \lim f_n$ exists in $C(\mathbb{T})$ and thus $T_f = \lim T_{f_n}$ exists in \mathcal{T} . Since also $\lim(T_{f_n} + K_n) = X$, it follows that $X - T_f = \lim K_n$ is a compact operator K, ⁵ and so $X = T_f + K$ is in \mathcal{T} oracy delaye.

Finally, we have shown that (a) \mathcal{T} is a norm closed selfadjoint subalgebra of $\mathcal{B}(\widetilde{H}^2)$ containing S, so it must contain $C^*(S)$; but also (b) \mathcal{T} is contained in $C^*(S)$; hence $\mathcal{T} = C^*(S)$.

Παρατήφηση 4. The decomposition of an element of \mathcal{T} as a sum $T_f + K$ is unique: if $T_f + K = T_g + K'$ where $f, g \in C(\mathbb{T})$ and K, K' are compact, then f = g and K = K'.

Aπόδειξη. We have

$$T_{f-g}=T_f-T_g=K'-K\in\mathcal{K}(\widetilde{H}^2)$$

But by Lemma 3 we have $||T_{f-g}|| \leq \operatorname{dist}(T_{f-g}, \mathcal{K}(\widetilde{H}^2)) = 0$, so $T_{f-g} = 0$ and hence f - g = 0. It follows that K = K' as well.

Πρόταση 5. The map

$$\pi:\mathcal{T}\to C(\mathbb{T}):T_f+K\mapsto f$$

is a well defined, contractive, *-preserving homomorphism of \mathcal{T} onto $C(\mathbb{T})$, with ker $\pi = \mathcal{K}(\widetilde{H}^2)$.

Παρατήρηση 6. In more algebraic language, the proposition says equivalently that the quotient \mathcal{T}/\mathcal{K} , which is a complete *-algebra, is isometrically *-isomorphic to $C(\mathbb{T})$.

⁴δειτε στο τελος

 $^{{}^{\}scriptscriptstyle 5}\!\mathrm{here}$ we use that ${\mathcal K}$ is closed - by our definition

Aπόδειξη. The map π is well-defined by the uniqueness of the expression of an element of \mathcal{T} as $T_f + K$ (Remark 4). Its linearity is clear. Also $(T_f + K)^* = T_{\bar{f}} + K^*$ hence $\pi((T_f + K)^*) = \bar{f} = (\pi(T_f + K))^*$.

For multiplicativity, recalling the calculation (1), we have

$$\begin{split} \pi((T_f+K_1)(T_g+K_2)) &= \pi(T_{fg}+K+K_1T_g+T_fK_2+K_1K_2) \\ &= fg \qquad (\text{since } K+K_1T_g+T_fK_2+K_1K_2\in\mathcal{K}) \\ \text{and } \pi(T_f+K_1)\pi(T_g+K_2) &= fg \end{split}$$

οπως θελαμε.

Clearly π maps \mathcal{T} onto $C(\mathbb{T})$; also, $\pi(T_f + K) = 0$ iff f = 0, i.e. iff $T_f + K \in \mathcal{K}$. Thus ker $\pi = \mathcal{K}$. Finally, contractivity of π follows from the Lemma and the (known) fact that $||f||_{\infty} = ||T_f||$ for $f \in C(\mathbb{T})$:

$$\|\pi(T_f+K)\| = \|f\|_{\infty} = \|T_f\| \le \|T_f+K\|\,.$$

Παρατήρηση 7. In algebraic language, we have defined a so called exact sequence of C*-algebras and *-homomorphisms

$$0 \to \mathcal{K} \to \mathcal{T} \xrightarrow{\pi} C(\mathbb{T}) \to 0.$$

Exactness means (by definition) that the map $\mathcal{K} \to \mathcal{T}$ is 1-1, its range in \mathcal{T} is exactly the kernel of the quotient map π , and the latter maps \mathcal{T} onto $C(\mathbb{T})$.

We say that \mathcal{T} is the Toeplitz extension of \mathcal{K} by $C(\mathbb{T})$.

Let

$$\xi: C(\mathbb{T}) \to \mathcal{T}: f \mapsto T_f$$

be the so-called *symbol map*. As we know, this is a unital, *-preserving isometry, but not an algebra homomorphism (for example, $T_{f_1}T_{f_{-1}} \neq T_{f_1f_{-1}}$). However, the composition

$$\pi\circ\xi:C(\mathbb{T})\xrightarrow{\xi}\mathcal{T}\xrightarrow{\pi}C(\mathbb{T}):f\to T_f\to\pi(T_f)=f$$

is of course a homomorphism, is *-preserving, and an isometry.

Παρατήφηση 8 (Universality). Let H be any separable Hilbert space; fix an orthonormal basis $\{x_n : n \ge 0\}$ and consider the isometry $X \in \mathcal{B}(H)$ which satisfies $Xx_n = x_{n+1}, n \in Z_+$. Then the C* algebra $C^*(X)$ generated by X (i.e. the smallest norm-closed selfadjoint subalgebra of $\mathcal{B}(H)$ containing X) is isomorphic as a C* algebra (i.e. via a linear multiplicative *-preserving isometric bijection) with the Toeplitz algebra \mathcal{T} .

Indeed the map $U: x_n \mapsto f_n$, $n \in Z_+$ extends to a unitary from H onto \widetilde{H}^2 ; and so the map $\alpha : \mathcal{B}(H) \to \mathcal{B}(\widetilde{H}^2) : A \mapsto UAU^*$ is an isometric *-isomorphism sending X to S; hence α sends $C^*(X)$ onto $C^*(S) = \mathcal{T}$.

In fact it can be shown [Dav96, Theorem V.2.2] that if X is any isometry on any Hilbert space which is not unitary, then there exists a *-isomorphism $\alpha : C^*(X) \to \mathcal{T}$ such that $\alpha(X) = S$.

For this reason, the Toeplitz algebra \mathcal{T} is said to be the universal C* algebra generated by a proper (i.e. non-unitary) isometry.

Apodelsh too Aquuatos For $\phi \in L^{\infty}(\mathbb{T})$ and every $K \in \mathcal{K}(\widetilde{H}^2)$, noting that $T_{f_{-n}}$ is coanalytic for every $n \in \mathbb{N}$, we have $T_{f_{-n}}T_{\phi} = T_{f_{-n}\phi}$. Since also $\|T_{f_{-n}}\| = 1$,

$$\|T_{\phi} - K\| = \|T_{f_{-n}}\| \|T_{\phi} - K\| \ge \|T_{f_{-n}}(T_{\phi} - K)\| = \|T_{f_{-n}\phi} - T_{f_{-n}}K\| \ge \|T_{f_{-n}\phi}\| - \|T_{f_{-n}}K\| .$$

Now $||T_{f_{-n}\phi}|| = ||f_{-n}\phi||_{\infty} = ||\phi||_{\infty}$ and so it remains to prove that $\lim_{n} ||T_{f_{-n}}K|| = 0$. For this, suppose first that K is a rank one operator $K = fg^*$. Then, since $||fg^*|| = ||f|||g||$ (easily verified), we have $\lim_n \|T_{f_{-n}}K\| = \lim_n \|T_{f_{-n}}f\|\|g\|$. But if $f = \sum_{k=0}^{\infty} \widehat{f}(k)f_k$ is in \widetilde{H}^2 , then $T_{f_{-n}}f=\sum_{k=n}^\infty \widehat{f}(k)f_{k-n} \text{ so } \|T_{f_{-n}}f\|_2^2=\sum_{k=n}^\infty |\widehat{f}(k)|^2 \text{ which tends to } 0 \text{ as } n\to\infty.$

Thus when *K* is a rank one operator, $\lim_{n \to \infty} \|T_{f_{-n}}K\| = 0$; it follows that the same holds if *K* is a (finite) sum of rank one operators. For an arbitrary compact operator *K* choose, for any given $\epsilon > 0$, a finite rank operator K' such that $||K' - K|| < \epsilon$. By the previous paragraph, there is an $n_0 \in \mathbb{N}$ such that $||T_{f_{-n}}K'|| < \epsilon$ when $n \ge n_0$. Then, for any $n \ge n_0$, since all $T_{f_{-n}}$ have norm

$$\|T_{f_{-n}}K\| \leq \|T_{f_{-n}}K'\| + \|T_{f_{-n}}(K-K')\| \leq \|T_{f_{-n}}K'\| + \|K-K'\| < 2\epsilon$$

οπως θελαμε.

Λυση μιας ασχησης Θα δειξουμε χατι ισχυροτερο⁶

• $T_{f_{\eta_{t}}} - T_{f}T_{\eta_{t}} \in \mathcal{K}$ otan $\psi \in L^{\infty}(\mathbb{T}), f \in C(\mathbb{T}).$

Aπόδειξη. Since every $f \in C(\mathbb{T})$ is in the $\|\cdot\|_{\infty}$ -closed linear span of $\{f_k : k \in \mathbb{Z}\}$, and $\|T_f\| = \|f\|_{\infty}$, it suffices to prove the claim when $f = f_k$.

Suppose first that $f = f_k$, k < 0, so T_f is coanalytic. Then $T_f T_{\psi} = T_{f\psi}$ so the difference is compact.

Suppose now that $f = f_k, k \ge 0$, so $T_f = S^k$. Then since T_{ψ} is Toeplitz, we have $(S^*)^k T_{\psi} S^k = T_{\psi}$ SO

$$(S^*)^k T_{\psi} S^k = T_{\psi} = (S^*)^k S^k T_{\psi}$$

or

$$(S^*)^k (T_{\psi} S^k - S^k T_{\psi}) = 0 \,.$$

Thus $\operatorname{ran}(T_\psi S^k - S^k T_\psi) \subseteq \ker(S^*)^k$ which is k-dimensional and so $(T_\psi S^k - S^k T_\psi)$ has rank at most k. But $T_{\psi}S^k - S^kT_{\psi} = T_{\psi}T_f - T_fT_{\psi} = T_{\psi f} - T_fT_{\psi}$ because $f \in \widetilde{H}^{\infty}$, and so $T_{\psi f} - T_fT_{\psi}$ is compact.

Αναφορές

- [Arv02] William Arveson, A short course on spectral theory, Graduate Texts in Mathematics, vol. 209, Springer-Verlag, New York, 2002. MR 1865513
- [Dav96] K. R. Davidson, C*-algebras by example, Fields Institute Monographs, 6, Amer. Math. Soc., Providence, RI, 1996; MR 1402012

⁶Η ιδεα της αποδειξης ανηχει στον ΠΚ