
On the Toeplitz algebra

Εισαγωγη ¹ The norm-closed unital subalgebra of ℬ(𝐻2) generated by the (unilateral) shift
𝑆 = 𝑇1 is {𝑇𝑓 ∶ 𝑓 ∈ 𝐴(𝔻)} where 𝐴(𝔻) ∶= {𝑓 ∈ 𝐶(𝕋) ∶ ̂𝑓(−𝑘) = 0 ∀𝑘 > 0} (the disc algebra).
It is a commutative Banach algebra, isometrically isomorphic to the disc algebra (via the
multiplicative unital isometry 𝐴(𝔻) → ℬ(𝐻2) ∶ 𝑓 ↦ 𝑇𝑓 ).
What if we consider the norm-closed algebra 𝐶∗(𝑆) generated by the shift 𝑆 and its adjoint

𝑆∗ = 𝑇−1? This certainly contains {𝑇𝑓 ∶ 𝑓 ∈ 𝐶(𝕋)}; but this (closed, unital, selfadjoint) subspace is
not an algebra, nor is the isometry 𝐶(𝕋) → ℬ(𝐻2) ∶ 𝑓 ↦ 𝑇𝑓 multiplicative. The purpose of these
notes is to determine the algebra 𝐶∗(𝑆).
Ορισμός 1. For the purpose of these notes, a C* algebra is a norm closed *-subalgebra (i.e. closed

under sum, product and the map 𝑇 ↦ 𝑇 ∗) of ℬ(𝐻) for some Hilbert space 𝐻. ²

Παραδείγματα 1.
• ℬ(𝐿2(𝕋)): unital, non commutative;

• its subalgebra {𝑀𝑓 ∶ 𝑓 ∈ 𝐶(𝕋)}: unital, commutative;

• the algebra 𝒦(𝐻) of compact operators on a Hilbert space 𝐻 (for us, the norm closure of

the *-algebra of finite rank operators on 𝐻): non commutative, non unital (iff dim𝐻 = ∞).

Ορισμός 2. The Toeplitz algebra 𝐶∗(𝑆) is the C* algebra generated in ℬ(𝐻2) by the shift, i.e. the

norm-closed linear span of all products of 𝑆 and 𝑆∗.

Θεώρημα 2. The Toeplitz algebra is equal to

𝒯 ∶= {𝑇𝑓 + 𝐾 ∶ 𝑓 ∈ 𝐶(𝕋), 𝐾 ∈ 𝒦(𝐻2)} ⊆ ℬ(𝐻2).

Απόδειξη. • Recall that

𝑇𝑓𝑘
= {𝑆𝑘, 𝑘 ≥ 0

(𝑆∗)𝑘, 𝑘 < 0
Thus if 𝑝 = ∑|𝑘|≤𝑛 ̂𝑝(𝑘)𝑓𝑘 is a trigonometric polynomial, then

𝑇𝑝 =
−1
∑

𝑘=−𝑛
̂𝑝(𝑘)(𝑆∗)𝑘 +

𝑛
∑
𝑚=0

̂𝑝(𝑚)𝑆𝑚 .

belongs to 𝐶∗(𝑆). Since every 𝑓 ∈ 𝐶(𝕋) is a norm-limit of trigonometric polynomials and the
map 𝑓 → 𝑇𝑓 is continuous (in fact, isometric) we have that {𝑇𝑓 ∶ 𝑓 ∈ 𝐶(𝕋)} ⊆ 𝐶∗(𝑆).

• We show that every rank one operator of the form 𝑓𝑚𝑓∗
𝑛 (𝑚, 𝑛 ∈ ℤ+) is in 𝐶∗(𝑆): ³ Indeed

recall that 𝑆𝑆∗(𝑓0) = 0 and 𝑆𝑆∗(𝑓𝑛) = 𝑓𝑛 for 𝑛 > 0; this means that 𝑆𝑆∗ is the projection onto
the closed linear span of {𝑓𝑛 ∶ 𝑛 > 0}, and so 𝐼 − 𝑆𝑆∗ is the projection onto its orthogonal
complement, span 𝑓0, i.e. 𝐼 − 𝑆𝑆∗ = 𝑓0𝑓∗

0 . Hence for 𝑚, 𝑛 ∈ ℤ+ we have

𝑆𝑚(𝑆∗)𝑛 − 𝑆𝑚+1(𝑆∗)𝑛+1 = 𝑆𝑚(𝐼 − 𝑆𝑆∗)(𝑆∗)𝑛 = 𝑆𝑚(𝑓0𝑓∗
0)(𝑆∗)𝑛 = (𝑆𝑚𝑓0)(𝑆𝑛𝑓0)∗ = 𝑓𝑚𝑓∗

𝑛 .

The left hand side is in 𝐶∗(𝑆) (for 𝑚 = 𝑛 = 0 recall that 𝐼 = 𝑆∗𝑆 is in 𝐶∗(𝑆)), hence 𝑓𝑚𝑓∗
𝑛 ∈ 𝐶∗(𝑆)

as claimed.
• It follows that 𝒦(𝐻2) ⊆ 𝐶∗(𝑆): indeed, it is a simple exercise to show that every rank one

operator can be approximated by linear combinations of operators of the form 𝑓𝑚𝑓∗
𝑛 and hence

¹cstars, modified 12 Ιανουαρίου 2025
²There is an axiomatic characterization, which will not concern us here.
³recall that (𝑓𝑚𝑓∗

𝑛)(𝑔) ∶= ⟨𝑔, 𝑓𝑛⟩𝑓𝑚 = ̂𝑔(𝑛)𝑓𝑚.
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the same holds for any operator in the closed linear span of rank one operators, i.e. for any
compact operator.

• We have now shown that 𝒯 ⊆ 𝐶∗(𝑆). This is a unital selfadjoint subspace; we now show it
is an algebra.
Indeed, if 𝑇𝑓 + 𝐾1 and 𝑇𝑔 + 𝐾2 are in 𝒯 then recalling that 𝑇𝑓𝑇𝑔 − 𝑇𝑓𝑔 = 𝐾 is a compact

operator (exercise)⁴

(𝑇𝑓 + 𝐾1)(𝑇𝑔 + 𝐾2) = 𝑇𝑓𝑇𝑔 + (𝑇𝑓𝐾2 + 𝐾1𝑇𝑔 + 𝐾1𝐾2)
= 𝑇𝑓𝑔 + (𝐾 + 𝑇𝑓𝐾2 + 𝐾1𝑇𝑔 + 𝐾1𝐾2) ∈ 𝒯 (1)

since the compact operators form an ideal. Thus 𝒯 is an algebra.

• To show that 𝒯 is closed in ℬ(𝐻2), we will need the following Lemma (proved in class):
Λήμμα 3. If 𝜙 ∈ 𝐿∞(𝕋), then for every 𝐾 ∈ 𝒦(𝐻2) we have

‖𝑇𝜙 + 𝐾‖ ≥ ‖𝑇𝜙‖ .

Now let (𝑇𝑓𝑛
+ 𝐾𝑛)𝑛 be a sequence in 𝒯 which converges to some 𝑋 ∈ ℬ(𝐻2). Recalling that

𝑓 ↦ 𝑇𝑓 is an isometry and using the Lemma, we have

‖𝑓𝑛 − 𝑓𝑚‖∞ = ‖𝑇𝑓𝑛−𝑓𝑚
‖ ≤ ‖𝑇𝑓𝑛−𝑓𝑚

+ (𝐾𝑛 − 𝐾𝑚)‖ = ‖𝑇𝑓𝑛
− 𝑇𝑓𝑚

+ (𝐾𝑛 − 𝐾𝑚)‖
= ‖(𝑇𝑓𝑛

+ 𝐾𝑛) − (𝑇𝑓𝑚
+ 𝐾𝑚)‖

and so (𝑓𝑛) is Cauchy in 𝐶(𝕋); hence the limit 𝑓 = lim 𝑓𝑛 exists in 𝐶(𝕋) and thus 𝑇𝑓 = lim𝑇𝑓𝑛
exists in 𝒯. Since also lim(𝑇𝑓𝑛

+ 𝐾𝑛) = 𝑋, it follows that 𝑋 − 𝑇𝑓 = lim𝐾𝑛 is a compact operator
𝐾, ⁵ and so 𝑋 = 𝑇𝑓 + 𝐾 is in 𝒯 οπως θελαμε.

Finally, we have shown that (a) 𝒯 is a norm closed selfadjoint subalgebra of ℬ(𝐻2) containing
𝑆, so it must contain 𝐶∗(𝑆); but also (b) 𝒯 is contained in 𝐶∗(𝑆); hence 𝒯 = 𝐶∗(𝑆).

Παρατήρηση 4. The decomposition of an element of 𝒯 as a sum 𝑇𝑓 +𝐾 is unique: if 𝑇𝑓 +𝐾 = 𝑇𝑔+𝐾′

where 𝑓, 𝑔 ∈ 𝐶(𝕋) and 𝐾, 𝐾′ are compact, then 𝑓 = 𝑔 and 𝐾 = 𝐾′.

Απόδειξη. We have
𝑇𝑓−𝑔 = 𝑇𝑓 − 𝑇𝑔 = 𝐾′ − 𝐾 ∈ 𝒦(𝐻2) .

But by Lemma 3 we have ‖𝑇𝑓−𝑔‖ ≤ dist(𝑇𝑓−𝑔, 𝒦(𝐻2)) = 0, so 𝑇𝑓−𝑔 = 0 and hence 𝑓 − 𝑔 = 0. It
follows that 𝐾 = 𝐾′ as well.

Πρόταση 5. The map

𝜋 ∶ 𝒯 → 𝐶(𝕋) ∶ 𝑇𝑓 + 𝐾 ↦ 𝑓

is a well defined, contractive, *-preserving homomorphism of 𝒯 onto 𝐶(𝕋), with ker𝜋 = 𝒦(𝐻2).
Παρατήρηση 6. In more algebraic language, the proposition says equivalently that the quotient

𝒯/𝒦, which is a complete *-algebra, is isometrically *-isomorphic to 𝐶(𝕋).
⁴δειτε στο τελος
⁵here we use that 𝒦 is closed - by our definition
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Απόδειξη. The map 𝜋 is well-defined by the uniqueness of the expression of an element of 𝒯
as 𝑇𝑓 + 𝐾 (Remark 4). Its linearity is clear. Also (𝑇𝑓 + 𝐾)∗ = 𝑇 ̄𝑓 + 𝐾∗ hence 𝜋((𝑇𝑓 + 𝐾)∗) = ̄𝑓 =
(𝜋(𝑇𝑓 + 𝐾))∗.
For multiplicativity, recalling the calculation (1), we have

𝜋((𝑇𝑓 + 𝐾1)(𝑇𝑔 + 𝐾2)) = 𝜋(𝑇𝑓𝑔 + 𝐾 + 𝐾1𝑇𝑔 + 𝑇𝑓𝐾2 + 𝐾1𝐾2)
= 𝑓𝑔 (since 𝐾 + 𝐾1𝑇𝑔 + 𝑇𝑓𝐾2 + 𝐾1𝐾2 ∈ 𝒦)

and 𝜋(𝑇𝑓 + 𝐾1)𝜋(𝑇𝑔 + 𝐾2) = 𝑓𝑔

οπως θελαμε.
Clearly 𝜋 maps 𝒯 onto 𝐶(𝕋); also, 𝜋(𝑇𝑓 + 𝐾) = 0 iff 𝑓 = 0, i.e. iff 𝑇𝑓 + 𝐾 ∈ 𝒦. Thus ker𝜋 = 𝒦.
Finally, contractivity of 𝜋 follows from the Lemma and the (known) fact that ‖𝑓‖∞ = ‖𝑇𝑓‖

for 𝑓 ∈ 𝐶(𝕋):
‖𝜋(𝑇𝑓 + 𝐾)‖ = ‖𝑓‖∞ = ‖𝑇𝑓‖ ≤ ‖𝑇𝑓 + 𝐾‖ .

Παρατήρηση 7. In algebraic language, we have defined a so called exact sequence of C*-algebras
and *-homomorphisms

0 → 𝒦 → 𝒯 𝜋→ 𝐶(𝕋) → 0 .
Exactness means (by definition) that the map 𝒦 → 𝒯 is 1-1, its range in 𝒯 is exactly the kernel

of the quotient map 𝜋, and the latter maps 𝒯 onto 𝐶(𝕋).
We say that 𝒯 is the Toeplitz extension of 𝒦 by 𝐶(𝕋).

Let
𝜉 ∶ 𝐶(𝕋) → 𝒯 ∶ 𝑓 ↦ 𝑇𝑓

be the so-called symbol map. As we know, this is a unital, *-preserving isometry, but not an
algebra homomorphism (for example, 𝑇𝑓1

𝑇𝑓−1
≠ 𝑇𝑓1𝑓−1

). However, the composition

𝜋 ∘ 𝜉 ∶ 𝐶(𝕋)
𝜉

→ 𝒯 𝜋→ 𝐶(𝕋) ∶ 𝑓 → 𝑇𝑓 → 𝜋(𝑇𝑓) = 𝑓

is of course a homomorphism, is *-preserving, and an isometry.

Παρατήρηση 8 (Universality). Let 𝐻 be any separable Hilbert space; fix an orthonormal basis

{𝑥𝑛 ∶ 𝑛 ≥ 0} and consider the isometry 𝑋 ∈ ℬ(𝐻) which satisfies 𝑋𝑥𝑛 = 𝑥𝑛+1, 𝑛 ∈ 𝑍+. Then
the C* algebra 𝐶∗(𝑋) generated by 𝑋 (i.e. the smallest norm-closed selfadjoint subalgebra of

ℬ(𝐻) containing 𝑋) is isomorphic as a C* algebra (i.e. via a linear multiplicative *-preserving

isometric bijection) with the Toeplitz algebra 𝒯.
Indeed the map 𝑈 ∶ 𝑥𝑛 ↦ 𝑓𝑛, 𝑛 ∈ 𝑍+ extends to a unitary from 𝐻 onto 𝐻2; and so the map

𝛼 ∶ ℬ(𝐻) → ℬ(𝐻2) ∶ 𝐴 ↦ 𝑈𝐴𝑈 ∗ is an isometric *-isomorphism sending 𝑋 to 𝑆; hence 𝛼 sends

𝐶∗(𝑋) onto 𝐶∗(𝑆) = 𝒯.
In fact it can be shown [Dav96, Theorem V.2.2] that if 𝑋 is any isometry on any Hilbert space

which is not unitary, then there exists a *-isomorphism 𝛼 ∶ 𝐶∗(𝑋) → 𝒯 such that 𝛼(𝑋) = 𝑆.
For this reason, the Toeplitz algebra 𝒯 is said to be the universal C* algebra generated by a

proper (i.e. non-unitary) isometry.

Αποδειξη του Λημματος For 𝜙 ∈ 𝐿∞(𝕋) and every 𝐾 ∈ 𝒦(𝐻2), noting that 𝑇𝑓−𝑛
is coanalytic for

every 𝑛 ∈ ℕ, we have 𝑇𝑓−𝑛
𝑇𝜙 = 𝑇𝑓−𝑛𝜙. Since also ‖𝑇𝑓−𝑛

‖ = 1,

‖𝑇𝜙 − 𝐾‖ = ‖𝑇𝑓−𝑛
‖‖𝑇𝜙 − 𝐾‖ ≥ ‖𝑇𝑓−𝑛

(𝑇𝜙 − 𝐾)‖ = ‖𝑇𝑓−𝑛𝜙 − 𝑇𝑓−𝑛
𝐾‖ ≥ ‖𝑇𝑓−𝑛𝜙‖ − ‖𝑇𝑓−𝑛

𝐾‖ .
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Now ‖𝑇𝑓−𝑛𝜙‖ = ‖𝑓−𝑛𝜙‖∞ = ‖𝜙‖∞ and so it remains to prove that lim𝑛 ‖𝑇𝑓−𝑛
𝐾‖ = 0.

For this, suppose first that 𝐾 is a rank one operator 𝐾 = 𝑓𝑔∗. Then, since ‖𝑓𝑔∗‖ = ‖𝑓‖‖𝑔‖
(easily verified), we have lim𝑛 ‖𝑇𝑓−𝑛

𝐾‖ = lim𝑛 ‖𝑇𝑓−𝑛
𝑓‖‖𝑔‖. But if 𝑓 =

∞
∑
𝑘=0

̂𝑓(𝑘)𝑓𝑘 is in 𝐻2, then

𝑇𝑓−𝑛
𝑓 =

∞
∑

𝑘=𝑛
̂𝑓(𝑘)𝑓𝑘−𝑛 so ‖𝑇𝑓−𝑛

𝑓‖2
2 =

∞
∑

𝑘=𝑛
| ̂𝑓(𝑘)|2 which tends to 0 as 𝑛 → ∞.

Thus when 𝐾 is a rank one operator, lim𝑛 ‖𝑇𝑓−𝑛
𝐾‖ = 0; it follows that the same holds if 𝐾

is a (finite) sum of rank one operators. For an arbitrary compact operator 𝐾 choose, for any
given 𝜖 > 0, a finite rank operator 𝐾′ such that ‖𝐾′ − 𝐾‖ < 𝜖. By the previous paragraph, there
is an 𝑛0 ∈ ℕ such that ‖𝑇𝑓−𝑛

𝐾′‖ < 𝜖 when 𝑛 ≥ 𝑛0. Then, for any 𝑛 ≥ 𝑛0, since all 𝑇𝑓−𝑛
have norm

1,

‖𝑇𝑓−𝑛
𝐾‖ ≤ ‖𝑇𝑓−𝑛

𝐾′‖ + ‖𝑇𝑓−𝑛
(𝐾 − 𝐾′)‖ ≤ ‖𝑇𝑓−𝑛

𝐾′‖ + ‖𝐾 − 𝐾′‖ < 2𝜖

οπως θελαμε.

Λυση μιας ασκησης Θα δειξουμε κατι ισχυροτερο ⁶
• 𝑇𝑓𝜓 − 𝑇𝑓𝑇𝜓 ∈ 𝒦 οταν 𝜓 ∈ 𝐿∞(𝕋), 𝑓 ∈ 𝐶(𝕋).

Απόδειξη. Since every 𝑓 ∈ 𝐶(𝕋) is in the ‖ ⋅ ‖∞-closed linear span of {𝑓𝑘 ∶ 𝑘 ∈ ℤ}, and ‖𝑇𝑓‖ = ‖𝑓‖∞,
it suffices to prove the claim when 𝑓 = 𝑓𝑘.
Suppose first that 𝑓 = 𝑓𝑘, 𝑘 < 0, so 𝑇𝑓 is coanalytic. Then 𝑇𝑓𝑇𝜓 = 𝑇𝑓𝜓 so the difference is

compact.
Suppose now that 𝑓 = 𝑓𝑘, 𝑘 ≥ 0, so 𝑇𝑓 = 𝑆𝑘. Then since 𝑇𝜓 is Toeplitz, we have (𝑆∗)𝑘𝑇𝜓𝑆𝑘 = 𝑇𝜓

so
(𝑆∗)𝑘𝑇𝜓𝑆𝑘 = 𝑇𝜓 = (𝑆∗)𝑘𝑆𝑘𝑇𝜓

or
(𝑆∗)𝑘(𝑇𝜓𝑆𝑘 − 𝑆𝑘𝑇𝜓) = 0 .

Thus ran(𝑇𝜓𝑆𝑘 − 𝑆𝑘𝑇𝜓) ⊆ ker(𝑆∗)𝑘 which is 𝑘-dimensional and so (𝑇𝜓𝑆𝑘 − 𝑆𝑘𝑇𝜓) has rank at most
𝑘. But 𝑇𝜓𝑆𝑘 − 𝑆𝑘𝑇𝜓 = 𝑇𝜓𝑇𝑓 − 𝑇𝑓𝑇𝜓 = 𝑇𝜓𝑓 − 𝑇𝑓𝑇𝜓 because 𝑓 ∈ 𝐻∞, and so 𝑇𝜓𝑓 − 𝑇𝑓𝑇𝜓 is compact.
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⁶Η ιδεα της αποδειξης ανηκει στον ΠΚ
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